1 /* 2 * fs/ext4/extents_status.c 3 * 4 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com> 5 * Modified by 6 * Allison Henderson <achender@linux.vnet.ibm.com> 7 * Hugh Dickins <hughd@google.com> 8 * Zheng Liu <wenqing.lz@taobao.com> 9 * 10 * Ext4 extents status tree core functions. 11 */ 12 #include <linux/rbtree.h> 13 #include "ext4.h" 14 #include "extents_status.h" 15 #include "ext4_extents.h" 16 17 #include <trace/events/ext4.h> 18 19 /* 20 * According to previous discussion in Ext4 Developer Workshop, we 21 * will introduce a new structure called io tree to track all extent 22 * status in order to solve some problems that we have met 23 * (e.g. Reservation space warning), and provide extent-level locking. 24 * Delay extent tree is the first step to achieve this goal. It is 25 * original built by Yongqiang Yang. At that time it is called delay 26 * extent tree, whose goal is only track delayed extents in memory to 27 * simplify the implementation of fiemap and bigalloc, and introduce 28 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called 29 * delay extent tree at the first commit. But for better understand 30 * what it does, it has been rename to extent status tree. 31 * 32 * Step1: 33 * Currently the first step has been done. All delayed extents are 34 * tracked in the tree. It maintains the delayed extent when a delayed 35 * allocation is issued, and the delayed extent is written out or 36 * invalidated. Therefore the implementation of fiemap and bigalloc 37 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced. 38 * 39 * The following comment describes the implemenmtation of extent 40 * status tree and future works. 41 * 42 * Step2: 43 * In this step all extent status are tracked by extent status tree. 44 * Thus, we can first try to lookup a block mapping in this tree before 45 * finding it in extent tree. Hence, single extent cache can be removed 46 * because extent status tree can do a better job. Extents in status 47 * tree are loaded on-demand. Therefore, the extent status tree may not 48 * contain all of the extents in a file. Meanwhile we define a shrinker 49 * to reclaim memory from extent status tree because fragmented extent 50 * tree will make status tree cost too much memory. written/unwritten/- 51 * hole extents in the tree will be reclaimed by this shrinker when we 52 * are under high memory pressure. Delayed extents will not be 53 * reclimed because fiemap, bigalloc, and seek_data/hole need it. 54 */ 55 56 /* 57 * Extent status tree implementation for ext4. 58 * 59 * 60 * ========================================================================== 61 * Extent status tree tracks all extent status. 62 * 63 * 1. Why we need to implement extent status tree? 64 * 65 * Without extent status tree, ext4 identifies a delayed extent by looking 66 * up page cache, this has several deficiencies - complicated, buggy, 67 * and inefficient code. 68 * 69 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a 70 * block or a range of blocks are belonged to a delayed extent. 71 * 72 * Let us have a look at how they do without extent status tree. 73 * -- FIEMAP 74 * FIEMAP looks up page cache to identify delayed allocations from holes. 75 * 76 * -- SEEK_HOLE/DATA 77 * SEEK_HOLE/DATA has the same problem as FIEMAP. 78 * 79 * -- bigalloc 80 * bigalloc looks up page cache to figure out if a block is 81 * already under delayed allocation or not to determine whether 82 * quota reserving is needed for the cluster. 83 * 84 * -- writeout 85 * Writeout looks up whole page cache to see if a buffer is 86 * mapped, If there are not very many delayed buffers, then it is 87 * time comsuming. 88 * 89 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA, 90 * bigalloc and writeout can figure out if a block or a range of 91 * blocks is under delayed allocation(belonged to a delayed extent) or 92 * not by searching the extent tree. 93 * 94 * 95 * ========================================================================== 96 * 2. Ext4 extent status tree impelmentation 97 * 98 * -- extent 99 * A extent is a range of blocks which are contiguous logically and 100 * physically. Unlike extent in extent tree, this extent in ext4 is 101 * a in-memory struct, there is no corresponding on-disk data. There 102 * is no limit on length of extent, so an extent can contain as many 103 * blocks as they are contiguous logically and physically. 104 * 105 * -- extent status tree 106 * Every inode has an extent status tree and all allocation blocks 107 * are added to the tree with different status. The extent in the 108 * tree are ordered by logical block no. 109 * 110 * -- operations on a extent status tree 111 * There are three important operations on a delayed extent tree: find 112 * next extent, adding a extent(a range of blocks) and removing a extent. 113 * 114 * -- race on a extent status tree 115 * Extent status tree is protected by inode->i_es_lock. 116 * 117 * -- memory consumption 118 * Fragmented extent tree will make extent status tree cost too much 119 * memory. Hence, we will reclaim written/unwritten/hole extents from 120 * the tree under a heavy memory pressure. 121 * 122 * 123 * ========================================================================== 124 * 3. Performance analysis 125 * 126 * -- overhead 127 * 1. There is a cache extent for write access, so if writes are 128 * not very random, adding space operaions are in O(1) time. 129 * 130 * -- gain 131 * 2. Code is much simpler, more readable, more maintainable and 132 * more efficient. 133 * 134 * 135 * ========================================================================== 136 * 4. TODO list 137 * 138 * -- Refactor delayed space reservation 139 * 140 * -- Extent-level locking 141 */ 142 143 static struct kmem_cache *ext4_es_cachep; 144 145 static int __es_insert_extent(struct inode *inode, struct extent_status *newes); 146 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 147 ext4_lblk_t end); 148 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei, 149 int nr_to_scan); 150 151 int __init ext4_init_es(void) 152 { 153 ext4_es_cachep = kmem_cache_create("ext4_extent_status", 154 sizeof(struct extent_status), 155 0, (SLAB_RECLAIM_ACCOUNT), NULL); 156 if (ext4_es_cachep == NULL) 157 return -ENOMEM; 158 return 0; 159 } 160 161 void ext4_exit_es(void) 162 { 163 if (ext4_es_cachep) 164 kmem_cache_destroy(ext4_es_cachep); 165 } 166 167 void ext4_es_init_tree(struct ext4_es_tree *tree) 168 { 169 tree->root = RB_ROOT; 170 tree->cache_es = NULL; 171 } 172 173 #ifdef ES_DEBUG__ 174 static void ext4_es_print_tree(struct inode *inode) 175 { 176 struct ext4_es_tree *tree; 177 struct rb_node *node; 178 179 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino); 180 tree = &EXT4_I(inode)->i_es_tree; 181 node = rb_first(&tree->root); 182 while (node) { 183 struct extent_status *es; 184 es = rb_entry(node, struct extent_status, rb_node); 185 printk(KERN_DEBUG " [%u/%u) %llu %llx", 186 es->es_lblk, es->es_len, 187 ext4_es_pblock(es), ext4_es_status(es)); 188 node = rb_next(node); 189 } 190 printk(KERN_DEBUG "\n"); 191 } 192 #else 193 #define ext4_es_print_tree(inode) 194 #endif 195 196 static inline ext4_lblk_t ext4_es_end(struct extent_status *es) 197 { 198 BUG_ON(es->es_lblk + es->es_len < es->es_lblk); 199 return es->es_lblk + es->es_len - 1; 200 } 201 202 /* 203 * search through the tree for an delayed extent with a given offset. If 204 * it can't be found, try to find next extent. 205 */ 206 static struct extent_status *__es_tree_search(struct rb_root *root, 207 ext4_lblk_t lblk) 208 { 209 struct rb_node *node = root->rb_node; 210 struct extent_status *es = NULL; 211 212 while (node) { 213 es = rb_entry(node, struct extent_status, rb_node); 214 if (lblk < es->es_lblk) 215 node = node->rb_left; 216 else if (lblk > ext4_es_end(es)) 217 node = node->rb_right; 218 else 219 return es; 220 } 221 222 if (es && lblk < es->es_lblk) 223 return es; 224 225 if (es && lblk > ext4_es_end(es)) { 226 node = rb_next(&es->rb_node); 227 return node ? rb_entry(node, struct extent_status, rb_node) : 228 NULL; 229 } 230 231 return NULL; 232 } 233 234 /* 235 * ext4_es_find_delayed_extent: find the 1st delayed extent covering @es->lblk 236 * if it exists, otherwise, the next extent after @es->lblk. 237 * 238 * @inode: the inode which owns delayed extents 239 * @lblk: the offset where we start to search 240 * @es: delayed extent that we found 241 */ 242 void ext4_es_find_delayed_extent(struct inode *inode, ext4_lblk_t lblk, 243 struct extent_status *es) 244 { 245 struct ext4_es_tree *tree = NULL; 246 struct extent_status *es1 = NULL; 247 struct rb_node *node; 248 249 BUG_ON(es == NULL); 250 trace_ext4_es_find_delayed_extent_enter(inode, lblk); 251 252 read_lock(&EXT4_I(inode)->i_es_lock); 253 tree = &EXT4_I(inode)->i_es_tree; 254 255 /* find extent in cache firstly */ 256 es->es_lblk = es->es_len = es->es_pblk = 0; 257 if (tree->cache_es) { 258 es1 = tree->cache_es; 259 if (in_range(lblk, es1->es_lblk, es1->es_len)) { 260 es_debug("%u cached by [%u/%u) %llu %llx\n", 261 lblk, es1->es_lblk, es1->es_len, 262 ext4_es_pblock(es1), ext4_es_status(es1)); 263 goto out; 264 } 265 } 266 267 es1 = __es_tree_search(&tree->root, lblk); 268 269 out: 270 if (es1 && !ext4_es_is_delayed(es1)) { 271 while ((node = rb_next(&es1->rb_node)) != NULL) { 272 es1 = rb_entry(node, struct extent_status, rb_node); 273 if (ext4_es_is_delayed(es1)) 274 break; 275 } 276 } 277 278 if (es1 && ext4_es_is_delayed(es1)) { 279 tree->cache_es = es1; 280 es->es_lblk = es1->es_lblk; 281 es->es_len = es1->es_len; 282 es->es_pblk = es1->es_pblk; 283 } 284 285 read_unlock(&EXT4_I(inode)->i_es_lock); 286 287 ext4_es_lru_add(inode); 288 trace_ext4_es_find_delayed_extent_exit(inode, es); 289 } 290 291 static struct extent_status * 292 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, 293 ext4_fsblk_t pblk) 294 { 295 struct extent_status *es; 296 es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC); 297 if (es == NULL) 298 return NULL; 299 es->es_lblk = lblk; 300 es->es_len = len; 301 es->es_pblk = pblk; 302 303 /* 304 * We don't count delayed extent because we never try to reclaim them 305 */ 306 if (!ext4_es_is_delayed(es)) { 307 EXT4_I(inode)->i_es_lru_nr++; 308 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt); 309 } 310 311 return es; 312 } 313 314 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es) 315 { 316 /* Decrease the lru counter when this es is not delayed */ 317 if (!ext4_es_is_delayed(es)) { 318 BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0); 319 EXT4_I(inode)->i_es_lru_nr--; 320 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt); 321 } 322 323 kmem_cache_free(ext4_es_cachep, es); 324 } 325 326 /* 327 * Check whether or not two extents can be merged 328 * Condition: 329 * - logical block number is contiguous 330 * - physical block number is contiguous 331 * - status is equal 332 */ 333 static int ext4_es_can_be_merged(struct extent_status *es1, 334 struct extent_status *es2) 335 { 336 if (es1->es_lblk + es1->es_len != es2->es_lblk) 337 return 0; 338 339 if (ext4_es_status(es1) != ext4_es_status(es2)) 340 return 0; 341 342 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) && 343 (ext4_es_pblock(es1) + es1->es_len != ext4_es_pblock(es2))) 344 return 0; 345 346 return 1; 347 } 348 349 static struct extent_status * 350 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es) 351 { 352 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 353 struct extent_status *es1; 354 struct rb_node *node; 355 356 node = rb_prev(&es->rb_node); 357 if (!node) 358 return es; 359 360 es1 = rb_entry(node, struct extent_status, rb_node); 361 if (ext4_es_can_be_merged(es1, es)) { 362 es1->es_len += es->es_len; 363 rb_erase(&es->rb_node, &tree->root); 364 ext4_es_free_extent(inode, es); 365 es = es1; 366 } 367 368 return es; 369 } 370 371 static struct extent_status * 372 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es) 373 { 374 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 375 struct extent_status *es1; 376 struct rb_node *node; 377 378 node = rb_next(&es->rb_node); 379 if (!node) 380 return es; 381 382 es1 = rb_entry(node, struct extent_status, rb_node); 383 if (ext4_es_can_be_merged(es, es1)) { 384 es->es_len += es1->es_len; 385 rb_erase(node, &tree->root); 386 ext4_es_free_extent(inode, es1); 387 } 388 389 return es; 390 } 391 392 static int __es_insert_extent(struct inode *inode, struct extent_status *newes) 393 { 394 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 395 struct rb_node **p = &tree->root.rb_node; 396 struct rb_node *parent = NULL; 397 struct extent_status *es; 398 399 while (*p) { 400 parent = *p; 401 es = rb_entry(parent, struct extent_status, rb_node); 402 403 if (newes->es_lblk < es->es_lblk) { 404 if (ext4_es_can_be_merged(newes, es)) { 405 /* 406 * Here we can modify es_lblk directly 407 * because it isn't overlapped. 408 */ 409 es->es_lblk = newes->es_lblk; 410 es->es_len += newes->es_len; 411 if (ext4_es_is_written(es) || 412 ext4_es_is_unwritten(es)) 413 ext4_es_store_pblock(es, 414 newes->es_pblk); 415 es = ext4_es_try_to_merge_left(inode, es); 416 goto out; 417 } 418 p = &(*p)->rb_left; 419 } else if (newes->es_lblk > ext4_es_end(es)) { 420 if (ext4_es_can_be_merged(es, newes)) { 421 es->es_len += newes->es_len; 422 es = ext4_es_try_to_merge_right(inode, es); 423 goto out; 424 } 425 p = &(*p)->rb_right; 426 } else { 427 BUG_ON(1); 428 return -EINVAL; 429 } 430 } 431 432 es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len, 433 newes->es_pblk); 434 if (!es) 435 return -ENOMEM; 436 rb_link_node(&es->rb_node, parent, p); 437 rb_insert_color(&es->rb_node, &tree->root); 438 439 out: 440 tree->cache_es = es; 441 return 0; 442 } 443 444 /* 445 * ext4_es_insert_extent() adds a space to a extent status tree. 446 * 447 * ext4_es_insert_extent is called by ext4_da_write_begin and 448 * ext4_es_remove_extent. 449 * 450 * Return 0 on success, error code on failure. 451 */ 452 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, 453 ext4_lblk_t len, ext4_fsblk_t pblk, 454 unsigned long long status) 455 { 456 struct extent_status newes; 457 ext4_lblk_t end = lblk + len - 1; 458 int err = 0; 459 460 es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n", 461 lblk, len, pblk, status, inode->i_ino); 462 463 if (!len) 464 return 0; 465 466 BUG_ON(end < lblk); 467 468 newes.es_lblk = lblk; 469 newes.es_len = len; 470 ext4_es_store_pblock(&newes, pblk); 471 ext4_es_store_status(&newes, status); 472 trace_ext4_es_insert_extent(inode, &newes); 473 474 write_lock(&EXT4_I(inode)->i_es_lock); 475 err = __es_remove_extent(inode, lblk, end); 476 if (err != 0) 477 goto error; 478 err = __es_insert_extent(inode, &newes); 479 480 error: 481 write_unlock(&EXT4_I(inode)->i_es_lock); 482 483 ext4_es_lru_add(inode); 484 ext4_es_print_tree(inode); 485 486 return err; 487 } 488 489 /* 490 * ext4_es_lookup_extent() looks up an extent in extent status tree. 491 * 492 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks. 493 * 494 * Return: 1 on found, 0 on not 495 */ 496 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, 497 struct extent_status *es) 498 { 499 struct ext4_es_tree *tree; 500 struct extent_status *es1 = NULL; 501 struct rb_node *node; 502 int found = 0; 503 504 trace_ext4_es_lookup_extent_enter(inode, lblk); 505 es_debug("lookup extent in block %u\n", lblk); 506 507 tree = &EXT4_I(inode)->i_es_tree; 508 read_lock(&EXT4_I(inode)->i_es_lock); 509 510 /* find extent in cache firstly */ 511 es->es_lblk = es->es_len = es->es_pblk = 0; 512 if (tree->cache_es) { 513 es1 = tree->cache_es; 514 if (in_range(lblk, es1->es_lblk, es1->es_len)) { 515 es_debug("%u cached by [%u/%u)\n", 516 lblk, es1->es_lblk, es1->es_len); 517 found = 1; 518 goto out; 519 } 520 } 521 522 node = tree->root.rb_node; 523 while (node) { 524 es1 = rb_entry(node, struct extent_status, rb_node); 525 if (lblk < es1->es_lblk) 526 node = node->rb_left; 527 else if (lblk > ext4_es_end(es1)) 528 node = node->rb_right; 529 else { 530 found = 1; 531 break; 532 } 533 } 534 535 out: 536 if (found) { 537 BUG_ON(!es1); 538 es->es_lblk = es1->es_lblk; 539 es->es_len = es1->es_len; 540 es->es_pblk = es1->es_pblk; 541 } 542 543 read_unlock(&EXT4_I(inode)->i_es_lock); 544 545 ext4_es_lru_add(inode); 546 trace_ext4_es_lookup_extent_exit(inode, es, found); 547 return found; 548 } 549 550 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 551 ext4_lblk_t end) 552 { 553 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 554 struct rb_node *node; 555 struct extent_status *es; 556 struct extent_status orig_es; 557 ext4_lblk_t len1, len2; 558 ext4_fsblk_t block; 559 int err = 0; 560 561 es = __es_tree_search(&tree->root, lblk); 562 if (!es) 563 goto out; 564 if (es->es_lblk > end) 565 goto out; 566 567 /* Simply invalidate cache_es. */ 568 tree->cache_es = NULL; 569 570 orig_es.es_lblk = es->es_lblk; 571 orig_es.es_len = es->es_len; 572 orig_es.es_pblk = es->es_pblk; 573 574 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0; 575 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0; 576 if (len1 > 0) 577 es->es_len = len1; 578 if (len2 > 0) { 579 if (len1 > 0) { 580 struct extent_status newes; 581 582 newes.es_lblk = end + 1; 583 newes.es_len = len2; 584 if (ext4_es_is_written(&orig_es) || 585 ext4_es_is_unwritten(&orig_es)) { 586 block = ext4_es_pblock(&orig_es) + 587 orig_es.es_len - len2; 588 ext4_es_store_pblock(&newes, block); 589 } 590 ext4_es_store_status(&newes, ext4_es_status(&orig_es)); 591 err = __es_insert_extent(inode, &newes); 592 if (err) { 593 es->es_lblk = orig_es.es_lblk; 594 es->es_len = orig_es.es_len; 595 goto out; 596 } 597 } else { 598 es->es_lblk = end + 1; 599 es->es_len = len2; 600 if (ext4_es_is_written(es) || 601 ext4_es_is_unwritten(es)) { 602 block = orig_es.es_pblk + orig_es.es_len - len2; 603 ext4_es_store_pblock(es, block); 604 } 605 } 606 goto out; 607 } 608 609 if (len1 > 0) { 610 node = rb_next(&es->rb_node); 611 if (node) 612 es = rb_entry(node, struct extent_status, rb_node); 613 else 614 es = NULL; 615 } 616 617 while (es && ext4_es_end(es) <= end) { 618 node = rb_next(&es->rb_node); 619 rb_erase(&es->rb_node, &tree->root); 620 ext4_es_free_extent(inode, es); 621 if (!node) { 622 es = NULL; 623 break; 624 } 625 es = rb_entry(node, struct extent_status, rb_node); 626 } 627 628 if (es && es->es_lblk < end + 1) { 629 ext4_lblk_t orig_len = es->es_len; 630 631 len1 = ext4_es_end(es) - end; 632 es->es_lblk = end + 1; 633 es->es_len = len1; 634 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { 635 block = es->es_pblk + orig_len - len1; 636 ext4_es_store_pblock(es, block); 637 } 638 } 639 640 out: 641 return err; 642 } 643 644 /* 645 * ext4_es_remove_extent() removes a space from a extent status tree. 646 * 647 * Return 0 on success, error code on failure. 648 */ 649 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 650 ext4_lblk_t len) 651 { 652 ext4_lblk_t end; 653 int err = 0; 654 655 trace_ext4_es_remove_extent(inode, lblk, len); 656 es_debug("remove [%u/%u) from extent status tree of inode %lu\n", 657 lblk, len, inode->i_ino); 658 659 if (!len) 660 return err; 661 662 end = lblk + len - 1; 663 BUG_ON(end < lblk); 664 665 write_lock(&EXT4_I(inode)->i_es_lock); 666 err = __es_remove_extent(inode, lblk, end); 667 write_unlock(&EXT4_I(inode)->i_es_lock); 668 ext4_es_print_tree(inode); 669 return err; 670 } 671 672 static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc) 673 { 674 struct ext4_sb_info *sbi = container_of(shrink, 675 struct ext4_sb_info, s_es_shrinker); 676 struct ext4_inode_info *ei; 677 struct list_head *cur, *tmp, scanned; 678 int nr_to_scan = sc->nr_to_scan; 679 int ret, nr_shrunk = 0; 680 681 ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt); 682 trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret); 683 684 if (!nr_to_scan) 685 return ret; 686 687 INIT_LIST_HEAD(&scanned); 688 689 spin_lock(&sbi->s_es_lru_lock); 690 list_for_each_safe(cur, tmp, &sbi->s_es_lru) { 691 list_move_tail(cur, &scanned); 692 693 ei = list_entry(cur, struct ext4_inode_info, i_es_lru); 694 695 read_lock(&ei->i_es_lock); 696 if (ei->i_es_lru_nr == 0) { 697 read_unlock(&ei->i_es_lock); 698 continue; 699 } 700 read_unlock(&ei->i_es_lock); 701 702 write_lock(&ei->i_es_lock); 703 ret = __es_try_to_reclaim_extents(ei, nr_to_scan); 704 write_unlock(&ei->i_es_lock); 705 706 nr_shrunk += ret; 707 nr_to_scan -= ret; 708 if (nr_to_scan == 0) 709 break; 710 } 711 list_splice_tail(&scanned, &sbi->s_es_lru); 712 spin_unlock(&sbi->s_es_lru_lock); 713 714 ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt); 715 trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret); 716 return ret; 717 } 718 719 void ext4_es_register_shrinker(struct super_block *sb) 720 { 721 struct ext4_sb_info *sbi; 722 723 sbi = EXT4_SB(sb); 724 INIT_LIST_HEAD(&sbi->s_es_lru); 725 spin_lock_init(&sbi->s_es_lru_lock); 726 sbi->s_es_shrinker.shrink = ext4_es_shrink; 727 sbi->s_es_shrinker.seeks = DEFAULT_SEEKS; 728 register_shrinker(&sbi->s_es_shrinker); 729 } 730 731 void ext4_es_unregister_shrinker(struct super_block *sb) 732 { 733 unregister_shrinker(&EXT4_SB(sb)->s_es_shrinker); 734 } 735 736 void ext4_es_lru_add(struct inode *inode) 737 { 738 struct ext4_inode_info *ei = EXT4_I(inode); 739 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 740 741 spin_lock(&sbi->s_es_lru_lock); 742 if (list_empty(&ei->i_es_lru)) 743 list_add_tail(&ei->i_es_lru, &sbi->s_es_lru); 744 else 745 list_move_tail(&ei->i_es_lru, &sbi->s_es_lru); 746 spin_unlock(&sbi->s_es_lru_lock); 747 } 748 749 void ext4_es_lru_del(struct inode *inode) 750 { 751 struct ext4_inode_info *ei = EXT4_I(inode); 752 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 753 754 spin_lock(&sbi->s_es_lru_lock); 755 if (!list_empty(&ei->i_es_lru)) 756 list_del_init(&ei->i_es_lru); 757 spin_unlock(&sbi->s_es_lru_lock); 758 } 759 760 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei, 761 int nr_to_scan) 762 { 763 struct inode *inode = &ei->vfs_inode; 764 struct ext4_es_tree *tree = &ei->i_es_tree; 765 struct rb_node *node; 766 struct extent_status *es; 767 int nr_shrunk = 0; 768 769 if (ei->i_es_lru_nr == 0) 770 return 0; 771 772 node = rb_first(&tree->root); 773 while (node != NULL) { 774 es = rb_entry(node, struct extent_status, rb_node); 775 node = rb_next(&es->rb_node); 776 /* 777 * We can't reclaim delayed extent from status tree because 778 * fiemap, bigallic, and seek_data/hole need to use it. 779 */ 780 if (!ext4_es_is_delayed(es)) { 781 rb_erase(&es->rb_node, &tree->root); 782 ext4_es_free_extent(inode, es); 783 nr_shrunk++; 784 if (--nr_to_scan == 0) 785 break; 786 } 787 } 788 tree->cache_es = NULL; 789 return nr_shrunk; 790 } 791