xref: /openbmc/linux/fs/ext4/extents_status.c (revision 54d8c1d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  fs/ext4/extents_status.c
4  *
5  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6  * Modified by
7  *	Allison Henderson <achender@linux.vnet.ibm.com>
8  *	Hugh Dickins <hughd@google.com>
9  *	Zheng Liu <wenqing.lz@taobao.com>
10  *
11  * Ext4 extents status tree core functions.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 
18 #include <trace/events/ext4.h>
19 
20 /*
21  * According to previous discussion in Ext4 Developer Workshop, we
22  * will introduce a new structure called io tree to track all extent
23  * status in order to solve some problems that we have met
24  * (e.g. Reservation space warning), and provide extent-level locking.
25  * Delay extent tree is the first step to achieve this goal.  It is
26  * original built by Yongqiang Yang.  At that time it is called delay
27  * extent tree, whose goal is only track delayed extents in memory to
28  * simplify the implementation of fiemap and bigalloc, and introduce
29  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30  * delay extent tree at the first commit.  But for better understand
31  * what it does, it has been rename to extent status tree.
32  *
33  * Step1:
34  * Currently the first step has been done.  All delayed extents are
35  * tracked in the tree.  It maintains the delayed extent when a delayed
36  * allocation is issued, and the delayed extent is written out or
37  * invalidated.  Therefore the implementation of fiemap and bigalloc
38  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39  *
40  * The following comment describes the implemenmtation of extent
41  * status tree and future works.
42  *
43  * Step2:
44  * In this step all extent status are tracked by extent status tree.
45  * Thus, we can first try to lookup a block mapping in this tree before
46  * finding it in extent tree.  Hence, single extent cache can be removed
47  * because extent status tree can do a better job.  Extents in status
48  * tree are loaded on-demand.  Therefore, the extent status tree may not
49  * contain all of the extents in a file.  Meanwhile we define a shrinker
50  * to reclaim memory from extent status tree because fragmented extent
51  * tree will make status tree cost too much memory.  written/unwritten/-
52  * hole extents in the tree will be reclaimed by this shrinker when we
53  * are under high memory pressure.  Delayed extents will not be
54  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55  */
56 
57 /*
58  * Extent status tree implementation for ext4.
59  *
60  *
61  * ==========================================================================
62  * Extent status tree tracks all extent status.
63  *
64  * 1. Why we need to implement extent status tree?
65  *
66  * Without extent status tree, ext4 identifies a delayed extent by looking
67  * up page cache, this has several deficiencies - complicated, buggy,
68  * and inefficient code.
69  *
70  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71  * block or a range of blocks are belonged to a delayed extent.
72  *
73  * Let us have a look at how they do without extent status tree.
74  *   --	FIEMAP
75  *	FIEMAP looks up page cache to identify delayed allocations from holes.
76  *
77  *   --	SEEK_HOLE/DATA
78  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79  *
80  *   --	bigalloc
81  *	bigalloc looks up page cache to figure out if a block is
82  *	already under delayed allocation or not to determine whether
83  *	quota reserving is needed for the cluster.
84  *
85  *   --	writeout
86  *	Writeout looks up whole page cache to see if a buffer is
87  *	mapped, If there are not very many delayed buffers, then it is
88  *	time consuming.
89  *
90  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91  * bigalloc and writeout can figure out if a block or a range of
92  * blocks is under delayed allocation(belonged to a delayed extent) or
93  * not by searching the extent tree.
94  *
95  *
96  * ==========================================================================
97  * 2. Ext4 extent status tree impelmentation
98  *
99  *   --	extent
100  *	A extent is a range of blocks which are contiguous logically and
101  *	physically.  Unlike extent in extent tree, this extent in ext4 is
102  *	a in-memory struct, there is no corresponding on-disk data.  There
103  *	is no limit on length of extent, so an extent can contain as many
104  *	blocks as they are contiguous logically and physically.
105  *
106  *   --	extent status tree
107  *	Every inode has an extent status tree and all allocation blocks
108  *	are added to the tree with different status.  The extent in the
109  *	tree are ordered by logical block no.
110  *
111  *   --	operations on a extent status tree
112  *	There are three important operations on a delayed extent tree: find
113  *	next extent, adding a extent(a range of blocks) and removing a extent.
114  *
115  *   --	race on a extent status tree
116  *	Extent status tree is protected by inode->i_es_lock.
117  *
118  *   --	memory consumption
119  *      Fragmented extent tree will make extent status tree cost too much
120  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121  *      the tree under a heavy memory pressure.
122  *
123  *
124  * ==========================================================================
125  * 3. Performance analysis
126  *
127  *   --	overhead
128  *	1. There is a cache extent for write access, so if writes are
129  *	not very random, adding space operaions are in O(1) time.
130  *
131  *   --	gain
132  *	2. Code is much simpler, more readable, more maintainable and
133  *	more efficient.
134  *
135  *
136  * ==========================================================================
137  * 4. TODO list
138  *
139  *   -- Refactor delayed space reservation
140  *
141  *   -- Extent-level locking
142  */
143 
144 static struct kmem_cache *ext4_es_cachep;
145 static struct kmem_cache *ext4_pending_cachep;
146 
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
148 			      struct extent_status *prealloc);
149 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
150 			      ext4_lblk_t end, int *reserved,
151 			      struct extent_status *prealloc);
152 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
153 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
154 		       struct ext4_inode_info *locked_ei);
155 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
156 			    ext4_lblk_t len,
157 			    struct pending_reservation **prealloc);
158 
159 int __init ext4_init_es(void)
160 {
161 	ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
162 	if (ext4_es_cachep == NULL)
163 		return -ENOMEM;
164 	return 0;
165 }
166 
167 void ext4_exit_es(void)
168 {
169 	kmem_cache_destroy(ext4_es_cachep);
170 }
171 
172 void ext4_es_init_tree(struct ext4_es_tree *tree)
173 {
174 	tree->root = RB_ROOT;
175 	tree->cache_es = NULL;
176 }
177 
178 #ifdef ES_DEBUG__
179 static void ext4_es_print_tree(struct inode *inode)
180 {
181 	struct ext4_es_tree *tree;
182 	struct rb_node *node;
183 
184 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
185 	tree = &EXT4_I(inode)->i_es_tree;
186 	node = rb_first(&tree->root);
187 	while (node) {
188 		struct extent_status *es;
189 		es = rb_entry(node, struct extent_status, rb_node);
190 		printk(KERN_DEBUG " [%u/%u) %llu %x",
191 		       es->es_lblk, es->es_len,
192 		       ext4_es_pblock(es), ext4_es_status(es));
193 		node = rb_next(node);
194 	}
195 	printk(KERN_DEBUG "\n");
196 }
197 #else
198 #define ext4_es_print_tree(inode)
199 #endif
200 
201 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
202 {
203 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
204 	return es->es_lblk + es->es_len - 1;
205 }
206 
207 /*
208  * search through the tree for an delayed extent with a given offset.  If
209  * it can't be found, try to find next extent.
210  */
211 static struct extent_status *__es_tree_search(struct rb_root *root,
212 					      ext4_lblk_t lblk)
213 {
214 	struct rb_node *node = root->rb_node;
215 	struct extent_status *es = NULL;
216 
217 	while (node) {
218 		es = rb_entry(node, struct extent_status, rb_node);
219 		if (lblk < es->es_lblk)
220 			node = node->rb_left;
221 		else if (lblk > ext4_es_end(es))
222 			node = node->rb_right;
223 		else
224 			return es;
225 	}
226 
227 	if (es && lblk < es->es_lblk)
228 		return es;
229 
230 	if (es && lblk > ext4_es_end(es)) {
231 		node = rb_next(&es->rb_node);
232 		return node ? rb_entry(node, struct extent_status, rb_node) :
233 			      NULL;
234 	}
235 
236 	return NULL;
237 }
238 
239 /*
240  * ext4_es_find_extent_range - find extent with specified status within block
241  *                             range or next extent following block range in
242  *                             extents status tree
243  *
244  * @inode - file containing the range
245  * @matching_fn - pointer to function that matches extents with desired status
246  * @lblk - logical block defining start of range
247  * @end - logical block defining end of range
248  * @es - extent found, if any
249  *
250  * Find the first extent within the block range specified by @lblk and @end
251  * in the extents status tree that satisfies @matching_fn.  If a match
252  * is found, it's returned in @es.  If not, and a matching extent is found
253  * beyond the block range, it's returned in @es.  If no match is found, an
254  * extent is returned in @es whose es_lblk, es_len, and es_pblk components
255  * are 0.
256  */
257 static void __es_find_extent_range(struct inode *inode,
258 				   int (*matching_fn)(struct extent_status *es),
259 				   ext4_lblk_t lblk, ext4_lblk_t end,
260 				   struct extent_status *es)
261 {
262 	struct ext4_es_tree *tree = NULL;
263 	struct extent_status *es1 = NULL;
264 	struct rb_node *node;
265 
266 	WARN_ON(es == NULL);
267 	WARN_ON(end < lblk);
268 
269 	tree = &EXT4_I(inode)->i_es_tree;
270 
271 	/* see if the extent has been cached */
272 	es->es_lblk = es->es_len = es->es_pblk = 0;
273 	es1 = READ_ONCE(tree->cache_es);
274 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
275 		es_debug("%u cached by [%u/%u) %llu %x\n",
276 			 lblk, es1->es_lblk, es1->es_len,
277 			 ext4_es_pblock(es1), ext4_es_status(es1));
278 		goto out;
279 	}
280 
281 	es1 = __es_tree_search(&tree->root, lblk);
282 
283 out:
284 	if (es1 && !matching_fn(es1)) {
285 		while ((node = rb_next(&es1->rb_node)) != NULL) {
286 			es1 = rb_entry(node, struct extent_status, rb_node);
287 			if (es1->es_lblk > end) {
288 				es1 = NULL;
289 				break;
290 			}
291 			if (matching_fn(es1))
292 				break;
293 		}
294 	}
295 
296 	if (es1 && matching_fn(es1)) {
297 		WRITE_ONCE(tree->cache_es, es1);
298 		es->es_lblk = es1->es_lblk;
299 		es->es_len = es1->es_len;
300 		es->es_pblk = es1->es_pblk;
301 	}
302 
303 }
304 
305 /*
306  * Locking for __es_find_extent_range() for external use
307  */
308 void ext4_es_find_extent_range(struct inode *inode,
309 			       int (*matching_fn)(struct extent_status *es),
310 			       ext4_lblk_t lblk, ext4_lblk_t end,
311 			       struct extent_status *es)
312 {
313 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
314 		return;
315 
316 	trace_ext4_es_find_extent_range_enter(inode, lblk);
317 
318 	read_lock(&EXT4_I(inode)->i_es_lock);
319 	__es_find_extent_range(inode, matching_fn, lblk, end, es);
320 	read_unlock(&EXT4_I(inode)->i_es_lock);
321 
322 	trace_ext4_es_find_extent_range_exit(inode, es);
323 }
324 
325 /*
326  * __es_scan_range - search block range for block with specified status
327  *                   in extents status tree
328  *
329  * @inode - file containing the range
330  * @matching_fn - pointer to function that matches extents with desired status
331  * @lblk - logical block defining start of range
332  * @end - logical block defining end of range
333  *
334  * Returns true if at least one block in the specified block range satisfies
335  * the criterion specified by @matching_fn, and false if not.  If at least
336  * one extent has the specified status, then there is at least one block
337  * in the cluster with that status.  Should only be called by code that has
338  * taken i_es_lock.
339  */
340 static bool __es_scan_range(struct inode *inode,
341 			    int (*matching_fn)(struct extent_status *es),
342 			    ext4_lblk_t start, ext4_lblk_t end)
343 {
344 	struct extent_status es;
345 
346 	__es_find_extent_range(inode, matching_fn, start, end, &es);
347 	if (es.es_len == 0)
348 		return false;   /* no matching extent in the tree */
349 	else if (es.es_lblk <= start &&
350 		 start < es.es_lblk + es.es_len)
351 		return true;
352 	else if (start <= es.es_lblk && es.es_lblk <= end)
353 		return true;
354 	else
355 		return false;
356 }
357 /*
358  * Locking for __es_scan_range() for external use
359  */
360 bool ext4_es_scan_range(struct inode *inode,
361 			int (*matching_fn)(struct extent_status *es),
362 			ext4_lblk_t lblk, ext4_lblk_t end)
363 {
364 	bool ret;
365 
366 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
367 		return false;
368 
369 	read_lock(&EXT4_I(inode)->i_es_lock);
370 	ret = __es_scan_range(inode, matching_fn, lblk, end);
371 	read_unlock(&EXT4_I(inode)->i_es_lock);
372 
373 	return ret;
374 }
375 
376 /*
377  * __es_scan_clu - search cluster for block with specified status in
378  *                 extents status tree
379  *
380  * @inode - file containing the cluster
381  * @matching_fn - pointer to function that matches extents with desired status
382  * @lblk - logical block in cluster to be searched
383  *
384  * Returns true if at least one extent in the cluster containing @lblk
385  * satisfies the criterion specified by @matching_fn, and false if not.  If at
386  * least one extent has the specified status, then there is at least one block
387  * in the cluster with that status.  Should only be called by code that has
388  * taken i_es_lock.
389  */
390 static bool __es_scan_clu(struct inode *inode,
391 			  int (*matching_fn)(struct extent_status *es),
392 			  ext4_lblk_t lblk)
393 {
394 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
395 	ext4_lblk_t lblk_start, lblk_end;
396 
397 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
398 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
399 
400 	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
401 }
402 
403 /*
404  * Locking for __es_scan_clu() for external use
405  */
406 bool ext4_es_scan_clu(struct inode *inode,
407 		      int (*matching_fn)(struct extent_status *es),
408 		      ext4_lblk_t lblk)
409 {
410 	bool ret;
411 
412 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
413 		return false;
414 
415 	read_lock(&EXT4_I(inode)->i_es_lock);
416 	ret = __es_scan_clu(inode, matching_fn, lblk);
417 	read_unlock(&EXT4_I(inode)->i_es_lock);
418 
419 	return ret;
420 }
421 
422 static void ext4_es_list_add(struct inode *inode)
423 {
424 	struct ext4_inode_info *ei = EXT4_I(inode);
425 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
426 
427 	if (!list_empty(&ei->i_es_list))
428 		return;
429 
430 	spin_lock(&sbi->s_es_lock);
431 	if (list_empty(&ei->i_es_list)) {
432 		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
433 		sbi->s_es_nr_inode++;
434 	}
435 	spin_unlock(&sbi->s_es_lock);
436 }
437 
438 static void ext4_es_list_del(struct inode *inode)
439 {
440 	struct ext4_inode_info *ei = EXT4_I(inode);
441 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
442 
443 	spin_lock(&sbi->s_es_lock);
444 	if (!list_empty(&ei->i_es_list)) {
445 		list_del_init(&ei->i_es_list);
446 		sbi->s_es_nr_inode--;
447 		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
448 	}
449 	spin_unlock(&sbi->s_es_lock);
450 }
451 
452 static inline struct pending_reservation *__alloc_pending(bool nofail)
453 {
454 	if (!nofail)
455 		return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
456 
457 	return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL);
458 }
459 
460 static inline void __free_pending(struct pending_reservation *pr)
461 {
462 	kmem_cache_free(ext4_pending_cachep, pr);
463 }
464 
465 /*
466  * Returns true if we cannot fail to allocate memory for this extent_status
467  * entry and cannot reclaim it until its status changes.
468  */
469 static inline bool ext4_es_must_keep(struct extent_status *es)
470 {
471 	/* fiemap, bigalloc, and seek_data/hole need to use it. */
472 	if (ext4_es_is_delayed(es))
473 		return true;
474 
475 	return false;
476 }
477 
478 static inline struct extent_status *__es_alloc_extent(bool nofail)
479 {
480 	if (!nofail)
481 		return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
482 
483 	return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
484 }
485 
486 static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
487 		ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
488 {
489 	es->es_lblk = lblk;
490 	es->es_len = len;
491 	es->es_pblk = pblk;
492 
493 	/* We never try to reclaim a must kept extent, so we don't count it. */
494 	if (!ext4_es_must_keep(es)) {
495 		if (!EXT4_I(inode)->i_es_shk_nr++)
496 			ext4_es_list_add(inode);
497 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
498 					s_es_stats.es_stats_shk_cnt);
499 	}
500 
501 	EXT4_I(inode)->i_es_all_nr++;
502 	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
503 }
504 
505 static inline void __es_free_extent(struct extent_status *es)
506 {
507 	kmem_cache_free(ext4_es_cachep, es);
508 }
509 
510 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
511 {
512 	EXT4_I(inode)->i_es_all_nr--;
513 	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
514 
515 	/* Decrease the shrink counter when we can reclaim the extent. */
516 	if (!ext4_es_must_keep(es)) {
517 		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
518 		if (!--EXT4_I(inode)->i_es_shk_nr)
519 			ext4_es_list_del(inode);
520 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
521 					s_es_stats.es_stats_shk_cnt);
522 	}
523 
524 	__es_free_extent(es);
525 }
526 
527 /*
528  * Check whether or not two extents can be merged
529  * Condition:
530  *  - logical block number is contiguous
531  *  - physical block number is contiguous
532  *  - status is equal
533  */
534 static int ext4_es_can_be_merged(struct extent_status *es1,
535 				 struct extent_status *es2)
536 {
537 	if (ext4_es_type(es1) != ext4_es_type(es2))
538 		return 0;
539 
540 	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
541 		pr_warn("ES assertion failed when merging extents. "
542 			"The sum of lengths of es1 (%d) and es2 (%d) "
543 			"is bigger than allowed file size (%d)\n",
544 			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
545 		WARN_ON(1);
546 		return 0;
547 	}
548 
549 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
550 		return 0;
551 
552 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
553 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
554 		return 1;
555 
556 	if (ext4_es_is_hole(es1))
557 		return 1;
558 
559 	/* we need to check delayed extent is without unwritten status */
560 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
561 		return 1;
562 
563 	return 0;
564 }
565 
566 static struct extent_status *
567 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
568 {
569 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
570 	struct extent_status *es1;
571 	struct rb_node *node;
572 
573 	node = rb_prev(&es->rb_node);
574 	if (!node)
575 		return es;
576 
577 	es1 = rb_entry(node, struct extent_status, rb_node);
578 	if (ext4_es_can_be_merged(es1, es)) {
579 		es1->es_len += es->es_len;
580 		if (ext4_es_is_referenced(es))
581 			ext4_es_set_referenced(es1);
582 		rb_erase(&es->rb_node, &tree->root);
583 		ext4_es_free_extent(inode, es);
584 		es = es1;
585 	}
586 
587 	return es;
588 }
589 
590 static struct extent_status *
591 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
592 {
593 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
594 	struct extent_status *es1;
595 	struct rb_node *node;
596 
597 	node = rb_next(&es->rb_node);
598 	if (!node)
599 		return es;
600 
601 	es1 = rb_entry(node, struct extent_status, rb_node);
602 	if (ext4_es_can_be_merged(es, es1)) {
603 		es->es_len += es1->es_len;
604 		if (ext4_es_is_referenced(es1))
605 			ext4_es_set_referenced(es);
606 		rb_erase(node, &tree->root);
607 		ext4_es_free_extent(inode, es1);
608 	}
609 
610 	return es;
611 }
612 
613 #ifdef ES_AGGRESSIVE_TEST
614 #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
615 
616 static void ext4_es_insert_extent_ext_check(struct inode *inode,
617 					    struct extent_status *es)
618 {
619 	struct ext4_ext_path *path = NULL;
620 	struct ext4_extent *ex;
621 	ext4_lblk_t ee_block;
622 	ext4_fsblk_t ee_start;
623 	unsigned short ee_len;
624 	int depth, ee_status, es_status;
625 
626 	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
627 	if (IS_ERR(path))
628 		return;
629 
630 	depth = ext_depth(inode);
631 	ex = path[depth].p_ext;
632 
633 	if (ex) {
634 
635 		ee_block = le32_to_cpu(ex->ee_block);
636 		ee_start = ext4_ext_pblock(ex);
637 		ee_len = ext4_ext_get_actual_len(ex);
638 
639 		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
640 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
641 
642 		/*
643 		 * Make sure ex and es are not overlap when we try to insert
644 		 * a delayed/hole extent.
645 		 */
646 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
647 			if (in_range(es->es_lblk, ee_block, ee_len)) {
648 				pr_warn("ES insert assertion failed for "
649 					"inode: %lu we can find an extent "
650 					"at block [%d/%d/%llu/%c], but we "
651 					"want to add a delayed/hole extent "
652 					"[%d/%d/%llu/%x]\n",
653 					inode->i_ino, ee_block, ee_len,
654 					ee_start, ee_status ? 'u' : 'w',
655 					es->es_lblk, es->es_len,
656 					ext4_es_pblock(es), ext4_es_status(es));
657 			}
658 			goto out;
659 		}
660 
661 		/*
662 		 * We don't check ee_block == es->es_lblk, etc. because es
663 		 * might be a part of whole extent, vice versa.
664 		 */
665 		if (es->es_lblk < ee_block ||
666 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
667 			pr_warn("ES insert assertion failed for inode: %lu "
668 				"ex_status [%d/%d/%llu/%c] != "
669 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
670 				ee_block, ee_len, ee_start,
671 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
672 				ext4_es_pblock(es), es_status ? 'u' : 'w');
673 			goto out;
674 		}
675 
676 		if (ee_status ^ es_status) {
677 			pr_warn("ES insert assertion failed for inode: %lu "
678 				"ex_status [%d/%d/%llu/%c] != "
679 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
680 				ee_block, ee_len, ee_start,
681 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
682 				ext4_es_pblock(es), es_status ? 'u' : 'w');
683 		}
684 	} else {
685 		/*
686 		 * We can't find an extent on disk.  So we need to make sure
687 		 * that we don't want to add an written/unwritten extent.
688 		 */
689 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
690 			pr_warn("ES insert assertion failed for inode: %lu "
691 				"can't find an extent at block %d but we want "
692 				"to add a written/unwritten extent "
693 				"[%d/%d/%llu/%x]\n", inode->i_ino,
694 				es->es_lblk, es->es_lblk, es->es_len,
695 				ext4_es_pblock(es), ext4_es_status(es));
696 		}
697 	}
698 out:
699 	ext4_free_ext_path(path);
700 }
701 
702 static void ext4_es_insert_extent_ind_check(struct inode *inode,
703 					    struct extent_status *es)
704 {
705 	struct ext4_map_blocks map;
706 	int retval;
707 
708 	/*
709 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
710 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
711 	 * access direct/indirect tree from outside.  It is too dirty to define
712 	 * this function in indirect.c file.
713 	 */
714 
715 	map.m_lblk = es->es_lblk;
716 	map.m_len = es->es_len;
717 
718 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
719 	if (retval > 0) {
720 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
721 			/*
722 			 * We want to add a delayed/hole extent but this
723 			 * block has been allocated.
724 			 */
725 			pr_warn("ES insert assertion failed for inode: %lu "
726 				"We can find blocks but we want to add a "
727 				"delayed/hole extent [%d/%d/%llu/%x]\n",
728 				inode->i_ino, es->es_lblk, es->es_len,
729 				ext4_es_pblock(es), ext4_es_status(es));
730 			return;
731 		} else if (ext4_es_is_written(es)) {
732 			if (retval != es->es_len) {
733 				pr_warn("ES insert assertion failed for "
734 					"inode: %lu retval %d != es_len %d\n",
735 					inode->i_ino, retval, es->es_len);
736 				return;
737 			}
738 			if (map.m_pblk != ext4_es_pblock(es)) {
739 				pr_warn("ES insert assertion failed for "
740 					"inode: %lu m_pblk %llu != "
741 					"es_pblk %llu\n",
742 					inode->i_ino, map.m_pblk,
743 					ext4_es_pblock(es));
744 				return;
745 			}
746 		} else {
747 			/*
748 			 * We don't need to check unwritten extent because
749 			 * indirect-based file doesn't have it.
750 			 */
751 			BUG();
752 		}
753 	} else if (retval == 0) {
754 		if (ext4_es_is_written(es)) {
755 			pr_warn("ES insert assertion failed for inode: %lu "
756 				"We can't find the block but we want to add "
757 				"a written extent [%d/%d/%llu/%x]\n",
758 				inode->i_ino, es->es_lblk, es->es_len,
759 				ext4_es_pblock(es), ext4_es_status(es));
760 			return;
761 		}
762 	}
763 }
764 
765 static inline void ext4_es_insert_extent_check(struct inode *inode,
766 					       struct extent_status *es)
767 {
768 	/*
769 	 * We don't need to worry about the race condition because
770 	 * caller takes i_data_sem locking.
771 	 */
772 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
773 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
774 		ext4_es_insert_extent_ext_check(inode, es);
775 	else
776 		ext4_es_insert_extent_ind_check(inode, es);
777 }
778 #else
779 static inline void ext4_es_insert_extent_check(struct inode *inode,
780 					       struct extent_status *es)
781 {
782 }
783 #endif
784 
785 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
786 			      struct extent_status *prealloc)
787 {
788 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
789 	struct rb_node **p = &tree->root.rb_node;
790 	struct rb_node *parent = NULL;
791 	struct extent_status *es;
792 
793 	while (*p) {
794 		parent = *p;
795 		es = rb_entry(parent, struct extent_status, rb_node);
796 
797 		if (newes->es_lblk < es->es_lblk) {
798 			if (ext4_es_can_be_merged(newes, es)) {
799 				/*
800 				 * Here we can modify es_lblk directly
801 				 * because it isn't overlapped.
802 				 */
803 				es->es_lblk = newes->es_lblk;
804 				es->es_len += newes->es_len;
805 				if (ext4_es_is_written(es) ||
806 				    ext4_es_is_unwritten(es))
807 					ext4_es_store_pblock(es,
808 							     newes->es_pblk);
809 				es = ext4_es_try_to_merge_left(inode, es);
810 				goto out;
811 			}
812 			p = &(*p)->rb_left;
813 		} else if (newes->es_lblk > ext4_es_end(es)) {
814 			if (ext4_es_can_be_merged(es, newes)) {
815 				es->es_len += newes->es_len;
816 				es = ext4_es_try_to_merge_right(inode, es);
817 				goto out;
818 			}
819 			p = &(*p)->rb_right;
820 		} else {
821 			BUG();
822 			return -EINVAL;
823 		}
824 	}
825 
826 	if (prealloc)
827 		es = prealloc;
828 	else
829 		es = __es_alloc_extent(false);
830 	if (!es)
831 		return -ENOMEM;
832 	ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
833 			    newes->es_pblk);
834 
835 	rb_link_node(&es->rb_node, parent, p);
836 	rb_insert_color(&es->rb_node, &tree->root);
837 
838 out:
839 	tree->cache_es = es;
840 	return 0;
841 }
842 
843 /*
844  * ext4_es_insert_extent() adds information to an inode's extent
845  * status tree.
846  */
847 void ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
848 			   ext4_lblk_t len, ext4_fsblk_t pblk,
849 			   unsigned int status)
850 {
851 	struct extent_status newes;
852 	ext4_lblk_t end = lblk + len - 1;
853 	int err1 = 0, err2 = 0, err3 = 0;
854 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
855 	struct extent_status *es1 = NULL;
856 	struct extent_status *es2 = NULL;
857 	struct pending_reservation *pr = NULL;
858 	bool revise_pending = false;
859 
860 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
861 		return;
862 
863 	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
864 		 lblk, len, pblk, status, inode->i_ino);
865 
866 	if (!len)
867 		return;
868 
869 	BUG_ON(end < lblk);
870 
871 	if ((status & EXTENT_STATUS_DELAYED) &&
872 	    (status & EXTENT_STATUS_WRITTEN)) {
873 		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
874 				" delayed and written which can potentially "
875 				" cause data loss.", lblk, len);
876 		WARN_ON(1);
877 	}
878 
879 	newes.es_lblk = lblk;
880 	newes.es_len = len;
881 	ext4_es_store_pblock_status(&newes, pblk, status);
882 	trace_ext4_es_insert_extent(inode, &newes);
883 
884 	ext4_es_insert_extent_check(inode, &newes);
885 
886 	revise_pending = sbi->s_cluster_ratio > 1 &&
887 			 test_opt(inode->i_sb, DELALLOC) &&
888 			 (status & (EXTENT_STATUS_WRITTEN |
889 				    EXTENT_STATUS_UNWRITTEN));
890 retry:
891 	if (err1 && !es1)
892 		es1 = __es_alloc_extent(true);
893 	if ((err1 || err2) && !es2)
894 		es2 = __es_alloc_extent(true);
895 	if ((err1 || err2 || err3) && revise_pending && !pr)
896 		pr = __alloc_pending(true);
897 	write_lock(&EXT4_I(inode)->i_es_lock);
898 
899 	err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
900 	if (err1 != 0)
901 		goto error;
902 	/* Free preallocated extent if it didn't get used. */
903 	if (es1) {
904 		if (!es1->es_len)
905 			__es_free_extent(es1);
906 		es1 = NULL;
907 	}
908 
909 	err2 = __es_insert_extent(inode, &newes, es2);
910 	if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
911 		err2 = 0;
912 	if (err2 != 0)
913 		goto error;
914 	/* Free preallocated extent if it didn't get used. */
915 	if (es2) {
916 		if (!es2->es_len)
917 			__es_free_extent(es2);
918 		es2 = NULL;
919 	}
920 
921 	if (revise_pending) {
922 		err3 = __revise_pending(inode, lblk, len, &pr);
923 		if (err3 != 0)
924 			goto error;
925 		if (pr) {
926 			__free_pending(pr);
927 			pr = NULL;
928 		}
929 	}
930 error:
931 	write_unlock(&EXT4_I(inode)->i_es_lock);
932 	if (err1 || err2 || err3)
933 		goto retry;
934 
935 	ext4_es_print_tree(inode);
936 	return;
937 }
938 
939 /*
940  * ext4_es_cache_extent() inserts information into the extent status
941  * tree if and only if there isn't information about the range in
942  * question already.
943  */
944 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
945 			  ext4_lblk_t len, ext4_fsblk_t pblk,
946 			  unsigned int status)
947 {
948 	struct extent_status *es;
949 	struct extent_status newes;
950 	ext4_lblk_t end = lblk + len - 1;
951 
952 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
953 		return;
954 
955 	newes.es_lblk = lblk;
956 	newes.es_len = len;
957 	ext4_es_store_pblock_status(&newes, pblk, status);
958 	trace_ext4_es_cache_extent(inode, &newes);
959 
960 	if (!len)
961 		return;
962 
963 	BUG_ON(end < lblk);
964 
965 	write_lock(&EXT4_I(inode)->i_es_lock);
966 
967 	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
968 	if (!es || es->es_lblk > end)
969 		__es_insert_extent(inode, &newes, NULL);
970 	write_unlock(&EXT4_I(inode)->i_es_lock);
971 }
972 
973 /*
974  * ext4_es_lookup_extent() looks up an extent in extent status tree.
975  *
976  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
977  *
978  * Return: 1 on found, 0 on not
979  */
980 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
981 			  ext4_lblk_t *next_lblk,
982 			  struct extent_status *es)
983 {
984 	struct ext4_es_tree *tree;
985 	struct ext4_es_stats *stats;
986 	struct extent_status *es1 = NULL;
987 	struct rb_node *node;
988 	int found = 0;
989 
990 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
991 		return 0;
992 
993 	trace_ext4_es_lookup_extent_enter(inode, lblk);
994 	es_debug("lookup extent in block %u\n", lblk);
995 
996 	tree = &EXT4_I(inode)->i_es_tree;
997 	read_lock(&EXT4_I(inode)->i_es_lock);
998 
999 	/* find extent in cache firstly */
1000 	es->es_lblk = es->es_len = es->es_pblk = 0;
1001 	es1 = READ_ONCE(tree->cache_es);
1002 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
1003 		es_debug("%u cached by [%u/%u)\n",
1004 			 lblk, es1->es_lblk, es1->es_len);
1005 		found = 1;
1006 		goto out;
1007 	}
1008 
1009 	node = tree->root.rb_node;
1010 	while (node) {
1011 		es1 = rb_entry(node, struct extent_status, rb_node);
1012 		if (lblk < es1->es_lblk)
1013 			node = node->rb_left;
1014 		else if (lblk > ext4_es_end(es1))
1015 			node = node->rb_right;
1016 		else {
1017 			found = 1;
1018 			break;
1019 		}
1020 	}
1021 
1022 out:
1023 	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
1024 	if (found) {
1025 		BUG_ON(!es1);
1026 		es->es_lblk = es1->es_lblk;
1027 		es->es_len = es1->es_len;
1028 		es->es_pblk = es1->es_pblk;
1029 		if (!ext4_es_is_referenced(es1))
1030 			ext4_es_set_referenced(es1);
1031 		percpu_counter_inc(&stats->es_stats_cache_hits);
1032 		if (next_lblk) {
1033 			node = rb_next(&es1->rb_node);
1034 			if (node) {
1035 				es1 = rb_entry(node, struct extent_status,
1036 					       rb_node);
1037 				*next_lblk = es1->es_lblk;
1038 			} else
1039 				*next_lblk = 0;
1040 		}
1041 	} else {
1042 		percpu_counter_inc(&stats->es_stats_cache_misses);
1043 	}
1044 
1045 	read_unlock(&EXT4_I(inode)->i_es_lock);
1046 
1047 	trace_ext4_es_lookup_extent_exit(inode, es, found);
1048 	return found;
1049 }
1050 
1051 struct rsvd_count {
1052 	int ndelonly;
1053 	bool first_do_lblk_found;
1054 	ext4_lblk_t first_do_lblk;
1055 	ext4_lblk_t last_do_lblk;
1056 	struct extent_status *left_es;
1057 	bool partial;
1058 	ext4_lblk_t lclu;
1059 };
1060 
1061 /*
1062  * init_rsvd - initialize reserved count data before removing block range
1063  *	       in file from extent status tree
1064  *
1065  * @inode - file containing range
1066  * @lblk - first block in range
1067  * @es - pointer to first extent in range
1068  * @rc - pointer to reserved count data
1069  *
1070  * Assumes es is not NULL
1071  */
1072 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1073 		      struct extent_status *es, struct rsvd_count *rc)
1074 {
1075 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1076 	struct rb_node *node;
1077 
1078 	rc->ndelonly = 0;
1079 
1080 	/*
1081 	 * for bigalloc, note the first delonly block in the range has not
1082 	 * been found, record the extent containing the block to the left of
1083 	 * the region to be removed, if any, and note that there's no partial
1084 	 * cluster to track
1085 	 */
1086 	if (sbi->s_cluster_ratio > 1) {
1087 		rc->first_do_lblk_found = false;
1088 		if (lblk > es->es_lblk) {
1089 			rc->left_es = es;
1090 		} else {
1091 			node = rb_prev(&es->rb_node);
1092 			rc->left_es = node ? rb_entry(node,
1093 						      struct extent_status,
1094 						      rb_node) : NULL;
1095 		}
1096 		rc->partial = false;
1097 	}
1098 }
1099 
1100 /*
1101  * count_rsvd - count the clusters containing delayed and not unwritten
1102  *		(delonly) blocks in a range within an extent and add to
1103  *	        the running tally in rsvd_count
1104  *
1105  * @inode - file containing extent
1106  * @lblk - first block in range
1107  * @len - length of range in blocks
1108  * @es - pointer to extent containing clusters to be counted
1109  * @rc - pointer to reserved count data
1110  *
1111  * Tracks partial clusters found at the beginning and end of extents so
1112  * they aren't overcounted when they span adjacent extents
1113  */
1114 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1115 		       struct extent_status *es, struct rsvd_count *rc)
1116 {
1117 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1118 	ext4_lblk_t i, end, nclu;
1119 
1120 	if (!ext4_es_is_delonly(es))
1121 		return;
1122 
1123 	WARN_ON(len <= 0);
1124 
1125 	if (sbi->s_cluster_ratio == 1) {
1126 		rc->ndelonly += (int) len;
1127 		return;
1128 	}
1129 
1130 	/* bigalloc */
1131 
1132 	i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1133 	end = lblk + (ext4_lblk_t) len - 1;
1134 	end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1135 
1136 	/* record the first block of the first delonly extent seen */
1137 	if (!rc->first_do_lblk_found) {
1138 		rc->first_do_lblk = i;
1139 		rc->first_do_lblk_found = true;
1140 	}
1141 
1142 	/* update the last lblk in the region seen so far */
1143 	rc->last_do_lblk = end;
1144 
1145 	/*
1146 	 * if we're tracking a partial cluster and the current extent
1147 	 * doesn't start with it, count it and stop tracking
1148 	 */
1149 	if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1150 		rc->ndelonly++;
1151 		rc->partial = false;
1152 	}
1153 
1154 	/*
1155 	 * if the first cluster doesn't start on a cluster boundary but
1156 	 * ends on one, count it
1157 	 */
1158 	if (EXT4_LBLK_COFF(sbi, i) != 0) {
1159 		if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1160 			rc->ndelonly++;
1161 			rc->partial = false;
1162 			i = EXT4_LBLK_CFILL(sbi, i) + 1;
1163 		}
1164 	}
1165 
1166 	/*
1167 	 * if the current cluster starts on a cluster boundary, count the
1168 	 * number of whole delonly clusters in the extent
1169 	 */
1170 	if ((i + sbi->s_cluster_ratio - 1) <= end) {
1171 		nclu = (end - i + 1) >> sbi->s_cluster_bits;
1172 		rc->ndelonly += nclu;
1173 		i += nclu << sbi->s_cluster_bits;
1174 	}
1175 
1176 	/*
1177 	 * start tracking a partial cluster if there's a partial at the end
1178 	 * of the current extent and we're not already tracking one
1179 	 */
1180 	if (!rc->partial && i <= end) {
1181 		rc->partial = true;
1182 		rc->lclu = EXT4_B2C(sbi, i);
1183 	}
1184 }
1185 
1186 /*
1187  * __pr_tree_search - search for a pending cluster reservation
1188  *
1189  * @root - root of pending reservation tree
1190  * @lclu - logical cluster to search for
1191  *
1192  * Returns the pending reservation for the cluster identified by @lclu
1193  * if found.  If not, returns a reservation for the next cluster if any,
1194  * and if not, returns NULL.
1195  */
1196 static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1197 						    ext4_lblk_t lclu)
1198 {
1199 	struct rb_node *node = root->rb_node;
1200 	struct pending_reservation *pr = NULL;
1201 
1202 	while (node) {
1203 		pr = rb_entry(node, struct pending_reservation, rb_node);
1204 		if (lclu < pr->lclu)
1205 			node = node->rb_left;
1206 		else if (lclu > pr->lclu)
1207 			node = node->rb_right;
1208 		else
1209 			return pr;
1210 	}
1211 	if (pr && lclu < pr->lclu)
1212 		return pr;
1213 	if (pr && lclu > pr->lclu) {
1214 		node = rb_next(&pr->rb_node);
1215 		return node ? rb_entry(node, struct pending_reservation,
1216 				       rb_node) : NULL;
1217 	}
1218 	return NULL;
1219 }
1220 
1221 /*
1222  * get_rsvd - calculates and returns the number of cluster reservations to be
1223  *	      released when removing a block range from the extent status tree
1224  *	      and releases any pending reservations within the range
1225  *
1226  * @inode - file containing block range
1227  * @end - last block in range
1228  * @right_es - pointer to extent containing next block beyond end or NULL
1229  * @rc - pointer to reserved count data
1230  *
1231  * The number of reservations to be released is equal to the number of
1232  * clusters containing delayed and not unwritten (delonly) blocks within
1233  * the range, minus the number of clusters still containing delonly blocks
1234  * at the ends of the range, and minus the number of pending reservations
1235  * within the range.
1236  */
1237 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1238 			     struct extent_status *right_es,
1239 			     struct rsvd_count *rc)
1240 {
1241 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1242 	struct pending_reservation *pr;
1243 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1244 	struct rb_node *node;
1245 	ext4_lblk_t first_lclu, last_lclu;
1246 	bool left_delonly, right_delonly, count_pending;
1247 	struct extent_status *es;
1248 
1249 	if (sbi->s_cluster_ratio > 1) {
1250 		/* count any remaining partial cluster */
1251 		if (rc->partial)
1252 			rc->ndelonly++;
1253 
1254 		if (rc->ndelonly == 0)
1255 			return 0;
1256 
1257 		first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1258 		last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1259 
1260 		/*
1261 		 * decrease the delonly count by the number of clusters at the
1262 		 * ends of the range that still contain delonly blocks -
1263 		 * these clusters still need to be reserved
1264 		 */
1265 		left_delonly = right_delonly = false;
1266 
1267 		es = rc->left_es;
1268 		while (es && ext4_es_end(es) >=
1269 		       EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1270 			if (ext4_es_is_delonly(es)) {
1271 				rc->ndelonly--;
1272 				left_delonly = true;
1273 				break;
1274 			}
1275 			node = rb_prev(&es->rb_node);
1276 			if (!node)
1277 				break;
1278 			es = rb_entry(node, struct extent_status, rb_node);
1279 		}
1280 		if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1281 			if (end < ext4_es_end(right_es)) {
1282 				es = right_es;
1283 			} else {
1284 				node = rb_next(&right_es->rb_node);
1285 				es = node ? rb_entry(node, struct extent_status,
1286 						     rb_node) : NULL;
1287 			}
1288 			while (es && es->es_lblk <=
1289 			       EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1290 				if (ext4_es_is_delonly(es)) {
1291 					rc->ndelonly--;
1292 					right_delonly = true;
1293 					break;
1294 				}
1295 				node = rb_next(&es->rb_node);
1296 				if (!node)
1297 					break;
1298 				es = rb_entry(node, struct extent_status,
1299 					      rb_node);
1300 			}
1301 		}
1302 
1303 		/*
1304 		 * Determine the block range that should be searched for
1305 		 * pending reservations, if any.  Clusters on the ends of the
1306 		 * original removed range containing delonly blocks are
1307 		 * excluded.  They've already been accounted for and it's not
1308 		 * possible to determine if an associated pending reservation
1309 		 * should be released with the information available in the
1310 		 * extents status tree.
1311 		 */
1312 		if (first_lclu == last_lclu) {
1313 			if (left_delonly | right_delonly)
1314 				count_pending = false;
1315 			else
1316 				count_pending = true;
1317 		} else {
1318 			if (left_delonly)
1319 				first_lclu++;
1320 			if (right_delonly)
1321 				last_lclu--;
1322 			if (first_lclu <= last_lclu)
1323 				count_pending = true;
1324 			else
1325 				count_pending = false;
1326 		}
1327 
1328 		/*
1329 		 * a pending reservation found between first_lclu and last_lclu
1330 		 * represents an allocated cluster that contained at least one
1331 		 * delonly block, so the delonly total must be reduced by one
1332 		 * for each pending reservation found and released
1333 		 */
1334 		if (count_pending) {
1335 			pr = __pr_tree_search(&tree->root, first_lclu);
1336 			while (pr && pr->lclu <= last_lclu) {
1337 				rc->ndelonly--;
1338 				node = rb_next(&pr->rb_node);
1339 				rb_erase(&pr->rb_node, &tree->root);
1340 				__free_pending(pr);
1341 				if (!node)
1342 					break;
1343 				pr = rb_entry(node, struct pending_reservation,
1344 					      rb_node);
1345 			}
1346 		}
1347 	}
1348 	return rc->ndelonly;
1349 }
1350 
1351 
1352 /*
1353  * __es_remove_extent - removes block range from extent status tree
1354  *
1355  * @inode - file containing range
1356  * @lblk - first block in range
1357  * @end - last block in range
1358  * @reserved - number of cluster reservations released
1359  * @prealloc - pre-allocated es to avoid memory allocation failures
1360  *
1361  * If @reserved is not NULL and delayed allocation is enabled, counts
1362  * block/cluster reservations freed by removing range and if bigalloc
1363  * enabled cancels pending reservations as needed. Returns 0 on success,
1364  * error code on failure.
1365  */
1366 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1367 			      ext4_lblk_t end, int *reserved,
1368 			      struct extent_status *prealloc)
1369 {
1370 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1371 	struct rb_node *node;
1372 	struct extent_status *es;
1373 	struct extent_status orig_es;
1374 	ext4_lblk_t len1, len2;
1375 	ext4_fsblk_t block;
1376 	int err = 0;
1377 	bool count_reserved = true;
1378 	struct rsvd_count rc;
1379 
1380 	if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1381 		count_reserved = false;
1382 
1383 	es = __es_tree_search(&tree->root, lblk);
1384 	if (!es)
1385 		goto out;
1386 	if (es->es_lblk > end)
1387 		goto out;
1388 
1389 	/* Simply invalidate cache_es. */
1390 	tree->cache_es = NULL;
1391 	if (count_reserved)
1392 		init_rsvd(inode, lblk, es, &rc);
1393 
1394 	orig_es.es_lblk = es->es_lblk;
1395 	orig_es.es_len = es->es_len;
1396 	orig_es.es_pblk = es->es_pblk;
1397 
1398 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1399 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1400 	if (len1 > 0)
1401 		es->es_len = len1;
1402 	if (len2 > 0) {
1403 		if (len1 > 0) {
1404 			struct extent_status newes;
1405 
1406 			newes.es_lblk = end + 1;
1407 			newes.es_len = len2;
1408 			block = 0x7FDEADBEEFULL;
1409 			if (ext4_es_is_written(&orig_es) ||
1410 			    ext4_es_is_unwritten(&orig_es))
1411 				block = ext4_es_pblock(&orig_es) +
1412 					orig_es.es_len - len2;
1413 			ext4_es_store_pblock_status(&newes, block,
1414 						    ext4_es_status(&orig_es));
1415 			err = __es_insert_extent(inode, &newes, prealloc);
1416 			if (err) {
1417 				if (!ext4_es_must_keep(&newes))
1418 					return 0;
1419 
1420 				es->es_lblk = orig_es.es_lblk;
1421 				es->es_len = orig_es.es_len;
1422 				goto out;
1423 			}
1424 		} else {
1425 			es->es_lblk = end + 1;
1426 			es->es_len = len2;
1427 			if (ext4_es_is_written(es) ||
1428 			    ext4_es_is_unwritten(es)) {
1429 				block = orig_es.es_pblk + orig_es.es_len - len2;
1430 				ext4_es_store_pblock(es, block);
1431 			}
1432 		}
1433 		if (count_reserved)
1434 			count_rsvd(inode, orig_es.es_lblk + len1,
1435 				   orig_es.es_len - len1 - len2, &orig_es, &rc);
1436 		goto out_get_reserved;
1437 	}
1438 
1439 	if (len1 > 0) {
1440 		if (count_reserved)
1441 			count_rsvd(inode, lblk, orig_es.es_len - len1,
1442 				   &orig_es, &rc);
1443 		node = rb_next(&es->rb_node);
1444 		if (node)
1445 			es = rb_entry(node, struct extent_status, rb_node);
1446 		else
1447 			es = NULL;
1448 	}
1449 
1450 	while (es && ext4_es_end(es) <= end) {
1451 		if (count_reserved)
1452 			count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1453 		node = rb_next(&es->rb_node);
1454 		rb_erase(&es->rb_node, &tree->root);
1455 		ext4_es_free_extent(inode, es);
1456 		if (!node) {
1457 			es = NULL;
1458 			break;
1459 		}
1460 		es = rb_entry(node, struct extent_status, rb_node);
1461 	}
1462 
1463 	if (es && es->es_lblk < end + 1) {
1464 		ext4_lblk_t orig_len = es->es_len;
1465 
1466 		len1 = ext4_es_end(es) - end;
1467 		if (count_reserved)
1468 			count_rsvd(inode, es->es_lblk, orig_len - len1,
1469 				   es, &rc);
1470 		es->es_lblk = end + 1;
1471 		es->es_len = len1;
1472 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1473 			block = es->es_pblk + orig_len - len1;
1474 			ext4_es_store_pblock(es, block);
1475 		}
1476 	}
1477 
1478 out_get_reserved:
1479 	if (count_reserved)
1480 		*reserved = get_rsvd(inode, end, es, &rc);
1481 out:
1482 	return err;
1483 }
1484 
1485 /*
1486  * ext4_es_remove_extent - removes block range from extent status tree
1487  *
1488  * @inode - file containing range
1489  * @lblk - first block in range
1490  * @len - number of blocks to remove
1491  *
1492  * Reduces block/cluster reservation count and for bigalloc cancels pending
1493  * reservations as needed.
1494  */
1495 void ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1496 			   ext4_lblk_t len)
1497 {
1498 	ext4_lblk_t end;
1499 	int err = 0;
1500 	int reserved = 0;
1501 	struct extent_status *es = NULL;
1502 
1503 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1504 		return;
1505 
1506 	trace_ext4_es_remove_extent(inode, lblk, len);
1507 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1508 		 lblk, len, inode->i_ino);
1509 
1510 	if (!len)
1511 		return;
1512 
1513 	end = lblk + len - 1;
1514 	BUG_ON(end < lblk);
1515 
1516 retry:
1517 	if (err && !es)
1518 		es = __es_alloc_extent(true);
1519 	/*
1520 	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1521 	 * so that we are sure __es_shrink() is done with the inode before it
1522 	 * is reclaimed.
1523 	 */
1524 	write_lock(&EXT4_I(inode)->i_es_lock);
1525 	err = __es_remove_extent(inode, lblk, end, &reserved, es);
1526 	/* Free preallocated extent if it didn't get used. */
1527 	if (es) {
1528 		if (!es->es_len)
1529 			__es_free_extent(es);
1530 		es = NULL;
1531 	}
1532 	write_unlock(&EXT4_I(inode)->i_es_lock);
1533 	if (err)
1534 		goto retry;
1535 
1536 	ext4_es_print_tree(inode);
1537 	ext4_da_release_space(inode, reserved);
1538 	return;
1539 }
1540 
1541 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1542 		       struct ext4_inode_info *locked_ei)
1543 {
1544 	struct ext4_inode_info *ei;
1545 	struct ext4_es_stats *es_stats;
1546 	ktime_t start_time;
1547 	u64 scan_time;
1548 	int nr_to_walk;
1549 	int nr_shrunk = 0;
1550 	int retried = 0, nr_skipped = 0;
1551 
1552 	es_stats = &sbi->s_es_stats;
1553 	start_time = ktime_get();
1554 
1555 retry:
1556 	spin_lock(&sbi->s_es_lock);
1557 	nr_to_walk = sbi->s_es_nr_inode;
1558 	while (nr_to_walk-- > 0) {
1559 		if (list_empty(&sbi->s_es_list)) {
1560 			spin_unlock(&sbi->s_es_lock);
1561 			goto out;
1562 		}
1563 		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1564 				      i_es_list);
1565 		/* Move the inode to the tail */
1566 		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1567 
1568 		/*
1569 		 * Normally we try hard to avoid shrinking precached inodes,
1570 		 * but we will as a last resort.
1571 		 */
1572 		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1573 						EXT4_STATE_EXT_PRECACHED)) {
1574 			nr_skipped++;
1575 			continue;
1576 		}
1577 
1578 		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1579 			nr_skipped++;
1580 			continue;
1581 		}
1582 		/*
1583 		 * Now we hold i_es_lock which protects us from inode reclaim
1584 		 * freeing inode under us
1585 		 */
1586 		spin_unlock(&sbi->s_es_lock);
1587 
1588 		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1589 		write_unlock(&ei->i_es_lock);
1590 
1591 		if (nr_to_scan <= 0)
1592 			goto out;
1593 		spin_lock(&sbi->s_es_lock);
1594 	}
1595 	spin_unlock(&sbi->s_es_lock);
1596 
1597 	/*
1598 	 * If we skipped any inodes, and we weren't able to make any
1599 	 * forward progress, try again to scan precached inodes.
1600 	 */
1601 	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1602 		retried++;
1603 		goto retry;
1604 	}
1605 
1606 	if (locked_ei && nr_shrunk == 0)
1607 		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1608 
1609 out:
1610 	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1611 	if (likely(es_stats->es_stats_scan_time))
1612 		es_stats->es_stats_scan_time = (scan_time +
1613 				es_stats->es_stats_scan_time*3) / 4;
1614 	else
1615 		es_stats->es_stats_scan_time = scan_time;
1616 	if (scan_time > es_stats->es_stats_max_scan_time)
1617 		es_stats->es_stats_max_scan_time = scan_time;
1618 	if (likely(es_stats->es_stats_shrunk))
1619 		es_stats->es_stats_shrunk = (nr_shrunk +
1620 				es_stats->es_stats_shrunk*3) / 4;
1621 	else
1622 		es_stats->es_stats_shrunk = nr_shrunk;
1623 
1624 	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1625 			     nr_skipped, retried);
1626 	return nr_shrunk;
1627 }
1628 
1629 static unsigned long ext4_es_count(struct shrinker *shrink,
1630 				   struct shrink_control *sc)
1631 {
1632 	unsigned long nr;
1633 	struct ext4_sb_info *sbi;
1634 
1635 	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1636 	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1637 	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1638 	return nr;
1639 }
1640 
1641 static unsigned long ext4_es_scan(struct shrinker *shrink,
1642 				  struct shrink_control *sc)
1643 {
1644 	struct ext4_sb_info *sbi = container_of(shrink,
1645 					struct ext4_sb_info, s_es_shrinker);
1646 	int nr_to_scan = sc->nr_to_scan;
1647 	int ret, nr_shrunk;
1648 
1649 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1650 	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1651 
1652 	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1653 
1654 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1655 	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1656 	return nr_shrunk;
1657 }
1658 
1659 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1660 {
1661 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1662 	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1663 	struct ext4_inode_info *ei, *max = NULL;
1664 	unsigned int inode_cnt = 0;
1665 
1666 	if (v != SEQ_START_TOKEN)
1667 		return 0;
1668 
1669 	/* here we just find an inode that has the max nr. of objects */
1670 	spin_lock(&sbi->s_es_lock);
1671 	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1672 		inode_cnt++;
1673 		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1674 			max = ei;
1675 		else if (!max)
1676 			max = ei;
1677 	}
1678 	spin_unlock(&sbi->s_es_lock);
1679 
1680 	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1681 		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1682 		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1683 	seq_printf(seq, "  %lld/%lld cache hits/misses\n",
1684 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1685 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1686 	if (inode_cnt)
1687 		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1688 
1689 	seq_printf(seq, "average:\n  %llu us scan time\n",
1690 	    div_u64(es_stats->es_stats_scan_time, 1000));
1691 	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1692 	if (inode_cnt)
1693 		seq_printf(seq,
1694 		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1695 		    "  %llu us max scan time\n",
1696 		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1697 		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1698 
1699 	return 0;
1700 }
1701 
1702 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1703 {
1704 	int err;
1705 
1706 	/* Make sure we have enough bits for physical block number */
1707 	BUILD_BUG_ON(ES_SHIFT < 48);
1708 	INIT_LIST_HEAD(&sbi->s_es_list);
1709 	sbi->s_es_nr_inode = 0;
1710 	spin_lock_init(&sbi->s_es_lock);
1711 	sbi->s_es_stats.es_stats_shrunk = 0;
1712 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1713 				  GFP_KERNEL);
1714 	if (err)
1715 		return err;
1716 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1717 				  GFP_KERNEL);
1718 	if (err)
1719 		goto err1;
1720 	sbi->s_es_stats.es_stats_scan_time = 0;
1721 	sbi->s_es_stats.es_stats_max_scan_time = 0;
1722 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1723 	if (err)
1724 		goto err2;
1725 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1726 	if (err)
1727 		goto err3;
1728 
1729 	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1730 	sbi->s_es_shrinker.count_objects = ext4_es_count;
1731 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1732 	err = register_shrinker(&sbi->s_es_shrinker, "ext4-es:%s",
1733 				sbi->s_sb->s_id);
1734 	if (err)
1735 		goto err4;
1736 
1737 	return 0;
1738 err4:
1739 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1740 err3:
1741 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1742 err2:
1743 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1744 err1:
1745 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1746 	return err;
1747 }
1748 
1749 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1750 {
1751 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1752 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1753 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1754 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1755 	unregister_shrinker(&sbi->s_es_shrinker);
1756 }
1757 
1758 /*
1759  * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1760  * most *nr_to_scan extents, update *nr_to_scan accordingly.
1761  *
1762  * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1763  * Increment *nr_shrunk by the number of reclaimed extents. Also update
1764  * ei->i_es_shrink_lblk to where we should continue scanning.
1765  */
1766 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1767 				 int *nr_to_scan, int *nr_shrunk)
1768 {
1769 	struct inode *inode = &ei->vfs_inode;
1770 	struct ext4_es_tree *tree = &ei->i_es_tree;
1771 	struct extent_status *es;
1772 	struct rb_node *node;
1773 
1774 	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1775 	if (!es)
1776 		goto out_wrap;
1777 
1778 	while (*nr_to_scan > 0) {
1779 		if (es->es_lblk > end) {
1780 			ei->i_es_shrink_lblk = end + 1;
1781 			return 0;
1782 		}
1783 
1784 		(*nr_to_scan)--;
1785 		node = rb_next(&es->rb_node);
1786 
1787 		if (ext4_es_must_keep(es))
1788 			goto next;
1789 		if (ext4_es_is_referenced(es)) {
1790 			ext4_es_clear_referenced(es);
1791 			goto next;
1792 		}
1793 
1794 		rb_erase(&es->rb_node, &tree->root);
1795 		ext4_es_free_extent(inode, es);
1796 		(*nr_shrunk)++;
1797 next:
1798 		if (!node)
1799 			goto out_wrap;
1800 		es = rb_entry(node, struct extent_status, rb_node);
1801 	}
1802 	ei->i_es_shrink_lblk = es->es_lblk;
1803 	return 1;
1804 out_wrap:
1805 	ei->i_es_shrink_lblk = 0;
1806 	return 0;
1807 }
1808 
1809 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1810 {
1811 	struct inode *inode = &ei->vfs_inode;
1812 	int nr_shrunk = 0;
1813 	ext4_lblk_t start = ei->i_es_shrink_lblk;
1814 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1815 				      DEFAULT_RATELIMIT_BURST);
1816 
1817 	if (ei->i_es_shk_nr == 0)
1818 		return 0;
1819 
1820 	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1821 	    __ratelimit(&_rs))
1822 		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1823 
1824 	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1825 	    start != 0)
1826 		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1827 
1828 	ei->i_es_tree.cache_es = NULL;
1829 	return nr_shrunk;
1830 }
1831 
1832 /*
1833  * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
1834  * discretionary entries from the extent status cache.  (Some entries
1835  * must be present for proper operations.)
1836  */
1837 void ext4_clear_inode_es(struct inode *inode)
1838 {
1839 	struct ext4_inode_info *ei = EXT4_I(inode);
1840 	struct extent_status *es;
1841 	struct ext4_es_tree *tree;
1842 	struct rb_node *node;
1843 
1844 	write_lock(&ei->i_es_lock);
1845 	tree = &EXT4_I(inode)->i_es_tree;
1846 	tree->cache_es = NULL;
1847 	node = rb_first(&tree->root);
1848 	while (node) {
1849 		es = rb_entry(node, struct extent_status, rb_node);
1850 		node = rb_next(node);
1851 		if (!ext4_es_must_keep(es)) {
1852 			rb_erase(&es->rb_node, &tree->root);
1853 			ext4_es_free_extent(inode, es);
1854 		}
1855 	}
1856 	ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1857 	write_unlock(&ei->i_es_lock);
1858 }
1859 
1860 #ifdef ES_DEBUG__
1861 static void ext4_print_pending_tree(struct inode *inode)
1862 {
1863 	struct ext4_pending_tree *tree;
1864 	struct rb_node *node;
1865 	struct pending_reservation *pr;
1866 
1867 	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1868 	tree = &EXT4_I(inode)->i_pending_tree;
1869 	node = rb_first(&tree->root);
1870 	while (node) {
1871 		pr = rb_entry(node, struct pending_reservation, rb_node);
1872 		printk(KERN_DEBUG " %u", pr->lclu);
1873 		node = rb_next(node);
1874 	}
1875 	printk(KERN_DEBUG "\n");
1876 }
1877 #else
1878 #define ext4_print_pending_tree(inode)
1879 #endif
1880 
1881 int __init ext4_init_pending(void)
1882 {
1883 	ext4_pending_cachep = KMEM_CACHE(pending_reservation, SLAB_RECLAIM_ACCOUNT);
1884 	if (ext4_pending_cachep == NULL)
1885 		return -ENOMEM;
1886 	return 0;
1887 }
1888 
1889 void ext4_exit_pending(void)
1890 {
1891 	kmem_cache_destroy(ext4_pending_cachep);
1892 }
1893 
1894 void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1895 {
1896 	tree->root = RB_ROOT;
1897 }
1898 
1899 /*
1900  * __get_pending - retrieve a pointer to a pending reservation
1901  *
1902  * @inode - file containing the pending cluster reservation
1903  * @lclu - logical cluster of interest
1904  *
1905  * Returns a pointer to a pending reservation if it's a member of
1906  * the set, and NULL if not.  Must be called holding i_es_lock.
1907  */
1908 static struct pending_reservation *__get_pending(struct inode *inode,
1909 						 ext4_lblk_t lclu)
1910 {
1911 	struct ext4_pending_tree *tree;
1912 	struct rb_node *node;
1913 	struct pending_reservation *pr = NULL;
1914 
1915 	tree = &EXT4_I(inode)->i_pending_tree;
1916 	node = (&tree->root)->rb_node;
1917 
1918 	while (node) {
1919 		pr = rb_entry(node, struct pending_reservation, rb_node);
1920 		if (lclu < pr->lclu)
1921 			node = node->rb_left;
1922 		else if (lclu > pr->lclu)
1923 			node = node->rb_right;
1924 		else if (lclu == pr->lclu)
1925 			return pr;
1926 	}
1927 	return NULL;
1928 }
1929 
1930 /*
1931  * __insert_pending - adds a pending cluster reservation to the set of
1932  *                    pending reservations
1933  *
1934  * @inode - file containing the cluster
1935  * @lblk - logical block in the cluster to be added
1936  * @prealloc - preallocated pending entry
1937  *
1938  * Returns 0 on successful insertion and -ENOMEM on failure.  If the
1939  * pending reservation is already in the set, returns successfully.
1940  */
1941 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk,
1942 			    struct pending_reservation **prealloc)
1943 {
1944 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1945 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1946 	struct rb_node **p = &tree->root.rb_node;
1947 	struct rb_node *parent = NULL;
1948 	struct pending_reservation *pr;
1949 	ext4_lblk_t lclu;
1950 	int ret = 0;
1951 
1952 	lclu = EXT4_B2C(sbi, lblk);
1953 	/* search to find parent for insertion */
1954 	while (*p) {
1955 		parent = *p;
1956 		pr = rb_entry(parent, struct pending_reservation, rb_node);
1957 
1958 		if (lclu < pr->lclu) {
1959 			p = &(*p)->rb_left;
1960 		} else if (lclu > pr->lclu) {
1961 			p = &(*p)->rb_right;
1962 		} else {
1963 			/* pending reservation already inserted */
1964 			goto out;
1965 		}
1966 	}
1967 
1968 	if (likely(*prealloc == NULL)) {
1969 		pr = __alloc_pending(false);
1970 		if (!pr) {
1971 			ret = -ENOMEM;
1972 			goto out;
1973 		}
1974 	} else {
1975 		pr = *prealloc;
1976 		*prealloc = NULL;
1977 	}
1978 	pr->lclu = lclu;
1979 
1980 	rb_link_node(&pr->rb_node, parent, p);
1981 	rb_insert_color(&pr->rb_node, &tree->root);
1982 
1983 out:
1984 	return ret;
1985 }
1986 
1987 /*
1988  * __remove_pending - removes a pending cluster reservation from the set
1989  *                    of pending reservations
1990  *
1991  * @inode - file containing the cluster
1992  * @lblk - logical block in the pending cluster reservation to be removed
1993  *
1994  * Returns successfully if pending reservation is not a member of the set.
1995  */
1996 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
1997 {
1998 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1999 	struct pending_reservation *pr;
2000 	struct ext4_pending_tree *tree;
2001 
2002 	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
2003 	if (pr != NULL) {
2004 		tree = &EXT4_I(inode)->i_pending_tree;
2005 		rb_erase(&pr->rb_node, &tree->root);
2006 		__free_pending(pr);
2007 	}
2008 }
2009 
2010 /*
2011  * ext4_remove_pending - removes a pending cluster reservation from the set
2012  *                       of pending reservations
2013  *
2014  * @inode - file containing the cluster
2015  * @lblk - logical block in the pending cluster reservation to be removed
2016  *
2017  * Locking for external use of __remove_pending.
2018  */
2019 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
2020 {
2021 	struct ext4_inode_info *ei = EXT4_I(inode);
2022 
2023 	write_lock(&ei->i_es_lock);
2024 	__remove_pending(inode, lblk);
2025 	write_unlock(&ei->i_es_lock);
2026 }
2027 
2028 /*
2029  * ext4_is_pending - determine whether a cluster has a pending reservation
2030  *                   on it
2031  *
2032  * @inode - file containing the cluster
2033  * @lblk - logical block in the cluster
2034  *
2035  * Returns true if there's a pending reservation for the cluster in the
2036  * set of pending reservations, and false if not.
2037  */
2038 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
2039 {
2040 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2041 	struct ext4_inode_info *ei = EXT4_I(inode);
2042 	bool ret;
2043 
2044 	read_lock(&ei->i_es_lock);
2045 	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
2046 	read_unlock(&ei->i_es_lock);
2047 
2048 	return ret;
2049 }
2050 
2051 /*
2052  * ext4_es_insert_delayed_block - adds a delayed block to the extents status
2053  *                                tree, adding a pending reservation where
2054  *                                needed
2055  *
2056  * @inode - file containing the newly added block
2057  * @lblk - logical block to be added
2058  * @allocated - indicates whether a physical cluster has been allocated for
2059  *              the logical cluster that contains the block
2060  */
2061 void ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
2062 				  bool allocated)
2063 {
2064 	struct extent_status newes;
2065 	int err1 = 0, err2 = 0, err3 = 0;
2066 	struct extent_status *es1 = NULL;
2067 	struct extent_status *es2 = NULL;
2068 	struct pending_reservation *pr = NULL;
2069 
2070 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
2071 		return;
2072 
2073 	es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
2074 		 lblk, inode->i_ino);
2075 
2076 	newes.es_lblk = lblk;
2077 	newes.es_len = 1;
2078 	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2079 	trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
2080 
2081 	ext4_es_insert_extent_check(inode, &newes);
2082 
2083 retry:
2084 	if (err1 && !es1)
2085 		es1 = __es_alloc_extent(true);
2086 	if ((err1 || err2) && !es2)
2087 		es2 = __es_alloc_extent(true);
2088 	if ((err1 || err2 || err3) && allocated && !pr)
2089 		pr = __alloc_pending(true);
2090 	write_lock(&EXT4_I(inode)->i_es_lock);
2091 
2092 	err1 = __es_remove_extent(inode, lblk, lblk, NULL, es1);
2093 	if (err1 != 0)
2094 		goto error;
2095 	/* Free preallocated extent if it didn't get used. */
2096 	if (es1) {
2097 		if (!es1->es_len)
2098 			__es_free_extent(es1);
2099 		es1 = NULL;
2100 	}
2101 
2102 	err2 = __es_insert_extent(inode, &newes, es2);
2103 	if (err2 != 0)
2104 		goto error;
2105 	/* Free preallocated extent if it didn't get used. */
2106 	if (es2) {
2107 		if (!es2->es_len)
2108 			__es_free_extent(es2);
2109 		es2 = NULL;
2110 	}
2111 
2112 	if (allocated) {
2113 		err3 = __insert_pending(inode, lblk, &pr);
2114 		if (err3 != 0)
2115 			goto error;
2116 		if (pr) {
2117 			__free_pending(pr);
2118 			pr = NULL;
2119 		}
2120 	}
2121 error:
2122 	write_unlock(&EXT4_I(inode)->i_es_lock);
2123 	if (err1 || err2 || err3)
2124 		goto retry;
2125 
2126 	ext4_es_print_tree(inode);
2127 	ext4_print_pending_tree(inode);
2128 	return;
2129 }
2130 
2131 /*
2132  * __es_delayed_clu - count number of clusters containing blocks that
2133  *                    are delayed only
2134  *
2135  * @inode - file containing block range
2136  * @start - logical block defining start of range
2137  * @end - logical block defining end of range
2138  *
2139  * Returns the number of clusters containing only delayed (not delayed
2140  * and unwritten) blocks in the range specified by @start and @end.  Any
2141  * cluster or part of a cluster within the range and containing a delayed
2142  * and not unwritten block within the range is counted as a whole cluster.
2143  */
2144 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2145 				     ext4_lblk_t end)
2146 {
2147 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2148 	struct extent_status *es;
2149 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2150 	struct rb_node *node;
2151 	ext4_lblk_t first_lclu, last_lclu;
2152 	unsigned long long last_counted_lclu;
2153 	unsigned int n = 0;
2154 
2155 	/* guaranteed to be unequal to any ext4_lblk_t value */
2156 	last_counted_lclu = ~0ULL;
2157 
2158 	es = __es_tree_search(&tree->root, start);
2159 
2160 	while (es && (es->es_lblk <= end)) {
2161 		if (ext4_es_is_delonly(es)) {
2162 			if (es->es_lblk <= start)
2163 				first_lclu = EXT4_B2C(sbi, start);
2164 			else
2165 				first_lclu = EXT4_B2C(sbi, es->es_lblk);
2166 
2167 			if (ext4_es_end(es) >= end)
2168 				last_lclu = EXT4_B2C(sbi, end);
2169 			else
2170 				last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2171 
2172 			if (first_lclu == last_counted_lclu)
2173 				n += last_lclu - first_lclu;
2174 			else
2175 				n += last_lclu - first_lclu + 1;
2176 			last_counted_lclu = last_lclu;
2177 		}
2178 		node = rb_next(&es->rb_node);
2179 		if (!node)
2180 			break;
2181 		es = rb_entry(node, struct extent_status, rb_node);
2182 	}
2183 
2184 	return n;
2185 }
2186 
2187 /*
2188  * ext4_es_delayed_clu - count number of clusters containing blocks that
2189  *                       are both delayed and unwritten
2190  *
2191  * @inode - file containing block range
2192  * @lblk - logical block defining start of range
2193  * @len - number of blocks in range
2194  *
2195  * Locking for external use of __es_delayed_clu().
2196  */
2197 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2198 				 ext4_lblk_t len)
2199 {
2200 	struct ext4_inode_info *ei = EXT4_I(inode);
2201 	ext4_lblk_t end;
2202 	unsigned int n;
2203 
2204 	if (len == 0)
2205 		return 0;
2206 
2207 	end = lblk + len - 1;
2208 	WARN_ON(end < lblk);
2209 
2210 	read_lock(&ei->i_es_lock);
2211 
2212 	n = __es_delayed_clu(inode, lblk, end);
2213 
2214 	read_unlock(&ei->i_es_lock);
2215 
2216 	return n;
2217 }
2218 
2219 /*
2220  * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2221  *                    reservations for a specified block range depending
2222  *                    upon the presence or absence of delayed blocks
2223  *                    outside the range within clusters at the ends of the
2224  *                    range
2225  *
2226  * @inode - file containing the range
2227  * @lblk - logical block defining the start of range
2228  * @len  - length of range in blocks
2229  * @prealloc - preallocated pending entry
2230  *
2231  * Used after a newly allocated extent is added to the extents status tree.
2232  * Requires that the extents in the range have either written or unwritten
2233  * status.  Must be called while holding i_es_lock.
2234  */
2235 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2236 			    ext4_lblk_t len,
2237 			    struct pending_reservation **prealloc)
2238 {
2239 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2240 	ext4_lblk_t end = lblk + len - 1;
2241 	ext4_lblk_t first, last;
2242 	bool f_del = false, l_del = false;
2243 	int ret = 0;
2244 
2245 	if (len == 0)
2246 		return 0;
2247 
2248 	/*
2249 	 * Two cases - block range within single cluster and block range
2250 	 * spanning two or more clusters.  Note that a cluster belonging
2251 	 * to a range starting and/or ending on a cluster boundary is treated
2252 	 * as if it does not contain a delayed extent.  The new range may
2253 	 * have allocated space for previously delayed blocks out to the
2254 	 * cluster boundary, requiring that any pre-existing pending
2255 	 * reservation be canceled.  Because this code only looks at blocks
2256 	 * outside the range, it should revise pending reservations
2257 	 * correctly even if the extent represented by the range can't be
2258 	 * inserted in the extents status tree due to ENOSPC.
2259 	 */
2260 
2261 	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2262 		first = EXT4_LBLK_CMASK(sbi, lblk);
2263 		if (first != lblk)
2264 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2265 						first, lblk - 1);
2266 		if (f_del) {
2267 			ret = __insert_pending(inode, first, prealloc);
2268 			if (ret < 0)
2269 				goto out;
2270 		} else {
2271 			last = EXT4_LBLK_CMASK(sbi, end) +
2272 			       sbi->s_cluster_ratio - 1;
2273 			if (last != end)
2274 				l_del = __es_scan_range(inode,
2275 							&ext4_es_is_delonly,
2276 							end + 1, last);
2277 			if (l_del) {
2278 				ret = __insert_pending(inode, last, prealloc);
2279 				if (ret < 0)
2280 					goto out;
2281 			} else
2282 				__remove_pending(inode, last);
2283 		}
2284 	} else {
2285 		first = EXT4_LBLK_CMASK(sbi, lblk);
2286 		if (first != lblk)
2287 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2288 						first, lblk - 1);
2289 		if (f_del) {
2290 			ret = __insert_pending(inode, first, prealloc);
2291 			if (ret < 0)
2292 				goto out;
2293 		} else
2294 			__remove_pending(inode, first);
2295 
2296 		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2297 		if (last != end)
2298 			l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2299 						end + 1, last);
2300 		if (l_del) {
2301 			ret = __insert_pending(inode, last, prealloc);
2302 			if (ret < 0)
2303 				goto out;
2304 		} else
2305 			__remove_pending(inode, last);
2306 	}
2307 out:
2308 	return ret;
2309 }
2310