xref: /openbmc/linux/fs/ext4/extents_status.c (revision ca460cc2)
1 /*
2  *  fs/ext4/extents_status.c
3  *
4  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
5  * Modified by
6  *	Allison Henderson <achender@linux.vnet.ibm.com>
7  *	Hugh Dickins <hughd@google.com>
8  *	Zheng Liu <wenqing.lz@taobao.com>
9  *
10  * Ext4 extents status tree core functions.
11  */
12 #include <linux/rbtree.h>
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 #include "extents_status.h"
18 
19 #include <trace/events/ext4.h>
20 
21 /*
22  * According to previous discussion in Ext4 Developer Workshop, we
23  * will introduce a new structure called io tree to track all extent
24  * status in order to solve some problems that we have met
25  * (e.g. Reservation space warning), and provide extent-level locking.
26  * Delay extent tree is the first step to achieve this goal.  It is
27  * original built by Yongqiang Yang.  At that time it is called delay
28  * extent tree, whose goal is only track delayed extents in memory to
29  * simplify the implementation of fiemap and bigalloc, and introduce
30  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
31  * delay extent tree at the first commit.  But for better understand
32  * what it does, it has been rename to extent status tree.
33  *
34  * Step1:
35  * Currently the first step has been done.  All delayed extents are
36  * tracked in the tree.  It maintains the delayed extent when a delayed
37  * allocation is issued, and the delayed extent is written out or
38  * invalidated.  Therefore the implementation of fiemap and bigalloc
39  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
40  *
41  * The following comment describes the implemenmtation of extent
42  * status tree and future works.
43  *
44  * Step2:
45  * In this step all extent status are tracked by extent status tree.
46  * Thus, we can first try to lookup a block mapping in this tree before
47  * finding it in extent tree.  Hence, single extent cache can be removed
48  * because extent status tree can do a better job.  Extents in status
49  * tree are loaded on-demand.  Therefore, the extent status tree may not
50  * contain all of the extents in a file.  Meanwhile we define a shrinker
51  * to reclaim memory from extent status tree because fragmented extent
52  * tree will make status tree cost too much memory.  written/unwritten/-
53  * hole extents in the tree will be reclaimed by this shrinker when we
54  * are under high memory pressure.  Delayed extents will not be
55  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
56  */
57 
58 /*
59  * Extent status tree implementation for ext4.
60  *
61  *
62  * ==========================================================================
63  * Extent status tree tracks all extent status.
64  *
65  * 1. Why we need to implement extent status tree?
66  *
67  * Without extent status tree, ext4 identifies a delayed extent by looking
68  * up page cache, this has several deficiencies - complicated, buggy,
69  * and inefficient code.
70  *
71  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
72  * block or a range of blocks are belonged to a delayed extent.
73  *
74  * Let us have a look at how they do without extent status tree.
75  *   --	FIEMAP
76  *	FIEMAP looks up page cache to identify delayed allocations from holes.
77  *
78  *   --	SEEK_HOLE/DATA
79  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
80  *
81  *   --	bigalloc
82  *	bigalloc looks up page cache to figure out if a block is
83  *	already under delayed allocation or not to determine whether
84  *	quota reserving is needed for the cluster.
85  *
86  *   --	writeout
87  *	Writeout looks up whole page cache to see if a buffer is
88  *	mapped, If there are not very many delayed buffers, then it is
89  *	time comsuming.
90  *
91  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
92  * bigalloc and writeout can figure out if a block or a range of
93  * blocks is under delayed allocation(belonged to a delayed extent) or
94  * not by searching the extent tree.
95  *
96  *
97  * ==========================================================================
98  * 2. Ext4 extent status tree impelmentation
99  *
100  *   --	extent
101  *	A extent is a range of blocks which are contiguous logically and
102  *	physically.  Unlike extent in extent tree, this extent in ext4 is
103  *	a in-memory struct, there is no corresponding on-disk data.  There
104  *	is no limit on length of extent, so an extent can contain as many
105  *	blocks as they are contiguous logically and physically.
106  *
107  *   --	extent status tree
108  *	Every inode has an extent status tree and all allocation blocks
109  *	are added to the tree with different status.  The extent in the
110  *	tree are ordered by logical block no.
111  *
112  *   --	operations on a extent status tree
113  *	There are three important operations on a delayed extent tree: find
114  *	next extent, adding a extent(a range of blocks) and removing a extent.
115  *
116  *   --	race on a extent status tree
117  *	Extent status tree is protected by inode->i_es_lock.
118  *
119  *   --	memory consumption
120  *      Fragmented extent tree will make extent status tree cost too much
121  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
122  *      the tree under a heavy memory pressure.
123  *
124  *
125  * ==========================================================================
126  * 3. Performance analysis
127  *
128  *   --	overhead
129  *	1. There is a cache extent for write access, so if writes are
130  *	not very random, adding space operaions are in O(1) time.
131  *
132  *   --	gain
133  *	2. Code is much simpler, more readable, more maintainable and
134  *	more efficient.
135  *
136  *
137  * ==========================================================================
138  * 4. TODO list
139  *
140  *   -- Refactor delayed space reservation
141  *
142  *   -- Extent-level locking
143  */
144 
145 static struct kmem_cache *ext4_es_cachep;
146 
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
148 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
149 			      ext4_lblk_t end);
150 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
151 				       int nr_to_scan);
152 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
153 			    struct ext4_inode_info *locked_ei);
154 
155 int __init ext4_init_es(void)
156 {
157 	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
158 					   sizeof(struct extent_status),
159 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
160 	if (ext4_es_cachep == NULL)
161 		return -ENOMEM;
162 	return 0;
163 }
164 
165 void ext4_exit_es(void)
166 {
167 	if (ext4_es_cachep)
168 		kmem_cache_destroy(ext4_es_cachep);
169 }
170 
171 void ext4_es_init_tree(struct ext4_es_tree *tree)
172 {
173 	tree->root = RB_ROOT;
174 	tree->cache_es = NULL;
175 }
176 
177 #ifdef ES_DEBUG__
178 static void ext4_es_print_tree(struct inode *inode)
179 {
180 	struct ext4_es_tree *tree;
181 	struct rb_node *node;
182 
183 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
184 	tree = &EXT4_I(inode)->i_es_tree;
185 	node = rb_first(&tree->root);
186 	while (node) {
187 		struct extent_status *es;
188 		es = rb_entry(node, struct extent_status, rb_node);
189 		printk(KERN_DEBUG " [%u/%u) %llu %x",
190 		       es->es_lblk, es->es_len,
191 		       ext4_es_pblock(es), ext4_es_status(es));
192 		node = rb_next(node);
193 	}
194 	printk(KERN_DEBUG "\n");
195 }
196 #else
197 #define ext4_es_print_tree(inode)
198 #endif
199 
200 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
201 {
202 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
203 	return es->es_lblk + es->es_len - 1;
204 }
205 
206 /*
207  * search through the tree for an delayed extent with a given offset.  If
208  * it can't be found, try to find next extent.
209  */
210 static struct extent_status *__es_tree_search(struct rb_root *root,
211 					      ext4_lblk_t lblk)
212 {
213 	struct rb_node *node = root->rb_node;
214 	struct extent_status *es = NULL;
215 
216 	while (node) {
217 		es = rb_entry(node, struct extent_status, rb_node);
218 		if (lblk < es->es_lblk)
219 			node = node->rb_left;
220 		else if (lblk > ext4_es_end(es))
221 			node = node->rb_right;
222 		else
223 			return es;
224 	}
225 
226 	if (es && lblk < es->es_lblk)
227 		return es;
228 
229 	if (es && lblk > ext4_es_end(es)) {
230 		node = rb_next(&es->rb_node);
231 		return node ? rb_entry(node, struct extent_status, rb_node) :
232 			      NULL;
233 	}
234 
235 	return NULL;
236 }
237 
238 /*
239  * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
240  * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
241  *
242  * @inode: the inode which owns delayed extents
243  * @lblk: the offset where we start to search
244  * @end: the offset where we stop to search
245  * @es: delayed extent that we found
246  */
247 void ext4_es_find_delayed_extent_range(struct inode *inode,
248 				 ext4_lblk_t lblk, ext4_lblk_t end,
249 				 struct extent_status *es)
250 {
251 	struct ext4_es_tree *tree = NULL;
252 	struct extent_status *es1 = NULL;
253 	struct rb_node *node;
254 
255 	BUG_ON(es == NULL);
256 	BUG_ON(end < lblk);
257 	trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
258 
259 	read_lock(&EXT4_I(inode)->i_es_lock);
260 	tree = &EXT4_I(inode)->i_es_tree;
261 
262 	/* find extent in cache firstly */
263 	es->es_lblk = es->es_len = es->es_pblk = 0;
264 	if (tree->cache_es) {
265 		es1 = tree->cache_es;
266 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
267 			es_debug("%u cached by [%u/%u) %llu %x\n",
268 				 lblk, es1->es_lblk, es1->es_len,
269 				 ext4_es_pblock(es1), ext4_es_status(es1));
270 			goto out;
271 		}
272 	}
273 
274 	es1 = __es_tree_search(&tree->root, lblk);
275 
276 out:
277 	if (es1 && !ext4_es_is_delayed(es1)) {
278 		while ((node = rb_next(&es1->rb_node)) != NULL) {
279 			es1 = rb_entry(node, struct extent_status, rb_node);
280 			if (es1->es_lblk > end) {
281 				es1 = NULL;
282 				break;
283 			}
284 			if (ext4_es_is_delayed(es1))
285 				break;
286 		}
287 	}
288 
289 	if (es1 && ext4_es_is_delayed(es1)) {
290 		tree->cache_es = es1;
291 		es->es_lblk = es1->es_lblk;
292 		es->es_len = es1->es_len;
293 		es->es_pblk = es1->es_pblk;
294 	}
295 
296 	read_unlock(&EXT4_I(inode)->i_es_lock);
297 
298 	trace_ext4_es_find_delayed_extent_range_exit(inode, es);
299 }
300 
301 static struct extent_status *
302 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
303 		     ext4_fsblk_t pblk)
304 {
305 	struct extent_status *es;
306 	es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
307 	if (es == NULL)
308 		return NULL;
309 	es->es_lblk = lblk;
310 	es->es_len = len;
311 	es->es_pblk = pblk;
312 
313 	/*
314 	 * We don't count delayed extent because we never try to reclaim them
315 	 */
316 	if (!ext4_es_is_delayed(es)) {
317 		EXT4_I(inode)->i_es_lru_nr++;
318 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
319 					s_es_stats.es_stats_lru_cnt);
320 	}
321 
322 	EXT4_I(inode)->i_es_all_nr++;
323 	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
324 
325 	return es;
326 }
327 
328 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
329 {
330 	EXT4_I(inode)->i_es_all_nr--;
331 	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
332 
333 	/* Decrease the lru counter when this es is not delayed */
334 	if (!ext4_es_is_delayed(es)) {
335 		BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
336 		EXT4_I(inode)->i_es_lru_nr--;
337 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
338 					s_es_stats.es_stats_lru_cnt);
339 	}
340 
341 	kmem_cache_free(ext4_es_cachep, es);
342 }
343 
344 /*
345  * Check whether or not two extents can be merged
346  * Condition:
347  *  - logical block number is contiguous
348  *  - physical block number is contiguous
349  *  - status is equal
350  */
351 static int ext4_es_can_be_merged(struct extent_status *es1,
352 				 struct extent_status *es2)
353 {
354 	if (ext4_es_status(es1) != ext4_es_status(es2))
355 		return 0;
356 
357 	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
358 		pr_warn("ES assertion failed when merging extents. "
359 			"The sum of lengths of es1 (%d) and es2 (%d) "
360 			"is bigger than allowed file size (%d)\n",
361 			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
362 		WARN_ON(1);
363 		return 0;
364 	}
365 
366 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
367 		return 0;
368 
369 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
370 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
371 		return 1;
372 
373 	if (ext4_es_is_hole(es1))
374 		return 1;
375 
376 	/* we need to check delayed extent is without unwritten status */
377 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
378 		return 1;
379 
380 	return 0;
381 }
382 
383 static struct extent_status *
384 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
385 {
386 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
387 	struct extent_status *es1;
388 	struct rb_node *node;
389 
390 	node = rb_prev(&es->rb_node);
391 	if (!node)
392 		return es;
393 
394 	es1 = rb_entry(node, struct extent_status, rb_node);
395 	if (ext4_es_can_be_merged(es1, es)) {
396 		es1->es_len += es->es_len;
397 		rb_erase(&es->rb_node, &tree->root);
398 		ext4_es_free_extent(inode, es);
399 		es = es1;
400 	}
401 
402 	return es;
403 }
404 
405 static struct extent_status *
406 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
407 {
408 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
409 	struct extent_status *es1;
410 	struct rb_node *node;
411 
412 	node = rb_next(&es->rb_node);
413 	if (!node)
414 		return es;
415 
416 	es1 = rb_entry(node, struct extent_status, rb_node);
417 	if (ext4_es_can_be_merged(es, es1)) {
418 		es->es_len += es1->es_len;
419 		rb_erase(node, &tree->root);
420 		ext4_es_free_extent(inode, es1);
421 	}
422 
423 	return es;
424 }
425 
426 #ifdef ES_AGGRESSIVE_TEST
427 #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
428 
429 static void ext4_es_insert_extent_ext_check(struct inode *inode,
430 					    struct extent_status *es)
431 {
432 	struct ext4_ext_path *path = NULL;
433 	struct ext4_extent *ex;
434 	ext4_lblk_t ee_block;
435 	ext4_fsblk_t ee_start;
436 	unsigned short ee_len;
437 	int depth, ee_status, es_status;
438 
439 	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
440 	if (IS_ERR(path))
441 		return;
442 
443 	depth = ext_depth(inode);
444 	ex = path[depth].p_ext;
445 
446 	if (ex) {
447 
448 		ee_block = le32_to_cpu(ex->ee_block);
449 		ee_start = ext4_ext_pblock(ex);
450 		ee_len = ext4_ext_get_actual_len(ex);
451 
452 		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
453 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
454 
455 		/*
456 		 * Make sure ex and es are not overlap when we try to insert
457 		 * a delayed/hole extent.
458 		 */
459 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
460 			if (in_range(es->es_lblk, ee_block, ee_len)) {
461 				pr_warn("ES insert assertion failed for "
462 					"inode: %lu we can find an extent "
463 					"at block [%d/%d/%llu/%c], but we "
464 					"want to add a delayed/hole extent "
465 					"[%d/%d/%llu/%x]\n",
466 					inode->i_ino, ee_block, ee_len,
467 					ee_start, ee_status ? 'u' : 'w',
468 					es->es_lblk, es->es_len,
469 					ext4_es_pblock(es), ext4_es_status(es));
470 			}
471 			goto out;
472 		}
473 
474 		/*
475 		 * We don't check ee_block == es->es_lblk, etc. because es
476 		 * might be a part of whole extent, vice versa.
477 		 */
478 		if (es->es_lblk < ee_block ||
479 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
480 			pr_warn("ES insert assertion failed for inode: %lu "
481 				"ex_status [%d/%d/%llu/%c] != "
482 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
483 				ee_block, ee_len, ee_start,
484 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
485 				ext4_es_pblock(es), es_status ? 'u' : 'w');
486 			goto out;
487 		}
488 
489 		if (ee_status ^ es_status) {
490 			pr_warn("ES insert assertion failed for inode: %lu "
491 				"ex_status [%d/%d/%llu/%c] != "
492 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
493 				ee_block, ee_len, ee_start,
494 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
495 				ext4_es_pblock(es), es_status ? 'u' : 'w');
496 		}
497 	} else {
498 		/*
499 		 * We can't find an extent on disk.  So we need to make sure
500 		 * that we don't want to add an written/unwritten extent.
501 		 */
502 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
503 			pr_warn("ES insert assertion failed for inode: %lu "
504 				"can't find an extent at block %d but we want "
505 				"to add a written/unwritten extent "
506 				"[%d/%d/%llu/%x]\n", inode->i_ino,
507 				es->es_lblk, es->es_lblk, es->es_len,
508 				ext4_es_pblock(es), ext4_es_status(es));
509 		}
510 	}
511 out:
512 	ext4_ext_drop_refs(path);
513 	kfree(path);
514 }
515 
516 static void ext4_es_insert_extent_ind_check(struct inode *inode,
517 					    struct extent_status *es)
518 {
519 	struct ext4_map_blocks map;
520 	int retval;
521 
522 	/*
523 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
524 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
525 	 * access direct/indirect tree from outside.  It is too dirty to define
526 	 * this function in indirect.c file.
527 	 */
528 
529 	map.m_lblk = es->es_lblk;
530 	map.m_len = es->es_len;
531 
532 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
533 	if (retval > 0) {
534 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
535 			/*
536 			 * We want to add a delayed/hole extent but this
537 			 * block has been allocated.
538 			 */
539 			pr_warn("ES insert assertion failed for inode: %lu "
540 				"We can find blocks but we want to add a "
541 				"delayed/hole extent [%d/%d/%llu/%x]\n",
542 				inode->i_ino, es->es_lblk, es->es_len,
543 				ext4_es_pblock(es), ext4_es_status(es));
544 			return;
545 		} else if (ext4_es_is_written(es)) {
546 			if (retval != es->es_len) {
547 				pr_warn("ES insert assertion failed for "
548 					"inode: %lu retval %d != es_len %d\n",
549 					inode->i_ino, retval, es->es_len);
550 				return;
551 			}
552 			if (map.m_pblk != ext4_es_pblock(es)) {
553 				pr_warn("ES insert assertion failed for "
554 					"inode: %lu m_pblk %llu != "
555 					"es_pblk %llu\n",
556 					inode->i_ino, map.m_pblk,
557 					ext4_es_pblock(es));
558 				return;
559 			}
560 		} else {
561 			/*
562 			 * We don't need to check unwritten extent because
563 			 * indirect-based file doesn't have it.
564 			 */
565 			BUG_ON(1);
566 		}
567 	} else if (retval == 0) {
568 		if (ext4_es_is_written(es)) {
569 			pr_warn("ES insert assertion failed for inode: %lu "
570 				"We can't find the block but we want to add "
571 				"a written extent [%d/%d/%llu/%x]\n",
572 				inode->i_ino, es->es_lblk, es->es_len,
573 				ext4_es_pblock(es), ext4_es_status(es));
574 			return;
575 		}
576 	}
577 }
578 
579 static inline void ext4_es_insert_extent_check(struct inode *inode,
580 					       struct extent_status *es)
581 {
582 	/*
583 	 * We don't need to worry about the race condition because
584 	 * caller takes i_data_sem locking.
585 	 */
586 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
587 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
588 		ext4_es_insert_extent_ext_check(inode, es);
589 	else
590 		ext4_es_insert_extent_ind_check(inode, es);
591 }
592 #else
593 static inline void ext4_es_insert_extent_check(struct inode *inode,
594 					       struct extent_status *es)
595 {
596 }
597 #endif
598 
599 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
600 {
601 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
602 	struct rb_node **p = &tree->root.rb_node;
603 	struct rb_node *parent = NULL;
604 	struct extent_status *es;
605 
606 	while (*p) {
607 		parent = *p;
608 		es = rb_entry(parent, struct extent_status, rb_node);
609 
610 		if (newes->es_lblk < es->es_lblk) {
611 			if (ext4_es_can_be_merged(newes, es)) {
612 				/*
613 				 * Here we can modify es_lblk directly
614 				 * because it isn't overlapped.
615 				 */
616 				es->es_lblk = newes->es_lblk;
617 				es->es_len += newes->es_len;
618 				if (ext4_es_is_written(es) ||
619 				    ext4_es_is_unwritten(es))
620 					ext4_es_store_pblock(es,
621 							     newes->es_pblk);
622 				es = ext4_es_try_to_merge_left(inode, es);
623 				goto out;
624 			}
625 			p = &(*p)->rb_left;
626 		} else if (newes->es_lblk > ext4_es_end(es)) {
627 			if (ext4_es_can_be_merged(es, newes)) {
628 				es->es_len += newes->es_len;
629 				es = ext4_es_try_to_merge_right(inode, es);
630 				goto out;
631 			}
632 			p = &(*p)->rb_right;
633 		} else {
634 			BUG_ON(1);
635 			return -EINVAL;
636 		}
637 	}
638 
639 	es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
640 				  newes->es_pblk);
641 	if (!es)
642 		return -ENOMEM;
643 	rb_link_node(&es->rb_node, parent, p);
644 	rb_insert_color(&es->rb_node, &tree->root);
645 
646 out:
647 	tree->cache_es = es;
648 	return 0;
649 }
650 
651 /*
652  * ext4_es_insert_extent() adds information to an inode's extent
653  * status tree.
654  *
655  * Return 0 on success, error code on failure.
656  */
657 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
658 			  ext4_lblk_t len, ext4_fsblk_t pblk,
659 			  unsigned int status)
660 {
661 	struct extent_status newes;
662 	ext4_lblk_t end = lblk + len - 1;
663 	int err = 0;
664 
665 	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
666 		 lblk, len, pblk, status, inode->i_ino);
667 
668 	if (!len)
669 		return 0;
670 
671 	BUG_ON(end < lblk);
672 
673 	newes.es_lblk = lblk;
674 	newes.es_len = len;
675 	ext4_es_store_pblock_status(&newes, pblk, status);
676 	trace_ext4_es_insert_extent(inode, &newes);
677 
678 	ext4_es_insert_extent_check(inode, &newes);
679 
680 	write_lock(&EXT4_I(inode)->i_es_lock);
681 	err = __es_remove_extent(inode, lblk, end);
682 	if (err != 0)
683 		goto error;
684 retry:
685 	err = __es_insert_extent(inode, &newes);
686 	if (err == -ENOMEM && __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
687 					       EXT4_I(inode)))
688 		goto retry;
689 	if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
690 		err = 0;
691 
692 error:
693 	write_unlock(&EXT4_I(inode)->i_es_lock);
694 
695 	ext4_es_print_tree(inode);
696 
697 	return err;
698 }
699 
700 /*
701  * ext4_es_cache_extent() inserts information into the extent status
702  * tree if and only if there isn't information about the range in
703  * question already.
704  */
705 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
706 			  ext4_lblk_t len, ext4_fsblk_t pblk,
707 			  unsigned int status)
708 {
709 	struct extent_status *es;
710 	struct extent_status newes;
711 	ext4_lblk_t end = lblk + len - 1;
712 
713 	newes.es_lblk = lblk;
714 	newes.es_len = len;
715 	ext4_es_store_pblock_status(&newes, pblk, status);
716 	trace_ext4_es_cache_extent(inode, &newes);
717 
718 	if (!len)
719 		return;
720 
721 	BUG_ON(end < lblk);
722 
723 	write_lock(&EXT4_I(inode)->i_es_lock);
724 
725 	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
726 	if (!es || es->es_lblk > end)
727 		__es_insert_extent(inode, &newes);
728 	write_unlock(&EXT4_I(inode)->i_es_lock);
729 }
730 
731 /*
732  * ext4_es_lookup_extent() looks up an extent in extent status tree.
733  *
734  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
735  *
736  * Return: 1 on found, 0 on not
737  */
738 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
739 			  struct extent_status *es)
740 {
741 	struct ext4_es_tree *tree;
742 	struct ext4_es_stats *stats;
743 	struct extent_status *es1 = NULL;
744 	struct rb_node *node;
745 	int found = 0;
746 
747 	trace_ext4_es_lookup_extent_enter(inode, lblk);
748 	es_debug("lookup extent in block %u\n", lblk);
749 
750 	tree = &EXT4_I(inode)->i_es_tree;
751 	read_lock(&EXT4_I(inode)->i_es_lock);
752 
753 	/* find extent in cache firstly */
754 	es->es_lblk = es->es_len = es->es_pblk = 0;
755 	if (tree->cache_es) {
756 		es1 = tree->cache_es;
757 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
758 			es_debug("%u cached by [%u/%u)\n",
759 				 lblk, es1->es_lblk, es1->es_len);
760 			found = 1;
761 			goto out;
762 		}
763 	}
764 
765 	node = tree->root.rb_node;
766 	while (node) {
767 		es1 = rb_entry(node, struct extent_status, rb_node);
768 		if (lblk < es1->es_lblk)
769 			node = node->rb_left;
770 		else if (lblk > ext4_es_end(es1))
771 			node = node->rb_right;
772 		else {
773 			found = 1;
774 			break;
775 		}
776 	}
777 
778 out:
779 	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
780 	if (found) {
781 		BUG_ON(!es1);
782 		es->es_lblk = es1->es_lblk;
783 		es->es_len = es1->es_len;
784 		es->es_pblk = es1->es_pblk;
785 		stats->es_stats_cache_hits++;
786 	} else {
787 		stats->es_stats_cache_misses++;
788 	}
789 
790 	read_unlock(&EXT4_I(inode)->i_es_lock);
791 
792 	trace_ext4_es_lookup_extent_exit(inode, es, found);
793 	return found;
794 }
795 
796 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
797 			      ext4_lblk_t end)
798 {
799 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
800 	struct rb_node *node;
801 	struct extent_status *es;
802 	struct extent_status orig_es;
803 	ext4_lblk_t len1, len2;
804 	ext4_fsblk_t block;
805 	int err;
806 
807 retry:
808 	err = 0;
809 	es = __es_tree_search(&tree->root, lblk);
810 	if (!es)
811 		goto out;
812 	if (es->es_lblk > end)
813 		goto out;
814 
815 	/* Simply invalidate cache_es. */
816 	tree->cache_es = NULL;
817 
818 	orig_es.es_lblk = es->es_lblk;
819 	orig_es.es_len = es->es_len;
820 	orig_es.es_pblk = es->es_pblk;
821 
822 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
823 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
824 	if (len1 > 0)
825 		es->es_len = len1;
826 	if (len2 > 0) {
827 		if (len1 > 0) {
828 			struct extent_status newes;
829 
830 			newes.es_lblk = end + 1;
831 			newes.es_len = len2;
832 			block = 0x7FDEADBEEFULL;
833 			if (ext4_es_is_written(&orig_es) ||
834 			    ext4_es_is_unwritten(&orig_es))
835 				block = ext4_es_pblock(&orig_es) +
836 					orig_es.es_len - len2;
837 			ext4_es_store_pblock_status(&newes, block,
838 						    ext4_es_status(&orig_es));
839 			err = __es_insert_extent(inode, &newes);
840 			if (err) {
841 				es->es_lblk = orig_es.es_lblk;
842 				es->es_len = orig_es.es_len;
843 				if ((err == -ENOMEM) &&
844 				    __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
845 						     EXT4_I(inode)))
846 					goto retry;
847 				goto out;
848 			}
849 		} else {
850 			es->es_lblk = end + 1;
851 			es->es_len = len2;
852 			if (ext4_es_is_written(es) ||
853 			    ext4_es_is_unwritten(es)) {
854 				block = orig_es.es_pblk + orig_es.es_len - len2;
855 				ext4_es_store_pblock(es, block);
856 			}
857 		}
858 		goto out;
859 	}
860 
861 	if (len1 > 0) {
862 		node = rb_next(&es->rb_node);
863 		if (node)
864 			es = rb_entry(node, struct extent_status, rb_node);
865 		else
866 			es = NULL;
867 	}
868 
869 	while (es && ext4_es_end(es) <= end) {
870 		node = rb_next(&es->rb_node);
871 		rb_erase(&es->rb_node, &tree->root);
872 		ext4_es_free_extent(inode, es);
873 		if (!node) {
874 			es = NULL;
875 			break;
876 		}
877 		es = rb_entry(node, struct extent_status, rb_node);
878 	}
879 
880 	if (es && es->es_lblk < end + 1) {
881 		ext4_lblk_t orig_len = es->es_len;
882 
883 		len1 = ext4_es_end(es) - end;
884 		es->es_lblk = end + 1;
885 		es->es_len = len1;
886 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
887 			block = es->es_pblk + orig_len - len1;
888 			ext4_es_store_pblock(es, block);
889 		}
890 	}
891 
892 out:
893 	return err;
894 }
895 
896 /*
897  * ext4_es_remove_extent() removes a space from a extent status tree.
898  *
899  * Return 0 on success, error code on failure.
900  */
901 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
902 			  ext4_lblk_t len)
903 {
904 	ext4_lblk_t end;
905 	int err = 0;
906 
907 	trace_ext4_es_remove_extent(inode, lblk, len);
908 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
909 		 lblk, len, inode->i_ino);
910 
911 	if (!len)
912 		return err;
913 
914 	end = lblk + len - 1;
915 	BUG_ON(end < lblk);
916 
917 	write_lock(&EXT4_I(inode)->i_es_lock);
918 	err = __es_remove_extent(inode, lblk, end);
919 	write_unlock(&EXT4_I(inode)->i_es_lock);
920 	ext4_es_print_tree(inode);
921 	return err;
922 }
923 
924 static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a,
925 				     struct list_head *b)
926 {
927 	struct ext4_inode_info *eia, *eib;
928 	eia = list_entry(a, struct ext4_inode_info, i_es_lru);
929 	eib = list_entry(b, struct ext4_inode_info, i_es_lru);
930 
931 	if (ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) &&
932 	    !ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED))
933 		return 1;
934 	if (!ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) &&
935 	    ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED))
936 		return -1;
937 	if (eia->i_touch_when == eib->i_touch_when)
938 		return 0;
939 	if (time_after(eia->i_touch_when, eib->i_touch_when))
940 		return 1;
941 	else
942 		return -1;
943 }
944 
945 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
946 			    struct ext4_inode_info *locked_ei)
947 {
948 	struct ext4_inode_info *ei;
949 	struct ext4_es_stats *es_stats;
950 	struct list_head *cur, *tmp;
951 	LIST_HEAD(skipped);
952 	ktime_t start_time;
953 	u64 scan_time;
954 	int nr_shrunk = 0;
955 	int retried = 0, skip_precached = 1, nr_skipped = 0;
956 
957 	es_stats = &sbi->s_es_stats;
958 	start_time = ktime_get();
959 	spin_lock(&sbi->s_es_lru_lock);
960 
961 retry:
962 	list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
963 		int shrunk;
964 
965 		/*
966 		 * If we have already reclaimed all extents from extent
967 		 * status tree, just stop the loop immediately.
968 		 */
969 		if (percpu_counter_read_positive(
970 				&es_stats->es_stats_lru_cnt) == 0)
971 			break;
972 
973 		ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
974 
975 		/*
976 		 * Skip the inode that is newer than the last_sorted
977 		 * time.  Normally we try hard to avoid shrinking
978 		 * precached inodes, but we will as a last resort.
979 		 */
980 		if ((es_stats->es_stats_last_sorted < ei->i_touch_when) ||
981 		    (skip_precached && ext4_test_inode_state(&ei->vfs_inode,
982 						EXT4_STATE_EXT_PRECACHED))) {
983 			nr_skipped++;
984 			list_move_tail(cur, &skipped);
985 			continue;
986 		}
987 
988 		if (ei->i_es_lru_nr == 0 || ei == locked_ei ||
989 		    !write_trylock(&ei->i_es_lock))
990 			continue;
991 
992 		shrunk = __es_try_to_reclaim_extents(ei, nr_to_scan);
993 		if (ei->i_es_lru_nr == 0)
994 			list_del_init(&ei->i_es_lru);
995 		write_unlock(&ei->i_es_lock);
996 
997 		nr_shrunk += shrunk;
998 		nr_to_scan -= shrunk;
999 		if (nr_to_scan == 0)
1000 			break;
1001 	}
1002 
1003 	/* Move the newer inodes into the tail of the LRU list. */
1004 	list_splice_tail(&skipped, &sbi->s_es_lru);
1005 	INIT_LIST_HEAD(&skipped);
1006 
1007 	/*
1008 	 * If we skipped any inodes, and we weren't able to make any
1009 	 * forward progress, sort the list and try again.
1010 	 */
1011 	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1012 		retried++;
1013 		list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp);
1014 		es_stats->es_stats_last_sorted = jiffies;
1015 		ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info,
1016 				      i_es_lru);
1017 		/*
1018 		 * If there are no non-precached inodes left on the
1019 		 * list, start releasing precached extents.
1020 		 */
1021 		if (ext4_test_inode_state(&ei->vfs_inode,
1022 					  EXT4_STATE_EXT_PRECACHED))
1023 			skip_precached = 0;
1024 		goto retry;
1025 	}
1026 
1027 	spin_unlock(&sbi->s_es_lru_lock);
1028 
1029 	if (locked_ei && nr_shrunk == 0)
1030 		nr_shrunk = __es_try_to_reclaim_extents(locked_ei, nr_to_scan);
1031 
1032 	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1033 	if (likely(es_stats->es_stats_scan_time))
1034 		es_stats->es_stats_scan_time = (scan_time +
1035 				es_stats->es_stats_scan_time*3) / 4;
1036 	else
1037 		es_stats->es_stats_scan_time = scan_time;
1038 	if (scan_time > es_stats->es_stats_max_scan_time)
1039 		es_stats->es_stats_max_scan_time = scan_time;
1040 	if (likely(es_stats->es_stats_shrunk))
1041 		es_stats->es_stats_shrunk = (nr_shrunk +
1042 				es_stats->es_stats_shrunk*3) / 4;
1043 	else
1044 		es_stats->es_stats_shrunk = nr_shrunk;
1045 
1046 	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time, skip_precached,
1047 			     nr_skipped, retried);
1048 	return nr_shrunk;
1049 }
1050 
1051 static unsigned long ext4_es_count(struct shrinker *shrink,
1052 				   struct shrink_control *sc)
1053 {
1054 	unsigned long nr;
1055 	struct ext4_sb_info *sbi;
1056 
1057 	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1058 	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_lru_cnt);
1059 	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1060 	return nr;
1061 }
1062 
1063 static unsigned long ext4_es_scan(struct shrinker *shrink,
1064 				  struct shrink_control *sc)
1065 {
1066 	struct ext4_sb_info *sbi = container_of(shrink,
1067 					struct ext4_sb_info, s_es_shrinker);
1068 	int nr_to_scan = sc->nr_to_scan;
1069 	int ret, nr_shrunk;
1070 
1071 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_lru_cnt);
1072 	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1073 
1074 	if (!nr_to_scan)
1075 		return ret;
1076 
1077 	nr_shrunk = __ext4_es_shrink(sbi, nr_to_scan, NULL);
1078 
1079 	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1080 	return nr_shrunk;
1081 }
1082 
1083 static void *ext4_es_seq_shrinker_info_start(struct seq_file *seq, loff_t *pos)
1084 {
1085 	return *pos ? NULL : SEQ_START_TOKEN;
1086 }
1087 
1088 static void *
1089 ext4_es_seq_shrinker_info_next(struct seq_file *seq, void *v, loff_t *pos)
1090 {
1091 	return NULL;
1092 }
1093 
1094 static int ext4_es_seq_shrinker_info_show(struct seq_file *seq, void *v)
1095 {
1096 	struct ext4_sb_info *sbi = seq->private;
1097 	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1098 	struct ext4_inode_info *ei, *max = NULL;
1099 	unsigned int inode_cnt = 0;
1100 
1101 	if (v != SEQ_START_TOKEN)
1102 		return 0;
1103 
1104 	/* here we just find an inode that has the max nr. of objects */
1105 	spin_lock(&sbi->s_es_lru_lock);
1106 	list_for_each_entry(ei, &sbi->s_es_lru, i_es_lru) {
1107 		inode_cnt++;
1108 		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1109 			max = ei;
1110 		else if (!max)
1111 			max = ei;
1112 	}
1113 	spin_unlock(&sbi->s_es_lru_lock);
1114 
1115 	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1116 		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1117 		   percpu_counter_sum_positive(&es_stats->es_stats_lru_cnt));
1118 	seq_printf(seq, "  %lu/%lu cache hits/misses\n",
1119 		   es_stats->es_stats_cache_hits,
1120 		   es_stats->es_stats_cache_misses);
1121 	if (es_stats->es_stats_last_sorted != 0)
1122 		seq_printf(seq, "  %u ms last sorted interval\n",
1123 			   jiffies_to_msecs(jiffies -
1124 					    es_stats->es_stats_last_sorted));
1125 	if (inode_cnt)
1126 		seq_printf(seq, "  %d inodes on lru list\n", inode_cnt);
1127 
1128 	seq_printf(seq, "average:\n  %llu us scan time\n",
1129 	    div_u64(es_stats->es_stats_scan_time, 1000));
1130 	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1131 	if (inode_cnt)
1132 		seq_printf(seq,
1133 		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1134 		    "  %llu us max scan time\n",
1135 		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_lru_nr,
1136 		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1137 
1138 	return 0;
1139 }
1140 
1141 static void ext4_es_seq_shrinker_info_stop(struct seq_file *seq, void *v)
1142 {
1143 }
1144 
1145 static const struct seq_operations ext4_es_seq_shrinker_info_ops = {
1146 	.start = ext4_es_seq_shrinker_info_start,
1147 	.next  = ext4_es_seq_shrinker_info_next,
1148 	.stop  = ext4_es_seq_shrinker_info_stop,
1149 	.show  = ext4_es_seq_shrinker_info_show,
1150 };
1151 
1152 static int
1153 ext4_es_seq_shrinker_info_open(struct inode *inode, struct file *file)
1154 {
1155 	int ret;
1156 
1157 	ret = seq_open(file, &ext4_es_seq_shrinker_info_ops);
1158 	if (!ret) {
1159 		struct seq_file *m = file->private_data;
1160 		m->private = PDE_DATA(inode);
1161 	}
1162 
1163 	return ret;
1164 }
1165 
1166 static int
1167 ext4_es_seq_shrinker_info_release(struct inode *inode, struct file *file)
1168 {
1169 	return seq_release(inode, file);
1170 }
1171 
1172 static const struct file_operations ext4_es_seq_shrinker_info_fops = {
1173 	.owner		= THIS_MODULE,
1174 	.open		= ext4_es_seq_shrinker_info_open,
1175 	.read		= seq_read,
1176 	.llseek		= seq_lseek,
1177 	.release	= ext4_es_seq_shrinker_info_release,
1178 };
1179 
1180 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1181 {
1182 	int err;
1183 
1184 	INIT_LIST_HEAD(&sbi->s_es_lru);
1185 	spin_lock_init(&sbi->s_es_lru_lock);
1186 	sbi->s_es_stats.es_stats_last_sorted = 0;
1187 	sbi->s_es_stats.es_stats_shrunk = 0;
1188 	sbi->s_es_stats.es_stats_cache_hits = 0;
1189 	sbi->s_es_stats.es_stats_cache_misses = 0;
1190 	sbi->s_es_stats.es_stats_scan_time = 0;
1191 	sbi->s_es_stats.es_stats_max_scan_time = 0;
1192 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1193 	if (err)
1194 		return err;
1195 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_lru_cnt, 0, GFP_KERNEL);
1196 	if (err)
1197 		goto err1;
1198 
1199 	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1200 	sbi->s_es_shrinker.count_objects = ext4_es_count;
1201 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1202 	err = register_shrinker(&sbi->s_es_shrinker);
1203 	if (err)
1204 		goto err2;
1205 
1206 	if (sbi->s_proc)
1207 		proc_create_data("es_shrinker_info", S_IRUGO, sbi->s_proc,
1208 				 &ext4_es_seq_shrinker_info_fops, sbi);
1209 
1210 	return 0;
1211 
1212 err2:
1213 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_lru_cnt);
1214 err1:
1215 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1216 	return err;
1217 }
1218 
1219 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1220 {
1221 	if (sbi->s_proc)
1222 		remove_proc_entry("es_shrinker_info", sbi->s_proc);
1223 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1224 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_lru_cnt);
1225 	unregister_shrinker(&sbi->s_es_shrinker);
1226 }
1227 
1228 void ext4_es_lru_add(struct inode *inode)
1229 {
1230 	struct ext4_inode_info *ei = EXT4_I(inode);
1231 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1232 
1233 	ei->i_touch_when = jiffies;
1234 
1235 	if (!list_empty(&ei->i_es_lru))
1236 		return;
1237 
1238 	spin_lock(&sbi->s_es_lru_lock);
1239 	if (list_empty(&ei->i_es_lru))
1240 		list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
1241 	spin_unlock(&sbi->s_es_lru_lock);
1242 }
1243 
1244 void ext4_es_lru_del(struct inode *inode)
1245 {
1246 	struct ext4_inode_info *ei = EXT4_I(inode);
1247 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1248 
1249 	spin_lock(&sbi->s_es_lru_lock);
1250 	if (!list_empty(&ei->i_es_lru))
1251 		list_del_init(&ei->i_es_lru);
1252 	spin_unlock(&sbi->s_es_lru_lock);
1253 }
1254 
1255 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
1256 				       int nr_to_scan)
1257 {
1258 	struct inode *inode = &ei->vfs_inode;
1259 	struct ext4_es_tree *tree = &ei->i_es_tree;
1260 	struct rb_node *node;
1261 	struct extent_status *es;
1262 	unsigned long nr_shrunk = 0;
1263 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1264 				      DEFAULT_RATELIMIT_BURST);
1265 
1266 	if (ei->i_es_lru_nr == 0)
1267 		return 0;
1268 
1269 	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1270 	    __ratelimit(&_rs))
1271 		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1272 
1273 	node = rb_first(&tree->root);
1274 	while (node != NULL) {
1275 		es = rb_entry(node, struct extent_status, rb_node);
1276 		node = rb_next(&es->rb_node);
1277 		/*
1278 		 * We can't reclaim delayed extent from status tree because
1279 		 * fiemap, bigallic, and seek_data/hole need to use it.
1280 		 */
1281 		if (!ext4_es_is_delayed(es)) {
1282 			rb_erase(&es->rb_node, &tree->root);
1283 			ext4_es_free_extent(inode, es);
1284 			nr_shrunk++;
1285 			if (--nr_to_scan == 0)
1286 				break;
1287 		}
1288 	}
1289 	tree->cache_es = NULL;
1290 	return nr_shrunk;
1291 }
1292