1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/ext4/extents_status.c 4 * 5 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com> 6 * Modified by 7 * Allison Henderson <achender@linux.vnet.ibm.com> 8 * Hugh Dickins <hughd@google.com> 9 * Zheng Liu <wenqing.lz@taobao.com> 10 * 11 * Ext4 extents status tree core functions. 12 */ 13 #include <linux/list_sort.h> 14 #include <linux/proc_fs.h> 15 #include <linux/seq_file.h> 16 #include "ext4.h" 17 18 #include <trace/events/ext4.h> 19 20 /* 21 * According to previous discussion in Ext4 Developer Workshop, we 22 * will introduce a new structure called io tree to track all extent 23 * status in order to solve some problems that we have met 24 * (e.g. Reservation space warning), and provide extent-level locking. 25 * Delay extent tree is the first step to achieve this goal. It is 26 * original built by Yongqiang Yang. At that time it is called delay 27 * extent tree, whose goal is only track delayed extents in memory to 28 * simplify the implementation of fiemap and bigalloc, and introduce 29 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called 30 * delay extent tree at the first commit. But for better understand 31 * what it does, it has been rename to extent status tree. 32 * 33 * Step1: 34 * Currently the first step has been done. All delayed extents are 35 * tracked in the tree. It maintains the delayed extent when a delayed 36 * allocation is issued, and the delayed extent is written out or 37 * invalidated. Therefore the implementation of fiemap and bigalloc 38 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced. 39 * 40 * The following comment describes the implemenmtation of extent 41 * status tree and future works. 42 * 43 * Step2: 44 * In this step all extent status are tracked by extent status tree. 45 * Thus, we can first try to lookup a block mapping in this tree before 46 * finding it in extent tree. Hence, single extent cache can be removed 47 * because extent status tree can do a better job. Extents in status 48 * tree are loaded on-demand. Therefore, the extent status tree may not 49 * contain all of the extents in a file. Meanwhile we define a shrinker 50 * to reclaim memory from extent status tree because fragmented extent 51 * tree will make status tree cost too much memory. written/unwritten/- 52 * hole extents in the tree will be reclaimed by this shrinker when we 53 * are under high memory pressure. Delayed extents will not be 54 * reclimed because fiemap, bigalloc, and seek_data/hole need it. 55 */ 56 57 /* 58 * Extent status tree implementation for ext4. 59 * 60 * 61 * ========================================================================== 62 * Extent status tree tracks all extent status. 63 * 64 * 1. Why we need to implement extent status tree? 65 * 66 * Without extent status tree, ext4 identifies a delayed extent by looking 67 * up page cache, this has several deficiencies - complicated, buggy, 68 * and inefficient code. 69 * 70 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a 71 * block or a range of blocks are belonged to a delayed extent. 72 * 73 * Let us have a look at how they do without extent status tree. 74 * -- FIEMAP 75 * FIEMAP looks up page cache to identify delayed allocations from holes. 76 * 77 * -- SEEK_HOLE/DATA 78 * SEEK_HOLE/DATA has the same problem as FIEMAP. 79 * 80 * -- bigalloc 81 * bigalloc looks up page cache to figure out if a block is 82 * already under delayed allocation or not to determine whether 83 * quota reserving is needed for the cluster. 84 * 85 * -- writeout 86 * Writeout looks up whole page cache to see if a buffer is 87 * mapped, If there are not very many delayed buffers, then it is 88 * time consuming. 89 * 90 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA, 91 * bigalloc and writeout can figure out if a block or a range of 92 * blocks is under delayed allocation(belonged to a delayed extent) or 93 * not by searching the extent tree. 94 * 95 * 96 * ========================================================================== 97 * 2. Ext4 extent status tree impelmentation 98 * 99 * -- extent 100 * A extent is a range of blocks which are contiguous logically and 101 * physically. Unlike extent in extent tree, this extent in ext4 is 102 * a in-memory struct, there is no corresponding on-disk data. There 103 * is no limit on length of extent, so an extent can contain as many 104 * blocks as they are contiguous logically and physically. 105 * 106 * -- extent status tree 107 * Every inode has an extent status tree and all allocation blocks 108 * are added to the tree with different status. The extent in the 109 * tree are ordered by logical block no. 110 * 111 * -- operations on a extent status tree 112 * There are three important operations on a delayed extent tree: find 113 * next extent, adding a extent(a range of blocks) and removing a extent. 114 * 115 * -- race on a extent status tree 116 * Extent status tree is protected by inode->i_es_lock. 117 * 118 * -- memory consumption 119 * Fragmented extent tree will make extent status tree cost too much 120 * memory. Hence, we will reclaim written/unwritten/hole extents from 121 * the tree under a heavy memory pressure. 122 * 123 * 124 * ========================================================================== 125 * 3. Performance analysis 126 * 127 * -- overhead 128 * 1. There is a cache extent for write access, so if writes are 129 * not very random, adding space operaions are in O(1) time. 130 * 131 * -- gain 132 * 2. Code is much simpler, more readable, more maintainable and 133 * more efficient. 134 * 135 * 136 * ========================================================================== 137 * 4. TODO list 138 * 139 * -- Refactor delayed space reservation 140 * 141 * -- Extent-level locking 142 */ 143 144 static struct kmem_cache *ext4_es_cachep; 145 static struct kmem_cache *ext4_pending_cachep; 146 147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes); 148 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 149 ext4_lblk_t end, int *reserved); 150 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan); 151 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, 152 struct ext4_inode_info *locked_ei); 153 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk, 154 ext4_lblk_t len); 155 156 int __init ext4_init_es(void) 157 { 158 ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT); 159 if (ext4_es_cachep == NULL) 160 return -ENOMEM; 161 return 0; 162 } 163 164 void ext4_exit_es(void) 165 { 166 kmem_cache_destroy(ext4_es_cachep); 167 } 168 169 void ext4_es_init_tree(struct ext4_es_tree *tree) 170 { 171 tree->root = RB_ROOT; 172 tree->cache_es = NULL; 173 } 174 175 #ifdef ES_DEBUG__ 176 static void ext4_es_print_tree(struct inode *inode) 177 { 178 struct ext4_es_tree *tree; 179 struct rb_node *node; 180 181 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino); 182 tree = &EXT4_I(inode)->i_es_tree; 183 node = rb_first(&tree->root); 184 while (node) { 185 struct extent_status *es; 186 es = rb_entry(node, struct extent_status, rb_node); 187 printk(KERN_DEBUG " [%u/%u) %llu %x", 188 es->es_lblk, es->es_len, 189 ext4_es_pblock(es), ext4_es_status(es)); 190 node = rb_next(node); 191 } 192 printk(KERN_DEBUG "\n"); 193 } 194 #else 195 #define ext4_es_print_tree(inode) 196 #endif 197 198 static inline ext4_lblk_t ext4_es_end(struct extent_status *es) 199 { 200 BUG_ON(es->es_lblk + es->es_len < es->es_lblk); 201 return es->es_lblk + es->es_len - 1; 202 } 203 204 /* 205 * search through the tree for an delayed extent with a given offset. If 206 * it can't be found, try to find next extent. 207 */ 208 static struct extent_status *__es_tree_search(struct rb_root *root, 209 ext4_lblk_t lblk) 210 { 211 struct rb_node *node = root->rb_node; 212 struct extent_status *es = NULL; 213 214 while (node) { 215 es = rb_entry(node, struct extent_status, rb_node); 216 if (lblk < es->es_lblk) 217 node = node->rb_left; 218 else if (lblk > ext4_es_end(es)) 219 node = node->rb_right; 220 else 221 return es; 222 } 223 224 if (es && lblk < es->es_lblk) 225 return es; 226 227 if (es && lblk > ext4_es_end(es)) { 228 node = rb_next(&es->rb_node); 229 return node ? rb_entry(node, struct extent_status, rb_node) : 230 NULL; 231 } 232 233 return NULL; 234 } 235 236 /* 237 * ext4_es_find_extent_range - find extent with specified status within block 238 * range or next extent following block range in 239 * extents status tree 240 * 241 * @inode - file containing the range 242 * @matching_fn - pointer to function that matches extents with desired status 243 * @lblk - logical block defining start of range 244 * @end - logical block defining end of range 245 * @es - extent found, if any 246 * 247 * Find the first extent within the block range specified by @lblk and @end 248 * in the extents status tree that satisfies @matching_fn. If a match 249 * is found, it's returned in @es. If not, and a matching extent is found 250 * beyond the block range, it's returned in @es. If no match is found, an 251 * extent is returned in @es whose es_lblk, es_len, and es_pblk components 252 * are 0. 253 */ 254 static void __es_find_extent_range(struct inode *inode, 255 int (*matching_fn)(struct extent_status *es), 256 ext4_lblk_t lblk, ext4_lblk_t end, 257 struct extent_status *es) 258 { 259 struct ext4_es_tree *tree = NULL; 260 struct extent_status *es1 = NULL; 261 struct rb_node *node; 262 263 WARN_ON(es == NULL); 264 WARN_ON(end < lblk); 265 266 tree = &EXT4_I(inode)->i_es_tree; 267 268 /* see if the extent has been cached */ 269 es->es_lblk = es->es_len = es->es_pblk = 0; 270 es1 = READ_ONCE(tree->cache_es); 271 if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) { 272 es_debug("%u cached by [%u/%u) %llu %x\n", 273 lblk, es1->es_lblk, es1->es_len, 274 ext4_es_pblock(es1), ext4_es_status(es1)); 275 goto out; 276 } 277 278 es1 = __es_tree_search(&tree->root, lblk); 279 280 out: 281 if (es1 && !matching_fn(es1)) { 282 while ((node = rb_next(&es1->rb_node)) != NULL) { 283 es1 = rb_entry(node, struct extent_status, rb_node); 284 if (es1->es_lblk > end) { 285 es1 = NULL; 286 break; 287 } 288 if (matching_fn(es1)) 289 break; 290 } 291 } 292 293 if (es1 && matching_fn(es1)) { 294 WRITE_ONCE(tree->cache_es, es1); 295 es->es_lblk = es1->es_lblk; 296 es->es_len = es1->es_len; 297 es->es_pblk = es1->es_pblk; 298 } 299 300 } 301 302 /* 303 * Locking for __es_find_extent_range() for external use 304 */ 305 void ext4_es_find_extent_range(struct inode *inode, 306 int (*matching_fn)(struct extent_status *es), 307 ext4_lblk_t lblk, ext4_lblk_t end, 308 struct extent_status *es) 309 { 310 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 311 return; 312 313 trace_ext4_es_find_extent_range_enter(inode, lblk); 314 315 read_lock(&EXT4_I(inode)->i_es_lock); 316 __es_find_extent_range(inode, matching_fn, lblk, end, es); 317 read_unlock(&EXT4_I(inode)->i_es_lock); 318 319 trace_ext4_es_find_extent_range_exit(inode, es); 320 } 321 322 /* 323 * __es_scan_range - search block range for block with specified status 324 * in extents status tree 325 * 326 * @inode - file containing the range 327 * @matching_fn - pointer to function that matches extents with desired status 328 * @lblk - logical block defining start of range 329 * @end - logical block defining end of range 330 * 331 * Returns true if at least one block in the specified block range satisfies 332 * the criterion specified by @matching_fn, and false if not. If at least 333 * one extent has the specified status, then there is at least one block 334 * in the cluster with that status. Should only be called by code that has 335 * taken i_es_lock. 336 */ 337 static bool __es_scan_range(struct inode *inode, 338 int (*matching_fn)(struct extent_status *es), 339 ext4_lblk_t start, ext4_lblk_t end) 340 { 341 struct extent_status es; 342 343 __es_find_extent_range(inode, matching_fn, start, end, &es); 344 if (es.es_len == 0) 345 return false; /* no matching extent in the tree */ 346 else if (es.es_lblk <= start && 347 start < es.es_lblk + es.es_len) 348 return true; 349 else if (start <= es.es_lblk && es.es_lblk <= end) 350 return true; 351 else 352 return false; 353 } 354 /* 355 * Locking for __es_scan_range() for external use 356 */ 357 bool ext4_es_scan_range(struct inode *inode, 358 int (*matching_fn)(struct extent_status *es), 359 ext4_lblk_t lblk, ext4_lblk_t end) 360 { 361 bool ret; 362 363 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 364 return false; 365 366 read_lock(&EXT4_I(inode)->i_es_lock); 367 ret = __es_scan_range(inode, matching_fn, lblk, end); 368 read_unlock(&EXT4_I(inode)->i_es_lock); 369 370 return ret; 371 } 372 373 /* 374 * __es_scan_clu - search cluster for block with specified status in 375 * extents status tree 376 * 377 * @inode - file containing the cluster 378 * @matching_fn - pointer to function that matches extents with desired status 379 * @lblk - logical block in cluster to be searched 380 * 381 * Returns true if at least one extent in the cluster containing @lblk 382 * satisfies the criterion specified by @matching_fn, and false if not. If at 383 * least one extent has the specified status, then there is at least one block 384 * in the cluster with that status. Should only be called by code that has 385 * taken i_es_lock. 386 */ 387 static bool __es_scan_clu(struct inode *inode, 388 int (*matching_fn)(struct extent_status *es), 389 ext4_lblk_t lblk) 390 { 391 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 392 ext4_lblk_t lblk_start, lblk_end; 393 394 lblk_start = EXT4_LBLK_CMASK(sbi, lblk); 395 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 396 397 return __es_scan_range(inode, matching_fn, lblk_start, lblk_end); 398 } 399 400 /* 401 * Locking for __es_scan_clu() for external use 402 */ 403 bool ext4_es_scan_clu(struct inode *inode, 404 int (*matching_fn)(struct extent_status *es), 405 ext4_lblk_t lblk) 406 { 407 bool ret; 408 409 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 410 return false; 411 412 read_lock(&EXT4_I(inode)->i_es_lock); 413 ret = __es_scan_clu(inode, matching_fn, lblk); 414 read_unlock(&EXT4_I(inode)->i_es_lock); 415 416 return ret; 417 } 418 419 static void ext4_es_list_add(struct inode *inode) 420 { 421 struct ext4_inode_info *ei = EXT4_I(inode); 422 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 423 424 if (!list_empty(&ei->i_es_list)) 425 return; 426 427 spin_lock(&sbi->s_es_lock); 428 if (list_empty(&ei->i_es_list)) { 429 list_add_tail(&ei->i_es_list, &sbi->s_es_list); 430 sbi->s_es_nr_inode++; 431 } 432 spin_unlock(&sbi->s_es_lock); 433 } 434 435 static void ext4_es_list_del(struct inode *inode) 436 { 437 struct ext4_inode_info *ei = EXT4_I(inode); 438 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 439 440 spin_lock(&sbi->s_es_lock); 441 if (!list_empty(&ei->i_es_list)) { 442 list_del_init(&ei->i_es_list); 443 sbi->s_es_nr_inode--; 444 WARN_ON_ONCE(sbi->s_es_nr_inode < 0); 445 } 446 spin_unlock(&sbi->s_es_lock); 447 } 448 449 static struct extent_status * 450 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, 451 ext4_fsblk_t pblk) 452 { 453 struct extent_status *es; 454 es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC); 455 if (es == NULL) 456 return NULL; 457 es->es_lblk = lblk; 458 es->es_len = len; 459 es->es_pblk = pblk; 460 461 /* 462 * We don't count delayed extent because we never try to reclaim them 463 */ 464 if (!ext4_es_is_delayed(es)) { 465 if (!EXT4_I(inode)->i_es_shk_nr++) 466 ext4_es_list_add(inode); 467 percpu_counter_inc(&EXT4_SB(inode->i_sb)-> 468 s_es_stats.es_stats_shk_cnt); 469 } 470 471 EXT4_I(inode)->i_es_all_nr++; 472 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); 473 474 return es; 475 } 476 477 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es) 478 { 479 EXT4_I(inode)->i_es_all_nr--; 480 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); 481 482 /* Decrease the shrink counter when this es is not delayed */ 483 if (!ext4_es_is_delayed(es)) { 484 BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0); 485 if (!--EXT4_I(inode)->i_es_shk_nr) 486 ext4_es_list_del(inode); 487 percpu_counter_dec(&EXT4_SB(inode->i_sb)-> 488 s_es_stats.es_stats_shk_cnt); 489 } 490 491 kmem_cache_free(ext4_es_cachep, es); 492 } 493 494 /* 495 * Check whether or not two extents can be merged 496 * Condition: 497 * - logical block number is contiguous 498 * - physical block number is contiguous 499 * - status is equal 500 */ 501 static int ext4_es_can_be_merged(struct extent_status *es1, 502 struct extent_status *es2) 503 { 504 if (ext4_es_type(es1) != ext4_es_type(es2)) 505 return 0; 506 507 if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) { 508 pr_warn("ES assertion failed when merging extents. " 509 "The sum of lengths of es1 (%d) and es2 (%d) " 510 "is bigger than allowed file size (%d)\n", 511 es1->es_len, es2->es_len, EXT_MAX_BLOCKS); 512 WARN_ON(1); 513 return 0; 514 } 515 516 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk) 517 return 0; 518 519 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) && 520 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2))) 521 return 1; 522 523 if (ext4_es_is_hole(es1)) 524 return 1; 525 526 /* we need to check delayed extent is without unwritten status */ 527 if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1)) 528 return 1; 529 530 return 0; 531 } 532 533 static struct extent_status * 534 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es) 535 { 536 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 537 struct extent_status *es1; 538 struct rb_node *node; 539 540 node = rb_prev(&es->rb_node); 541 if (!node) 542 return es; 543 544 es1 = rb_entry(node, struct extent_status, rb_node); 545 if (ext4_es_can_be_merged(es1, es)) { 546 es1->es_len += es->es_len; 547 if (ext4_es_is_referenced(es)) 548 ext4_es_set_referenced(es1); 549 rb_erase(&es->rb_node, &tree->root); 550 ext4_es_free_extent(inode, es); 551 es = es1; 552 } 553 554 return es; 555 } 556 557 static struct extent_status * 558 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es) 559 { 560 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 561 struct extent_status *es1; 562 struct rb_node *node; 563 564 node = rb_next(&es->rb_node); 565 if (!node) 566 return es; 567 568 es1 = rb_entry(node, struct extent_status, rb_node); 569 if (ext4_es_can_be_merged(es, es1)) { 570 es->es_len += es1->es_len; 571 if (ext4_es_is_referenced(es1)) 572 ext4_es_set_referenced(es); 573 rb_erase(node, &tree->root); 574 ext4_es_free_extent(inode, es1); 575 } 576 577 return es; 578 } 579 580 #ifdef ES_AGGRESSIVE_TEST 581 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */ 582 583 static void ext4_es_insert_extent_ext_check(struct inode *inode, 584 struct extent_status *es) 585 { 586 struct ext4_ext_path *path = NULL; 587 struct ext4_extent *ex; 588 ext4_lblk_t ee_block; 589 ext4_fsblk_t ee_start; 590 unsigned short ee_len; 591 int depth, ee_status, es_status; 592 593 path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE); 594 if (IS_ERR(path)) 595 return; 596 597 depth = ext_depth(inode); 598 ex = path[depth].p_ext; 599 600 if (ex) { 601 602 ee_block = le32_to_cpu(ex->ee_block); 603 ee_start = ext4_ext_pblock(ex); 604 ee_len = ext4_ext_get_actual_len(ex); 605 606 ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0; 607 es_status = ext4_es_is_unwritten(es) ? 1 : 0; 608 609 /* 610 * Make sure ex and es are not overlap when we try to insert 611 * a delayed/hole extent. 612 */ 613 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) { 614 if (in_range(es->es_lblk, ee_block, ee_len)) { 615 pr_warn("ES insert assertion failed for " 616 "inode: %lu we can find an extent " 617 "at block [%d/%d/%llu/%c], but we " 618 "want to add a delayed/hole extent " 619 "[%d/%d/%llu/%x]\n", 620 inode->i_ino, ee_block, ee_len, 621 ee_start, ee_status ? 'u' : 'w', 622 es->es_lblk, es->es_len, 623 ext4_es_pblock(es), ext4_es_status(es)); 624 } 625 goto out; 626 } 627 628 /* 629 * We don't check ee_block == es->es_lblk, etc. because es 630 * might be a part of whole extent, vice versa. 631 */ 632 if (es->es_lblk < ee_block || 633 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) { 634 pr_warn("ES insert assertion failed for inode: %lu " 635 "ex_status [%d/%d/%llu/%c] != " 636 "es_status [%d/%d/%llu/%c]\n", inode->i_ino, 637 ee_block, ee_len, ee_start, 638 ee_status ? 'u' : 'w', es->es_lblk, es->es_len, 639 ext4_es_pblock(es), es_status ? 'u' : 'w'); 640 goto out; 641 } 642 643 if (ee_status ^ es_status) { 644 pr_warn("ES insert assertion failed for inode: %lu " 645 "ex_status [%d/%d/%llu/%c] != " 646 "es_status [%d/%d/%llu/%c]\n", inode->i_ino, 647 ee_block, ee_len, ee_start, 648 ee_status ? 'u' : 'w', es->es_lblk, es->es_len, 649 ext4_es_pblock(es), es_status ? 'u' : 'w'); 650 } 651 } else { 652 /* 653 * We can't find an extent on disk. So we need to make sure 654 * that we don't want to add an written/unwritten extent. 655 */ 656 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) { 657 pr_warn("ES insert assertion failed for inode: %lu " 658 "can't find an extent at block %d but we want " 659 "to add a written/unwritten extent " 660 "[%d/%d/%llu/%x]\n", inode->i_ino, 661 es->es_lblk, es->es_lblk, es->es_len, 662 ext4_es_pblock(es), ext4_es_status(es)); 663 } 664 } 665 out: 666 ext4_free_ext_path(path); 667 } 668 669 static void ext4_es_insert_extent_ind_check(struct inode *inode, 670 struct extent_status *es) 671 { 672 struct ext4_map_blocks map; 673 int retval; 674 675 /* 676 * Here we call ext4_ind_map_blocks to lookup a block mapping because 677 * 'Indirect' structure is defined in indirect.c. So we couldn't 678 * access direct/indirect tree from outside. It is too dirty to define 679 * this function in indirect.c file. 680 */ 681 682 map.m_lblk = es->es_lblk; 683 map.m_len = es->es_len; 684 685 retval = ext4_ind_map_blocks(NULL, inode, &map, 0); 686 if (retval > 0) { 687 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) { 688 /* 689 * We want to add a delayed/hole extent but this 690 * block has been allocated. 691 */ 692 pr_warn("ES insert assertion failed for inode: %lu " 693 "We can find blocks but we want to add a " 694 "delayed/hole extent [%d/%d/%llu/%x]\n", 695 inode->i_ino, es->es_lblk, es->es_len, 696 ext4_es_pblock(es), ext4_es_status(es)); 697 return; 698 } else if (ext4_es_is_written(es)) { 699 if (retval != es->es_len) { 700 pr_warn("ES insert assertion failed for " 701 "inode: %lu retval %d != es_len %d\n", 702 inode->i_ino, retval, es->es_len); 703 return; 704 } 705 if (map.m_pblk != ext4_es_pblock(es)) { 706 pr_warn("ES insert assertion failed for " 707 "inode: %lu m_pblk %llu != " 708 "es_pblk %llu\n", 709 inode->i_ino, map.m_pblk, 710 ext4_es_pblock(es)); 711 return; 712 } 713 } else { 714 /* 715 * We don't need to check unwritten extent because 716 * indirect-based file doesn't have it. 717 */ 718 BUG(); 719 } 720 } else if (retval == 0) { 721 if (ext4_es_is_written(es)) { 722 pr_warn("ES insert assertion failed for inode: %lu " 723 "We can't find the block but we want to add " 724 "a written extent [%d/%d/%llu/%x]\n", 725 inode->i_ino, es->es_lblk, es->es_len, 726 ext4_es_pblock(es), ext4_es_status(es)); 727 return; 728 } 729 } 730 } 731 732 static inline void ext4_es_insert_extent_check(struct inode *inode, 733 struct extent_status *es) 734 { 735 /* 736 * We don't need to worry about the race condition because 737 * caller takes i_data_sem locking. 738 */ 739 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 740 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 741 ext4_es_insert_extent_ext_check(inode, es); 742 else 743 ext4_es_insert_extent_ind_check(inode, es); 744 } 745 #else 746 static inline void ext4_es_insert_extent_check(struct inode *inode, 747 struct extent_status *es) 748 { 749 } 750 #endif 751 752 static int __es_insert_extent(struct inode *inode, struct extent_status *newes) 753 { 754 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 755 struct rb_node **p = &tree->root.rb_node; 756 struct rb_node *parent = NULL; 757 struct extent_status *es; 758 759 while (*p) { 760 parent = *p; 761 es = rb_entry(parent, struct extent_status, rb_node); 762 763 if (newes->es_lblk < es->es_lblk) { 764 if (ext4_es_can_be_merged(newes, es)) { 765 /* 766 * Here we can modify es_lblk directly 767 * because it isn't overlapped. 768 */ 769 es->es_lblk = newes->es_lblk; 770 es->es_len += newes->es_len; 771 if (ext4_es_is_written(es) || 772 ext4_es_is_unwritten(es)) 773 ext4_es_store_pblock(es, 774 newes->es_pblk); 775 es = ext4_es_try_to_merge_left(inode, es); 776 goto out; 777 } 778 p = &(*p)->rb_left; 779 } else if (newes->es_lblk > ext4_es_end(es)) { 780 if (ext4_es_can_be_merged(es, newes)) { 781 es->es_len += newes->es_len; 782 es = ext4_es_try_to_merge_right(inode, es); 783 goto out; 784 } 785 p = &(*p)->rb_right; 786 } else { 787 BUG(); 788 return -EINVAL; 789 } 790 } 791 792 es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len, 793 newes->es_pblk); 794 if (!es) 795 return -ENOMEM; 796 rb_link_node(&es->rb_node, parent, p); 797 rb_insert_color(&es->rb_node, &tree->root); 798 799 out: 800 tree->cache_es = es; 801 return 0; 802 } 803 804 /* 805 * ext4_es_insert_extent() adds information to an inode's extent 806 * status tree. 807 * 808 * Return 0 on success, error code on failure. 809 */ 810 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, 811 ext4_lblk_t len, ext4_fsblk_t pblk, 812 unsigned int status) 813 { 814 struct extent_status newes; 815 ext4_lblk_t end = lblk + len - 1; 816 int err = 0; 817 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 818 819 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 820 return 0; 821 822 es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n", 823 lblk, len, pblk, status, inode->i_ino); 824 825 if (!len) 826 return 0; 827 828 BUG_ON(end < lblk); 829 830 if ((status & EXTENT_STATUS_DELAYED) && 831 (status & EXTENT_STATUS_WRITTEN)) { 832 ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as " 833 " delayed and written which can potentially " 834 " cause data loss.", lblk, len); 835 WARN_ON(1); 836 } 837 838 newes.es_lblk = lblk; 839 newes.es_len = len; 840 ext4_es_store_pblock_status(&newes, pblk, status); 841 trace_ext4_es_insert_extent(inode, &newes); 842 843 ext4_es_insert_extent_check(inode, &newes); 844 845 write_lock(&EXT4_I(inode)->i_es_lock); 846 err = __es_remove_extent(inode, lblk, end, NULL); 847 if (err != 0) 848 goto error; 849 retry: 850 err = __es_insert_extent(inode, &newes); 851 if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb), 852 128, EXT4_I(inode))) 853 goto retry; 854 if (err == -ENOMEM && !ext4_es_is_delayed(&newes)) 855 err = 0; 856 857 if (sbi->s_cluster_ratio > 1 && test_opt(inode->i_sb, DELALLOC) && 858 (status & EXTENT_STATUS_WRITTEN || 859 status & EXTENT_STATUS_UNWRITTEN)) 860 __revise_pending(inode, lblk, len); 861 862 error: 863 write_unlock(&EXT4_I(inode)->i_es_lock); 864 865 ext4_es_print_tree(inode); 866 867 return err; 868 } 869 870 /* 871 * ext4_es_cache_extent() inserts information into the extent status 872 * tree if and only if there isn't information about the range in 873 * question already. 874 */ 875 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk, 876 ext4_lblk_t len, ext4_fsblk_t pblk, 877 unsigned int status) 878 { 879 struct extent_status *es; 880 struct extent_status newes; 881 ext4_lblk_t end = lblk + len - 1; 882 883 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 884 return; 885 886 newes.es_lblk = lblk; 887 newes.es_len = len; 888 ext4_es_store_pblock_status(&newes, pblk, status); 889 trace_ext4_es_cache_extent(inode, &newes); 890 891 if (!len) 892 return; 893 894 BUG_ON(end < lblk); 895 896 write_lock(&EXT4_I(inode)->i_es_lock); 897 898 es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk); 899 if (!es || es->es_lblk > end) 900 __es_insert_extent(inode, &newes); 901 write_unlock(&EXT4_I(inode)->i_es_lock); 902 } 903 904 /* 905 * ext4_es_lookup_extent() looks up an extent in extent status tree. 906 * 907 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks. 908 * 909 * Return: 1 on found, 0 on not 910 */ 911 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, 912 ext4_lblk_t *next_lblk, 913 struct extent_status *es) 914 { 915 struct ext4_es_tree *tree; 916 struct ext4_es_stats *stats; 917 struct extent_status *es1 = NULL; 918 struct rb_node *node; 919 int found = 0; 920 921 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 922 return 0; 923 924 trace_ext4_es_lookup_extent_enter(inode, lblk); 925 es_debug("lookup extent in block %u\n", lblk); 926 927 tree = &EXT4_I(inode)->i_es_tree; 928 read_lock(&EXT4_I(inode)->i_es_lock); 929 930 /* find extent in cache firstly */ 931 es->es_lblk = es->es_len = es->es_pblk = 0; 932 es1 = READ_ONCE(tree->cache_es); 933 if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) { 934 es_debug("%u cached by [%u/%u)\n", 935 lblk, es1->es_lblk, es1->es_len); 936 found = 1; 937 goto out; 938 } 939 940 node = tree->root.rb_node; 941 while (node) { 942 es1 = rb_entry(node, struct extent_status, rb_node); 943 if (lblk < es1->es_lblk) 944 node = node->rb_left; 945 else if (lblk > ext4_es_end(es1)) 946 node = node->rb_right; 947 else { 948 found = 1; 949 break; 950 } 951 } 952 953 out: 954 stats = &EXT4_SB(inode->i_sb)->s_es_stats; 955 if (found) { 956 BUG_ON(!es1); 957 es->es_lblk = es1->es_lblk; 958 es->es_len = es1->es_len; 959 es->es_pblk = es1->es_pblk; 960 if (!ext4_es_is_referenced(es1)) 961 ext4_es_set_referenced(es1); 962 percpu_counter_inc(&stats->es_stats_cache_hits); 963 if (next_lblk) { 964 node = rb_next(&es1->rb_node); 965 if (node) { 966 es1 = rb_entry(node, struct extent_status, 967 rb_node); 968 *next_lblk = es1->es_lblk; 969 } else 970 *next_lblk = 0; 971 } 972 } else { 973 percpu_counter_inc(&stats->es_stats_cache_misses); 974 } 975 976 read_unlock(&EXT4_I(inode)->i_es_lock); 977 978 trace_ext4_es_lookup_extent_exit(inode, es, found); 979 return found; 980 } 981 982 struct rsvd_count { 983 int ndelonly; 984 bool first_do_lblk_found; 985 ext4_lblk_t first_do_lblk; 986 ext4_lblk_t last_do_lblk; 987 struct extent_status *left_es; 988 bool partial; 989 ext4_lblk_t lclu; 990 }; 991 992 /* 993 * init_rsvd - initialize reserved count data before removing block range 994 * in file from extent status tree 995 * 996 * @inode - file containing range 997 * @lblk - first block in range 998 * @es - pointer to first extent in range 999 * @rc - pointer to reserved count data 1000 * 1001 * Assumes es is not NULL 1002 */ 1003 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk, 1004 struct extent_status *es, struct rsvd_count *rc) 1005 { 1006 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1007 struct rb_node *node; 1008 1009 rc->ndelonly = 0; 1010 1011 /* 1012 * for bigalloc, note the first delonly block in the range has not 1013 * been found, record the extent containing the block to the left of 1014 * the region to be removed, if any, and note that there's no partial 1015 * cluster to track 1016 */ 1017 if (sbi->s_cluster_ratio > 1) { 1018 rc->first_do_lblk_found = false; 1019 if (lblk > es->es_lblk) { 1020 rc->left_es = es; 1021 } else { 1022 node = rb_prev(&es->rb_node); 1023 rc->left_es = node ? rb_entry(node, 1024 struct extent_status, 1025 rb_node) : NULL; 1026 } 1027 rc->partial = false; 1028 } 1029 } 1030 1031 /* 1032 * count_rsvd - count the clusters containing delayed and not unwritten 1033 * (delonly) blocks in a range within an extent and add to 1034 * the running tally in rsvd_count 1035 * 1036 * @inode - file containing extent 1037 * @lblk - first block in range 1038 * @len - length of range in blocks 1039 * @es - pointer to extent containing clusters to be counted 1040 * @rc - pointer to reserved count data 1041 * 1042 * Tracks partial clusters found at the beginning and end of extents so 1043 * they aren't overcounted when they span adjacent extents 1044 */ 1045 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len, 1046 struct extent_status *es, struct rsvd_count *rc) 1047 { 1048 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1049 ext4_lblk_t i, end, nclu; 1050 1051 if (!ext4_es_is_delonly(es)) 1052 return; 1053 1054 WARN_ON(len <= 0); 1055 1056 if (sbi->s_cluster_ratio == 1) { 1057 rc->ndelonly += (int) len; 1058 return; 1059 } 1060 1061 /* bigalloc */ 1062 1063 i = (lblk < es->es_lblk) ? es->es_lblk : lblk; 1064 end = lblk + (ext4_lblk_t) len - 1; 1065 end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end; 1066 1067 /* record the first block of the first delonly extent seen */ 1068 if (!rc->first_do_lblk_found) { 1069 rc->first_do_lblk = i; 1070 rc->first_do_lblk_found = true; 1071 } 1072 1073 /* update the last lblk in the region seen so far */ 1074 rc->last_do_lblk = end; 1075 1076 /* 1077 * if we're tracking a partial cluster and the current extent 1078 * doesn't start with it, count it and stop tracking 1079 */ 1080 if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) { 1081 rc->ndelonly++; 1082 rc->partial = false; 1083 } 1084 1085 /* 1086 * if the first cluster doesn't start on a cluster boundary but 1087 * ends on one, count it 1088 */ 1089 if (EXT4_LBLK_COFF(sbi, i) != 0) { 1090 if (end >= EXT4_LBLK_CFILL(sbi, i)) { 1091 rc->ndelonly++; 1092 rc->partial = false; 1093 i = EXT4_LBLK_CFILL(sbi, i) + 1; 1094 } 1095 } 1096 1097 /* 1098 * if the current cluster starts on a cluster boundary, count the 1099 * number of whole delonly clusters in the extent 1100 */ 1101 if ((i + sbi->s_cluster_ratio - 1) <= end) { 1102 nclu = (end - i + 1) >> sbi->s_cluster_bits; 1103 rc->ndelonly += nclu; 1104 i += nclu << sbi->s_cluster_bits; 1105 } 1106 1107 /* 1108 * start tracking a partial cluster if there's a partial at the end 1109 * of the current extent and we're not already tracking one 1110 */ 1111 if (!rc->partial && i <= end) { 1112 rc->partial = true; 1113 rc->lclu = EXT4_B2C(sbi, i); 1114 } 1115 } 1116 1117 /* 1118 * __pr_tree_search - search for a pending cluster reservation 1119 * 1120 * @root - root of pending reservation tree 1121 * @lclu - logical cluster to search for 1122 * 1123 * Returns the pending reservation for the cluster identified by @lclu 1124 * if found. If not, returns a reservation for the next cluster if any, 1125 * and if not, returns NULL. 1126 */ 1127 static struct pending_reservation *__pr_tree_search(struct rb_root *root, 1128 ext4_lblk_t lclu) 1129 { 1130 struct rb_node *node = root->rb_node; 1131 struct pending_reservation *pr = NULL; 1132 1133 while (node) { 1134 pr = rb_entry(node, struct pending_reservation, rb_node); 1135 if (lclu < pr->lclu) 1136 node = node->rb_left; 1137 else if (lclu > pr->lclu) 1138 node = node->rb_right; 1139 else 1140 return pr; 1141 } 1142 if (pr && lclu < pr->lclu) 1143 return pr; 1144 if (pr && lclu > pr->lclu) { 1145 node = rb_next(&pr->rb_node); 1146 return node ? rb_entry(node, struct pending_reservation, 1147 rb_node) : NULL; 1148 } 1149 return NULL; 1150 } 1151 1152 /* 1153 * get_rsvd - calculates and returns the number of cluster reservations to be 1154 * released when removing a block range from the extent status tree 1155 * and releases any pending reservations within the range 1156 * 1157 * @inode - file containing block range 1158 * @end - last block in range 1159 * @right_es - pointer to extent containing next block beyond end or NULL 1160 * @rc - pointer to reserved count data 1161 * 1162 * The number of reservations to be released is equal to the number of 1163 * clusters containing delayed and not unwritten (delonly) blocks within 1164 * the range, minus the number of clusters still containing delonly blocks 1165 * at the ends of the range, and minus the number of pending reservations 1166 * within the range. 1167 */ 1168 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end, 1169 struct extent_status *right_es, 1170 struct rsvd_count *rc) 1171 { 1172 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1173 struct pending_reservation *pr; 1174 struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree; 1175 struct rb_node *node; 1176 ext4_lblk_t first_lclu, last_lclu; 1177 bool left_delonly, right_delonly, count_pending; 1178 struct extent_status *es; 1179 1180 if (sbi->s_cluster_ratio > 1) { 1181 /* count any remaining partial cluster */ 1182 if (rc->partial) 1183 rc->ndelonly++; 1184 1185 if (rc->ndelonly == 0) 1186 return 0; 1187 1188 first_lclu = EXT4_B2C(sbi, rc->first_do_lblk); 1189 last_lclu = EXT4_B2C(sbi, rc->last_do_lblk); 1190 1191 /* 1192 * decrease the delonly count by the number of clusters at the 1193 * ends of the range that still contain delonly blocks - 1194 * these clusters still need to be reserved 1195 */ 1196 left_delonly = right_delonly = false; 1197 1198 es = rc->left_es; 1199 while (es && ext4_es_end(es) >= 1200 EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) { 1201 if (ext4_es_is_delonly(es)) { 1202 rc->ndelonly--; 1203 left_delonly = true; 1204 break; 1205 } 1206 node = rb_prev(&es->rb_node); 1207 if (!node) 1208 break; 1209 es = rb_entry(node, struct extent_status, rb_node); 1210 } 1211 if (right_es && (!left_delonly || first_lclu != last_lclu)) { 1212 if (end < ext4_es_end(right_es)) { 1213 es = right_es; 1214 } else { 1215 node = rb_next(&right_es->rb_node); 1216 es = node ? rb_entry(node, struct extent_status, 1217 rb_node) : NULL; 1218 } 1219 while (es && es->es_lblk <= 1220 EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) { 1221 if (ext4_es_is_delonly(es)) { 1222 rc->ndelonly--; 1223 right_delonly = true; 1224 break; 1225 } 1226 node = rb_next(&es->rb_node); 1227 if (!node) 1228 break; 1229 es = rb_entry(node, struct extent_status, 1230 rb_node); 1231 } 1232 } 1233 1234 /* 1235 * Determine the block range that should be searched for 1236 * pending reservations, if any. Clusters on the ends of the 1237 * original removed range containing delonly blocks are 1238 * excluded. They've already been accounted for and it's not 1239 * possible to determine if an associated pending reservation 1240 * should be released with the information available in the 1241 * extents status tree. 1242 */ 1243 if (first_lclu == last_lclu) { 1244 if (left_delonly | right_delonly) 1245 count_pending = false; 1246 else 1247 count_pending = true; 1248 } else { 1249 if (left_delonly) 1250 first_lclu++; 1251 if (right_delonly) 1252 last_lclu--; 1253 if (first_lclu <= last_lclu) 1254 count_pending = true; 1255 else 1256 count_pending = false; 1257 } 1258 1259 /* 1260 * a pending reservation found between first_lclu and last_lclu 1261 * represents an allocated cluster that contained at least one 1262 * delonly block, so the delonly total must be reduced by one 1263 * for each pending reservation found and released 1264 */ 1265 if (count_pending) { 1266 pr = __pr_tree_search(&tree->root, first_lclu); 1267 while (pr && pr->lclu <= last_lclu) { 1268 rc->ndelonly--; 1269 node = rb_next(&pr->rb_node); 1270 rb_erase(&pr->rb_node, &tree->root); 1271 kmem_cache_free(ext4_pending_cachep, pr); 1272 if (!node) 1273 break; 1274 pr = rb_entry(node, struct pending_reservation, 1275 rb_node); 1276 } 1277 } 1278 } 1279 return rc->ndelonly; 1280 } 1281 1282 1283 /* 1284 * __es_remove_extent - removes block range from extent status tree 1285 * 1286 * @inode - file containing range 1287 * @lblk - first block in range 1288 * @end - last block in range 1289 * @reserved - number of cluster reservations released 1290 * 1291 * If @reserved is not NULL and delayed allocation is enabled, counts 1292 * block/cluster reservations freed by removing range and if bigalloc 1293 * enabled cancels pending reservations as needed. Returns 0 on success, 1294 * error code on failure. 1295 */ 1296 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 1297 ext4_lblk_t end, int *reserved) 1298 { 1299 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 1300 struct rb_node *node; 1301 struct extent_status *es; 1302 struct extent_status orig_es; 1303 ext4_lblk_t len1, len2; 1304 ext4_fsblk_t block; 1305 int err; 1306 bool count_reserved = true; 1307 struct rsvd_count rc; 1308 1309 if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC)) 1310 count_reserved = false; 1311 retry: 1312 err = 0; 1313 1314 es = __es_tree_search(&tree->root, lblk); 1315 if (!es) 1316 goto out; 1317 if (es->es_lblk > end) 1318 goto out; 1319 1320 /* Simply invalidate cache_es. */ 1321 tree->cache_es = NULL; 1322 if (count_reserved) 1323 init_rsvd(inode, lblk, es, &rc); 1324 1325 orig_es.es_lblk = es->es_lblk; 1326 orig_es.es_len = es->es_len; 1327 orig_es.es_pblk = es->es_pblk; 1328 1329 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0; 1330 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0; 1331 if (len1 > 0) 1332 es->es_len = len1; 1333 if (len2 > 0) { 1334 if (len1 > 0) { 1335 struct extent_status newes; 1336 1337 newes.es_lblk = end + 1; 1338 newes.es_len = len2; 1339 block = 0x7FDEADBEEFULL; 1340 if (ext4_es_is_written(&orig_es) || 1341 ext4_es_is_unwritten(&orig_es)) 1342 block = ext4_es_pblock(&orig_es) + 1343 orig_es.es_len - len2; 1344 ext4_es_store_pblock_status(&newes, block, 1345 ext4_es_status(&orig_es)); 1346 err = __es_insert_extent(inode, &newes); 1347 if (err) { 1348 es->es_lblk = orig_es.es_lblk; 1349 es->es_len = orig_es.es_len; 1350 if ((err == -ENOMEM) && 1351 __es_shrink(EXT4_SB(inode->i_sb), 1352 128, EXT4_I(inode))) 1353 goto retry; 1354 goto out; 1355 } 1356 } else { 1357 es->es_lblk = end + 1; 1358 es->es_len = len2; 1359 if (ext4_es_is_written(es) || 1360 ext4_es_is_unwritten(es)) { 1361 block = orig_es.es_pblk + orig_es.es_len - len2; 1362 ext4_es_store_pblock(es, block); 1363 } 1364 } 1365 if (count_reserved) 1366 count_rsvd(inode, lblk, orig_es.es_len - len1 - len2, 1367 &orig_es, &rc); 1368 goto out_get_reserved; 1369 } 1370 1371 if (len1 > 0) { 1372 if (count_reserved) 1373 count_rsvd(inode, lblk, orig_es.es_len - len1, 1374 &orig_es, &rc); 1375 node = rb_next(&es->rb_node); 1376 if (node) 1377 es = rb_entry(node, struct extent_status, rb_node); 1378 else 1379 es = NULL; 1380 } 1381 1382 while (es && ext4_es_end(es) <= end) { 1383 if (count_reserved) 1384 count_rsvd(inode, es->es_lblk, es->es_len, es, &rc); 1385 node = rb_next(&es->rb_node); 1386 rb_erase(&es->rb_node, &tree->root); 1387 ext4_es_free_extent(inode, es); 1388 if (!node) { 1389 es = NULL; 1390 break; 1391 } 1392 es = rb_entry(node, struct extent_status, rb_node); 1393 } 1394 1395 if (es && es->es_lblk < end + 1) { 1396 ext4_lblk_t orig_len = es->es_len; 1397 1398 len1 = ext4_es_end(es) - end; 1399 if (count_reserved) 1400 count_rsvd(inode, es->es_lblk, orig_len - len1, 1401 es, &rc); 1402 es->es_lblk = end + 1; 1403 es->es_len = len1; 1404 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { 1405 block = es->es_pblk + orig_len - len1; 1406 ext4_es_store_pblock(es, block); 1407 } 1408 } 1409 1410 out_get_reserved: 1411 if (count_reserved) 1412 *reserved = get_rsvd(inode, end, es, &rc); 1413 out: 1414 return err; 1415 } 1416 1417 /* 1418 * ext4_es_remove_extent - removes block range from extent status tree 1419 * 1420 * @inode - file containing range 1421 * @lblk - first block in range 1422 * @len - number of blocks to remove 1423 * 1424 * Reduces block/cluster reservation count and for bigalloc cancels pending 1425 * reservations as needed. Returns 0 on success, error code on failure. 1426 */ 1427 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 1428 ext4_lblk_t len) 1429 { 1430 ext4_lblk_t end; 1431 int err = 0; 1432 int reserved = 0; 1433 1434 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 1435 return 0; 1436 1437 trace_ext4_es_remove_extent(inode, lblk, len); 1438 es_debug("remove [%u/%u) from extent status tree of inode %lu\n", 1439 lblk, len, inode->i_ino); 1440 1441 if (!len) 1442 return err; 1443 1444 end = lblk + len - 1; 1445 BUG_ON(end < lblk); 1446 1447 /* 1448 * ext4_clear_inode() depends on us taking i_es_lock unconditionally 1449 * so that we are sure __es_shrink() is done with the inode before it 1450 * is reclaimed. 1451 */ 1452 write_lock(&EXT4_I(inode)->i_es_lock); 1453 err = __es_remove_extent(inode, lblk, end, &reserved); 1454 write_unlock(&EXT4_I(inode)->i_es_lock); 1455 ext4_es_print_tree(inode); 1456 ext4_da_release_space(inode, reserved); 1457 return err; 1458 } 1459 1460 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, 1461 struct ext4_inode_info *locked_ei) 1462 { 1463 struct ext4_inode_info *ei; 1464 struct ext4_es_stats *es_stats; 1465 ktime_t start_time; 1466 u64 scan_time; 1467 int nr_to_walk; 1468 int nr_shrunk = 0; 1469 int retried = 0, nr_skipped = 0; 1470 1471 es_stats = &sbi->s_es_stats; 1472 start_time = ktime_get(); 1473 1474 retry: 1475 spin_lock(&sbi->s_es_lock); 1476 nr_to_walk = sbi->s_es_nr_inode; 1477 while (nr_to_walk-- > 0) { 1478 if (list_empty(&sbi->s_es_list)) { 1479 spin_unlock(&sbi->s_es_lock); 1480 goto out; 1481 } 1482 ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info, 1483 i_es_list); 1484 /* Move the inode to the tail */ 1485 list_move_tail(&ei->i_es_list, &sbi->s_es_list); 1486 1487 /* 1488 * Normally we try hard to avoid shrinking precached inodes, 1489 * but we will as a last resort. 1490 */ 1491 if (!retried && ext4_test_inode_state(&ei->vfs_inode, 1492 EXT4_STATE_EXT_PRECACHED)) { 1493 nr_skipped++; 1494 continue; 1495 } 1496 1497 if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) { 1498 nr_skipped++; 1499 continue; 1500 } 1501 /* 1502 * Now we hold i_es_lock which protects us from inode reclaim 1503 * freeing inode under us 1504 */ 1505 spin_unlock(&sbi->s_es_lock); 1506 1507 nr_shrunk += es_reclaim_extents(ei, &nr_to_scan); 1508 write_unlock(&ei->i_es_lock); 1509 1510 if (nr_to_scan <= 0) 1511 goto out; 1512 spin_lock(&sbi->s_es_lock); 1513 } 1514 spin_unlock(&sbi->s_es_lock); 1515 1516 /* 1517 * If we skipped any inodes, and we weren't able to make any 1518 * forward progress, try again to scan precached inodes. 1519 */ 1520 if ((nr_shrunk == 0) && nr_skipped && !retried) { 1521 retried++; 1522 goto retry; 1523 } 1524 1525 if (locked_ei && nr_shrunk == 0) 1526 nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan); 1527 1528 out: 1529 scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); 1530 if (likely(es_stats->es_stats_scan_time)) 1531 es_stats->es_stats_scan_time = (scan_time + 1532 es_stats->es_stats_scan_time*3) / 4; 1533 else 1534 es_stats->es_stats_scan_time = scan_time; 1535 if (scan_time > es_stats->es_stats_max_scan_time) 1536 es_stats->es_stats_max_scan_time = scan_time; 1537 if (likely(es_stats->es_stats_shrunk)) 1538 es_stats->es_stats_shrunk = (nr_shrunk + 1539 es_stats->es_stats_shrunk*3) / 4; 1540 else 1541 es_stats->es_stats_shrunk = nr_shrunk; 1542 1543 trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time, 1544 nr_skipped, retried); 1545 return nr_shrunk; 1546 } 1547 1548 static unsigned long ext4_es_count(struct shrinker *shrink, 1549 struct shrink_control *sc) 1550 { 1551 unsigned long nr; 1552 struct ext4_sb_info *sbi; 1553 1554 sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker); 1555 nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); 1556 trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr); 1557 return nr; 1558 } 1559 1560 static unsigned long ext4_es_scan(struct shrinker *shrink, 1561 struct shrink_control *sc) 1562 { 1563 struct ext4_sb_info *sbi = container_of(shrink, 1564 struct ext4_sb_info, s_es_shrinker); 1565 int nr_to_scan = sc->nr_to_scan; 1566 int ret, nr_shrunk; 1567 1568 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); 1569 trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret); 1570 1571 nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL); 1572 1573 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); 1574 trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret); 1575 return nr_shrunk; 1576 } 1577 1578 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v) 1579 { 1580 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private); 1581 struct ext4_es_stats *es_stats = &sbi->s_es_stats; 1582 struct ext4_inode_info *ei, *max = NULL; 1583 unsigned int inode_cnt = 0; 1584 1585 if (v != SEQ_START_TOKEN) 1586 return 0; 1587 1588 /* here we just find an inode that has the max nr. of objects */ 1589 spin_lock(&sbi->s_es_lock); 1590 list_for_each_entry(ei, &sbi->s_es_list, i_es_list) { 1591 inode_cnt++; 1592 if (max && max->i_es_all_nr < ei->i_es_all_nr) 1593 max = ei; 1594 else if (!max) 1595 max = ei; 1596 } 1597 spin_unlock(&sbi->s_es_lock); 1598 1599 seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n", 1600 percpu_counter_sum_positive(&es_stats->es_stats_all_cnt), 1601 percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt)); 1602 seq_printf(seq, " %lld/%lld cache hits/misses\n", 1603 percpu_counter_sum_positive(&es_stats->es_stats_cache_hits), 1604 percpu_counter_sum_positive(&es_stats->es_stats_cache_misses)); 1605 if (inode_cnt) 1606 seq_printf(seq, " %d inodes on list\n", inode_cnt); 1607 1608 seq_printf(seq, "average:\n %llu us scan time\n", 1609 div_u64(es_stats->es_stats_scan_time, 1000)); 1610 seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk); 1611 if (inode_cnt) 1612 seq_printf(seq, 1613 "maximum:\n %lu inode (%u objects, %u reclaimable)\n" 1614 " %llu us max scan time\n", 1615 max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr, 1616 div_u64(es_stats->es_stats_max_scan_time, 1000)); 1617 1618 return 0; 1619 } 1620 1621 int ext4_es_register_shrinker(struct ext4_sb_info *sbi) 1622 { 1623 int err; 1624 1625 /* Make sure we have enough bits for physical block number */ 1626 BUILD_BUG_ON(ES_SHIFT < 48); 1627 INIT_LIST_HEAD(&sbi->s_es_list); 1628 sbi->s_es_nr_inode = 0; 1629 spin_lock_init(&sbi->s_es_lock); 1630 sbi->s_es_stats.es_stats_shrunk = 0; 1631 err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0, 1632 GFP_KERNEL); 1633 if (err) 1634 return err; 1635 err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0, 1636 GFP_KERNEL); 1637 if (err) 1638 goto err1; 1639 sbi->s_es_stats.es_stats_scan_time = 0; 1640 sbi->s_es_stats.es_stats_max_scan_time = 0; 1641 err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL); 1642 if (err) 1643 goto err2; 1644 err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL); 1645 if (err) 1646 goto err3; 1647 1648 sbi->s_es_shrinker.scan_objects = ext4_es_scan; 1649 sbi->s_es_shrinker.count_objects = ext4_es_count; 1650 sbi->s_es_shrinker.seeks = DEFAULT_SEEKS; 1651 err = register_shrinker(&sbi->s_es_shrinker, "ext4-es:%s", 1652 sbi->s_sb->s_id); 1653 if (err) 1654 goto err4; 1655 1656 return 0; 1657 err4: 1658 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); 1659 err3: 1660 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); 1661 err2: 1662 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses); 1663 err1: 1664 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits); 1665 return err; 1666 } 1667 1668 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi) 1669 { 1670 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits); 1671 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses); 1672 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); 1673 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); 1674 unregister_shrinker(&sbi->s_es_shrinker); 1675 } 1676 1677 /* 1678 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at 1679 * most *nr_to_scan extents, update *nr_to_scan accordingly. 1680 * 1681 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan. 1682 * Increment *nr_shrunk by the number of reclaimed extents. Also update 1683 * ei->i_es_shrink_lblk to where we should continue scanning. 1684 */ 1685 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end, 1686 int *nr_to_scan, int *nr_shrunk) 1687 { 1688 struct inode *inode = &ei->vfs_inode; 1689 struct ext4_es_tree *tree = &ei->i_es_tree; 1690 struct extent_status *es; 1691 struct rb_node *node; 1692 1693 es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk); 1694 if (!es) 1695 goto out_wrap; 1696 1697 while (*nr_to_scan > 0) { 1698 if (es->es_lblk > end) { 1699 ei->i_es_shrink_lblk = end + 1; 1700 return 0; 1701 } 1702 1703 (*nr_to_scan)--; 1704 node = rb_next(&es->rb_node); 1705 /* 1706 * We can't reclaim delayed extent from status tree because 1707 * fiemap, bigallic, and seek_data/hole need to use it. 1708 */ 1709 if (ext4_es_is_delayed(es)) 1710 goto next; 1711 if (ext4_es_is_referenced(es)) { 1712 ext4_es_clear_referenced(es); 1713 goto next; 1714 } 1715 1716 rb_erase(&es->rb_node, &tree->root); 1717 ext4_es_free_extent(inode, es); 1718 (*nr_shrunk)++; 1719 next: 1720 if (!node) 1721 goto out_wrap; 1722 es = rb_entry(node, struct extent_status, rb_node); 1723 } 1724 ei->i_es_shrink_lblk = es->es_lblk; 1725 return 1; 1726 out_wrap: 1727 ei->i_es_shrink_lblk = 0; 1728 return 0; 1729 } 1730 1731 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan) 1732 { 1733 struct inode *inode = &ei->vfs_inode; 1734 int nr_shrunk = 0; 1735 ext4_lblk_t start = ei->i_es_shrink_lblk; 1736 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 1737 DEFAULT_RATELIMIT_BURST); 1738 1739 if (ei->i_es_shk_nr == 0) 1740 return 0; 1741 1742 if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) && 1743 __ratelimit(&_rs)) 1744 ext4_warning(inode->i_sb, "forced shrink of precached extents"); 1745 1746 if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) && 1747 start != 0) 1748 es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk); 1749 1750 ei->i_es_tree.cache_es = NULL; 1751 return nr_shrunk; 1752 } 1753 1754 /* 1755 * Called to support EXT4_IOC_CLEAR_ES_CACHE. We can only remove 1756 * discretionary entries from the extent status cache. (Some entries 1757 * must be present for proper operations.) 1758 */ 1759 void ext4_clear_inode_es(struct inode *inode) 1760 { 1761 struct ext4_inode_info *ei = EXT4_I(inode); 1762 struct extent_status *es; 1763 struct ext4_es_tree *tree; 1764 struct rb_node *node; 1765 1766 write_lock(&ei->i_es_lock); 1767 tree = &EXT4_I(inode)->i_es_tree; 1768 tree->cache_es = NULL; 1769 node = rb_first(&tree->root); 1770 while (node) { 1771 es = rb_entry(node, struct extent_status, rb_node); 1772 node = rb_next(node); 1773 if (!ext4_es_is_delayed(es)) { 1774 rb_erase(&es->rb_node, &tree->root); 1775 ext4_es_free_extent(inode, es); 1776 } 1777 } 1778 ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 1779 write_unlock(&ei->i_es_lock); 1780 } 1781 1782 #ifdef ES_DEBUG__ 1783 static void ext4_print_pending_tree(struct inode *inode) 1784 { 1785 struct ext4_pending_tree *tree; 1786 struct rb_node *node; 1787 struct pending_reservation *pr; 1788 1789 printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino); 1790 tree = &EXT4_I(inode)->i_pending_tree; 1791 node = rb_first(&tree->root); 1792 while (node) { 1793 pr = rb_entry(node, struct pending_reservation, rb_node); 1794 printk(KERN_DEBUG " %u", pr->lclu); 1795 node = rb_next(node); 1796 } 1797 printk(KERN_DEBUG "\n"); 1798 } 1799 #else 1800 #define ext4_print_pending_tree(inode) 1801 #endif 1802 1803 int __init ext4_init_pending(void) 1804 { 1805 ext4_pending_cachep = KMEM_CACHE(pending_reservation, SLAB_RECLAIM_ACCOUNT); 1806 if (ext4_pending_cachep == NULL) 1807 return -ENOMEM; 1808 return 0; 1809 } 1810 1811 void ext4_exit_pending(void) 1812 { 1813 kmem_cache_destroy(ext4_pending_cachep); 1814 } 1815 1816 void ext4_init_pending_tree(struct ext4_pending_tree *tree) 1817 { 1818 tree->root = RB_ROOT; 1819 } 1820 1821 /* 1822 * __get_pending - retrieve a pointer to a pending reservation 1823 * 1824 * @inode - file containing the pending cluster reservation 1825 * @lclu - logical cluster of interest 1826 * 1827 * Returns a pointer to a pending reservation if it's a member of 1828 * the set, and NULL if not. Must be called holding i_es_lock. 1829 */ 1830 static struct pending_reservation *__get_pending(struct inode *inode, 1831 ext4_lblk_t lclu) 1832 { 1833 struct ext4_pending_tree *tree; 1834 struct rb_node *node; 1835 struct pending_reservation *pr = NULL; 1836 1837 tree = &EXT4_I(inode)->i_pending_tree; 1838 node = (&tree->root)->rb_node; 1839 1840 while (node) { 1841 pr = rb_entry(node, struct pending_reservation, rb_node); 1842 if (lclu < pr->lclu) 1843 node = node->rb_left; 1844 else if (lclu > pr->lclu) 1845 node = node->rb_right; 1846 else if (lclu == pr->lclu) 1847 return pr; 1848 } 1849 return NULL; 1850 } 1851 1852 /* 1853 * __insert_pending - adds a pending cluster reservation to the set of 1854 * pending reservations 1855 * 1856 * @inode - file containing the cluster 1857 * @lblk - logical block in the cluster to be added 1858 * 1859 * Returns 0 on successful insertion and -ENOMEM on failure. If the 1860 * pending reservation is already in the set, returns successfully. 1861 */ 1862 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk) 1863 { 1864 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1865 struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree; 1866 struct rb_node **p = &tree->root.rb_node; 1867 struct rb_node *parent = NULL; 1868 struct pending_reservation *pr; 1869 ext4_lblk_t lclu; 1870 int ret = 0; 1871 1872 lclu = EXT4_B2C(sbi, lblk); 1873 /* search to find parent for insertion */ 1874 while (*p) { 1875 parent = *p; 1876 pr = rb_entry(parent, struct pending_reservation, rb_node); 1877 1878 if (lclu < pr->lclu) { 1879 p = &(*p)->rb_left; 1880 } else if (lclu > pr->lclu) { 1881 p = &(*p)->rb_right; 1882 } else { 1883 /* pending reservation already inserted */ 1884 goto out; 1885 } 1886 } 1887 1888 pr = kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC); 1889 if (pr == NULL) { 1890 ret = -ENOMEM; 1891 goto out; 1892 } 1893 pr->lclu = lclu; 1894 1895 rb_link_node(&pr->rb_node, parent, p); 1896 rb_insert_color(&pr->rb_node, &tree->root); 1897 1898 out: 1899 return ret; 1900 } 1901 1902 /* 1903 * __remove_pending - removes a pending cluster reservation from the set 1904 * of pending reservations 1905 * 1906 * @inode - file containing the cluster 1907 * @lblk - logical block in the pending cluster reservation to be removed 1908 * 1909 * Returns successfully if pending reservation is not a member of the set. 1910 */ 1911 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk) 1912 { 1913 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1914 struct pending_reservation *pr; 1915 struct ext4_pending_tree *tree; 1916 1917 pr = __get_pending(inode, EXT4_B2C(sbi, lblk)); 1918 if (pr != NULL) { 1919 tree = &EXT4_I(inode)->i_pending_tree; 1920 rb_erase(&pr->rb_node, &tree->root); 1921 kmem_cache_free(ext4_pending_cachep, pr); 1922 } 1923 } 1924 1925 /* 1926 * ext4_remove_pending - removes a pending cluster reservation from the set 1927 * of pending reservations 1928 * 1929 * @inode - file containing the cluster 1930 * @lblk - logical block in the pending cluster reservation to be removed 1931 * 1932 * Locking for external use of __remove_pending. 1933 */ 1934 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk) 1935 { 1936 struct ext4_inode_info *ei = EXT4_I(inode); 1937 1938 write_lock(&ei->i_es_lock); 1939 __remove_pending(inode, lblk); 1940 write_unlock(&ei->i_es_lock); 1941 } 1942 1943 /* 1944 * ext4_is_pending - determine whether a cluster has a pending reservation 1945 * on it 1946 * 1947 * @inode - file containing the cluster 1948 * @lblk - logical block in the cluster 1949 * 1950 * Returns true if there's a pending reservation for the cluster in the 1951 * set of pending reservations, and false if not. 1952 */ 1953 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk) 1954 { 1955 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1956 struct ext4_inode_info *ei = EXT4_I(inode); 1957 bool ret; 1958 1959 read_lock(&ei->i_es_lock); 1960 ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL); 1961 read_unlock(&ei->i_es_lock); 1962 1963 return ret; 1964 } 1965 1966 /* 1967 * ext4_es_insert_delayed_block - adds a delayed block to the extents status 1968 * tree, adding a pending reservation where 1969 * needed 1970 * 1971 * @inode - file containing the newly added block 1972 * @lblk - logical block to be added 1973 * @allocated - indicates whether a physical cluster has been allocated for 1974 * the logical cluster that contains the block 1975 * 1976 * Returns 0 on success, negative error code on failure. 1977 */ 1978 int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk, 1979 bool allocated) 1980 { 1981 struct extent_status newes; 1982 int err = 0; 1983 1984 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 1985 return 0; 1986 1987 es_debug("add [%u/1) delayed to extent status tree of inode %lu\n", 1988 lblk, inode->i_ino); 1989 1990 newes.es_lblk = lblk; 1991 newes.es_len = 1; 1992 ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED); 1993 trace_ext4_es_insert_delayed_block(inode, &newes, allocated); 1994 1995 ext4_es_insert_extent_check(inode, &newes); 1996 1997 write_lock(&EXT4_I(inode)->i_es_lock); 1998 1999 err = __es_remove_extent(inode, lblk, lblk, NULL); 2000 if (err != 0) 2001 goto error; 2002 retry: 2003 err = __es_insert_extent(inode, &newes); 2004 if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb), 2005 128, EXT4_I(inode))) 2006 goto retry; 2007 if (err != 0) 2008 goto error; 2009 2010 if (allocated) 2011 __insert_pending(inode, lblk); 2012 2013 error: 2014 write_unlock(&EXT4_I(inode)->i_es_lock); 2015 2016 ext4_es_print_tree(inode); 2017 ext4_print_pending_tree(inode); 2018 2019 return err; 2020 } 2021 2022 /* 2023 * __es_delayed_clu - count number of clusters containing blocks that 2024 * are delayed only 2025 * 2026 * @inode - file containing block range 2027 * @start - logical block defining start of range 2028 * @end - logical block defining end of range 2029 * 2030 * Returns the number of clusters containing only delayed (not delayed 2031 * and unwritten) blocks in the range specified by @start and @end. Any 2032 * cluster or part of a cluster within the range and containing a delayed 2033 * and not unwritten block within the range is counted as a whole cluster. 2034 */ 2035 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start, 2036 ext4_lblk_t end) 2037 { 2038 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 2039 struct extent_status *es; 2040 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2041 struct rb_node *node; 2042 ext4_lblk_t first_lclu, last_lclu; 2043 unsigned long long last_counted_lclu; 2044 unsigned int n = 0; 2045 2046 /* guaranteed to be unequal to any ext4_lblk_t value */ 2047 last_counted_lclu = ~0ULL; 2048 2049 es = __es_tree_search(&tree->root, start); 2050 2051 while (es && (es->es_lblk <= end)) { 2052 if (ext4_es_is_delonly(es)) { 2053 if (es->es_lblk <= start) 2054 first_lclu = EXT4_B2C(sbi, start); 2055 else 2056 first_lclu = EXT4_B2C(sbi, es->es_lblk); 2057 2058 if (ext4_es_end(es) >= end) 2059 last_lclu = EXT4_B2C(sbi, end); 2060 else 2061 last_lclu = EXT4_B2C(sbi, ext4_es_end(es)); 2062 2063 if (first_lclu == last_counted_lclu) 2064 n += last_lclu - first_lclu; 2065 else 2066 n += last_lclu - first_lclu + 1; 2067 last_counted_lclu = last_lclu; 2068 } 2069 node = rb_next(&es->rb_node); 2070 if (!node) 2071 break; 2072 es = rb_entry(node, struct extent_status, rb_node); 2073 } 2074 2075 return n; 2076 } 2077 2078 /* 2079 * ext4_es_delayed_clu - count number of clusters containing blocks that 2080 * are both delayed and unwritten 2081 * 2082 * @inode - file containing block range 2083 * @lblk - logical block defining start of range 2084 * @len - number of blocks in range 2085 * 2086 * Locking for external use of __es_delayed_clu(). 2087 */ 2088 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk, 2089 ext4_lblk_t len) 2090 { 2091 struct ext4_inode_info *ei = EXT4_I(inode); 2092 ext4_lblk_t end; 2093 unsigned int n; 2094 2095 if (len == 0) 2096 return 0; 2097 2098 end = lblk + len - 1; 2099 WARN_ON(end < lblk); 2100 2101 read_lock(&ei->i_es_lock); 2102 2103 n = __es_delayed_clu(inode, lblk, end); 2104 2105 read_unlock(&ei->i_es_lock); 2106 2107 return n; 2108 } 2109 2110 /* 2111 * __revise_pending - makes, cancels, or leaves unchanged pending cluster 2112 * reservations for a specified block range depending 2113 * upon the presence or absence of delayed blocks 2114 * outside the range within clusters at the ends of the 2115 * range 2116 * 2117 * @inode - file containing the range 2118 * @lblk - logical block defining the start of range 2119 * @len - length of range in blocks 2120 * 2121 * Used after a newly allocated extent is added to the extents status tree. 2122 * Requires that the extents in the range have either written or unwritten 2123 * status. Must be called while holding i_es_lock. 2124 */ 2125 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk, 2126 ext4_lblk_t len) 2127 { 2128 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2129 ext4_lblk_t end = lblk + len - 1; 2130 ext4_lblk_t first, last; 2131 bool f_del = false, l_del = false; 2132 2133 if (len == 0) 2134 return; 2135 2136 /* 2137 * Two cases - block range within single cluster and block range 2138 * spanning two or more clusters. Note that a cluster belonging 2139 * to a range starting and/or ending on a cluster boundary is treated 2140 * as if it does not contain a delayed extent. The new range may 2141 * have allocated space for previously delayed blocks out to the 2142 * cluster boundary, requiring that any pre-existing pending 2143 * reservation be canceled. Because this code only looks at blocks 2144 * outside the range, it should revise pending reservations 2145 * correctly even if the extent represented by the range can't be 2146 * inserted in the extents status tree due to ENOSPC. 2147 */ 2148 2149 if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) { 2150 first = EXT4_LBLK_CMASK(sbi, lblk); 2151 if (first != lblk) 2152 f_del = __es_scan_range(inode, &ext4_es_is_delonly, 2153 first, lblk - 1); 2154 if (f_del) { 2155 __insert_pending(inode, first); 2156 } else { 2157 last = EXT4_LBLK_CMASK(sbi, end) + 2158 sbi->s_cluster_ratio - 1; 2159 if (last != end) 2160 l_del = __es_scan_range(inode, 2161 &ext4_es_is_delonly, 2162 end + 1, last); 2163 if (l_del) 2164 __insert_pending(inode, last); 2165 else 2166 __remove_pending(inode, last); 2167 } 2168 } else { 2169 first = EXT4_LBLK_CMASK(sbi, lblk); 2170 if (first != lblk) 2171 f_del = __es_scan_range(inode, &ext4_es_is_delonly, 2172 first, lblk - 1); 2173 if (f_del) 2174 __insert_pending(inode, first); 2175 else 2176 __remove_pending(inode, first); 2177 2178 last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1; 2179 if (last != end) 2180 l_del = __es_scan_range(inode, &ext4_es_is_delonly, 2181 end + 1, last); 2182 if (l_del) 2183 __insert_pending(inode, last); 2184 else 2185 __remove_pending(inode, last); 2186 } 2187 } 2188