xref: /openbmc/linux/fs/ext4/fast_commit.c (revision 2ae1beb3)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30  * - EXT4_FC_TAG_LINK		- records directory entry link
31  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41  *				  during recovery. Note that iblocks field is
42  *				  not replayed and instead derived during
43  *				  replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  *
69  * Not all operations are supported by fast commits today (e.g extended
70  * attributes). Fast commit ineligibility is marked by calling
71  * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72  * to full commit.
73  *
74  * Atomicity of commits
75  * --------------------
76  * In order to guarantee atomicity during the commit operation, fast commit
77  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78  * tag contains CRC of the contents and TID of the transaction after which
79  * this fast commit should be applied. Recovery code replays fast commit
80  * logs only if there's at least 1 valid tail present. For every fast commit
81  * operation, there is 1 tail. This means, we may end up with multiple tails
82  * in the fast commit space. Here's an example:
83  *
84  * - Create a new file A and remove existing file B
85  * - fsync()
86  * - Append contents to file A
87  * - Truncate file A
88  * - fsync()
89  *
90  * The fast commit space at the end of above operations would look like this:
91  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
93  *
94  * Replay code should thus check for all the valid tails in the FC area.
95  *
96  * Fast Commit Replay Idempotence
97  * ------------------------------
98  *
99  * Fast commits tags are idempotent in nature provided the recovery code follows
100  * certain rules. The guiding principle that the commit path follows while
101  * committing is that it stores the result of a particular operation instead of
102  * storing the procedure.
103  *
104  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105  * was associated with inode 10. During fast commit, instead of storing this
106  * operation as a procedure "rename a to b", we store the resulting file system
107  * state as a "series" of outcomes:
108  *
109  * - Link dirent b to inode 10
110  * - Unlink dirent a
111  * - Inode <10> with valid refcount
112  *
113  * Now when recovery code runs, it needs "enforce" this state on the file
114  * system. This is what guarantees idempotence of fast commit replay.
115  *
116  * Let's take an example of a procedure that is not idempotent and see how fast
117  * commits make it idempotent. Consider following sequence of operations:
118  *
119  *     rm A;    mv B A;    read A
120  *  (x)     (y)        (z)
121  *
122  * (x), (y) and (z) are the points at which we can crash. If we store this
123  * sequence of operations as is then the replay is not idempotent. Let's say
124  * while in replay, we crash at (z). During the second replay, file A (which was
125  * actually created as a result of "mv B A" operation) would get deleted. Thus,
126  * file named A would be absent when we try to read A. So, this sequence of
127  * operations is not idempotent. However, as mentioned above, instead of storing
128  * the procedure fast commits store the outcome of each procedure. Thus the fast
129  * commit log for above procedure would be as follows:
130  *
131  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132  * inode 11 before the replay)
133  *
134  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
135  * (w)          (x)                    (y)          (z)
136  *
137  * If we crash at (z), we will have file A linked to inode 11. During the second
138  * replay, we will remove file A (inode 11). But we will create it back and make
139  * it point to inode 11. We won't find B, so we'll just skip that step. At this
140  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142  * similarly. Thus, by converting a non-idempotent procedure into a series of
143  * idempotent outcomes, fast commits ensured idempotence during the replay.
144  *
145  * TODOs
146  * -----
147  *
148  * 0) Fast commit replay path hardening: Fast commit replay code should use
149  *    journal handles to make sure all the updates it does during the replay
150  *    path are atomic. With that if we crash during fast commit replay, after
151  *    trying to do recovery again, we will find a file system where fast commit
152  *    area is invalid (because new full commit would be found). In order to deal
153  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
154  *    superblock state is persisted before starting the replay, so that after
155  *    the crash, fast commit recovery code can look at that flag and perform
156  *    fast commit recovery even if that area is invalidated by later full
157  *    commits.
158  *
159  * 1) Fast commit's commit path locks the entire file system during fast
160  *    commit. This has significant performance penalty. Instead of that, we
161  *    should use ext4_fc_start/stop_update functions to start inode level
162  *    updates from ext4_journal_start/stop. Once we do that we can drop file
163  *    system locking during commit path.
164  *
165  * 2) Handle more ineligible cases.
166  */
167 
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
170 
171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172 {
173 	BUFFER_TRACE(bh, "");
174 	if (uptodate) {
175 		ext4_debug("%s: Block %lld up-to-date",
176 			   __func__, bh->b_blocknr);
177 		set_buffer_uptodate(bh);
178 	} else {
179 		ext4_debug("%s: Block %lld not up-to-date",
180 			   __func__, bh->b_blocknr);
181 		clear_buffer_uptodate(bh);
182 	}
183 
184 	unlock_buffer(bh);
185 }
186 
187 static inline void ext4_fc_reset_inode(struct inode *inode)
188 {
189 	struct ext4_inode_info *ei = EXT4_I(inode);
190 
191 	ei->i_fc_lblk_start = 0;
192 	ei->i_fc_lblk_len = 0;
193 }
194 
195 void ext4_fc_init_inode(struct inode *inode)
196 {
197 	struct ext4_inode_info *ei = EXT4_I(inode);
198 
199 	ext4_fc_reset_inode(inode);
200 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 	INIT_LIST_HEAD(&ei->i_fc_list);
202 	INIT_LIST_HEAD(&ei->i_fc_dilist);
203 	init_waitqueue_head(&ei->i_fc_wait);
204 	atomic_set(&ei->i_fc_updates, 0);
205 }
206 
207 /* This function must be called with sbi->s_fc_lock held. */
208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210 {
211 	wait_queue_head_t *wq;
212 	struct ext4_inode_info *ei = EXT4_I(inode);
213 
214 #if (BITS_PER_LONG < 64)
215 	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 			EXT4_STATE_FC_COMMITTING);
217 	wq = bit_waitqueue(&ei->i_state_flags,
218 				EXT4_STATE_FC_COMMITTING);
219 #else
220 	DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 			EXT4_STATE_FC_COMMITTING);
222 	wq = bit_waitqueue(&ei->i_flags,
223 				EXT4_STATE_FC_COMMITTING);
224 #endif
225 	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228 	schedule();
229 	finish_wait(wq, &wait.wq_entry);
230 }
231 
232 static bool ext4_fc_disabled(struct super_block *sb)
233 {
234 	return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 		(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236 }
237 
238 /*
239  * Inform Ext4's fast about start of an inode update
240  *
241  * This function is called by the high level call VFS callbacks before
242  * performing any inode update. This function blocks if there's an ongoing
243  * fast commit on the inode in question.
244  */
245 void ext4_fc_start_update(struct inode *inode)
246 {
247 	struct ext4_inode_info *ei = EXT4_I(inode);
248 
249 	if (ext4_fc_disabled(inode->i_sb))
250 		return;
251 
252 restart:
253 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 	if (list_empty(&ei->i_fc_list))
255 		goto out;
256 
257 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 		ext4_fc_wait_committing_inode(inode);
259 		goto restart;
260 	}
261 out:
262 	atomic_inc(&ei->i_fc_updates);
263 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264 }
265 
266 /*
267  * Stop inode update and wake up waiting fast commits if any.
268  */
269 void ext4_fc_stop_update(struct inode *inode)
270 {
271 	struct ext4_inode_info *ei = EXT4_I(inode);
272 
273 	if (ext4_fc_disabled(inode->i_sb))
274 		return;
275 
276 	if (atomic_dec_and_test(&ei->i_fc_updates))
277 		wake_up_all(&ei->i_fc_wait);
278 }
279 
280 /*
281  * Remove inode from fast commit list. If the inode is being committed
282  * we wait until inode commit is done.
283  */
284 void ext4_fc_del(struct inode *inode)
285 {
286 	struct ext4_inode_info *ei = EXT4_I(inode);
287 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 	struct ext4_fc_dentry_update *fc_dentry;
289 
290 	if (ext4_fc_disabled(inode->i_sb))
291 		return;
292 
293 restart:
294 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
295 	if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
297 		return;
298 	}
299 
300 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 		ext4_fc_wait_committing_inode(inode);
302 		goto restart;
303 	}
304 
305 	if (!list_empty(&ei->i_fc_list))
306 		list_del_init(&ei->i_fc_list);
307 
308 	/*
309 	 * Since this inode is getting removed, let's also remove all FC
310 	 * dentry create references, since it is not needed to log it anyways.
311 	 */
312 	if (list_empty(&ei->i_fc_dilist)) {
313 		spin_unlock(&sbi->s_fc_lock);
314 		return;
315 	}
316 
317 	fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 	WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 	list_del_init(&fc_dentry->fcd_list);
320 	list_del_init(&fc_dentry->fcd_dilist);
321 
322 	WARN_ON(!list_empty(&ei->i_fc_dilist));
323 	spin_unlock(&sbi->s_fc_lock);
324 
325 	if (fc_dentry->fcd_name.name &&
326 		fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 		kfree(fc_dentry->fcd_name.name);
328 	kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
329 
330 	return;
331 }
332 
333 /*
334  * Mark file system as fast commit ineligible, and record latest
335  * ineligible transaction tid. This means until the recorded
336  * transaction, commit operation would result in a full jbd2 commit.
337  */
338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
339 {
340 	struct ext4_sb_info *sbi = EXT4_SB(sb);
341 	tid_t tid;
342 
343 	if (ext4_fc_disabled(sb))
344 		return;
345 
346 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
347 	if (handle && !IS_ERR(handle))
348 		tid = handle->h_transaction->t_tid;
349 	else {
350 		read_lock(&sbi->s_journal->j_state_lock);
351 		tid = sbi->s_journal->j_running_transaction ?
352 				sbi->s_journal->j_running_transaction->t_tid : 0;
353 		read_unlock(&sbi->s_journal->j_state_lock);
354 	}
355 	spin_lock(&sbi->s_fc_lock);
356 	if (tid_gt(tid, sbi->s_fc_ineligible_tid))
357 		sbi->s_fc_ineligible_tid = tid;
358 	spin_unlock(&sbi->s_fc_lock);
359 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
360 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
361 }
362 
363 /*
364  * Generic fast commit tracking function. If this is the first time this we are
365  * called after a full commit, we initialize fast commit fields and then call
366  * __fc_track_fn() with update = 0. If we have already been called after a full
367  * commit, we pass update = 1. Based on that, the track function can determine
368  * if it needs to track a field for the first time or if it needs to just
369  * update the previously tracked value.
370  *
371  * If enqueue is set, this function enqueues the inode in fast commit list.
372  */
373 static int ext4_fc_track_template(
374 	handle_t *handle, struct inode *inode,
375 	int (*__fc_track_fn)(struct inode *, void *, bool),
376 	void *args, int enqueue)
377 {
378 	bool update = false;
379 	struct ext4_inode_info *ei = EXT4_I(inode);
380 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
381 	tid_t tid = 0;
382 	int ret;
383 
384 	tid = handle->h_transaction->t_tid;
385 	mutex_lock(&ei->i_fc_lock);
386 	if (tid == ei->i_sync_tid) {
387 		update = true;
388 	} else {
389 		ext4_fc_reset_inode(inode);
390 		ei->i_sync_tid = tid;
391 	}
392 	ret = __fc_track_fn(inode, args, update);
393 	mutex_unlock(&ei->i_fc_lock);
394 
395 	if (!enqueue)
396 		return ret;
397 
398 	spin_lock(&sbi->s_fc_lock);
399 	if (list_empty(&EXT4_I(inode)->i_fc_list))
400 		list_add_tail(&EXT4_I(inode)->i_fc_list,
401 				(sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
402 				 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
403 				&sbi->s_fc_q[FC_Q_STAGING] :
404 				&sbi->s_fc_q[FC_Q_MAIN]);
405 	spin_unlock(&sbi->s_fc_lock);
406 
407 	return ret;
408 }
409 
410 struct __track_dentry_update_args {
411 	struct dentry *dentry;
412 	int op;
413 };
414 
415 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
416 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
417 {
418 	struct ext4_fc_dentry_update *node;
419 	struct ext4_inode_info *ei = EXT4_I(inode);
420 	struct __track_dentry_update_args *dentry_update =
421 		(struct __track_dentry_update_args *)arg;
422 	struct dentry *dentry = dentry_update->dentry;
423 	struct inode *dir = dentry->d_parent->d_inode;
424 	struct super_block *sb = inode->i_sb;
425 	struct ext4_sb_info *sbi = EXT4_SB(sb);
426 
427 	mutex_unlock(&ei->i_fc_lock);
428 
429 	if (IS_ENCRYPTED(dir)) {
430 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
431 					NULL);
432 		mutex_lock(&ei->i_fc_lock);
433 		return -EOPNOTSUPP;
434 	}
435 
436 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
437 	if (!node) {
438 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
439 		mutex_lock(&ei->i_fc_lock);
440 		return -ENOMEM;
441 	}
442 
443 	node->fcd_op = dentry_update->op;
444 	node->fcd_parent = dir->i_ino;
445 	node->fcd_ino = inode->i_ino;
446 	if (dentry->d_name.len > DNAME_INLINE_LEN) {
447 		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
448 		if (!node->fcd_name.name) {
449 			kmem_cache_free(ext4_fc_dentry_cachep, node);
450 			ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
451 			mutex_lock(&ei->i_fc_lock);
452 			return -ENOMEM;
453 		}
454 		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
455 			dentry->d_name.len);
456 	} else {
457 		memcpy(node->fcd_iname, dentry->d_name.name,
458 			dentry->d_name.len);
459 		node->fcd_name.name = node->fcd_iname;
460 	}
461 	node->fcd_name.len = dentry->d_name.len;
462 	INIT_LIST_HEAD(&node->fcd_dilist);
463 	spin_lock(&sbi->s_fc_lock);
464 	if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
465 		sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
466 		list_add_tail(&node->fcd_list,
467 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
468 	else
469 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
470 
471 	/*
472 	 * This helps us keep a track of all fc_dentry updates which is part of
473 	 * this ext4 inode. So in case the inode is getting unlinked, before
474 	 * even we get a chance to fsync, we could remove all fc_dentry
475 	 * references while evicting the inode in ext4_fc_del().
476 	 * Also with this, we don't need to loop over all the inodes in
477 	 * sbi->s_fc_q to get the corresponding inode in
478 	 * ext4_fc_commit_dentry_updates().
479 	 */
480 	if (dentry_update->op == EXT4_FC_TAG_CREAT) {
481 		WARN_ON(!list_empty(&ei->i_fc_dilist));
482 		list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
483 	}
484 	spin_unlock(&sbi->s_fc_lock);
485 	mutex_lock(&ei->i_fc_lock);
486 
487 	return 0;
488 }
489 
490 void __ext4_fc_track_unlink(handle_t *handle,
491 		struct inode *inode, struct dentry *dentry)
492 {
493 	struct __track_dentry_update_args args;
494 	int ret;
495 
496 	args.dentry = dentry;
497 	args.op = EXT4_FC_TAG_UNLINK;
498 
499 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
500 					(void *)&args, 0);
501 	trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
502 }
503 
504 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
505 {
506 	struct inode *inode = d_inode(dentry);
507 
508 	if (ext4_fc_disabled(inode->i_sb))
509 		return;
510 
511 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
512 		return;
513 
514 	__ext4_fc_track_unlink(handle, inode, dentry);
515 }
516 
517 void __ext4_fc_track_link(handle_t *handle,
518 	struct inode *inode, struct dentry *dentry)
519 {
520 	struct __track_dentry_update_args args;
521 	int ret;
522 
523 	args.dentry = dentry;
524 	args.op = EXT4_FC_TAG_LINK;
525 
526 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
527 					(void *)&args, 0);
528 	trace_ext4_fc_track_link(handle, inode, dentry, ret);
529 }
530 
531 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
532 {
533 	struct inode *inode = d_inode(dentry);
534 
535 	if (ext4_fc_disabled(inode->i_sb))
536 		return;
537 
538 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
539 		return;
540 
541 	__ext4_fc_track_link(handle, inode, dentry);
542 }
543 
544 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
545 			  struct dentry *dentry)
546 {
547 	struct __track_dentry_update_args args;
548 	int ret;
549 
550 	args.dentry = dentry;
551 	args.op = EXT4_FC_TAG_CREAT;
552 
553 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
554 					(void *)&args, 0);
555 	trace_ext4_fc_track_create(handle, inode, dentry, ret);
556 }
557 
558 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
559 {
560 	struct inode *inode = d_inode(dentry);
561 
562 	if (ext4_fc_disabled(inode->i_sb))
563 		return;
564 
565 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
566 		return;
567 
568 	__ext4_fc_track_create(handle, inode, dentry);
569 }
570 
571 /* __track_fn for inode tracking */
572 static int __track_inode(struct inode *inode, void *arg, bool update)
573 {
574 	if (update)
575 		return -EEXIST;
576 
577 	EXT4_I(inode)->i_fc_lblk_len = 0;
578 
579 	return 0;
580 }
581 
582 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
583 {
584 	int ret;
585 
586 	if (S_ISDIR(inode->i_mode))
587 		return;
588 
589 	if (ext4_fc_disabled(inode->i_sb))
590 		return;
591 
592 	if (ext4_should_journal_data(inode)) {
593 		ext4_fc_mark_ineligible(inode->i_sb,
594 					EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
595 		return;
596 	}
597 
598 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
599 		return;
600 
601 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
602 	trace_ext4_fc_track_inode(handle, inode, ret);
603 }
604 
605 struct __track_range_args {
606 	ext4_lblk_t start, end;
607 };
608 
609 /* __track_fn for tracking data updates */
610 static int __track_range(struct inode *inode, void *arg, bool update)
611 {
612 	struct ext4_inode_info *ei = EXT4_I(inode);
613 	ext4_lblk_t oldstart;
614 	struct __track_range_args *__arg =
615 		(struct __track_range_args *)arg;
616 
617 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
618 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
619 		return -ECANCELED;
620 	}
621 
622 	oldstart = ei->i_fc_lblk_start;
623 
624 	if (update && ei->i_fc_lblk_len > 0) {
625 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
626 		ei->i_fc_lblk_len =
627 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
628 				ei->i_fc_lblk_start + 1;
629 	} else {
630 		ei->i_fc_lblk_start = __arg->start;
631 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
632 	}
633 
634 	return 0;
635 }
636 
637 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
638 			 ext4_lblk_t end)
639 {
640 	struct __track_range_args args;
641 	int ret;
642 
643 	if (S_ISDIR(inode->i_mode))
644 		return;
645 
646 	if (ext4_fc_disabled(inode->i_sb))
647 		return;
648 
649 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
650 		return;
651 
652 	if (ext4_has_inline_data(inode)) {
653 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
654 					handle);
655 		return;
656 	}
657 
658 	args.start = start;
659 	args.end = end;
660 
661 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
662 
663 	trace_ext4_fc_track_range(handle, inode, start, end, ret);
664 }
665 
666 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
667 {
668 	blk_opf_t write_flags = REQ_SYNC;
669 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
670 
671 	/* Add REQ_FUA | REQ_PREFLUSH only its tail */
672 	if (test_opt(sb, BARRIER) && is_tail)
673 		write_flags |= REQ_FUA | REQ_PREFLUSH;
674 	lock_buffer(bh);
675 	set_buffer_dirty(bh);
676 	set_buffer_uptodate(bh);
677 	bh->b_end_io = ext4_end_buffer_io_sync;
678 	submit_bh(REQ_OP_WRITE | write_flags, bh);
679 	EXT4_SB(sb)->s_fc_bh = NULL;
680 }
681 
682 /* Ext4 commit path routines */
683 
684 /*
685  * Allocate len bytes on a fast commit buffer.
686  *
687  * During the commit time this function is used to manage fast commit
688  * block space. We don't split a fast commit log onto different
689  * blocks. So this function makes sure that if there's not enough space
690  * on the current block, the remaining space in the current block is
691  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
692  * new block is from jbd2 and CRC is updated to reflect the padding
693  * we added.
694  */
695 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
696 {
697 	struct ext4_fc_tl tl;
698 	struct ext4_sb_info *sbi = EXT4_SB(sb);
699 	struct buffer_head *bh;
700 	int bsize = sbi->s_journal->j_blocksize;
701 	int ret, off = sbi->s_fc_bytes % bsize;
702 	int remaining;
703 	u8 *dst;
704 
705 	/*
706 	 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
707 	 * cannot fulfill the request.
708 	 */
709 	if (len > bsize - EXT4_FC_TAG_BASE_LEN)
710 		return NULL;
711 
712 	if (!sbi->s_fc_bh) {
713 		ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
714 		if (ret)
715 			return NULL;
716 		sbi->s_fc_bh = bh;
717 	}
718 	dst = sbi->s_fc_bh->b_data + off;
719 
720 	/*
721 	 * Allocate the bytes in the current block if we can do so while still
722 	 * leaving enough space for a PAD tlv.
723 	 */
724 	remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
725 	if (len <= remaining) {
726 		sbi->s_fc_bytes += len;
727 		return dst;
728 	}
729 
730 	/*
731 	 * Else, terminate the current block with a PAD tlv, then allocate a new
732 	 * block and allocate the bytes at the start of that new block.
733 	 */
734 
735 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
736 	tl.fc_len = cpu_to_le16(remaining);
737 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
738 	memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
739 	*crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
740 
741 	ext4_fc_submit_bh(sb, false);
742 
743 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
744 	if (ret)
745 		return NULL;
746 	sbi->s_fc_bh = bh;
747 	sbi->s_fc_bytes += bsize - off + len;
748 	return sbi->s_fc_bh->b_data;
749 }
750 
751 /*
752  * Complete a fast commit by writing tail tag.
753  *
754  * Writing tail tag marks the end of a fast commit. In order to guarantee
755  * atomicity, after writing tail tag, even if there's space remaining
756  * in the block, next commit shouldn't use it. That's why tail tag
757  * has the length as that of the remaining space on the block.
758  */
759 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
760 {
761 	struct ext4_sb_info *sbi = EXT4_SB(sb);
762 	struct ext4_fc_tl tl;
763 	struct ext4_fc_tail tail;
764 	int off, bsize = sbi->s_journal->j_blocksize;
765 	u8 *dst;
766 
767 	/*
768 	 * ext4_fc_reserve_space takes care of allocating an extra block if
769 	 * there's no enough space on this block for accommodating this tail.
770 	 */
771 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
772 	if (!dst)
773 		return -ENOSPC;
774 
775 	off = sbi->s_fc_bytes % bsize;
776 
777 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
778 	tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
779 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
780 
781 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
782 	dst += EXT4_FC_TAG_BASE_LEN;
783 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
784 	memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
785 	dst += sizeof(tail.fc_tid);
786 	crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
787 			  dst - (u8 *)sbi->s_fc_bh->b_data);
788 	tail.fc_crc = cpu_to_le32(crc);
789 	memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
790 	dst += sizeof(tail.fc_crc);
791 	memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
792 
793 	ext4_fc_submit_bh(sb, true);
794 
795 	return 0;
796 }
797 
798 /*
799  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
800  * Returns false if there's not enough space.
801  */
802 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
803 			   u32 *crc)
804 {
805 	struct ext4_fc_tl tl;
806 	u8 *dst;
807 
808 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
809 	if (!dst)
810 		return false;
811 
812 	tl.fc_tag = cpu_to_le16(tag);
813 	tl.fc_len = cpu_to_le16(len);
814 
815 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
816 	memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
817 
818 	return true;
819 }
820 
821 /* Same as above, but adds dentry tlv. */
822 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
823 				   struct ext4_fc_dentry_update *fc_dentry)
824 {
825 	struct ext4_fc_dentry_info fcd;
826 	struct ext4_fc_tl tl;
827 	int dlen = fc_dentry->fcd_name.len;
828 	u8 *dst = ext4_fc_reserve_space(sb,
829 			EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
830 
831 	if (!dst)
832 		return false;
833 
834 	fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
835 	fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
836 	tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
837 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
838 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
839 	dst += EXT4_FC_TAG_BASE_LEN;
840 	memcpy(dst, &fcd, sizeof(fcd));
841 	dst += sizeof(fcd);
842 	memcpy(dst, fc_dentry->fcd_name.name, dlen);
843 
844 	return true;
845 }
846 
847 /*
848  * Writes inode in the fast commit space under TLV with tag @tag.
849  * Returns 0 on success, error on failure.
850  */
851 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
852 {
853 	struct ext4_inode_info *ei = EXT4_I(inode);
854 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
855 	int ret;
856 	struct ext4_iloc iloc;
857 	struct ext4_fc_inode fc_inode;
858 	struct ext4_fc_tl tl;
859 	u8 *dst;
860 
861 	ret = ext4_get_inode_loc(inode, &iloc);
862 	if (ret)
863 		return ret;
864 
865 	if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
866 		inode_len = EXT4_INODE_SIZE(inode->i_sb);
867 	else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
868 		inode_len += ei->i_extra_isize;
869 
870 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
871 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
872 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
873 
874 	ret = -ECANCELED;
875 	dst = ext4_fc_reserve_space(inode->i_sb,
876 		EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
877 	if (!dst)
878 		goto err;
879 
880 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
881 	dst += EXT4_FC_TAG_BASE_LEN;
882 	memcpy(dst, &fc_inode, sizeof(fc_inode));
883 	dst += sizeof(fc_inode);
884 	memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
885 	ret = 0;
886 err:
887 	brelse(iloc.bh);
888 	return ret;
889 }
890 
891 /*
892  * Writes updated data ranges for the inode in question. Updates CRC.
893  * Returns 0 on success, error otherwise.
894  */
895 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
896 {
897 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
898 	struct ext4_inode_info *ei = EXT4_I(inode);
899 	struct ext4_map_blocks map;
900 	struct ext4_fc_add_range fc_ext;
901 	struct ext4_fc_del_range lrange;
902 	struct ext4_extent *ex;
903 	int ret;
904 
905 	mutex_lock(&ei->i_fc_lock);
906 	if (ei->i_fc_lblk_len == 0) {
907 		mutex_unlock(&ei->i_fc_lock);
908 		return 0;
909 	}
910 	old_blk_size = ei->i_fc_lblk_start;
911 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
912 	ei->i_fc_lblk_len = 0;
913 	mutex_unlock(&ei->i_fc_lock);
914 
915 	cur_lblk_off = old_blk_size;
916 	ext4_debug("will try writing %d to %d for inode %ld\n",
917 		   cur_lblk_off, new_blk_size, inode->i_ino);
918 
919 	while (cur_lblk_off <= new_blk_size) {
920 		map.m_lblk = cur_lblk_off;
921 		map.m_len = new_blk_size - cur_lblk_off + 1;
922 		ret = ext4_map_blocks(NULL, inode, &map, 0);
923 		if (ret < 0)
924 			return -ECANCELED;
925 
926 		if (map.m_len == 0) {
927 			cur_lblk_off++;
928 			continue;
929 		}
930 
931 		if (ret == 0) {
932 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
933 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
934 			lrange.fc_len = cpu_to_le32(map.m_len);
935 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
936 					    sizeof(lrange), (u8 *)&lrange, crc))
937 				return -ENOSPC;
938 		} else {
939 			unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
940 				EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
941 
942 			/* Limit the number of blocks in one extent */
943 			map.m_len = min(max, map.m_len);
944 
945 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
946 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
947 			ex->ee_block = cpu_to_le32(map.m_lblk);
948 			ex->ee_len = cpu_to_le16(map.m_len);
949 			ext4_ext_store_pblock(ex, map.m_pblk);
950 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
951 				ext4_ext_mark_unwritten(ex);
952 			else
953 				ext4_ext_mark_initialized(ex);
954 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
955 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
956 				return -ENOSPC;
957 		}
958 
959 		cur_lblk_off += map.m_len;
960 	}
961 
962 	return 0;
963 }
964 
965 
966 /* Submit data for all the fast commit inodes */
967 static int ext4_fc_submit_inode_data_all(journal_t *journal)
968 {
969 	struct super_block *sb = journal->j_private;
970 	struct ext4_sb_info *sbi = EXT4_SB(sb);
971 	struct ext4_inode_info *ei;
972 	int ret = 0;
973 
974 	spin_lock(&sbi->s_fc_lock);
975 	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
976 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
977 		while (atomic_read(&ei->i_fc_updates)) {
978 			DEFINE_WAIT(wait);
979 
980 			prepare_to_wait(&ei->i_fc_wait, &wait,
981 						TASK_UNINTERRUPTIBLE);
982 			if (atomic_read(&ei->i_fc_updates)) {
983 				spin_unlock(&sbi->s_fc_lock);
984 				schedule();
985 				spin_lock(&sbi->s_fc_lock);
986 			}
987 			finish_wait(&ei->i_fc_wait, &wait);
988 		}
989 		spin_unlock(&sbi->s_fc_lock);
990 		ret = jbd2_submit_inode_data(journal, ei->jinode);
991 		if (ret)
992 			return ret;
993 		spin_lock(&sbi->s_fc_lock);
994 	}
995 	spin_unlock(&sbi->s_fc_lock);
996 
997 	return ret;
998 }
999 
1000 /* Wait for completion of data for all the fast commit inodes */
1001 static int ext4_fc_wait_inode_data_all(journal_t *journal)
1002 {
1003 	struct super_block *sb = journal->j_private;
1004 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1005 	struct ext4_inode_info *pos, *n;
1006 	int ret = 0;
1007 
1008 	spin_lock(&sbi->s_fc_lock);
1009 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1010 		if (!ext4_test_inode_state(&pos->vfs_inode,
1011 					   EXT4_STATE_FC_COMMITTING))
1012 			continue;
1013 		spin_unlock(&sbi->s_fc_lock);
1014 
1015 		ret = jbd2_wait_inode_data(journal, pos->jinode);
1016 		if (ret)
1017 			return ret;
1018 		spin_lock(&sbi->s_fc_lock);
1019 	}
1020 	spin_unlock(&sbi->s_fc_lock);
1021 
1022 	return 0;
1023 }
1024 
1025 /* Commit all the directory entry updates */
1026 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1027 __acquires(&sbi->s_fc_lock)
1028 __releases(&sbi->s_fc_lock)
1029 {
1030 	struct super_block *sb = journal->j_private;
1031 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1032 	struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1033 	struct inode *inode;
1034 	struct ext4_inode_info *ei;
1035 	int ret;
1036 
1037 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1038 		return 0;
1039 	list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1040 				 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1041 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1042 			spin_unlock(&sbi->s_fc_lock);
1043 			if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1044 				ret = -ENOSPC;
1045 				goto lock_and_exit;
1046 			}
1047 			spin_lock(&sbi->s_fc_lock);
1048 			continue;
1049 		}
1050 		/*
1051 		 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1052 		 * corresponding inode pointer
1053 		 */
1054 		WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1055 		ei = list_first_entry(&fc_dentry->fcd_dilist,
1056 				struct ext4_inode_info, i_fc_dilist);
1057 		inode = &ei->vfs_inode;
1058 		WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1059 
1060 		spin_unlock(&sbi->s_fc_lock);
1061 
1062 		/*
1063 		 * We first write the inode and then the create dirent. This
1064 		 * allows the recovery code to create an unnamed inode first
1065 		 * and then link it to a directory entry. This allows us
1066 		 * to use namei.c routines almost as is and simplifies
1067 		 * the recovery code.
1068 		 */
1069 		ret = ext4_fc_write_inode(inode, crc);
1070 		if (ret)
1071 			goto lock_and_exit;
1072 
1073 		ret = ext4_fc_write_inode_data(inode, crc);
1074 		if (ret)
1075 			goto lock_and_exit;
1076 
1077 		if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1078 			ret = -ENOSPC;
1079 			goto lock_and_exit;
1080 		}
1081 
1082 		spin_lock(&sbi->s_fc_lock);
1083 	}
1084 	return 0;
1085 lock_and_exit:
1086 	spin_lock(&sbi->s_fc_lock);
1087 	return ret;
1088 }
1089 
1090 static int ext4_fc_perform_commit(journal_t *journal)
1091 {
1092 	struct super_block *sb = journal->j_private;
1093 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1094 	struct ext4_inode_info *iter;
1095 	struct ext4_fc_head head;
1096 	struct inode *inode;
1097 	struct blk_plug plug;
1098 	int ret = 0;
1099 	u32 crc = 0;
1100 
1101 	ret = ext4_fc_submit_inode_data_all(journal);
1102 	if (ret)
1103 		return ret;
1104 
1105 	ret = ext4_fc_wait_inode_data_all(journal);
1106 	if (ret)
1107 		return ret;
1108 
1109 	/*
1110 	 * If file system device is different from journal device, issue a cache
1111 	 * flush before we start writing fast commit blocks.
1112 	 */
1113 	if (journal->j_fs_dev != journal->j_dev)
1114 		blkdev_issue_flush(journal->j_fs_dev);
1115 
1116 	blk_start_plug(&plug);
1117 	if (sbi->s_fc_bytes == 0) {
1118 		/*
1119 		 * Add a head tag only if this is the first fast commit
1120 		 * in this TID.
1121 		 */
1122 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1123 		head.fc_tid = cpu_to_le32(
1124 			sbi->s_journal->j_running_transaction->t_tid);
1125 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1126 			(u8 *)&head, &crc)) {
1127 			ret = -ENOSPC;
1128 			goto out;
1129 		}
1130 	}
1131 
1132 	spin_lock(&sbi->s_fc_lock);
1133 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1134 	if (ret) {
1135 		spin_unlock(&sbi->s_fc_lock);
1136 		goto out;
1137 	}
1138 
1139 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1140 		inode = &iter->vfs_inode;
1141 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1142 			continue;
1143 
1144 		spin_unlock(&sbi->s_fc_lock);
1145 		ret = ext4_fc_write_inode_data(inode, &crc);
1146 		if (ret)
1147 			goto out;
1148 		ret = ext4_fc_write_inode(inode, &crc);
1149 		if (ret)
1150 			goto out;
1151 		spin_lock(&sbi->s_fc_lock);
1152 	}
1153 	spin_unlock(&sbi->s_fc_lock);
1154 
1155 	ret = ext4_fc_write_tail(sb, crc);
1156 
1157 out:
1158 	blk_finish_plug(&plug);
1159 	return ret;
1160 }
1161 
1162 static void ext4_fc_update_stats(struct super_block *sb, int status,
1163 				 u64 commit_time, int nblks, tid_t commit_tid)
1164 {
1165 	struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1166 
1167 	ext4_debug("Fast commit ended with status = %d for tid %u",
1168 			status, commit_tid);
1169 	if (status == EXT4_FC_STATUS_OK) {
1170 		stats->fc_num_commits++;
1171 		stats->fc_numblks += nblks;
1172 		if (likely(stats->s_fc_avg_commit_time))
1173 			stats->s_fc_avg_commit_time =
1174 				(commit_time +
1175 				 stats->s_fc_avg_commit_time * 3) / 4;
1176 		else
1177 			stats->s_fc_avg_commit_time = commit_time;
1178 	} else if (status == EXT4_FC_STATUS_FAILED ||
1179 		   status == EXT4_FC_STATUS_INELIGIBLE) {
1180 		if (status == EXT4_FC_STATUS_FAILED)
1181 			stats->fc_failed_commits++;
1182 		stats->fc_ineligible_commits++;
1183 	} else {
1184 		stats->fc_skipped_commits++;
1185 	}
1186 	trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1187 }
1188 
1189 /*
1190  * The main commit entry point. Performs a fast commit for transaction
1191  * commit_tid if needed. If it's not possible to perform a fast commit
1192  * due to various reasons, we fall back to full commit. Returns 0
1193  * on success, error otherwise.
1194  */
1195 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1196 {
1197 	struct super_block *sb = journal->j_private;
1198 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1199 	int nblks = 0, ret, bsize = journal->j_blocksize;
1200 	int subtid = atomic_read(&sbi->s_fc_subtid);
1201 	int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1202 	ktime_t start_time, commit_time;
1203 
1204 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1205 		return jbd2_complete_transaction(journal, commit_tid);
1206 
1207 	trace_ext4_fc_commit_start(sb, commit_tid);
1208 
1209 	start_time = ktime_get();
1210 
1211 restart_fc:
1212 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1213 	if (ret == -EALREADY) {
1214 		/* There was an ongoing commit, check if we need to restart */
1215 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1216 		    tid_gt(commit_tid, journal->j_commit_sequence))
1217 			goto restart_fc;
1218 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1219 				commit_tid);
1220 		return 0;
1221 	} else if (ret) {
1222 		/*
1223 		 * Commit couldn't start. Just update stats and perform a
1224 		 * full commit.
1225 		 */
1226 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1227 				commit_tid);
1228 		return jbd2_complete_transaction(journal, commit_tid);
1229 	}
1230 
1231 	/*
1232 	 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1233 	 * if we are fast commit ineligible.
1234 	 */
1235 	if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1236 		status = EXT4_FC_STATUS_INELIGIBLE;
1237 		goto fallback;
1238 	}
1239 
1240 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1241 	ret = ext4_fc_perform_commit(journal);
1242 	if (ret < 0) {
1243 		status = EXT4_FC_STATUS_FAILED;
1244 		goto fallback;
1245 	}
1246 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1247 	ret = jbd2_fc_wait_bufs(journal, nblks);
1248 	if (ret < 0) {
1249 		status = EXT4_FC_STATUS_FAILED;
1250 		goto fallback;
1251 	}
1252 	atomic_inc(&sbi->s_fc_subtid);
1253 	ret = jbd2_fc_end_commit(journal);
1254 	/*
1255 	 * weight the commit time higher than the average time so we
1256 	 * don't react too strongly to vast changes in the commit time
1257 	 */
1258 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1259 	ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1260 	return ret;
1261 
1262 fallback:
1263 	ret = jbd2_fc_end_commit_fallback(journal);
1264 	ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1265 	return ret;
1266 }
1267 
1268 /*
1269  * Fast commit cleanup routine. This is called after every fast commit and
1270  * full commit. full is true if we are called after a full commit.
1271  */
1272 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1273 {
1274 	struct super_block *sb = journal->j_private;
1275 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1276 	struct ext4_inode_info *iter, *iter_n;
1277 	struct ext4_fc_dentry_update *fc_dentry;
1278 
1279 	if (full && sbi->s_fc_bh)
1280 		sbi->s_fc_bh = NULL;
1281 
1282 	trace_ext4_fc_cleanup(journal, full, tid);
1283 	jbd2_fc_release_bufs(journal);
1284 
1285 	spin_lock(&sbi->s_fc_lock);
1286 	list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1287 				 i_fc_list) {
1288 		list_del_init(&iter->i_fc_list);
1289 		ext4_clear_inode_state(&iter->vfs_inode,
1290 				       EXT4_STATE_FC_COMMITTING);
1291 		if (tid_geq(tid, iter->i_sync_tid))
1292 			ext4_fc_reset_inode(&iter->vfs_inode);
1293 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1294 		smp_mb();
1295 #if (BITS_PER_LONG < 64)
1296 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1297 #else
1298 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1299 #endif
1300 	}
1301 
1302 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1303 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1304 					     struct ext4_fc_dentry_update,
1305 					     fcd_list);
1306 		list_del_init(&fc_dentry->fcd_list);
1307 		list_del_init(&fc_dentry->fcd_dilist);
1308 		spin_unlock(&sbi->s_fc_lock);
1309 
1310 		if (fc_dentry->fcd_name.name &&
1311 			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1312 			kfree(fc_dentry->fcd_name.name);
1313 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1314 		spin_lock(&sbi->s_fc_lock);
1315 	}
1316 
1317 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1318 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1319 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1320 				&sbi->s_fc_q[FC_Q_MAIN]);
1321 
1322 	if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
1323 		sbi->s_fc_ineligible_tid = 0;
1324 		ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1325 	}
1326 
1327 	if (full)
1328 		sbi->s_fc_bytes = 0;
1329 	spin_unlock(&sbi->s_fc_lock);
1330 	trace_ext4_fc_stats(sb);
1331 }
1332 
1333 /* Ext4 Replay Path Routines */
1334 
1335 /* Helper struct for dentry replay routines */
1336 struct dentry_info_args {
1337 	int parent_ino, dname_len, ino, inode_len;
1338 	char *dname;
1339 };
1340 
1341 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1342 struct ext4_fc_tl_mem {
1343 	u16 fc_tag;
1344 	u16 fc_len;
1345 };
1346 
1347 static inline void tl_to_darg(struct dentry_info_args *darg,
1348 			      struct ext4_fc_tl_mem *tl, u8 *val)
1349 {
1350 	struct ext4_fc_dentry_info fcd;
1351 
1352 	memcpy(&fcd, val, sizeof(fcd));
1353 
1354 	darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1355 	darg->ino = le32_to_cpu(fcd.fc_ino);
1356 	darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1357 	darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1358 }
1359 
1360 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1361 {
1362 	struct ext4_fc_tl tl_disk;
1363 
1364 	memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1365 	tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1366 	tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1367 }
1368 
1369 /* Unlink replay function */
1370 static int ext4_fc_replay_unlink(struct super_block *sb,
1371 				 struct ext4_fc_tl_mem *tl, u8 *val)
1372 {
1373 	struct inode *inode, *old_parent;
1374 	struct qstr entry;
1375 	struct dentry_info_args darg;
1376 	int ret = 0;
1377 
1378 	tl_to_darg(&darg, tl, val);
1379 
1380 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1381 			darg.parent_ino, darg.dname_len);
1382 
1383 	entry.name = darg.dname;
1384 	entry.len = darg.dname_len;
1385 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1386 
1387 	if (IS_ERR(inode)) {
1388 		ext4_debug("Inode %d not found", darg.ino);
1389 		return 0;
1390 	}
1391 
1392 	old_parent = ext4_iget(sb, darg.parent_ino,
1393 				EXT4_IGET_NORMAL);
1394 	if (IS_ERR(old_parent)) {
1395 		ext4_debug("Dir with inode %d not found", darg.parent_ino);
1396 		iput(inode);
1397 		return 0;
1398 	}
1399 
1400 	ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1401 	/* -ENOENT ok coz it might not exist anymore. */
1402 	if (ret == -ENOENT)
1403 		ret = 0;
1404 	iput(old_parent);
1405 	iput(inode);
1406 	return ret;
1407 }
1408 
1409 static int ext4_fc_replay_link_internal(struct super_block *sb,
1410 				struct dentry_info_args *darg,
1411 				struct inode *inode)
1412 {
1413 	struct inode *dir = NULL;
1414 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1415 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1416 	int ret = 0;
1417 
1418 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1419 	if (IS_ERR(dir)) {
1420 		ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1421 		dir = NULL;
1422 		goto out;
1423 	}
1424 
1425 	dentry_dir = d_obtain_alias(dir);
1426 	if (IS_ERR(dentry_dir)) {
1427 		ext4_debug("Failed to obtain dentry");
1428 		dentry_dir = NULL;
1429 		goto out;
1430 	}
1431 
1432 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1433 	if (!dentry_inode) {
1434 		ext4_debug("Inode dentry not created.");
1435 		ret = -ENOMEM;
1436 		goto out;
1437 	}
1438 
1439 	ret = __ext4_link(dir, inode, dentry_inode);
1440 	/*
1441 	 * It's possible that link already existed since data blocks
1442 	 * for the dir in question got persisted before we crashed OR
1443 	 * we replayed this tag and crashed before the entire replay
1444 	 * could complete.
1445 	 */
1446 	if (ret && ret != -EEXIST) {
1447 		ext4_debug("Failed to link\n");
1448 		goto out;
1449 	}
1450 
1451 	ret = 0;
1452 out:
1453 	if (dentry_dir) {
1454 		d_drop(dentry_dir);
1455 		dput(dentry_dir);
1456 	} else if (dir) {
1457 		iput(dir);
1458 	}
1459 	if (dentry_inode) {
1460 		d_drop(dentry_inode);
1461 		dput(dentry_inode);
1462 	}
1463 
1464 	return ret;
1465 }
1466 
1467 /* Link replay function */
1468 static int ext4_fc_replay_link(struct super_block *sb,
1469 			       struct ext4_fc_tl_mem *tl, u8 *val)
1470 {
1471 	struct inode *inode;
1472 	struct dentry_info_args darg;
1473 	int ret = 0;
1474 
1475 	tl_to_darg(&darg, tl, val);
1476 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1477 			darg.parent_ino, darg.dname_len);
1478 
1479 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1480 	if (IS_ERR(inode)) {
1481 		ext4_debug("Inode not found.");
1482 		return 0;
1483 	}
1484 
1485 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1486 	iput(inode);
1487 	return ret;
1488 }
1489 
1490 /*
1491  * Record all the modified inodes during replay. We use this later to setup
1492  * block bitmaps correctly.
1493  */
1494 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1495 {
1496 	struct ext4_fc_replay_state *state;
1497 	int i;
1498 
1499 	state = &EXT4_SB(sb)->s_fc_replay_state;
1500 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1501 		if (state->fc_modified_inodes[i] == ino)
1502 			return 0;
1503 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1504 		int *fc_modified_inodes;
1505 
1506 		fc_modified_inodes = krealloc(state->fc_modified_inodes,
1507 				sizeof(int) * (state->fc_modified_inodes_size +
1508 				EXT4_FC_REPLAY_REALLOC_INCREMENT),
1509 				GFP_KERNEL);
1510 		if (!fc_modified_inodes)
1511 			return -ENOMEM;
1512 		state->fc_modified_inodes = fc_modified_inodes;
1513 		state->fc_modified_inodes_size +=
1514 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1515 	}
1516 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1517 	return 0;
1518 }
1519 
1520 /*
1521  * Inode replay function
1522  */
1523 static int ext4_fc_replay_inode(struct super_block *sb,
1524 				struct ext4_fc_tl_mem *tl, u8 *val)
1525 {
1526 	struct ext4_fc_inode fc_inode;
1527 	struct ext4_inode *raw_inode;
1528 	struct ext4_inode *raw_fc_inode;
1529 	struct inode *inode = NULL;
1530 	struct ext4_iloc iloc;
1531 	int inode_len, ino, ret, tag = tl->fc_tag;
1532 	struct ext4_extent_header *eh;
1533 	size_t off_gen = offsetof(struct ext4_inode, i_generation);
1534 
1535 	memcpy(&fc_inode, val, sizeof(fc_inode));
1536 
1537 	ino = le32_to_cpu(fc_inode.fc_ino);
1538 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1539 
1540 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1541 	if (!IS_ERR(inode)) {
1542 		ext4_ext_clear_bb(inode);
1543 		iput(inode);
1544 	}
1545 	inode = NULL;
1546 
1547 	ret = ext4_fc_record_modified_inode(sb, ino);
1548 	if (ret)
1549 		goto out;
1550 
1551 	raw_fc_inode = (struct ext4_inode *)
1552 		(val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1553 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1554 	if (ret)
1555 		goto out;
1556 
1557 	inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1558 	raw_inode = ext4_raw_inode(&iloc);
1559 
1560 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1561 	memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1562 	       inode_len - off_gen);
1563 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1564 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1565 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1566 			memset(eh, 0, sizeof(*eh));
1567 			eh->eh_magic = EXT4_EXT_MAGIC;
1568 			eh->eh_max = cpu_to_le16(
1569 				(sizeof(raw_inode->i_block) -
1570 				 sizeof(struct ext4_extent_header))
1571 				 / sizeof(struct ext4_extent));
1572 		}
1573 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1574 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1575 			sizeof(raw_inode->i_block));
1576 	}
1577 
1578 	/* Immediately update the inode on disk. */
1579 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1580 	if (ret)
1581 		goto out;
1582 	ret = sync_dirty_buffer(iloc.bh);
1583 	if (ret)
1584 		goto out;
1585 	ret = ext4_mark_inode_used(sb, ino);
1586 	if (ret)
1587 		goto out;
1588 
1589 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1590 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1591 	if (IS_ERR(inode)) {
1592 		ext4_debug("Inode not found.");
1593 		return -EFSCORRUPTED;
1594 	}
1595 
1596 	/*
1597 	 * Our allocator could have made different decisions than before
1598 	 * crashing. This should be fixed but until then, we calculate
1599 	 * the number of blocks the inode.
1600 	 */
1601 	if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1602 		ext4_ext_replay_set_iblocks(inode);
1603 
1604 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1605 	ext4_reset_inode_seed(inode);
1606 
1607 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1608 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1609 	sync_dirty_buffer(iloc.bh);
1610 	brelse(iloc.bh);
1611 out:
1612 	iput(inode);
1613 	if (!ret)
1614 		blkdev_issue_flush(sb->s_bdev);
1615 
1616 	return 0;
1617 }
1618 
1619 /*
1620  * Dentry create replay function.
1621  *
1622  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1623  * inode for which we are trying to create a dentry here, should already have
1624  * been replayed before we start here.
1625  */
1626 static int ext4_fc_replay_create(struct super_block *sb,
1627 				 struct ext4_fc_tl_mem *tl, u8 *val)
1628 {
1629 	int ret = 0;
1630 	struct inode *inode = NULL;
1631 	struct inode *dir = NULL;
1632 	struct dentry_info_args darg;
1633 
1634 	tl_to_darg(&darg, tl, val);
1635 
1636 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1637 			darg.parent_ino, darg.dname_len);
1638 
1639 	/* This takes care of update group descriptor and other metadata */
1640 	ret = ext4_mark_inode_used(sb, darg.ino);
1641 	if (ret)
1642 		goto out;
1643 
1644 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1645 	if (IS_ERR(inode)) {
1646 		ext4_debug("inode %d not found.", darg.ino);
1647 		inode = NULL;
1648 		ret = -EINVAL;
1649 		goto out;
1650 	}
1651 
1652 	if (S_ISDIR(inode->i_mode)) {
1653 		/*
1654 		 * If we are creating a directory, we need to make sure that the
1655 		 * dot and dot dot dirents are setup properly.
1656 		 */
1657 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1658 		if (IS_ERR(dir)) {
1659 			ext4_debug("Dir %d not found.", darg.ino);
1660 			goto out;
1661 		}
1662 		ret = ext4_init_new_dir(NULL, dir, inode);
1663 		iput(dir);
1664 		if (ret) {
1665 			ret = 0;
1666 			goto out;
1667 		}
1668 	}
1669 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1670 	if (ret)
1671 		goto out;
1672 	set_nlink(inode, 1);
1673 	ext4_mark_inode_dirty(NULL, inode);
1674 out:
1675 	iput(inode);
1676 	return ret;
1677 }
1678 
1679 /*
1680  * Record physical disk regions which are in use as per fast commit area,
1681  * and used by inodes during replay phase. Our simple replay phase
1682  * allocator excludes these regions from allocation.
1683  */
1684 int ext4_fc_record_regions(struct super_block *sb, int ino,
1685 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1686 {
1687 	struct ext4_fc_replay_state *state;
1688 	struct ext4_fc_alloc_region *region;
1689 
1690 	state = &EXT4_SB(sb)->s_fc_replay_state;
1691 	/*
1692 	 * during replay phase, the fc_regions_valid may not same as
1693 	 * fc_regions_used, update it when do new additions.
1694 	 */
1695 	if (replay && state->fc_regions_used != state->fc_regions_valid)
1696 		state->fc_regions_used = state->fc_regions_valid;
1697 	if (state->fc_regions_used == state->fc_regions_size) {
1698 		struct ext4_fc_alloc_region *fc_regions;
1699 
1700 		fc_regions = krealloc(state->fc_regions,
1701 				      sizeof(struct ext4_fc_alloc_region) *
1702 				      (state->fc_regions_size +
1703 				       EXT4_FC_REPLAY_REALLOC_INCREMENT),
1704 				      GFP_KERNEL);
1705 		if (!fc_regions)
1706 			return -ENOMEM;
1707 		state->fc_regions_size +=
1708 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1709 		state->fc_regions = fc_regions;
1710 	}
1711 	region = &state->fc_regions[state->fc_regions_used++];
1712 	region->ino = ino;
1713 	region->lblk = lblk;
1714 	region->pblk = pblk;
1715 	region->len = len;
1716 
1717 	if (replay)
1718 		state->fc_regions_valid++;
1719 
1720 	return 0;
1721 }
1722 
1723 /* Replay add range tag */
1724 static int ext4_fc_replay_add_range(struct super_block *sb,
1725 				    struct ext4_fc_tl_mem *tl, u8 *val)
1726 {
1727 	struct ext4_fc_add_range fc_add_ex;
1728 	struct ext4_extent newex, *ex;
1729 	struct inode *inode;
1730 	ext4_lblk_t start, cur;
1731 	int remaining, len;
1732 	ext4_fsblk_t start_pblk;
1733 	struct ext4_map_blocks map;
1734 	struct ext4_ext_path *path = NULL;
1735 	int ret;
1736 
1737 	memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1738 	ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1739 
1740 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1741 		le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1742 		ext4_ext_get_actual_len(ex));
1743 
1744 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1745 	if (IS_ERR(inode)) {
1746 		ext4_debug("Inode not found.");
1747 		return 0;
1748 	}
1749 
1750 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1751 	if (ret)
1752 		goto out;
1753 
1754 	start = le32_to_cpu(ex->ee_block);
1755 	start_pblk = ext4_ext_pblock(ex);
1756 	len = ext4_ext_get_actual_len(ex);
1757 
1758 	cur = start;
1759 	remaining = len;
1760 	ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1761 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1762 		  inode->i_ino);
1763 
1764 	while (remaining > 0) {
1765 		map.m_lblk = cur;
1766 		map.m_len = remaining;
1767 		map.m_pblk = 0;
1768 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1769 
1770 		if (ret < 0)
1771 			goto out;
1772 
1773 		if (ret == 0) {
1774 			/* Range is not mapped */
1775 			path = ext4_find_extent(inode, cur, NULL, 0);
1776 			if (IS_ERR(path))
1777 				goto out;
1778 			memset(&newex, 0, sizeof(newex));
1779 			newex.ee_block = cpu_to_le32(cur);
1780 			ext4_ext_store_pblock(
1781 				&newex, start_pblk + cur - start);
1782 			newex.ee_len = cpu_to_le16(map.m_len);
1783 			if (ext4_ext_is_unwritten(ex))
1784 				ext4_ext_mark_unwritten(&newex);
1785 			down_write(&EXT4_I(inode)->i_data_sem);
1786 			ret = ext4_ext_insert_extent(
1787 				NULL, inode, &path, &newex, 0);
1788 			up_write((&EXT4_I(inode)->i_data_sem));
1789 			ext4_free_ext_path(path);
1790 			if (ret)
1791 				goto out;
1792 			goto next;
1793 		}
1794 
1795 		if (start_pblk + cur - start != map.m_pblk) {
1796 			/*
1797 			 * Logical to physical mapping changed. This can happen
1798 			 * if this range was removed and then reallocated to
1799 			 * map to new physical blocks during a fast commit.
1800 			 */
1801 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1802 					ext4_ext_is_unwritten(ex),
1803 					start_pblk + cur - start);
1804 			if (ret)
1805 				goto out;
1806 			/*
1807 			 * Mark the old blocks as free since they aren't used
1808 			 * anymore. We maintain an array of all the modified
1809 			 * inodes. In case these blocks are still used at either
1810 			 * a different logical range in the same inode or in
1811 			 * some different inode, we will mark them as allocated
1812 			 * at the end of the FC replay using our array of
1813 			 * modified inodes.
1814 			 */
1815 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1816 			goto next;
1817 		}
1818 
1819 		/* Range is mapped and needs a state change */
1820 		ext4_debug("Converting from %ld to %d %lld",
1821 				map.m_flags & EXT4_MAP_UNWRITTEN,
1822 			ext4_ext_is_unwritten(ex), map.m_pblk);
1823 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1824 					ext4_ext_is_unwritten(ex), map.m_pblk);
1825 		if (ret)
1826 			goto out;
1827 		/*
1828 		 * We may have split the extent tree while toggling the state.
1829 		 * Try to shrink the extent tree now.
1830 		 */
1831 		ext4_ext_replay_shrink_inode(inode, start + len);
1832 next:
1833 		cur += map.m_len;
1834 		remaining -= map.m_len;
1835 	}
1836 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1837 					sb->s_blocksize_bits);
1838 out:
1839 	iput(inode);
1840 	return 0;
1841 }
1842 
1843 /* Replay DEL_RANGE tag */
1844 static int
1845 ext4_fc_replay_del_range(struct super_block *sb,
1846 			 struct ext4_fc_tl_mem *tl, u8 *val)
1847 {
1848 	struct inode *inode;
1849 	struct ext4_fc_del_range lrange;
1850 	struct ext4_map_blocks map;
1851 	ext4_lblk_t cur, remaining;
1852 	int ret;
1853 
1854 	memcpy(&lrange, val, sizeof(lrange));
1855 	cur = le32_to_cpu(lrange.fc_lblk);
1856 	remaining = le32_to_cpu(lrange.fc_len);
1857 
1858 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1859 		le32_to_cpu(lrange.fc_ino), cur, remaining);
1860 
1861 	inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1862 	if (IS_ERR(inode)) {
1863 		ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1864 		return 0;
1865 	}
1866 
1867 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1868 	if (ret)
1869 		goto out;
1870 
1871 	ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1872 			inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1873 			le32_to_cpu(lrange.fc_len));
1874 	while (remaining > 0) {
1875 		map.m_lblk = cur;
1876 		map.m_len = remaining;
1877 
1878 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1879 		if (ret < 0)
1880 			goto out;
1881 		if (ret > 0) {
1882 			remaining -= ret;
1883 			cur += ret;
1884 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1885 		} else {
1886 			remaining -= map.m_len;
1887 			cur += map.m_len;
1888 		}
1889 	}
1890 
1891 	down_write(&EXT4_I(inode)->i_data_sem);
1892 	ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1893 				le32_to_cpu(lrange.fc_lblk) +
1894 				le32_to_cpu(lrange.fc_len) - 1);
1895 	up_write(&EXT4_I(inode)->i_data_sem);
1896 	if (ret)
1897 		goto out;
1898 	ext4_ext_replay_shrink_inode(inode,
1899 		i_size_read(inode) >> sb->s_blocksize_bits);
1900 	ext4_mark_inode_dirty(NULL, inode);
1901 out:
1902 	iput(inode);
1903 	return 0;
1904 }
1905 
1906 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1907 {
1908 	struct ext4_fc_replay_state *state;
1909 	struct inode *inode;
1910 	struct ext4_ext_path *path = NULL;
1911 	struct ext4_map_blocks map;
1912 	int i, ret, j;
1913 	ext4_lblk_t cur, end;
1914 
1915 	state = &EXT4_SB(sb)->s_fc_replay_state;
1916 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1917 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1918 			EXT4_IGET_NORMAL);
1919 		if (IS_ERR(inode)) {
1920 			ext4_debug("Inode %d not found.",
1921 				state->fc_modified_inodes[i]);
1922 			continue;
1923 		}
1924 		cur = 0;
1925 		end = EXT_MAX_BLOCKS;
1926 		if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1927 			iput(inode);
1928 			continue;
1929 		}
1930 		while (cur < end) {
1931 			map.m_lblk = cur;
1932 			map.m_len = end - cur;
1933 
1934 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1935 			if (ret < 0)
1936 				break;
1937 
1938 			if (ret > 0) {
1939 				path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1940 				if (!IS_ERR(path)) {
1941 					for (j = 0; j < path->p_depth; j++)
1942 						ext4_mb_mark_bb(inode->i_sb,
1943 							path[j].p_block, 1, 1);
1944 					ext4_free_ext_path(path);
1945 				}
1946 				cur += ret;
1947 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1948 							map.m_len, 1);
1949 			} else {
1950 				cur = cur + (map.m_len ? map.m_len : 1);
1951 			}
1952 		}
1953 		iput(inode);
1954 	}
1955 }
1956 
1957 /*
1958  * Check if block is in excluded regions for block allocation. The simple
1959  * allocator that runs during replay phase is calls this function to see
1960  * if it is okay to use a block.
1961  */
1962 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1963 {
1964 	int i;
1965 	struct ext4_fc_replay_state *state;
1966 
1967 	state = &EXT4_SB(sb)->s_fc_replay_state;
1968 	for (i = 0; i < state->fc_regions_valid; i++) {
1969 		if (state->fc_regions[i].ino == 0 ||
1970 			state->fc_regions[i].len == 0)
1971 			continue;
1972 		if (in_range(blk, state->fc_regions[i].pblk,
1973 					state->fc_regions[i].len))
1974 			return true;
1975 	}
1976 	return false;
1977 }
1978 
1979 /* Cleanup function called after replay */
1980 void ext4_fc_replay_cleanup(struct super_block *sb)
1981 {
1982 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1983 
1984 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1985 	kfree(sbi->s_fc_replay_state.fc_regions);
1986 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1987 }
1988 
1989 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
1990 				      int tag, int len)
1991 {
1992 	switch (tag) {
1993 	case EXT4_FC_TAG_ADD_RANGE:
1994 		return len == sizeof(struct ext4_fc_add_range);
1995 	case EXT4_FC_TAG_DEL_RANGE:
1996 		return len == sizeof(struct ext4_fc_del_range);
1997 	case EXT4_FC_TAG_CREAT:
1998 	case EXT4_FC_TAG_LINK:
1999 	case EXT4_FC_TAG_UNLINK:
2000 		len -= sizeof(struct ext4_fc_dentry_info);
2001 		return len >= 1 && len <= EXT4_NAME_LEN;
2002 	case EXT4_FC_TAG_INODE:
2003 		len -= sizeof(struct ext4_fc_inode);
2004 		return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2005 			len <= sbi->s_inode_size;
2006 	case EXT4_FC_TAG_PAD:
2007 		return true; /* padding can have any length */
2008 	case EXT4_FC_TAG_TAIL:
2009 		return len >= sizeof(struct ext4_fc_tail);
2010 	case EXT4_FC_TAG_HEAD:
2011 		return len == sizeof(struct ext4_fc_head);
2012 	}
2013 	return false;
2014 }
2015 
2016 /*
2017  * Recovery Scan phase handler
2018  *
2019  * This function is called during the scan phase and is responsible
2020  * for doing following things:
2021  * - Make sure the fast commit area has valid tags for replay
2022  * - Count number of tags that need to be replayed by the replay handler
2023  * - Verify CRC
2024  * - Create a list of excluded blocks for allocation during replay phase
2025  *
2026  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2027  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2028  * to indicate that scan has finished and JBD2 can now start replay phase.
2029  * It returns a negative error to indicate that there was an error. At the end
2030  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2031  * to indicate the number of tags that need to replayed during the replay phase.
2032  */
2033 static int ext4_fc_replay_scan(journal_t *journal,
2034 				struct buffer_head *bh, int off,
2035 				tid_t expected_tid)
2036 {
2037 	struct super_block *sb = journal->j_private;
2038 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2039 	struct ext4_fc_replay_state *state;
2040 	int ret = JBD2_FC_REPLAY_CONTINUE;
2041 	struct ext4_fc_add_range ext;
2042 	struct ext4_fc_tl_mem tl;
2043 	struct ext4_fc_tail tail;
2044 	__u8 *start, *end, *cur, *val;
2045 	struct ext4_fc_head head;
2046 	struct ext4_extent *ex;
2047 
2048 	state = &sbi->s_fc_replay_state;
2049 
2050 	start = (u8 *)bh->b_data;
2051 	end = start + journal->j_blocksize;
2052 
2053 	if (state->fc_replay_expected_off == 0) {
2054 		state->fc_cur_tag = 0;
2055 		state->fc_replay_num_tags = 0;
2056 		state->fc_crc = 0;
2057 		state->fc_regions = NULL;
2058 		state->fc_regions_valid = state->fc_regions_used =
2059 			state->fc_regions_size = 0;
2060 		/* Check if we can stop early */
2061 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2062 			!= EXT4_FC_TAG_HEAD)
2063 			return 0;
2064 	}
2065 
2066 	if (off != state->fc_replay_expected_off) {
2067 		ret = -EFSCORRUPTED;
2068 		goto out_err;
2069 	}
2070 
2071 	state->fc_replay_expected_off++;
2072 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2073 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2074 		ext4_fc_get_tl(&tl, cur);
2075 		val = cur + EXT4_FC_TAG_BASE_LEN;
2076 		if (tl.fc_len > end - val ||
2077 		    !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2078 			ret = state->fc_replay_num_tags ?
2079 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2080 			goto out_err;
2081 		}
2082 		ext4_debug("Scan phase, tag:%s, blk %lld\n",
2083 			   tag2str(tl.fc_tag), bh->b_blocknr);
2084 		switch (tl.fc_tag) {
2085 		case EXT4_FC_TAG_ADD_RANGE:
2086 			memcpy(&ext, val, sizeof(ext));
2087 			ex = (struct ext4_extent *)&ext.fc_ex;
2088 			ret = ext4_fc_record_regions(sb,
2089 				le32_to_cpu(ext.fc_ino),
2090 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2091 				ext4_ext_get_actual_len(ex), 0);
2092 			if (ret < 0)
2093 				break;
2094 			ret = JBD2_FC_REPLAY_CONTINUE;
2095 			fallthrough;
2096 		case EXT4_FC_TAG_DEL_RANGE:
2097 		case EXT4_FC_TAG_LINK:
2098 		case EXT4_FC_TAG_UNLINK:
2099 		case EXT4_FC_TAG_CREAT:
2100 		case EXT4_FC_TAG_INODE:
2101 		case EXT4_FC_TAG_PAD:
2102 			state->fc_cur_tag++;
2103 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2104 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2105 			break;
2106 		case EXT4_FC_TAG_TAIL:
2107 			state->fc_cur_tag++;
2108 			memcpy(&tail, val, sizeof(tail));
2109 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2110 						EXT4_FC_TAG_BASE_LEN +
2111 						offsetof(struct ext4_fc_tail,
2112 						fc_crc));
2113 			if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2114 				le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2115 				state->fc_replay_num_tags = state->fc_cur_tag;
2116 				state->fc_regions_valid =
2117 					state->fc_regions_used;
2118 			} else {
2119 				ret = state->fc_replay_num_tags ?
2120 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2121 			}
2122 			state->fc_crc = 0;
2123 			break;
2124 		case EXT4_FC_TAG_HEAD:
2125 			memcpy(&head, val, sizeof(head));
2126 			if (le32_to_cpu(head.fc_features) &
2127 				~EXT4_FC_SUPPORTED_FEATURES) {
2128 				ret = -EOPNOTSUPP;
2129 				break;
2130 			}
2131 			if (le32_to_cpu(head.fc_tid) != expected_tid) {
2132 				ret = JBD2_FC_REPLAY_STOP;
2133 				break;
2134 			}
2135 			state->fc_cur_tag++;
2136 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2137 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2138 			break;
2139 		default:
2140 			ret = state->fc_replay_num_tags ?
2141 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2142 		}
2143 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2144 			break;
2145 	}
2146 
2147 out_err:
2148 	trace_ext4_fc_replay_scan(sb, ret, off);
2149 	return ret;
2150 }
2151 
2152 /*
2153  * Main recovery path entry point.
2154  * The meaning of return codes is similar as above.
2155  */
2156 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2157 				enum passtype pass, int off, tid_t expected_tid)
2158 {
2159 	struct super_block *sb = journal->j_private;
2160 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2161 	struct ext4_fc_tl_mem tl;
2162 	__u8 *start, *end, *cur, *val;
2163 	int ret = JBD2_FC_REPLAY_CONTINUE;
2164 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2165 	struct ext4_fc_tail tail;
2166 
2167 	if (pass == PASS_SCAN) {
2168 		state->fc_current_pass = PASS_SCAN;
2169 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2170 	}
2171 
2172 	if (state->fc_current_pass != pass) {
2173 		state->fc_current_pass = pass;
2174 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2175 	}
2176 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2177 		ext4_debug("Replay stops\n");
2178 		ext4_fc_set_bitmaps_and_counters(sb);
2179 		return 0;
2180 	}
2181 
2182 #ifdef CONFIG_EXT4_DEBUG
2183 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2184 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2185 		return JBD2_FC_REPLAY_STOP;
2186 	}
2187 #endif
2188 
2189 	start = (u8 *)bh->b_data;
2190 	end = start + journal->j_blocksize;
2191 
2192 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2193 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2194 		ext4_fc_get_tl(&tl, cur);
2195 		val = cur + EXT4_FC_TAG_BASE_LEN;
2196 
2197 		if (state->fc_replay_num_tags == 0) {
2198 			ret = JBD2_FC_REPLAY_STOP;
2199 			ext4_fc_set_bitmaps_and_counters(sb);
2200 			break;
2201 		}
2202 
2203 		ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2204 		state->fc_replay_num_tags--;
2205 		switch (tl.fc_tag) {
2206 		case EXT4_FC_TAG_LINK:
2207 			ret = ext4_fc_replay_link(sb, &tl, val);
2208 			break;
2209 		case EXT4_FC_TAG_UNLINK:
2210 			ret = ext4_fc_replay_unlink(sb, &tl, val);
2211 			break;
2212 		case EXT4_FC_TAG_ADD_RANGE:
2213 			ret = ext4_fc_replay_add_range(sb, &tl, val);
2214 			break;
2215 		case EXT4_FC_TAG_CREAT:
2216 			ret = ext4_fc_replay_create(sb, &tl, val);
2217 			break;
2218 		case EXT4_FC_TAG_DEL_RANGE:
2219 			ret = ext4_fc_replay_del_range(sb, &tl, val);
2220 			break;
2221 		case EXT4_FC_TAG_INODE:
2222 			ret = ext4_fc_replay_inode(sb, &tl, val);
2223 			break;
2224 		case EXT4_FC_TAG_PAD:
2225 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2226 					     tl.fc_len, 0);
2227 			break;
2228 		case EXT4_FC_TAG_TAIL:
2229 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2230 					     0, tl.fc_len, 0);
2231 			memcpy(&tail, val, sizeof(tail));
2232 			WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2233 			break;
2234 		case EXT4_FC_TAG_HEAD:
2235 			break;
2236 		default:
2237 			trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2238 			ret = -ECANCELED;
2239 			break;
2240 		}
2241 		if (ret < 0)
2242 			break;
2243 		ret = JBD2_FC_REPLAY_CONTINUE;
2244 	}
2245 	return ret;
2246 }
2247 
2248 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2249 {
2250 	/*
2251 	 * We set replay callback even if fast commit disabled because we may
2252 	 * could still have fast commit blocks that need to be replayed even if
2253 	 * fast commit has now been turned off.
2254 	 */
2255 	journal->j_fc_replay_callback = ext4_fc_replay;
2256 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2257 		return;
2258 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2259 }
2260 
2261 static const char * const fc_ineligible_reasons[] = {
2262 	[EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2263 	[EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2264 	[EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2265 	[EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2266 	[EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2267 	[EXT4_FC_REASON_RESIZE] = "Resize",
2268 	[EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2269 	[EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2270 	[EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2271 	[EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2272 };
2273 
2274 int ext4_fc_info_show(struct seq_file *seq, void *v)
2275 {
2276 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2277 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2278 	int i;
2279 
2280 	if (v != SEQ_START_TOKEN)
2281 		return 0;
2282 
2283 	seq_printf(seq,
2284 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2285 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2286 		   stats->fc_numblks,
2287 		   div_u64(stats->s_fc_avg_commit_time, 1000));
2288 	seq_puts(seq, "Ineligible reasons:\n");
2289 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2290 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2291 			stats->fc_ineligible_reason_count[i]);
2292 
2293 	return 0;
2294 }
2295 
2296 int __init ext4_fc_init_dentry_cache(void)
2297 {
2298 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2299 					   SLAB_RECLAIM_ACCOUNT);
2300 
2301 	if (ext4_fc_dentry_cachep == NULL)
2302 		return -ENOMEM;
2303 
2304 	return 0;
2305 }
2306 
2307 void ext4_fc_destroy_dentry_cache(void)
2308 {
2309 	kmem_cache_destroy(ext4_fc_dentry_cachep);
2310 }
2311