1 /* 2 * fs/ext4/extents_status.c 3 * 4 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com> 5 * Modified by 6 * Allison Henderson <achender@linux.vnet.ibm.com> 7 * Hugh Dickins <hughd@google.com> 8 * Zheng Liu <wenqing.lz@taobao.com> 9 * 10 * Ext4 extents status tree core functions. 11 */ 12 #include <linux/rbtree.h> 13 #include <linux/list_sort.h> 14 #include "ext4.h" 15 #include "extents_status.h" 16 17 #include <trace/events/ext4.h> 18 19 /* 20 * According to previous discussion in Ext4 Developer Workshop, we 21 * will introduce a new structure called io tree to track all extent 22 * status in order to solve some problems that we have met 23 * (e.g. Reservation space warning), and provide extent-level locking. 24 * Delay extent tree is the first step to achieve this goal. It is 25 * original built by Yongqiang Yang. At that time it is called delay 26 * extent tree, whose goal is only track delayed extents in memory to 27 * simplify the implementation of fiemap and bigalloc, and introduce 28 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called 29 * delay extent tree at the first commit. But for better understand 30 * what it does, it has been rename to extent status tree. 31 * 32 * Step1: 33 * Currently the first step has been done. All delayed extents are 34 * tracked in the tree. It maintains the delayed extent when a delayed 35 * allocation is issued, and the delayed extent is written out or 36 * invalidated. Therefore the implementation of fiemap and bigalloc 37 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced. 38 * 39 * The following comment describes the implemenmtation of extent 40 * status tree and future works. 41 * 42 * Step2: 43 * In this step all extent status are tracked by extent status tree. 44 * Thus, we can first try to lookup a block mapping in this tree before 45 * finding it in extent tree. Hence, single extent cache can be removed 46 * because extent status tree can do a better job. Extents in status 47 * tree are loaded on-demand. Therefore, the extent status tree may not 48 * contain all of the extents in a file. Meanwhile we define a shrinker 49 * to reclaim memory from extent status tree because fragmented extent 50 * tree will make status tree cost too much memory. written/unwritten/- 51 * hole extents in the tree will be reclaimed by this shrinker when we 52 * are under high memory pressure. Delayed extents will not be 53 * reclimed because fiemap, bigalloc, and seek_data/hole need it. 54 */ 55 56 /* 57 * Extent status tree implementation for ext4. 58 * 59 * 60 * ========================================================================== 61 * Extent status tree tracks all extent status. 62 * 63 * 1. Why we need to implement extent status tree? 64 * 65 * Without extent status tree, ext4 identifies a delayed extent by looking 66 * up page cache, this has several deficiencies - complicated, buggy, 67 * and inefficient code. 68 * 69 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a 70 * block or a range of blocks are belonged to a delayed extent. 71 * 72 * Let us have a look at how they do without extent status tree. 73 * -- FIEMAP 74 * FIEMAP looks up page cache to identify delayed allocations from holes. 75 * 76 * -- SEEK_HOLE/DATA 77 * SEEK_HOLE/DATA has the same problem as FIEMAP. 78 * 79 * -- bigalloc 80 * bigalloc looks up page cache to figure out if a block is 81 * already under delayed allocation or not to determine whether 82 * quota reserving is needed for the cluster. 83 * 84 * -- writeout 85 * Writeout looks up whole page cache to see if a buffer is 86 * mapped, If there are not very many delayed buffers, then it is 87 * time comsuming. 88 * 89 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA, 90 * bigalloc and writeout can figure out if a block or a range of 91 * blocks is under delayed allocation(belonged to a delayed extent) or 92 * not by searching the extent tree. 93 * 94 * 95 * ========================================================================== 96 * 2. Ext4 extent status tree impelmentation 97 * 98 * -- extent 99 * A extent is a range of blocks which are contiguous logically and 100 * physically. Unlike extent in extent tree, this extent in ext4 is 101 * a in-memory struct, there is no corresponding on-disk data. There 102 * is no limit on length of extent, so an extent can contain as many 103 * blocks as they are contiguous logically and physically. 104 * 105 * -- extent status tree 106 * Every inode has an extent status tree and all allocation blocks 107 * are added to the tree with different status. The extent in the 108 * tree are ordered by logical block no. 109 * 110 * -- operations on a extent status tree 111 * There are three important operations on a delayed extent tree: find 112 * next extent, adding a extent(a range of blocks) and removing a extent. 113 * 114 * -- race on a extent status tree 115 * Extent status tree is protected by inode->i_es_lock. 116 * 117 * -- memory consumption 118 * Fragmented extent tree will make extent status tree cost too much 119 * memory. Hence, we will reclaim written/unwritten/hole extents from 120 * the tree under a heavy memory pressure. 121 * 122 * 123 * ========================================================================== 124 * 3. Performance analysis 125 * 126 * -- overhead 127 * 1. There is a cache extent for write access, so if writes are 128 * not very random, adding space operaions are in O(1) time. 129 * 130 * -- gain 131 * 2. Code is much simpler, more readable, more maintainable and 132 * more efficient. 133 * 134 * 135 * ========================================================================== 136 * 4. TODO list 137 * 138 * -- Refactor delayed space reservation 139 * 140 * -- Extent-level locking 141 */ 142 143 static struct kmem_cache *ext4_es_cachep; 144 145 static int __es_insert_extent(struct inode *inode, struct extent_status *newes); 146 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 147 ext4_lblk_t end); 148 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei, 149 int nr_to_scan); 150 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, 151 struct ext4_inode_info *locked_ei); 152 153 int __init ext4_init_es(void) 154 { 155 ext4_es_cachep = kmem_cache_create("ext4_extent_status", 156 sizeof(struct extent_status), 157 0, (SLAB_RECLAIM_ACCOUNT), NULL); 158 if (ext4_es_cachep == NULL) 159 return -ENOMEM; 160 return 0; 161 } 162 163 void ext4_exit_es(void) 164 { 165 if (ext4_es_cachep) 166 kmem_cache_destroy(ext4_es_cachep); 167 } 168 169 void ext4_es_init_tree(struct ext4_es_tree *tree) 170 { 171 tree->root = RB_ROOT; 172 tree->cache_es = NULL; 173 } 174 175 #ifdef ES_DEBUG__ 176 static void ext4_es_print_tree(struct inode *inode) 177 { 178 struct ext4_es_tree *tree; 179 struct rb_node *node; 180 181 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino); 182 tree = &EXT4_I(inode)->i_es_tree; 183 node = rb_first(&tree->root); 184 while (node) { 185 struct extent_status *es; 186 es = rb_entry(node, struct extent_status, rb_node); 187 printk(KERN_DEBUG " [%u/%u) %llu %llx", 188 es->es_lblk, es->es_len, 189 ext4_es_pblock(es), ext4_es_status(es)); 190 node = rb_next(node); 191 } 192 printk(KERN_DEBUG "\n"); 193 } 194 #else 195 #define ext4_es_print_tree(inode) 196 #endif 197 198 static inline ext4_lblk_t ext4_es_end(struct extent_status *es) 199 { 200 BUG_ON(es->es_lblk + es->es_len < es->es_lblk); 201 return es->es_lblk + es->es_len - 1; 202 } 203 204 /* 205 * search through the tree for an delayed extent with a given offset. If 206 * it can't be found, try to find next extent. 207 */ 208 static struct extent_status *__es_tree_search(struct rb_root *root, 209 ext4_lblk_t lblk) 210 { 211 struct rb_node *node = root->rb_node; 212 struct extent_status *es = NULL; 213 214 while (node) { 215 es = rb_entry(node, struct extent_status, rb_node); 216 if (lblk < es->es_lblk) 217 node = node->rb_left; 218 else if (lblk > ext4_es_end(es)) 219 node = node->rb_right; 220 else 221 return es; 222 } 223 224 if (es && lblk < es->es_lblk) 225 return es; 226 227 if (es && lblk > ext4_es_end(es)) { 228 node = rb_next(&es->rb_node); 229 return node ? rb_entry(node, struct extent_status, rb_node) : 230 NULL; 231 } 232 233 return NULL; 234 } 235 236 /* 237 * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering 238 * @es->lblk if it exists, otherwise, the next extent after @es->lblk. 239 * 240 * @inode: the inode which owns delayed extents 241 * @lblk: the offset where we start to search 242 * @end: the offset where we stop to search 243 * @es: delayed extent that we found 244 */ 245 void ext4_es_find_delayed_extent_range(struct inode *inode, 246 ext4_lblk_t lblk, ext4_lblk_t end, 247 struct extent_status *es) 248 { 249 struct ext4_es_tree *tree = NULL; 250 struct extent_status *es1 = NULL; 251 struct rb_node *node; 252 253 BUG_ON(es == NULL); 254 BUG_ON(end < lblk); 255 trace_ext4_es_find_delayed_extent_range_enter(inode, lblk); 256 257 read_lock(&EXT4_I(inode)->i_es_lock); 258 tree = &EXT4_I(inode)->i_es_tree; 259 260 /* find extent in cache firstly */ 261 es->es_lblk = es->es_len = es->es_pblk = 0; 262 if (tree->cache_es) { 263 es1 = tree->cache_es; 264 if (in_range(lblk, es1->es_lblk, es1->es_len)) { 265 es_debug("%u cached by [%u/%u) %llu %x\n", 266 lblk, es1->es_lblk, es1->es_len, 267 ext4_es_pblock(es1), ext4_es_status(es1)); 268 goto out; 269 } 270 } 271 272 es1 = __es_tree_search(&tree->root, lblk); 273 274 out: 275 if (es1 && !ext4_es_is_delayed(es1)) { 276 while ((node = rb_next(&es1->rb_node)) != NULL) { 277 es1 = rb_entry(node, struct extent_status, rb_node); 278 if (es1->es_lblk > end) { 279 es1 = NULL; 280 break; 281 } 282 if (ext4_es_is_delayed(es1)) 283 break; 284 } 285 } 286 287 if (es1 && ext4_es_is_delayed(es1)) { 288 tree->cache_es = es1; 289 es->es_lblk = es1->es_lblk; 290 es->es_len = es1->es_len; 291 es->es_pblk = es1->es_pblk; 292 } 293 294 read_unlock(&EXT4_I(inode)->i_es_lock); 295 296 trace_ext4_es_find_delayed_extent_range_exit(inode, es); 297 } 298 299 static struct extent_status * 300 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, 301 ext4_fsblk_t pblk) 302 { 303 struct extent_status *es; 304 es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC); 305 if (es == NULL) 306 return NULL; 307 es->es_lblk = lblk; 308 es->es_len = len; 309 es->es_pblk = pblk; 310 311 /* 312 * We don't count delayed extent because we never try to reclaim them 313 */ 314 if (!ext4_es_is_delayed(es)) { 315 EXT4_I(inode)->i_es_lru_nr++; 316 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt); 317 } 318 319 return es; 320 } 321 322 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es) 323 { 324 /* Decrease the lru counter when this es is not delayed */ 325 if (!ext4_es_is_delayed(es)) { 326 BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0); 327 EXT4_I(inode)->i_es_lru_nr--; 328 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt); 329 } 330 331 kmem_cache_free(ext4_es_cachep, es); 332 } 333 334 /* 335 * Check whether or not two extents can be merged 336 * Condition: 337 * - logical block number is contiguous 338 * - physical block number is contiguous 339 * - status is equal 340 */ 341 static int ext4_es_can_be_merged(struct extent_status *es1, 342 struct extent_status *es2) 343 { 344 if (ext4_es_status(es1) != ext4_es_status(es2)) 345 return 0; 346 347 if (((__u64) es1->es_len) + es2->es_len > 0xFFFFFFFFULL) 348 return 0; 349 350 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk) 351 return 0; 352 353 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) && 354 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2))) 355 return 1; 356 357 if (ext4_es_is_hole(es1)) 358 return 1; 359 360 /* we need to check delayed extent is without unwritten status */ 361 if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1)) 362 return 1; 363 364 return 0; 365 } 366 367 static struct extent_status * 368 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es) 369 { 370 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 371 struct extent_status *es1; 372 struct rb_node *node; 373 374 node = rb_prev(&es->rb_node); 375 if (!node) 376 return es; 377 378 es1 = rb_entry(node, struct extent_status, rb_node); 379 if (ext4_es_can_be_merged(es1, es)) { 380 es1->es_len += es->es_len; 381 rb_erase(&es->rb_node, &tree->root); 382 ext4_es_free_extent(inode, es); 383 es = es1; 384 } 385 386 return es; 387 } 388 389 static struct extent_status * 390 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es) 391 { 392 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 393 struct extent_status *es1; 394 struct rb_node *node; 395 396 node = rb_next(&es->rb_node); 397 if (!node) 398 return es; 399 400 es1 = rb_entry(node, struct extent_status, rb_node); 401 if (ext4_es_can_be_merged(es, es1)) { 402 es->es_len += es1->es_len; 403 rb_erase(node, &tree->root); 404 ext4_es_free_extent(inode, es1); 405 } 406 407 return es; 408 } 409 410 #ifdef ES_AGGRESSIVE_TEST 411 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */ 412 413 static void ext4_es_insert_extent_ext_check(struct inode *inode, 414 struct extent_status *es) 415 { 416 struct ext4_ext_path *path = NULL; 417 struct ext4_extent *ex; 418 ext4_lblk_t ee_block; 419 ext4_fsblk_t ee_start; 420 unsigned short ee_len; 421 int depth, ee_status, es_status; 422 423 path = ext4_ext_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE); 424 if (IS_ERR(path)) 425 return; 426 427 depth = ext_depth(inode); 428 ex = path[depth].p_ext; 429 430 if (ex) { 431 432 ee_block = le32_to_cpu(ex->ee_block); 433 ee_start = ext4_ext_pblock(ex); 434 ee_len = ext4_ext_get_actual_len(ex); 435 436 ee_status = ext4_ext_is_uninitialized(ex) ? 1 : 0; 437 es_status = ext4_es_is_unwritten(es) ? 1 : 0; 438 439 /* 440 * Make sure ex and es are not overlap when we try to insert 441 * a delayed/hole extent. 442 */ 443 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) { 444 if (in_range(es->es_lblk, ee_block, ee_len)) { 445 pr_warn("ES insert assertion failed for " 446 "inode: %lu we can find an extent " 447 "at block [%d/%d/%llu/%c], but we " 448 "want to add an delayed/hole extent " 449 "[%d/%d/%llu/%llx]\n", 450 inode->i_ino, ee_block, ee_len, 451 ee_start, ee_status ? 'u' : 'w', 452 es->es_lblk, es->es_len, 453 ext4_es_pblock(es), ext4_es_status(es)); 454 } 455 goto out; 456 } 457 458 /* 459 * We don't check ee_block == es->es_lblk, etc. because es 460 * might be a part of whole extent, vice versa. 461 */ 462 if (es->es_lblk < ee_block || 463 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) { 464 pr_warn("ES insert assertion failed for inode: %lu " 465 "ex_status [%d/%d/%llu/%c] != " 466 "es_status [%d/%d/%llu/%c]\n", inode->i_ino, 467 ee_block, ee_len, ee_start, 468 ee_status ? 'u' : 'w', es->es_lblk, es->es_len, 469 ext4_es_pblock(es), es_status ? 'u' : 'w'); 470 goto out; 471 } 472 473 if (ee_status ^ es_status) { 474 pr_warn("ES insert assertion failed for inode: %lu " 475 "ex_status [%d/%d/%llu/%c] != " 476 "es_status [%d/%d/%llu/%c]\n", inode->i_ino, 477 ee_block, ee_len, ee_start, 478 ee_status ? 'u' : 'w', es->es_lblk, es->es_len, 479 ext4_es_pblock(es), es_status ? 'u' : 'w'); 480 } 481 } else { 482 /* 483 * We can't find an extent on disk. So we need to make sure 484 * that we don't want to add an written/unwritten extent. 485 */ 486 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) { 487 pr_warn("ES insert assertion failed for inode: %lu " 488 "can't find an extent at block %d but we want " 489 "to add an written/unwritten extent " 490 "[%d/%d/%llu/%llx]\n", inode->i_ino, 491 es->es_lblk, es->es_lblk, es->es_len, 492 ext4_es_pblock(es), ext4_es_status(es)); 493 } 494 } 495 out: 496 if (path) { 497 ext4_ext_drop_refs(path); 498 kfree(path); 499 } 500 } 501 502 static void ext4_es_insert_extent_ind_check(struct inode *inode, 503 struct extent_status *es) 504 { 505 struct ext4_map_blocks map; 506 int retval; 507 508 /* 509 * Here we call ext4_ind_map_blocks to lookup a block mapping because 510 * 'Indirect' structure is defined in indirect.c. So we couldn't 511 * access direct/indirect tree from outside. It is too dirty to define 512 * this function in indirect.c file. 513 */ 514 515 map.m_lblk = es->es_lblk; 516 map.m_len = es->es_len; 517 518 retval = ext4_ind_map_blocks(NULL, inode, &map, 0); 519 if (retval > 0) { 520 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) { 521 /* 522 * We want to add a delayed/hole extent but this 523 * block has been allocated. 524 */ 525 pr_warn("ES insert assertion failed for inode: %lu " 526 "We can find blocks but we want to add a " 527 "delayed/hole extent [%d/%d/%llu/%llx]\n", 528 inode->i_ino, es->es_lblk, es->es_len, 529 ext4_es_pblock(es), ext4_es_status(es)); 530 return; 531 } else if (ext4_es_is_written(es)) { 532 if (retval != es->es_len) { 533 pr_warn("ES insert assertion failed for " 534 "inode: %lu retval %d != es_len %d\n", 535 inode->i_ino, retval, es->es_len); 536 return; 537 } 538 if (map.m_pblk != ext4_es_pblock(es)) { 539 pr_warn("ES insert assertion failed for " 540 "inode: %lu m_pblk %llu != " 541 "es_pblk %llu\n", 542 inode->i_ino, map.m_pblk, 543 ext4_es_pblock(es)); 544 return; 545 } 546 } else { 547 /* 548 * We don't need to check unwritten extent because 549 * indirect-based file doesn't have it. 550 */ 551 BUG_ON(1); 552 } 553 } else if (retval == 0) { 554 if (ext4_es_is_written(es)) { 555 pr_warn("ES insert assertion failed for inode: %lu " 556 "We can't find the block but we want to add " 557 "an written extent [%d/%d/%llu/%llx]\n", 558 inode->i_ino, es->es_lblk, es->es_len, 559 ext4_es_pblock(es), ext4_es_status(es)); 560 return; 561 } 562 } 563 } 564 565 static inline void ext4_es_insert_extent_check(struct inode *inode, 566 struct extent_status *es) 567 { 568 /* 569 * We don't need to worry about the race condition because 570 * caller takes i_data_sem locking. 571 */ 572 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 573 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 574 ext4_es_insert_extent_ext_check(inode, es); 575 else 576 ext4_es_insert_extent_ind_check(inode, es); 577 } 578 #else 579 static inline void ext4_es_insert_extent_check(struct inode *inode, 580 struct extent_status *es) 581 { 582 } 583 #endif 584 585 static int __es_insert_extent(struct inode *inode, struct extent_status *newes) 586 { 587 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 588 struct rb_node **p = &tree->root.rb_node; 589 struct rb_node *parent = NULL; 590 struct extent_status *es; 591 592 while (*p) { 593 parent = *p; 594 es = rb_entry(parent, struct extent_status, rb_node); 595 596 if (newes->es_lblk < es->es_lblk) { 597 if (ext4_es_can_be_merged(newes, es)) { 598 /* 599 * Here we can modify es_lblk directly 600 * because it isn't overlapped. 601 */ 602 es->es_lblk = newes->es_lblk; 603 es->es_len += newes->es_len; 604 if (ext4_es_is_written(es) || 605 ext4_es_is_unwritten(es)) 606 ext4_es_store_pblock(es, 607 newes->es_pblk); 608 es = ext4_es_try_to_merge_left(inode, es); 609 goto out; 610 } 611 p = &(*p)->rb_left; 612 } else if (newes->es_lblk > ext4_es_end(es)) { 613 if (ext4_es_can_be_merged(es, newes)) { 614 es->es_len += newes->es_len; 615 es = ext4_es_try_to_merge_right(inode, es); 616 goto out; 617 } 618 p = &(*p)->rb_right; 619 } else { 620 BUG_ON(1); 621 return -EINVAL; 622 } 623 } 624 625 es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len, 626 newes->es_pblk); 627 if (!es) 628 return -ENOMEM; 629 rb_link_node(&es->rb_node, parent, p); 630 rb_insert_color(&es->rb_node, &tree->root); 631 632 out: 633 tree->cache_es = es; 634 return 0; 635 } 636 637 /* 638 * ext4_es_insert_extent() adds information to an inode's extent 639 * status tree. 640 * 641 * Return 0 on success, error code on failure. 642 */ 643 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, 644 ext4_lblk_t len, ext4_fsblk_t pblk, 645 unsigned int status) 646 { 647 struct extent_status newes; 648 ext4_lblk_t end = lblk + len - 1; 649 int err = 0; 650 651 es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n", 652 lblk, len, pblk, status, inode->i_ino); 653 654 if (!len) 655 return 0; 656 657 BUG_ON(end < lblk); 658 659 newes.es_lblk = lblk; 660 newes.es_len = len; 661 ext4_es_store_pblock(&newes, pblk); 662 ext4_es_store_status(&newes, status); 663 trace_ext4_es_insert_extent(inode, &newes); 664 665 ext4_es_insert_extent_check(inode, &newes); 666 667 write_lock(&EXT4_I(inode)->i_es_lock); 668 err = __es_remove_extent(inode, lblk, end); 669 if (err != 0) 670 goto error; 671 retry: 672 err = __es_insert_extent(inode, &newes); 673 if (err == -ENOMEM && __ext4_es_shrink(EXT4_SB(inode->i_sb), 1, 674 EXT4_I(inode))) 675 goto retry; 676 if (err == -ENOMEM && !ext4_es_is_delayed(&newes)) 677 err = 0; 678 679 error: 680 write_unlock(&EXT4_I(inode)->i_es_lock); 681 682 ext4_es_print_tree(inode); 683 684 return err; 685 } 686 687 /* 688 * ext4_es_cache_extent() inserts information into the extent status 689 * tree if and only if there isn't information about the range in 690 * question already. 691 */ 692 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk, 693 ext4_lblk_t len, ext4_fsblk_t pblk, 694 unsigned int status) 695 { 696 struct extent_status *es; 697 struct extent_status newes; 698 ext4_lblk_t end = lblk + len - 1; 699 700 newes.es_lblk = lblk; 701 newes.es_len = len; 702 ext4_es_store_pblock(&newes, pblk); 703 ext4_es_store_status(&newes, status); 704 trace_ext4_es_cache_extent(inode, &newes); 705 706 if (!len) 707 return; 708 709 BUG_ON(end < lblk); 710 711 write_lock(&EXT4_I(inode)->i_es_lock); 712 713 es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk); 714 if (!es || es->es_lblk > end) 715 __es_insert_extent(inode, &newes); 716 write_unlock(&EXT4_I(inode)->i_es_lock); 717 } 718 719 /* 720 * ext4_es_lookup_extent() looks up an extent in extent status tree. 721 * 722 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks. 723 * 724 * Return: 1 on found, 0 on not 725 */ 726 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, 727 struct extent_status *es) 728 { 729 struct ext4_es_tree *tree; 730 struct extent_status *es1 = NULL; 731 struct rb_node *node; 732 int found = 0; 733 734 trace_ext4_es_lookup_extent_enter(inode, lblk); 735 es_debug("lookup extent in block %u\n", lblk); 736 737 tree = &EXT4_I(inode)->i_es_tree; 738 read_lock(&EXT4_I(inode)->i_es_lock); 739 740 /* find extent in cache firstly */ 741 es->es_lblk = es->es_len = es->es_pblk = 0; 742 if (tree->cache_es) { 743 es1 = tree->cache_es; 744 if (in_range(lblk, es1->es_lblk, es1->es_len)) { 745 es_debug("%u cached by [%u/%u)\n", 746 lblk, es1->es_lblk, es1->es_len); 747 found = 1; 748 goto out; 749 } 750 } 751 752 node = tree->root.rb_node; 753 while (node) { 754 es1 = rb_entry(node, struct extent_status, rb_node); 755 if (lblk < es1->es_lblk) 756 node = node->rb_left; 757 else if (lblk > ext4_es_end(es1)) 758 node = node->rb_right; 759 else { 760 found = 1; 761 break; 762 } 763 } 764 765 out: 766 if (found) { 767 BUG_ON(!es1); 768 es->es_lblk = es1->es_lblk; 769 es->es_len = es1->es_len; 770 es->es_pblk = es1->es_pblk; 771 } 772 773 read_unlock(&EXT4_I(inode)->i_es_lock); 774 775 trace_ext4_es_lookup_extent_exit(inode, es, found); 776 return found; 777 } 778 779 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 780 ext4_lblk_t end) 781 { 782 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 783 struct rb_node *node; 784 struct extent_status *es; 785 struct extent_status orig_es; 786 ext4_lblk_t len1, len2; 787 ext4_fsblk_t block; 788 int err; 789 790 retry: 791 err = 0; 792 es = __es_tree_search(&tree->root, lblk); 793 if (!es) 794 goto out; 795 if (es->es_lblk > end) 796 goto out; 797 798 /* Simply invalidate cache_es. */ 799 tree->cache_es = NULL; 800 801 orig_es.es_lblk = es->es_lblk; 802 orig_es.es_len = es->es_len; 803 orig_es.es_pblk = es->es_pblk; 804 805 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0; 806 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0; 807 if (len1 > 0) 808 es->es_len = len1; 809 if (len2 > 0) { 810 if (len1 > 0) { 811 struct extent_status newes; 812 813 newes.es_lblk = end + 1; 814 newes.es_len = len2; 815 if (ext4_es_is_written(&orig_es) || 816 ext4_es_is_unwritten(&orig_es)) { 817 block = ext4_es_pblock(&orig_es) + 818 orig_es.es_len - len2; 819 ext4_es_store_pblock(&newes, block); 820 } 821 ext4_es_store_status(&newes, ext4_es_status(&orig_es)); 822 err = __es_insert_extent(inode, &newes); 823 if (err) { 824 es->es_lblk = orig_es.es_lblk; 825 es->es_len = orig_es.es_len; 826 if ((err == -ENOMEM) && 827 __ext4_es_shrink(EXT4_SB(inode->i_sb), 1, 828 EXT4_I(inode))) 829 goto retry; 830 goto out; 831 } 832 } else { 833 es->es_lblk = end + 1; 834 es->es_len = len2; 835 if (ext4_es_is_written(es) || 836 ext4_es_is_unwritten(es)) { 837 block = orig_es.es_pblk + orig_es.es_len - len2; 838 ext4_es_store_pblock(es, block); 839 } 840 } 841 goto out; 842 } 843 844 if (len1 > 0) { 845 node = rb_next(&es->rb_node); 846 if (node) 847 es = rb_entry(node, struct extent_status, rb_node); 848 else 849 es = NULL; 850 } 851 852 while (es && ext4_es_end(es) <= end) { 853 node = rb_next(&es->rb_node); 854 rb_erase(&es->rb_node, &tree->root); 855 ext4_es_free_extent(inode, es); 856 if (!node) { 857 es = NULL; 858 break; 859 } 860 es = rb_entry(node, struct extent_status, rb_node); 861 } 862 863 if (es && es->es_lblk < end + 1) { 864 ext4_lblk_t orig_len = es->es_len; 865 866 len1 = ext4_es_end(es) - end; 867 es->es_lblk = end + 1; 868 es->es_len = len1; 869 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { 870 block = es->es_pblk + orig_len - len1; 871 ext4_es_store_pblock(es, block); 872 } 873 } 874 875 out: 876 return err; 877 } 878 879 /* 880 * ext4_es_remove_extent() removes a space from a extent status tree. 881 * 882 * Return 0 on success, error code on failure. 883 */ 884 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 885 ext4_lblk_t len) 886 { 887 ext4_lblk_t end; 888 int err = 0; 889 890 trace_ext4_es_remove_extent(inode, lblk, len); 891 es_debug("remove [%u/%u) from extent status tree of inode %lu\n", 892 lblk, len, inode->i_ino); 893 894 if (!len) 895 return err; 896 897 end = lblk + len - 1; 898 BUG_ON(end < lblk); 899 900 write_lock(&EXT4_I(inode)->i_es_lock); 901 err = __es_remove_extent(inode, lblk, end); 902 write_unlock(&EXT4_I(inode)->i_es_lock); 903 ext4_es_print_tree(inode); 904 return err; 905 } 906 907 static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a, 908 struct list_head *b) 909 { 910 struct ext4_inode_info *eia, *eib; 911 eia = list_entry(a, struct ext4_inode_info, i_es_lru); 912 eib = list_entry(b, struct ext4_inode_info, i_es_lru); 913 914 if (ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) && 915 !ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED)) 916 return 1; 917 if (!ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) && 918 ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED)) 919 return -1; 920 if (eia->i_touch_when == eib->i_touch_when) 921 return 0; 922 if (time_after(eia->i_touch_when, eib->i_touch_when)) 923 return 1; 924 else 925 return -1; 926 } 927 928 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, 929 struct ext4_inode_info *locked_ei) 930 { 931 struct ext4_inode_info *ei; 932 struct list_head *cur, *tmp; 933 LIST_HEAD(skipped); 934 int nr_shrunk = 0; 935 int retried = 0, skip_precached = 1, nr_skipped = 0; 936 937 spin_lock(&sbi->s_es_lru_lock); 938 939 retry: 940 list_for_each_safe(cur, tmp, &sbi->s_es_lru) { 941 int shrunk; 942 943 /* 944 * If we have already reclaimed all extents from extent 945 * status tree, just stop the loop immediately. 946 */ 947 if (percpu_counter_read_positive(&sbi->s_extent_cache_cnt) == 0) 948 break; 949 950 ei = list_entry(cur, struct ext4_inode_info, i_es_lru); 951 952 /* 953 * Skip the inode that is newer than the last_sorted 954 * time. Normally we try hard to avoid shrinking 955 * precached inodes, but we will as a last resort. 956 */ 957 if ((sbi->s_es_last_sorted < ei->i_touch_when) || 958 (skip_precached && ext4_test_inode_state(&ei->vfs_inode, 959 EXT4_STATE_EXT_PRECACHED))) { 960 nr_skipped++; 961 list_move_tail(cur, &skipped); 962 continue; 963 } 964 965 if (ei->i_es_lru_nr == 0 || ei == locked_ei) 966 continue; 967 968 write_lock(&ei->i_es_lock); 969 shrunk = __es_try_to_reclaim_extents(ei, nr_to_scan); 970 if (ei->i_es_lru_nr == 0) 971 list_del_init(&ei->i_es_lru); 972 write_unlock(&ei->i_es_lock); 973 974 nr_shrunk += shrunk; 975 nr_to_scan -= shrunk; 976 if (nr_to_scan == 0) 977 break; 978 } 979 980 /* Move the newer inodes into the tail of the LRU list. */ 981 list_splice_tail(&skipped, &sbi->s_es_lru); 982 INIT_LIST_HEAD(&skipped); 983 984 /* 985 * If we skipped any inodes, and we weren't able to make any 986 * forward progress, sort the list and try again. 987 */ 988 if ((nr_shrunk == 0) && nr_skipped && !retried) { 989 retried++; 990 list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp); 991 sbi->s_es_last_sorted = jiffies; 992 ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info, 993 i_es_lru); 994 /* 995 * If there are no non-precached inodes left on the 996 * list, start releasing precached extents. 997 */ 998 if (ext4_test_inode_state(&ei->vfs_inode, 999 EXT4_STATE_EXT_PRECACHED)) 1000 skip_precached = 0; 1001 goto retry; 1002 } 1003 1004 spin_unlock(&sbi->s_es_lru_lock); 1005 1006 if (locked_ei && nr_shrunk == 0) 1007 nr_shrunk = __es_try_to_reclaim_extents(locked_ei, nr_to_scan); 1008 1009 return nr_shrunk; 1010 } 1011 1012 static unsigned long ext4_es_count(struct shrinker *shrink, 1013 struct shrink_control *sc) 1014 { 1015 unsigned long nr; 1016 struct ext4_sb_info *sbi; 1017 1018 sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker); 1019 nr = percpu_counter_read_positive(&sbi->s_extent_cache_cnt); 1020 trace_ext4_es_shrink_enter(sbi->s_sb, sc->nr_to_scan, nr); 1021 return nr; 1022 } 1023 1024 static unsigned long ext4_es_scan(struct shrinker *shrink, 1025 struct shrink_control *sc) 1026 { 1027 struct ext4_sb_info *sbi = container_of(shrink, 1028 struct ext4_sb_info, s_es_shrinker); 1029 int nr_to_scan = sc->nr_to_scan; 1030 int ret, nr_shrunk; 1031 1032 ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt); 1033 trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret); 1034 1035 if (!nr_to_scan) 1036 return ret; 1037 1038 nr_shrunk = __ext4_es_shrink(sbi, nr_to_scan, NULL); 1039 1040 trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret); 1041 return nr_shrunk; 1042 } 1043 1044 void ext4_es_register_shrinker(struct ext4_sb_info *sbi) 1045 { 1046 INIT_LIST_HEAD(&sbi->s_es_lru); 1047 spin_lock_init(&sbi->s_es_lru_lock); 1048 sbi->s_es_last_sorted = 0; 1049 sbi->s_es_shrinker.scan_objects = ext4_es_scan; 1050 sbi->s_es_shrinker.count_objects = ext4_es_count; 1051 sbi->s_es_shrinker.seeks = DEFAULT_SEEKS; 1052 register_shrinker(&sbi->s_es_shrinker); 1053 } 1054 1055 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi) 1056 { 1057 unregister_shrinker(&sbi->s_es_shrinker); 1058 } 1059 1060 void ext4_es_lru_add(struct inode *inode) 1061 { 1062 struct ext4_inode_info *ei = EXT4_I(inode); 1063 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1064 1065 ei->i_touch_when = jiffies; 1066 1067 if (!list_empty(&ei->i_es_lru)) 1068 return; 1069 1070 spin_lock(&sbi->s_es_lru_lock); 1071 if (list_empty(&ei->i_es_lru)) 1072 list_add_tail(&ei->i_es_lru, &sbi->s_es_lru); 1073 spin_unlock(&sbi->s_es_lru_lock); 1074 } 1075 1076 void ext4_es_lru_del(struct inode *inode) 1077 { 1078 struct ext4_inode_info *ei = EXT4_I(inode); 1079 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1080 1081 spin_lock(&sbi->s_es_lru_lock); 1082 if (!list_empty(&ei->i_es_lru)) 1083 list_del_init(&ei->i_es_lru); 1084 spin_unlock(&sbi->s_es_lru_lock); 1085 } 1086 1087 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei, 1088 int nr_to_scan) 1089 { 1090 struct inode *inode = &ei->vfs_inode; 1091 struct ext4_es_tree *tree = &ei->i_es_tree; 1092 struct rb_node *node; 1093 struct extent_status *es; 1094 unsigned long nr_shrunk = 0; 1095 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 1096 DEFAULT_RATELIMIT_BURST); 1097 1098 if (ei->i_es_lru_nr == 0) 1099 return 0; 1100 1101 if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) && 1102 __ratelimit(&_rs)) 1103 ext4_warning(inode->i_sb, "forced shrink of precached extents"); 1104 1105 node = rb_first(&tree->root); 1106 while (node != NULL) { 1107 es = rb_entry(node, struct extent_status, rb_node); 1108 node = rb_next(&es->rb_node); 1109 /* 1110 * We can't reclaim delayed extent from status tree because 1111 * fiemap, bigallic, and seek_data/hole need to use it. 1112 */ 1113 if (!ext4_es_is_delayed(es)) { 1114 rb_erase(&es->rb_node, &tree->root); 1115 ext4_es_free_extent(inode, es); 1116 nr_shrunk++; 1117 if (--nr_to_scan == 0) 1118 break; 1119 } 1120 } 1121 tree->cache_es = NULL; 1122 return nr_shrunk; 1123 } 1124