xref: /openbmc/linux/fs/ext4/extents_status.c (revision 6b6c2ebd83f2bf97e8f221479372aaca97a4a9b2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  fs/ext4/extents_status.c
4  *
5  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6  * Modified by
7  *	Allison Henderson <achender@linux.vnet.ibm.com>
8  *	Hugh Dickins <hughd@google.com>
9  *	Zheng Liu <wenqing.lz@taobao.com>
10  *
11  * Ext4 extents status tree core functions.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 
18 #include <trace/events/ext4.h>
19 
20 /*
21  * According to previous discussion in Ext4 Developer Workshop, we
22  * will introduce a new structure called io tree to track all extent
23  * status in order to solve some problems that we have met
24  * (e.g. Reservation space warning), and provide extent-level locking.
25  * Delay extent tree is the first step to achieve this goal.  It is
26  * original built by Yongqiang Yang.  At that time it is called delay
27  * extent tree, whose goal is only track delayed extents in memory to
28  * simplify the implementation of fiemap and bigalloc, and introduce
29  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30  * delay extent tree at the first commit.  But for better understand
31  * what it does, it has been rename to extent status tree.
32  *
33  * Step1:
34  * Currently the first step has been done.  All delayed extents are
35  * tracked in the tree.  It maintains the delayed extent when a delayed
36  * allocation is issued, and the delayed extent is written out or
37  * invalidated.  Therefore the implementation of fiemap and bigalloc
38  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39  *
40  * The following comment describes the implemenmtation of extent
41  * status tree and future works.
42  *
43  * Step2:
44  * In this step all extent status are tracked by extent status tree.
45  * Thus, we can first try to lookup a block mapping in this tree before
46  * finding it in extent tree.  Hence, single extent cache can be removed
47  * because extent status tree can do a better job.  Extents in status
48  * tree are loaded on-demand.  Therefore, the extent status tree may not
49  * contain all of the extents in a file.  Meanwhile we define a shrinker
50  * to reclaim memory from extent status tree because fragmented extent
51  * tree will make status tree cost too much memory.  written/unwritten/-
52  * hole extents in the tree will be reclaimed by this shrinker when we
53  * are under high memory pressure.  Delayed extents will not be
54  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55  */
56 
57 /*
58  * Extent status tree implementation for ext4.
59  *
60  *
61  * ==========================================================================
62  * Extent status tree tracks all extent status.
63  *
64  * 1. Why we need to implement extent status tree?
65  *
66  * Without extent status tree, ext4 identifies a delayed extent by looking
67  * up page cache, this has several deficiencies - complicated, buggy,
68  * and inefficient code.
69  *
70  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71  * block or a range of blocks are belonged to a delayed extent.
72  *
73  * Let us have a look at how they do without extent status tree.
74  *   --	FIEMAP
75  *	FIEMAP looks up page cache to identify delayed allocations from holes.
76  *
77  *   --	SEEK_HOLE/DATA
78  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79  *
80  *   --	bigalloc
81  *	bigalloc looks up page cache to figure out if a block is
82  *	already under delayed allocation or not to determine whether
83  *	quota reserving is needed for the cluster.
84  *
85  *   --	writeout
86  *	Writeout looks up whole page cache to see if a buffer is
87  *	mapped, If there are not very many delayed buffers, then it is
88  *	time consuming.
89  *
90  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91  * bigalloc and writeout can figure out if a block or a range of
92  * blocks is under delayed allocation(belonged to a delayed extent) or
93  * not by searching the extent tree.
94  *
95  *
96  * ==========================================================================
97  * 2. Ext4 extent status tree impelmentation
98  *
99  *   --	extent
100  *	A extent is a range of blocks which are contiguous logically and
101  *	physically.  Unlike extent in extent tree, this extent in ext4 is
102  *	a in-memory struct, there is no corresponding on-disk data.  There
103  *	is no limit on length of extent, so an extent can contain as many
104  *	blocks as they are contiguous logically and physically.
105  *
106  *   --	extent status tree
107  *	Every inode has an extent status tree and all allocation blocks
108  *	are added to the tree with different status.  The extent in the
109  *	tree are ordered by logical block no.
110  *
111  *   --	operations on a extent status tree
112  *	There are three important operations on a delayed extent tree: find
113  *	next extent, adding a extent(a range of blocks) and removing a extent.
114  *
115  *   --	race on a extent status tree
116  *	Extent status tree is protected by inode->i_es_lock.
117  *
118  *   --	memory consumption
119  *      Fragmented extent tree will make extent status tree cost too much
120  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121  *      the tree under a heavy memory pressure.
122  *
123  *
124  * ==========================================================================
125  * 3. Performance analysis
126  *
127  *   --	overhead
128  *	1. There is a cache extent for write access, so if writes are
129  *	not very random, adding space operaions are in O(1) time.
130  *
131  *   --	gain
132  *	2. Code is much simpler, more readable, more maintainable and
133  *	more efficient.
134  *
135  *
136  * ==========================================================================
137  * 4. TODO list
138  *
139  *   -- Refactor delayed space reservation
140  *
141  *   -- Extent-level locking
142  */
143 
144 static struct kmem_cache *ext4_es_cachep;
145 static struct kmem_cache *ext4_pending_cachep;
146 
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
148 			      struct extent_status *prealloc);
149 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
150 			      ext4_lblk_t end, int *reserved,
151 			      struct extent_status *prealloc);
152 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
153 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
154 		       struct ext4_inode_info *locked_ei);
155 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
156 			    ext4_lblk_t len,
157 			    struct pending_reservation **prealloc);
158 
159 int __init ext4_init_es(void)
160 {
161 	ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
162 	if (ext4_es_cachep == NULL)
163 		return -ENOMEM;
164 	return 0;
165 }
166 
167 void ext4_exit_es(void)
168 {
169 	kmem_cache_destroy(ext4_es_cachep);
170 }
171 
172 void ext4_es_init_tree(struct ext4_es_tree *tree)
173 {
174 	tree->root = RB_ROOT;
175 	tree->cache_es = NULL;
176 }
177 
178 #ifdef ES_DEBUG__
179 static void ext4_es_print_tree(struct inode *inode)
180 {
181 	struct ext4_es_tree *tree;
182 	struct rb_node *node;
183 
184 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
185 	tree = &EXT4_I(inode)->i_es_tree;
186 	node = rb_first(&tree->root);
187 	while (node) {
188 		struct extent_status *es;
189 		es = rb_entry(node, struct extent_status, rb_node);
190 		printk(KERN_DEBUG " [%u/%u) %llu %x",
191 		       es->es_lblk, es->es_len,
192 		       ext4_es_pblock(es), ext4_es_status(es));
193 		node = rb_next(node);
194 	}
195 	printk(KERN_DEBUG "\n");
196 }
197 #else
198 #define ext4_es_print_tree(inode)
199 #endif
200 
201 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
202 {
203 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
204 	return es->es_lblk + es->es_len - 1;
205 }
206 
207 /*
208  * search through the tree for an delayed extent with a given offset.  If
209  * it can't be found, try to find next extent.
210  */
211 static struct extent_status *__es_tree_search(struct rb_root *root,
212 					      ext4_lblk_t lblk)
213 {
214 	struct rb_node *node = root->rb_node;
215 	struct extent_status *es = NULL;
216 
217 	while (node) {
218 		es = rb_entry(node, struct extent_status, rb_node);
219 		if (lblk < es->es_lblk)
220 			node = node->rb_left;
221 		else if (lblk > ext4_es_end(es))
222 			node = node->rb_right;
223 		else
224 			return es;
225 	}
226 
227 	if (es && lblk < es->es_lblk)
228 		return es;
229 
230 	if (es && lblk > ext4_es_end(es)) {
231 		node = rb_next(&es->rb_node);
232 		return node ? rb_entry(node, struct extent_status, rb_node) :
233 			      NULL;
234 	}
235 
236 	return NULL;
237 }
238 
239 /*
240  * ext4_es_find_extent_range - find extent with specified status within block
241  *                             range or next extent following block range in
242  *                             extents status tree
243  *
244  * @inode - file containing the range
245  * @matching_fn - pointer to function that matches extents with desired status
246  * @lblk - logical block defining start of range
247  * @end - logical block defining end of range
248  * @es - extent found, if any
249  *
250  * Find the first extent within the block range specified by @lblk and @end
251  * in the extents status tree that satisfies @matching_fn.  If a match
252  * is found, it's returned in @es.  If not, and a matching extent is found
253  * beyond the block range, it's returned in @es.  If no match is found, an
254  * extent is returned in @es whose es_lblk, es_len, and es_pblk components
255  * are 0.
256  */
257 static void __es_find_extent_range(struct inode *inode,
258 				   int (*matching_fn)(struct extent_status *es),
259 				   ext4_lblk_t lblk, ext4_lblk_t end,
260 				   struct extent_status *es)
261 {
262 	struct ext4_es_tree *tree = NULL;
263 	struct extent_status *es1 = NULL;
264 	struct rb_node *node;
265 
266 	WARN_ON(es == NULL);
267 	WARN_ON(end < lblk);
268 
269 	tree = &EXT4_I(inode)->i_es_tree;
270 
271 	/* see if the extent has been cached */
272 	es->es_lblk = es->es_len = es->es_pblk = 0;
273 	es1 = READ_ONCE(tree->cache_es);
274 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
275 		es_debug("%u cached by [%u/%u) %llu %x\n",
276 			 lblk, es1->es_lblk, es1->es_len,
277 			 ext4_es_pblock(es1), ext4_es_status(es1));
278 		goto out;
279 	}
280 
281 	es1 = __es_tree_search(&tree->root, lblk);
282 
283 out:
284 	if (es1 && !matching_fn(es1)) {
285 		while ((node = rb_next(&es1->rb_node)) != NULL) {
286 			es1 = rb_entry(node, struct extent_status, rb_node);
287 			if (es1->es_lblk > end) {
288 				es1 = NULL;
289 				break;
290 			}
291 			if (matching_fn(es1))
292 				break;
293 		}
294 	}
295 
296 	if (es1 && matching_fn(es1)) {
297 		WRITE_ONCE(tree->cache_es, es1);
298 		es->es_lblk = es1->es_lblk;
299 		es->es_len = es1->es_len;
300 		es->es_pblk = es1->es_pblk;
301 	}
302 
303 }
304 
305 /*
306  * Locking for __es_find_extent_range() for external use
307  */
308 void ext4_es_find_extent_range(struct inode *inode,
309 			       int (*matching_fn)(struct extent_status *es),
310 			       ext4_lblk_t lblk, ext4_lblk_t end,
311 			       struct extent_status *es)
312 {
313 	es->es_lblk = es->es_len = es->es_pblk = 0;
314 
315 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
316 		return;
317 
318 	trace_ext4_es_find_extent_range_enter(inode, lblk);
319 
320 	read_lock(&EXT4_I(inode)->i_es_lock);
321 	__es_find_extent_range(inode, matching_fn, lblk, end, es);
322 	read_unlock(&EXT4_I(inode)->i_es_lock);
323 
324 	trace_ext4_es_find_extent_range_exit(inode, es);
325 }
326 
327 /*
328  * __es_scan_range - search block range for block with specified status
329  *                   in extents status tree
330  *
331  * @inode - file containing the range
332  * @matching_fn - pointer to function that matches extents with desired status
333  * @lblk - logical block defining start of range
334  * @end - logical block defining end of range
335  *
336  * Returns true if at least one block in the specified block range satisfies
337  * the criterion specified by @matching_fn, and false if not.  If at least
338  * one extent has the specified status, then there is at least one block
339  * in the cluster with that status.  Should only be called by code that has
340  * taken i_es_lock.
341  */
342 static bool __es_scan_range(struct inode *inode,
343 			    int (*matching_fn)(struct extent_status *es),
344 			    ext4_lblk_t start, ext4_lblk_t end)
345 {
346 	struct extent_status es;
347 
348 	__es_find_extent_range(inode, matching_fn, start, end, &es);
349 	if (es.es_len == 0)
350 		return false;   /* no matching extent in the tree */
351 	else if (es.es_lblk <= start &&
352 		 start < es.es_lblk + es.es_len)
353 		return true;
354 	else if (start <= es.es_lblk && es.es_lblk <= end)
355 		return true;
356 	else
357 		return false;
358 }
359 /*
360  * Locking for __es_scan_range() for external use
361  */
362 bool ext4_es_scan_range(struct inode *inode,
363 			int (*matching_fn)(struct extent_status *es),
364 			ext4_lblk_t lblk, ext4_lblk_t end)
365 {
366 	bool ret;
367 
368 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
369 		return false;
370 
371 	read_lock(&EXT4_I(inode)->i_es_lock);
372 	ret = __es_scan_range(inode, matching_fn, lblk, end);
373 	read_unlock(&EXT4_I(inode)->i_es_lock);
374 
375 	return ret;
376 }
377 
378 /*
379  * __es_scan_clu - search cluster for block with specified status in
380  *                 extents status tree
381  *
382  * @inode - file containing the cluster
383  * @matching_fn - pointer to function that matches extents with desired status
384  * @lblk - logical block in cluster to be searched
385  *
386  * Returns true if at least one extent in the cluster containing @lblk
387  * satisfies the criterion specified by @matching_fn, and false if not.  If at
388  * least one extent has the specified status, then there is at least one block
389  * in the cluster with that status.  Should only be called by code that has
390  * taken i_es_lock.
391  */
392 static bool __es_scan_clu(struct inode *inode,
393 			  int (*matching_fn)(struct extent_status *es),
394 			  ext4_lblk_t lblk)
395 {
396 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
397 	ext4_lblk_t lblk_start, lblk_end;
398 
399 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
400 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
401 
402 	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
403 }
404 
405 /*
406  * Locking for __es_scan_clu() for external use
407  */
408 bool ext4_es_scan_clu(struct inode *inode,
409 		      int (*matching_fn)(struct extent_status *es),
410 		      ext4_lblk_t lblk)
411 {
412 	bool ret;
413 
414 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
415 		return false;
416 
417 	read_lock(&EXT4_I(inode)->i_es_lock);
418 	ret = __es_scan_clu(inode, matching_fn, lblk);
419 	read_unlock(&EXT4_I(inode)->i_es_lock);
420 
421 	return ret;
422 }
423 
424 static void ext4_es_list_add(struct inode *inode)
425 {
426 	struct ext4_inode_info *ei = EXT4_I(inode);
427 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
428 
429 	if (!list_empty(&ei->i_es_list))
430 		return;
431 
432 	spin_lock(&sbi->s_es_lock);
433 	if (list_empty(&ei->i_es_list)) {
434 		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
435 		sbi->s_es_nr_inode++;
436 	}
437 	spin_unlock(&sbi->s_es_lock);
438 }
439 
440 static void ext4_es_list_del(struct inode *inode)
441 {
442 	struct ext4_inode_info *ei = EXT4_I(inode);
443 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
444 
445 	spin_lock(&sbi->s_es_lock);
446 	if (!list_empty(&ei->i_es_list)) {
447 		list_del_init(&ei->i_es_list);
448 		sbi->s_es_nr_inode--;
449 		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
450 	}
451 	spin_unlock(&sbi->s_es_lock);
452 }
453 
454 static inline struct pending_reservation *__alloc_pending(bool nofail)
455 {
456 	if (!nofail)
457 		return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
458 
459 	return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL);
460 }
461 
462 static inline void __free_pending(struct pending_reservation *pr)
463 {
464 	kmem_cache_free(ext4_pending_cachep, pr);
465 }
466 
467 /*
468  * Returns true if we cannot fail to allocate memory for this extent_status
469  * entry and cannot reclaim it until its status changes.
470  */
471 static inline bool ext4_es_must_keep(struct extent_status *es)
472 {
473 	/* fiemap, bigalloc, and seek_data/hole need to use it. */
474 	if (ext4_es_is_delayed(es))
475 		return true;
476 
477 	return false;
478 }
479 
480 static inline struct extent_status *__es_alloc_extent(bool nofail)
481 {
482 	if (!nofail)
483 		return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
484 
485 	return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
486 }
487 
488 static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
489 		ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
490 {
491 	es->es_lblk = lblk;
492 	es->es_len = len;
493 	es->es_pblk = pblk;
494 
495 	/* We never try to reclaim a must kept extent, so we don't count it. */
496 	if (!ext4_es_must_keep(es)) {
497 		if (!EXT4_I(inode)->i_es_shk_nr++)
498 			ext4_es_list_add(inode);
499 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
500 					s_es_stats.es_stats_shk_cnt);
501 	}
502 
503 	EXT4_I(inode)->i_es_all_nr++;
504 	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
505 }
506 
507 static inline void __es_free_extent(struct extent_status *es)
508 {
509 	kmem_cache_free(ext4_es_cachep, es);
510 }
511 
512 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
513 {
514 	EXT4_I(inode)->i_es_all_nr--;
515 	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
516 
517 	/* Decrease the shrink counter when we can reclaim the extent. */
518 	if (!ext4_es_must_keep(es)) {
519 		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
520 		if (!--EXT4_I(inode)->i_es_shk_nr)
521 			ext4_es_list_del(inode);
522 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
523 					s_es_stats.es_stats_shk_cnt);
524 	}
525 
526 	__es_free_extent(es);
527 }
528 
529 /*
530  * Check whether or not two extents can be merged
531  * Condition:
532  *  - logical block number is contiguous
533  *  - physical block number is contiguous
534  *  - status is equal
535  */
536 static int ext4_es_can_be_merged(struct extent_status *es1,
537 				 struct extent_status *es2)
538 {
539 	if (ext4_es_type(es1) != ext4_es_type(es2))
540 		return 0;
541 
542 	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
543 		pr_warn("ES assertion failed when merging extents. "
544 			"The sum of lengths of es1 (%d) and es2 (%d) "
545 			"is bigger than allowed file size (%d)\n",
546 			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
547 		WARN_ON(1);
548 		return 0;
549 	}
550 
551 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
552 		return 0;
553 
554 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
555 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
556 		return 1;
557 
558 	if (ext4_es_is_hole(es1))
559 		return 1;
560 
561 	/* we need to check delayed extent is without unwritten status */
562 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
563 		return 1;
564 
565 	return 0;
566 }
567 
568 static struct extent_status *
569 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
570 {
571 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
572 	struct extent_status *es1;
573 	struct rb_node *node;
574 
575 	node = rb_prev(&es->rb_node);
576 	if (!node)
577 		return es;
578 
579 	es1 = rb_entry(node, struct extent_status, rb_node);
580 	if (ext4_es_can_be_merged(es1, es)) {
581 		es1->es_len += es->es_len;
582 		if (ext4_es_is_referenced(es))
583 			ext4_es_set_referenced(es1);
584 		rb_erase(&es->rb_node, &tree->root);
585 		ext4_es_free_extent(inode, es);
586 		es = es1;
587 	}
588 
589 	return es;
590 }
591 
592 static struct extent_status *
593 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
594 {
595 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
596 	struct extent_status *es1;
597 	struct rb_node *node;
598 
599 	node = rb_next(&es->rb_node);
600 	if (!node)
601 		return es;
602 
603 	es1 = rb_entry(node, struct extent_status, rb_node);
604 	if (ext4_es_can_be_merged(es, es1)) {
605 		es->es_len += es1->es_len;
606 		if (ext4_es_is_referenced(es1))
607 			ext4_es_set_referenced(es);
608 		rb_erase(node, &tree->root);
609 		ext4_es_free_extent(inode, es1);
610 	}
611 
612 	return es;
613 }
614 
615 #ifdef ES_AGGRESSIVE_TEST
616 #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
617 
618 static void ext4_es_insert_extent_ext_check(struct inode *inode,
619 					    struct extent_status *es)
620 {
621 	struct ext4_ext_path *path = NULL;
622 	struct ext4_extent *ex;
623 	ext4_lblk_t ee_block;
624 	ext4_fsblk_t ee_start;
625 	unsigned short ee_len;
626 	int depth, ee_status, es_status;
627 
628 	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
629 	if (IS_ERR(path))
630 		return;
631 
632 	depth = ext_depth(inode);
633 	ex = path[depth].p_ext;
634 
635 	if (ex) {
636 
637 		ee_block = le32_to_cpu(ex->ee_block);
638 		ee_start = ext4_ext_pblock(ex);
639 		ee_len = ext4_ext_get_actual_len(ex);
640 
641 		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
642 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
643 
644 		/*
645 		 * Make sure ex and es are not overlap when we try to insert
646 		 * a delayed/hole extent.
647 		 */
648 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
649 			if (in_range(es->es_lblk, ee_block, ee_len)) {
650 				pr_warn("ES insert assertion failed for "
651 					"inode: %lu we can find an extent "
652 					"at block [%d/%d/%llu/%c], but we "
653 					"want to add a delayed/hole extent "
654 					"[%d/%d/%llu/%x]\n",
655 					inode->i_ino, ee_block, ee_len,
656 					ee_start, ee_status ? 'u' : 'w',
657 					es->es_lblk, es->es_len,
658 					ext4_es_pblock(es), ext4_es_status(es));
659 			}
660 			goto out;
661 		}
662 
663 		/*
664 		 * We don't check ee_block == es->es_lblk, etc. because es
665 		 * might be a part of whole extent, vice versa.
666 		 */
667 		if (es->es_lblk < ee_block ||
668 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
669 			pr_warn("ES insert assertion failed for inode: %lu "
670 				"ex_status [%d/%d/%llu/%c] != "
671 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
672 				ee_block, ee_len, ee_start,
673 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
674 				ext4_es_pblock(es), es_status ? 'u' : 'w');
675 			goto out;
676 		}
677 
678 		if (ee_status ^ es_status) {
679 			pr_warn("ES insert assertion failed for inode: %lu "
680 				"ex_status [%d/%d/%llu/%c] != "
681 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
682 				ee_block, ee_len, ee_start,
683 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
684 				ext4_es_pblock(es), es_status ? 'u' : 'w');
685 		}
686 	} else {
687 		/*
688 		 * We can't find an extent on disk.  So we need to make sure
689 		 * that we don't want to add an written/unwritten extent.
690 		 */
691 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
692 			pr_warn("ES insert assertion failed for inode: %lu "
693 				"can't find an extent at block %d but we want "
694 				"to add a written/unwritten extent "
695 				"[%d/%d/%llu/%x]\n", inode->i_ino,
696 				es->es_lblk, es->es_lblk, es->es_len,
697 				ext4_es_pblock(es), ext4_es_status(es));
698 		}
699 	}
700 out:
701 	ext4_free_ext_path(path);
702 }
703 
704 static void ext4_es_insert_extent_ind_check(struct inode *inode,
705 					    struct extent_status *es)
706 {
707 	struct ext4_map_blocks map;
708 	int retval;
709 
710 	/*
711 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
712 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
713 	 * access direct/indirect tree from outside.  It is too dirty to define
714 	 * this function in indirect.c file.
715 	 */
716 
717 	map.m_lblk = es->es_lblk;
718 	map.m_len = es->es_len;
719 
720 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
721 	if (retval > 0) {
722 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
723 			/*
724 			 * We want to add a delayed/hole extent but this
725 			 * block has been allocated.
726 			 */
727 			pr_warn("ES insert assertion failed for inode: %lu "
728 				"We can find blocks but we want to add a "
729 				"delayed/hole extent [%d/%d/%llu/%x]\n",
730 				inode->i_ino, es->es_lblk, es->es_len,
731 				ext4_es_pblock(es), ext4_es_status(es));
732 			return;
733 		} else if (ext4_es_is_written(es)) {
734 			if (retval != es->es_len) {
735 				pr_warn("ES insert assertion failed for "
736 					"inode: %lu retval %d != es_len %d\n",
737 					inode->i_ino, retval, es->es_len);
738 				return;
739 			}
740 			if (map.m_pblk != ext4_es_pblock(es)) {
741 				pr_warn("ES insert assertion failed for "
742 					"inode: %lu m_pblk %llu != "
743 					"es_pblk %llu\n",
744 					inode->i_ino, map.m_pblk,
745 					ext4_es_pblock(es));
746 				return;
747 			}
748 		} else {
749 			/*
750 			 * We don't need to check unwritten extent because
751 			 * indirect-based file doesn't have it.
752 			 */
753 			BUG();
754 		}
755 	} else if (retval == 0) {
756 		if (ext4_es_is_written(es)) {
757 			pr_warn("ES insert assertion failed for inode: %lu "
758 				"We can't find the block but we want to add "
759 				"a written extent [%d/%d/%llu/%x]\n",
760 				inode->i_ino, es->es_lblk, es->es_len,
761 				ext4_es_pblock(es), ext4_es_status(es));
762 			return;
763 		}
764 	}
765 }
766 
767 static inline void ext4_es_insert_extent_check(struct inode *inode,
768 					       struct extent_status *es)
769 {
770 	/*
771 	 * We don't need to worry about the race condition because
772 	 * caller takes i_data_sem locking.
773 	 */
774 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
775 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
776 		ext4_es_insert_extent_ext_check(inode, es);
777 	else
778 		ext4_es_insert_extent_ind_check(inode, es);
779 }
780 #else
781 static inline void ext4_es_insert_extent_check(struct inode *inode,
782 					       struct extent_status *es)
783 {
784 }
785 #endif
786 
787 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
788 			      struct extent_status *prealloc)
789 {
790 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
791 	struct rb_node **p = &tree->root.rb_node;
792 	struct rb_node *parent = NULL;
793 	struct extent_status *es;
794 
795 	while (*p) {
796 		parent = *p;
797 		es = rb_entry(parent, struct extent_status, rb_node);
798 
799 		if (newes->es_lblk < es->es_lblk) {
800 			if (ext4_es_can_be_merged(newes, es)) {
801 				/*
802 				 * Here we can modify es_lblk directly
803 				 * because it isn't overlapped.
804 				 */
805 				es->es_lblk = newes->es_lblk;
806 				es->es_len += newes->es_len;
807 				if (ext4_es_is_written(es) ||
808 				    ext4_es_is_unwritten(es))
809 					ext4_es_store_pblock(es,
810 							     newes->es_pblk);
811 				es = ext4_es_try_to_merge_left(inode, es);
812 				goto out;
813 			}
814 			p = &(*p)->rb_left;
815 		} else if (newes->es_lblk > ext4_es_end(es)) {
816 			if (ext4_es_can_be_merged(es, newes)) {
817 				es->es_len += newes->es_len;
818 				es = ext4_es_try_to_merge_right(inode, es);
819 				goto out;
820 			}
821 			p = &(*p)->rb_right;
822 		} else {
823 			BUG();
824 			return -EINVAL;
825 		}
826 	}
827 
828 	if (prealloc)
829 		es = prealloc;
830 	else
831 		es = __es_alloc_extent(false);
832 	if (!es)
833 		return -ENOMEM;
834 	ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
835 			    newes->es_pblk);
836 
837 	rb_link_node(&es->rb_node, parent, p);
838 	rb_insert_color(&es->rb_node, &tree->root);
839 
840 out:
841 	tree->cache_es = es;
842 	return 0;
843 }
844 
845 /*
846  * ext4_es_insert_extent() adds information to an inode's extent
847  * status tree.
848  */
849 void ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
850 			   ext4_lblk_t len, ext4_fsblk_t pblk,
851 			   unsigned int status)
852 {
853 	struct extent_status newes;
854 	ext4_lblk_t end = lblk + len - 1;
855 	int err1 = 0, err2 = 0, err3 = 0;
856 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
857 	struct extent_status *es1 = NULL;
858 	struct extent_status *es2 = NULL;
859 	struct pending_reservation *pr = NULL;
860 	bool revise_pending = false;
861 
862 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
863 		return;
864 
865 	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
866 		 lblk, len, pblk, status, inode->i_ino);
867 
868 	if (!len)
869 		return;
870 
871 	BUG_ON(end < lblk);
872 
873 	if ((status & EXTENT_STATUS_DELAYED) &&
874 	    (status & EXTENT_STATUS_WRITTEN)) {
875 		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
876 				" delayed and written which can potentially "
877 				" cause data loss.", lblk, len);
878 		WARN_ON(1);
879 	}
880 
881 	newes.es_lblk = lblk;
882 	newes.es_len = len;
883 	ext4_es_store_pblock_status(&newes, pblk, status);
884 	trace_ext4_es_insert_extent(inode, &newes);
885 
886 	ext4_es_insert_extent_check(inode, &newes);
887 
888 	revise_pending = sbi->s_cluster_ratio > 1 &&
889 			 test_opt(inode->i_sb, DELALLOC) &&
890 			 (status & (EXTENT_STATUS_WRITTEN |
891 				    EXTENT_STATUS_UNWRITTEN));
892 retry:
893 	if (err1 && !es1)
894 		es1 = __es_alloc_extent(true);
895 	if ((err1 || err2) && !es2)
896 		es2 = __es_alloc_extent(true);
897 	if ((err1 || err2 || err3) && revise_pending && !pr)
898 		pr = __alloc_pending(true);
899 	write_lock(&EXT4_I(inode)->i_es_lock);
900 
901 	err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
902 	if (err1 != 0)
903 		goto error;
904 	/* Free preallocated extent if it didn't get used. */
905 	if (es1) {
906 		if (!es1->es_len)
907 			__es_free_extent(es1);
908 		es1 = NULL;
909 	}
910 
911 	err2 = __es_insert_extent(inode, &newes, es2);
912 	if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
913 		err2 = 0;
914 	if (err2 != 0)
915 		goto error;
916 	/* Free preallocated extent if it didn't get used. */
917 	if (es2) {
918 		if (!es2->es_len)
919 			__es_free_extent(es2);
920 		es2 = NULL;
921 	}
922 
923 	if (revise_pending) {
924 		err3 = __revise_pending(inode, lblk, len, &pr);
925 		if (err3 != 0)
926 			goto error;
927 		if (pr) {
928 			__free_pending(pr);
929 			pr = NULL;
930 		}
931 	}
932 error:
933 	write_unlock(&EXT4_I(inode)->i_es_lock);
934 	if (err1 || err2 || err3)
935 		goto retry;
936 
937 	ext4_es_print_tree(inode);
938 	return;
939 }
940 
941 /*
942  * ext4_es_cache_extent() inserts information into the extent status
943  * tree if and only if there isn't information about the range in
944  * question already.
945  */
946 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
947 			  ext4_lblk_t len, ext4_fsblk_t pblk,
948 			  unsigned int status)
949 {
950 	struct extent_status *es;
951 	struct extent_status newes;
952 	ext4_lblk_t end = lblk + len - 1;
953 
954 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
955 		return;
956 
957 	newes.es_lblk = lblk;
958 	newes.es_len = len;
959 	ext4_es_store_pblock_status(&newes, pblk, status);
960 	trace_ext4_es_cache_extent(inode, &newes);
961 
962 	if (!len)
963 		return;
964 
965 	BUG_ON(end < lblk);
966 
967 	write_lock(&EXT4_I(inode)->i_es_lock);
968 
969 	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
970 	if (!es || es->es_lblk > end)
971 		__es_insert_extent(inode, &newes, NULL);
972 	write_unlock(&EXT4_I(inode)->i_es_lock);
973 }
974 
975 /*
976  * ext4_es_lookup_extent() looks up an extent in extent status tree.
977  *
978  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
979  *
980  * Return: 1 on found, 0 on not
981  */
982 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
983 			  ext4_lblk_t *next_lblk,
984 			  struct extent_status *es)
985 {
986 	struct ext4_es_tree *tree;
987 	struct ext4_es_stats *stats;
988 	struct extent_status *es1 = NULL;
989 	struct rb_node *node;
990 	int found = 0;
991 
992 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
993 		return 0;
994 
995 	trace_ext4_es_lookup_extent_enter(inode, lblk);
996 	es_debug("lookup extent in block %u\n", lblk);
997 
998 	tree = &EXT4_I(inode)->i_es_tree;
999 	read_lock(&EXT4_I(inode)->i_es_lock);
1000 
1001 	/* find extent in cache firstly */
1002 	es->es_lblk = es->es_len = es->es_pblk = 0;
1003 	es1 = READ_ONCE(tree->cache_es);
1004 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
1005 		es_debug("%u cached by [%u/%u)\n",
1006 			 lblk, es1->es_lblk, es1->es_len);
1007 		found = 1;
1008 		goto out;
1009 	}
1010 
1011 	node = tree->root.rb_node;
1012 	while (node) {
1013 		es1 = rb_entry(node, struct extent_status, rb_node);
1014 		if (lblk < es1->es_lblk)
1015 			node = node->rb_left;
1016 		else if (lblk > ext4_es_end(es1))
1017 			node = node->rb_right;
1018 		else {
1019 			found = 1;
1020 			break;
1021 		}
1022 	}
1023 
1024 out:
1025 	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
1026 	if (found) {
1027 		BUG_ON(!es1);
1028 		es->es_lblk = es1->es_lblk;
1029 		es->es_len = es1->es_len;
1030 		es->es_pblk = es1->es_pblk;
1031 		if (!ext4_es_is_referenced(es1))
1032 			ext4_es_set_referenced(es1);
1033 		percpu_counter_inc(&stats->es_stats_cache_hits);
1034 		if (next_lblk) {
1035 			node = rb_next(&es1->rb_node);
1036 			if (node) {
1037 				es1 = rb_entry(node, struct extent_status,
1038 					       rb_node);
1039 				*next_lblk = es1->es_lblk;
1040 			} else
1041 				*next_lblk = 0;
1042 		}
1043 	} else {
1044 		percpu_counter_inc(&stats->es_stats_cache_misses);
1045 	}
1046 
1047 	read_unlock(&EXT4_I(inode)->i_es_lock);
1048 
1049 	trace_ext4_es_lookup_extent_exit(inode, es, found);
1050 	return found;
1051 }
1052 
1053 struct rsvd_count {
1054 	int ndelonly;
1055 	bool first_do_lblk_found;
1056 	ext4_lblk_t first_do_lblk;
1057 	ext4_lblk_t last_do_lblk;
1058 	struct extent_status *left_es;
1059 	bool partial;
1060 	ext4_lblk_t lclu;
1061 };
1062 
1063 /*
1064  * init_rsvd - initialize reserved count data before removing block range
1065  *	       in file from extent status tree
1066  *
1067  * @inode - file containing range
1068  * @lblk - first block in range
1069  * @es - pointer to first extent in range
1070  * @rc - pointer to reserved count data
1071  *
1072  * Assumes es is not NULL
1073  */
1074 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1075 		      struct extent_status *es, struct rsvd_count *rc)
1076 {
1077 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1078 	struct rb_node *node;
1079 
1080 	rc->ndelonly = 0;
1081 
1082 	/*
1083 	 * for bigalloc, note the first delonly block in the range has not
1084 	 * been found, record the extent containing the block to the left of
1085 	 * the region to be removed, if any, and note that there's no partial
1086 	 * cluster to track
1087 	 */
1088 	if (sbi->s_cluster_ratio > 1) {
1089 		rc->first_do_lblk_found = false;
1090 		if (lblk > es->es_lblk) {
1091 			rc->left_es = es;
1092 		} else {
1093 			node = rb_prev(&es->rb_node);
1094 			rc->left_es = node ? rb_entry(node,
1095 						      struct extent_status,
1096 						      rb_node) : NULL;
1097 		}
1098 		rc->partial = false;
1099 	}
1100 }
1101 
1102 /*
1103  * count_rsvd - count the clusters containing delayed and not unwritten
1104  *		(delonly) blocks in a range within an extent and add to
1105  *	        the running tally in rsvd_count
1106  *
1107  * @inode - file containing extent
1108  * @lblk - first block in range
1109  * @len - length of range in blocks
1110  * @es - pointer to extent containing clusters to be counted
1111  * @rc - pointer to reserved count data
1112  *
1113  * Tracks partial clusters found at the beginning and end of extents so
1114  * they aren't overcounted when they span adjacent extents
1115  */
1116 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1117 		       struct extent_status *es, struct rsvd_count *rc)
1118 {
1119 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1120 	ext4_lblk_t i, end, nclu;
1121 
1122 	if (!ext4_es_is_delonly(es))
1123 		return;
1124 
1125 	WARN_ON(len <= 0);
1126 
1127 	if (sbi->s_cluster_ratio == 1) {
1128 		rc->ndelonly += (int) len;
1129 		return;
1130 	}
1131 
1132 	/* bigalloc */
1133 
1134 	i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1135 	end = lblk + (ext4_lblk_t) len - 1;
1136 	end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1137 
1138 	/* record the first block of the first delonly extent seen */
1139 	if (!rc->first_do_lblk_found) {
1140 		rc->first_do_lblk = i;
1141 		rc->first_do_lblk_found = true;
1142 	}
1143 
1144 	/* update the last lblk in the region seen so far */
1145 	rc->last_do_lblk = end;
1146 
1147 	/*
1148 	 * if we're tracking a partial cluster and the current extent
1149 	 * doesn't start with it, count it and stop tracking
1150 	 */
1151 	if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1152 		rc->ndelonly++;
1153 		rc->partial = false;
1154 	}
1155 
1156 	/*
1157 	 * if the first cluster doesn't start on a cluster boundary but
1158 	 * ends on one, count it
1159 	 */
1160 	if (EXT4_LBLK_COFF(sbi, i) != 0) {
1161 		if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1162 			rc->ndelonly++;
1163 			rc->partial = false;
1164 			i = EXT4_LBLK_CFILL(sbi, i) + 1;
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * if the current cluster starts on a cluster boundary, count the
1170 	 * number of whole delonly clusters in the extent
1171 	 */
1172 	if ((i + sbi->s_cluster_ratio - 1) <= end) {
1173 		nclu = (end - i + 1) >> sbi->s_cluster_bits;
1174 		rc->ndelonly += nclu;
1175 		i += nclu << sbi->s_cluster_bits;
1176 	}
1177 
1178 	/*
1179 	 * start tracking a partial cluster if there's a partial at the end
1180 	 * of the current extent and we're not already tracking one
1181 	 */
1182 	if (!rc->partial && i <= end) {
1183 		rc->partial = true;
1184 		rc->lclu = EXT4_B2C(sbi, i);
1185 	}
1186 }
1187 
1188 /*
1189  * __pr_tree_search - search for a pending cluster reservation
1190  *
1191  * @root - root of pending reservation tree
1192  * @lclu - logical cluster to search for
1193  *
1194  * Returns the pending reservation for the cluster identified by @lclu
1195  * if found.  If not, returns a reservation for the next cluster if any,
1196  * and if not, returns NULL.
1197  */
1198 static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1199 						    ext4_lblk_t lclu)
1200 {
1201 	struct rb_node *node = root->rb_node;
1202 	struct pending_reservation *pr = NULL;
1203 
1204 	while (node) {
1205 		pr = rb_entry(node, struct pending_reservation, rb_node);
1206 		if (lclu < pr->lclu)
1207 			node = node->rb_left;
1208 		else if (lclu > pr->lclu)
1209 			node = node->rb_right;
1210 		else
1211 			return pr;
1212 	}
1213 	if (pr && lclu < pr->lclu)
1214 		return pr;
1215 	if (pr && lclu > pr->lclu) {
1216 		node = rb_next(&pr->rb_node);
1217 		return node ? rb_entry(node, struct pending_reservation,
1218 				       rb_node) : NULL;
1219 	}
1220 	return NULL;
1221 }
1222 
1223 /*
1224  * get_rsvd - calculates and returns the number of cluster reservations to be
1225  *	      released when removing a block range from the extent status tree
1226  *	      and releases any pending reservations within the range
1227  *
1228  * @inode - file containing block range
1229  * @end - last block in range
1230  * @right_es - pointer to extent containing next block beyond end or NULL
1231  * @rc - pointer to reserved count data
1232  *
1233  * The number of reservations to be released is equal to the number of
1234  * clusters containing delayed and not unwritten (delonly) blocks within
1235  * the range, minus the number of clusters still containing delonly blocks
1236  * at the ends of the range, and minus the number of pending reservations
1237  * within the range.
1238  */
1239 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1240 			     struct extent_status *right_es,
1241 			     struct rsvd_count *rc)
1242 {
1243 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1244 	struct pending_reservation *pr;
1245 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1246 	struct rb_node *node;
1247 	ext4_lblk_t first_lclu, last_lclu;
1248 	bool left_delonly, right_delonly, count_pending;
1249 	struct extent_status *es;
1250 
1251 	if (sbi->s_cluster_ratio > 1) {
1252 		/* count any remaining partial cluster */
1253 		if (rc->partial)
1254 			rc->ndelonly++;
1255 
1256 		if (rc->ndelonly == 0)
1257 			return 0;
1258 
1259 		first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1260 		last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1261 
1262 		/*
1263 		 * decrease the delonly count by the number of clusters at the
1264 		 * ends of the range that still contain delonly blocks -
1265 		 * these clusters still need to be reserved
1266 		 */
1267 		left_delonly = right_delonly = false;
1268 
1269 		es = rc->left_es;
1270 		while (es && ext4_es_end(es) >=
1271 		       EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1272 			if (ext4_es_is_delonly(es)) {
1273 				rc->ndelonly--;
1274 				left_delonly = true;
1275 				break;
1276 			}
1277 			node = rb_prev(&es->rb_node);
1278 			if (!node)
1279 				break;
1280 			es = rb_entry(node, struct extent_status, rb_node);
1281 		}
1282 		if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1283 			if (end < ext4_es_end(right_es)) {
1284 				es = right_es;
1285 			} else {
1286 				node = rb_next(&right_es->rb_node);
1287 				es = node ? rb_entry(node, struct extent_status,
1288 						     rb_node) : NULL;
1289 			}
1290 			while (es && es->es_lblk <=
1291 			       EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1292 				if (ext4_es_is_delonly(es)) {
1293 					rc->ndelonly--;
1294 					right_delonly = true;
1295 					break;
1296 				}
1297 				node = rb_next(&es->rb_node);
1298 				if (!node)
1299 					break;
1300 				es = rb_entry(node, struct extent_status,
1301 					      rb_node);
1302 			}
1303 		}
1304 
1305 		/*
1306 		 * Determine the block range that should be searched for
1307 		 * pending reservations, if any.  Clusters on the ends of the
1308 		 * original removed range containing delonly blocks are
1309 		 * excluded.  They've already been accounted for and it's not
1310 		 * possible to determine if an associated pending reservation
1311 		 * should be released with the information available in the
1312 		 * extents status tree.
1313 		 */
1314 		if (first_lclu == last_lclu) {
1315 			if (left_delonly | right_delonly)
1316 				count_pending = false;
1317 			else
1318 				count_pending = true;
1319 		} else {
1320 			if (left_delonly)
1321 				first_lclu++;
1322 			if (right_delonly)
1323 				last_lclu--;
1324 			if (first_lclu <= last_lclu)
1325 				count_pending = true;
1326 			else
1327 				count_pending = false;
1328 		}
1329 
1330 		/*
1331 		 * a pending reservation found between first_lclu and last_lclu
1332 		 * represents an allocated cluster that contained at least one
1333 		 * delonly block, so the delonly total must be reduced by one
1334 		 * for each pending reservation found and released
1335 		 */
1336 		if (count_pending) {
1337 			pr = __pr_tree_search(&tree->root, first_lclu);
1338 			while (pr && pr->lclu <= last_lclu) {
1339 				rc->ndelonly--;
1340 				node = rb_next(&pr->rb_node);
1341 				rb_erase(&pr->rb_node, &tree->root);
1342 				__free_pending(pr);
1343 				if (!node)
1344 					break;
1345 				pr = rb_entry(node, struct pending_reservation,
1346 					      rb_node);
1347 			}
1348 		}
1349 	}
1350 	return rc->ndelonly;
1351 }
1352 
1353 
1354 /*
1355  * __es_remove_extent - removes block range from extent status tree
1356  *
1357  * @inode - file containing range
1358  * @lblk - first block in range
1359  * @end - last block in range
1360  * @reserved - number of cluster reservations released
1361  * @prealloc - pre-allocated es to avoid memory allocation failures
1362  *
1363  * If @reserved is not NULL and delayed allocation is enabled, counts
1364  * block/cluster reservations freed by removing range and if bigalloc
1365  * enabled cancels pending reservations as needed. Returns 0 on success,
1366  * error code on failure.
1367  */
1368 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1369 			      ext4_lblk_t end, int *reserved,
1370 			      struct extent_status *prealloc)
1371 {
1372 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1373 	struct rb_node *node;
1374 	struct extent_status *es;
1375 	struct extent_status orig_es;
1376 	ext4_lblk_t len1, len2;
1377 	ext4_fsblk_t block;
1378 	int err = 0;
1379 	bool count_reserved = true;
1380 	struct rsvd_count rc;
1381 
1382 	if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1383 		count_reserved = false;
1384 
1385 	es = __es_tree_search(&tree->root, lblk);
1386 	if (!es)
1387 		goto out;
1388 	if (es->es_lblk > end)
1389 		goto out;
1390 
1391 	/* Simply invalidate cache_es. */
1392 	tree->cache_es = NULL;
1393 	if (count_reserved)
1394 		init_rsvd(inode, lblk, es, &rc);
1395 
1396 	orig_es.es_lblk = es->es_lblk;
1397 	orig_es.es_len = es->es_len;
1398 	orig_es.es_pblk = es->es_pblk;
1399 
1400 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1401 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1402 	if (len1 > 0)
1403 		es->es_len = len1;
1404 	if (len2 > 0) {
1405 		if (len1 > 0) {
1406 			struct extent_status newes;
1407 
1408 			newes.es_lblk = end + 1;
1409 			newes.es_len = len2;
1410 			block = 0x7FDEADBEEFULL;
1411 			if (ext4_es_is_written(&orig_es) ||
1412 			    ext4_es_is_unwritten(&orig_es))
1413 				block = ext4_es_pblock(&orig_es) +
1414 					orig_es.es_len - len2;
1415 			ext4_es_store_pblock_status(&newes, block,
1416 						    ext4_es_status(&orig_es));
1417 			err = __es_insert_extent(inode, &newes, prealloc);
1418 			if (err) {
1419 				if (!ext4_es_must_keep(&newes))
1420 					return 0;
1421 
1422 				es->es_lblk = orig_es.es_lblk;
1423 				es->es_len = orig_es.es_len;
1424 				goto out;
1425 			}
1426 		} else {
1427 			es->es_lblk = end + 1;
1428 			es->es_len = len2;
1429 			if (ext4_es_is_written(es) ||
1430 			    ext4_es_is_unwritten(es)) {
1431 				block = orig_es.es_pblk + orig_es.es_len - len2;
1432 				ext4_es_store_pblock(es, block);
1433 			}
1434 		}
1435 		if (count_reserved)
1436 			count_rsvd(inode, orig_es.es_lblk + len1,
1437 				   orig_es.es_len - len1 - len2, &orig_es, &rc);
1438 		goto out_get_reserved;
1439 	}
1440 
1441 	if (len1 > 0) {
1442 		if (count_reserved)
1443 			count_rsvd(inode, lblk, orig_es.es_len - len1,
1444 				   &orig_es, &rc);
1445 		node = rb_next(&es->rb_node);
1446 		if (node)
1447 			es = rb_entry(node, struct extent_status, rb_node);
1448 		else
1449 			es = NULL;
1450 	}
1451 
1452 	while (es && ext4_es_end(es) <= end) {
1453 		if (count_reserved)
1454 			count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1455 		node = rb_next(&es->rb_node);
1456 		rb_erase(&es->rb_node, &tree->root);
1457 		ext4_es_free_extent(inode, es);
1458 		if (!node) {
1459 			es = NULL;
1460 			break;
1461 		}
1462 		es = rb_entry(node, struct extent_status, rb_node);
1463 	}
1464 
1465 	if (es && es->es_lblk < end + 1) {
1466 		ext4_lblk_t orig_len = es->es_len;
1467 
1468 		len1 = ext4_es_end(es) - end;
1469 		if (count_reserved)
1470 			count_rsvd(inode, es->es_lblk, orig_len - len1,
1471 				   es, &rc);
1472 		es->es_lblk = end + 1;
1473 		es->es_len = len1;
1474 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1475 			block = es->es_pblk + orig_len - len1;
1476 			ext4_es_store_pblock(es, block);
1477 		}
1478 	}
1479 
1480 out_get_reserved:
1481 	if (count_reserved)
1482 		*reserved = get_rsvd(inode, end, es, &rc);
1483 out:
1484 	return err;
1485 }
1486 
1487 /*
1488  * ext4_es_remove_extent - removes block range from extent status tree
1489  *
1490  * @inode - file containing range
1491  * @lblk - first block in range
1492  * @len - number of blocks to remove
1493  *
1494  * Reduces block/cluster reservation count and for bigalloc cancels pending
1495  * reservations as needed.
1496  */
1497 void ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1498 			   ext4_lblk_t len)
1499 {
1500 	ext4_lblk_t end;
1501 	int err = 0;
1502 	int reserved = 0;
1503 	struct extent_status *es = NULL;
1504 
1505 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1506 		return;
1507 
1508 	trace_ext4_es_remove_extent(inode, lblk, len);
1509 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1510 		 lblk, len, inode->i_ino);
1511 
1512 	if (!len)
1513 		return;
1514 
1515 	end = lblk + len - 1;
1516 	BUG_ON(end < lblk);
1517 
1518 retry:
1519 	if (err && !es)
1520 		es = __es_alloc_extent(true);
1521 	/*
1522 	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1523 	 * so that we are sure __es_shrink() is done with the inode before it
1524 	 * is reclaimed.
1525 	 */
1526 	write_lock(&EXT4_I(inode)->i_es_lock);
1527 	err = __es_remove_extent(inode, lblk, end, &reserved, es);
1528 	/* Free preallocated extent if it didn't get used. */
1529 	if (es) {
1530 		if (!es->es_len)
1531 			__es_free_extent(es);
1532 		es = NULL;
1533 	}
1534 	write_unlock(&EXT4_I(inode)->i_es_lock);
1535 	if (err)
1536 		goto retry;
1537 
1538 	ext4_es_print_tree(inode);
1539 	ext4_da_release_space(inode, reserved);
1540 	return;
1541 }
1542 
1543 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1544 		       struct ext4_inode_info *locked_ei)
1545 {
1546 	struct ext4_inode_info *ei;
1547 	struct ext4_es_stats *es_stats;
1548 	ktime_t start_time;
1549 	u64 scan_time;
1550 	int nr_to_walk;
1551 	int nr_shrunk = 0;
1552 	int retried = 0, nr_skipped = 0;
1553 
1554 	es_stats = &sbi->s_es_stats;
1555 	start_time = ktime_get();
1556 
1557 retry:
1558 	spin_lock(&sbi->s_es_lock);
1559 	nr_to_walk = sbi->s_es_nr_inode;
1560 	while (nr_to_walk-- > 0) {
1561 		if (list_empty(&sbi->s_es_list)) {
1562 			spin_unlock(&sbi->s_es_lock);
1563 			goto out;
1564 		}
1565 		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1566 				      i_es_list);
1567 		/* Move the inode to the tail */
1568 		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1569 
1570 		/*
1571 		 * Normally we try hard to avoid shrinking precached inodes,
1572 		 * but we will as a last resort.
1573 		 */
1574 		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1575 						EXT4_STATE_EXT_PRECACHED)) {
1576 			nr_skipped++;
1577 			continue;
1578 		}
1579 
1580 		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1581 			nr_skipped++;
1582 			continue;
1583 		}
1584 		/*
1585 		 * Now we hold i_es_lock which protects us from inode reclaim
1586 		 * freeing inode under us
1587 		 */
1588 		spin_unlock(&sbi->s_es_lock);
1589 
1590 		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1591 		write_unlock(&ei->i_es_lock);
1592 
1593 		if (nr_to_scan <= 0)
1594 			goto out;
1595 		spin_lock(&sbi->s_es_lock);
1596 	}
1597 	spin_unlock(&sbi->s_es_lock);
1598 
1599 	/*
1600 	 * If we skipped any inodes, and we weren't able to make any
1601 	 * forward progress, try again to scan precached inodes.
1602 	 */
1603 	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1604 		retried++;
1605 		goto retry;
1606 	}
1607 
1608 	if (locked_ei && nr_shrunk == 0)
1609 		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1610 
1611 out:
1612 	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1613 	if (likely(es_stats->es_stats_scan_time))
1614 		es_stats->es_stats_scan_time = (scan_time +
1615 				es_stats->es_stats_scan_time*3) / 4;
1616 	else
1617 		es_stats->es_stats_scan_time = scan_time;
1618 	if (scan_time > es_stats->es_stats_max_scan_time)
1619 		es_stats->es_stats_max_scan_time = scan_time;
1620 	if (likely(es_stats->es_stats_shrunk))
1621 		es_stats->es_stats_shrunk = (nr_shrunk +
1622 				es_stats->es_stats_shrunk*3) / 4;
1623 	else
1624 		es_stats->es_stats_shrunk = nr_shrunk;
1625 
1626 	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1627 			     nr_skipped, retried);
1628 	return nr_shrunk;
1629 }
1630 
1631 static unsigned long ext4_es_count(struct shrinker *shrink,
1632 				   struct shrink_control *sc)
1633 {
1634 	unsigned long nr;
1635 	struct ext4_sb_info *sbi;
1636 
1637 	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1638 	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1639 	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1640 	return nr;
1641 }
1642 
1643 static unsigned long ext4_es_scan(struct shrinker *shrink,
1644 				  struct shrink_control *sc)
1645 {
1646 	struct ext4_sb_info *sbi = container_of(shrink,
1647 					struct ext4_sb_info, s_es_shrinker);
1648 	int nr_to_scan = sc->nr_to_scan;
1649 	int ret, nr_shrunk;
1650 
1651 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1652 	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1653 
1654 	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1655 
1656 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1657 	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1658 	return nr_shrunk;
1659 }
1660 
1661 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1662 {
1663 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1664 	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1665 	struct ext4_inode_info *ei, *max = NULL;
1666 	unsigned int inode_cnt = 0;
1667 
1668 	if (v != SEQ_START_TOKEN)
1669 		return 0;
1670 
1671 	/* here we just find an inode that has the max nr. of objects */
1672 	spin_lock(&sbi->s_es_lock);
1673 	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1674 		inode_cnt++;
1675 		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1676 			max = ei;
1677 		else if (!max)
1678 			max = ei;
1679 	}
1680 	spin_unlock(&sbi->s_es_lock);
1681 
1682 	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1683 		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1684 		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1685 	seq_printf(seq, "  %lld/%lld cache hits/misses\n",
1686 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1687 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1688 	if (inode_cnt)
1689 		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1690 
1691 	seq_printf(seq, "average:\n  %llu us scan time\n",
1692 	    div_u64(es_stats->es_stats_scan_time, 1000));
1693 	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1694 	if (inode_cnt)
1695 		seq_printf(seq,
1696 		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1697 		    "  %llu us max scan time\n",
1698 		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1699 		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1700 
1701 	return 0;
1702 }
1703 
1704 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1705 {
1706 	int err;
1707 
1708 	/* Make sure we have enough bits for physical block number */
1709 	BUILD_BUG_ON(ES_SHIFT < 48);
1710 	INIT_LIST_HEAD(&sbi->s_es_list);
1711 	sbi->s_es_nr_inode = 0;
1712 	spin_lock_init(&sbi->s_es_lock);
1713 	sbi->s_es_stats.es_stats_shrunk = 0;
1714 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1715 				  GFP_KERNEL);
1716 	if (err)
1717 		return err;
1718 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1719 				  GFP_KERNEL);
1720 	if (err)
1721 		goto err1;
1722 	sbi->s_es_stats.es_stats_scan_time = 0;
1723 	sbi->s_es_stats.es_stats_max_scan_time = 0;
1724 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1725 	if (err)
1726 		goto err2;
1727 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1728 	if (err)
1729 		goto err3;
1730 
1731 	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1732 	sbi->s_es_shrinker.count_objects = ext4_es_count;
1733 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1734 	err = register_shrinker(&sbi->s_es_shrinker, "ext4-es:%s",
1735 				sbi->s_sb->s_id);
1736 	if (err)
1737 		goto err4;
1738 
1739 	return 0;
1740 err4:
1741 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1742 err3:
1743 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1744 err2:
1745 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1746 err1:
1747 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1748 	return err;
1749 }
1750 
1751 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1752 {
1753 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1754 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1755 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1756 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1757 	unregister_shrinker(&sbi->s_es_shrinker);
1758 }
1759 
1760 /*
1761  * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1762  * most *nr_to_scan extents, update *nr_to_scan accordingly.
1763  *
1764  * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1765  * Increment *nr_shrunk by the number of reclaimed extents. Also update
1766  * ei->i_es_shrink_lblk to where we should continue scanning.
1767  */
1768 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1769 				 int *nr_to_scan, int *nr_shrunk)
1770 {
1771 	struct inode *inode = &ei->vfs_inode;
1772 	struct ext4_es_tree *tree = &ei->i_es_tree;
1773 	struct extent_status *es;
1774 	struct rb_node *node;
1775 
1776 	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1777 	if (!es)
1778 		goto out_wrap;
1779 
1780 	while (*nr_to_scan > 0) {
1781 		if (es->es_lblk > end) {
1782 			ei->i_es_shrink_lblk = end + 1;
1783 			return 0;
1784 		}
1785 
1786 		(*nr_to_scan)--;
1787 		node = rb_next(&es->rb_node);
1788 
1789 		if (ext4_es_must_keep(es))
1790 			goto next;
1791 		if (ext4_es_is_referenced(es)) {
1792 			ext4_es_clear_referenced(es);
1793 			goto next;
1794 		}
1795 
1796 		rb_erase(&es->rb_node, &tree->root);
1797 		ext4_es_free_extent(inode, es);
1798 		(*nr_shrunk)++;
1799 next:
1800 		if (!node)
1801 			goto out_wrap;
1802 		es = rb_entry(node, struct extent_status, rb_node);
1803 	}
1804 	ei->i_es_shrink_lblk = es->es_lblk;
1805 	return 1;
1806 out_wrap:
1807 	ei->i_es_shrink_lblk = 0;
1808 	return 0;
1809 }
1810 
1811 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1812 {
1813 	struct inode *inode = &ei->vfs_inode;
1814 	int nr_shrunk = 0;
1815 	ext4_lblk_t start = ei->i_es_shrink_lblk;
1816 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1817 				      DEFAULT_RATELIMIT_BURST);
1818 
1819 	if (ei->i_es_shk_nr == 0)
1820 		return 0;
1821 
1822 	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1823 	    __ratelimit(&_rs))
1824 		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1825 
1826 	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1827 	    start != 0)
1828 		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1829 
1830 	ei->i_es_tree.cache_es = NULL;
1831 	return nr_shrunk;
1832 }
1833 
1834 /*
1835  * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
1836  * discretionary entries from the extent status cache.  (Some entries
1837  * must be present for proper operations.)
1838  */
1839 void ext4_clear_inode_es(struct inode *inode)
1840 {
1841 	struct ext4_inode_info *ei = EXT4_I(inode);
1842 	struct extent_status *es;
1843 	struct ext4_es_tree *tree;
1844 	struct rb_node *node;
1845 
1846 	write_lock(&ei->i_es_lock);
1847 	tree = &EXT4_I(inode)->i_es_tree;
1848 	tree->cache_es = NULL;
1849 	node = rb_first(&tree->root);
1850 	while (node) {
1851 		es = rb_entry(node, struct extent_status, rb_node);
1852 		node = rb_next(node);
1853 		if (!ext4_es_must_keep(es)) {
1854 			rb_erase(&es->rb_node, &tree->root);
1855 			ext4_es_free_extent(inode, es);
1856 		}
1857 	}
1858 	ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1859 	write_unlock(&ei->i_es_lock);
1860 }
1861 
1862 #ifdef ES_DEBUG__
1863 static void ext4_print_pending_tree(struct inode *inode)
1864 {
1865 	struct ext4_pending_tree *tree;
1866 	struct rb_node *node;
1867 	struct pending_reservation *pr;
1868 
1869 	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1870 	tree = &EXT4_I(inode)->i_pending_tree;
1871 	node = rb_first(&tree->root);
1872 	while (node) {
1873 		pr = rb_entry(node, struct pending_reservation, rb_node);
1874 		printk(KERN_DEBUG " %u", pr->lclu);
1875 		node = rb_next(node);
1876 	}
1877 	printk(KERN_DEBUG "\n");
1878 }
1879 #else
1880 #define ext4_print_pending_tree(inode)
1881 #endif
1882 
1883 int __init ext4_init_pending(void)
1884 {
1885 	ext4_pending_cachep = KMEM_CACHE(pending_reservation, SLAB_RECLAIM_ACCOUNT);
1886 	if (ext4_pending_cachep == NULL)
1887 		return -ENOMEM;
1888 	return 0;
1889 }
1890 
1891 void ext4_exit_pending(void)
1892 {
1893 	kmem_cache_destroy(ext4_pending_cachep);
1894 }
1895 
1896 void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1897 {
1898 	tree->root = RB_ROOT;
1899 }
1900 
1901 /*
1902  * __get_pending - retrieve a pointer to a pending reservation
1903  *
1904  * @inode - file containing the pending cluster reservation
1905  * @lclu - logical cluster of interest
1906  *
1907  * Returns a pointer to a pending reservation if it's a member of
1908  * the set, and NULL if not.  Must be called holding i_es_lock.
1909  */
1910 static struct pending_reservation *__get_pending(struct inode *inode,
1911 						 ext4_lblk_t lclu)
1912 {
1913 	struct ext4_pending_tree *tree;
1914 	struct rb_node *node;
1915 	struct pending_reservation *pr = NULL;
1916 
1917 	tree = &EXT4_I(inode)->i_pending_tree;
1918 	node = (&tree->root)->rb_node;
1919 
1920 	while (node) {
1921 		pr = rb_entry(node, struct pending_reservation, rb_node);
1922 		if (lclu < pr->lclu)
1923 			node = node->rb_left;
1924 		else if (lclu > pr->lclu)
1925 			node = node->rb_right;
1926 		else if (lclu == pr->lclu)
1927 			return pr;
1928 	}
1929 	return NULL;
1930 }
1931 
1932 /*
1933  * __insert_pending - adds a pending cluster reservation to the set of
1934  *                    pending reservations
1935  *
1936  * @inode - file containing the cluster
1937  * @lblk - logical block in the cluster to be added
1938  * @prealloc - preallocated pending entry
1939  *
1940  * Returns 0 on successful insertion and -ENOMEM on failure.  If the
1941  * pending reservation is already in the set, returns successfully.
1942  */
1943 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk,
1944 			    struct pending_reservation **prealloc)
1945 {
1946 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1947 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1948 	struct rb_node **p = &tree->root.rb_node;
1949 	struct rb_node *parent = NULL;
1950 	struct pending_reservation *pr;
1951 	ext4_lblk_t lclu;
1952 	int ret = 0;
1953 
1954 	lclu = EXT4_B2C(sbi, lblk);
1955 	/* search to find parent for insertion */
1956 	while (*p) {
1957 		parent = *p;
1958 		pr = rb_entry(parent, struct pending_reservation, rb_node);
1959 
1960 		if (lclu < pr->lclu) {
1961 			p = &(*p)->rb_left;
1962 		} else if (lclu > pr->lclu) {
1963 			p = &(*p)->rb_right;
1964 		} else {
1965 			/* pending reservation already inserted */
1966 			goto out;
1967 		}
1968 	}
1969 
1970 	if (likely(*prealloc == NULL)) {
1971 		pr = __alloc_pending(false);
1972 		if (!pr) {
1973 			ret = -ENOMEM;
1974 			goto out;
1975 		}
1976 	} else {
1977 		pr = *prealloc;
1978 		*prealloc = NULL;
1979 	}
1980 	pr->lclu = lclu;
1981 
1982 	rb_link_node(&pr->rb_node, parent, p);
1983 	rb_insert_color(&pr->rb_node, &tree->root);
1984 
1985 out:
1986 	return ret;
1987 }
1988 
1989 /*
1990  * __remove_pending - removes a pending cluster reservation from the set
1991  *                    of pending reservations
1992  *
1993  * @inode - file containing the cluster
1994  * @lblk - logical block in the pending cluster reservation to be removed
1995  *
1996  * Returns successfully if pending reservation is not a member of the set.
1997  */
1998 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
1999 {
2000 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2001 	struct pending_reservation *pr;
2002 	struct ext4_pending_tree *tree;
2003 
2004 	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
2005 	if (pr != NULL) {
2006 		tree = &EXT4_I(inode)->i_pending_tree;
2007 		rb_erase(&pr->rb_node, &tree->root);
2008 		__free_pending(pr);
2009 	}
2010 }
2011 
2012 /*
2013  * ext4_remove_pending - removes a pending cluster reservation from the set
2014  *                       of pending reservations
2015  *
2016  * @inode - file containing the cluster
2017  * @lblk - logical block in the pending cluster reservation to be removed
2018  *
2019  * Locking for external use of __remove_pending.
2020  */
2021 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
2022 {
2023 	struct ext4_inode_info *ei = EXT4_I(inode);
2024 
2025 	write_lock(&ei->i_es_lock);
2026 	__remove_pending(inode, lblk);
2027 	write_unlock(&ei->i_es_lock);
2028 }
2029 
2030 /*
2031  * ext4_is_pending - determine whether a cluster has a pending reservation
2032  *                   on it
2033  *
2034  * @inode - file containing the cluster
2035  * @lblk - logical block in the cluster
2036  *
2037  * Returns true if there's a pending reservation for the cluster in the
2038  * set of pending reservations, and false if not.
2039  */
2040 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
2041 {
2042 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2043 	struct ext4_inode_info *ei = EXT4_I(inode);
2044 	bool ret;
2045 
2046 	read_lock(&ei->i_es_lock);
2047 	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
2048 	read_unlock(&ei->i_es_lock);
2049 
2050 	return ret;
2051 }
2052 
2053 /*
2054  * ext4_es_insert_delayed_block - adds a delayed block to the extents status
2055  *                                tree, adding a pending reservation where
2056  *                                needed
2057  *
2058  * @inode - file containing the newly added block
2059  * @lblk - logical block to be added
2060  * @allocated - indicates whether a physical cluster has been allocated for
2061  *              the logical cluster that contains the block
2062  */
2063 void ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
2064 				  bool allocated)
2065 {
2066 	struct extent_status newes;
2067 	int err1 = 0, err2 = 0, err3 = 0;
2068 	struct extent_status *es1 = NULL;
2069 	struct extent_status *es2 = NULL;
2070 	struct pending_reservation *pr = NULL;
2071 
2072 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
2073 		return;
2074 
2075 	es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
2076 		 lblk, inode->i_ino);
2077 
2078 	newes.es_lblk = lblk;
2079 	newes.es_len = 1;
2080 	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2081 	trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
2082 
2083 	ext4_es_insert_extent_check(inode, &newes);
2084 
2085 retry:
2086 	if (err1 && !es1)
2087 		es1 = __es_alloc_extent(true);
2088 	if ((err1 || err2) && !es2)
2089 		es2 = __es_alloc_extent(true);
2090 	if ((err1 || err2 || err3) && allocated && !pr)
2091 		pr = __alloc_pending(true);
2092 	write_lock(&EXT4_I(inode)->i_es_lock);
2093 
2094 	err1 = __es_remove_extent(inode, lblk, lblk, NULL, es1);
2095 	if (err1 != 0)
2096 		goto error;
2097 	/* Free preallocated extent if it didn't get used. */
2098 	if (es1) {
2099 		if (!es1->es_len)
2100 			__es_free_extent(es1);
2101 		es1 = NULL;
2102 	}
2103 
2104 	err2 = __es_insert_extent(inode, &newes, es2);
2105 	if (err2 != 0)
2106 		goto error;
2107 	/* Free preallocated extent if it didn't get used. */
2108 	if (es2) {
2109 		if (!es2->es_len)
2110 			__es_free_extent(es2);
2111 		es2 = NULL;
2112 	}
2113 
2114 	if (allocated) {
2115 		err3 = __insert_pending(inode, lblk, &pr);
2116 		if (err3 != 0)
2117 			goto error;
2118 		if (pr) {
2119 			__free_pending(pr);
2120 			pr = NULL;
2121 		}
2122 	}
2123 error:
2124 	write_unlock(&EXT4_I(inode)->i_es_lock);
2125 	if (err1 || err2 || err3)
2126 		goto retry;
2127 
2128 	ext4_es_print_tree(inode);
2129 	ext4_print_pending_tree(inode);
2130 	return;
2131 }
2132 
2133 /*
2134  * __es_delayed_clu - count number of clusters containing blocks that
2135  *                    are delayed only
2136  *
2137  * @inode - file containing block range
2138  * @start - logical block defining start of range
2139  * @end - logical block defining end of range
2140  *
2141  * Returns the number of clusters containing only delayed (not delayed
2142  * and unwritten) blocks in the range specified by @start and @end.  Any
2143  * cluster or part of a cluster within the range and containing a delayed
2144  * and not unwritten block within the range is counted as a whole cluster.
2145  */
2146 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2147 				     ext4_lblk_t end)
2148 {
2149 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2150 	struct extent_status *es;
2151 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2152 	struct rb_node *node;
2153 	ext4_lblk_t first_lclu, last_lclu;
2154 	unsigned long long last_counted_lclu;
2155 	unsigned int n = 0;
2156 
2157 	/* guaranteed to be unequal to any ext4_lblk_t value */
2158 	last_counted_lclu = ~0ULL;
2159 
2160 	es = __es_tree_search(&tree->root, start);
2161 
2162 	while (es && (es->es_lblk <= end)) {
2163 		if (ext4_es_is_delonly(es)) {
2164 			if (es->es_lblk <= start)
2165 				first_lclu = EXT4_B2C(sbi, start);
2166 			else
2167 				first_lclu = EXT4_B2C(sbi, es->es_lblk);
2168 
2169 			if (ext4_es_end(es) >= end)
2170 				last_lclu = EXT4_B2C(sbi, end);
2171 			else
2172 				last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2173 
2174 			if (first_lclu == last_counted_lclu)
2175 				n += last_lclu - first_lclu;
2176 			else
2177 				n += last_lclu - first_lclu + 1;
2178 			last_counted_lclu = last_lclu;
2179 		}
2180 		node = rb_next(&es->rb_node);
2181 		if (!node)
2182 			break;
2183 		es = rb_entry(node, struct extent_status, rb_node);
2184 	}
2185 
2186 	return n;
2187 }
2188 
2189 /*
2190  * ext4_es_delayed_clu - count number of clusters containing blocks that
2191  *                       are both delayed and unwritten
2192  *
2193  * @inode - file containing block range
2194  * @lblk - logical block defining start of range
2195  * @len - number of blocks in range
2196  *
2197  * Locking for external use of __es_delayed_clu().
2198  */
2199 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2200 				 ext4_lblk_t len)
2201 {
2202 	struct ext4_inode_info *ei = EXT4_I(inode);
2203 	ext4_lblk_t end;
2204 	unsigned int n;
2205 
2206 	if (len == 0)
2207 		return 0;
2208 
2209 	end = lblk + len - 1;
2210 	WARN_ON(end < lblk);
2211 
2212 	read_lock(&ei->i_es_lock);
2213 
2214 	n = __es_delayed_clu(inode, lblk, end);
2215 
2216 	read_unlock(&ei->i_es_lock);
2217 
2218 	return n;
2219 }
2220 
2221 /*
2222  * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2223  *                    reservations for a specified block range depending
2224  *                    upon the presence or absence of delayed blocks
2225  *                    outside the range within clusters at the ends of the
2226  *                    range
2227  *
2228  * @inode - file containing the range
2229  * @lblk - logical block defining the start of range
2230  * @len  - length of range in blocks
2231  * @prealloc - preallocated pending entry
2232  *
2233  * Used after a newly allocated extent is added to the extents status tree.
2234  * Requires that the extents in the range have either written or unwritten
2235  * status.  Must be called while holding i_es_lock.
2236  */
2237 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2238 			    ext4_lblk_t len,
2239 			    struct pending_reservation **prealloc)
2240 {
2241 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2242 	ext4_lblk_t end = lblk + len - 1;
2243 	ext4_lblk_t first, last;
2244 	bool f_del = false, l_del = false;
2245 	int ret = 0;
2246 
2247 	if (len == 0)
2248 		return 0;
2249 
2250 	/*
2251 	 * Two cases - block range within single cluster and block range
2252 	 * spanning two or more clusters.  Note that a cluster belonging
2253 	 * to a range starting and/or ending on a cluster boundary is treated
2254 	 * as if it does not contain a delayed extent.  The new range may
2255 	 * have allocated space for previously delayed blocks out to the
2256 	 * cluster boundary, requiring that any pre-existing pending
2257 	 * reservation be canceled.  Because this code only looks at blocks
2258 	 * outside the range, it should revise pending reservations
2259 	 * correctly even if the extent represented by the range can't be
2260 	 * inserted in the extents status tree due to ENOSPC.
2261 	 */
2262 
2263 	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2264 		first = EXT4_LBLK_CMASK(sbi, lblk);
2265 		if (first != lblk)
2266 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2267 						first, lblk - 1);
2268 		if (f_del) {
2269 			ret = __insert_pending(inode, first, prealloc);
2270 			if (ret < 0)
2271 				goto out;
2272 		} else {
2273 			last = EXT4_LBLK_CMASK(sbi, end) +
2274 			       sbi->s_cluster_ratio - 1;
2275 			if (last != end)
2276 				l_del = __es_scan_range(inode,
2277 							&ext4_es_is_delonly,
2278 							end + 1, last);
2279 			if (l_del) {
2280 				ret = __insert_pending(inode, last, prealloc);
2281 				if (ret < 0)
2282 					goto out;
2283 			} else
2284 				__remove_pending(inode, last);
2285 		}
2286 	} else {
2287 		first = EXT4_LBLK_CMASK(sbi, lblk);
2288 		if (first != lblk)
2289 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2290 						first, lblk - 1);
2291 		if (f_del) {
2292 			ret = __insert_pending(inode, first, prealloc);
2293 			if (ret < 0)
2294 				goto out;
2295 		} else
2296 			__remove_pending(inode, first);
2297 
2298 		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2299 		if (last != end)
2300 			l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2301 						end + 1, last);
2302 		if (l_del) {
2303 			ret = __insert_pending(inode, last, prealloc);
2304 			if (ret < 0)
2305 				goto out;
2306 		} else
2307 			__remove_pending(inode, last);
2308 	}
2309 out:
2310 	return ret;
2311 }
2312