xref: /openbmc/linux/fs/ext4/extents_status.c (revision ee8a99bd)
1 /*
2  *  fs/ext4/extents_status.c
3  *
4  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
5  * Modified by
6  *	Allison Henderson <achender@linux.vnet.ibm.com>
7  *	Hugh Dickins <hughd@google.com>
8  *	Zheng Liu <wenqing.lz@taobao.com>
9  *
10  * Ext4 extents status tree core functions.
11  */
12 #include <linux/rbtree.h>
13 #include <linux/list_sort.h>
14 #include "ext4.h"
15 #include "extents_status.h"
16 #include "ext4_extents.h"
17 
18 #include <trace/events/ext4.h>
19 
20 /*
21  * According to previous discussion in Ext4 Developer Workshop, we
22  * will introduce a new structure called io tree to track all extent
23  * status in order to solve some problems that we have met
24  * (e.g. Reservation space warning), and provide extent-level locking.
25  * Delay extent tree is the first step to achieve this goal.  It is
26  * original built by Yongqiang Yang.  At that time it is called delay
27  * extent tree, whose goal is only track delayed extents in memory to
28  * simplify the implementation of fiemap and bigalloc, and introduce
29  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30  * delay extent tree at the first commit.  But for better understand
31  * what it does, it has been rename to extent status tree.
32  *
33  * Step1:
34  * Currently the first step has been done.  All delayed extents are
35  * tracked in the tree.  It maintains the delayed extent when a delayed
36  * allocation is issued, and the delayed extent is written out or
37  * invalidated.  Therefore the implementation of fiemap and bigalloc
38  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39  *
40  * The following comment describes the implemenmtation of extent
41  * status tree and future works.
42  *
43  * Step2:
44  * In this step all extent status are tracked by extent status tree.
45  * Thus, we can first try to lookup a block mapping in this tree before
46  * finding it in extent tree.  Hence, single extent cache can be removed
47  * because extent status tree can do a better job.  Extents in status
48  * tree are loaded on-demand.  Therefore, the extent status tree may not
49  * contain all of the extents in a file.  Meanwhile we define a shrinker
50  * to reclaim memory from extent status tree because fragmented extent
51  * tree will make status tree cost too much memory.  written/unwritten/-
52  * hole extents in the tree will be reclaimed by this shrinker when we
53  * are under high memory pressure.  Delayed extents will not be
54  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55  */
56 
57 /*
58  * Extent status tree implementation for ext4.
59  *
60  *
61  * ==========================================================================
62  * Extent status tree tracks all extent status.
63  *
64  * 1. Why we need to implement extent status tree?
65  *
66  * Without extent status tree, ext4 identifies a delayed extent by looking
67  * up page cache, this has several deficiencies - complicated, buggy,
68  * and inefficient code.
69  *
70  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71  * block or a range of blocks are belonged to a delayed extent.
72  *
73  * Let us have a look at how they do without extent status tree.
74  *   --	FIEMAP
75  *	FIEMAP looks up page cache to identify delayed allocations from holes.
76  *
77  *   --	SEEK_HOLE/DATA
78  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79  *
80  *   --	bigalloc
81  *	bigalloc looks up page cache to figure out if a block is
82  *	already under delayed allocation or not to determine whether
83  *	quota reserving is needed for the cluster.
84  *
85  *   --	writeout
86  *	Writeout looks up whole page cache to see if a buffer is
87  *	mapped, If there are not very many delayed buffers, then it is
88  *	time comsuming.
89  *
90  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91  * bigalloc and writeout can figure out if a block or a range of
92  * blocks is under delayed allocation(belonged to a delayed extent) or
93  * not by searching the extent tree.
94  *
95  *
96  * ==========================================================================
97  * 2. Ext4 extent status tree impelmentation
98  *
99  *   --	extent
100  *	A extent is a range of blocks which are contiguous logically and
101  *	physically.  Unlike extent in extent tree, this extent in ext4 is
102  *	a in-memory struct, there is no corresponding on-disk data.  There
103  *	is no limit on length of extent, so an extent can contain as many
104  *	blocks as they are contiguous logically and physically.
105  *
106  *   --	extent status tree
107  *	Every inode has an extent status tree and all allocation blocks
108  *	are added to the tree with different status.  The extent in the
109  *	tree are ordered by logical block no.
110  *
111  *   --	operations on a extent status tree
112  *	There are three important operations on a delayed extent tree: find
113  *	next extent, adding a extent(a range of blocks) and removing a extent.
114  *
115  *   --	race on a extent status tree
116  *	Extent status tree is protected by inode->i_es_lock.
117  *
118  *   --	memory consumption
119  *      Fragmented extent tree will make extent status tree cost too much
120  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121  *      the tree under a heavy memory pressure.
122  *
123  *
124  * ==========================================================================
125  * 3. Performance analysis
126  *
127  *   --	overhead
128  *	1. There is a cache extent for write access, so if writes are
129  *	not very random, adding space operaions are in O(1) time.
130  *
131  *   --	gain
132  *	2. Code is much simpler, more readable, more maintainable and
133  *	more efficient.
134  *
135  *
136  * ==========================================================================
137  * 4. TODO list
138  *
139  *   -- Refactor delayed space reservation
140  *
141  *   -- Extent-level locking
142  */
143 
144 static struct kmem_cache *ext4_es_cachep;
145 
146 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
147 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
148 			      ext4_lblk_t end);
149 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
150 				       int nr_to_scan);
151 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
152 			    struct ext4_inode_info *locked_ei);
153 
154 int __init ext4_init_es(void)
155 {
156 	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
157 					   sizeof(struct extent_status),
158 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
159 	if (ext4_es_cachep == NULL)
160 		return -ENOMEM;
161 	return 0;
162 }
163 
164 void ext4_exit_es(void)
165 {
166 	if (ext4_es_cachep)
167 		kmem_cache_destroy(ext4_es_cachep);
168 }
169 
170 void ext4_es_init_tree(struct ext4_es_tree *tree)
171 {
172 	tree->root = RB_ROOT;
173 	tree->cache_es = NULL;
174 }
175 
176 #ifdef ES_DEBUG__
177 static void ext4_es_print_tree(struct inode *inode)
178 {
179 	struct ext4_es_tree *tree;
180 	struct rb_node *node;
181 
182 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
183 	tree = &EXT4_I(inode)->i_es_tree;
184 	node = rb_first(&tree->root);
185 	while (node) {
186 		struct extent_status *es;
187 		es = rb_entry(node, struct extent_status, rb_node);
188 		printk(KERN_DEBUG " [%u/%u) %llu %llx",
189 		       es->es_lblk, es->es_len,
190 		       ext4_es_pblock(es), ext4_es_status(es));
191 		node = rb_next(node);
192 	}
193 	printk(KERN_DEBUG "\n");
194 }
195 #else
196 #define ext4_es_print_tree(inode)
197 #endif
198 
199 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
200 {
201 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
202 	return es->es_lblk + es->es_len - 1;
203 }
204 
205 /*
206  * search through the tree for an delayed extent with a given offset.  If
207  * it can't be found, try to find next extent.
208  */
209 static struct extent_status *__es_tree_search(struct rb_root *root,
210 					      ext4_lblk_t lblk)
211 {
212 	struct rb_node *node = root->rb_node;
213 	struct extent_status *es = NULL;
214 
215 	while (node) {
216 		es = rb_entry(node, struct extent_status, rb_node);
217 		if (lblk < es->es_lblk)
218 			node = node->rb_left;
219 		else if (lblk > ext4_es_end(es))
220 			node = node->rb_right;
221 		else
222 			return es;
223 	}
224 
225 	if (es && lblk < es->es_lblk)
226 		return es;
227 
228 	if (es && lblk > ext4_es_end(es)) {
229 		node = rb_next(&es->rb_node);
230 		return node ? rb_entry(node, struct extent_status, rb_node) :
231 			      NULL;
232 	}
233 
234 	return NULL;
235 }
236 
237 /*
238  * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
239  * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
240  *
241  * @inode: the inode which owns delayed extents
242  * @lblk: the offset where we start to search
243  * @end: the offset where we stop to search
244  * @es: delayed extent that we found
245  */
246 void ext4_es_find_delayed_extent_range(struct inode *inode,
247 				 ext4_lblk_t lblk, ext4_lblk_t end,
248 				 struct extent_status *es)
249 {
250 	struct ext4_es_tree *tree = NULL;
251 	struct extent_status *es1 = NULL;
252 	struct rb_node *node;
253 
254 	BUG_ON(es == NULL);
255 	BUG_ON(end < lblk);
256 	trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
257 
258 	read_lock(&EXT4_I(inode)->i_es_lock);
259 	tree = &EXT4_I(inode)->i_es_tree;
260 
261 	/* find extent in cache firstly */
262 	es->es_lblk = es->es_len = es->es_pblk = 0;
263 	if (tree->cache_es) {
264 		es1 = tree->cache_es;
265 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
266 			es_debug("%u cached by [%u/%u) %llu %llx\n",
267 				 lblk, es1->es_lblk, es1->es_len,
268 				 ext4_es_pblock(es1), ext4_es_status(es1));
269 			goto out;
270 		}
271 	}
272 
273 	es1 = __es_tree_search(&tree->root, lblk);
274 
275 out:
276 	if (es1 && !ext4_es_is_delayed(es1)) {
277 		while ((node = rb_next(&es1->rb_node)) != NULL) {
278 			es1 = rb_entry(node, struct extent_status, rb_node);
279 			if (es1->es_lblk > end) {
280 				es1 = NULL;
281 				break;
282 			}
283 			if (ext4_es_is_delayed(es1))
284 				break;
285 		}
286 	}
287 
288 	if (es1 && ext4_es_is_delayed(es1)) {
289 		tree->cache_es = es1;
290 		es->es_lblk = es1->es_lblk;
291 		es->es_len = es1->es_len;
292 		es->es_pblk = es1->es_pblk;
293 	}
294 
295 	read_unlock(&EXT4_I(inode)->i_es_lock);
296 
297 	trace_ext4_es_find_delayed_extent_range_exit(inode, es);
298 }
299 
300 static struct extent_status *
301 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
302 		     ext4_fsblk_t pblk)
303 {
304 	struct extent_status *es;
305 	es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
306 	if (es == NULL)
307 		return NULL;
308 	es->es_lblk = lblk;
309 	es->es_len = len;
310 	es->es_pblk = pblk;
311 
312 	/*
313 	 * We don't count delayed extent because we never try to reclaim them
314 	 */
315 	if (!ext4_es_is_delayed(es)) {
316 		EXT4_I(inode)->i_es_lru_nr++;
317 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
318 	}
319 
320 	return es;
321 }
322 
323 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
324 {
325 	/* Decrease the lru counter when this es is not delayed */
326 	if (!ext4_es_is_delayed(es)) {
327 		BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
328 		EXT4_I(inode)->i_es_lru_nr--;
329 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
330 	}
331 
332 	kmem_cache_free(ext4_es_cachep, es);
333 }
334 
335 /*
336  * Check whether or not two extents can be merged
337  * Condition:
338  *  - logical block number is contiguous
339  *  - physical block number is contiguous
340  *  - status is equal
341  */
342 static int ext4_es_can_be_merged(struct extent_status *es1,
343 				 struct extent_status *es2)
344 {
345 	if (ext4_es_status(es1) != ext4_es_status(es2))
346 		return 0;
347 
348 	if (((__u64) es1->es_len) + es2->es_len > 0xFFFFFFFFULL)
349 		return 0;
350 
351 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
352 		return 0;
353 
354 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
355 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
356 		return 1;
357 
358 	if (ext4_es_is_hole(es1))
359 		return 1;
360 
361 	/* we need to check delayed extent is without unwritten status */
362 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
363 		return 1;
364 
365 	return 0;
366 }
367 
368 static struct extent_status *
369 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
370 {
371 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
372 	struct extent_status *es1;
373 	struct rb_node *node;
374 
375 	node = rb_prev(&es->rb_node);
376 	if (!node)
377 		return es;
378 
379 	es1 = rb_entry(node, struct extent_status, rb_node);
380 	if (ext4_es_can_be_merged(es1, es)) {
381 		es1->es_len += es->es_len;
382 		rb_erase(&es->rb_node, &tree->root);
383 		ext4_es_free_extent(inode, es);
384 		es = es1;
385 	}
386 
387 	return es;
388 }
389 
390 static struct extent_status *
391 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
392 {
393 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
394 	struct extent_status *es1;
395 	struct rb_node *node;
396 
397 	node = rb_next(&es->rb_node);
398 	if (!node)
399 		return es;
400 
401 	es1 = rb_entry(node, struct extent_status, rb_node);
402 	if (ext4_es_can_be_merged(es, es1)) {
403 		es->es_len += es1->es_len;
404 		rb_erase(node, &tree->root);
405 		ext4_es_free_extent(inode, es1);
406 	}
407 
408 	return es;
409 }
410 
411 #ifdef ES_AGGRESSIVE_TEST
412 static void ext4_es_insert_extent_ext_check(struct inode *inode,
413 					    struct extent_status *es)
414 {
415 	struct ext4_ext_path *path = NULL;
416 	struct ext4_extent *ex;
417 	ext4_lblk_t ee_block;
418 	ext4_fsblk_t ee_start;
419 	unsigned short ee_len;
420 	int depth, ee_status, es_status;
421 
422 	path = ext4_ext_find_extent(inode, es->es_lblk, NULL);
423 	if (IS_ERR(path))
424 		return;
425 
426 	depth = ext_depth(inode);
427 	ex = path[depth].p_ext;
428 
429 	if (ex) {
430 
431 		ee_block = le32_to_cpu(ex->ee_block);
432 		ee_start = ext4_ext_pblock(ex);
433 		ee_len = ext4_ext_get_actual_len(ex);
434 
435 		ee_status = ext4_ext_is_uninitialized(ex) ? 1 : 0;
436 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
437 
438 		/*
439 		 * Make sure ex and es are not overlap when we try to insert
440 		 * a delayed/hole extent.
441 		 */
442 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
443 			if (in_range(es->es_lblk, ee_block, ee_len)) {
444 				pr_warn("ES insert assertion failed for "
445 					"inode: %lu we can find an extent "
446 					"at block [%d/%d/%llu/%c], but we "
447 					"want to add an delayed/hole extent "
448 					"[%d/%d/%llu/%llx]\n",
449 					inode->i_ino, ee_block, ee_len,
450 					ee_start, ee_status ? 'u' : 'w',
451 					es->es_lblk, es->es_len,
452 					ext4_es_pblock(es), ext4_es_status(es));
453 			}
454 			goto out;
455 		}
456 
457 		/*
458 		 * We don't check ee_block == es->es_lblk, etc. because es
459 		 * might be a part of whole extent, vice versa.
460 		 */
461 		if (es->es_lblk < ee_block ||
462 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
463 			pr_warn("ES insert assertion failed for inode: %lu "
464 				"ex_status [%d/%d/%llu/%c] != "
465 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
466 				ee_block, ee_len, ee_start,
467 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
468 				ext4_es_pblock(es), es_status ? 'u' : 'w');
469 			goto out;
470 		}
471 
472 		if (ee_status ^ es_status) {
473 			pr_warn("ES insert assertion failed for inode: %lu "
474 				"ex_status [%d/%d/%llu/%c] != "
475 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
476 				ee_block, ee_len, ee_start,
477 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
478 				ext4_es_pblock(es), es_status ? 'u' : 'w');
479 		}
480 	} else {
481 		/*
482 		 * We can't find an extent on disk.  So we need to make sure
483 		 * that we don't want to add an written/unwritten extent.
484 		 */
485 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
486 			pr_warn("ES insert assertion failed for inode: %lu "
487 				"can't find an extent at block %d but we want "
488 				"to add an written/unwritten extent "
489 				"[%d/%d/%llu/%llx]\n", inode->i_ino,
490 				es->es_lblk, es->es_lblk, es->es_len,
491 				ext4_es_pblock(es), ext4_es_status(es));
492 		}
493 	}
494 out:
495 	if (path) {
496 		ext4_ext_drop_refs(path);
497 		kfree(path);
498 	}
499 }
500 
501 static void ext4_es_insert_extent_ind_check(struct inode *inode,
502 					    struct extent_status *es)
503 {
504 	struct ext4_map_blocks map;
505 	int retval;
506 
507 	/*
508 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
509 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
510 	 * access direct/indirect tree from outside.  It is too dirty to define
511 	 * this function in indirect.c file.
512 	 */
513 
514 	map.m_lblk = es->es_lblk;
515 	map.m_len = es->es_len;
516 
517 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
518 	if (retval > 0) {
519 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
520 			/*
521 			 * We want to add a delayed/hole extent but this
522 			 * block has been allocated.
523 			 */
524 			pr_warn("ES insert assertion failed for inode: %lu "
525 				"We can find blocks but we want to add a "
526 				"delayed/hole extent [%d/%d/%llu/%llx]\n",
527 				inode->i_ino, es->es_lblk, es->es_len,
528 				ext4_es_pblock(es), ext4_es_status(es));
529 			return;
530 		} else if (ext4_es_is_written(es)) {
531 			if (retval != es->es_len) {
532 				pr_warn("ES insert assertion failed for "
533 					"inode: %lu retval %d != es_len %d\n",
534 					inode->i_ino, retval, es->es_len);
535 				return;
536 			}
537 			if (map.m_pblk != ext4_es_pblock(es)) {
538 				pr_warn("ES insert assertion failed for "
539 					"inode: %lu m_pblk %llu != "
540 					"es_pblk %llu\n",
541 					inode->i_ino, map.m_pblk,
542 					ext4_es_pblock(es));
543 				return;
544 			}
545 		} else {
546 			/*
547 			 * We don't need to check unwritten extent because
548 			 * indirect-based file doesn't have it.
549 			 */
550 			BUG_ON(1);
551 		}
552 	} else if (retval == 0) {
553 		if (ext4_es_is_written(es)) {
554 			pr_warn("ES insert assertion failed for inode: %lu "
555 				"We can't find the block but we want to add "
556 				"an written extent [%d/%d/%llu/%llx]\n",
557 				inode->i_ino, es->es_lblk, es->es_len,
558 				ext4_es_pblock(es), ext4_es_status(es));
559 			return;
560 		}
561 	}
562 }
563 
564 static inline void ext4_es_insert_extent_check(struct inode *inode,
565 					       struct extent_status *es)
566 {
567 	/*
568 	 * We don't need to worry about the race condition because
569 	 * caller takes i_data_sem locking.
570 	 */
571 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
572 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
573 		ext4_es_insert_extent_ext_check(inode, es);
574 	else
575 		ext4_es_insert_extent_ind_check(inode, es);
576 }
577 #else
578 static inline void ext4_es_insert_extent_check(struct inode *inode,
579 					       struct extent_status *es)
580 {
581 }
582 #endif
583 
584 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
585 {
586 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
587 	struct rb_node **p = &tree->root.rb_node;
588 	struct rb_node *parent = NULL;
589 	struct extent_status *es;
590 
591 	while (*p) {
592 		parent = *p;
593 		es = rb_entry(parent, struct extent_status, rb_node);
594 
595 		if (newes->es_lblk < es->es_lblk) {
596 			if (ext4_es_can_be_merged(newes, es)) {
597 				/*
598 				 * Here we can modify es_lblk directly
599 				 * because it isn't overlapped.
600 				 */
601 				es->es_lblk = newes->es_lblk;
602 				es->es_len += newes->es_len;
603 				if (ext4_es_is_written(es) ||
604 				    ext4_es_is_unwritten(es))
605 					ext4_es_store_pblock(es,
606 							     newes->es_pblk);
607 				es = ext4_es_try_to_merge_left(inode, es);
608 				goto out;
609 			}
610 			p = &(*p)->rb_left;
611 		} else if (newes->es_lblk > ext4_es_end(es)) {
612 			if (ext4_es_can_be_merged(es, newes)) {
613 				es->es_len += newes->es_len;
614 				es = ext4_es_try_to_merge_right(inode, es);
615 				goto out;
616 			}
617 			p = &(*p)->rb_right;
618 		} else {
619 			BUG_ON(1);
620 			return -EINVAL;
621 		}
622 	}
623 
624 	es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
625 				  newes->es_pblk);
626 	if (!es)
627 		return -ENOMEM;
628 	rb_link_node(&es->rb_node, parent, p);
629 	rb_insert_color(&es->rb_node, &tree->root);
630 
631 out:
632 	tree->cache_es = es;
633 	return 0;
634 }
635 
636 /*
637  * ext4_es_insert_extent() adds information to an inode's extent
638  * status tree.
639  *
640  * Return 0 on success, error code on failure.
641  */
642 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
643 			  ext4_lblk_t len, ext4_fsblk_t pblk,
644 			  unsigned long long status)
645 {
646 	struct extent_status newes;
647 	ext4_lblk_t end = lblk + len - 1;
648 	int err = 0;
649 
650 	es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n",
651 		 lblk, len, pblk, status, inode->i_ino);
652 
653 	if (!len)
654 		return 0;
655 
656 	BUG_ON(end < lblk);
657 
658 	newes.es_lblk = lblk;
659 	newes.es_len = len;
660 	ext4_es_store_pblock(&newes, pblk);
661 	ext4_es_store_status(&newes, status);
662 	trace_ext4_es_insert_extent(inode, &newes);
663 
664 	ext4_es_insert_extent_check(inode, &newes);
665 
666 	write_lock(&EXT4_I(inode)->i_es_lock);
667 	err = __es_remove_extent(inode, lblk, end);
668 	if (err != 0)
669 		goto error;
670 retry:
671 	err = __es_insert_extent(inode, &newes);
672 	if (err == -ENOMEM && __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
673 					       EXT4_I(inode)))
674 		goto retry;
675 	if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
676 		err = 0;
677 
678 error:
679 	write_unlock(&EXT4_I(inode)->i_es_lock);
680 
681 	ext4_es_print_tree(inode);
682 
683 	return err;
684 }
685 
686 /*
687  * ext4_es_lookup_extent() looks up an extent in extent status tree.
688  *
689  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
690  *
691  * Return: 1 on found, 0 on not
692  */
693 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
694 			  struct extent_status *es)
695 {
696 	struct ext4_es_tree *tree;
697 	struct extent_status *es1 = NULL;
698 	struct rb_node *node;
699 	int found = 0;
700 
701 	trace_ext4_es_lookup_extent_enter(inode, lblk);
702 	es_debug("lookup extent in block %u\n", lblk);
703 
704 	tree = &EXT4_I(inode)->i_es_tree;
705 	read_lock(&EXT4_I(inode)->i_es_lock);
706 
707 	/* find extent in cache firstly */
708 	es->es_lblk = es->es_len = es->es_pblk = 0;
709 	if (tree->cache_es) {
710 		es1 = tree->cache_es;
711 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
712 			es_debug("%u cached by [%u/%u)\n",
713 				 lblk, es1->es_lblk, es1->es_len);
714 			found = 1;
715 			goto out;
716 		}
717 	}
718 
719 	node = tree->root.rb_node;
720 	while (node) {
721 		es1 = rb_entry(node, struct extent_status, rb_node);
722 		if (lblk < es1->es_lblk)
723 			node = node->rb_left;
724 		else if (lblk > ext4_es_end(es1))
725 			node = node->rb_right;
726 		else {
727 			found = 1;
728 			break;
729 		}
730 	}
731 
732 out:
733 	if (found) {
734 		BUG_ON(!es1);
735 		es->es_lblk = es1->es_lblk;
736 		es->es_len = es1->es_len;
737 		es->es_pblk = es1->es_pblk;
738 	}
739 
740 	read_unlock(&EXT4_I(inode)->i_es_lock);
741 
742 	trace_ext4_es_lookup_extent_exit(inode, es, found);
743 	return found;
744 }
745 
746 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
747 			      ext4_lblk_t end)
748 {
749 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
750 	struct rb_node *node;
751 	struct extent_status *es;
752 	struct extent_status orig_es;
753 	ext4_lblk_t len1, len2;
754 	ext4_fsblk_t block;
755 	int err;
756 
757 retry:
758 	err = 0;
759 	es = __es_tree_search(&tree->root, lblk);
760 	if (!es)
761 		goto out;
762 	if (es->es_lblk > end)
763 		goto out;
764 
765 	/* Simply invalidate cache_es. */
766 	tree->cache_es = NULL;
767 
768 	orig_es.es_lblk = es->es_lblk;
769 	orig_es.es_len = es->es_len;
770 	orig_es.es_pblk = es->es_pblk;
771 
772 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
773 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
774 	if (len1 > 0)
775 		es->es_len = len1;
776 	if (len2 > 0) {
777 		if (len1 > 0) {
778 			struct extent_status newes;
779 
780 			newes.es_lblk = end + 1;
781 			newes.es_len = len2;
782 			if (ext4_es_is_written(&orig_es) ||
783 			    ext4_es_is_unwritten(&orig_es)) {
784 				block = ext4_es_pblock(&orig_es) +
785 					orig_es.es_len - len2;
786 				ext4_es_store_pblock(&newes, block);
787 			}
788 			ext4_es_store_status(&newes, ext4_es_status(&orig_es));
789 			err = __es_insert_extent(inode, &newes);
790 			if (err) {
791 				es->es_lblk = orig_es.es_lblk;
792 				es->es_len = orig_es.es_len;
793 				if ((err == -ENOMEM) &&
794 				    __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
795 						     EXT4_I(inode)))
796 					goto retry;
797 				goto out;
798 			}
799 		} else {
800 			es->es_lblk = end + 1;
801 			es->es_len = len2;
802 			if (ext4_es_is_written(es) ||
803 			    ext4_es_is_unwritten(es)) {
804 				block = orig_es.es_pblk + orig_es.es_len - len2;
805 				ext4_es_store_pblock(es, block);
806 			}
807 		}
808 		goto out;
809 	}
810 
811 	if (len1 > 0) {
812 		node = rb_next(&es->rb_node);
813 		if (node)
814 			es = rb_entry(node, struct extent_status, rb_node);
815 		else
816 			es = NULL;
817 	}
818 
819 	while (es && ext4_es_end(es) <= end) {
820 		node = rb_next(&es->rb_node);
821 		rb_erase(&es->rb_node, &tree->root);
822 		ext4_es_free_extent(inode, es);
823 		if (!node) {
824 			es = NULL;
825 			break;
826 		}
827 		es = rb_entry(node, struct extent_status, rb_node);
828 	}
829 
830 	if (es && es->es_lblk < end + 1) {
831 		ext4_lblk_t orig_len = es->es_len;
832 
833 		len1 = ext4_es_end(es) - end;
834 		es->es_lblk = end + 1;
835 		es->es_len = len1;
836 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
837 			block = es->es_pblk + orig_len - len1;
838 			ext4_es_store_pblock(es, block);
839 		}
840 	}
841 
842 out:
843 	return err;
844 }
845 
846 /*
847  * ext4_es_remove_extent() removes a space from a extent status tree.
848  *
849  * Return 0 on success, error code on failure.
850  */
851 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
852 			  ext4_lblk_t len)
853 {
854 	ext4_lblk_t end;
855 	int err = 0;
856 
857 	trace_ext4_es_remove_extent(inode, lblk, len);
858 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
859 		 lblk, len, inode->i_ino);
860 
861 	if (!len)
862 		return err;
863 
864 	end = lblk + len - 1;
865 	BUG_ON(end < lblk);
866 
867 	write_lock(&EXT4_I(inode)->i_es_lock);
868 	err = __es_remove_extent(inode, lblk, end);
869 	write_unlock(&EXT4_I(inode)->i_es_lock);
870 	ext4_es_print_tree(inode);
871 	return err;
872 }
873 
874 int ext4_es_zeroout(struct inode *inode, struct ext4_extent *ex)
875 {
876 	ext4_lblk_t  ee_block;
877 	ext4_fsblk_t ee_pblock;
878 	unsigned int ee_len;
879 
880 	ee_block  = le32_to_cpu(ex->ee_block);
881 	ee_len    = ext4_ext_get_actual_len(ex);
882 	ee_pblock = ext4_ext_pblock(ex);
883 
884 	if (ee_len == 0)
885 		return 0;
886 
887 	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
888 				     EXTENT_STATUS_WRITTEN);
889 }
890 
891 static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a,
892 				     struct list_head *b)
893 {
894 	struct ext4_inode_info *eia, *eib;
895 	eia = list_entry(a, struct ext4_inode_info, i_es_lru);
896 	eib = list_entry(b, struct ext4_inode_info, i_es_lru);
897 
898 	if (eia->i_touch_when == eib->i_touch_when)
899 		return 0;
900 	if (time_after(eia->i_touch_when, eib->i_touch_when))
901 		return 1;
902 	else
903 		return -1;
904 }
905 
906 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
907 			    struct ext4_inode_info *locked_ei)
908 {
909 	struct ext4_inode_info *ei;
910 	struct list_head *cur, *tmp;
911 	LIST_HEAD(skiped);
912 	int ret, nr_shrunk = 0;
913 
914 	spin_lock(&sbi->s_es_lru_lock);
915 
916 	/*
917 	 * If the inode that is at the head of LRU list is newer than
918 	 * last_sorted time, that means that we need to sort this list.
919 	 */
920 	ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info, i_es_lru);
921 	if (sbi->s_es_last_sorted < ei->i_touch_when) {
922 		list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp);
923 		sbi->s_es_last_sorted = jiffies;
924 	}
925 
926 	list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
927 		/*
928 		 * If we have already reclaimed all extents from extent
929 		 * status tree, just stop the loop immediately.
930 		 */
931 		if (percpu_counter_read_positive(&sbi->s_extent_cache_cnt) == 0)
932 			break;
933 
934 		ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
935 
936 		/* Skip the inode that is newer than the last_sorted time */
937 		if (sbi->s_es_last_sorted < ei->i_touch_when) {
938 			list_move_tail(cur, &skiped);
939 			continue;
940 		}
941 
942 		if (ei->i_es_lru_nr == 0 || ei == locked_ei)
943 			continue;
944 
945 		write_lock(&ei->i_es_lock);
946 		ret = __es_try_to_reclaim_extents(ei, nr_to_scan);
947 		if (ei->i_es_lru_nr == 0)
948 			list_del_init(&ei->i_es_lru);
949 		write_unlock(&ei->i_es_lock);
950 
951 		nr_shrunk += ret;
952 		nr_to_scan -= ret;
953 		if (nr_to_scan == 0)
954 			break;
955 	}
956 
957 	/* Move the newer inodes into the tail of the LRU list. */
958 	list_splice_tail(&skiped, &sbi->s_es_lru);
959 	spin_unlock(&sbi->s_es_lru_lock);
960 
961 	if (locked_ei && nr_shrunk == 0)
962 		nr_shrunk = __es_try_to_reclaim_extents(ei, nr_to_scan);
963 
964 	return nr_shrunk;
965 }
966 
967 static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc)
968 {
969 	struct ext4_sb_info *sbi = container_of(shrink,
970 					struct ext4_sb_info, s_es_shrinker);
971 	int nr_to_scan = sc->nr_to_scan;
972 	int ret, nr_shrunk;
973 
974 	ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
975 	trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret);
976 
977 	if (!nr_to_scan)
978 		return ret;
979 
980 	nr_shrunk = __ext4_es_shrink(sbi, nr_to_scan, NULL);
981 
982 	ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
983 	trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret);
984 	return ret;
985 }
986 
987 void ext4_es_register_shrinker(struct ext4_sb_info *sbi)
988 {
989 	INIT_LIST_HEAD(&sbi->s_es_lru);
990 	spin_lock_init(&sbi->s_es_lru_lock);
991 	sbi->s_es_last_sorted = 0;
992 	sbi->s_es_shrinker.shrink = ext4_es_shrink;
993 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
994 	register_shrinker(&sbi->s_es_shrinker);
995 }
996 
997 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
998 {
999 	unregister_shrinker(&sbi->s_es_shrinker);
1000 }
1001 
1002 void ext4_es_lru_add(struct inode *inode)
1003 {
1004 	struct ext4_inode_info *ei = EXT4_I(inode);
1005 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1006 
1007 	ei->i_touch_when = jiffies;
1008 
1009 	if (!list_empty(&ei->i_es_lru))
1010 		return;
1011 
1012 	spin_lock(&sbi->s_es_lru_lock);
1013 	if (list_empty(&ei->i_es_lru))
1014 		list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
1015 	spin_unlock(&sbi->s_es_lru_lock);
1016 }
1017 
1018 void ext4_es_lru_del(struct inode *inode)
1019 {
1020 	struct ext4_inode_info *ei = EXT4_I(inode);
1021 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022 
1023 	spin_lock(&sbi->s_es_lru_lock);
1024 	if (!list_empty(&ei->i_es_lru))
1025 		list_del_init(&ei->i_es_lru);
1026 	spin_unlock(&sbi->s_es_lru_lock);
1027 }
1028 
1029 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
1030 				       int nr_to_scan)
1031 {
1032 	struct inode *inode = &ei->vfs_inode;
1033 	struct ext4_es_tree *tree = &ei->i_es_tree;
1034 	struct rb_node *node;
1035 	struct extent_status *es;
1036 	int nr_shrunk = 0;
1037 
1038 	if (ei->i_es_lru_nr == 0)
1039 		return 0;
1040 
1041 	node = rb_first(&tree->root);
1042 	while (node != NULL) {
1043 		es = rb_entry(node, struct extent_status, rb_node);
1044 		node = rb_next(&es->rb_node);
1045 		/*
1046 		 * We can't reclaim delayed extent from status tree because
1047 		 * fiemap, bigallic, and seek_data/hole need to use it.
1048 		 */
1049 		if (!ext4_es_is_delayed(es)) {
1050 			rb_erase(&es->rb_node, &tree->root);
1051 			ext4_es_free_extent(inode, es);
1052 			nr_shrunk++;
1053 			if (--nr_to_scan == 0)
1054 				break;
1055 		}
1056 	}
1057 	tree->cache_es = NULL;
1058 	return nr_shrunk;
1059 }
1060