xref: /openbmc/linux/fs/ext4/extents_status.c (revision f35e839a)
1 /*
2  *  fs/ext4/extents_status.c
3  *
4  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
5  * Modified by
6  *	Allison Henderson <achender@linux.vnet.ibm.com>
7  *	Hugh Dickins <hughd@google.com>
8  *	Zheng Liu <wenqing.lz@taobao.com>
9  *
10  * Ext4 extents status tree core functions.
11  */
12 #include <linux/rbtree.h>
13 #include "ext4.h"
14 #include "extents_status.h"
15 #include "ext4_extents.h"
16 
17 #include <trace/events/ext4.h>
18 
19 /*
20  * According to previous discussion in Ext4 Developer Workshop, we
21  * will introduce a new structure called io tree to track all extent
22  * status in order to solve some problems that we have met
23  * (e.g. Reservation space warning), and provide extent-level locking.
24  * Delay extent tree is the first step to achieve this goal.  It is
25  * original built by Yongqiang Yang.  At that time it is called delay
26  * extent tree, whose goal is only track delayed extents in memory to
27  * simplify the implementation of fiemap and bigalloc, and introduce
28  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
29  * delay extent tree at the first commit.  But for better understand
30  * what it does, it has been rename to extent status tree.
31  *
32  * Step1:
33  * Currently the first step has been done.  All delayed extents are
34  * tracked in the tree.  It maintains the delayed extent when a delayed
35  * allocation is issued, and the delayed extent is written out or
36  * invalidated.  Therefore the implementation of fiemap and bigalloc
37  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
38  *
39  * The following comment describes the implemenmtation of extent
40  * status tree and future works.
41  *
42  * Step2:
43  * In this step all extent status are tracked by extent status tree.
44  * Thus, we can first try to lookup a block mapping in this tree before
45  * finding it in extent tree.  Hence, single extent cache can be removed
46  * because extent status tree can do a better job.  Extents in status
47  * tree are loaded on-demand.  Therefore, the extent status tree may not
48  * contain all of the extents in a file.  Meanwhile we define a shrinker
49  * to reclaim memory from extent status tree because fragmented extent
50  * tree will make status tree cost too much memory.  written/unwritten/-
51  * hole extents in the tree will be reclaimed by this shrinker when we
52  * are under high memory pressure.  Delayed extents will not be
53  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
54  */
55 
56 /*
57  * Extent status tree implementation for ext4.
58  *
59  *
60  * ==========================================================================
61  * Extent status tree tracks all extent status.
62  *
63  * 1. Why we need to implement extent status tree?
64  *
65  * Without extent status tree, ext4 identifies a delayed extent by looking
66  * up page cache, this has several deficiencies - complicated, buggy,
67  * and inefficient code.
68  *
69  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
70  * block or a range of blocks are belonged to a delayed extent.
71  *
72  * Let us have a look at how they do without extent status tree.
73  *   --	FIEMAP
74  *	FIEMAP looks up page cache to identify delayed allocations from holes.
75  *
76  *   --	SEEK_HOLE/DATA
77  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
78  *
79  *   --	bigalloc
80  *	bigalloc looks up page cache to figure out if a block is
81  *	already under delayed allocation or not to determine whether
82  *	quota reserving is needed for the cluster.
83  *
84  *   --	writeout
85  *	Writeout looks up whole page cache to see if a buffer is
86  *	mapped, If there are not very many delayed buffers, then it is
87  *	time comsuming.
88  *
89  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
90  * bigalloc and writeout can figure out if a block or a range of
91  * blocks is under delayed allocation(belonged to a delayed extent) or
92  * not by searching the extent tree.
93  *
94  *
95  * ==========================================================================
96  * 2. Ext4 extent status tree impelmentation
97  *
98  *   --	extent
99  *	A extent is a range of blocks which are contiguous logically and
100  *	physically.  Unlike extent in extent tree, this extent in ext4 is
101  *	a in-memory struct, there is no corresponding on-disk data.  There
102  *	is no limit on length of extent, so an extent can contain as many
103  *	blocks as they are contiguous logically and physically.
104  *
105  *   --	extent status tree
106  *	Every inode has an extent status tree and all allocation blocks
107  *	are added to the tree with different status.  The extent in the
108  *	tree are ordered by logical block no.
109  *
110  *   --	operations on a extent status tree
111  *	There are three important operations on a delayed extent tree: find
112  *	next extent, adding a extent(a range of blocks) and removing a extent.
113  *
114  *   --	race on a extent status tree
115  *	Extent status tree is protected by inode->i_es_lock.
116  *
117  *   --	memory consumption
118  *      Fragmented extent tree will make extent status tree cost too much
119  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
120  *      the tree under a heavy memory pressure.
121  *
122  *
123  * ==========================================================================
124  * 3. Performance analysis
125  *
126  *   --	overhead
127  *	1. There is a cache extent for write access, so if writes are
128  *	not very random, adding space operaions are in O(1) time.
129  *
130  *   --	gain
131  *	2. Code is much simpler, more readable, more maintainable and
132  *	more efficient.
133  *
134  *
135  * ==========================================================================
136  * 4. TODO list
137  *
138  *   -- Refactor delayed space reservation
139  *
140  *   -- Extent-level locking
141  */
142 
143 static struct kmem_cache *ext4_es_cachep;
144 
145 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
146 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
147 			      ext4_lblk_t end);
148 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
149 				       int nr_to_scan);
150 
151 int __init ext4_init_es(void)
152 {
153 	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
154 					   sizeof(struct extent_status),
155 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
156 	if (ext4_es_cachep == NULL)
157 		return -ENOMEM;
158 	return 0;
159 }
160 
161 void ext4_exit_es(void)
162 {
163 	if (ext4_es_cachep)
164 		kmem_cache_destroy(ext4_es_cachep);
165 }
166 
167 void ext4_es_init_tree(struct ext4_es_tree *tree)
168 {
169 	tree->root = RB_ROOT;
170 	tree->cache_es = NULL;
171 }
172 
173 #ifdef ES_DEBUG__
174 static void ext4_es_print_tree(struct inode *inode)
175 {
176 	struct ext4_es_tree *tree;
177 	struct rb_node *node;
178 
179 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
180 	tree = &EXT4_I(inode)->i_es_tree;
181 	node = rb_first(&tree->root);
182 	while (node) {
183 		struct extent_status *es;
184 		es = rb_entry(node, struct extent_status, rb_node);
185 		printk(KERN_DEBUG " [%u/%u) %llu %llx",
186 		       es->es_lblk, es->es_len,
187 		       ext4_es_pblock(es), ext4_es_status(es));
188 		node = rb_next(node);
189 	}
190 	printk(KERN_DEBUG "\n");
191 }
192 #else
193 #define ext4_es_print_tree(inode)
194 #endif
195 
196 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
197 {
198 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
199 	return es->es_lblk + es->es_len - 1;
200 }
201 
202 /*
203  * search through the tree for an delayed extent with a given offset.  If
204  * it can't be found, try to find next extent.
205  */
206 static struct extent_status *__es_tree_search(struct rb_root *root,
207 					      ext4_lblk_t lblk)
208 {
209 	struct rb_node *node = root->rb_node;
210 	struct extent_status *es = NULL;
211 
212 	while (node) {
213 		es = rb_entry(node, struct extent_status, rb_node);
214 		if (lblk < es->es_lblk)
215 			node = node->rb_left;
216 		else if (lblk > ext4_es_end(es))
217 			node = node->rb_right;
218 		else
219 			return es;
220 	}
221 
222 	if (es && lblk < es->es_lblk)
223 		return es;
224 
225 	if (es && lblk > ext4_es_end(es)) {
226 		node = rb_next(&es->rb_node);
227 		return node ? rb_entry(node, struct extent_status, rb_node) :
228 			      NULL;
229 	}
230 
231 	return NULL;
232 }
233 
234 /*
235  * ext4_es_find_delayed_extent: find the 1st delayed extent covering @es->lblk
236  * if it exists, otherwise, the next extent after @es->lblk.
237  *
238  * @inode: the inode which owns delayed extents
239  * @lblk: the offset where we start to search
240  * @es: delayed extent that we found
241  */
242 void ext4_es_find_delayed_extent(struct inode *inode, ext4_lblk_t lblk,
243 				 struct extent_status *es)
244 {
245 	struct ext4_es_tree *tree = NULL;
246 	struct extent_status *es1 = NULL;
247 	struct rb_node *node;
248 
249 	BUG_ON(es == NULL);
250 	trace_ext4_es_find_delayed_extent_enter(inode, lblk);
251 
252 	read_lock(&EXT4_I(inode)->i_es_lock);
253 	tree = &EXT4_I(inode)->i_es_tree;
254 
255 	/* find extent in cache firstly */
256 	es->es_lblk = es->es_len = es->es_pblk = 0;
257 	if (tree->cache_es) {
258 		es1 = tree->cache_es;
259 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
260 			es_debug("%u cached by [%u/%u) %llu %llx\n",
261 				 lblk, es1->es_lblk, es1->es_len,
262 				 ext4_es_pblock(es1), ext4_es_status(es1));
263 			goto out;
264 		}
265 	}
266 
267 	es1 = __es_tree_search(&tree->root, lblk);
268 
269 out:
270 	if (es1 && !ext4_es_is_delayed(es1)) {
271 		while ((node = rb_next(&es1->rb_node)) != NULL) {
272 			es1 = rb_entry(node, struct extent_status, rb_node);
273 			if (ext4_es_is_delayed(es1))
274 				break;
275 		}
276 	}
277 
278 	if (es1 && ext4_es_is_delayed(es1)) {
279 		tree->cache_es = es1;
280 		es->es_lblk = es1->es_lblk;
281 		es->es_len = es1->es_len;
282 		es->es_pblk = es1->es_pblk;
283 	}
284 
285 	read_unlock(&EXT4_I(inode)->i_es_lock);
286 
287 	ext4_es_lru_add(inode);
288 	trace_ext4_es_find_delayed_extent_exit(inode, es);
289 }
290 
291 static struct extent_status *
292 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
293 		     ext4_fsblk_t pblk)
294 {
295 	struct extent_status *es;
296 	es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
297 	if (es == NULL)
298 		return NULL;
299 	es->es_lblk = lblk;
300 	es->es_len = len;
301 	es->es_pblk = pblk;
302 
303 	/*
304 	 * We don't count delayed extent because we never try to reclaim them
305 	 */
306 	if (!ext4_es_is_delayed(es)) {
307 		EXT4_I(inode)->i_es_lru_nr++;
308 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
309 	}
310 
311 	return es;
312 }
313 
314 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
315 {
316 	/* Decrease the lru counter when this es is not delayed */
317 	if (!ext4_es_is_delayed(es)) {
318 		BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
319 		EXT4_I(inode)->i_es_lru_nr--;
320 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
321 	}
322 
323 	kmem_cache_free(ext4_es_cachep, es);
324 }
325 
326 /*
327  * Check whether or not two extents can be merged
328  * Condition:
329  *  - logical block number is contiguous
330  *  - physical block number is contiguous
331  *  - status is equal
332  */
333 static int ext4_es_can_be_merged(struct extent_status *es1,
334 				 struct extent_status *es2)
335 {
336 	if (ext4_es_status(es1) != ext4_es_status(es2))
337 		return 0;
338 
339 	if (((__u64) es1->es_len) + es2->es_len > 0xFFFFFFFFULL)
340 		return 0;
341 
342 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
343 		return 0;
344 
345 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
346 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
347 		return 1;
348 
349 	if (ext4_es_is_hole(es1))
350 		return 1;
351 
352 	/* we need to check delayed extent is without unwritten status */
353 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
354 		return 1;
355 
356 	return 0;
357 }
358 
359 static struct extent_status *
360 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
361 {
362 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
363 	struct extent_status *es1;
364 	struct rb_node *node;
365 
366 	node = rb_prev(&es->rb_node);
367 	if (!node)
368 		return es;
369 
370 	es1 = rb_entry(node, struct extent_status, rb_node);
371 	if (ext4_es_can_be_merged(es1, es)) {
372 		es1->es_len += es->es_len;
373 		rb_erase(&es->rb_node, &tree->root);
374 		ext4_es_free_extent(inode, es);
375 		es = es1;
376 	}
377 
378 	return es;
379 }
380 
381 static struct extent_status *
382 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
383 {
384 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
385 	struct extent_status *es1;
386 	struct rb_node *node;
387 
388 	node = rb_next(&es->rb_node);
389 	if (!node)
390 		return es;
391 
392 	es1 = rb_entry(node, struct extent_status, rb_node);
393 	if (ext4_es_can_be_merged(es, es1)) {
394 		es->es_len += es1->es_len;
395 		rb_erase(node, &tree->root);
396 		ext4_es_free_extent(inode, es1);
397 	}
398 
399 	return es;
400 }
401 
402 #ifdef ES_AGGRESSIVE_TEST
403 static void ext4_es_insert_extent_ext_check(struct inode *inode,
404 					    struct extent_status *es)
405 {
406 	struct ext4_ext_path *path = NULL;
407 	struct ext4_extent *ex;
408 	ext4_lblk_t ee_block;
409 	ext4_fsblk_t ee_start;
410 	unsigned short ee_len;
411 	int depth, ee_status, es_status;
412 
413 	path = ext4_ext_find_extent(inode, es->es_lblk, NULL);
414 	if (IS_ERR(path))
415 		return;
416 
417 	depth = ext_depth(inode);
418 	ex = path[depth].p_ext;
419 
420 	if (ex) {
421 
422 		ee_block = le32_to_cpu(ex->ee_block);
423 		ee_start = ext4_ext_pblock(ex);
424 		ee_len = ext4_ext_get_actual_len(ex);
425 
426 		ee_status = ext4_ext_is_uninitialized(ex) ? 1 : 0;
427 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
428 
429 		/*
430 		 * Make sure ex and es are not overlap when we try to insert
431 		 * a delayed/hole extent.
432 		 */
433 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
434 			if (in_range(es->es_lblk, ee_block, ee_len)) {
435 				pr_warn("ES insert assertation failed for "
436 					"inode: %lu we can find an extent "
437 					"at block [%d/%d/%llu/%c], but we "
438 					"want to add an delayed/hole extent "
439 					"[%d/%d/%llu/%llx]\n",
440 					inode->i_ino, ee_block, ee_len,
441 					ee_start, ee_status ? 'u' : 'w',
442 					es->es_lblk, es->es_len,
443 					ext4_es_pblock(es), ext4_es_status(es));
444 			}
445 			goto out;
446 		}
447 
448 		/*
449 		 * We don't check ee_block == es->es_lblk, etc. because es
450 		 * might be a part of whole extent, vice versa.
451 		 */
452 		if (es->es_lblk < ee_block ||
453 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
454 			pr_warn("ES insert assertation failed for inode: %lu "
455 				"ex_status [%d/%d/%llu/%c] != "
456 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
457 				ee_block, ee_len, ee_start,
458 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
459 				ext4_es_pblock(es), es_status ? 'u' : 'w');
460 			goto out;
461 		}
462 
463 		if (ee_status ^ es_status) {
464 			pr_warn("ES insert assertation failed for inode: %lu "
465 				"ex_status [%d/%d/%llu/%c] != "
466 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
467 				ee_block, ee_len, ee_start,
468 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
469 				ext4_es_pblock(es), es_status ? 'u' : 'w');
470 		}
471 	} else {
472 		/*
473 		 * We can't find an extent on disk.  So we need to make sure
474 		 * that we don't want to add an written/unwritten extent.
475 		 */
476 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
477 			pr_warn("ES insert assertation failed for inode: %lu "
478 				"can't find an extent at block %d but we want "
479 				"to add an written/unwritten extent "
480 				"[%d/%d/%llu/%llx]\n", inode->i_ino,
481 				es->es_lblk, es->es_lblk, es->es_len,
482 				ext4_es_pblock(es), ext4_es_status(es));
483 		}
484 	}
485 out:
486 	if (path) {
487 		ext4_ext_drop_refs(path);
488 		kfree(path);
489 	}
490 }
491 
492 static void ext4_es_insert_extent_ind_check(struct inode *inode,
493 					    struct extent_status *es)
494 {
495 	struct ext4_map_blocks map;
496 	int retval;
497 
498 	/*
499 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
500 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
501 	 * access direct/indirect tree from outside.  It is too dirty to define
502 	 * this function in indirect.c file.
503 	 */
504 
505 	map.m_lblk = es->es_lblk;
506 	map.m_len = es->es_len;
507 
508 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
509 	if (retval > 0) {
510 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
511 			/*
512 			 * We want to add a delayed/hole extent but this
513 			 * block has been allocated.
514 			 */
515 			pr_warn("ES insert assertation failed for inode: %lu "
516 				"We can find blocks but we want to add a "
517 				"delayed/hole extent [%d/%d/%llu/%llx]\n",
518 				inode->i_ino, es->es_lblk, es->es_len,
519 				ext4_es_pblock(es), ext4_es_status(es));
520 			return;
521 		} else if (ext4_es_is_written(es)) {
522 			if (retval != es->es_len) {
523 				pr_warn("ES insert assertation failed for "
524 					"inode: %lu retval %d != es_len %d\n",
525 					inode->i_ino, retval, es->es_len);
526 				return;
527 			}
528 			if (map.m_pblk != ext4_es_pblock(es)) {
529 				pr_warn("ES insert assertation failed for "
530 					"inode: %lu m_pblk %llu != "
531 					"es_pblk %llu\n",
532 					inode->i_ino, map.m_pblk,
533 					ext4_es_pblock(es));
534 				return;
535 			}
536 		} else {
537 			/*
538 			 * We don't need to check unwritten extent because
539 			 * indirect-based file doesn't have it.
540 			 */
541 			BUG_ON(1);
542 		}
543 	} else if (retval == 0) {
544 		if (ext4_es_is_written(es)) {
545 			pr_warn("ES insert assertation failed for inode: %lu "
546 				"We can't find the block but we want to add "
547 				"an written extent [%d/%d/%llu/%llx]\n",
548 				inode->i_ino, es->es_lblk, es->es_len,
549 				ext4_es_pblock(es), ext4_es_status(es));
550 			return;
551 		}
552 	}
553 }
554 
555 static inline void ext4_es_insert_extent_check(struct inode *inode,
556 					       struct extent_status *es)
557 {
558 	/*
559 	 * We don't need to worry about the race condition because
560 	 * caller takes i_data_sem locking.
561 	 */
562 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
563 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
564 		ext4_es_insert_extent_ext_check(inode, es);
565 	else
566 		ext4_es_insert_extent_ind_check(inode, es);
567 }
568 #else
569 static inline void ext4_es_insert_extent_check(struct inode *inode,
570 					       struct extent_status *es)
571 {
572 }
573 #endif
574 
575 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
576 {
577 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
578 	struct rb_node **p = &tree->root.rb_node;
579 	struct rb_node *parent = NULL;
580 	struct extent_status *es;
581 
582 	while (*p) {
583 		parent = *p;
584 		es = rb_entry(parent, struct extent_status, rb_node);
585 
586 		if (newes->es_lblk < es->es_lblk) {
587 			if (ext4_es_can_be_merged(newes, es)) {
588 				/*
589 				 * Here we can modify es_lblk directly
590 				 * because it isn't overlapped.
591 				 */
592 				es->es_lblk = newes->es_lblk;
593 				es->es_len += newes->es_len;
594 				if (ext4_es_is_written(es) ||
595 				    ext4_es_is_unwritten(es))
596 					ext4_es_store_pblock(es,
597 							     newes->es_pblk);
598 				es = ext4_es_try_to_merge_left(inode, es);
599 				goto out;
600 			}
601 			p = &(*p)->rb_left;
602 		} else if (newes->es_lblk > ext4_es_end(es)) {
603 			if (ext4_es_can_be_merged(es, newes)) {
604 				es->es_len += newes->es_len;
605 				es = ext4_es_try_to_merge_right(inode, es);
606 				goto out;
607 			}
608 			p = &(*p)->rb_right;
609 		} else {
610 			BUG_ON(1);
611 			return -EINVAL;
612 		}
613 	}
614 
615 	es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
616 				  newes->es_pblk);
617 	if (!es)
618 		return -ENOMEM;
619 	rb_link_node(&es->rb_node, parent, p);
620 	rb_insert_color(&es->rb_node, &tree->root);
621 
622 out:
623 	tree->cache_es = es;
624 	return 0;
625 }
626 
627 /*
628  * ext4_es_insert_extent() adds a space to a extent status tree.
629  *
630  * ext4_es_insert_extent is called by ext4_da_write_begin and
631  * ext4_es_remove_extent.
632  *
633  * Return 0 on success, error code on failure.
634  */
635 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
636 			  ext4_lblk_t len, ext4_fsblk_t pblk,
637 			  unsigned long long status)
638 {
639 	struct extent_status newes;
640 	ext4_lblk_t end = lblk + len - 1;
641 	int err = 0;
642 
643 	es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n",
644 		 lblk, len, pblk, status, inode->i_ino);
645 
646 	if (!len)
647 		return 0;
648 
649 	BUG_ON(end < lblk);
650 
651 	newes.es_lblk = lblk;
652 	newes.es_len = len;
653 	ext4_es_store_pblock(&newes, pblk);
654 	ext4_es_store_status(&newes, status);
655 	trace_ext4_es_insert_extent(inode, &newes);
656 
657 	ext4_es_insert_extent_check(inode, &newes);
658 
659 	write_lock(&EXT4_I(inode)->i_es_lock);
660 	err = __es_remove_extent(inode, lblk, end);
661 	if (err != 0)
662 		goto error;
663 	err = __es_insert_extent(inode, &newes);
664 
665 error:
666 	write_unlock(&EXT4_I(inode)->i_es_lock);
667 
668 	ext4_es_lru_add(inode);
669 	ext4_es_print_tree(inode);
670 
671 	return err;
672 }
673 
674 /*
675  * ext4_es_lookup_extent() looks up an extent in extent status tree.
676  *
677  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
678  *
679  * Return: 1 on found, 0 on not
680  */
681 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
682 			  struct extent_status *es)
683 {
684 	struct ext4_es_tree *tree;
685 	struct extent_status *es1 = NULL;
686 	struct rb_node *node;
687 	int found = 0;
688 
689 	trace_ext4_es_lookup_extent_enter(inode, lblk);
690 	es_debug("lookup extent in block %u\n", lblk);
691 
692 	tree = &EXT4_I(inode)->i_es_tree;
693 	read_lock(&EXT4_I(inode)->i_es_lock);
694 
695 	/* find extent in cache firstly */
696 	es->es_lblk = es->es_len = es->es_pblk = 0;
697 	if (tree->cache_es) {
698 		es1 = tree->cache_es;
699 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
700 			es_debug("%u cached by [%u/%u)\n",
701 				 lblk, es1->es_lblk, es1->es_len);
702 			found = 1;
703 			goto out;
704 		}
705 	}
706 
707 	node = tree->root.rb_node;
708 	while (node) {
709 		es1 = rb_entry(node, struct extent_status, rb_node);
710 		if (lblk < es1->es_lblk)
711 			node = node->rb_left;
712 		else if (lblk > ext4_es_end(es1))
713 			node = node->rb_right;
714 		else {
715 			found = 1;
716 			break;
717 		}
718 	}
719 
720 out:
721 	if (found) {
722 		BUG_ON(!es1);
723 		es->es_lblk = es1->es_lblk;
724 		es->es_len = es1->es_len;
725 		es->es_pblk = es1->es_pblk;
726 	}
727 
728 	read_unlock(&EXT4_I(inode)->i_es_lock);
729 
730 	ext4_es_lru_add(inode);
731 	trace_ext4_es_lookup_extent_exit(inode, es, found);
732 	return found;
733 }
734 
735 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
736 			      ext4_lblk_t end)
737 {
738 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
739 	struct rb_node *node;
740 	struct extent_status *es;
741 	struct extent_status orig_es;
742 	ext4_lblk_t len1, len2;
743 	ext4_fsblk_t block;
744 	int err = 0;
745 
746 	es = __es_tree_search(&tree->root, lblk);
747 	if (!es)
748 		goto out;
749 	if (es->es_lblk > end)
750 		goto out;
751 
752 	/* Simply invalidate cache_es. */
753 	tree->cache_es = NULL;
754 
755 	orig_es.es_lblk = es->es_lblk;
756 	orig_es.es_len = es->es_len;
757 	orig_es.es_pblk = es->es_pblk;
758 
759 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
760 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
761 	if (len1 > 0)
762 		es->es_len = len1;
763 	if (len2 > 0) {
764 		if (len1 > 0) {
765 			struct extent_status newes;
766 
767 			newes.es_lblk = end + 1;
768 			newes.es_len = len2;
769 			if (ext4_es_is_written(&orig_es) ||
770 			    ext4_es_is_unwritten(&orig_es)) {
771 				block = ext4_es_pblock(&orig_es) +
772 					orig_es.es_len - len2;
773 				ext4_es_store_pblock(&newes, block);
774 			}
775 			ext4_es_store_status(&newes, ext4_es_status(&orig_es));
776 			err = __es_insert_extent(inode, &newes);
777 			if (err) {
778 				es->es_lblk = orig_es.es_lblk;
779 				es->es_len = orig_es.es_len;
780 				goto out;
781 			}
782 		} else {
783 			es->es_lblk = end + 1;
784 			es->es_len = len2;
785 			if (ext4_es_is_written(es) ||
786 			    ext4_es_is_unwritten(es)) {
787 				block = orig_es.es_pblk + orig_es.es_len - len2;
788 				ext4_es_store_pblock(es, block);
789 			}
790 		}
791 		goto out;
792 	}
793 
794 	if (len1 > 0) {
795 		node = rb_next(&es->rb_node);
796 		if (node)
797 			es = rb_entry(node, struct extent_status, rb_node);
798 		else
799 			es = NULL;
800 	}
801 
802 	while (es && ext4_es_end(es) <= end) {
803 		node = rb_next(&es->rb_node);
804 		rb_erase(&es->rb_node, &tree->root);
805 		ext4_es_free_extent(inode, es);
806 		if (!node) {
807 			es = NULL;
808 			break;
809 		}
810 		es = rb_entry(node, struct extent_status, rb_node);
811 	}
812 
813 	if (es && es->es_lblk < end + 1) {
814 		ext4_lblk_t orig_len = es->es_len;
815 
816 		len1 = ext4_es_end(es) - end;
817 		es->es_lblk = end + 1;
818 		es->es_len = len1;
819 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
820 			block = es->es_pblk + orig_len - len1;
821 			ext4_es_store_pblock(es, block);
822 		}
823 	}
824 
825 out:
826 	return err;
827 }
828 
829 /*
830  * ext4_es_remove_extent() removes a space from a extent status tree.
831  *
832  * Return 0 on success, error code on failure.
833  */
834 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
835 			  ext4_lblk_t len)
836 {
837 	ext4_lblk_t end;
838 	int err = 0;
839 
840 	trace_ext4_es_remove_extent(inode, lblk, len);
841 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
842 		 lblk, len, inode->i_ino);
843 
844 	if (!len)
845 		return err;
846 
847 	end = lblk + len - 1;
848 	BUG_ON(end < lblk);
849 
850 	write_lock(&EXT4_I(inode)->i_es_lock);
851 	err = __es_remove_extent(inode, lblk, end);
852 	write_unlock(&EXT4_I(inode)->i_es_lock);
853 	ext4_es_print_tree(inode);
854 	return err;
855 }
856 
857 int ext4_es_zeroout(struct inode *inode, struct ext4_extent *ex)
858 {
859 	ext4_lblk_t  ee_block;
860 	ext4_fsblk_t ee_pblock;
861 	unsigned int ee_len;
862 
863 	ee_block  = le32_to_cpu(ex->ee_block);
864 	ee_len    = ext4_ext_get_actual_len(ex);
865 	ee_pblock = ext4_ext_pblock(ex);
866 
867 	if (ee_len == 0)
868 		return 0;
869 
870 	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
871 				     EXTENT_STATUS_WRITTEN);
872 }
873 
874 static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc)
875 {
876 	struct ext4_sb_info *sbi = container_of(shrink,
877 					struct ext4_sb_info, s_es_shrinker);
878 	struct ext4_inode_info *ei;
879 	struct list_head *cur, *tmp, scanned;
880 	int nr_to_scan = sc->nr_to_scan;
881 	int ret, nr_shrunk = 0;
882 
883 	ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
884 	trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret);
885 
886 	if (!nr_to_scan)
887 		return ret;
888 
889 	INIT_LIST_HEAD(&scanned);
890 
891 	spin_lock(&sbi->s_es_lru_lock);
892 	list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
893 		list_move_tail(cur, &scanned);
894 
895 		ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
896 
897 		read_lock(&ei->i_es_lock);
898 		if (ei->i_es_lru_nr == 0) {
899 			read_unlock(&ei->i_es_lock);
900 			continue;
901 		}
902 		read_unlock(&ei->i_es_lock);
903 
904 		write_lock(&ei->i_es_lock);
905 		ret = __es_try_to_reclaim_extents(ei, nr_to_scan);
906 		write_unlock(&ei->i_es_lock);
907 
908 		nr_shrunk += ret;
909 		nr_to_scan -= ret;
910 		if (nr_to_scan == 0)
911 			break;
912 	}
913 	list_splice_tail(&scanned, &sbi->s_es_lru);
914 	spin_unlock(&sbi->s_es_lru_lock);
915 
916 	ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
917 	trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret);
918 	return ret;
919 }
920 
921 void ext4_es_register_shrinker(struct super_block *sb)
922 {
923 	struct ext4_sb_info *sbi;
924 
925 	sbi = EXT4_SB(sb);
926 	INIT_LIST_HEAD(&sbi->s_es_lru);
927 	spin_lock_init(&sbi->s_es_lru_lock);
928 	sbi->s_es_shrinker.shrink = ext4_es_shrink;
929 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
930 	register_shrinker(&sbi->s_es_shrinker);
931 }
932 
933 void ext4_es_unregister_shrinker(struct super_block *sb)
934 {
935 	unregister_shrinker(&EXT4_SB(sb)->s_es_shrinker);
936 }
937 
938 void ext4_es_lru_add(struct inode *inode)
939 {
940 	struct ext4_inode_info *ei = EXT4_I(inode);
941 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
942 
943 	spin_lock(&sbi->s_es_lru_lock);
944 	if (list_empty(&ei->i_es_lru))
945 		list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
946 	else
947 		list_move_tail(&ei->i_es_lru, &sbi->s_es_lru);
948 	spin_unlock(&sbi->s_es_lru_lock);
949 }
950 
951 void ext4_es_lru_del(struct inode *inode)
952 {
953 	struct ext4_inode_info *ei = EXT4_I(inode);
954 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
955 
956 	spin_lock(&sbi->s_es_lru_lock);
957 	if (!list_empty(&ei->i_es_lru))
958 		list_del_init(&ei->i_es_lru);
959 	spin_unlock(&sbi->s_es_lru_lock);
960 }
961 
962 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
963 				       int nr_to_scan)
964 {
965 	struct inode *inode = &ei->vfs_inode;
966 	struct ext4_es_tree *tree = &ei->i_es_tree;
967 	struct rb_node *node;
968 	struct extent_status *es;
969 	int nr_shrunk = 0;
970 
971 	if (ei->i_es_lru_nr == 0)
972 		return 0;
973 
974 	node = rb_first(&tree->root);
975 	while (node != NULL) {
976 		es = rb_entry(node, struct extent_status, rb_node);
977 		node = rb_next(&es->rb_node);
978 		/*
979 		 * We can't reclaim delayed extent from status tree because
980 		 * fiemap, bigallic, and seek_data/hole need to use it.
981 		 */
982 		if (!ext4_es_is_delayed(es)) {
983 			rb_erase(&es->rb_node, &tree->root);
984 			ext4_es_free_extent(inode, es);
985 			nr_shrunk++;
986 			if (--nr_to_scan == 0)
987 				break;
988 		}
989 	}
990 	tree->cache_es = NULL;
991 	return nr_shrunk;
992 }
993