1 /* 2 * fs/ext4/extents_status.c 3 * 4 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com> 5 * Modified by 6 * Allison Henderson <achender@linux.vnet.ibm.com> 7 * Hugh Dickins <hughd@google.com> 8 * Zheng Liu <wenqing.lz@taobao.com> 9 * 10 * Ext4 extents status tree core functions. 11 */ 12 #include <linux/rbtree.h> 13 #include <linux/list_sort.h> 14 #include "ext4.h" 15 #include "extents_status.h" 16 #include "ext4_extents.h" 17 18 #include <trace/events/ext4.h> 19 20 /* 21 * According to previous discussion in Ext4 Developer Workshop, we 22 * will introduce a new structure called io tree to track all extent 23 * status in order to solve some problems that we have met 24 * (e.g. Reservation space warning), and provide extent-level locking. 25 * Delay extent tree is the first step to achieve this goal. It is 26 * original built by Yongqiang Yang. At that time it is called delay 27 * extent tree, whose goal is only track delayed extents in memory to 28 * simplify the implementation of fiemap and bigalloc, and introduce 29 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called 30 * delay extent tree at the first commit. But for better understand 31 * what it does, it has been rename to extent status tree. 32 * 33 * Step1: 34 * Currently the first step has been done. All delayed extents are 35 * tracked in the tree. It maintains the delayed extent when a delayed 36 * allocation is issued, and the delayed extent is written out or 37 * invalidated. Therefore the implementation of fiemap and bigalloc 38 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced. 39 * 40 * The following comment describes the implemenmtation of extent 41 * status tree and future works. 42 * 43 * Step2: 44 * In this step all extent status are tracked by extent status tree. 45 * Thus, we can first try to lookup a block mapping in this tree before 46 * finding it in extent tree. Hence, single extent cache can be removed 47 * because extent status tree can do a better job. Extents in status 48 * tree are loaded on-demand. Therefore, the extent status tree may not 49 * contain all of the extents in a file. Meanwhile we define a shrinker 50 * to reclaim memory from extent status tree because fragmented extent 51 * tree will make status tree cost too much memory. written/unwritten/- 52 * hole extents in the tree will be reclaimed by this shrinker when we 53 * are under high memory pressure. Delayed extents will not be 54 * reclimed because fiemap, bigalloc, and seek_data/hole need it. 55 */ 56 57 /* 58 * Extent status tree implementation for ext4. 59 * 60 * 61 * ========================================================================== 62 * Extent status tree tracks all extent status. 63 * 64 * 1. Why we need to implement extent status tree? 65 * 66 * Without extent status tree, ext4 identifies a delayed extent by looking 67 * up page cache, this has several deficiencies - complicated, buggy, 68 * and inefficient code. 69 * 70 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a 71 * block or a range of blocks are belonged to a delayed extent. 72 * 73 * Let us have a look at how they do without extent status tree. 74 * -- FIEMAP 75 * FIEMAP looks up page cache to identify delayed allocations from holes. 76 * 77 * -- SEEK_HOLE/DATA 78 * SEEK_HOLE/DATA has the same problem as FIEMAP. 79 * 80 * -- bigalloc 81 * bigalloc looks up page cache to figure out if a block is 82 * already under delayed allocation or not to determine whether 83 * quota reserving is needed for the cluster. 84 * 85 * -- writeout 86 * Writeout looks up whole page cache to see if a buffer is 87 * mapped, If there are not very many delayed buffers, then it is 88 * time comsuming. 89 * 90 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA, 91 * bigalloc and writeout can figure out if a block or a range of 92 * blocks is under delayed allocation(belonged to a delayed extent) or 93 * not by searching the extent tree. 94 * 95 * 96 * ========================================================================== 97 * 2. Ext4 extent status tree impelmentation 98 * 99 * -- extent 100 * A extent is a range of blocks which are contiguous logically and 101 * physically. Unlike extent in extent tree, this extent in ext4 is 102 * a in-memory struct, there is no corresponding on-disk data. There 103 * is no limit on length of extent, so an extent can contain as many 104 * blocks as they are contiguous logically and physically. 105 * 106 * -- extent status tree 107 * Every inode has an extent status tree and all allocation blocks 108 * are added to the tree with different status. The extent in the 109 * tree are ordered by logical block no. 110 * 111 * -- operations on a extent status tree 112 * There are three important operations on a delayed extent tree: find 113 * next extent, adding a extent(a range of blocks) and removing a extent. 114 * 115 * -- race on a extent status tree 116 * Extent status tree is protected by inode->i_es_lock. 117 * 118 * -- memory consumption 119 * Fragmented extent tree will make extent status tree cost too much 120 * memory. Hence, we will reclaim written/unwritten/hole extents from 121 * the tree under a heavy memory pressure. 122 * 123 * 124 * ========================================================================== 125 * 3. Performance analysis 126 * 127 * -- overhead 128 * 1. There is a cache extent for write access, so if writes are 129 * not very random, adding space operaions are in O(1) time. 130 * 131 * -- gain 132 * 2. Code is much simpler, more readable, more maintainable and 133 * more efficient. 134 * 135 * 136 * ========================================================================== 137 * 4. TODO list 138 * 139 * -- Refactor delayed space reservation 140 * 141 * -- Extent-level locking 142 */ 143 144 static struct kmem_cache *ext4_es_cachep; 145 146 static int __es_insert_extent(struct inode *inode, struct extent_status *newes); 147 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 148 ext4_lblk_t end); 149 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei, 150 int nr_to_scan); 151 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, 152 struct ext4_inode_info *locked_ei); 153 154 int __init ext4_init_es(void) 155 { 156 ext4_es_cachep = kmem_cache_create("ext4_extent_status", 157 sizeof(struct extent_status), 158 0, (SLAB_RECLAIM_ACCOUNT), NULL); 159 if (ext4_es_cachep == NULL) 160 return -ENOMEM; 161 return 0; 162 } 163 164 void ext4_exit_es(void) 165 { 166 if (ext4_es_cachep) 167 kmem_cache_destroy(ext4_es_cachep); 168 } 169 170 void ext4_es_init_tree(struct ext4_es_tree *tree) 171 { 172 tree->root = RB_ROOT; 173 tree->cache_es = NULL; 174 } 175 176 #ifdef ES_DEBUG__ 177 static void ext4_es_print_tree(struct inode *inode) 178 { 179 struct ext4_es_tree *tree; 180 struct rb_node *node; 181 182 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino); 183 tree = &EXT4_I(inode)->i_es_tree; 184 node = rb_first(&tree->root); 185 while (node) { 186 struct extent_status *es; 187 es = rb_entry(node, struct extent_status, rb_node); 188 printk(KERN_DEBUG " [%u/%u) %llu %llx", 189 es->es_lblk, es->es_len, 190 ext4_es_pblock(es), ext4_es_status(es)); 191 node = rb_next(node); 192 } 193 printk(KERN_DEBUG "\n"); 194 } 195 #else 196 #define ext4_es_print_tree(inode) 197 #endif 198 199 static inline ext4_lblk_t ext4_es_end(struct extent_status *es) 200 { 201 BUG_ON(es->es_lblk + es->es_len < es->es_lblk); 202 return es->es_lblk + es->es_len - 1; 203 } 204 205 /* 206 * search through the tree for an delayed extent with a given offset. If 207 * it can't be found, try to find next extent. 208 */ 209 static struct extent_status *__es_tree_search(struct rb_root *root, 210 ext4_lblk_t lblk) 211 { 212 struct rb_node *node = root->rb_node; 213 struct extent_status *es = NULL; 214 215 while (node) { 216 es = rb_entry(node, struct extent_status, rb_node); 217 if (lblk < es->es_lblk) 218 node = node->rb_left; 219 else if (lblk > ext4_es_end(es)) 220 node = node->rb_right; 221 else 222 return es; 223 } 224 225 if (es && lblk < es->es_lblk) 226 return es; 227 228 if (es && lblk > ext4_es_end(es)) { 229 node = rb_next(&es->rb_node); 230 return node ? rb_entry(node, struct extent_status, rb_node) : 231 NULL; 232 } 233 234 return NULL; 235 } 236 237 /* 238 * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering 239 * @es->lblk if it exists, otherwise, the next extent after @es->lblk. 240 * 241 * @inode: the inode which owns delayed extents 242 * @lblk: the offset where we start to search 243 * @end: the offset where we stop to search 244 * @es: delayed extent that we found 245 */ 246 void ext4_es_find_delayed_extent_range(struct inode *inode, 247 ext4_lblk_t lblk, ext4_lblk_t end, 248 struct extent_status *es) 249 { 250 struct ext4_es_tree *tree = NULL; 251 struct extent_status *es1 = NULL; 252 struct rb_node *node; 253 254 BUG_ON(es == NULL); 255 BUG_ON(end < lblk); 256 trace_ext4_es_find_delayed_extent_range_enter(inode, lblk); 257 258 read_lock(&EXT4_I(inode)->i_es_lock); 259 tree = &EXT4_I(inode)->i_es_tree; 260 261 /* find extent in cache firstly */ 262 es->es_lblk = es->es_len = es->es_pblk = 0; 263 if (tree->cache_es) { 264 es1 = tree->cache_es; 265 if (in_range(lblk, es1->es_lblk, es1->es_len)) { 266 es_debug("%u cached by [%u/%u) %llu %llx\n", 267 lblk, es1->es_lblk, es1->es_len, 268 ext4_es_pblock(es1), ext4_es_status(es1)); 269 goto out; 270 } 271 } 272 273 es1 = __es_tree_search(&tree->root, lblk); 274 275 out: 276 if (es1 && !ext4_es_is_delayed(es1)) { 277 while ((node = rb_next(&es1->rb_node)) != NULL) { 278 es1 = rb_entry(node, struct extent_status, rb_node); 279 if (es1->es_lblk > end) { 280 es1 = NULL; 281 break; 282 } 283 if (ext4_es_is_delayed(es1)) 284 break; 285 } 286 } 287 288 if (es1 && ext4_es_is_delayed(es1)) { 289 tree->cache_es = es1; 290 es->es_lblk = es1->es_lblk; 291 es->es_len = es1->es_len; 292 es->es_pblk = es1->es_pblk; 293 } 294 295 read_unlock(&EXT4_I(inode)->i_es_lock); 296 297 trace_ext4_es_find_delayed_extent_range_exit(inode, es); 298 } 299 300 static struct extent_status * 301 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, 302 ext4_fsblk_t pblk) 303 { 304 struct extent_status *es; 305 es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC); 306 if (es == NULL) 307 return NULL; 308 es->es_lblk = lblk; 309 es->es_len = len; 310 es->es_pblk = pblk; 311 312 /* 313 * We don't count delayed extent because we never try to reclaim them 314 */ 315 if (!ext4_es_is_delayed(es)) { 316 EXT4_I(inode)->i_es_lru_nr++; 317 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt); 318 } 319 320 return es; 321 } 322 323 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es) 324 { 325 /* Decrease the lru counter when this es is not delayed */ 326 if (!ext4_es_is_delayed(es)) { 327 BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0); 328 EXT4_I(inode)->i_es_lru_nr--; 329 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt); 330 } 331 332 kmem_cache_free(ext4_es_cachep, es); 333 } 334 335 /* 336 * Check whether or not two extents can be merged 337 * Condition: 338 * - logical block number is contiguous 339 * - physical block number is contiguous 340 * - status is equal 341 */ 342 static int ext4_es_can_be_merged(struct extent_status *es1, 343 struct extent_status *es2) 344 { 345 if (ext4_es_status(es1) != ext4_es_status(es2)) 346 return 0; 347 348 if (((__u64) es1->es_len) + es2->es_len > 0xFFFFFFFFULL) 349 return 0; 350 351 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk) 352 return 0; 353 354 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) && 355 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2))) 356 return 1; 357 358 if (ext4_es_is_hole(es1)) 359 return 1; 360 361 /* we need to check delayed extent is without unwritten status */ 362 if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1)) 363 return 1; 364 365 return 0; 366 } 367 368 static struct extent_status * 369 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es) 370 { 371 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 372 struct extent_status *es1; 373 struct rb_node *node; 374 375 node = rb_prev(&es->rb_node); 376 if (!node) 377 return es; 378 379 es1 = rb_entry(node, struct extent_status, rb_node); 380 if (ext4_es_can_be_merged(es1, es)) { 381 es1->es_len += es->es_len; 382 rb_erase(&es->rb_node, &tree->root); 383 ext4_es_free_extent(inode, es); 384 es = es1; 385 } 386 387 return es; 388 } 389 390 static struct extent_status * 391 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es) 392 { 393 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 394 struct extent_status *es1; 395 struct rb_node *node; 396 397 node = rb_next(&es->rb_node); 398 if (!node) 399 return es; 400 401 es1 = rb_entry(node, struct extent_status, rb_node); 402 if (ext4_es_can_be_merged(es, es1)) { 403 es->es_len += es1->es_len; 404 rb_erase(node, &tree->root); 405 ext4_es_free_extent(inode, es1); 406 } 407 408 return es; 409 } 410 411 #ifdef ES_AGGRESSIVE_TEST 412 static void ext4_es_insert_extent_ext_check(struct inode *inode, 413 struct extent_status *es) 414 { 415 struct ext4_ext_path *path = NULL; 416 struct ext4_extent *ex; 417 ext4_lblk_t ee_block; 418 ext4_fsblk_t ee_start; 419 unsigned short ee_len; 420 int depth, ee_status, es_status; 421 422 path = ext4_ext_find_extent(inode, es->es_lblk, NULL); 423 if (IS_ERR(path)) 424 return; 425 426 depth = ext_depth(inode); 427 ex = path[depth].p_ext; 428 429 if (ex) { 430 431 ee_block = le32_to_cpu(ex->ee_block); 432 ee_start = ext4_ext_pblock(ex); 433 ee_len = ext4_ext_get_actual_len(ex); 434 435 ee_status = ext4_ext_is_uninitialized(ex) ? 1 : 0; 436 es_status = ext4_es_is_unwritten(es) ? 1 : 0; 437 438 /* 439 * Make sure ex and es are not overlap when we try to insert 440 * a delayed/hole extent. 441 */ 442 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) { 443 if (in_range(es->es_lblk, ee_block, ee_len)) { 444 pr_warn("ES insert assertion failed for " 445 "inode: %lu we can find an extent " 446 "at block [%d/%d/%llu/%c], but we " 447 "want to add an delayed/hole extent " 448 "[%d/%d/%llu/%llx]\n", 449 inode->i_ino, ee_block, ee_len, 450 ee_start, ee_status ? 'u' : 'w', 451 es->es_lblk, es->es_len, 452 ext4_es_pblock(es), ext4_es_status(es)); 453 } 454 goto out; 455 } 456 457 /* 458 * We don't check ee_block == es->es_lblk, etc. because es 459 * might be a part of whole extent, vice versa. 460 */ 461 if (es->es_lblk < ee_block || 462 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) { 463 pr_warn("ES insert assertion failed for inode: %lu " 464 "ex_status [%d/%d/%llu/%c] != " 465 "es_status [%d/%d/%llu/%c]\n", inode->i_ino, 466 ee_block, ee_len, ee_start, 467 ee_status ? 'u' : 'w', es->es_lblk, es->es_len, 468 ext4_es_pblock(es), es_status ? 'u' : 'w'); 469 goto out; 470 } 471 472 if (ee_status ^ es_status) { 473 pr_warn("ES insert assertion failed for inode: %lu " 474 "ex_status [%d/%d/%llu/%c] != " 475 "es_status [%d/%d/%llu/%c]\n", inode->i_ino, 476 ee_block, ee_len, ee_start, 477 ee_status ? 'u' : 'w', es->es_lblk, es->es_len, 478 ext4_es_pblock(es), es_status ? 'u' : 'w'); 479 } 480 } else { 481 /* 482 * We can't find an extent on disk. So we need to make sure 483 * that we don't want to add an written/unwritten extent. 484 */ 485 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) { 486 pr_warn("ES insert assertion failed for inode: %lu " 487 "can't find an extent at block %d but we want " 488 "to add an written/unwritten extent " 489 "[%d/%d/%llu/%llx]\n", inode->i_ino, 490 es->es_lblk, es->es_lblk, es->es_len, 491 ext4_es_pblock(es), ext4_es_status(es)); 492 } 493 } 494 out: 495 if (path) { 496 ext4_ext_drop_refs(path); 497 kfree(path); 498 } 499 } 500 501 static void ext4_es_insert_extent_ind_check(struct inode *inode, 502 struct extent_status *es) 503 { 504 struct ext4_map_blocks map; 505 int retval; 506 507 /* 508 * Here we call ext4_ind_map_blocks to lookup a block mapping because 509 * 'Indirect' structure is defined in indirect.c. So we couldn't 510 * access direct/indirect tree from outside. It is too dirty to define 511 * this function in indirect.c file. 512 */ 513 514 map.m_lblk = es->es_lblk; 515 map.m_len = es->es_len; 516 517 retval = ext4_ind_map_blocks(NULL, inode, &map, 0); 518 if (retval > 0) { 519 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) { 520 /* 521 * We want to add a delayed/hole extent but this 522 * block has been allocated. 523 */ 524 pr_warn("ES insert assertion failed for inode: %lu " 525 "We can find blocks but we want to add a " 526 "delayed/hole extent [%d/%d/%llu/%llx]\n", 527 inode->i_ino, es->es_lblk, es->es_len, 528 ext4_es_pblock(es), ext4_es_status(es)); 529 return; 530 } else if (ext4_es_is_written(es)) { 531 if (retval != es->es_len) { 532 pr_warn("ES insert assertion failed for " 533 "inode: %lu retval %d != es_len %d\n", 534 inode->i_ino, retval, es->es_len); 535 return; 536 } 537 if (map.m_pblk != ext4_es_pblock(es)) { 538 pr_warn("ES insert assertion failed for " 539 "inode: %lu m_pblk %llu != " 540 "es_pblk %llu\n", 541 inode->i_ino, map.m_pblk, 542 ext4_es_pblock(es)); 543 return; 544 } 545 } else { 546 /* 547 * We don't need to check unwritten extent because 548 * indirect-based file doesn't have it. 549 */ 550 BUG_ON(1); 551 } 552 } else if (retval == 0) { 553 if (ext4_es_is_written(es)) { 554 pr_warn("ES insert assertion failed for inode: %lu " 555 "We can't find the block but we want to add " 556 "an written extent [%d/%d/%llu/%llx]\n", 557 inode->i_ino, es->es_lblk, es->es_len, 558 ext4_es_pblock(es), ext4_es_status(es)); 559 return; 560 } 561 } 562 } 563 564 static inline void ext4_es_insert_extent_check(struct inode *inode, 565 struct extent_status *es) 566 { 567 /* 568 * We don't need to worry about the race condition because 569 * caller takes i_data_sem locking. 570 */ 571 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 572 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 573 ext4_es_insert_extent_ext_check(inode, es); 574 else 575 ext4_es_insert_extent_ind_check(inode, es); 576 } 577 #else 578 static inline void ext4_es_insert_extent_check(struct inode *inode, 579 struct extent_status *es) 580 { 581 } 582 #endif 583 584 static int __es_insert_extent(struct inode *inode, struct extent_status *newes) 585 { 586 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 587 struct rb_node **p = &tree->root.rb_node; 588 struct rb_node *parent = NULL; 589 struct extent_status *es; 590 591 while (*p) { 592 parent = *p; 593 es = rb_entry(parent, struct extent_status, rb_node); 594 595 if (newes->es_lblk < es->es_lblk) { 596 if (ext4_es_can_be_merged(newes, es)) { 597 /* 598 * Here we can modify es_lblk directly 599 * because it isn't overlapped. 600 */ 601 es->es_lblk = newes->es_lblk; 602 es->es_len += newes->es_len; 603 if (ext4_es_is_written(es) || 604 ext4_es_is_unwritten(es)) 605 ext4_es_store_pblock(es, 606 newes->es_pblk); 607 es = ext4_es_try_to_merge_left(inode, es); 608 goto out; 609 } 610 p = &(*p)->rb_left; 611 } else if (newes->es_lblk > ext4_es_end(es)) { 612 if (ext4_es_can_be_merged(es, newes)) { 613 es->es_len += newes->es_len; 614 es = ext4_es_try_to_merge_right(inode, es); 615 goto out; 616 } 617 p = &(*p)->rb_right; 618 } else { 619 BUG_ON(1); 620 return -EINVAL; 621 } 622 } 623 624 es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len, 625 newes->es_pblk); 626 if (!es) 627 return -ENOMEM; 628 rb_link_node(&es->rb_node, parent, p); 629 rb_insert_color(&es->rb_node, &tree->root); 630 631 out: 632 tree->cache_es = es; 633 return 0; 634 } 635 636 /* 637 * ext4_es_insert_extent() adds information to an inode's extent 638 * status tree. 639 * 640 * Return 0 on success, error code on failure. 641 */ 642 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, 643 ext4_lblk_t len, ext4_fsblk_t pblk, 644 unsigned long long status) 645 { 646 struct extent_status newes; 647 ext4_lblk_t end = lblk + len - 1; 648 int err = 0; 649 650 es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n", 651 lblk, len, pblk, status, inode->i_ino); 652 653 if (!len) 654 return 0; 655 656 BUG_ON(end < lblk); 657 658 newes.es_lblk = lblk; 659 newes.es_len = len; 660 ext4_es_store_pblock(&newes, pblk); 661 ext4_es_store_status(&newes, status); 662 trace_ext4_es_insert_extent(inode, &newes); 663 664 ext4_es_insert_extent_check(inode, &newes); 665 666 write_lock(&EXT4_I(inode)->i_es_lock); 667 err = __es_remove_extent(inode, lblk, end); 668 if (err != 0) 669 goto error; 670 retry: 671 err = __es_insert_extent(inode, &newes); 672 if (err == -ENOMEM && __ext4_es_shrink(EXT4_SB(inode->i_sb), 1, 673 EXT4_I(inode))) 674 goto retry; 675 if (err == -ENOMEM && !ext4_es_is_delayed(&newes)) 676 err = 0; 677 678 error: 679 write_unlock(&EXT4_I(inode)->i_es_lock); 680 681 ext4_es_print_tree(inode); 682 683 return err; 684 } 685 686 /* 687 * ext4_es_lookup_extent() looks up an extent in extent status tree. 688 * 689 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks. 690 * 691 * Return: 1 on found, 0 on not 692 */ 693 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, 694 struct extent_status *es) 695 { 696 struct ext4_es_tree *tree; 697 struct extent_status *es1 = NULL; 698 struct rb_node *node; 699 int found = 0; 700 701 trace_ext4_es_lookup_extent_enter(inode, lblk); 702 es_debug("lookup extent in block %u\n", lblk); 703 704 tree = &EXT4_I(inode)->i_es_tree; 705 read_lock(&EXT4_I(inode)->i_es_lock); 706 707 /* find extent in cache firstly */ 708 es->es_lblk = es->es_len = es->es_pblk = 0; 709 if (tree->cache_es) { 710 es1 = tree->cache_es; 711 if (in_range(lblk, es1->es_lblk, es1->es_len)) { 712 es_debug("%u cached by [%u/%u)\n", 713 lblk, es1->es_lblk, es1->es_len); 714 found = 1; 715 goto out; 716 } 717 } 718 719 node = tree->root.rb_node; 720 while (node) { 721 es1 = rb_entry(node, struct extent_status, rb_node); 722 if (lblk < es1->es_lblk) 723 node = node->rb_left; 724 else if (lblk > ext4_es_end(es1)) 725 node = node->rb_right; 726 else { 727 found = 1; 728 break; 729 } 730 } 731 732 out: 733 if (found) { 734 BUG_ON(!es1); 735 es->es_lblk = es1->es_lblk; 736 es->es_len = es1->es_len; 737 es->es_pblk = es1->es_pblk; 738 } 739 740 read_unlock(&EXT4_I(inode)->i_es_lock); 741 742 trace_ext4_es_lookup_extent_exit(inode, es, found); 743 return found; 744 } 745 746 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 747 ext4_lblk_t end) 748 { 749 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 750 struct rb_node *node; 751 struct extent_status *es; 752 struct extent_status orig_es; 753 ext4_lblk_t len1, len2; 754 ext4_fsblk_t block; 755 int err; 756 757 retry: 758 err = 0; 759 es = __es_tree_search(&tree->root, lblk); 760 if (!es) 761 goto out; 762 if (es->es_lblk > end) 763 goto out; 764 765 /* Simply invalidate cache_es. */ 766 tree->cache_es = NULL; 767 768 orig_es.es_lblk = es->es_lblk; 769 orig_es.es_len = es->es_len; 770 orig_es.es_pblk = es->es_pblk; 771 772 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0; 773 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0; 774 if (len1 > 0) 775 es->es_len = len1; 776 if (len2 > 0) { 777 if (len1 > 0) { 778 struct extent_status newes; 779 780 newes.es_lblk = end + 1; 781 newes.es_len = len2; 782 if (ext4_es_is_written(&orig_es) || 783 ext4_es_is_unwritten(&orig_es)) { 784 block = ext4_es_pblock(&orig_es) + 785 orig_es.es_len - len2; 786 ext4_es_store_pblock(&newes, block); 787 } 788 ext4_es_store_status(&newes, ext4_es_status(&orig_es)); 789 err = __es_insert_extent(inode, &newes); 790 if (err) { 791 es->es_lblk = orig_es.es_lblk; 792 es->es_len = orig_es.es_len; 793 if ((err == -ENOMEM) && 794 __ext4_es_shrink(EXT4_SB(inode->i_sb), 1, 795 EXT4_I(inode))) 796 goto retry; 797 goto out; 798 } 799 } else { 800 es->es_lblk = end + 1; 801 es->es_len = len2; 802 if (ext4_es_is_written(es) || 803 ext4_es_is_unwritten(es)) { 804 block = orig_es.es_pblk + orig_es.es_len - len2; 805 ext4_es_store_pblock(es, block); 806 } 807 } 808 goto out; 809 } 810 811 if (len1 > 0) { 812 node = rb_next(&es->rb_node); 813 if (node) 814 es = rb_entry(node, struct extent_status, rb_node); 815 else 816 es = NULL; 817 } 818 819 while (es && ext4_es_end(es) <= end) { 820 node = rb_next(&es->rb_node); 821 rb_erase(&es->rb_node, &tree->root); 822 ext4_es_free_extent(inode, es); 823 if (!node) { 824 es = NULL; 825 break; 826 } 827 es = rb_entry(node, struct extent_status, rb_node); 828 } 829 830 if (es && es->es_lblk < end + 1) { 831 ext4_lblk_t orig_len = es->es_len; 832 833 len1 = ext4_es_end(es) - end; 834 es->es_lblk = end + 1; 835 es->es_len = len1; 836 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { 837 block = es->es_pblk + orig_len - len1; 838 ext4_es_store_pblock(es, block); 839 } 840 } 841 842 out: 843 return err; 844 } 845 846 /* 847 * ext4_es_remove_extent() removes a space from a extent status tree. 848 * 849 * Return 0 on success, error code on failure. 850 */ 851 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 852 ext4_lblk_t len) 853 { 854 ext4_lblk_t end; 855 int err = 0; 856 857 trace_ext4_es_remove_extent(inode, lblk, len); 858 es_debug("remove [%u/%u) from extent status tree of inode %lu\n", 859 lblk, len, inode->i_ino); 860 861 if (!len) 862 return err; 863 864 end = lblk + len - 1; 865 BUG_ON(end < lblk); 866 867 write_lock(&EXT4_I(inode)->i_es_lock); 868 err = __es_remove_extent(inode, lblk, end); 869 write_unlock(&EXT4_I(inode)->i_es_lock); 870 ext4_es_print_tree(inode); 871 return err; 872 } 873 874 int ext4_es_zeroout(struct inode *inode, struct ext4_extent *ex) 875 { 876 ext4_lblk_t ee_block; 877 ext4_fsblk_t ee_pblock; 878 unsigned int ee_len; 879 880 ee_block = le32_to_cpu(ex->ee_block); 881 ee_len = ext4_ext_get_actual_len(ex); 882 ee_pblock = ext4_ext_pblock(ex); 883 884 if (ee_len == 0) 885 return 0; 886 887 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 888 EXTENT_STATUS_WRITTEN); 889 } 890 891 static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a, 892 struct list_head *b) 893 { 894 struct ext4_inode_info *eia, *eib; 895 eia = list_entry(a, struct ext4_inode_info, i_es_lru); 896 eib = list_entry(b, struct ext4_inode_info, i_es_lru); 897 898 if (eia->i_touch_when == eib->i_touch_when) 899 return 0; 900 if (time_after(eia->i_touch_when, eib->i_touch_when)) 901 return 1; 902 else 903 return -1; 904 } 905 906 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, 907 struct ext4_inode_info *locked_ei) 908 { 909 struct ext4_inode_info *ei; 910 struct list_head *cur, *tmp; 911 LIST_HEAD(skiped); 912 int ret, nr_shrunk = 0; 913 914 spin_lock(&sbi->s_es_lru_lock); 915 916 /* 917 * If the inode that is at the head of LRU list is newer than 918 * last_sorted time, that means that we need to sort this list. 919 */ 920 ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info, i_es_lru); 921 if (sbi->s_es_last_sorted < ei->i_touch_when) { 922 list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp); 923 sbi->s_es_last_sorted = jiffies; 924 } 925 926 list_for_each_safe(cur, tmp, &sbi->s_es_lru) { 927 /* 928 * If we have already reclaimed all extents from extent 929 * status tree, just stop the loop immediately. 930 */ 931 if (percpu_counter_read_positive(&sbi->s_extent_cache_cnt) == 0) 932 break; 933 934 ei = list_entry(cur, struct ext4_inode_info, i_es_lru); 935 936 /* Skip the inode that is newer than the last_sorted time */ 937 if (sbi->s_es_last_sorted < ei->i_touch_when) { 938 list_move_tail(cur, &skiped); 939 continue; 940 } 941 942 if (ei->i_es_lru_nr == 0 || ei == locked_ei) 943 continue; 944 945 write_lock(&ei->i_es_lock); 946 ret = __es_try_to_reclaim_extents(ei, nr_to_scan); 947 if (ei->i_es_lru_nr == 0) 948 list_del_init(&ei->i_es_lru); 949 write_unlock(&ei->i_es_lock); 950 951 nr_shrunk += ret; 952 nr_to_scan -= ret; 953 if (nr_to_scan == 0) 954 break; 955 } 956 957 /* Move the newer inodes into the tail of the LRU list. */ 958 list_splice_tail(&skiped, &sbi->s_es_lru); 959 spin_unlock(&sbi->s_es_lru_lock); 960 961 if (locked_ei && nr_shrunk == 0) 962 nr_shrunk = __es_try_to_reclaim_extents(ei, nr_to_scan); 963 964 return nr_shrunk; 965 } 966 967 static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc) 968 { 969 struct ext4_sb_info *sbi = container_of(shrink, 970 struct ext4_sb_info, s_es_shrinker); 971 int nr_to_scan = sc->nr_to_scan; 972 int ret, nr_shrunk; 973 974 ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt); 975 trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret); 976 977 if (!nr_to_scan) 978 return ret; 979 980 nr_shrunk = __ext4_es_shrink(sbi, nr_to_scan, NULL); 981 982 ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt); 983 trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret); 984 return ret; 985 } 986 987 void ext4_es_register_shrinker(struct ext4_sb_info *sbi) 988 { 989 INIT_LIST_HEAD(&sbi->s_es_lru); 990 spin_lock_init(&sbi->s_es_lru_lock); 991 sbi->s_es_last_sorted = 0; 992 sbi->s_es_shrinker.shrink = ext4_es_shrink; 993 sbi->s_es_shrinker.seeks = DEFAULT_SEEKS; 994 register_shrinker(&sbi->s_es_shrinker); 995 } 996 997 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi) 998 { 999 unregister_shrinker(&sbi->s_es_shrinker); 1000 } 1001 1002 void ext4_es_lru_add(struct inode *inode) 1003 { 1004 struct ext4_inode_info *ei = EXT4_I(inode); 1005 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1006 1007 ei->i_touch_when = jiffies; 1008 1009 if (!list_empty(&ei->i_es_lru)) 1010 return; 1011 1012 spin_lock(&sbi->s_es_lru_lock); 1013 if (list_empty(&ei->i_es_lru)) 1014 list_add_tail(&ei->i_es_lru, &sbi->s_es_lru); 1015 spin_unlock(&sbi->s_es_lru_lock); 1016 } 1017 1018 void ext4_es_lru_del(struct inode *inode) 1019 { 1020 struct ext4_inode_info *ei = EXT4_I(inode); 1021 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1022 1023 spin_lock(&sbi->s_es_lru_lock); 1024 if (!list_empty(&ei->i_es_lru)) 1025 list_del_init(&ei->i_es_lru); 1026 spin_unlock(&sbi->s_es_lru_lock); 1027 } 1028 1029 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei, 1030 int nr_to_scan) 1031 { 1032 struct inode *inode = &ei->vfs_inode; 1033 struct ext4_es_tree *tree = &ei->i_es_tree; 1034 struct rb_node *node; 1035 struct extent_status *es; 1036 int nr_shrunk = 0; 1037 1038 if (ei->i_es_lru_nr == 0) 1039 return 0; 1040 1041 node = rb_first(&tree->root); 1042 while (node != NULL) { 1043 es = rb_entry(node, struct extent_status, rb_node); 1044 node = rb_next(&es->rb_node); 1045 /* 1046 * We can't reclaim delayed extent from status tree because 1047 * fiemap, bigallic, and seek_data/hole need to use it. 1048 */ 1049 if (!ext4_es_is_delayed(es)) { 1050 rb_erase(&es->rb_node, &tree->root); 1051 ext4_es_free_extent(inode, es); 1052 nr_shrunk++; 1053 if (--nr_to_scan == 0) 1054 break; 1055 } 1056 } 1057 tree->cache_es = NULL; 1058 return nr_shrunk; 1059 } 1060