xref: /openbmc/linux/fs/ext4/extents_status.c (revision 609e478b)
1 /*
2  *  fs/ext4/extents_status.c
3  *
4  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
5  * Modified by
6  *	Allison Henderson <achender@linux.vnet.ibm.com>
7  *	Hugh Dickins <hughd@google.com>
8  *	Zheng Liu <wenqing.lz@taobao.com>
9  *
10  * Ext4 extents status tree core functions.
11  */
12 #include <linux/rbtree.h>
13 #include <linux/list_sort.h>
14 #include "ext4.h"
15 #include "extents_status.h"
16 
17 #include <trace/events/ext4.h>
18 
19 /*
20  * According to previous discussion in Ext4 Developer Workshop, we
21  * will introduce a new structure called io tree to track all extent
22  * status in order to solve some problems that we have met
23  * (e.g. Reservation space warning), and provide extent-level locking.
24  * Delay extent tree is the first step to achieve this goal.  It is
25  * original built by Yongqiang Yang.  At that time it is called delay
26  * extent tree, whose goal is only track delayed extents in memory to
27  * simplify the implementation of fiemap and bigalloc, and introduce
28  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
29  * delay extent tree at the first commit.  But for better understand
30  * what it does, it has been rename to extent status tree.
31  *
32  * Step1:
33  * Currently the first step has been done.  All delayed extents are
34  * tracked in the tree.  It maintains the delayed extent when a delayed
35  * allocation is issued, and the delayed extent is written out or
36  * invalidated.  Therefore the implementation of fiemap and bigalloc
37  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
38  *
39  * The following comment describes the implemenmtation of extent
40  * status tree and future works.
41  *
42  * Step2:
43  * In this step all extent status are tracked by extent status tree.
44  * Thus, we can first try to lookup a block mapping in this tree before
45  * finding it in extent tree.  Hence, single extent cache can be removed
46  * because extent status tree can do a better job.  Extents in status
47  * tree are loaded on-demand.  Therefore, the extent status tree may not
48  * contain all of the extents in a file.  Meanwhile we define a shrinker
49  * to reclaim memory from extent status tree because fragmented extent
50  * tree will make status tree cost too much memory.  written/unwritten/-
51  * hole extents in the tree will be reclaimed by this shrinker when we
52  * are under high memory pressure.  Delayed extents will not be
53  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
54  */
55 
56 /*
57  * Extent status tree implementation for ext4.
58  *
59  *
60  * ==========================================================================
61  * Extent status tree tracks all extent status.
62  *
63  * 1. Why we need to implement extent status tree?
64  *
65  * Without extent status tree, ext4 identifies a delayed extent by looking
66  * up page cache, this has several deficiencies - complicated, buggy,
67  * and inefficient code.
68  *
69  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
70  * block or a range of blocks are belonged to a delayed extent.
71  *
72  * Let us have a look at how they do without extent status tree.
73  *   --	FIEMAP
74  *	FIEMAP looks up page cache to identify delayed allocations from holes.
75  *
76  *   --	SEEK_HOLE/DATA
77  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
78  *
79  *   --	bigalloc
80  *	bigalloc looks up page cache to figure out if a block is
81  *	already under delayed allocation or not to determine whether
82  *	quota reserving is needed for the cluster.
83  *
84  *   --	writeout
85  *	Writeout looks up whole page cache to see if a buffer is
86  *	mapped, If there are not very many delayed buffers, then it is
87  *	time comsuming.
88  *
89  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
90  * bigalloc and writeout can figure out if a block or a range of
91  * blocks is under delayed allocation(belonged to a delayed extent) or
92  * not by searching the extent tree.
93  *
94  *
95  * ==========================================================================
96  * 2. Ext4 extent status tree impelmentation
97  *
98  *   --	extent
99  *	A extent is a range of blocks which are contiguous logically and
100  *	physically.  Unlike extent in extent tree, this extent in ext4 is
101  *	a in-memory struct, there is no corresponding on-disk data.  There
102  *	is no limit on length of extent, so an extent can contain as many
103  *	blocks as they are contiguous logically and physically.
104  *
105  *   --	extent status tree
106  *	Every inode has an extent status tree and all allocation blocks
107  *	are added to the tree with different status.  The extent in the
108  *	tree are ordered by logical block no.
109  *
110  *   --	operations on a extent status tree
111  *	There are three important operations on a delayed extent tree: find
112  *	next extent, adding a extent(a range of blocks) and removing a extent.
113  *
114  *   --	race on a extent status tree
115  *	Extent status tree is protected by inode->i_es_lock.
116  *
117  *   --	memory consumption
118  *      Fragmented extent tree will make extent status tree cost too much
119  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
120  *      the tree under a heavy memory pressure.
121  *
122  *
123  * ==========================================================================
124  * 3. Performance analysis
125  *
126  *   --	overhead
127  *	1. There is a cache extent for write access, so if writes are
128  *	not very random, adding space operaions are in O(1) time.
129  *
130  *   --	gain
131  *	2. Code is much simpler, more readable, more maintainable and
132  *	more efficient.
133  *
134  *
135  * ==========================================================================
136  * 4. TODO list
137  *
138  *   -- Refactor delayed space reservation
139  *
140  *   -- Extent-level locking
141  */
142 
143 static struct kmem_cache *ext4_es_cachep;
144 
145 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
146 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
147 			      ext4_lblk_t end);
148 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
149 				       int nr_to_scan);
150 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
151 			    struct ext4_inode_info *locked_ei);
152 
153 int __init ext4_init_es(void)
154 {
155 	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
156 					   sizeof(struct extent_status),
157 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
158 	if (ext4_es_cachep == NULL)
159 		return -ENOMEM;
160 	return 0;
161 }
162 
163 void ext4_exit_es(void)
164 {
165 	if (ext4_es_cachep)
166 		kmem_cache_destroy(ext4_es_cachep);
167 }
168 
169 void ext4_es_init_tree(struct ext4_es_tree *tree)
170 {
171 	tree->root = RB_ROOT;
172 	tree->cache_es = NULL;
173 }
174 
175 #ifdef ES_DEBUG__
176 static void ext4_es_print_tree(struct inode *inode)
177 {
178 	struct ext4_es_tree *tree;
179 	struct rb_node *node;
180 
181 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
182 	tree = &EXT4_I(inode)->i_es_tree;
183 	node = rb_first(&tree->root);
184 	while (node) {
185 		struct extent_status *es;
186 		es = rb_entry(node, struct extent_status, rb_node);
187 		printk(KERN_DEBUG " [%u/%u) %llu %x",
188 		       es->es_lblk, es->es_len,
189 		       ext4_es_pblock(es), ext4_es_status(es));
190 		node = rb_next(node);
191 	}
192 	printk(KERN_DEBUG "\n");
193 }
194 #else
195 #define ext4_es_print_tree(inode)
196 #endif
197 
198 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
199 {
200 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
201 	return es->es_lblk + es->es_len - 1;
202 }
203 
204 /*
205  * search through the tree for an delayed extent with a given offset.  If
206  * it can't be found, try to find next extent.
207  */
208 static struct extent_status *__es_tree_search(struct rb_root *root,
209 					      ext4_lblk_t lblk)
210 {
211 	struct rb_node *node = root->rb_node;
212 	struct extent_status *es = NULL;
213 
214 	while (node) {
215 		es = rb_entry(node, struct extent_status, rb_node);
216 		if (lblk < es->es_lblk)
217 			node = node->rb_left;
218 		else if (lblk > ext4_es_end(es))
219 			node = node->rb_right;
220 		else
221 			return es;
222 	}
223 
224 	if (es && lblk < es->es_lblk)
225 		return es;
226 
227 	if (es && lblk > ext4_es_end(es)) {
228 		node = rb_next(&es->rb_node);
229 		return node ? rb_entry(node, struct extent_status, rb_node) :
230 			      NULL;
231 	}
232 
233 	return NULL;
234 }
235 
236 /*
237  * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
238  * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
239  *
240  * @inode: the inode which owns delayed extents
241  * @lblk: the offset where we start to search
242  * @end: the offset where we stop to search
243  * @es: delayed extent that we found
244  */
245 void ext4_es_find_delayed_extent_range(struct inode *inode,
246 				 ext4_lblk_t lblk, ext4_lblk_t end,
247 				 struct extent_status *es)
248 {
249 	struct ext4_es_tree *tree = NULL;
250 	struct extent_status *es1 = NULL;
251 	struct rb_node *node;
252 
253 	BUG_ON(es == NULL);
254 	BUG_ON(end < lblk);
255 	trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
256 
257 	read_lock(&EXT4_I(inode)->i_es_lock);
258 	tree = &EXT4_I(inode)->i_es_tree;
259 
260 	/* find extent in cache firstly */
261 	es->es_lblk = es->es_len = es->es_pblk = 0;
262 	if (tree->cache_es) {
263 		es1 = tree->cache_es;
264 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
265 			es_debug("%u cached by [%u/%u) %llu %x\n",
266 				 lblk, es1->es_lblk, es1->es_len,
267 				 ext4_es_pblock(es1), ext4_es_status(es1));
268 			goto out;
269 		}
270 	}
271 
272 	es1 = __es_tree_search(&tree->root, lblk);
273 
274 out:
275 	if (es1 && !ext4_es_is_delayed(es1)) {
276 		while ((node = rb_next(&es1->rb_node)) != NULL) {
277 			es1 = rb_entry(node, struct extent_status, rb_node);
278 			if (es1->es_lblk > end) {
279 				es1 = NULL;
280 				break;
281 			}
282 			if (ext4_es_is_delayed(es1))
283 				break;
284 		}
285 	}
286 
287 	if (es1 && ext4_es_is_delayed(es1)) {
288 		tree->cache_es = es1;
289 		es->es_lblk = es1->es_lblk;
290 		es->es_len = es1->es_len;
291 		es->es_pblk = es1->es_pblk;
292 	}
293 
294 	read_unlock(&EXT4_I(inode)->i_es_lock);
295 
296 	trace_ext4_es_find_delayed_extent_range_exit(inode, es);
297 }
298 
299 static struct extent_status *
300 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
301 		     ext4_fsblk_t pblk)
302 {
303 	struct extent_status *es;
304 	es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
305 	if (es == NULL)
306 		return NULL;
307 	es->es_lblk = lblk;
308 	es->es_len = len;
309 	es->es_pblk = pblk;
310 
311 	/*
312 	 * We don't count delayed extent because we never try to reclaim them
313 	 */
314 	if (!ext4_es_is_delayed(es)) {
315 		EXT4_I(inode)->i_es_lru_nr++;
316 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
317 	}
318 
319 	return es;
320 }
321 
322 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
323 {
324 	/* Decrease the lru counter when this es is not delayed */
325 	if (!ext4_es_is_delayed(es)) {
326 		BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
327 		EXT4_I(inode)->i_es_lru_nr--;
328 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
329 	}
330 
331 	kmem_cache_free(ext4_es_cachep, es);
332 }
333 
334 /*
335  * Check whether or not two extents can be merged
336  * Condition:
337  *  - logical block number is contiguous
338  *  - physical block number is contiguous
339  *  - status is equal
340  */
341 static int ext4_es_can_be_merged(struct extent_status *es1,
342 				 struct extent_status *es2)
343 {
344 	if (ext4_es_status(es1) != ext4_es_status(es2))
345 		return 0;
346 
347 	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
348 		pr_warn("ES assertion failed when merging extents. "
349 			"The sum of lengths of es1 (%d) and es2 (%d) "
350 			"is bigger than allowed file size (%d)\n",
351 			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
352 		WARN_ON(1);
353 		return 0;
354 	}
355 
356 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
357 		return 0;
358 
359 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
360 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
361 		return 1;
362 
363 	if (ext4_es_is_hole(es1))
364 		return 1;
365 
366 	/* we need to check delayed extent is without unwritten status */
367 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
368 		return 1;
369 
370 	return 0;
371 }
372 
373 static struct extent_status *
374 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
375 {
376 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
377 	struct extent_status *es1;
378 	struct rb_node *node;
379 
380 	node = rb_prev(&es->rb_node);
381 	if (!node)
382 		return es;
383 
384 	es1 = rb_entry(node, struct extent_status, rb_node);
385 	if (ext4_es_can_be_merged(es1, es)) {
386 		es1->es_len += es->es_len;
387 		rb_erase(&es->rb_node, &tree->root);
388 		ext4_es_free_extent(inode, es);
389 		es = es1;
390 	}
391 
392 	return es;
393 }
394 
395 static struct extent_status *
396 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
397 {
398 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
399 	struct extent_status *es1;
400 	struct rb_node *node;
401 
402 	node = rb_next(&es->rb_node);
403 	if (!node)
404 		return es;
405 
406 	es1 = rb_entry(node, struct extent_status, rb_node);
407 	if (ext4_es_can_be_merged(es, es1)) {
408 		es->es_len += es1->es_len;
409 		rb_erase(node, &tree->root);
410 		ext4_es_free_extent(inode, es1);
411 	}
412 
413 	return es;
414 }
415 
416 #ifdef ES_AGGRESSIVE_TEST
417 #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
418 
419 static void ext4_es_insert_extent_ext_check(struct inode *inode,
420 					    struct extent_status *es)
421 {
422 	struct ext4_ext_path *path = NULL;
423 	struct ext4_extent *ex;
424 	ext4_lblk_t ee_block;
425 	ext4_fsblk_t ee_start;
426 	unsigned short ee_len;
427 	int depth, ee_status, es_status;
428 
429 	path = ext4_ext_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
430 	if (IS_ERR(path))
431 		return;
432 
433 	depth = ext_depth(inode);
434 	ex = path[depth].p_ext;
435 
436 	if (ex) {
437 
438 		ee_block = le32_to_cpu(ex->ee_block);
439 		ee_start = ext4_ext_pblock(ex);
440 		ee_len = ext4_ext_get_actual_len(ex);
441 
442 		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
443 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
444 
445 		/*
446 		 * Make sure ex and es are not overlap when we try to insert
447 		 * a delayed/hole extent.
448 		 */
449 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
450 			if (in_range(es->es_lblk, ee_block, ee_len)) {
451 				pr_warn("ES insert assertion failed for "
452 					"inode: %lu we can find an extent "
453 					"at block [%d/%d/%llu/%c], but we "
454 					"want to add a delayed/hole extent "
455 					"[%d/%d/%llu/%x]\n",
456 					inode->i_ino, ee_block, ee_len,
457 					ee_start, ee_status ? 'u' : 'w',
458 					es->es_lblk, es->es_len,
459 					ext4_es_pblock(es), ext4_es_status(es));
460 			}
461 			goto out;
462 		}
463 
464 		/*
465 		 * We don't check ee_block == es->es_lblk, etc. because es
466 		 * might be a part of whole extent, vice versa.
467 		 */
468 		if (es->es_lblk < ee_block ||
469 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
470 			pr_warn("ES insert assertion failed for inode: %lu "
471 				"ex_status [%d/%d/%llu/%c] != "
472 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
473 				ee_block, ee_len, ee_start,
474 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
475 				ext4_es_pblock(es), es_status ? 'u' : 'w');
476 			goto out;
477 		}
478 
479 		if (ee_status ^ es_status) {
480 			pr_warn("ES insert assertion failed for inode: %lu "
481 				"ex_status [%d/%d/%llu/%c] != "
482 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
483 				ee_block, ee_len, ee_start,
484 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
485 				ext4_es_pblock(es), es_status ? 'u' : 'w');
486 		}
487 	} else {
488 		/*
489 		 * We can't find an extent on disk.  So we need to make sure
490 		 * that we don't want to add an written/unwritten extent.
491 		 */
492 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
493 			pr_warn("ES insert assertion failed for inode: %lu "
494 				"can't find an extent at block %d but we want "
495 				"to add a written/unwritten extent "
496 				"[%d/%d/%llu/%x]\n", inode->i_ino,
497 				es->es_lblk, es->es_lblk, es->es_len,
498 				ext4_es_pblock(es), ext4_es_status(es));
499 		}
500 	}
501 out:
502 	if (path) {
503 		ext4_ext_drop_refs(path);
504 		kfree(path);
505 	}
506 }
507 
508 static void ext4_es_insert_extent_ind_check(struct inode *inode,
509 					    struct extent_status *es)
510 {
511 	struct ext4_map_blocks map;
512 	int retval;
513 
514 	/*
515 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
516 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
517 	 * access direct/indirect tree from outside.  It is too dirty to define
518 	 * this function in indirect.c file.
519 	 */
520 
521 	map.m_lblk = es->es_lblk;
522 	map.m_len = es->es_len;
523 
524 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
525 	if (retval > 0) {
526 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
527 			/*
528 			 * We want to add a delayed/hole extent but this
529 			 * block has been allocated.
530 			 */
531 			pr_warn("ES insert assertion failed for inode: %lu "
532 				"We can find blocks but we want to add a "
533 				"delayed/hole extent [%d/%d/%llu/%x]\n",
534 				inode->i_ino, es->es_lblk, es->es_len,
535 				ext4_es_pblock(es), ext4_es_status(es));
536 			return;
537 		} else if (ext4_es_is_written(es)) {
538 			if (retval != es->es_len) {
539 				pr_warn("ES insert assertion failed for "
540 					"inode: %lu retval %d != es_len %d\n",
541 					inode->i_ino, retval, es->es_len);
542 				return;
543 			}
544 			if (map.m_pblk != ext4_es_pblock(es)) {
545 				pr_warn("ES insert assertion failed for "
546 					"inode: %lu m_pblk %llu != "
547 					"es_pblk %llu\n",
548 					inode->i_ino, map.m_pblk,
549 					ext4_es_pblock(es));
550 				return;
551 			}
552 		} else {
553 			/*
554 			 * We don't need to check unwritten extent because
555 			 * indirect-based file doesn't have it.
556 			 */
557 			BUG_ON(1);
558 		}
559 	} else if (retval == 0) {
560 		if (ext4_es_is_written(es)) {
561 			pr_warn("ES insert assertion failed for inode: %lu "
562 				"We can't find the block but we want to add "
563 				"a written extent [%d/%d/%llu/%x]\n",
564 				inode->i_ino, es->es_lblk, es->es_len,
565 				ext4_es_pblock(es), ext4_es_status(es));
566 			return;
567 		}
568 	}
569 }
570 
571 static inline void ext4_es_insert_extent_check(struct inode *inode,
572 					       struct extent_status *es)
573 {
574 	/*
575 	 * We don't need to worry about the race condition because
576 	 * caller takes i_data_sem locking.
577 	 */
578 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
579 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
580 		ext4_es_insert_extent_ext_check(inode, es);
581 	else
582 		ext4_es_insert_extent_ind_check(inode, es);
583 }
584 #else
585 static inline void ext4_es_insert_extent_check(struct inode *inode,
586 					       struct extent_status *es)
587 {
588 }
589 #endif
590 
591 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
592 {
593 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
594 	struct rb_node **p = &tree->root.rb_node;
595 	struct rb_node *parent = NULL;
596 	struct extent_status *es;
597 
598 	while (*p) {
599 		parent = *p;
600 		es = rb_entry(parent, struct extent_status, rb_node);
601 
602 		if (newes->es_lblk < es->es_lblk) {
603 			if (ext4_es_can_be_merged(newes, es)) {
604 				/*
605 				 * Here we can modify es_lblk directly
606 				 * because it isn't overlapped.
607 				 */
608 				es->es_lblk = newes->es_lblk;
609 				es->es_len += newes->es_len;
610 				if (ext4_es_is_written(es) ||
611 				    ext4_es_is_unwritten(es))
612 					ext4_es_store_pblock(es,
613 							     newes->es_pblk);
614 				es = ext4_es_try_to_merge_left(inode, es);
615 				goto out;
616 			}
617 			p = &(*p)->rb_left;
618 		} else if (newes->es_lblk > ext4_es_end(es)) {
619 			if (ext4_es_can_be_merged(es, newes)) {
620 				es->es_len += newes->es_len;
621 				es = ext4_es_try_to_merge_right(inode, es);
622 				goto out;
623 			}
624 			p = &(*p)->rb_right;
625 		} else {
626 			BUG_ON(1);
627 			return -EINVAL;
628 		}
629 	}
630 
631 	es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
632 				  newes->es_pblk);
633 	if (!es)
634 		return -ENOMEM;
635 	rb_link_node(&es->rb_node, parent, p);
636 	rb_insert_color(&es->rb_node, &tree->root);
637 
638 out:
639 	tree->cache_es = es;
640 	return 0;
641 }
642 
643 /*
644  * ext4_es_insert_extent() adds information to an inode's extent
645  * status tree.
646  *
647  * Return 0 on success, error code on failure.
648  */
649 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
650 			  ext4_lblk_t len, ext4_fsblk_t pblk,
651 			  unsigned int status)
652 {
653 	struct extent_status newes;
654 	ext4_lblk_t end = lblk + len - 1;
655 	int err = 0;
656 
657 	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
658 		 lblk, len, pblk, status, inode->i_ino);
659 
660 	if (!len)
661 		return 0;
662 
663 	BUG_ON(end < lblk);
664 
665 	newes.es_lblk = lblk;
666 	newes.es_len = len;
667 	ext4_es_store_pblock_status(&newes, pblk, status);
668 	trace_ext4_es_insert_extent(inode, &newes);
669 
670 	ext4_es_insert_extent_check(inode, &newes);
671 
672 	write_lock(&EXT4_I(inode)->i_es_lock);
673 	err = __es_remove_extent(inode, lblk, end);
674 	if (err != 0)
675 		goto error;
676 retry:
677 	err = __es_insert_extent(inode, &newes);
678 	if (err == -ENOMEM && __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
679 					       EXT4_I(inode)))
680 		goto retry;
681 	if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
682 		err = 0;
683 
684 error:
685 	write_unlock(&EXT4_I(inode)->i_es_lock);
686 
687 	ext4_es_print_tree(inode);
688 
689 	return err;
690 }
691 
692 /*
693  * ext4_es_cache_extent() inserts information into the extent status
694  * tree if and only if there isn't information about the range in
695  * question already.
696  */
697 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
698 			  ext4_lblk_t len, ext4_fsblk_t pblk,
699 			  unsigned int status)
700 {
701 	struct extent_status *es;
702 	struct extent_status newes;
703 	ext4_lblk_t end = lblk + len - 1;
704 
705 	newes.es_lblk = lblk;
706 	newes.es_len = len;
707 	ext4_es_store_pblock_status(&newes, pblk, status);
708 	trace_ext4_es_cache_extent(inode, &newes);
709 
710 	if (!len)
711 		return;
712 
713 	BUG_ON(end < lblk);
714 
715 	write_lock(&EXT4_I(inode)->i_es_lock);
716 
717 	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
718 	if (!es || es->es_lblk > end)
719 		__es_insert_extent(inode, &newes);
720 	write_unlock(&EXT4_I(inode)->i_es_lock);
721 }
722 
723 /*
724  * ext4_es_lookup_extent() looks up an extent in extent status tree.
725  *
726  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
727  *
728  * Return: 1 on found, 0 on not
729  */
730 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
731 			  struct extent_status *es)
732 {
733 	struct ext4_es_tree *tree;
734 	struct extent_status *es1 = NULL;
735 	struct rb_node *node;
736 	int found = 0;
737 
738 	trace_ext4_es_lookup_extent_enter(inode, lblk);
739 	es_debug("lookup extent in block %u\n", lblk);
740 
741 	tree = &EXT4_I(inode)->i_es_tree;
742 	read_lock(&EXT4_I(inode)->i_es_lock);
743 
744 	/* find extent in cache firstly */
745 	es->es_lblk = es->es_len = es->es_pblk = 0;
746 	if (tree->cache_es) {
747 		es1 = tree->cache_es;
748 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
749 			es_debug("%u cached by [%u/%u)\n",
750 				 lblk, es1->es_lblk, es1->es_len);
751 			found = 1;
752 			goto out;
753 		}
754 	}
755 
756 	node = tree->root.rb_node;
757 	while (node) {
758 		es1 = rb_entry(node, struct extent_status, rb_node);
759 		if (lblk < es1->es_lblk)
760 			node = node->rb_left;
761 		else if (lblk > ext4_es_end(es1))
762 			node = node->rb_right;
763 		else {
764 			found = 1;
765 			break;
766 		}
767 	}
768 
769 out:
770 	if (found) {
771 		BUG_ON(!es1);
772 		es->es_lblk = es1->es_lblk;
773 		es->es_len = es1->es_len;
774 		es->es_pblk = es1->es_pblk;
775 	}
776 
777 	read_unlock(&EXT4_I(inode)->i_es_lock);
778 
779 	trace_ext4_es_lookup_extent_exit(inode, es, found);
780 	return found;
781 }
782 
783 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
784 			      ext4_lblk_t end)
785 {
786 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
787 	struct rb_node *node;
788 	struct extent_status *es;
789 	struct extent_status orig_es;
790 	ext4_lblk_t len1, len2;
791 	ext4_fsblk_t block;
792 	int err;
793 
794 retry:
795 	err = 0;
796 	es = __es_tree_search(&tree->root, lblk);
797 	if (!es)
798 		goto out;
799 	if (es->es_lblk > end)
800 		goto out;
801 
802 	/* Simply invalidate cache_es. */
803 	tree->cache_es = NULL;
804 
805 	orig_es.es_lblk = es->es_lblk;
806 	orig_es.es_len = es->es_len;
807 	orig_es.es_pblk = es->es_pblk;
808 
809 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
810 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
811 	if (len1 > 0)
812 		es->es_len = len1;
813 	if (len2 > 0) {
814 		if (len1 > 0) {
815 			struct extent_status newes;
816 
817 			newes.es_lblk = end + 1;
818 			newes.es_len = len2;
819 			block = 0x7FDEADBEEFULL;
820 			if (ext4_es_is_written(&orig_es) ||
821 			    ext4_es_is_unwritten(&orig_es))
822 				block = ext4_es_pblock(&orig_es) +
823 					orig_es.es_len - len2;
824 			ext4_es_store_pblock_status(&newes, block,
825 						    ext4_es_status(&orig_es));
826 			err = __es_insert_extent(inode, &newes);
827 			if (err) {
828 				es->es_lblk = orig_es.es_lblk;
829 				es->es_len = orig_es.es_len;
830 				if ((err == -ENOMEM) &&
831 				    __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
832 						     EXT4_I(inode)))
833 					goto retry;
834 				goto out;
835 			}
836 		} else {
837 			es->es_lblk = end + 1;
838 			es->es_len = len2;
839 			if (ext4_es_is_written(es) ||
840 			    ext4_es_is_unwritten(es)) {
841 				block = orig_es.es_pblk + orig_es.es_len - len2;
842 				ext4_es_store_pblock(es, block);
843 			}
844 		}
845 		goto out;
846 	}
847 
848 	if (len1 > 0) {
849 		node = rb_next(&es->rb_node);
850 		if (node)
851 			es = rb_entry(node, struct extent_status, rb_node);
852 		else
853 			es = NULL;
854 	}
855 
856 	while (es && ext4_es_end(es) <= end) {
857 		node = rb_next(&es->rb_node);
858 		rb_erase(&es->rb_node, &tree->root);
859 		ext4_es_free_extent(inode, es);
860 		if (!node) {
861 			es = NULL;
862 			break;
863 		}
864 		es = rb_entry(node, struct extent_status, rb_node);
865 	}
866 
867 	if (es && es->es_lblk < end + 1) {
868 		ext4_lblk_t orig_len = es->es_len;
869 
870 		len1 = ext4_es_end(es) - end;
871 		es->es_lblk = end + 1;
872 		es->es_len = len1;
873 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
874 			block = es->es_pblk + orig_len - len1;
875 			ext4_es_store_pblock(es, block);
876 		}
877 	}
878 
879 out:
880 	return err;
881 }
882 
883 /*
884  * ext4_es_remove_extent() removes a space from a extent status tree.
885  *
886  * Return 0 on success, error code on failure.
887  */
888 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
889 			  ext4_lblk_t len)
890 {
891 	ext4_lblk_t end;
892 	int err = 0;
893 
894 	trace_ext4_es_remove_extent(inode, lblk, len);
895 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
896 		 lblk, len, inode->i_ino);
897 
898 	if (!len)
899 		return err;
900 
901 	end = lblk + len - 1;
902 	BUG_ON(end < lblk);
903 
904 	write_lock(&EXT4_I(inode)->i_es_lock);
905 	err = __es_remove_extent(inode, lblk, end);
906 	write_unlock(&EXT4_I(inode)->i_es_lock);
907 	ext4_es_print_tree(inode);
908 	return err;
909 }
910 
911 static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a,
912 				     struct list_head *b)
913 {
914 	struct ext4_inode_info *eia, *eib;
915 	eia = list_entry(a, struct ext4_inode_info, i_es_lru);
916 	eib = list_entry(b, struct ext4_inode_info, i_es_lru);
917 
918 	if (ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) &&
919 	    !ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED))
920 		return 1;
921 	if (!ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) &&
922 	    ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED))
923 		return -1;
924 	if (eia->i_touch_when == eib->i_touch_when)
925 		return 0;
926 	if (time_after(eia->i_touch_when, eib->i_touch_when))
927 		return 1;
928 	else
929 		return -1;
930 }
931 
932 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
933 			    struct ext4_inode_info *locked_ei)
934 {
935 	struct ext4_inode_info *ei;
936 	struct list_head *cur, *tmp;
937 	LIST_HEAD(skipped);
938 	int nr_shrunk = 0;
939 	int retried = 0, skip_precached = 1, nr_skipped = 0;
940 
941 	spin_lock(&sbi->s_es_lru_lock);
942 
943 retry:
944 	list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
945 		int shrunk;
946 
947 		/*
948 		 * If we have already reclaimed all extents from extent
949 		 * status tree, just stop the loop immediately.
950 		 */
951 		if (percpu_counter_read_positive(&sbi->s_extent_cache_cnt) == 0)
952 			break;
953 
954 		ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
955 
956 		/*
957 		 * Skip the inode that is newer than the last_sorted
958 		 * time.  Normally we try hard to avoid shrinking
959 		 * precached inodes, but we will as a last resort.
960 		 */
961 		if ((sbi->s_es_last_sorted < ei->i_touch_when) ||
962 		    (skip_precached && ext4_test_inode_state(&ei->vfs_inode,
963 						EXT4_STATE_EXT_PRECACHED))) {
964 			nr_skipped++;
965 			list_move_tail(cur, &skipped);
966 			continue;
967 		}
968 
969 		if (ei->i_es_lru_nr == 0 || ei == locked_ei ||
970 		    !write_trylock(&ei->i_es_lock))
971 			continue;
972 
973 		shrunk = __es_try_to_reclaim_extents(ei, nr_to_scan);
974 		if (ei->i_es_lru_nr == 0)
975 			list_del_init(&ei->i_es_lru);
976 		write_unlock(&ei->i_es_lock);
977 
978 		nr_shrunk += shrunk;
979 		nr_to_scan -= shrunk;
980 		if (nr_to_scan == 0)
981 			break;
982 	}
983 
984 	/* Move the newer inodes into the tail of the LRU list. */
985 	list_splice_tail(&skipped, &sbi->s_es_lru);
986 	INIT_LIST_HEAD(&skipped);
987 
988 	/*
989 	 * If we skipped any inodes, and we weren't able to make any
990 	 * forward progress, sort the list and try again.
991 	 */
992 	if ((nr_shrunk == 0) && nr_skipped && !retried) {
993 		retried++;
994 		list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp);
995 		sbi->s_es_last_sorted = jiffies;
996 		ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info,
997 				      i_es_lru);
998 		/*
999 		 * If there are no non-precached inodes left on the
1000 		 * list, start releasing precached extents.
1001 		 */
1002 		if (ext4_test_inode_state(&ei->vfs_inode,
1003 					  EXT4_STATE_EXT_PRECACHED))
1004 			skip_precached = 0;
1005 		goto retry;
1006 	}
1007 
1008 	spin_unlock(&sbi->s_es_lru_lock);
1009 
1010 	if (locked_ei && nr_shrunk == 0)
1011 		nr_shrunk = __es_try_to_reclaim_extents(locked_ei, nr_to_scan);
1012 
1013 	return nr_shrunk;
1014 }
1015 
1016 static unsigned long ext4_es_count(struct shrinker *shrink,
1017 				   struct shrink_control *sc)
1018 {
1019 	unsigned long nr;
1020 	struct ext4_sb_info *sbi;
1021 
1022 	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1023 	nr = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
1024 	trace_ext4_es_shrink_enter(sbi->s_sb, sc->nr_to_scan, nr);
1025 	return nr;
1026 }
1027 
1028 static unsigned long ext4_es_scan(struct shrinker *shrink,
1029 				  struct shrink_control *sc)
1030 {
1031 	struct ext4_sb_info *sbi = container_of(shrink,
1032 					struct ext4_sb_info, s_es_shrinker);
1033 	int nr_to_scan = sc->nr_to_scan;
1034 	int ret, nr_shrunk;
1035 
1036 	ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
1037 	trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret);
1038 
1039 	if (!nr_to_scan)
1040 		return ret;
1041 
1042 	nr_shrunk = __ext4_es_shrink(sbi, nr_to_scan, NULL);
1043 
1044 	trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret);
1045 	return nr_shrunk;
1046 }
1047 
1048 void ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1049 {
1050 	INIT_LIST_HEAD(&sbi->s_es_lru);
1051 	spin_lock_init(&sbi->s_es_lru_lock);
1052 	sbi->s_es_last_sorted = 0;
1053 	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1054 	sbi->s_es_shrinker.count_objects = ext4_es_count;
1055 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1056 	register_shrinker(&sbi->s_es_shrinker);
1057 }
1058 
1059 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1060 {
1061 	unregister_shrinker(&sbi->s_es_shrinker);
1062 }
1063 
1064 void ext4_es_lru_add(struct inode *inode)
1065 {
1066 	struct ext4_inode_info *ei = EXT4_I(inode);
1067 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1068 
1069 	ei->i_touch_when = jiffies;
1070 
1071 	if (!list_empty(&ei->i_es_lru))
1072 		return;
1073 
1074 	spin_lock(&sbi->s_es_lru_lock);
1075 	if (list_empty(&ei->i_es_lru))
1076 		list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
1077 	spin_unlock(&sbi->s_es_lru_lock);
1078 }
1079 
1080 void ext4_es_lru_del(struct inode *inode)
1081 {
1082 	struct ext4_inode_info *ei = EXT4_I(inode);
1083 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1084 
1085 	spin_lock(&sbi->s_es_lru_lock);
1086 	if (!list_empty(&ei->i_es_lru))
1087 		list_del_init(&ei->i_es_lru);
1088 	spin_unlock(&sbi->s_es_lru_lock);
1089 }
1090 
1091 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
1092 				       int nr_to_scan)
1093 {
1094 	struct inode *inode = &ei->vfs_inode;
1095 	struct ext4_es_tree *tree = &ei->i_es_tree;
1096 	struct rb_node *node;
1097 	struct extent_status *es;
1098 	unsigned long nr_shrunk = 0;
1099 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1100 				      DEFAULT_RATELIMIT_BURST);
1101 
1102 	if (ei->i_es_lru_nr == 0)
1103 		return 0;
1104 
1105 	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1106 	    __ratelimit(&_rs))
1107 		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1108 
1109 	node = rb_first(&tree->root);
1110 	while (node != NULL) {
1111 		es = rb_entry(node, struct extent_status, rb_node);
1112 		node = rb_next(&es->rb_node);
1113 		/*
1114 		 * We can't reclaim delayed extent from status tree because
1115 		 * fiemap, bigallic, and seek_data/hole need to use it.
1116 		 */
1117 		if (!ext4_es_is_delayed(es)) {
1118 			rb_erase(&es->rb_node, &tree->root);
1119 			ext4_es_free_extent(inode, es);
1120 			nr_shrunk++;
1121 			if (--nr_to_scan == 0)
1122 				break;
1123 		}
1124 	}
1125 	tree->cache_es = NULL;
1126 	return nr_shrunk;
1127 }
1128