xref: /openbmc/linux/fs/ext4/extents_status.c (revision e3b9f1e8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  fs/ext4/extents_status.c
4  *
5  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6  * Modified by
7  *	Allison Henderson <achender@linux.vnet.ibm.com>
8  *	Hugh Dickins <hughd@google.com>
9  *	Zheng Liu <wenqing.lz@taobao.com>
10  *
11  * Ext4 extents status tree core functions.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 
18 #include <trace/events/ext4.h>
19 
20 /*
21  * According to previous discussion in Ext4 Developer Workshop, we
22  * will introduce a new structure called io tree to track all extent
23  * status in order to solve some problems that we have met
24  * (e.g. Reservation space warning), and provide extent-level locking.
25  * Delay extent tree is the first step to achieve this goal.  It is
26  * original built by Yongqiang Yang.  At that time it is called delay
27  * extent tree, whose goal is only track delayed extents in memory to
28  * simplify the implementation of fiemap and bigalloc, and introduce
29  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30  * delay extent tree at the first commit.  But for better understand
31  * what it does, it has been rename to extent status tree.
32  *
33  * Step1:
34  * Currently the first step has been done.  All delayed extents are
35  * tracked in the tree.  It maintains the delayed extent when a delayed
36  * allocation is issued, and the delayed extent is written out or
37  * invalidated.  Therefore the implementation of fiemap and bigalloc
38  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39  *
40  * The following comment describes the implemenmtation of extent
41  * status tree and future works.
42  *
43  * Step2:
44  * In this step all extent status are tracked by extent status tree.
45  * Thus, we can first try to lookup a block mapping in this tree before
46  * finding it in extent tree.  Hence, single extent cache can be removed
47  * because extent status tree can do a better job.  Extents in status
48  * tree are loaded on-demand.  Therefore, the extent status tree may not
49  * contain all of the extents in a file.  Meanwhile we define a shrinker
50  * to reclaim memory from extent status tree because fragmented extent
51  * tree will make status tree cost too much memory.  written/unwritten/-
52  * hole extents in the tree will be reclaimed by this shrinker when we
53  * are under high memory pressure.  Delayed extents will not be
54  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55  */
56 
57 /*
58  * Extent status tree implementation for ext4.
59  *
60  *
61  * ==========================================================================
62  * Extent status tree tracks all extent status.
63  *
64  * 1. Why we need to implement extent status tree?
65  *
66  * Without extent status tree, ext4 identifies a delayed extent by looking
67  * up page cache, this has several deficiencies - complicated, buggy,
68  * and inefficient code.
69  *
70  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71  * block or a range of blocks are belonged to a delayed extent.
72  *
73  * Let us have a look at how they do without extent status tree.
74  *   --	FIEMAP
75  *	FIEMAP looks up page cache to identify delayed allocations from holes.
76  *
77  *   --	SEEK_HOLE/DATA
78  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79  *
80  *   --	bigalloc
81  *	bigalloc looks up page cache to figure out if a block is
82  *	already under delayed allocation or not to determine whether
83  *	quota reserving is needed for the cluster.
84  *
85  *   --	writeout
86  *	Writeout looks up whole page cache to see if a buffer is
87  *	mapped, If there are not very many delayed buffers, then it is
88  *	time consuming.
89  *
90  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91  * bigalloc and writeout can figure out if a block or a range of
92  * blocks is under delayed allocation(belonged to a delayed extent) or
93  * not by searching the extent tree.
94  *
95  *
96  * ==========================================================================
97  * 2. Ext4 extent status tree impelmentation
98  *
99  *   --	extent
100  *	A extent is a range of blocks which are contiguous logically and
101  *	physically.  Unlike extent in extent tree, this extent in ext4 is
102  *	a in-memory struct, there is no corresponding on-disk data.  There
103  *	is no limit on length of extent, so an extent can contain as many
104  *	blocks as they are contiguous logically and physically.
105  *
106  *   --	extent status tree
107  *	Every inode has an extent status tree and all allocation blocks
108  *	are added to the tree with different status.  The extent in the
109  *	tree are ordered by logical block no.
110  *
111  *   --	operations on a extent status tree
112  *	There are three important operations on a delayed extent tree: find
113  *	next extent, adding a extent(a range of blocks) and removing a extent.
114  *
115  *   --	race on a extent status tree
116  *	Extent status tree is protected by inode->i_es_lock.
117  *
118  *   --	memory consumption
119  *      Fragmented extent tree will make extent status tree cost too much
120  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121  *      the tree under a heavy memory pressure.
122  *
123  *
124  * ==========================================================================
125  * 3. Performance analysis
126  *
127  *   --	overhead
128  *	1. There is a cache extent for write access, so if writes are
129  *	not very random, adding space operaions are in O(1) time.
130  *
131  *   --	gain
132  *	2. Code is much simpler, more readable, more maintainable and
133  *	more efficient.
134  *
135  *
136  * ==========================================================================
137  * 4. TODO list
138  *
139  *   -- Refactor delayed space reservation
140  *
141  *   -- Extent-level locking
142  */
143 
144 static struct kmem_cache *ext4_es_cachep;
145 
146 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
147 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
148 			      ext4_lblk_t end);
149 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
150 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
151 		       struct ext4_inode_info *locked_ei);
152 
153 int __init ext4_init_es(void)
154 {
155 	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
156 					   sizeof(struct extent_status),
157 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
158 	if (ext4_es_cachep == NULL)
159 		return -ENOMEM;
160 	return 0;
161 }
162 
163 void ext4_exit_es(void)
164 {
165 	if (ext4_es_cachep)
166 		kmem_cache_destroy(ext4_es_cachep);
167 }
168 
169 void ext4_es_init_tree(struct ext4_es_tree *tree)
170 {
171 	tree->root = RB_ROOT;
172 	tree->cache_es = NULL;
173 }
174 
175 #ifdef ES_DEBUG__
176 static void ext4_es_print_tree(struct inode *inode)
177 {
178 	struct ext4_es_tree *tree;
179 	struct rb_node *node;
180 
181 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
182 	tree = &EXT4_I(inode)->i_es_tree;
183 	node = rb_first(&tree->root);
184 	while (node) {
185 		struct extent_status *es;
186 		es = rb_entry(node, struct extent_status, rb_node);
187 		printk(KERN_DEBUG " [%u/%u) %llu %x",
188 		       es->es_lblk, es->es_len,
189 		       ext4_es_pblock(es), ext4_es_status(es));
190 		node = rb_next(node);
191 	}
192 	printk(KERN_DEBUG "\n");
193 }
194 #else
195 #define ext4_es_print_tree(inode)
196 #endif
197 
198 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
199 {
200 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
201 	return es->es_lblk + es->es_len - 1;
202 }
203 
204 /*
205  * search through the tree for an delayed extent with a given offset.  If
206  * it can't be found, try to find next extent.
207  */
208 static struct extent_status *__es_tree_search(struct rb_root *root,
209 					      ext4_lblk_t lblk)
210 {
211 	struct rb_node *node = root->rb_node;
212 	struct extent_status *es = NULL;
213 
214 	while (node) {
215 		es = rb_entry(node, struct extent_status, rb_node);
216 		if (lblk < es->es_lblk)
217 			node = node->rb_left;
218 		else if (lblk > ext4_es_end(es))
219 			node = node->rb_right;
220 		else
221 			return es;
222 	}
223 
224 	if (es && lblk < es->es_lblk)
225 		return es;
226 
227 	if (es && lblk > ext4_es_end(es)) {
228 		node = rb_next(&es->rb_node);
229 		return node ? rb_entry(node, struct extent_status, rb_node) :
230 			      NULL;
231 	}
232 
233 	return NULL;
234 }
235 
236 /*
237  * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
238  * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
239  *
240  * @inode: the inode which owns delayed extents
241  * @lblk: the offset where we start to search
242  * @end: the offset where we stop to search
243  * @es: delayed extent that we found
244  */
245 void ext4_es_find_delayed_extent_range(struct inode *inode,
246 				 ext4_lblk_t lblk, ext4_lblk_t end,
247 				 struct extent_status *es)
248 {
249 	struct ext4_es_tree *tree = NULL;
250 	struct extent_status *es1 = NULL;
251 	struct rb_node *node;
252 
253 	BUG_ON(es == NULL);
254 	BUG_ON(end < lblk);
255 	trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
256 
257 	read_lock(&EXT4_I(inode)->i_es_lock);
258 	tree = &EXT4_I(inode)->i_es_tree;
259 
260 	/* find extent in cache firstly */
261 	es->es_lblk = es->es_len = es->es_pblk = 0;
262 	if (tree->cache_es) {
263 		es1 = tree->cache_es;
264 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
265 			es_debug("%u cached by [%u/%u) %llu %x\n",
266 				 lblk, es1->es_lblk, es1->es_len,
267 				 ext4_es_pblock(es1), ext4_es_status(es1));
268 			goto out;
269 		}
270 	}
271 
272 	es1 = __es_tree_search(&tree->root, lblk);
273 
274 out:
275 	if (es1 && !ext4_es_is_delayed(es1)) {
276 		while ((node = rb_next(&es1->rb_node)) != NULL) {
277 			es1 = rb_entry(node, struct extent_status, rb_node);
278 			if (es1->es_lblk > end) {
279 				es1 = NULL;
280 				break;
281 			}
282 			if (ext4_es_is_delayed(es1))
283 				break;
284 		}
285 	}
286 
287 	if (es1 && ext4_es_is_delayed(es1)) {
288 		tree->cache_es = es1;
289 		es->es_lblk = es1->es_lblk;
290 		es->es_len = es1->es_len;
291 		es->es_pblk = es1->es_pblk;
292 	}
293 
294 	read_unlock(&EXT4_I(inode)->i_es_lock);
295 
296 	trace_ext4_es_find_delayed_extent_range_exit(inode, es);
297 }
298 
299 static void ext4_es_list_add(struct inode *inode)
300 {
301 	struct ext4_inode_info *ei = EXT4_I(inode);
302 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
303 
304 	if (!list_empty(&ei->i_es_list))
305 		return;
306 
307 	spin_lock(&sbi->s_es_lock);
308 	if (list_empty(&ei->i_es_list)) {
309 		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
310 		sbi->s_es_nr_inode++;
311 	}
312 	spin_unlock(&sbi->s_es_lock);
313 }
314 
315 static void ext4_es_list_del(struct inode *inode)
316 {
317 	struct ext4_inode_info *ei = EXT4_I(inode);
318 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
319 
320 	spin_lock(&sbi->s_es_lock);
321 	if (!list_empty(&ei->i_es_list)) {
322 		list_del_init(&ei->i_es_list);
323 		sbi->s_es_nr_inode--;
324 		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
325 	}
326 	spin_unlock(&sbi->s_es_lock);
327 }
328 
329 static struct extent_status *
330 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
331 		     ext4_fsblk_t pblk)
332 {
333 	struct extent_status *es;
334 	es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
335 	if (es == NULL)
336 		return NULL;
337 	es->es_lblk = lblk;
338 	es->es_len = len;
339 	es->es_pblk = pblk;
340 
341 	/*
342 	 * We don't count delayed extent because we never try to reclaim them
343 	 */
344 	if (!ext4_es_is_delayed(es)) {
345 		if (!EXT4_I(inode)->i_es_shk_nr++)
346 			ext4_es_list_add(inode);
347 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
348 					s_es_stats.es_stats_shk_cnt);
349 	}
350 
351 	EXT4_I(inode)->i_es_all_nr++;
352 	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
353 
354 	return es;
355 }
356 
357 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
358 {
359 	EXT4_I(inode)->i_es_all_nr--;
360 	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
361 
362 	/* Decrease the shrink counter when this es is not delayed */
363 	if (!ext4_es_is_delayed(es)) {
364 		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
365 		if (!--EXT4_I(inode)->i_es_shk_nr)
366 			ext4_es_list_del(inode);
367 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
368 					s_es_stats.es_stats_shk_cnt);
369 	}
370 
371 	kmem_cache_free(ext4_es_cachep, es);
372 }
373 
374 /*
375  * Check whether or not two extents can be merged
376  * Condition:
377  *  - logical block number is contiguous
378  *  - physical block number is contiguous
379  *  - status is equal
380  */
381 static int ext4_es_can_be_merged(struct extent_status *es1,
382 				 struct extent_status *es2)
383 {
384 	if (ext4_es_type(es1) != ext4_es_type(es2))
385 		return 0;
386 
387 	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
388 		pr_warn("ES assertion failed when merging extents. "
389 			"The sum of lengths of es1 (%d) and es2 (%d) "
390 			"is bigger than allowed file size (%d)\n",
391 			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
392 		WARN_ON(1);
393 		return 0;
394 	}
395 
396 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
397 		return 0;
398 
399 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
400 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
401 		return 1;
402 
403 	if (ext4_es_is_hole(es1))
404 		return 1;
405 
406 	/* we need to check delayed extent is without unwritten status */
407 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
408 		return 1;
409 
410 	return 0;
411 }
412 
413 static struct extent_status *
414 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
415 {
416 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
417 	struct extent_status *es1;
418 	struct rb_node *node;
419 
420 	node = rb_prev(&es->rb_node);
421 	if (!node)
422 		return es;
423 
424 	es1 = rb_entry(node, struct extent_status, rb_node);
425 	if (ext4_es_can_be_merged(es1, es)) {
426 		es1->es_len += es->es_len;
427 		if (ext4_es_is_referenced(es))
428 			ext4_es_set_referenced(es1);
429 		rb_erase(&es->rb_node, &tree->root);
430 		ext4_es_free_extent(inode, es);
431 		es = es1;
432 	}
433 
434 	return es;
435 }
436 
437 static struct extent_status *
438 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
439 {
440 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
441 	struct extent_status *es1;
442 	struct rb_node *node;
443 
444 	node = rb_next(&es->rb_node);
445 	if (!node)
446 		return es;
447 
448 	es1 = rb_entry(node, struct extent_status, rb_node);
449 	if (ext4_es_can_be_merged(es, es1)) {
450 		es->es_len += es1->es_len;
451 		if (ext4_es_is_referenced(es1))
452 			ext4_es_set_referenced(es);
453 		rb_erase(node, &tree->root);
454 		ext4_es_free_extent(inode, es1);
455 	}
456 
457 	return es;
458 }
459 
460 #ifdef ES_AGGRESSIVE_TEST
461 #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
462 
463 static void ext4_es_insert_extent_ext_check(struct inode *inode,
464 					    struct extent_status *es)
465 {
466 	struct ext4_ext_path *path = NULL;
467 	struct ext4_extent *ex;
468 	ext4_lblk_t ee_block;
469 	ext4_fsblk_t ee_start;
470 	unsigned short ee_len;
471 	int depth, ee_status, es_status;
472 
473 	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
474 	if (IS_ERR(path))
475 		return;
476 
477 	depth = ext_depth(inode);
478 	ex = path[depth].p_ext;
479 
480 	if (ex) {
481 
482 		ee_block = le32_to_cpu(ex->ee_block);
483 		ee_start = ext4_ext_pblock(ex);
484 		ee_len = ext4_ext_get_actual_len(ex);
485 
486 		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
487 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
488 
489 		/*
490 		 * Make sure ex and es are not overlap when we try to insert
491 		 * a delayed/hole extent.
492 		 */
493 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
494 			if (in_range(es->es_lblk, ee_block, ee_len)) {
495 				pr_warn("ES insert assertion failed for "
496 					"inode: %lu we can find an extent "
497 					"at block [%d/%d/%llu/%c], but we "
498 					"want to add a delayed/hole extent "
499 					"[%d/%d/%llu/%x]\n",
500 					inode->i_ino, ee_block, ee_len,
501 					ee_start, ee_status ? 'u' : 'w',
502 					es->es_lblk, es->es_len,
503 					ext4_es_pblock(es), ext4_es_status(es));
504 			}
505 			goto out;
506 		}
507 
508 		/*
509 		 * We don't check ee_block == es->es_lblk, etc. because es
510 		 * might be a part of whole extent, vice versa.
511 		 */
512 		if (es->es_lblk < ee_block ||
513 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
514 			pr_warn("ES insert assertion failed for inode: %lu "
515 				"ex_status [%d/%d/%llu/%c] != "
516 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
517 				ee_block, ee_len, ee_start,
518 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
519 				ext4_es_pblock(es), es_status ? 'u' : 'w');
520 			goto out;
521 		}
522 
523 		if (ee_status ^ es_status) {
524 			pr_warn("ES insert assertion failed for inode: %lu "
525 				"ex_status [%d/%d/%llu/%c] != "
526 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
527 				ee_block, ee_len, ee_start,
528 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
529 				ext4_es_pblock(es), es_status ? 'u' : 'w');
530 		}
531 	} else {
532 		/*
533 		 * We can't find an extent on disk.  So we need to make sure
534 		 * that we don't want to add an written/unwritten extent.
535 		 */
536 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
537 			pr_warn("ES insert assertion failed for inode: %lu "
538 				"can't find an extent at block %d but we want "
539 				"to add a written/unwritten extent "
540 				"[%d/%d/%llu/%x]\n", inode->i_ino,
541 				es->es_lblk, es->es_lblk, es->es_len,
542 				ext4_es_pblock(es), ext4_es_status(es));
543 		}
544 	}
545 out:
546 	ext4_ext_drop_refs(path);
547 	kfree(path);
548 }
549 
550 static void ext4_es_insert_extent_ind_check(struct inode *inode,
551 					    struct extent_status *es)
552 {
553 	struct ext4_map_blocks map;
554 	int retval;
555 
556 	/*
557 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
558 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
559 	 * access direct/indirect tree from outside.  It is too dirty to define
560 	 * this function in indirect.c file.
561 	 */
562 
563 	map.m_lblk = es->es_lblk;
564 	map.m_len = es->es_len;
565 
566 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
567 	if (retval > 0) {
568 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
569 			/*
570 			 * We want to add a delayed/hole extent but this
571 			 * block has been allocated.
572 			 */
573 			pr_warn("ES insert assertion failed for inode: %lu "
574 				"We can find blocks but we want to add a "
575 				"delayed/hole extent [%d/%d/%llu/%x]\n",
576 				inode->i_ino, es->es_lblk, es->es_len,
577 				ext4_es_pblock(es), ext4_es_status(es));
578 			return;
579 		} else if (ext4_es_is_written(es)) {
580 			if (retval != es->es_len) {
581 				pr_warn("ES insert assertion failed for "
582 					"inode: %lu retval %d != es_len %d\n",
583 					inode->i_ino, retval, es->es_len);
584 				return;
585 			}
586 			if (map.m_pblk != ext4_es_pblock(es)) {
587 				pr_warn("ES insert assertion failed for "
588 					"inode: %lu m_pblk %llu != "
589 					"es_pblk %llu\n",
590 					inode->i_ino, map.m_pblk,
591 					ext4_es_pblock(es));
592 				return;
593 			}
594 		} else {
595 			/*
596 			 * We don't need to check unwritten extent because
597 			 * indirect-based file doesn't have it.
598 			 */
599 			BUG_ON(1);
600 		}
601 	} else if (retval == 0) {
602 		if (ext4_es_is_written(es)) {
603 			pr_warn("ES insert assertion failed for inode: %lu "
604 				"We can't find the block but we want to add "
605 				"a written extent [%d/%d/%llu/%x]\n",
606 				inode->i_ino, es->es_lblk, es->es_len,
607 				ext4_es_pblock(es), ext4_es_status(es));
608 			return;
609 		}
610 	}
611 }
612 
613 static inline void ext4_es_insert_extent_check(struct inode *inode,
614 					       struct extent_status *es)
615 {
616 	/*
617 	 * We don't need to worry about the race condition because
618 	 * caller takes i_data_sem locking.
619 	 */
620 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
621 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
622 		ext4_es_insert_extent_ext_check(inode, es);
623 	else
624 		ext4_es_insert_extent_ind_check(inode, es);
625 }
626 #else
627 static inline void ext4_es_insert_extent_check(struct inode *inode,
628 					       struct extent_status *es)
629 {
630 }
631 #endif
632 
633 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
634 {
635 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
636 	struct rb_node **p = &tree->root.rb_node;
637 	struct rb_node *parent = NULL;
638 	struct extent_status *es;
639 
640 	while (*p) {
641 		parent = *p;
642 		es = rb_entry(parent, struct extent_status, rb_node);
643 
644 		if (newes->es_lblk < es->es_lblk) {
645 			if (ext4_es_can_be_merged(newes, es)) {
646 				/*
647 				 * Here we can modify es_lblk directly
648 				 * because it isn't overlapped.
649 				 */
650 				es->es_lblk = newes->es_lblk;
651 				es->es_len += newes->es_len;
652 				if (ext4_es_is_written(es) ||
653 				    ext4_es_is_unwritten(es))
654 					ext4_es_store_pblock(es,
655 							     newes->es_pblk);
656 				es = ext4_es_try_to_merge_left(inode, es);
657 				goto out;
658 			}
659 			p = &(*p)->rb_left;
660 		} else if (newes->es_lblk > ext4_es_end(es)) {
661 			if (ext4_es_can_be_merged(es, newes)) {
662 				es->es_len += newes->es_len;
663 				es = ext4_es_try_to_merge_right(inode, es);
664 				goto out;
665 			}
666 			p = &(*p)->rb_right;
667 		} else {
668 			BUG_ON(1);
669 			return -EINVAL;
670 		}
671 	}
672 
673 	es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
674 				  newes->es_pblk);
675 	if (!es)
676 		return -ENOMEM;
677 	rb_link_node(&es->rb_node, parent, p);
678 	rb_insert_color(&es->rb_node, &tree->root);
679 
680 out:
681 	tree->cache_es = es;
682 	return 0;
683 }
684 
685 /*
686  * ext4_es_insert_extent() adds information to an inode's extent
687  * status tree.
688  *
689  * Return 0 on success, error code on failure.
690  */
691 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
692 			  ext4_lblk_t len, ext4_fsblk_t pblk,
693 			  unsigned int status)
694 {
695 	struct extent_status newes;
696 	ext4_lblk_t end = lblk + len - 1;
697 	int err = 0;
698 
699 	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
700 		 lblk, len, pblk, status, inode->i_ino);
701 
702 	if (!len)
703 		return 0;
704 
705 	BUG_ON(end < lblk);
706 
707 	if ((status & EXTENT_STATUS_DELAYED) &&
708 	    (status & EXTENT_STATUS_WRITTEN)) {
709 		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
710 				" delayed and written which can potentially "
711 				" cause data loss.", lblk, len);
712 		WARN_ON(1);
713 	}
714 
715 	newes.es_lblk = lblk;
716 	newes.es_len = len;
717 	ext4_es_store_pblock_status(&newes, pblk, status);
718 	trace_ext4_es_insert_extent(inode, &newes);
719 
720 	ext4_es_insert_extent_check(inode, &newes);
721 
722 	write_lock(&EXT4_I(inode)->i_es_lock);
723 	err = __es_remove_extent(inode, lblk, end);
724 	if (err != 0)
725 		goto error;
726 retry:
727 	err = __es_insert_extent(inode, &newes);
728 	if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
729 					  128, EXT4_I(inode)))
730 		goto retry;
731 	if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
732 		err = 0;
733 
734 error:
735 	write_unlock(&EXT4_I(inode)->i_es_lock);
736 
737 	ext4_es_print_tree(inode);
738 
739 	return err;
740 }
741 
742 /*
743  * ext4_es_cache_extent() inserts information into the extent status
744  * tree if and only if there isn't information about the range in
745  * question already.
746  */
747 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
748 			  ext4_lblk_t len, ext4_fsblk_t pblk,
749 			  unsigned int status)
750 {
751 	struct extent_status *es;
752 	struct extent_status newes;
753 	ext4_lblk_t end = lblk + len - 1;
754 
755 	newes.es_lblk = lblk;
756 	newes.es_len = len;
757 	ext4_es_store_pblock_status(&newes, pblk, status);
758 	trace_ext4_es_cache_extent(inode, &newes);
759 
760 	if (!len)
761 		return;
762 
763 	BUG_ON(end < lblk);
764 
765 	write_lock(&EXT4_I(inode)->i_es_lock);
766 
767 	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
768 	if (!es || es->es_lblk > end)
769 		__es_insert_extent(inode, &newes);
770 	write_unlock(&EXT4_I(inode)->i_es_lock);
771 }
772 
773 /*
774  * ext4_es_lookup_extent() looks up an extent in extent status tree.
775  *
776  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
777  *
778  * Return: 1 on found, 0 on not
779  */
780 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
781 			  struct extent_status *es)
782 {
783 	struct ext4_es_tree *tree;
784 	struct ext4_es_stats *stats;
785 	struct extent_status *es1 = NULL;
786 	struct rb_node *node;
787 	int found = 0;
788 
789 	trace_ext4_es_lookup_extent_enter(inode, lblk);
790 	es_debug("lookup extent in block %u\n", lblk);
791 
792 	tree = &EXT4_I(inode)->i_es_tree;
793 	read_lock(&EXT4_I(inode)->i_es_lock);
794 
795 	/* find extent in cache firstly */
796 	es->es_lblk = es->es_len = es->es_pblk = 0;
797 	if (tree->cache_es) {
798 		es1 = tree->cache_es;
799 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
800 			es_debug("%u cached by [%u/%u)\n",
801 				 lblk, es1->es_lblk, es1->es_len);
802 			found = 1;
803 			goto out;
804 		}
805 	}
806 
807 	node = tree->root.rb_node;
808 	while (node) {
809 		es1 = rb_entry(node, struct extent_status, rb_node);
810 		if (lblk < es1->es_lblk)
811 			node = node->rb_left;
812 		else if (lblk > ext4_es_end(es1))
813 			node = node->rb_right;
814 		else {
815 			found = 1;
816 			break;
817 		}
818 	}
819 
820 out:
821 	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
822 	if (found) {
823 		BUG_ON(!es1);
824 		es->es_lblk = es1->es_lblk;
825 		es->es_len = es1->es_len;
826 		es->es_pblk = es1->es_pblk;
827 		if (!ext4_es_is_referenced(es1))
828 			ext4_es_set_referenced(es1);
829 		stats->es_stats_cache_hits++;
830 	} else {
831 		stats->es_stats_cache_misses++;
832 	}
833 
834 	read_unlock(&EXT4_I(inode)->i_es_lock);
835 
836 	trace_ext4_es_lookup_extent_exit(inode, es, found);
837 	return found;
838 }
839 
840 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
841 			      ext4_lblk_t end)
842 {
843 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
844 	struct rb_node *node;
845 	struct extent_status *es;
846 	struct extent_status orig_es;
847 	ext4_lblk_t len1, len2;
848 	ext4_fsblk_t block;
849 	int err;
850 
851 retry:
852 	err = 0;
853 	es = __es_tree_search(&tree->root, lblk);
854 	if (!es)
855 		goto out;
856 	if (es->es_lblk > end)
857 		goto out;
858 
859 	/* Simply invalidate cache_es. */
860 	tree->cache_es = NULL;
861 
862 	orig_es.es_lblk = es->es_lblk;
863 	orig_es.es_len = es->es_len;
864 	orig_es.es_pblk = es->es_pblk;
865 
866 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
867 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
868 	if (len1 > 0)
869 		es->es_len = len1;
870 	if (len2 > 0) {
871 		if (len1 > 0) {
872 			struct extent_status newes;
873 
874 			newes.es_lblk = end + 1;
875 			newes.es_len = len2;
876 			block = 0x7FDEADBEEFULL;
877 			if (ext4_es_is_written(&orig_es) ||
878 			    ext4_es_is_unwritten(&orig_es))
879 				block = ext4_es_pblock(&orig_es) +
880 					orig_es.es_len - len2;
881 			ext4_es_store_pblock_status(&newes, block,
882 						    ext4_es_status(&orig_es));
883 			err = __es_insert_extent(inode, &newes);
884 			if (err) {
885 				es->es_lblk = orig_es.es_lblk;
886 				es->es_len = orig_es.es_len;
887 				if ((err == -ENOMEM) &&
888 				    __es_shrink(EXT4_SB(inode->i_sb),
889 							128, EXT4_I(inode)))
890 					goto retry;
891 				goto out;
892 			}
893 		} else {
894 			es->es_lblk = end + 1;
895 			es->es_len = len2;
896 			if (ext4_es_is_written(es) ||
897 			    ext4_es_is_unwritten(es)) {
898 				block = orig_es.es_pblk + orig_es.es_len - len2;
899 				ext4_es_store_pblock(es, block);
900 			}
901 		}
902 		goto out;
903 	}
904 
905 	if (len1 > 0) {
906 		node = rb_next(&es->rb_node);
907 		if (node)
908 			es = rb_entry(node, struct extent_status, rb_node);
909 		else
910 			es = NULL;
911 	}
912 
913 	while (es && ext4_es_end(es) <= end) {
914 		node = rb_next(&es->rb_node);
915 		rb_erase(&es->rb_node, &tree->root);
916 		ext4_es_free_extent(inode, es);
917 		if (!node) {
918 			es = NULL;
919 			break;
920 		}
921 		es = rb_entry(node, struct extent_status, rb_node);
922 	}
923 
924 	if (es && es->es_lblk < end + 1) {
925 		ext4_lblk_t orig_len = es->es_len;
926 
927 		len1 = ext4_es_end(es) - end;
928 		es->es_lblk = end + 1;
929 		es->es_len = len1;
930 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
931 			block = es->es_pblk + orig_len - len1;
932 			ext4_es_store_pblock(es, block);
933 		}
934 	}
935 
936 out:
937 	return err;
938 }
939 
940 /*
941  * ext4_es_remove_extent() removes a space from a extent status tree.
942  *
943  * Return 0 on success, error code on failure.
944  */
945 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
946 			  ext4_lblk_t len)
947 {
948 	ext4_lblk_t end;
949 	int err = 0;
950 
951 	trace_ext4_es_remove_extent(inode, lblk, len);
952 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
953 		 lblk, len, inode->i_ino);
954 
955 	if (!len)
956 		return err;
957 
958 	end = lblk + len - 1;
959 	BUG_ON(end < lblk);
960 
961 	/*
962 	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
963 	 * so that we are sure __es_shrink() is done with the inode before it
964 	 * is reclaimed.
965 	 */
966 	write_lock(&EXT4_I(inode)->i_es_lock);
967 	err = __es_remove_extent(inode, lblk, end);
968 	write_unlock(&EXT4_I(inode)->i_es_lock);
969 	ext4_es_print_tree(inode);
970 	return err;
971 }
972 
973 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
974 		       struct ext4_inode_info *locked_ei)
975 {
976 	struct ext4_inode_info *ei;
977 	struct ext4_es_stats *es_stats;
978 	ktime_t start_time;
979 	u64 scan_time;
980 	int nr_to_walk;
981 	int nr_shrunk = 0;
982 	int retried = 0, nr_skipped = 0;
983 
984 	es_stats = &sbi->s_es_stats;
985 	start_time = ktime_get();
986 
987 retry:
988 	spin_lock(&sbi->s_es_lock);
989 	nr_to_walk = sbi->s_es_nr_inode;
990 	while (nr_to_walk-- > 0) {
991 		if (list_empty(&sbi->s_es_list)) {
992 			spin_unlock(&sbi->s_es_lock);
993 			goto out;
994 		}
995 		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
996 				      i_es_list);
997 		/* Move the inode to the tail */
998 		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
999 
1000 		/*
1001 		 * Normally we try hard to avoid shrinking precached inodes,
1002 		 * but we will as a last resort.
1003 		 */
1004 		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1005 						EXT4_STATE_EXT_PRECACHED)) {
1006 			nr_skipped++;
1007 			continue;
1008 		}
1009 
1010 		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1011 			nr_skipped++;
1012 			continue;
1013 		}
1014 		/*
1015 		 * Now we hold i_es_lock which protects us from inode reclaim
1016 		 * freeing inode under us
1017 		 */
1018 		spin_unlock(&sbi->s_es_lock);
1019 
1020 		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1021 		write_unlock(&ei->i_es_lock);
1022 
1023 		if (nr_to_scan <= 0)
1024 			goto out;
1025 		spin_lock(&sbi->s_es_lock);
1026 	}
1027 	spin_unlock(&sbi->s_es_lock);
1028 
1029 	/*
1030 	 * If we skipped any inodes, and we weren't able to make any
1031 	 * forward progress, try again to scan precached inodes.
1032 	 */
1033 	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1034 		retried++;
1035 		goto retry;
1036 	}
1037 
1038 	if (locked_ei && nr_shrunk == 0)
1039 		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1040 
1041 out:
1042 	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1043 	if (likely(es_stats->es_stats_scan_time))
1044 		es_stats->es_stats_scan_time = (scan_time +
1045 				es_stats->es_stats_scan_time*3) / 4;
1046 	else
1047 		es_stats->es_stats_scan_time = scan_time;
1048 	if (scan_time > es_stats->es_stats_max_scan_time)
1049 		es_stats->es_stats_max_scan_time = scan_time;
1050 	if (likely(es_stats->es_stats_shrunk))
1051 		es_stats->es_stats_shrunk = (nr_shrunk +
1052 				es_stats->es_stats_shrunk*3) / 4;
1053 	else
1054 		es_stats->es_stats_shrunk = nr_shrunk;
1055 
1056 	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1057 			     nr_skipped, retried);
1058 	return nr_shrunk;
1059 }
1060 
1061 static unsigned long ext4_es_count(struct shrinker *shrink,
1062 				   struct shrink_control *sc)
1063 {
1064 	unsigned long nr;
1065 	struct ext4_sb_info *sbi;
1066 
1067 	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1068 	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1069 	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1070 	return nr;
1071 }
1072 
1073 static unsigned long ext4_es_scan(struct shrinker *shrink,
1074 				  struct shrink_control *sc)
1075 {
1076 	struct ext4_sb_info *sbi = container_of(shrink,
1077 					struct ext4_sb_info, s_es_shrinker);
1078 	int nr_to_scan = sc->nr_to_scan;
1079 	int ret, nr_shrunk;
1080 
1081 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1082 	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1083 
1084 	if (!nr_to_scan)
1085 		return ret;
1086 
1087 	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1088 
1089 	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1090 	return nr_shrunk;
1091 }
1092 
1093 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1094 {
1095 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1096 	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1097 	struct ext4_inode_info *ei, *max = NULL;
1098 	unsigned int inode_cnt = 0;
1099 
1100 	if (v != SEQ_START_TOKEN)
1101 		return 0;
1102 
1103 	/* here we just find an inode that has the max nr. of objects */
1104 	spin_lock(&sbi->s_es_lock);
1105 	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1106 		inode_cnt++;
1107 		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1108 			max = ei;
1109 		else if (!max)
1110 			max = ei;
1111 	}
1112 	spin_unlock(&sbi->s_es_lock);
1113 
1114 	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1115 		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1116 		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1117 	seq_printf(seq, "  %lu/%lu cache hits/misses\n",
1118 		   es_stats->es_stats_cache_hits,
1119 		   es_stats->es_stats_cache_misses);
1120 	if (inode_cnt)
1121 		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1122 
1123 	seq_printf(seq, "average:\n  %llu us scan time\n",
1124 	    div_u64(es_stats->es_stats_scan_time, 1000));
1125 	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1126 	if (inode_cnt)
1127 		seq_printf(seq,
1128 		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1129 		    "  %llu us max scan time\n",
1130 		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1131 		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1132 
1133 	return 0;
1134 }
1135 
1136 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1137 {
1138 	int err;
1139 
1140 	/* Make sure we have enough bits for physical block number */
1141 	BUILD_BUG_ON(ES_SHIFT < 48);
1142 	INIT_LIST_HEAD(&sbi->s_es_list);
1143 	sbi->s_es_nr_inode = 0;
1144 	spin_lock_init(&sbi->s_es_lock);
1145 	sbi->s_es_stats.es_stats_shrunk = 0;
1146 	sbi->s_es_stats.es_stats_cache_hits = 0;
1147 	sbi->s_es_stats.es_stats_cache_misses = 0;
1148 	sbi->s_es_stats.es_stats_scan_time = 0;
1149 	sbi->s_es_stats.es_stats_max_scan_time = 0;
1150 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1151 	if (err)
1152 		return err;
1153 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1154 	if (err)
1155 		goto err1;
1156 
1157 	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1158 	sbi->s_es_shrinker.count_objects = ext4_es_count;
1159 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1160 	err = register_shrinker(&sbi->s_es_shrinker);
1161 	if (err)
1162 		goto err2;
1163 
1164 	return 0;
1165 
1166 err2:
1167 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1168 err1:
1169 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1170 	return err;
1171 }
1172 
1173 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1174 {
1175 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1176 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1177 	unregister_shrinker(&sbi->s_es_shrinker);
1178 }
1179 
1180 /*
1181  * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1182  * most *nr_to_scan extents, update *nr_to_scan accordingly.
1183  *
1184  * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1185  * Increment *nr_shrunk by the number of reclaimed extents. Also update
1186  * ei->i_es_shrink_lblk to where we should continue scanning.
1187  */
1188 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1189 				 int *nr_to_scan, int *nr_shrunk)
1190 {
1191 	struct inode *inode = &ei->vfs_inode;
1192 	struct ext4_es_tree *tree = &ei->i_es_tree;
1193 	struct extent_status *es;
1194 	struct rb_node *node;
1195 
1196 	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1197 	if (!es)
1198 		goto out_wrap;
1199 	node = &es->rb_node;
1200 	while (*nr_to_scan > 0) {
1201 		if (es->es_lblk > end) {
1202 			ei->i_es_shrink_lblk = end + 1;
1203 			return 0;
1204 		}
1205 
1206 		(*nr_to_scan)--;
1207 		node = rb_next(&es->rb_node);
1208 		/*
1209 		 * We can't reclaim delayed extent from status tree because
1210 		 * fiemap, bigallic, and seek_data/hole need to use it.
1211 		 */
1212 		if (ext4_es_is_delayed(es))
1213 			goto next;
1214 		if (ext4_es_is_referenced(es)) {
1215 			ext4_es_clear_referenced(es);
1216 			goto next;
1217 		}
1218 
1219 		rb_erase(&es->rb_node, &tree->root);
1220 		ext4_es_free_extent(inode, es);
1221 		(*nr_shrunk)++;
1222 next:
1223 		if (!node)
1224 			goto out_wrap;
1225 		es = rb_entry(node, struct extent_status, rb_node);
1226 	}
1227 	ei->i_es_shrink_lblk = es->es_lblk;
1228 	return 1;
1229 out_wrap:
1230 	ei->i_es_shrink_lblk = 0;
1231 	return 0;
1232 }
1233 
1234 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1235 {
1236 	struct inode *inode = &ei->vfs_inode;
1237 	int nr_shrunk = 0;
1238 	ext4_lblk_t start = ei->i_es_shrink_lblk;
1239 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1240 				      DEFAULT_RATELIMIT_BURST);
1241 
1242 	if (ei->i_es_shk_nr == 0)
1243 		return 0;
1244 
1245 	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1246 	    __ratelimit(&_rs))
1247 		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1248 
1249 	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1250 	    start != 0)
1251 		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1252 
1253 	ei->i_es_tree.cache_es = NULL;
1254 	return nr_shrunk;
1255 }
1256