1 /* 2 * fs/ext4/extents_status.c 3 * 4 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com> 5 * Modified by 6 * Allison Henderson <achender@linux.vnet.ibm.com> 7 * Hugh Dickins <hughd@google.com> 8 * Zheng Liu <wenqing.lz@taobao.com> 9 * 10 * Ext4 extents status tree core functions. 11 */ 12 #include <linux/rbtree.h> 13 #include <linux/list_sort.h> 14 #include "ext4.h" 15 #include "extents_status.h" 16 17 #include <trace/events/ext4.h> 18 19 /* 20 * According to previous discussion in Ext4 Developer Workshop, we 21 * will introduce a new structure called io tree to track all extent 22 * status in order to solve some problems that we have met 23 * (e.g. Reservation space warning), and provide extent-level locking. 24 * Delay extent tree is the first step to achieve this goal. It is 25 * original built by Yongqiang Yang. At that time it is called delay 26 * extent tree, whose goal is only track delayed extents in memory to 27 * simplify the implementation of fiemap and bigalloc, and introduce 28 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called 29 * delay extent tree at the first commit. But for better understand 30 * what it does, it has been rename to extent status tree. 31 * 32 * Step1: 33 * Currently the first step has been done. All delayed extents are 34 * tracked in the tree. It maintains the delayed extent when a delayed 35 * allocation is issued, and the delayed extent is written out or 36 * invalidated. Therefore the implementation of fiemap and bigalloc 37 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced. 38 * 39 * The following comment describes the implemenmtation of extent 40 * status tree and future works. 41 * 42 * Step2: 43 * In this step all extent status are tracked by extent status tree. 44 * Thus, we can first try to lookup a block mapping in this tree before 45 * finding it in extent tree. Hence, single extent cache can be removed 46 * because extent status tree can do a better job. Extents in status 47 * tree are loaded on-demand. Therefore, the extent status tree may not 48 * contain all of the extents in a file. Meanwhile we define a shrinker 49 * to reclaim memory from extent status tree because fragmented extent 50 * tree will make status tree cost too much memory. written/unwritten/- 51 * hole extents in the tree will be reclaimed by this shrinker when we 52 * are under high memory pressure. Delayed extents will not be 53 * reclimed because fiemap, bigalloc, and seek_data/hole need it. 54 */ 55 56 /* 57 * Extent status tree implementation for ext4. 58 * 59 * 60 * ========================================================================== 61 * Extent status tree tracks all extent status. 62 * 63 * 1. Why we need to implement extent status tree? 64 * 65 * Without extent status tree, ext4 identifies a delayed extent by looking 66 * up page cache, this has several deficiencies - complicated, buggy, 67 * and inefficient code. 68 * 69 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a 70 * block or a range of blocks are belonged to a delayed extent. 71 * 72 * Let us have a look at how they do without extent status tree. 73 * -- FIEMAP 74 * FIEMAP looks up page cache to identify delayed allocations from holes. 75 * 76 * -- SEEK_HOLE/DATA 77 * SEEK_HOLE/DATA has the same problem as FIEMAP. 78 * 79 * -- bigalloc 80 * bigalloc looks up page cache to figure out if a block is 81 * already under delayed allocation or not to determine whether 82 * quota reserving is needed for the cluster. 83 * 84 * -- writeout 85 * Writeout looks up whole page cache to see if a buffer is 86 * mapped, If there are not very many delayed buffers, then it is 87 * time comsuming. 88 * 89 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA, 90 * bigalloc and writeout can figure out if a block or a range of 91 * blocks is under delayed allocation(belonged to a delayed extent) or 92 * not by searching the extent tree. 93 * 94 * 95 * ========================================================================== 96 * 2. Ext4 extent status tree impelmentation 97 * 98 * -- extent 99 * A extent is a range of blocks which are contiguous logically and 100 * physically. Unlike extent in extent tree, this extent in ext4 is 101 * a in-memory struct, there is no corresponding on-disk data. There 102 * is no limit on length of extent, so an extent can contain as many 103 * blocks as they are contiguous logically and physically. 104 * 105 * -- extent status tree 106 * Every inode has an extent status tree and all allocation blocks 107 * are added to the tree with different status. The extent in the 108 * tree are ordered by logical block no. 109 * 110 * -- operations on a extent status tree 111 * There are three important operations on a delayed extent tree: find 112 * next extent, adding a extent(a range of blocks) and removing a extent. 113 * 114 * -- race on a extent status tree 115 * Extent status tree is protected by inode->i_es_lock. 116 * 117 * -- memory consumption 118 * Fragmented extent tree will make extent status tree cost too much 119 * memory. Hence, we will reclaim written/unwritten/hole extents from 120 * the tree under a heavy memory pressure. 121 * 122 * 123 * ========================================================================== 124 * 3. Performance analysis 125 * 126 * -- overhead 127 * 1. There is a cache extent for write access, so if writes are 128 * not very random, adding space operaions are in O(1) time. 129 * 130 * -- gain 131 * 2. Code is much simpler, more readable, more maintainable and 132 * more efficient. 133 * 134 * 135 * ========================================================================== 136 * 4. TODO list 137 * 138 * -- Refactor delayed space reservation 139 * 140 * -- Extent-level locking 141 */ 142 143 static struct kmem_cache *ext4_es_cachep; 144 145 static int __es_insert_extent(struct inode *inode, struct extent_status *newes); 146 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 147 ext4_lblk_t end); 148 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei, 149 int nr_to_scan); 150 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, 151 struct ext4_inode_info *locked_ei); 152 153 int __init ext4_init_es(void) 154 { 155 ext4_es_cachep = kmem_cache_create("ext4_extent_status", 156 sizeof(struct extent_status), 157 0, (SLAB_RECLAIM_ACCOUNT), NULL); 158 if (ext4_es_cachep == NULL) 159 return -ENOMEM; 160 return 0; 161 } 162 163 void ext4_exit_es(void) 164 { 165 if (ext4_es_cachep) 166 kmem_cache_destroy(ext4_es_cachep); 167 } 168 169 void ext4_es_init_tree(struct ext4_es_tree *tree) 170 { 171 tree->root = RB_ROOT; 172 tree->cache_es = NULL; 173 } 174 175 #ifdef ES_DEBUG__ 176 static void ext4_es_print_tree(struct inode *inode) 177 { 178 struct ext4_es_tree *tree; 179 struct rb_node *node; 180 181 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino); 182 tree = &EXT4_I(inode)->i_es_tree; 183 node = rb_first(&tree->root); 184 while (node) { 185 struct extent_status *es; 186 es = rb_entry(node, struct extent_status, rb_node); 187 printk(KERN_DEBUG " [%u/%u) %llu %x", 188 es->es_lblk, es->es_len, 189 ext4_es_pblock(es), ext4_es_status(es)); 190 node = rb_next(node); 191 } 192 printk(KERN_DEBUG "\n"); 193 } 194 #else 195 #define ext4_es_print_tree(inode) 196 #endif 197 198 static inline ext4_lblk_t ext4_es_end(struct extent_status *es) 199 { 200 BUG_ON(es->es_lblk + es->es_len < es->es_lblk); 201 return es->es_lblk + es->es_len - 1; 202 } 203 204 /* 205 * search through the tree for an delayed extent with a given offset. If 206 * it can't be found, try to find next extent. 207 */ 208 static struct extent_status *__es_tree_search(struct rb_root *root, 209 ext4_lblk_t lblk) 210 { 211 struct rb_node *node = root->rb_node; 212 struct extent_status *es = NULL; 213 214 while (node) { 215 es = rb_entry(node, struct extent_status, rb_node); 216 if (lblk < es->es_lblk) 217 node = node->rb_left; 218 else if (lblk > ext4_es_end(es)) 219 node = node->rb_right; 220 else 221 return es; 222 } 223 224 if (es && lblk < es->es_lblk) 225 return es; 226 227 if (es && lblk > ext4_es_end(es)) { 228 node = rb_next(&es->rb_node); 229 return node ? rb_entry(node, struct extent_status, rb_node) : 230 NULL; 231 } 232 233 return NULL; 234 } 235 236 /* 237 * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering 238 * @es->lblk if it exists, otherwise, the next extent after @es->lblk. 239 * 240 * @inode: the inode which owns delayed extents 241 * @lblk: the offset where we start to search 242 * @end: the offset where we stop to search 243 * @es: delayed extent that we found 244 */ 245 void ext4_es_find_delayed_extent_range(struct inode *inode, 246 ext4_lblk_t lblk, ext4_lblk_t end, 247 struct extent_status *es) 248 { 249 struct ext4_es_tree *tree = NULL; 250 struct extent_status *es1 = NULL; 251 struct rb_node *node; 252 253 BUG_ON(es == NULL); 254 BUG_ON(end < lblk); 255 trace_ext4_es_find_delayed_extent_range_enter(inode, lblk); 256 257 read_lock(&EXT4_I(inode)->i_es_lock); 258 tree = &EXT4_I(inode)->i_es_tree; 259 260 /* find extent in cache firstly */ 261 es->es_lblk = es->es_len = es->es_pblk = 0; 262 if (tree->cache_es) { 263 es1 = tree->cache_es; 264 if (in_range(lblk, es1->es_lblk, es1->es_len)) { 265 es_debug("%u cached by [%u/%u) %llu %x\n", 266 lblk, es1->es_lblk, es1->es_len, 267 ext4_es_pblock(es1), ext4_es_status(es1)); 268 goto out; 269 } 270 } 271 272 es1 = __es_tree_search(&tree->root, lblk); 273 274 out: 275 if (es1 && !ext4_es_is_delayed(es1)) { 276 while ((node = rb_next(&es1->rb_node)) != NULL) { 277 es1 = rb_entry(node, struct extent_status, rb_node); 278 if (es1->es_lblk > end) { 279 es1 = NULL; 280 break; 281 } 282 if (ext4_es_is_delayed(es1)) 283 break; 284 } 285 } 286 287 if (es1 && ext4_es_is_delayed(es1)) { 288 tree->cache_es = es1; 289 es->es_lblk = es1->es_lblk; 290 es->es_len = es1->es_len; 291 es->es_pblk = es1->es_pblk; 292 } 293 294 read_unlock(&EXT4_I(inode)->i_es_lock); 295 296 trace_ext4_es_find_delayed_extent_range_exit(inode, es); 297 } 298 299 static struct extent_status * 300 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, 301 ext4_fsblk_t pblk) 302 { 303 struct extent_status *es; 304 es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC); 305 if (es == NULL) 306 return NULL; 307 es->es_lblk = lblk; 308 es->es_len = len; 309 es->es_pblk = pblk; 310 311 /* 312 * We don't count delayed extent because we never try to reclaim them 313 */ 314 if (!ext4_es_is_delayed(es)) { 315 EXT4_I(inode)->i_es_lru_nr++; 316 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt); 317 } 318 319 return es; 320 } 321 322 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es) 323 { 324 /* Decrease the lru counter when this es is not delayed */ 325 if (!ext4_es_is_delayed(es)) { 326 BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0); 327 EXT4_I(inode)->i_es_lru_nr--; 328 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt); 329 } 330 331 kmem_cache_free(ext4_es_cachep, es); 332 } 333 334 /* 335 * Check whether or not two extents can be merged 336 * Condition: 337 * - logical block number is contiguous 338 * - physical block number is contiguous 339 * - status is equal 340 */ 341 static int ext4_es_can_be_merged(struct extent_status *es1, 342 struct extent_status *es2) 343 { 344 if (ext4_es_status(es1) != ext4_es_status(es2)) 345 return 0; 346 347 if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) { 348 pr_warn("ES assertion failed when merging extents. " 349 "The sum of lengths of es1 (%d) and es2 (%d) " 350 "is bigger than allowed file size (%d)\n", 351 es1->es_len, es2->es_len, EXT_MAX_BLOCKS); 352 WARN_ON(1); 353 return 0; 354 } 355 356 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk) 357 return 0; 358 359 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) && 360 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2))) 361 return 1; 362 363 if (ext4_es_is_hole(es1)) 364 return 1; 365 366 /* we need to check delayed extent is without unwritten status */ 367 if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1)) 368 return 1; 369 370 return 0; 371 } 372 373 static struct extent_status * 374 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es) 375 { 376 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 377 struct extent_status *es1; 378 struct rb_node *node; 379 380 node = rb_prev(&es->rb_node); 381 if (!node) 382 return es; 383 384 es1 = rb_entry(node, struct extent_status, rb_node); 385 if (ext4_es_can_be_merged(es1, es)) { 386 es1->es_len += es->es_len; 387 rb_erase(&es->rb_node, &tree->root); 388 ext4_es_free_extent(inode, es); 389 es = es1; 390 } 391 392 return es; 393 } 394 395 static struct extent_status * 396 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es) 397 { 398 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 399 struct extent_status *es1; 400 struct rb_node *node; 401 402 node = rb_next(&es->rb_node); 403 if (!node) 404 return es; 405 406 es1 = rb_entry(node, struct extent_status, rb_node); 407 if (ext4_es_can_be_merged(es, es1)) { 408 es->es_len += es1->es_len; 409 rb_erase(node, &tree->root); 410 ext4_es_free_extent(inode, es1); 411 } 412 413 return es; 414 } 415 416 #ifdef ES_AGGRESSIVE_TEST 417 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */ 418 419 static void ext4_es_insert_extent_ext_check(struct inode *inode, 420 struct extent_status *es) 421 { 422 struct ext4_ext_path *path = NULL; 423 struct ext4_extent *ex; 424 ext4_lblk_t ee_block; 425 ext4_fsblk_t ee_start; 426 unsigned short ee_len; 427 int depth, ee_status, es_status; 428 429 path = ext4_ext_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE); 430 if (IS_ERR(path)) 431 return; 432 433 depth = ext_depth(inode); 434 ex = path[depth].p_ext; 435 436 if (ex) { 437 438 ee_block = le32_to_cpu(ex->ee_block); 439 ee_start = ext4_ext_pblock(ex); 440 ee_len = ext4_ext_get_actual_len(ex); 441 442 ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0; 443 es_status = ext4_es_is_unwritten(es) ? 1 : 0; 444 445 /* 446 * Make sure ex and es are not overlap when we try to insert 447 * a delayed/hole extent. 448 */ 449 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) { 450 if (in_range(es->es_lblk, ee_block, ee_len)) { 451 pr_warn("ES insert assertion failed for " 452 "inode: %lu we can find an extent " 453 "at block [%d/%d/%llu/%c], but we " 454 "want to add a delayed/hole extent " 455 "[%d/%d/%llu/%x]\n", 456 inode->i_ino, ee_block, ee_len, 457 ee_start, ee_status ? 'u' : 'w', 458 es->es_lblk, es->es_len, 459 ext4_es_pblock(es), ext4_es_status(es)); 460 } 461 goto out; 462 } 463 464 /* 465 * We don't check ee_block == es->es_lblk, etc. because es 466 * might be a part of whole extent, vice versa. 467 */ 468 if (es->es_lblk < ee_block || 469 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) { 470 pr_warn("ES insert assertion failed for inode: %lu " 471 "ex_status [%d/%d/%llu/%c] != " 472 "es_status [%d/%d/%llu/%c]\n", inode->i_ino, 473 ee_block, ee_len, ee_start, 474 ee_status ? 'u' : 'w', es->es_lblk, es->es_len, 475 ext4_es_pblock(es), es_status ? 'u' : 'w'); 476 goto out; 477 } 478 479 if (ee_status ^ es_status) { 480 pr_warn("ES insert assertion failed for inode: %lu " 481 "ex_status [%d/%d/%llu/%c] != " 482 "es_status [%d/%d/%llu/%c]\n", inode->i_ino, 483 ee_block, ee_len, ee_start, 484 ee_status ? 'u' : 'w', es->es_lblk, es->es_len, 485 ext4_es_pblock(es), es_status ? 'u' : 'w'); 486 } 487 } else { 488 /* 489 * We can't find an extent on disk. So we need to make sure 490 * that we don't want to add an written/unwritten extent. 491 */ 492 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) { 493 pr_warn("ES insert assertion failed for inode: %lu " 494 "can't find an extent at block %d but we want " 495 "to add a written/unwritten extent " 496 "[%d/%d/%llu/%x]\n", inode->i_ino, 497 es->es_lblk, es->es_lblk, es->es_len, 498 ext4_es_pblock(es), ext4_es_status(es)); 499 } 500 } 501 out: 502 if (path) { 503 ext4_ext_drop_refs(path); 504 kfree(path); 505 } 506 } 507 508 static void ext4_es_insert_extent_ind_check(struct inode *inode, 509 struct extent_status *es) 510 { 511 struct ext4_map_blocks map; 512 int retval; 513 514 /* 515 * Here we call ext4_ind_map_blocks to lookup a block mapping because 516 * 'Indirect' structure is defined in indirect.c. So we couldn't 517 * access direct/indirect tree from outside. It is too dirty to define 518 * this function in indirect.c file. 519 */ 520 521 map.m_lblk = es->es_lblk; 522 map.m_len = es->es_len; 523 524 retval = ext4_ind_map_blocks(NULL, inode, &map, 0); 525 if (retval > 0) { 526 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) { 527 /* 528 * We want to add a delayed/hole extent but this 529 * block has been allocated. 530 */ 531 pr_warn("ES insert assertion failed for inode: %lu " 532 "We can find blocks but we want to add a " 533 "delayed/hole extent [%d/%d/%llu/%x]\n", 534 inode->i_ino, es->es_lblk, es->es_len, 535 ext4_es_pblock(es), ext4_es_status(es)); 536 return; 537 } else if (ext4_es_is_written(es)) { 538 if (retval != es->es_len) { 539 pr_warn("ES insert assertion failed for " 540 "inode: %lu retval %d != es_len %d\n", 541 inode->i_ino, retval, es->es_len); 542 return; 543 } 544 if (map.m_pblk != ext4_es_pblock(es)) { 545 pr_warn("ES insert assertion failed for " 546 "inode: %lu m_pblk %llu != " 547 "es_pblk %llu\n", 548 inode->i_ino, map.m_pblk, 549 ext4_es_pblock(es)); 550 return; 551 } 552 } else { 553 /* 554 * We don't need to check unwritten extent because 555 * indirect-based file doesn't have it. 556 */ 557 BUG_ON(1); 558 } 559 } else if (retval == 0) { 560 if (ext4_es_is_written(es)) { 561 pr_warn("ES insert assertion failed for inode: %lu " 562 "We can't find the block but we want to add " 563 "a written extent [%d/%d/%llu/%x]\n", 564 inode->i_ino, es->es_lblk, es->es_len, 565 ext4_es_pblock(es), ext4_es_status(es)); 566 return; 567 } 568 } 569 } 570 571 static inline void ext4_es_insert_extent_check(struct inode *inode, 572 struct extent_status *es) 573 { 574 /* 575 * We don't need to worry about the race condition because 576 * caller takes i_data_sem locking. 577 */ 578 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 579 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 580 ext4_es_insert_extent_ext_check(inode, es); 581 else 582 ext4_es_insert_extent_ind_check(inode, es); 583 } 584 #else 585 static inline void ext4_es_insert_extent_check(struct inode *inode, 586 struct extent_status *es) 587 { 588 } 589 #endif 590 591 static int __es_insert_extent(struct inode *inode, struct extent_status *newes) 592 { 593 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 594 struct rb_node **p = &tree->root.rb_node; 595 struct rb_node *parent = NULL; 596 struct extent_status *es; 597 598 while (*p) { 599 parent = *p; 600 es = rb_entry(parent, struct extent_status, rb_node); 601 602 if (newes->es_lblk < es->es_lblk) { 603 if (ext4_es_can_be_merged(newes, es)) { 604 /* 605 * Here we can modify es_lblk directly 606 * because it isn't overlapped. 607 */ 608 es->es_lblk = newes->es_lblk; 609 es->es_len += newes->es_len; 610 if (ext4_es_is_written(es) || 611 ext4_es_is_unwritten(es)) 612 ext4_es_store_pblock(es, 613 newes->es_pblk); 614 es = ext4_es_try_to_merge_left(inode, es); 615 goto out; 616 } 617 p = &(*p)->rb_left; 618 } else if (newes->es_lblk > ext4_es_end(es)) { 619 if (ext4_es_can_be_merged(es, newes)) { 620 es->es_len += newes->es_len; 621 es = ext4_es_try_to_merge_right(inode, es); 622 goto out; 623 } 624 p = &(*p)->rb_right; 625 } else { 626 BUG_ON(1); 627 return -EINVAL; 628 } 629 } 630 631 es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len, 632 newes->es_pblk); 633 if (!es) 634 return -ENOMEM; 635 rb_link_node(&es->rb_node, parent, p); 636 rb_insert_color(&es->rb_node, &tree->root); 637 638 out: 639 tree->cache_es = es; 640 return 0; 641 } 642 643 /* 644 * ext4_es_insert_extent() adds information to an inode's extent 645 * status tree. 646 * 647 * Return 0 on success, error code on failure. 648 */ 649 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, 650 ext4_lblk_t len, ext4_fsblk_t pblk, 651 unsigned int status) 652 { 653 struct extent_status newes; 654 ext4_lblk_t end = lblk + len - 1; 655 int err = 0; 656 657 es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n", 658 lblk, len, pblk, status, inode->i_ino); 659 660 if (!len) 661 return 0; 662 663 BUG_ON(end < lblk); 664 665 newes.es_lblk = lblk; 666 newes.es_len = len; 667 ext4_es_store_pblock_status(&newes, pblk, status); 668 trace_ext4_es_insert_extent(inode, &newes); 669 670 ext4_es_insert_extent_check(inode, &newes); 671 672 write_lock(&EXT4_I(inode)->i_es_lock); 673 err = __es_remove_extent(inode, lblk, end); 674 if (err != 0) 675 goto error; 676 retry: 677 err = __es_insert_extent(inode, &newes); 678 if (err == -ENOMEM && __ext4_es_shrink(EXT4_SB(inode->i_sb), 1, 679 EXT4_I(inode))) 680 goto retry; 681 if (err == -ENOMEM && !ext4_es_is_delayed(&newes)) 682 err = 0; 683 684 error: 685 write_unlock(&EXT4_I(inode)->i_es_lock); 686 687 ext4_es_print_tree(inode); 688 689 return err; 690 } 691 692 /* 693 * ext4_es_cache_extent() inserts information into the extent status 694 * tree if and only if there isn't information about the range in 695 * question already. 696 */ 697 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk, 698 ext4_lblk_t len, ext4_fsblk_t pblk, 699 unsigned int status) 700 { 701 struct extent_status *es; 702 struct extent_status newes; 703 ext4_lblk_t end = lblk + len - 1; 704 705 newes.es_lblk = lblk; 706 newes.es_len = len; 707 ext4_es_store_pblock_status(&newes, pblk, status); 708 trace_ext4_es_cache_extent(inode, &newes); 709 710 if (!len) 711 return; 712 713 BUG_ON(end < lblk); 714 715 write_lock(&EXT4_I(inode)->i_es_lock); 716 717 es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk); 718 if (!es || es->es_lblk > end) 719 __es_insert_extent(inode, &newes); 720 write_unlock(&EXT4_I(inode)->i_es_lock); 721 } 722 723 /* 724 * ext4_es_lookup_extent() looks up an extent in extent status tree. 725 * 726 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks. 727 * 728 * Return: 1 on found, 0 on not 729 */ 730 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, 731 struct extent_status *es) 732 { 733 struct ext4_es_tree *tree; 734 struct extent_status *es1 = NULL; 735 struct rb_node *node; 736 int found = 0; 737 738 trace_ext4_es_lookup_extent_enter(inode, lblk); 739 es_debug("lookup extent in block %u\n", lblk); 740 741 tree = &EXT4_I(inode)->i_es_tree; 742 read_lock(&EXT4_I(inode)->i_es_lock); 743 744 /* find extent in cache firstly */ 745 es->es_lblk = es->es_len = es->es_pblk = 0; 746 if (tree->cache_es) { 747 es1 = tree->cache_es; 748 if (in_range(lblk, es1->es_lblk, es1->es_len)) { 749 es_debug("%u cached by [%u/%u)\n", 750 lblk, es1->es_lblk, es1->es_len); 751 found = 1; 752 goto out; 753 } 754 } 755 756 node = tree->root.rb_node; 757 while (node) { 758 es1 = rb_entry(node, struct extent_status, rb_node); 759 if (lblk < es1->es_lblk) 760 node = node->rb_left; 761 else if (lblk > ext4_es_end(es1)) 762 node = node->rb_right; 763 else { 764 found = 1; 765 break; 766 } 767 } 768 769 out: 770 if (found) { 771 BUG_ON(!es1); 772 es->es_lblk = es1->es_lblk; 773 es->es_len = es1->es_len; 774 es->es_pblk = es1->es_pblk; 775 } 776 777 read_unlock(&EXT4_I(inode)->i_es_lock); 778 779 trace_ext4_es_lookup_extent_exit(inode, es, found); 780 return found; 781 } 782 783 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 784 ext4_lblk_t end) 785 { 786 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; 787 struct rb_node *node; 788 struct extent_status *es; 789 struct extent_status orig_es; 790 ext4_lblk_t len1, len2; 791 ext4_fsblk_t block; 792 int err; 793 794 retry: 795 err = 0; 796 es = __es_tree_search(&tree->root, lblk); 797 if (!es) 798 goto out; 799 if (es->es_lblk > end) 800 goto out; 801 802 /* Simply invalidate cache_es. */ 803 tree->cache_es = NULL; 804 805 orig_es.es_lblk = es->es_lblk; 806 orig_es.es_len = es->es_len; 807 orig_es.es_pblk = es->es_pblk; 808 809 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0; 810 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0; 811 if (len1 > 0) 812 es->es_len = len1; 813 if (len2 > 0) { 814 if (len1 > 0) { 815 struct extent_status newes; 816 817 newes.es_lblk = end + 1; 818 newes.es_len = len2; 819 block = 0x7FDEADBEEFULL; 820 if (ext4_es_is_written(&orig_es) || 821 ext4_es_is_unwritten(&orig_es)) 822 block = ext4_es_pblock(&orig_es) + 823 orig_es.es_len - len2; 824 ext4_es_store_pblock_status(&newes, block, 825 ext4_es_status(&orig_es)); 826 err = __es_insert_extent(inode, &newes); 827 if (err) { 828 es->es_lblk = orig_es.es_lblk; 829 es->es_len = orig_es.es_len; 830 if ((err == -ENOMEM) && 831 __ext4_es_shrink(EXT4_SB(inode->i_sb), 1, 832 EXT4_I(inode))) 833 goto retry; 834 goto out; 835 } 836 } else { 837 es->es_lblk = end + 1; 838 es->es_len = len2; 839 if (ext4_es_is_written(es) || 840 ext4_es_is_unwritten(es)) { 841 block = orig_es.es_pblk + orig_es.es_len - len2; 842 ext4_es_store_pblock(es, block); 843 } 844 } 845 goto out; 846 } 847 848 if (len1 > 0) { 849 node = rb_next(&es->rb_node); 850 if (node) 851 es = rb_entry(node, struct extent_status, rb_node); 852 else 853 es = NULL; 854 } 855 856 while (es && ext4_es_end(es) <= end) { 857 node = rb_next(&es->rb_node); 858 rb_erase(&es->rb_node, &tree->root); 859 ext4_es_free_extent(inode, es); 860 if (!node) { 861 es = NULL; 862 break; 863 } 864 es = rb_entry(node, struct extent_status, rb_node); 865 } 866 867 if (es && es->es_lblk < end + 1) { 868 ext4_lblk_t orig_len = es->es_len; 869 870 len1 = ext4_es_end(es) - end; 871 es->es_lblk = end + 1; 872 es->es_len = len1; 873 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { 874 block = es->es_pblk + orig_len - len1; 875 ext4_es_store_pblock(es, block); 876 } 877 } 878 879 out: 880 return err; 881 } 882 883 /* 884 * ext4_es_remove_extent() removes a space from a extent status tree. 885 * 886 * Return 0 on success, error code on failure. 887 */ 888 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, 889 ext4_lblk_t len) 890 { 891 ext4_lblk_t end; 892 int err = 0; 893 894 trace_ext4_es_remove_extent(inode, lblk, len); 895 es_debug("remove [%u/%u) from extent status tree of inode %lu\n", 896 lblk, len, inode->i_ino); 897 898 if (!len) 899 return err; 900 901 end = lblk + len - 1; 902 BUG_ON(end < lblk); 903 904 write_lock(&EXT4_I(inode)->i_es_lock); 905 err = __es_remove_extent(inode, lblk, end); 906 write_unlock(&EXT4_I(inode)->i_es_lock); 907 ext4_es_print_tree(inode); 908 return err; 909 } 910 911 static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a, 912 struct list_head *b) 913 { 914 struct ext4_inode_info *eia, *eib; 915 eia = list_entry(a, struct ext4_inode_info, i_es_lru); 916 eib = list_entry(b, struct ext4_inode_info, i_es_lru); 917 918 if (ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) && 919 !ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED)) 920 return 1; 921 if (!ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) && 922 ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED)) 923 return -1; 924 if (eia->i_touch_when == eib->i_touch_when) 925 return 0; 926 if (time_after(eia->i_touch_when, eib->i_touch_when)) 927 return 1; 928 else 929 return -1; 930 } 931 932 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, 933 struct ext4_inode_info *locked_ei) 934 { 935 struct ext4_inode_info *ei; 936 struct list_head *cur, *tmp; 937 LIST_HEAD(skipped); 938 int nr_shrunk = 0; 939 int retried = 0, skip_precached = 1, nr_skipped = 0; 940 941 spin_lock(&sbi->s_es_lru_lock); 942 943 retry: 944 list_for_each_safe(cur, tmp, &sbi->s_es_lru) { 945 int shrunk; 946 947 /* 948 * If we have already reclaimed all extents from extent 949 * status tree, just stop the loop immediately. 950 */ 951 if (percpu_counter_read_positive(&sbi->s_extent_cache_cnt) == 0) 952 break; 953 954 ei = list_entry(cur, struct ext4_inode_info, i_es_lru); 955 956 /* 957 * Skip the inode that is newer than the last_sorted 958 * time. Normally we try hard to avoid shrinking 959 * precached inodes, but we will as a last resort. 960 */ 961 if ((sbi->s_es_last_sorted < ei->i_touch_when) || 962 (skip_precached && ext4_test_inode_state(&ei->vfs_inode, 963 EXT4_STATE_EXT_PRECACHED))) { 964 nr_skipped++; 965 list_move_tail(cur, &skipped); 966 continue; 967 } 968 969 if (ei->i_es_lru_nr == 0 || ei == locked_ei || 970 !write_trylock(&ei->i_es_lock)) 971 continue; 972 973 shrunk = __es_try_to_reclaim_extents(ei, nr_to_scan); 974 if (ei->i_es_lru_nr == 0) 975 list_del_init(&ei->i_es_lru); 976 write_unlock(&ei->i_es_lock); 977 978 nr_shrunk += shrunk; 979 nr_to_scan -= shrunk; 980 if (nr_to_scan == 0) 981 break; 982 } 983 984 /* Move the newer inodes into the tail of the LRU list. */ 985 list_splice_tail(&skipped, &sbi->s_es_lru); 986 INIT_LIST_HEAD(&skipped); 987 988 /* 989 * If we skipped any inodes, and we weren't able to make any 990 * forward progress, sort the list and try again. 991 */ 992 if ((nr_shrunk == 0) && nr_skipped && !retried) { 993 retried++; 994 list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp); 995 sbi->s_es_last_sorted = jiffies; 996 ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info, 997 i_es_lru); 998 /* 999 * If there are no non-precached inodes left on the 1000 * list, start releasing precached extents. 1001 */ 1002 if (ext4_test_inode_state(&ei->vfs_inode, 1003 EXT4_STATE_EXT_PRECACHED)) 1004 skip_precached = 0; 1005 goto retry; 1006 } 1007 1008 spin_unlock(&sbi->s_es_lru_lock); 1009 1010 if (locked_ei && nr_shrunk == 0) 1011 nr_shrunk = __es_try_to_reclaim_extents(locked_ei, nr_to_scan); 1012 1013 return nr_shrunk; 1014 } 1015 1016 static unsigned long ext4_es_count(struct shrinker *shrink, 1017 struct shrink_control *sc) 1018 { 1019 unsigned long nr; 1020 struct ext4_sb_info *sbi; 1021 1022 sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker); 1023 nr = percpu_counter_read_positive(&sbi->s_extent_cache_cnt); 1024 trace_ext4_es_shrink_enter(sbi->s_sb, sc->nr_to_scan, nr); 1025 return nr; 1026 } 1027 1028 static unsigned long ext4_es_scan(struct shrinker *shrink, 1029 struct shrink_control *sc) 1030 { 1031 struct ext4_sb_info *sbi = container_of(shrink, 1032 struct ext4_sb_info, s_es_shrinker); 1033 int nr_to_scan = sc->nr_to_scan; 1034 int ret, nr_shrunk; 1035 1036 ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt); 1037 trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret); 1038 1039 if (!nr_to_scan) 1040 return ret; 1041 1042 nr_shrunk = __ext4_es_shrink(sbi, nr_to_scan, NULL); 1043 1044 trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret); 1045 return nr_shrunk; 1046 } 1047 1048 void ext4_es_register_shrinker(struct ext4_sb_info *sbi) 1049 { 1050 INIT_LIST_HEAD(&sbi->s_es_lru); 1051 spin_lock_init(&sbi->s_es_lru_lock); 1052 sbi->s_es_last_sorted = 0; 1053 sbi->s_es_shrinker.scan_objects = ext4_es_scan; 1054 sbi->s_es_shrinker.count_objects = ext4_es_count; 1055 sbi->s_es_shrinker.seeks = DEFAULT_SEEKS; 1056 register_shrinker(&sbi->s_es_shrinker); 1057 } 1058 1059 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi) 1060 { 1061 unregister_shrinker(&sbi->s_es_shrinker); 1062 } 1063 1064 void ext4_es_lru_add(struct inode *inode) 1065 { 1066 struct ext4_inode_info *ei = EXT4_I(inode); 1067 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1068 1069 ei->i_touch_when = jiffies; 1070 1071 if (!list_empty(&ei->i_es_lru)) 1072 return; 1073 1074 spin_lock(&sbi->s_es_lru_lock); 1075 if (list_empty(&ei->i_es_lru)) 1076 list_add_tail(&ei->i_es_lru, &sbi->s_es_lru); 1077 spin_unlock(&sbi->s_es_lru_lock); 1078 } 1079 1080 void ext4_es_lru_del(struct inode *inode) 1081 { 1082 struct ext4_inode_info *ei = EXT4_I(inode); 1083 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1084 1085 spin_lock(&sbi->s_es_lru_lock); 1086 if (!list_empty(&ei->i_es_lru)) 1087 list_del_init(&ei->i_es_lru); 1088 spin_unlock(&sbi->s_es_lru_lock); 1089 } 1090 1091 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei, 1092 int nr_to_scan) 1093 { 1094 struct inode *inode = &ei->vfs_inode; 1095 struct ext4_es_tree *tree = &ei->i_es_tree; 1096 struct rb_node *node; 1097 struct extent_status *es; 1098 unsigned long nr_shrunk = 0; 1099 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 1100 DEFAULT_RATELIMIT_BURST); 1101 1102 if (ei->i_es_lru_nr == 0) 1103 return 0; 1104 1105 if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) && 1106 __ratelimit(&_rs)) 1107 ext4_warning(inode->i_sb, "forced shrink of precached extents"); 1108 1109 node = rb_first(&tree->root); 1110 while (node != NULL) { 1111 es = rb_entry(node, struct extent_status, rb_node); 1112 node = rb_next(&es->rb_node); 1113 /* 1114 * We can't reclaim delayed extent from status tree because 1115 * fiemap, bigallic, and seek_data/hole need to use it. 1116 */ 1117 if (!ext4_es_is_delayed(es)) { 1118 rb_erase(&es->rb_node, &tree->root); 1119 ext4_es_free_extent(inode, es); 1120 nr_shrunk++; 1121 if (--nr_to_scan == 0) 1122 break; 1123 } 1124 } 1125 tree->cache_es = NULL; 1126 return nr_shrunk; 1127 } 1128