xref: /openbmc/linux/fs/ext4/fast_commit.c (revision 13dd8710)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30  * - EXT4_FC_TAG_LINK		- records directory entry link
31  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41  *				  during recovery. Note that iblocks field is
42  *				  not replayed and instead derived during
43  *				  replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  * Not all operations are supported by fast commits today (e.g extended
69  * attributes). Fast commit ineligiblity is marked by calling one of the
70  * two following functions:
71  *
72  * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73  *   back to full commit. This is useful in case of transient errors.
74  *
75  * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76  *   the fast commits happening between ext4_fc_start_ineligible() and
77  *   ext4_fc_stop_ineligible() and one fast commit after the call to
78  *   ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79  *   make one more fast commit to fall back to full commit after stop call so
80  *   that it guaranteed that the fast commit ineligible operation contained
81  *   within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82  *   followed by at least 1 full commit.
83  *
84  * Atomicity of commits
85  * --------------------
86  * In order to gaurantee atomicity during the commit operation, fast commit
87  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88  * tag contains CRC of the contents and TID of the transaction after which
89  * this fast commit should be applied. Recovery code replays fast commit
90  * logs only if there's at least 1 valid tail present. For every fast commit
91  * operation, there is 1 tail. This means, we may end up with multiple tails
92  * in the fast commit space. Here's an example:
93  *
94  * - Create a new file A and remove existing file B
95  * - fsync()
96  * - Append contents to file A
97  * - Truncate file A
98  * - fsync()
99  *
100  * The fast commit space at the end of above operations would look like this:
101  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
103  *
104  * Replay code should thus check for all the valid tails in the FC area.
105  *
106  * TODOs
107  * -----
108  * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
109  *    eligible update must be protected within ext4_fc_start_update() and
110  *    ext4_fc_stop_update(). These routines are called at much higher
111  *    routines. This can be made more fine grained by combining with
112  *    ext4_journal_start().
113  *
114  * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
115  *
116  * 3) Handle more ineligible cases.
117  */
118 
119 #include <trace/events/ext4.h>
120 static struct kmem_cache *ext4_fc_dentry_cachep;
121 
122 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
123 {
124 	BUFFER_TRACE(bh, "");
125 	if (uptodate) {
126 		ext4_debug("%s: Block %lld up-to-date",
127 			   __func__, bh->b_blocknr);
128 		set_buffer_uptodate(bh);
129 	} else {
130 		ext4_debug("%s: Block %lld not up-to-date",
131 			   __func__, bh->b_blocknr);
132 		clear_buffer_uptodate(bh);
133 	}
134 
135 	unlock_buffer(bh);
136 }
137 
138 static inline void ext4_fc_reset_inode(struct inode *inode)
139 {
140 	struct ext4_inode_info *ei = EXT4_I(inode);
141 
142 	ei->i_fc_lblk_start = 0;
143 	ei->i_fc_lblk_len = 0;
144 }
145 
146 void ext4_fc_init_inode(struct inode *inode)
147 {
148 	struct ext4_inode_info *ei = EXT4_I(inode);
149 
150 	ext4_fc_reset_inode(inode);
151 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
152 	INIT_LIST_HEAD(&ei->i_fc_list);
153 	init_waitqueue_head(&ei->i_fc_wait);
154 	atomic_set(&ei->i_fc_updates, 0);
155 	ei->i_fc_committed_subtid = 0;
156 }
157 
158 /*
159  * Inform Ext4's fast about start of an inode update
160  *
161  * This function is called by the high level call VFS callbacks before
162  * performing any inode update. This function blocks if there's an ongoing
163  * fast commit on the inode in question.
164  */
165 void ext4_fc_start_update(struct inode *inode)
166 {
167 	struct ext4_inode_info *ei = EXT4_I(inode);
168 
169 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
170 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
171 		return;
172 
173 restart:
174 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
175 	if (list_empty(&ei->i_fc_list))
176 		goto out;
177 
178 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
179 		wait_queue_head_t *wq;
180 #if (BITS_PER_LONG < 64)
181 		DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
182 				EXT4_STATE_FC_COMMITTING);
183 		wq = bit_waitqueue(&ei->i_state_flags,
184 				   EXT4_STATE_FC_COMMITTING);
185 #else
186 		DEFINE_WAIT_BIT(wait, &ei->i_flags,
187 				EXT4_STATE_FC_COMMITTING);
188 		wq = bit_waitqueue(&ei->i_flags,
189 				   EXT4_STATE_FC_COMMITTING);
190 #endif
191 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
192 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
193 		schedule();
194 		finish_wait(wq, &wait.wq_entry);
195 		goto restart;
196 	}
197 out:
198 	atomic_inc(&ei->i_fc_updates);
199 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
200 }
201 
202 /*
203  * Stop inode update and wake up waiting fast commits if any.
204  */
205 void ext4_fc_stop_update(struct inode *inode)
206 {
207 	struct ext4_inode_info *ei = EXT4_I(inode);
208 
209 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
210 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
211 		return;
212 
213 	if (atomic_dec_and_test(&ei->i_fc_updates))
214 		wake_up_all(&ei->i_fc_wait);
215 }
216 
217 /*
218  * Remove inode from fast commit list. If the inode is being committed
219  * we wait until inode commit is done.
220  */
221 void ext4_fc_del(struct inode *inode)
222 {
223 	struct ext4_inode_info *ei = EXT4_I(inode);
224 
225 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
226 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
227 		return;
228 
229 restart:
230 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
231 	if (list_empty(&ei->i_fc_list)) {
232 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
233 		return;
234 	}
235 
236 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
237 		wait_queue_head_t *wq;
238 #if (BITS_PER_LONG < 64)
239 		DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
240 				EXT4_STATE_FC_COMMITTING);
241 		wq = bit_waitqueue(&ei->i_state_flags,
242 				   EXT4_STATE_FC_COMMITTING);
243 #else
244 		DEFINE_WAIT_BIT(wait, &ei->i_flags,
245 				EXT4_STATE_FC_COMMITTING);
246 		wq = bit_waitqueue(&ei->i_flags,
247 				   EXT4_STATE_FC_COMMITTING);
248 #endif
249 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
250 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
251 		schedule();
252 		finish_wait(wq, &wait.wq_entry);
253 		goto restart;
254 	}
255 	if (!list_empty(&ei->i_fc_list))
256 		list_del_init(&ei->i_fc_list);
257 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
258 }
259 
260 /*
261  * Mark file system as fast commit ineligible. This means that next commit
262  * operation would result in a full jbd2 commit.
263  */
264 void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
265 {
266 	struct ext4_sb_info *sbi = EXT4_SB(sb);
267 
268 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
269 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
270 		return;
271 
272 	sbi->s_mount_state |= EXT4_FC_INELIGIBLE;
273 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
274 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
275 }
276 
277 /*
278  * Start a fast commit ineligible update. Any commits that happen while
279  * such an operation is in progress fall back to full commits.
280  */
281 void ext4_fc_start_ineligible(struct super_block *sb, int reason)
282 {
283 	struct ext4_sb_info *sbi = EXT4_SB(sb);
284 
285 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
286 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
287 		return;
288 
289 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
290 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
291 	atomic_inc(&sbi->s_fc_ineligible_updates);
292 }
293 
294 /*
295  * Stop a fast commit ineligible update. We set EXT4_FC_INELIGIBLE flag here
296  * to ensure that after stopping the ineligible update, at least one full
297  * commit takes place.
298  */
299 void ext4_fc_stop_ineligible(struct super_block *sb)
300 {
301 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
302 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
303 		return;
304 
305 	EXT4_SB(sb)->s_mount_state |= EXT4_FC_INELIGIBLE;
306 	atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
307 }
308 
309 static inline int ext4_fc_is_ineligible(struct super_block *sb)
310 {
311 	return (EXT4_SB(sb)->s_mount_state & EXT4_FC_INELIGIBLE) ||
312 		atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates);
313 }
314 
315 /*
316  * Generic fast commit tracking function. If this is the first time this we are
317  * called after a full commit, we initialize fast commit fields and then call
318  * __fc_track_fn() with update = 0. If we have already been called after a full
319  * commit, we pass update = 1. Based on that, the track function can determine
320  * if it needs to track a field for the first time or if it needs to just
321  * update the previously tracked value.
322  *
323  * If enqueue is set, this function enqueues the inode in fast commit list.
324  */
325 static int ext4_fc_track_template(
326 	struct inode *inode, int (*__fc_track_fn)(struct inode *, void *, bool),
327 	void *args, int enqueue)
328 {
329 	tid_t running_txn_tid;
330 	bool update = false;
331 	struct ext4_inode_info *ei = EXT4_I(inode);
332 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
333 	int ret;
334 
335 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
336 	    (sbi->s_mount_state & EXT4_FC_REPLAY))
337 		return -EOPNOTSUPP;
338 
339 	if (ext4_fc_is_ineligible(inode->i_sb))
340 		return -EINVAL;
341 
342 	running_txn_tid = sbi->s_journal ?
343 		sbi->s_journal->j_commit_sequence + 1 : 0;
344 
345 	mutex_lock(&ei->i_fc_lock);
346 	if (running_txn_tid == ei->i_sync_tid) {
347 		update = true;
348 	} else {
349 		ext4_fc_reset_inode(inode);
350 		ei->i_sync_tid = running_txn_tid;
351 	}
352 	ret = __fc_track_fn(inode, args, update);
353 	mutex_unlock(&ei->i_fc_lock);
354 
355 	if (!enqueue)
356 		return ret;
357 
358 	spin_lock(&sbi->s_fc_lock);
359 	if (list_empty(&EXT4_I(inode)->i_fc_list))
360 		list_add_tail(&EXT4_I(inode)->i_fc_list,
361 				(sbi->s_mount_state & EXT4_FC_COMMITTING) ?
362 				&sbi->s_fc_q[FC_Q_STAGING] :
363 				&sbi->s_fc_q[FC_Q_MAIN]);
364 	spin_unlock(&sbi->s_fc_lock);
365 
366 	return ret;
367 }
368 
369 struct __track_dentry_update_args {
370 	struct dentry *dentry;
371 	int op;
372 };
373 
374 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
375 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
376 {
377 	struct ext4_fc_dentry_update *node;
378 	struct ext4_inode_info *ei = EXT4_I(inode);
379 	struct __track_dentry_update_args *dentry_update =
380 		(struct __track_dentry_update_args *)arg;
381 	struct dentry *dentry = dentry_update->dentry;
382 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
383 
384 	mutex_unlock(&ei->i_fc_lock);
385 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
386 	if (!node) {
387 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_MEM);
388 		mutex_lock(&ei->i_fc_lock);
389 		return -ENOMEM;
390 	}
391 
392 	node->fcd_op = dentry_update->op;
393 	node->fcd_parent = dentry->d_parent->d_inode->i_ino;
394 	node->fcd_ino = inode->i_ino;
395 	if (dentry->d_name.len > DNAME_INLINE_LEN) {
396 		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
397 		if (!node->fcd_name.name) {
398 			kmem_cache_free(ext4_fc_dentry_cachep, node);
399 			ext4_fc_mark_ineligible(inode->i_sb,
400 				EXT4_FC_REASON_MEM);
401 			mutex_lock(&ei->i_fc_lock);
402 			return -ENOMEM;
403 		}
404 		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
405 			dentry->d_name.len);
406 	} else {
407 		memcpy(node->fcd_iname, dentry->d_name.name,
408 			dentry->d_name.len);
409 		node->fcd_name.name = node->fcd_iname;
410 	}
411 	node->fcd_name.len = dentry->d_name.len;
412 
413 	spin_lock(&sbi->s_fc_lock);
414 	if (sbi->s_mount_state & EXT4_FC_COMMITTING)
415 		list_add_tail(&node->fcd_list,
416 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
417 	else
418 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
419 	spin_unlock(&sbi->s_fc_lock);
420 	mutex_lock(&ei->i_fc_lock);
421 
422 	return 0;
423 }
424 
425 void ext4_fc_track_unlink(struct inode *inode, struct dentry *dentry)
426 {
427 	struct __track_dentry_update_args args;
428 	int ret;
429 
430 	args.dentry = dentry;
431 	args.op = EXT4_FC_TAG_UNLINK;
432 
433 	ret = ext4_fc_track_template(inode, __track_dentry_update,
434 					(void *)&args, 0);
435 	trace_ext4_fc_track_unlink(inode, dentry, ret);
436 }
437 
438 void ext4_fc_track_link(struct inode *inode, struct dentry *dentry)
439 {
440 	struct __track_dentry_update_args args;
441 	int ret;
442 
443 	args.dentry = dentry;
444 	args.op = EXT4_FC_TAG_LINK;
445 
446 	ret = ext4_fc_track_template(inode, __track_dentry_update,
447 					(void *)&args, 0);
448 	trace_ext4_fc_track_link(inode, dentry, ret);
449 }
450 
451 void ext4_fc_track_create(struct inode *inode, struct dentry *dentry)
452 {
453 	struct __track_dentry_update_args args;
454 	int ret;
455 
456 	args.dentry = dentry;
457 	args.op = EXT4_FC_TAG_CREAT;
458 
459 	ret = ext4_fc_track_template(inode, __track_dentry_update,
460 					(void *)&args, 0);
461 	trace_ext4_fc_track_create(inode, dentry, ret);
462 }
463 
464 /* __track_fn for inode tracking */
465 static int __track_inode(struct inode *inode, void *arg, bool update)
466 {
467 	if (update)
468 		return -EEXIST;
469 
470 	EXT4_I(inode)->i_fc_lblk_len = 0;
471 
472 	return 0;
473 }
474 
475 void ext4_fc_track_inode(struct inode *inode)
476 {
477 	int ret;
478 
479 	if (S_ISDIR(inode->i_mode))
480 		return;
481 
482 	ret = ext4_fc_track_template(inode, __track_inode, NULL, 1);
483 	trace_ext4_fc_track_inode(inode, ret);
484 }
485 
486 struct __track_range_args {
487 	ext4_lblk_t start, end;
488 };
489 
490 /* __track_fn for tracking data updates */
491 static int __track_range(struct inode *inode, void *arg, bool update)
492 {
493 	struct ext4_inode_info *ei = EXT4_I(inode);
494 	ext4_lblk_t oldstart;
495 	struct __track_range_args *__arg =
496 		(struct __track_range_args *)arg;
497 
498 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
499 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
500 		return -ECANCELED;
501 	}
502 
503 	oldstart = ei->i_fc_lblk_start;
504 
505 	if (update && ei->i_fc_lblk_len > 0) {
506 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
507 		ei->i_fc_lblk_len =
508 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
509 				ei->i_fc_lblk_start + 1;
510 	} else {
511 		ei->i_fc_lblk_start = __arg->start;
512 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
513 	}
514 
515 	return 0;
516 }
517 
518 void ext4_fc_track_range(struct inode *inode, ext4_lblk_t start,
519 			 ext4_lblk_t end)
520 {
521 	struct __track_range_args args;
522 	int ret;
523 
524 	if (S_ISDIR(inode->i_mode))
525 		return;
526 
527 	args.start = start;
528 	args.end = end;
529 
530 	ret = ext4_fc_track_template(inode,  __track_range, &args, 1);
531 
532 	trace_ext4_fc_track_range(inode, start, end, ret);
533 }
534 
535 static void ext4_fc_submit_bh(struct super_block *sb)
536 {
537 	int write_flags = REQ_SYNC;
538 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
539 
540 	if (test_opt(sb, BARRIER))
541 		write_flags |= REQ_FUA | REQ_PREFLUSH;
542 	lock_buffer(bh);
543 	clear_buffer_dirty(bh);
544 	set_buffer_uptodate(bh);
545 	bh->b_end_io = ext4_end_buffer_io_sync;
546 	submit_bh(REQ_OP_WRITE, write_flags, bh);
547 	EXT4_SB(sb)->s_fc_bh = NULL;
548 }
549 
550 /* Ext4 commit path routines */
551 
552 /* memzero and update CRC */
553 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
554 				u32 *crc)
555 {
556 	void *ret;
557 
558 	ret = memset(dst, 0, len);
559 	if (crc)
560 		*crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
561 	return ret;
562 }
563 
564 /*
565  * Allocate len bytes on a fast commit buffer.
566  *
567  * During the commit time this function is used to manage fast commit
568  * block space. We don't split a fast commit log onto different
569  * blocks. So this function makes sure that if there's not enough space
570  * on the current block, the remaining space in the current block is
571  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
572  * new block is from jbd2 and CRC is updated to reflect the padding
573  * we added.
574  */
575 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
576 {
577 	struct ext4_fc_tl *tl;
578 	struct ext4_sb_info *sbi = EXT4_SB(sb);
579 	struct buffer_head *bh;
580 	int bsize = sbi->s_journal->j_blocksize;
581 	int ret, off = sbi->s_fc_bytes % bsize;
582 	int pad_len;
583 
584 	/*
585 	 * After allocating len, we should have space at least for a 0 byte
586 	 * padding.
587 	 */
588 	if (len + sizeof(struct ext4_fc_tl) > bsize)
589 		return NULL;
590 
591 	if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
592 		/*
593 		 * Only allocate from current buffer if we have enough space for
594 		 * this request AND we have space to add a zero byte padding.
595 		 */
596 		if (!sbi->s_fc_bh) {
597 			ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
598 			if (ret)
599 				return NULL;
600 			sbi->s_fc_bh = bh;
601 		}
602 		sbi->s_fc_bytes += len;
603 		return sbi->s_fc_bh->b_data + off;
604 	}
605 	/* Need to add PAD tag */
606 	tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
607 	tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
608 	pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
609 	tl->fc_len = cpu_to_le16(pad_len);
610 	if (crc)
611 		*crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
612 	if (pad_len > 0)
613 		ext4_fc_memzero(sb, tl + 1, pad_len, crc);
614 	ext4_fc_submit_bh(sb);
615 
616 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
617 	if (ret)
618 		return NULL;
619 	sbi->s_fc_bh = bh;
620 	sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
621 	return sbi->s_fc_bh->b_data;
622 }
623 
624 /* memcpy to fc reserved space and update CRC */
625 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
626 				int len, u32 *crc)
627 {
628 	if (crc)
629 		*crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
630 	return memcpy(dst, src, len);
631 }
632 
633 /*
634  * Complete a fast commit by writing tail tag.
635  *
636  * Writing tail tag marks the end of a fast commit. In order to guarantee
637  * atomicity, after writing tail tag, even if there's space remaining
638  * in the block, next commit shouldn't use it. That's why tail tag
639  * has the length as that of the remaining space on the block.
640  */
641 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
642 {
643 	struct ext4_sb_info *sbi = EXT4_SB(sb);
644 	struct ext4_fc_tl tl;
645 	struct ext4_fc_tail tail;
646 	int off, bsize = sbi->s_journal->j_blocksize;
647 	u8 *dst;
648 
649 	/*
650 	 * ext4_fc_reserve_space takes care of allocating an extra block if
651 	 * there's no enough space on this block for accommodating this tail.
652 	 */
653 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
654 	if (!dst)
655 		return -ENOSPC;
656 
657 	off = sbi->s_fc_bytes % bsize;
658 
659 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
660 	tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
661 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
662 
663 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
664 	dst += sizeof(tl);
665 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
666 	ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
667 	dst += sizeof(tail.fc_tid);
668 	tail.fc_crc = cpu_to_le32(crc);
669 	ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
670 
671 	ext4_fc_submit_bh(sb);
672 
673 	return 0;
674 }
675 
676 /*
677  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
678  * Returns false if there's not enough space.
679  */
680 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
681 			   u32 *crc)
682 {
683 	struct ext4_fc_tl tl;
684 	u8 *dst;
685 
686 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
687 	if (!dst)
688 		return false;
689 
690 	tl.fc_tag = cpu_to_le16(tag);
691 	tl.fc_len = cpu_to_le16(len);
692 
693 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
694 	ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
695 
696 	return true;
697 }
698 
699 /* Same as above, but adds dentry tlv. */
700 static  bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag,
701 					int parent_ino, int ino, int dlen,
702 					const unsigned char *dname,
703 					u32 *crc)
704 {
705 	struct ext4_fc_dentry_info fcd;
706 	struct ext4_fc_tl tl;
707 	u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
708 					crc);
709 
710 	if (!dst)
711 		return false;
712 
713 	fcd.fc_parent_ino = cpu_to_le32(parent_ino);
714 	fcd.fc_ino = cpu_to_le32(ino);
715 	tl.fc_tag = cpu_to_le16(tag);
716 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
717 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
718 	dst += sizeof(tl);
719 	ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
720 	dst += sizeof(fcd);
721 	ext4_fc_memcpy(sb, dst, dname, dlen, crc);
722 	dst += dlen;
723 
724 	return true;
725 }
726 
727 /*
728  * Writes inode in the fast commit space under TLV with tag @tag.
729  * Returns 0 on success, error on failure.
730  */
731 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
732 {
733 	struct ext4_inode_info *ei = EXT4_I(inode);
734 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
735 	int ret;
736 	struct ext4_iloc iloc;
737 	struct ext4_fc_inode fc_inode;
738 	struct ext4_fc_tl tl;
739 	u8 *dst;
740 
741 	ret = ext4_get_inode_loc(inode, &iloc);
742 	if (ret)
743 		return ret;
744 
745 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
746 		inode_len += ei->i_extra_isize;
747 
748 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
749 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
750 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
751 
752 	dst = ext4_fc_reserve_space(inode->i_sb,
753 			sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
754 	if (!dst)
755 		return -ECANCELED;
756 
757 	if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
758 		return -ECANCELED;
759 	dst += sizeof(tl);
760 	if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
761 		return -ECANCELED;
762 	dst += sizeof(fc_inode);
763 	if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
764 					inode_len, crc))
765 		return -ECANCELED;
766 
767 	return 0;
768 }
769 
770 /*
771  * Writes updated data ranges for the inode in question. Updates CRC.
772  * Returns 0 on success, error otherwise.
773  */
774 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
775 {
776 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
777 	struct ext4_inode_info *ei = EXT4_I(inode);
778 	struct ext4_map_blocks map;
779 	struct ext4_fc_add_range fc_ext;
780 	struct ext4_fc_del_range lrange;
781 	struct ext4_extent *ex;
782 	int ret;
783 
784 	mutex_lock(&ei->i_fc_lock);
785 	if (ei->i_fc_lblk_len == 0) {
786 		mutex_unlock(&ei->i_fc_lock);
787 		return 0;
788 	}
789 	old_blk_size = ei->i_fc_lblk_start;
790 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
791 	ei->i_fc_lblk_len = 0;
792 	mutex_unlock(&ei->i_fc_lock);
793 
794 	cur_lblk_off = old_blk_size;
795 	jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
796 		  __func__, cur_lblk_off, new_blk_size, inode->i_ino);
797 
798 	while (cur_lblk_off <= new_blk_size) {
799 		map.m_lblk = cur_lblk_off;
800 		map.m_len = new_blk_size - cur_lblk_off + 1;
801 		ret = ext4_map_blocks(NULL, inode, &map, 0);
802 		if (ret < 0)
803 			return -ECANCELED;
804 
805 		if (map.m_len == 0) {
806 			cur_lblk_off++;
807 			continue;
808 		}
809 
810 		if (ret == 0) {
811 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
812 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
813 			lrange.fc_len = cpu_to_le32(map.m_len);
814 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
815 					    sizeof(lrange), (u8 *)&lrange, crc))
816 				return -ENOSPC;
817 		} else {
818 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
819 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
820 			ex->ee_block = cpu_to_le32(map.m_lblk);
821 			ex->ee_len = cpu_to_le16(map.m_len);
822 			ext4_ext_store_pblock(ex, map.m_pblk);
823 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
824 				ext4_ext_mark_unwritten(ex);
825 			else
826 				ext4_ext_mark_initialized(ex);
827 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
828 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
829 				return -ENOSPC;
830 		}
831 
832 		cur_lblk_off += map.m_len;
833 	}
834 
835 	return 0;
836 }
837 
838 
839 /* Submit data for all the fast commit inodes */
840 static int ext4_fc_submit_inode_data_all(journal_t *journal)
841 {
842 	struct super_block *sb = (struct super_block *)(journal->j_private);
843 	struct ext4_sb_info *sbi = EXT4_SB(sb);
844 	struct ext4_inode_info *ei;
845 	struct list_head *pos;
846 	int ret = 0;
847 
848 	spin_lock(&sbi->s_fc_lock);
849 	sbi->s_mount_state |= EXT4_FC_COMMITTING;
850 	list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
851 		ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
852 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
853 		while (atomic_read(&ei->i_fc_updates)) {
854 			DEFINE_WAIT(wait);
855 
856 			prepare_to_wait(&ei->i_fc_wait, &wait,
857 						TASK_UNINTERRUPTIBLE);
858 			if (atomic_read(&ei->i_fc_updates)) {
859 				spin_unlock(&sbi->s_fc_lock);
860 				schedule();
861 				spin_lock(&sbi->s_fc_lock);
862 			}
863 			finish_wait(&ei->i_fc_wait, &wait);
864 		}
865 		spin_unlock(&sbi->s_fc_lock);
866 		ret = jbd2_submit_inode_data(ei->jinode);
867 		if (ret)
868 			return ret;
869 		spin_lock(&sbi->s_fc_lock);
870 	}
871 	spin_unlock(&sbi->s_fc_lock);
872 
873 	return ret;
874 }
875 
876 /* Wait for completion of data for all the fast commit inodes */
877 static int ext4_fc_wait_inode_data_all(journal_t *journal)
878 {
879 	struct super_block *sb = (struct super_block *)(journal->j_private);
880 	struct ext4_sb_info *sbi = EXT4_SB(sb);
881 	struct ext4_inode_info *pos, *n;
882 	int ret = 0;
883 
884 	spin_lock(&sbi->s_fc_lock);
885 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
886 		if (!ext4_test_inode_state(&pos->vfs_inode,
887 					   EXT4_STATE_FC_COMMITTING))
888 			continue;
889 		spin_unlock(&sbi->s_fc_lock);
890 
891 		ret = jbd2_wait_inode_data(journal, pos->jinode);
892 		if (ret)
893 			return ret;
894 		spin_lock(&sbi->s_fc_lock);
895 	}
896 	spin_unlock(&sbi->s_fc_lock);
897 
898 	return 0;
899 }
900 
901 /* Commit all the directory entry updates */
902 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
903 {
904 	struct super_block *sb = (struct super_block *)(journal->j_private);
905 	struct ext4_sb_info *sbi = EXT4_SB(sb);
906 	struct ext4_fc_dentry_update *fc_dentry;
907 	struct inode *inode;
908 	struct list_head *pos, *n, *fcd_pos, *fcd_n;
909 	struct ext4_inode_info *ei;
910 	int ret;
911 
912 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
913 		return 0;
914 	list_for_each_safe(fcd_pos, fcd_n, &sbi->s_fc_dentry_q[FC_Q_MAIN]) {
915 		fc_dentry = list_entry(fcd_pos, struct ext4_fc_dentry_update,
916 					fcd_list);
917 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
918 			spin_unlock(&sbi->s_fc_lock);
919 			if (!ext4_fc_add_dentry_tlv(
920 				sb, fc_dentry->fcd_op,
921 				fc_dentry->fcd_parent, fc_dentry->fcd_ino,
922 				fc_dentry->fcd_name.len,
923 				fc_dentry->fcd_name.name, crc)) {
924 				ret = -ENOSPC;
925 				goto lock_and_exit;
926 			}
927 			spin_lock(&sbi->s_fc_lock);
928 			continue;
929 		}
930 
931 		inode = NULL;
932 		list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
933 			ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
934 			if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
935 				inode = &ei->vfs_inode;
936 				break;
937 			}
938 		}
939 		/*
940 		 * If we don't find inode in our list, then it was deleted,
941 		 * in which case, we don't need to record it's create tag.
942 		 */
943 		if (!inode)
944 			continue;
945 		spin_unlock(&sbi->s_fc_lock);
946 
947 		/*
948 		 * We first write the inode and then the create dirent. This
949 		 * allows the recovery code to create an unnamed inode first
950 		 * and then link it to a directory entry. This allows us
951 		 * to use namei.c routines almost as is and simplifies
952 		 * the recovery code.
953 		 */
954 		ret = ext4_fc_write_inode(inode, crc);
955 		if (ret)
956 			goto lock_and_exit;
957 
958 		ret = ext4_fc_write_inode_data(inode, crc);
959 		if (ret)
960 			goto lock_and_exit;
961 
962 		if (!ext4_fc_add_dentry_tlv(
963 			sb, fc_dentry->fcd_op,
964 			fc_dentry->fcd_parent, fc_dentry->fcd_ino,
965 			fc_dentry->fcd_name.len,
966 			fc_dentry->fcd_name.name, crc)) {
967 			spin_lock(&sbi->s_fc_lock);
968 			ret = -ENOSPC;
969 			goto lock_and_exit;
970 		}
971 
972 		spin_lock(&sbi->s_fc_lock);
973 	}
974 	return 0;
975 lock_and_exit:
976 	spin_lock(&sbi->s_fc_lock);
977 	return ret;
978 }
979 
980 static int ext4_fc_perform_commit(journal_t *journal)
981 {
982 	struct super_block *sb = (struct super_block *)(journal->j_private);
983 	struct ext4_sb_info *sbi = EXT4_SB(sb);
984 	struct ext4_inode_info *iter;
985 	struct ext4_fc_head head;
986 	struct list_head *pos;
987 	struct inode *inode;
988 	struct blk_plug plug;
989 	int ret = 0;
990 	u32 crc = 0;
991 
992 	ret = ext4_fc_submit_inode_data_all(journal);
993 	if (ret)
994 		return ret;
995 
996 	ret = ext4_fc_wait_inode_data_all(journal);
997 	if (ret)
998 		return ret;
999 
1000 	blk_start_plug(&plug);
1001 	if (sbi->s_fc_bytes == 0) {
1002 		/*
1003 		 * Add a head tag only if this is the first fast commit
1004 		 * in this TID.
1005 		 */
1006 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1007 		head.fc_tid = cpu_to_le32(
1008 			sbi->s_journal->j_running_transaction->t_tid);
1009 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1010 			(u8 *)&head, &crc))
1011 			goto out;
1012 	}
1013 
1014 	spin_lock(&sbi->s_fc_lock);
1015 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1016 	if (ret) {
1017 		spin_unlock(&sbi->s_fc_lock);
1018 		goto out;
1019 	}
1020 
1021 	list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
1022 		iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1023 		inode = &iter->vfs_inode;
1024 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1025 			continue;
1026 
1027 		spin_unlock(&sbi->s_fc_lock);
1028 		ret = ext4_fc_write_inode_data(inode, &crc);
1029 		if (ret)
1030 			goto out;
1031 		ret = ext4_fc_write_inode(inode, &crc);
1032 		if (ret)
1033 			goto out;
1034 		spin_lock(&sbi->s_fc_lock);
1035 		EXT4_I(inode)->i_fc_committed_subtid =
1036 			atomic_read(&sbi->s_fc_subtid);
1037 	}
1038 	spin_unlock(&sbi->s_fc_lock);
1039 
1040 	ret = ext4_fc_write_tail(sb, crc);
1041 
1042 out:
1043 	blk_finish_plug(&plug);
1044 	return ret;
1045 }
1046 
1047 /*
1048  * The main commit entry point. Performs a fast commit for transaction
1049  * commit_tid if needed. If it's not possible to perform a fast commit
1050  * due to various reasons, we fall back to full commit. Returns 0
1051  * on success, error otherwise.
1052  */
1053 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1054 {
1055 	struct super_block *sb = (struct super_block *)(journal->j_private);
1056 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1057 	int nblks = 0, ret, bsize = journal->j_blocksize;
1058 	int subtid = atomic_read(&sbi->s_fc_subtid);
1059 	int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1060 	ktime_t start_time, commit_time;
1061 
1062 	trace_ext4_fc_commit_start(sb);
1063 
1064 	start_time = ktime_get();
1065 
1066 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1067 		(ext4_fc_is_ineligible(sb))) {
1068 		reason = EXT4_FC_REASON_INELIGIBLE;
1069 		goto out;
1070 	}
1071 
1072 restart_fc:
1073 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1074 	if (ret == -EALREADY) {
1075 		/* There was an ongoing commit, check if we need to restart */
1076 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1077 			commit_tid > journal->j_commit_sequence)
1078 			goto restart_fc;
1079 		reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1080 		goto out;
1081 	} else if (ret) {
1082 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1083 		reason = EXT4_FC_REASON_FC_START_FAILED;
1084 		goto out;
1085 	}
1086 
1087 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1088 	ret = ext4_fc_perform_commit(journal);
1089 	if (ret < 0) {
1090 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1091 		reason = EXT4_FC_REASON_FC_FAILED;
1092 		goto out;
1093 	}
1094 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1095 	ret = jbd2_fc_wait_bufs(journal, nblks);
1096 	if (ret < 0) {
1097 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1098 		reason = EXT4_FC_REASON_FC_FAILED;
1099 		goto out;
1100 	}
1101 	atomic_inc(&sbi->s_fc_subtid);
1102 	jbd2_fc_end_commit(journal);
1103 out:
1104 	/* Has any ineligible update happened since we started? */
1105 	if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1106 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1107 		reason = EXT4_FC_REASON_INELIGIBLE;
1108 	}
1109 
1110 	spin_lock(&sbi->s_fc_lock);
1111 	if (reason != EXT4_FC_REASON_OK &&
1112 		reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1113 		sbi->s_fc_stats.fc_ineligible_commits++;
1114 	} else {
1115 		sbi->s_fc_stats.fc_num_commits++;
1116 		sbi->s_fc_stats.fc_numblks += nblks;
1117 	}
1118 	spin_unlock(&sbi->s_fc_lock);
1119 	nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1120 	trace_ext4_fc_commit_stop(sb, nblks, reason);
1121 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1122 	/*
1123 	 * weight the commit time higher than the average time so we don't
1124 	 * react too strongly to vast changes in the commit time
1125 	 */
1126 	if (likely(sbi->s_fc_avg_commit_time))
1127 		sbi->s_fc_avg_commit_time = (commit_time +
1128 				sbi->s_fc_avg_commit_time * 3) / 4;
1129 	else
1130 		sbi->s_fc_avg_commit_time = commit_time;
1131 	jbd_debug(1,
1132 		"Fast commit ended with blks = %d, reason = %d, subtid - %d",
1133 		nblks, reason, subtid);
1134 	if (reason == EXT4_FC_REASON_FC_FAILED)
1135 		return jbd2_fc_end_commit_fallback(journal, commit_tid);
1136 	if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1137 		reason == EXT4_FC_REASON_INELIGIBLE)
1138 		return jbd2_complete_transaction(journal, commit_tid);
1139 	return 0;
1140 }
1141 
1142 /*
1143  * Fast commit cleanup routine. This is called after every fast commit and
1144  * full commit. full is true if we are called after a full commit.
1145  */
1146 static void ext4_fc_cleanup(journal_t *journal, int full)
1147 {
1148 	struct super_block *sb = journal->j_private;
1149 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1150 	struct ext4_inode_info *iter;
1151 	struct ext4_fc_dentry_update *fc_dentry;
1152 	struct list_head *pos, *n;
1153 
1154 	if (full && sbi->s_fc_bh)
1155 		sbi->s_fc_bh = NULL;
1156 
1157 	jbd2_fc_release_bufs(journal);
1158 
1159 	spin_lock(&sbi->s_fc_lock);
1160 	list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
1161 		iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1162 		list_del_init(&iter->i_fc_list);
1163 		ext4_clear_inode_state(&iter->vfs_inode,
1164 				       EXT4_STATE_FC_COMMITTING);
1165 		ext4_fc_reset_inode(&iter->vfs_inode);
1166 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1167 		smp_mb();
1168 #if (BITS_PER_LONG < 64)
1169 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1170 #else
1171 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1172 #endif
1173 	}
1174 
1175 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1176 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1177 					     struct ext4_fc_dentry_update,
1178 					     fcd_list);
1179 		list_del_init(&fc_dentry->fcd_list);
1180 		spin_unlock(&sbi->s_fc_lock);
1181 
1182 		if (fc_dentry->fcd_name.name &&
1183 			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1184 			kfree(fc_dentry->fcd_name.name);
1185 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1186 		spin_lock(&sbi->s_fc_lock);
1187 	}
1188 
1189 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1190 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1191 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1192 				&sbi->s_fc_q[FC_Q_STAGING]);
1193 
1194 	sbi->s_mount_state &= ~EXT4_FC_COMMITTING;
1195 	sbi->s_mount_state &= ~EXT4_FC_INELIGIBLE;
1196 
1197 	if (full)
1198 		sbi->s_fc_bytes = 0;
1199 	spin_unlock(&sbi->s_fc_lock);
1200 	trace_ext4_fc_stats(sb);
1201 }
1202 
1203 /* Ext4 Replay Path Routines */
1204 
1205 /* Get length of a particular tlv */
1206 static inline int ext4_fc_tag_len(struct ext4_fc_tl *tl)
1207 {
1208 	return le16_to_cpu(tl->fc_len);
1209 }
1210 
1211 /* Get a pointer to "value" of a tlv */
1212 static inline u8 *ext4_fc_tag_val(struct ext4_fc_tl *tl)
1213 {
1214 	return (u8 *)tl + sizeof(*tl);
1215 }
1216 
1217 /* Helper struct for dentry replay routines */
1218 struct dentry_info_args {
1219 	int parent_ino, dname_len, ino, inode_len;
1220 	char *dname;
1221 };
1222 
1223 static inline void tl_to_darg(struct dentry_info_args *darg,
1224 				struct  ext4_fc_tl *tl)
1225 {
1226 	struct ext4_fc_dentry_info *fcd;
1227 
1228 	fcd = (struct ext4_fc_dentry_info *)ext4_fc_tag_val(tl);
1229 
1230 	darg->parent_ino = le32_to_cpu(fcd->fc_parent_ino);
1231 	darg->ino = le32_to_cpu(fcd->fc_ino);
1232 	darg->dname = fcd->fc_dname;
1233 	darg->dname_len = ext4_fc_tag_len(tl) -
1234 			sizeof(struct ext4_fc_dentry_info);
1235 }
1236 
1237 /* Unlink replay function */
1238 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl)
1239 {
1240 	struct inode *inode, *old_parent;
1241 	struct qstr entry;
1242 	struct dentry_info_args darg;
1243 	int ret = 0;
1244 
1245 	tl_to_darg(&darg, tl);
1246 
1247 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1248 			darg.parent_ino, darg.dname_len);
1249 
1250 	entry.name = darg.dname;
1251 	entry.len = darg.dname_len;
1252 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1253 
1254 	if (IS_ERR_OR_NULL(inode)) {
1255 		jbd_debug(1, "Inode %d not found", darg.ino);
1256 		return 0;
1257 	}
1258 
1259 	old_parent = ext4_iget(sb, darg.parent_ino,
1260 				EXT4_IGET_NORMAL);
1261 	if (IS_ERR_OR_NULL(old_parent)) {
1262 		jbd_debug(1, "Dir with inode  %d not found", darg.parent_ino);
1263 		iput(inode);
1264 		return 0;
1265 	}
1266 
1267 	ret = __ext4_unlink(old_parent, &entry, inode);
1268 	/* -ENOENT ok coz it might not exist anymore. */
1269 	if (ret == -ENOENT)
1270 		ret = 0;
1271 	iput(old_parent);
1272 	iput(inode);
1273 	return ret;
1274 }
1275 
1276 static int ext4_fc_replay_link_internal(struct super_block *sb,
1277 				struct dentry_info_args *darg,
1278 				struct inode *inode)
1279 {
1280 	struct inode *dir = NULL;
1281 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1282 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1283 	int ret = 0;
1284 
1285 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1286 	if (IS_ERR(dir)) {
1287 		jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1288 		dir = NULL;
1289 		goto out;
1290 	}
1291 
1292 	dentry_dir = d_obtain_alias(dir);
1293 	if (IS_ERR(dentry_dir)) {
1294 		jbd_debug(1, "Failed to obtain dentry");
1295 		dentry_dir = NULL;
1296 		goto out;
1297 	}
1298 
1299 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1300 	if (!dentry_inode) {
1301 		jbd_debug(1, "Inode dentry not created.");
1302 		ret = -ENOMEM;
1303 		goto out;
1304 	}
1305 
1306 	ret = __ext4_link(dir, inode, dentry_inode);
1307 	/*
1308 	 * It's possible that link already existed since data blocks
1309 	 * for the dir in question got persisted before we crashed OR
1310 	 * we replayed this tag and crashed before the entire replay
1311 	 * could complete.
1312 	 */
1313 	if (ret && ret != -EEXIST) {
1314 		jbd_debug(1, "Failed to link\n");
1315 		goto out;
1316 	}
1317 
1318 	ret = 0;
1319 out:
1320 	if (dentry_dir) {
1321 		d_drop(dentry_dir);
1322 		dput(dentry_dir);
1323 	} else if (dir) {
1324 		iput(dir);
1325 	}
1326 	if (dentry_inode) {
1327 		d_drop(dentry_inode);
1328 		dput(dentry_inode);
1329 	}
1330 
1331 	return ret;
1332 }
1333 
1334 /* Link replay function */
1335 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl)
1336 {
1337 	struct inode *inode;
1338 	struct dentry_info_args darg;
1339 	int ret = 0;
1340 
1341 	tl_to_darg(&darg, tl);
1342 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1343 			darg.parent_ino, darg.dname_len);
1344 
1345 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1346 	if (IS_ERR_OR_NULL(inode)) {
1347 		jbd_debug(1, "Inode not found.");
1348 		return 0;
1349 	}
1350 
1351 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1352 	iput(inode);
1353 	return ret;
1354 }
1355 
1356 /*
1357  * Record all the modified inodes during replay. We use this later to setup
1358  * block bitmaps correctly.
1359  */
1360 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1361 {
1362 	struct ext4_fc_replay_state *state;
1363 	int i;
1364 
1365 	state = &EXT4_SB(sb)->s_fc_replay_state;
1366 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1367 		if (state->fc_modified_inodes[i] == ino)
1368 			return 0;
1369 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1370 		state->fc_modified_inodes_size +=
1371 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1372 		state->fc_modified_inodes = krealloc(
1373 					state->fc_modified_inodes, sizeof(int) *
1374 					state->fc_modified_inodes_size,
1375 					GFP_KERNEL);
1376 		if (!state->fc_modified_inodes)
1377 			return -ENOMEM;
1378 	}
1379 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1380 	return 0;
1381 }
1382 
1383 /*
1384  * Inode replay function
1385  */
1386 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl)
1387 {
1388 	struct ext4_fc_inode *fc_inode;
1389 	struct ext4_inode *raw_inode;
1390 	struct ext4_inode *raw_fc_inode;
1391 	struct inode *inode = NULL;
1392 	struct ext4_iloc iloc;
1393 	int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1394 	struct ext4_extent_header *eh;
1395 
1396 	fc_inode = (struct ext4_fc_inode *)ext4_fc_tag_val(tl);
1397 
1398 	ino = le32_to_cpu(fc_inode->fc_ino);
1399 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1400 
1401 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1402 	if (!IS_ERR_OR_NULL(inode)) {
1403 		ext4_ext_clear_bb(inode);
1404 		iput(inode);
1405 	}
1406 
1407 	ext4_fc_record_modified_inode(sb, ino);
1408 
1409 	raw_fc_inode = (struct ext4_inode *)fc_inode->fc_raw_inode;
1410 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1411 	if (ret)
1412 		goto out;
1413 
1414 	inode_len = ext4_fc_tag_len(tl) - sizeof(struct ext4_fc_inode);
1415 	raw_inode = ext4_raw_inode(&iloc);
1416 
1417 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1418 	memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1419 		inode_len - offsetof(struct ext4_inode, i_generation));
1420 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1421 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1422 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1423 			memset(eh, 0, sizeof(*eh));
1424 			eh->eh_magic = EXT4_EXT_MAGIC;
1425 			eh->eh_max = cpu_to_le16(
1426 				(sizeof(raw_inode->i_block) -
1427 				 sizeof(struct ext4_extent_header))
1428 				 / sizeof(struct ext4_extent));
1429 		}
1430 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1431 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1432 			sizeof(raw_inode->i_block));
1433 	}
1434 
1435 	/* Immediately update the inode on disk. */
1436 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1437 	if (ret)
1438 		goto out;
1439 	ret = sync_dirty_buffer(iloc.bh);
1440 	if (ret)
1441 		goto out;
1442 	ret = ext4_mark_inode_used(sb, ino);
1443 	if (ret)
1444 		goto out;
1445 
1446 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1447 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1448 	if (IS_ERR_OR_NULL(inode)) {
1449 		jbd_debug(1, "Inode not found.");
1450 		return -EFSCORRUPTED;
1451 	}
1452 
1453 	/*
1454 	 * Our allocator could have made different decisions than before
1455 	 * crashing. This should be fixed but until then, we calculate
1456 	 * the number of blocks the inode.
1457 	 */
1458 	ext4_ext_replay_set_iblocks(inode);
1459 
1460 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1461 	ext4_reset_inode_seed(inode);
1462 
1463 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1464 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1465 	sync_dirty_buffer(iloc.bh);
1466 	brelse(iloc.bh);
1467 out:
1468 	iput(inode);
1469 	if (!ret)
1470 		blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
1471 
1472 	return 0;
1473 }
1474 
1475 /*
1476  * Dentry create replay function.
1477  *
1478  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1479  * inode for which we are trying to create a dentry here, should already have
1480  * been replayed before we start here.
1481  */
1482 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl)
1483 {
1484 	int ret = 0;
1485 	struct inode *inode = NULL;
1486 	struct inode *dir = NULL;
1487 	struct dentry_info_args darg;
1488 
1489 	tl_to_darg(&darg, tl);
1490 
1491 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1492 			darg.parent_ino, darg.dname_len);
1493 
1494 	/* This takes care of update group descriptor and other metadata */
1495 	ret = ext4_mark_inode_used(sb, darg.ino);
1496 	if (ret)
1497 		goto out;
1498 
1499 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1500 	if (IS_ERR_OR_NULL(inode)) {
1501 		jbd_debug(1, "inode %d not found.", darg.ino);
1502 		inode = NULL;
1503 		ret = -EINVAL;
1504 		goto out;
1505 	}
1506 
1507 	if (S_ISDIR(inode->i_mode)) {
1508 		/*
1509 		 * If we are creating a directory, we need to make sure that the
1510 		 * dot and dot dot dirents are setup properly.
1511 		 */
1512 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1513 		if (IS_ERR_OR_NULL(dir)) {
1514 			jbd_debug(1, "Dir %d not found.", darg.ino);
1515 			goto out;
1516 		}
1517 		ret = ext4_init_new_dir(NULL, dir, inode);
1518 		iput(dir);
1519 		if (ret) {
1520 			ret = 0;
1521 			goto out;
1522 		}
1523 	}
1524 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1525 	if (ret)
1526 		goto out;
1527 	set_nlink(inode, 1);
1528 	ext4_mark_inode_dirty(NULL, inode);
1529 out:
1530 	if (inode)
1531 		iput(inode);
1532 	return ret;
1533 }
1534 
1535 /*
1536  * Record physical disk regions which are in use as per fast commit area. Our
1537  * simple replay phase allocator excludes these regions from allocation.
1538  */
1539 static int ext4_fc_record_regions(struct super_block *sb, int ino,
1540 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len)
1541 {
1542 	struct ext4_fc_replay_state *state;
1543 	struct ext4_fc_alloc_region *region;
1544 
1545 	state = &EXT4_SB(sb)->s_fc_replay_state;
1546 	if (state->fc_regions_used == state->fc_regions_size) {
1547 		state->fc_regions_size +=
1548 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1549 		state->fc_regions = krealloc(
1550 					state->fc_regions,
1551 					state->fc_regions_size *
1552 					sizeof(struct ext4_fc_alloc_region),
1553 					GFP_KERNEL);
1554 		if (!state->fc_regions)
1555 			return -ENOMEM;
1556 	}
1557 	region = &state->fc_regions[state->fc_regions_used++];
1558 	region->ino = ino;
1559 	region->lblk = lblk;
1560 	region->pblk = pblk;
1561 	region->len = len;
1562 
1563 	return 0;
1564 }
1565 
1566 /* Replay add range tag */
1567 static int ext4_fc_replay_add_range(struct super_block *sb,
1568 				struct ext4_fc_tl *tl)
1569 {
1570 	struct ext4_fc_add_range *fc_add_ex;
1571 	struct ext4_extent newex, *ex;
1572 	struct inode *inode;
1573 	ext4_lblk_t start, cur;
1574 	int remaining, len;
1575 	ext4_fsblk_t start_pblk;
1576 	struct ext4_map_blocks map;
1577 	struct ext4_ext_path *path = NULL;
1578 	int ret;
1579 
1580 	fc_add_ex = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1581 	ex = (struct ext4_extent *)&fc_add_ex->fc_ex;
1582 
1583 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1584 		le32_to_cpu(fc_add_ex->fc_ino), le32_to_cpu(ex->ee_block),
1585 		ext4_ext_get_actual_len(ex));
1586 
1587 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex->fc_ino),
1588 				EXT4_IGET_NORMAL);
1589 	if (IS_ERR_OR_NULL(inode)) {
1590 		jbd_debug(1, "Inode not found.");
1591 		return 0;
1592 	}
1593 
1594 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1595 
1596 	start = le32_to_cpu(ex->ee_block);
1597 	start_pblk = ext4_ext_pblock(ex);
1598 	len = ext4_ext_get_actual_len(ex);
1599 
1600 	cur = start;
1601 	remaining = len;
1602 	jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1603 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1604 		  inode->i_ino);
1605 
1606 	while (remaining > 0) {
1607 		map.m_lblk = cur;
1608 		map.m_len = remaining;
1609 		map.m_pblk = 0;
1610 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1611 
1612 		if (ret < 0) {
1613 			iput(inode);
1614 			return 0;
1615 		}
1616 
1617 		if (ret == 0) {
1618 			/* Range is not mapped */
1619 			path = ext4_find_extent(inode, cur, NULL, 0);
1620 			if (!path)
1621 				continue;
1622 			memset(&newex, 0, sizeof(newex));
1623 			newex.ee_block = cpu_to_le32(cur);
1624 			ext4_ext_store_pblock(
1625 				&newex, start_pblk + cur - start);
1626 			newex.ee_len = cpu_to_le16(map.m_len);
1627 			if (ext4_ext_is_unwritten(ex))
1628 				ext4_ext_mark_unwritten(&newex);
1629 			down_write(&EXT4_I(inode)->i_data_sem);
1630 			ret = ext4_ext_insert_extent(
1631 				NULL, inode, &path, &newex, 0);
1632 			up_write((&EXT4_I(inode)->i_data_sem));
1633 			ext4_ext_drop_refs(path);
1634 			kfree(path);
1635 			if (ret) {
1636 				iput(inode);
1637 				return 0;
1638 			}
1639 			goto next;
1640 		}
1641 
1642 		if (start_pblk + cur - start != map.m_pblk) {
1643 			/*
1644 			 * Logical to physical mapping changed. This can happen
1645 			 * if this range was removed and then reallocated to
1646 			 * map to new physical blocks during a fast commit.
1647 			 */
1648 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1649 					ext4_ext_is_unwritten(ex),
1650 					start_pblk + cur - start);
1651 			if (ret) {
1652 				iput(inode);
1653 				return 0;
1654 			}
1655 			/*
1656 			 * Mark the old blocks as free since they aren't used
1657 			 * anymore. We maintain an array of all the modified
1658 			 * inodes. In case these blocks are still used at either
1659 			 * a different logical range in the same inode or in
1660 			 * some different inode, we will mark them as allocated
1661 			 * at the end of the FC replay using our array of
1662 			 * modified inodes.
1663 			 */
1664 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1665 			goto next;
1666 		}
1667 
1668 		/* Range is mapped and needs a state change */
1669 		jbd_debug(1, "Converting from %d to %d %lld",
1670 				map.m_flags & EXT4_MAP_UNWRITTEN,
1671 			ext4_ext_is_unwritten(ex), map.m_pblk);
1672 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1673 					ext4_ext_is_unwritten(ex), map.m_pblk);
1674 		if (ret) {
1675 			iput(inode);
1676 			return 0;
1677 		}
1678 		/*
1679 		 * We may have split the extent tree while toggling the state.
1680 		 * Try to shrink the extent tree now.
1681 		 */
1682 		ext4_ext_replay_shrink_inode(inode, start + len);
1683 next:
1684 		cur += map.m_len;
1685 		remaining -= map.m_len;
1686 	}
1687 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1688 					sb->s_blocksize_bits);
1689 	iput(inode);
1690 	return 0;
1691 }
1692 
1693 /* Replay DEL_RANGE tag */
1694 static int
1695 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl)
1696 {
1697 	struct inode *inode;
1698 	struct ext4_fc_del_range *lrange;
1699 	struct ext4_map_blocks map;
1700 	ext4_lblk_t cur, remaining;
1701 	int ret;
1702 
1703 	lrange = (struct ext4_fc_del_range *)ext4_fc_tag_val(tl);
1704 	cur = le32_to_cpu(lrange->fc_lblk);
1705 	remaining = le32_to_cpu(lrange->fc_len);
1706 
1707 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1708 		le32_to_cpu(lrange->fc_ino), cur, remaining);
1709 
1710 	inode = ext4_iget(sb, le32_to_cpu(lrange->fc_ino), EXT4_IGET_NORMAL);
1711 	if (IS_ERR_OR_NULL(inode)) {
1712 		jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange->fc_ino));
1713 		return 0;
1714 	}
1715 
1716 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1717 
1718 	jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1719 			inode->i_ino, le32_to_cpu(lrange->fc_lblk),
1720 			le32_to_cpu(lrange->fc_len));
1721 	while (remaining > 0) {
1722 		map.m_lblk = cur;
1723 		map.m_len = remaining;
1724 
1725 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1726 		if (ret < 0) {
1727 			iput(inode);
1728 			return 0;
1729 		}
1730 		if (ret > 0) {
1731 			remaining -= ret;
1732 			cur += ret;
1733 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1734 		} else {
1735 			remaining -= map.m_len;
1736 			cur += map.m_len;
1737 		}
1738 	}
1739 
1740 	ret = ext4_punch_hole(inode,
1741 		le32_to_cpu(lrange->fc_lblk) << sb->s_blocksize_bits,
1742 		le32_to_cpu(lrange->fc_len) <<  sb->s_blocksize_bits);
1743 	if (ret)
1744 		jbd_debug(1, "ext4_punch_hole returned %d", ret);
1745 	ext4_ext_replay_shrink_inode(inode,
1746 		i_size_read(inode) >> sb->s_blocksize_bits);
1747 	ext4_mark_inode_dirty(NULL, inode);
1748 	iput(inode);
1749 
1750 	return 0;
1751 }
1752 
1753 static inline const char *tag2str(u16 tag)
1754 {
1755 	switch (tag) {
1756 	case EXT4_FC_TAG_LINK:
1757 		return "TAG_ADD_ENTRY";
1758 	case EXT4_FC_TAG_UNLINK:
1759 		return "TAG_DEL_ENTRY";
1760 	case EXT4_FC_TAG_ADD_RANGE:
1761 		return "TAG_ADD_RANGE";
1762 	case EXT4_FC_TAG_CREAT:
1763 		return "TAG_CREAT_DENTRY";
1764 	case EXT4_FC_TAG_DEL_RANGE:
1765 		return "TAG_DEL_RANGE";
1766 	case EXT4_FC_TAG_INODE:
1767 		return "TAG_INODE";
1768 	case EXT4_FC_TAG_PAD:
1769 		return "TAG_PAD";
1770 	case EXT4_FC_TAG_TAIL:
1771 		return "TAG_TAIL";
1772 	case EXT4_FC_TAG_HEAD:
1773 		return "TAG_HEAD";
1774 	default:
1775 		return "TAG_ERROR";
1776 	}
1777 }
1778 
1779 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1780 {
1781 	struct ext4_fc_replay_state *state;
1782 	struct inode *inode;
1783 	struct ext4_ext_path *path = NULL;
1784 	struct ext4_map_blocks map;
1785 	int i, ret, j;
1786 	ext4_lblk_t cur, end;
1787 
1788 	state = &EXT4_SB(sb)->s_fc_replay_state;
1789 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1790 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1791 			EXT4_IGET_NORMAL);
1792 		if (IS_ERR_OR_NULL(inode)) {
1793 			jbd_debug(1, "Inode %d not found.",
1794 				state->fc_modified_inodes[i]);
1795 			continue;
1796 		}
1797 		cur = 0;
1798 		end = EXT_MAX_BLOCKS;
1799 		while (cur < end) {
1800 			map.m_lblk = cur;
1801 			map.m_len = end - cur;
1802 
1803 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1804 			if (ret < 0)
1805 				break;
1806 
1807 			if (ret > 0) {
1808 				path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1809 				if (!IS_ERR_OR_NULL(path)) {
1810 					for (j = 0; j < path->p_depth; j++)
1811 						ext4_mb_mark_bb(inode->i_sb,
1812 							path[j].p_block, 1, 1);
1813 					ext4_ext_drop_refs(path);
1814 					kfree(path);
1815 				}
1816 				cur += ret;
1817 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1818 							map.m_len, 1);
1819 			} else {
1820 				cur = cur + (map.m_len ? map.m_len : 1);
1821 			}
1822 		}
1823 		iput(inode);
1824 	}
1825 }
1826 
1827 /*
1828  * Check if block is in excluded regions for block allocation. The simple
1829  * allocator that runs during replay phase is calls this function to see
1830  * if it is okay to use a block.
1831  */
1832 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1833 {
1834 	int i;
1835 	struct ext4_fc_replay_state *state;
1836 
1837 	state = &EXT4_SB(sb)->s_fc_replay_state;
1838 	for (i = 0; i < state->fc_regions_valid; i++) {
1839 		if (state->fc_regions[i].ino == 0 ||
1840 			state->fc_regions[i].len == 0)
1841 			continue;
1842 		if (blk >= state->fc_regions[i].pblk &&
1843 		    blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1844 			return true;
1845 	}
1846 	return false;
1847 }
1848 
1849 /* Cleanup function called after replay */
1850 void ext4_fc_replay_cleanup(struct super_block *sb)
1851 {
1852 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1853 
1854 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1855 	kfree(sbi->s_fc_replay_state.fc_regions);
1856 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1857 }
1858 
1859 /*
1860  * Recovery Scan phase handler
1861  *
1862  * This function is called during the scan phase and is responsible
1863  * for doing following things:
1864  * - Make sure the fast commit area has valid tags for replay
1865  * - Count number of tags that need to be replayed by the replay handler
1866  * - Verify CRC
1867  * - Create a list of excluded blocks for allocation during replay phase
1868  *
1869  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1870  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1871  * to indicate that scan has finished and JBD2 can now start replay phase.
1872  * It returns a negative error to indicate that there was an error. At the end
1873  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1874  * to indicate the number of tags that need to replayed during the replay phase.
1875  */
1876 static int ext4_fc_replay_scan(journal_t *journal,
1877 				struct buffer_head *bh, int off,
1878 				tid_t expected_tid)
1879 {
1880 	struct super_block *sb = journal->j_private;
1881 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1882 	struct ext4_fc_replay_state *state;
1883 	int ret = JBD2_FC_REPLAY_CONTINUE;
1884 	struct ext4_fc_add_range *ext;
1885 	struct ext4_fc_tl *tl;
1886 	struct ext4_fc_tail *tail;
1887 	__u8 *start, *end;
1888 	struct ext4_fc_head *head;
1889 	struct ext4_extent *ex;
1890 
1891 	state = &sbi->s_fc_replay_state;
1892 
1893 	start = (u8 *)bh->b_data;
1894 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1895 
1896 	if (state->fc_replay_expected_off == 0) {
1897 		state->fc_cur_tag = 0;
1898 		state->fc_replay_num_tags = 0;
1899 		state->fc_crc = 0;
1900 		state->fc_regions = NULL;
1901 		state->fc_regions_valid = state->fc_regions_used =
1902 			state->fc_regions_size = 0;
1903 		/* Check if we can stop early */
1904 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1905 			!= EXT4_FC_TAG_HEAD)
1906 			return 0;
1907 	}
1908 
1909 	if (off != state->fc_replay_expected_off) {
1910 		ret = -EFSCORRUPTED;
1911 		goto out_err;
1912 	}
1913 
1914 	state->fc_replay_expected_off++;
1915 	fc_for_each_tl(start, end, tl) {
1916 		jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1917 			  tag2str(le16_to_cpu(tl->fc_tag)), bh->b_blocknr);
1918 		switch (le16_to_cpu(tl->fc_tag)) {
1919 		case EXT4_FC_TAG_ADD_RANGE:
1920 			ext = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1921 			ex = (struct ext4_extent *)&ext->fc_ex;
1922 			ret = ext4_fc_record_regions(sb,
1923 				le32_to_cpu(ext->fc_ino),
1924 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1925 				ext4_ext_get_actual_len(ex));
1926 			if (ret < 0)
1927 				break;
1928 			ret = JBD2_FC_REPLAY_CONTINUE;
1929 			fallthrough;
1930 		case EXT4_FC_TAG_DEL_RANGE:
1931 		case EXT4_FC_TAG_LINK:
1932 		case EXT4_FC_TAG_UNLINK:
1933 		case EXT4_FC_TAG_CREAT:
1934 		case EXT4_FC_TAG_INODE:
1935 		case EXT4_FC_TAG_PAD:
1936 			state->fc_cur_tag++;
1937 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1938 					sizeof(*tl) + ext4_fc_tag_len(tl));
1939 			break;
1940 		case EXT4_FC_TAG_TAIL:
1941 			state->fc_cur_tag++;
1942 			tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
1943 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1944 						sizeof(*tl) +
1945 						offsetof(struct ext4_fc_tail,
1946 						fc_crc));
1947 			if (le32_to_cpu(tail->fc_tid) == expected_tid &&
1948 				le32_to_cpu(tail->fc_crc) == state->fc_crc) {
1949 				state->fc_replay_num_tags = state->fc_cur_tag;
1950 				state->fc_regions_valid =
1951 					state->fc_regions_used;
1952 			} else {
1953 				ret = state->fc_replay_num_tags ?
1954 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
1955 			}
1956 			state->fc_crc = 0;
1957 			break;
1958 		case EXT4_FC_TAG_HEAD:
1959 			head = (struct ext4_fc_head *)ext4_fc_tag_val(tl);
1960 			if (le32_to_cpu(head->fc_features) &
1961 				~EXT4_FC_SUPPORTED_FEATURES) {
1962 				ret = -EOPNOTSUPP;
1963 				break;
1964 			}
1965 			if (le32_to_cpu(head->fc_tid) != expected_tid) {
1966 				ret = JBD2_FC_REPLAY_STOP;
1967 				break;
1968 			}
1969 			state->fc_cur_tag++;
1970 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1971 					sizeof(*tl) + ext4_fc_tag_len(tl));
1972 			break;
1973 		default:
1974 			ret = state->fc_replay_num_tags ?
1975 				JBD2_FC_REPLAY_STOP : -ECANCELED;
1976 		}
1977 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
1978 			break;
1979 	}
1980 
1981 out_err:
1982 	trace_ext4_fc_replay_scan(sb, ret, off);
1983 	return ret;
1984 }
1985 
1986 /*
1987  * Main recovery path entry point.
1988  * The meaning of return codes is similar as above.
1989  */
1990 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
1991 				enum passtype pass, int off, tid_t expected_tid)
1992 {
1993 	struct super_block *sb = journal->j_private;
1994 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1995 	struct ext4_fc_tl *tl;
1996 	__u8 *start, *end;
1997 	int ret = JBD2_FC_REPLAY_CONTINUE;
1998 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
1999 	struct ext4_fc_tail *tail;
2000 
2001 	if (pass == PASS_SCAN) {
2002 		state->fc_current_pass = PASS_SCAN;
2003 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2004 	}
2005 
2006 	if (state->fc_current_pass != pass) {
2007 		state->fc_current_pass = pass;
2008 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2009 	}
2010 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2011 		jbd_debug(1, "Replay stops\n");
2012 		ext4_fc_set_bitmaps_and_counters(sb);
2013 		return 0;
2014 	}
2015 
2016 #ifdef CONFIG_EXT4_DEBUG
2017 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2018 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2019 		return JBD2_FC_REPLAY_STOP;
2020 	}
2021 #endif
2022 
2023 	start = (u8 *)bh->b_data;
2024 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2025 
2026 	fc_for_each_tl(start, end, tl) {
2027 		if (state->fc_replay_num_tags == 0) {
2028 			ret = JBD2_FC_REPLAY_STOP;
2029 			ext4_fc_set_bitmaps_and_counters(sb);
2030 			break;
2031 		}
2032 		jbd_debug(3, "Replay phase, tag:%s\n",
2033 				tag2str(le16_to_cpu(tl->fc_tag)));
2034 		state->fc_replay_num_tags--;
2035 		switch (le16_to_cpu(tl->fc_tag)) {
2036 		case EXT4_FC_TAG_LINK:
2037 			ret = ext4_fc_replay_link(sb, tl);
2038 			break;
2039 		case EXT4_FC_TAG_UNLINK:
2040 			ret = ext4_fc_replay_unlink(sb, tl);
2041 			break;
2042 		case EXT4_FC_TAG_ADD_RANGE:
2043 			ret = ext4_fc_replay_add_range(sb, tl);
2044 			break;
2045 		case EXT4_FC_TAG_CREAT:
2046 			ret = ext4_fc_replay_create(sb, tl);
2047 			break;
2048 		case EXT4_FC_TAG_DEL_RANGE:
2049 			ret = ext4_fc_replay_del_range(sb, tl);
2050 			break;
2051 		case EXT4_FC_TAG_INODE:
2052 			ret = ext4_fc_replay_inode(sb, tl);
2053 			break;
2054 		case EXT4_FC_TAG_PAD:
2055 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2056 				ext4_fc_tag_len(tl), 0);
2057 			break;
2058 		case EXT4_FC_TAG_TAIL:
2059 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2060 				ext4_fc_tag_len(tl), 0);
2061 			tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
2062 			WARN_ON(le32_to_cpu(tail->fc_tid) != expected_tid);
2063 			break;
2064 		case EXT4_FC_TAG_HEAD:
2065 			break;
2066 		default:
2067 			trace_ext4_fc_replay(sb, le16_to_cpu(tl->fc_tag), 0,
2068 				ext4_fc_tag_len(tl), 0);
2069 			ret = -ECANCELED;
2070 			break;
2071 		}
2072 		if (ret < 0)
2073 			break;
2074 		ret = JBD2_FC_REPLAY_CONTINUE;
2075 	}
2076 	return ret;
2077 }
2078 
2079 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2080 {
2081 	/*
2082 	 * We set replay callback even if fast commit disabled because we may
2083 	 * could still have fast commit blocks that need to be replayed even if
2084 	 * fast commit has now been turned off.
2085 	 */
2086 	journal->j_fc_replay_callback = ext4_fc_replay;
2087 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2088 		return;
2089 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2090 	if (jbd2_fc_init(journal, EXT4_NUM_FC_BLKS)) {
2091 		pr_warn("Error while enabling fast commits, turning off.");
2092 		ext4_clear_feature_fast_commit(sb);
2093 	}
2094 }
2095 
2096 const char *fc_ineligible_reasons[] = {
2097 	"Extended attributes changed",
2098 	"Cross rename",
2099 	"Journal flag changed",
2100 	"Insufficient memory",
2101 	"Swap boot",
2102 	"Resize",
2103 	"Dir renamed",
2104 	"Falloc range op",
2105 	"FC Commit Failed"
2106 };
2107 
2108 int ext4_fc_info_show(struct seq_file *seq, void *v)
2109 {
2110 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2111 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2112 	int i;
2113 
2114 	if (v != SEQ_START_TOKEN)
2115 		return 0;
2116 
2117 	seq_printf(seq,
2118 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2119 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2120 		   stats->fc_numblks,
2121 		   div_u64(sbi->s_fc_avg_commit_time, 1000));
2122 	seq_puts(seq, "Ineligible reasons:\n");
2123 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2124 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2125 			stats->fc_ineligible_reason_count[i]);
2126 
2127 	return 0;
2128 }
2129 
2130 int __init ext4_fc_init_dentry_cache(void)
2131 {
2132 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2133 					   SLAB_RECLAIM_ACCOUNT);
2134 
2135 	if (ext4_fc_dentry_cachep == NULL)
2136 		return -ENOMEM;
2137 
2138 	return 0;
2139 }
2140