xref: /openbmc/linux/fs/ext4/extents_status.c (revision 2a69c450)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  fs/ext4/extents_status.c
4  *
5  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6  * Modified by
7  *	Allison Henderson <achender@linux.vnet.ibm.com>
8  *	Hugh Dickins <hughd@google.com>
9  *	Zheng Liu <wenqing.lz@taobao.com>
10  *
11  * Ext4 extents status tree core functions.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 
18 #include <trace/events/ext4.h>
19 
20 /*
21  * According to previous discussion in Ext4 Developer Workshop, we
22  * will introduce a new structure called io tree to track all extent
23  * status in order to solve some problems that we have met
24  * (e.g. Reservation space warning), and provide extent-level locking.
25  * Delay extent tree is the first step to achieve this goal.  It is
26  * original built by Yongqiang Yang.  At that time it is called delay
27  * extent tree, whose goal is only track delayed extents in memory to
28  * simplify the implementation of fiemap and bigalloc, and introduce
29  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30  * delay extent tree at the first commit.  But for better understand
31  * what it does, it has been rename to extent status tree.
32  *
33  * Step1:
34  * Currently the first step has been done.  All delayed extents are
35  * tracked in the tree.  It maintains the delayed extent when a delayed
36  * allocation is issued, and the delayed extent is written out or
37  * invalidated.  Therefore the implementation of fiemap and bigalloc
38  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39  *
40  * The following comment describes the implemenmtation of extent
41  * status tree and future works.
42  *
43  * Step2:
44  * In this step all extent status are tracked by extent status tree.
45  * Thus, we can first try to lookup a block mapping in this tree before
46  * finding it in extent tree.  Hence, single extent cache can be removed
47  * because extent status tree can do a better job.  Extents in status
48  * tree are loaded on-demand.  Therefore, the extent status tree may not
49  * contain all of the extents in a file.  Meanwhile we define a shrinker
50  * to reclaim memory from extent status tree because fragmented extent
51  * tree will make status tree cost too much memory.  written/unwritten/-
52  * hole extents in the tree will be reclaimed by this shrinker when we
53  * are under high memory pressure.  Delayed extents will not be
54  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55  */
56 
57 /*
58  * Extent status tree implementation for ext4.
59  *
60  *
61  * ==========================================================================
62  * Extent status tree tracks all extent status.
63  *
64  * 1. Why we need to implement extent status tree?
65  *
66  * Without extent status tree, ext4 identifies a delayed extent by looking
67  * up page cache, this has several deficiencies - complicated, buggy,
68  * and inefficient code.
69  *
70  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71  * block or a range of blocks are belonged to a delayed extent.
72  *
73  * Let us have a look at how they do without extent status tree.
74  *   --	FIEMAP
75  *	FIEMAP looks up page cache to identify delayed allocations from holes.
76  *
77  *   --	SEEK_HOLE/DATA
78  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79  *
80  *   --	bigalloc
81  *	bigalloc looks up page cache to figure out if a block is
82  *	already under delayed allocation or not to determine whether
83  *	quota reserving is needed for the cluster.
84  *
85  *   --	writeout
86  *	Writeout looks up whole page cache to see if a buffer is
87  *	mapped, If there are not very many delayed buffers, then it is
88  *	time consuming.
89  *
90  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91  * bigalloc and writeout can figure out if a block or a range of
92  * blocks is under delayed allocation(belonged to a delayed extent) or
93  * not by searching the extent tree.
94  *
95  *
96  * ==========================================================================
97  * 2. Ext4 extent status tree impelmentation
98  *
99  *   --	extent
100  *	A extent is a range of blocks which are contiguous logically and
101  *	physically.  Unlike extent in extent tree, this extent in ext4 is
102  *	a in-memory struct, there is no corresponding on-disk data.  There
103  *	is no limit on length of extent, so an extent can contain as many
104  *	blocks as they are contiguous logically and physically.
105  *
106  *   --	extent status tree
107  *	Every inode has an extent status tree and all allocation blocks
108  *	are added to the tree with different status.  The extent in the
109  *	tree are ordered by logical block no.
110  *
111  *   --	operations on a extent status tree
112  *	There are three important operations on a delayed extent tree: find
113  *	next extent, adding a extent(a range of blocks) and removing a extent.
114  *
115  *   --	race on a extent status tree
116  *	Extent status tree is protected by inode->i_es_lock.
117  *
118  *   --	memory consumption
119  *      Fragmented extent tree will make extent status tree cost too much
120  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121  *      the tree under a heavy memory pressure.
122  *
123  *
124  * ==========================================================================
125  * 3. Performance analysis
126  *
127  *   --	overhead
128  *	1. There is a cache extent for write access, so if writes are
129  *	not very random, adding space operaions are in O(1) time.
130  *
131  *   --	gain
132  *	2. Code is much simpler, more readable, more maintainable and
133  *	more efficient.
134  *
135  *
136  * ==========================================================================
137  * 4. TODO list
138  *
139  *   -- Refactor delayed space reservation
140  *
141  *   -- Extent-level locking
142  */
143 
144 static struct kmem_cache *ext4_es_cachep;
145 static struct kmem_cache *ext4_pending_cachep;
146 
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
148 			      struct extent_status *prealloc);
149 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
150 			      ext4_lblk_t end, int *reserved,
151 			      struct extent_status *prealloc);
152 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
153 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
154 		       struct ext4_inode_info *locked_ei);
155 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
156 			     ext4_lblk_t len);
157 
158 int __init ext4_init_es(void)
159 {
160 	ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
161 	if (ext4_es_cachep == NULL)
162 		return -ENOMEM;
163 	return 0;
164 }
165 
166 void ext4_exit_es(void)
167 {
168 	kmem_cache_destroy(ext4_es_cachep);
169 }
170 
171 void ext4_es_init_tree(struct ext4_es_tree *tree)
172 {
173 	tree->root = RB_ROOT;
174 	tree->cache_es = NULL;
175 }
176 
177 #ifdef ES_DEBUG__
178 static void ext4_es_print_tree(struct inode *inode)
179 {
180 	struct ext4_es_tree *tree;
181 	struct rb_node *node;
182 
183 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
184 	tree = &EXT4_I(inode)->i_es_tree;
185 	node = rb_first(&tree->root);
186 	while (node) {
187 		struct extent_status *es;
188 		es = rb_entry(node, struct extent_status, rb_node);
189 		printk(KERN_DEBUG " [%u/%u) %llu %x",
190 		       es->es_lblk, es->es_len,
191 		       ext4_es_pblock(es), ext4_es_status(es));
192 		node = rb_next(node);
193 	}
194 	printk(KERN_DEBUG "\n");
195 }
196 #else
197 #define ext4_es_print_tree(inode)
198 #endif
199 
200 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
201 {
202 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
203 	return es->es_lblk + es->es_len - 1;
204 }
205 
206 /*
207  * search through the tree for an delayed extent with a given offset.  If
208  * it can't be found, try to find next extent.
209  */
210 static struct extent_status *__es_tree_search(struct rb_root *root,
211 					      ext4_lblk_t lblk)
212 {
213 	struct rb_node *node = root->rb_node;
214 	struct extent_status *es = NULL;
215 
216 	while (node) {
217 		es = rb_entry(node, struct extent_status, rb_node);
218 		if (lblk < es->es_lblk)
219 			node = node->rb_left;
220 		else if (lblk > ext4_es_end(es))
221 			node = node->rb_right;
222 		else
223 			return es;
224 	}
225 
226 	if (es && lblk < es->es_lblk)
227 		return es;
228 
229 	if (es && lblk > ext4_es_end(es)) {
230 		node = rb_next(&es->rb_node);
231 		return node ? rb_entry(node, struct extent_status, rb_node) :
232 			      NULL;
233 	}
234 
235 	return NULL;
236 }
237 
238 /*
239  * ext4_es_find_extent_range - find extent with specified status within block
240  *                             range or next extent following block range in
241  *                             extents status tree
242  *
243  * @inode - file containing the range
244  * @matching_fn - pointer to function that matches extents with desired status
245  * @lblk - logical block defining start of range
246  * @end - logical block defining end of range
247  * @es - extent found, if any
248  *
249  * Find the first extent within the block range specified by @lblk and @end
250  * in the extents status tree that satisfies @matching_fn.  If a match
251  * is found, it's returned in @es.  If not, and a matching extent is found
252  * beyond the block range, it's returned in @es.  If no match is found, an
253  * extent is returned in @es whose es_lblk, es_len, and es_pblk components
254  * are 0.
255  */
256 static void __es_find_extent_range(struct inode *inode,
257 				   int (*matching_fn)(struct extent_status *es),
258 				   ext4_lblk_t lblk, ext4_lblk_t end,
259 				   struct extent_status *es)
260 {
261 	struct ext4_es_tree *tree = NULL;
262 	struct extent_status *es1 = NULL;
263 	struct rb_node *node;
264 
265 	WARN_ON(es == NULL);
266 	WARN_ON(end < lblk);
267 
268 	tree = &EXT4_I(inode)->i_es_tree;
269 
270 	/* see if the extent has been cached */
271 	es->es_lblk = es->es_len = es->es_pblk = 0;
272 	es1 = READ_ONCE(tree->cache_es);
273 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
274 		es_debug("%u cached by [%u/%u) %llu %x\n",
275 			 lblk, es1->es_lblk, es1->es_len,
276 			 ext4_es_pblock(es1), ext4_es_status(es1));
277 		goto out;
278 	}
279 
280 	es1 = __es_tree_search(&tree->root, lblk);
281 
282 out:
283 	if (es1 && !matching_fn(es1)) {
284 		while ((node = rb_next(&es1->rb_node)) != NULL) {
285 			es1 = rb_entry(node, struct extent_status, rb_node);
286 			if (es1->es_lblk > end) {
287 				es1 = NULL;
288 				break;
289 			}
290 			if (matching_fn(es1))
291 				break;
292 		}
293 	}
294 
295 	if (es1 && matching_fn(es1)) {
296 		WRITE_ONCE(tree->cache_es, es1);
297 		es->es_lblk = es1->es_lblk;
298 		es->es_len = es1->es_len;
299 		es->es_pblk = es1->es_pblk;
300 	}
301 
302 }
303 
304 /*
305  * Locking for __es_find_extent_range() for external use
306  */
307 void ext4_es_find_extent_range(struct inode *inode,
308 			       int (*matching_fn)(struct extent_status *es),
309 			       ext4_lblk_t lblk, ext4_lblk_t end,
310 			       struct extent_status *es)
311 {
312 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
313 		return;
314 
315 	trace_ext4_es_find_extent_range_enter(inode, lblk);
316 
317 	read_lock(&EXT4_I(inode)->i_es_lock);
318 	__es_find_extent_range(inode, matching_fn, lblk, end, es);
319 	read_unlock(&EXT4_I(inode)->i_es_lock);
320 
321 	trace_ext4_es_find_extent_range_exit(inode, es);
322 }
323 
324 /*
325  * __es_scan_range - search block range for block with specified status
326  *                   in extents status tree
327  *
328  * @inode - file containing the range
329  * @matching_fn - pointer to function that matches extents with desired status
330  * @lblk - logical block defining start of range
331  * @end - logical block defining end of range
332  *
333  * Returns true if at least one block in the specified block range satisfies
334  * the criterion specified by @matching_fn, and false if not.  If at least
335  * one extent has the specified status, then there is at least one block
336  * in the cluster with that status.  Should only be called by code that has
337  * taken i_es_lock.
338  */
339 static bool __es_scan_range(struct inode *inode,
340 			    int (*matching_fn)(struct extent_status *es),
341 			    ext4_lblk_t start, ext4_lblk_t end)
342 {
343 	struct extent_status es;
344 
345 	__es_find_extent_range(inode, matching_fn, start, end, &es);
346 	if (es.es_len == 0)
347 		return false;   /* no matching extent in the tree */
348 	else if (es.es_lblk <= start &&
349 		 start < es.es_lblk + es.es_len)
350 		return true;
351 	else if (start <= es.es_lblk && es.es_lblk <= end)
352 		return true;
353 	else
354 		return false;
355 }
356 /*
357  * Locking for __es_scan_range() for external use
358  */
359 bool ext4_es_scan_range(struct inode *inode,
360 			int (*matching_fn)(struct extent_status *es),
361 			ext4_lblk_t lblk, ext4_lblk_t end)
362 {
363 	bool ret;
364 
365 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
366 		return false;
367 
368 	read_lock(&EXT4_I(inode)->i_es_lock);
369 	ret = __es_scan_range(inode, matching_fn, lblk, end);
370 	read_unlock(&EXT4_I(inode)->i_es_lock);
371 
372 	return ret;
373 }
374 
375 /*
376  * __es_scan_clu - search cluster for block with specified status in
377  *                 extents status tree
378  *
379  * @inode - file containing the cluster
380  * @matching_fn - pointer to function that matches extents with desired status
381  * @lblk - logical block in cluster to be searched
382  *
383  * Returns true if at least one extent in the cluster containing @lblk
384  * satisfies the criterion specified by @matching_fn, and false if not.  If at
385  * least one extent has the specified status, then there is at least one block
386  * in the cluster with that status.  Should only be called by code that has
387  * taken i_es_lock.
388  */
389 static bool __es_scan_clu(struct inode *inode,
390 			  int (*matching_fn)(struct extent_status *es),
391 			  ext4_lblk_t lblk)
392 {
393 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
394 	ext4_lblk_t lblk_start, lblk_end;
395 
396 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
397 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
398 
399 	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
400 }
401 
402 /*
403  * Locking for __es_scan_clu() for external use
404  */
405 bool ext4_es_scan_clu(struct inode *inode,
406 		      int (*matching_fn)(struct extent_status *es),
407 		      ext4_lblk_t lblk)
408 {
409 	bool ret;
410 
411 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
412 		return false;
413 
414 	read_lock(&EXT4_I(inode)->i_es_lock);
415 	ret = __es_scan_clu(inode, matching_fn, lblk);
416 	read_unlock(&EXT4_I(inode)->i_es_lock);
417 
418 	return ret;
419 }
420 
421 static void ext4_es_list_add(struct inode *inode)
422 {
423 	struct ext4_inode_info *ei = EXT4_I(inode);
424 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
425 
426 	if (!list_empty(&ei->i_es_list))
427 		return;
428 
429 	spin_lock(&sbi->s_es_lock);
430 	if (list_empty(&ei->i_es_list)) {
431 		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
432 		sbi->s_es_nr_inode++;
433 	}
434 	spin_unlock(&sbi->s_es_lock);
435 }
436 
437 static void ext4_es_list_del(struct inode *inode)
438 {
439 	struct ext4_inode_info *ei = EXT4_I(inode);
440 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
441 
442 	spin_lock(&sbi->s_es_lock);
443 	if (!list_empty(&ei->i_es_list)) {
444 		list_del_init(&ei->i_es_list);
445 		sbi->s_es_nr_inode--;
446 		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
447 	}
448 	spin_unlock(&sbi->s_es_lock);
449 }
450 
451 /*
452  * Returns true if we cannot fail to allocate memory for this extent_status
453  * entry and cannot reclaim it until its status changes.
454  */
455 static inline bool ext4_es_must_keep(struct extent_status *es)
456 {
457 	/* fiemap, bigalloc, and seek_data/hole need to use it. */
458 	if (ext4_es_is_delayed(es))
459 		return true;
460 
461 	return false;
462 }
463 
464 static inline struct extent_status *__es_alloc_extent(bool nofail)
465 {
466 	if (!nofail)
467 		return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
468 
469 	return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
470 }
471 
472 static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
473 		ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
474 {
475 	es->es_lblk = lblk;
476 	es->es_len = len;
477 	es->es_pblk = pblk;
478 
479 	/* We never try to reclaim a must kept extent, so we don't count it. */
480 	if (!ext4_es_must_keep(es)) {
481 		if (!EXT4_I(inode)->i_es_shk_nr++)
482 			ext4_es_list_add(inode);
483 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
484 					s_es_stats.es_stats_shk_cnt);
485 	}
486 
487 	EXT4_I(inode)->i_es_all_nr++;
488 	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
489 }
490 
491 static inline void __es_free_extent(struct extent_status *es)
492 {
493 	kmem_cache_free(ext4_es_cachep, es);
494 }
495 
496 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
497 {
498 	EXT4_I(inode)->i_es_all_nr--;
499 	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
500 
501 	/* Decrease the shrink counter when we can reclaim the extent. */
502 	if (!ext4_es_must_keep(es)) {
503 		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
504 		if (!--EXT4_I(inode)->i_es_shk_nr)
505 			ext4_es_list_del(inode);
506 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
507 					s_es_stats.es_stats_shk_cnt);
508 	}
509 
510 	__es_free_extent(es);
511 }
512 
513 /*
514  * Check whether or not two extents can be merged
515  * Condition:
516  *  - logical block number is contiguous
517  *  - physical block number is contiguous
518  *  - status is equal
519  */
520 static int ext4_es_can_be_merged(struct extent_status *es1,
521 				 struct extent_status *es2)
522 {
523 	if (ext4_es_type(es1) != ext4_es_type(es2))
524 		return 0;
525 
526 	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
527 		pr_warn("ES assertion failed when merging extents. "
528 			"The sum of lengths of es1 (%d) and es2 (%d) "
529 			"is bigger than allowed file size (%d)\n",
530 			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
531 		WARN_ON(1);
532 		return 0;
533 	}
534 
535 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
536 		return 0;
537 
538 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
539 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
540 		return 1;
541 
542 	if (ext4_es_is_hole(es1))
543 		return 1;
544 
545 	/* we need to check delayed extent is without unwritten status */
546 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
547 		return 1;
548 
549 	return 0;
550 }
551 
552 static struct extent_status *
553 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
554 {
555 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
556 	struct extent_status *es1;
557 	struct rb_node *node;
558 
559 	node = rb_prev(&es->rb_node);
560 	if (!node)
561 		return es;
562 
563 	es1 = rb_entry(node, struct extent_status, rb_node);
564 	if (ext4_es_can_be_merged(es1, es)) {
565 		es1->es_len += es->es_len;
566 		if (ext4_es_is_referenced(es))
567 			ext4_es_set_referenced(es1);
568 		rb_erase(&es->rb_node, &tree->root);
569 		ext4_es_free_extent(inode, es);
570 		es = es1;
571 	}
572 
573 	return es;
574 }
575 
576 static struct extent_status *
577 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
578 {
579 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
580 	struct extent_status *es1;
581 	struct rb_node *node;
582 
583 	node = rb_next(&es->rb_node);
584 	if (!node)
585 		return es;
586 
587 	es1 = rb_entry(node, struct extent_status, rb_node);
588 	if (ext4_es_can_be_merged(es, es1)) {
589 		es->es_len += es1->es_len;
590 		if (ext4_es_is_referenced(es1))
591 			ext4_es_set_referenced(es);
592 		rb_erase(node, &tree->root);
593 		ext4_es_free_extent(inode, es1);
594 	}
595 
596 	return es;
597 }
598 
599 #ifdef ES_AGGRESSIVE_TEST
600 #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
601 
602 static void ext4_es_insert_extent_ext_check(struct inode *inode,
603 					    struct extent_status *es)
604 {
605 	struct ext4_ext_path *path = NULL;
606 	struct ext4_extent *ex;
607 	ext4_lblk_t ee_block;
608 	ext4_fsblk_t ee_start;
609 	unsigned short ee_len;
610 	int depth, ee_status, es_status;
611 
612 	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
613 	if (IS_ERR(path))
614 		return;
615 
616 	depth = ext_depth(inode);
617 	ex = path[depth].p_ext;
618 
619 	if (ex) {
620 
621 		ee_block = le32_to_cpu(ex->ee_block);
622 		ee_start = ext4_ext_pblock(ex);
623 		ee_len = ext4_ext_get_actual_len(ex);
624 
625 		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
626 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
627 
628 		/*
629 		 * Make sure ex and es are not overlap when we try to insert
630 		 * a delayed/hole extent.
631 		 */
632 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
633 			if (in_range(es->es_lblk, ee_block, ee_len)) {
634 				pr_warn("ES insert assertion failed for "
635 					"inode: %lu we can find an extent "
636 					"at block [%d/%d/%llu/%c], but we "
637 					"want to add a delayed/hole extent "
638 					"[%d/%d/%llu/%x]\n",
639 					inode->i_ino, ee_block, ee_len,
640 					ee_start, ee_status ? 'u' : 'w',
641 					es->es_lblk, es->es_len,
642 					ext4_es_pblock(es), ext4_es_status(es));
643 			}
644 			goto out;
645 		}
646 
647 		/*
648 		 * We don't check ee_block == es->es_lblk, etc. because es
649 		 * might be a part of whole extent, vice versa.
650 		 */
651 		if (es->es_lblk < ee_block ||
652 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
653 			pr_warn("ES insert assertion failed for inode: %lu "
654 				"ex_status [%d/%d/%llu/%c] != "
655 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
656 				ee_block, ee_len, ee_start,
657 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
658 				ext4_es_pblock(es), es_status ? 'u' : 'w');
659 			goto out;
660 		}
661 
662 		if (ee_status ^ es_status) {
663 			pr_warn("ES insert assertion failed for inode: %lu "
664 				"ex_status [%d/%d/%llu/%c] != "
665 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
666 				ee_block, ee_len, ee_start,
667 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
668 				ext4_es_pblock(es), es_status ? 'u' : 'w');
669 		}
670 	} else {
671 		/*
672 		 * We can't find an extent on disk.  So we need to make sure
673 		 * that we don't want to add an written/unwritten extent.
674 		 */
675 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
676 			pr_warn("ES insert assertion failed for inode: %lu "
677 				"can't find an extent at block %d but we want "
678 				"to add a written/unwritten extent "
679 				"[%d/%d/%llu/%x]\n", inode->i_ino,
680 				es->es_lblk, es->es_lblk, es->es_len,
681 				ext4_es_pblock(es), ext4_es_status(es));
682 		}
683 	}
684 out:
685 	ext4_free_ext_path(path);
686 }
687 
688 static void ext4_es_insert_extent_ind_check(struct inode *inode,
689 					    struct extent_status *es)
690 {
691 	struct ext4_map_blocks map;
692 	int retval;
693 
694 	/*
695 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
696 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
697 	 * access direct/indirect tree from outside.  It is too dirty to define
698 	 * this function in indirect.c file.
699 	 */
700 
701 	map.m_lblk = es->es_lblk;
702 	map.m_len = es->es_len;
703 
704 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
705 	if (retval > 0) {
706 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
707 			/*
708 			 * We want to add a delayed/hole extent but this
709 			 * block has been allocated.
710 			 */
711 			pr_warn("ES insert assertion failed for inode: %lu "
712 				"We can find blocks but we want to add a "
713 				"delayed/hole extent [%d/%d/%llu/%x]\n",
714 				inode->i_ino, es->es_lblk, es->es_len,
715 				ext4_es_pblock(es), ext4_es_status(es));
716 			return;
717 		} else if (ext4_es_is_written(es)) {
718 			if (retval != es->es_len) {
719 				pr_warn("ES insert assertion failed for "
720 					"inode: %lu retval %d != es_len %d\n",
721 					inode->i_ino, retval, es->es_len);
722 				return;
723 			}
724 			if (map.m_pblk != ext4_es_pblock(es)) {
725 				pr_warn("ES insert assertion failed for "
726 					"inode: %lu m_pblk %llu != "
727 					"es_pblk %llu\n",
728 					inode->i_ino, map.m_pblk,
729 					ext4_es_pblock(es));
730 				return;
731 			}
732 		} else {
733 			/*
734 			 * We don't need to check unwritten extent because
735 			 * indirect-based file doesn't have it.
736 			 */
737 			BUG();
738 		}
739 	} else if (retval == 0) {
740 		if (ext4_es_is_written(es)) {
741 			pr_warn("ES insert assertion failed for inode: %lu "
742 				"We can't find the block but we want to add "
743 				"a written extent [%d/%d/%llu/%x]\n",
744 				inode->i_ino, es->es_lblk, es->es_len,
745 				ext4_es_pblock(es), ext4_es_status(es));
746 			return;
747 		}
748 	}
749 }
750 
751 static inline void ext4_es_insert_extent_check(struct inode *inode,
752 					       struct extent_status *es)
753 {
754 	/*
755 	 * We don't need to worry about the race condition because
756 	 * caller takes i_data_sem locking.
757 	 */
758 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
759 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
760 		ext4_es_insert_extent_ext_check(inode, es);
761 	else
762 		ext4_es_insert_extent_ind_check(inode, es);
763 }
764 #else
765 static inline void ext4_es_insert_extent_check(struct inode *inode,
766 					       struct extent_status *es)
767 {
768 }
769 #endif
770 
771 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
772 			      struct extent_status *prealloc)
773 {
774 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
775 	struct rb_node **p = &tree->root.rb_node;
776 	struct rb_node *parent = NULL;
777 	struct extent_status *es;
778 
779 	while (*p) {
780 		parent = *p;
781 		es = rb_entry(parent, struct extent_status, rb_node);
782 
783 		if (newes->es_lblk < es->es_lblk) {
784 			if (ext4_es_can_be_merged(newes, es)) {
785 				/*
786 				 * Here we can modify es_lblk directly
787 				 * because it isn't overlapped.
788 				 */
789 				es->es_lblk = newes->es_lblk;
790 				es->es_len += newes->es_len;
791 				if (ext4_es_is_written(es) ||
792 				    ext4_es_is_unwritten(es))
793 					ext4_es_store_pblock(es,
794 							     newes->es_pblk);
795 				es = ext4_es_try_to_merge_left(inode, es);
796 				goto out;
797 			}
798 			p = &(*p)->rb_left;
799 		} else if (newes->es_lblk > ext4_es_end(es)) {
800 			if (ext4_es_can_be_merged(es, newes)) {
801 				es->es_len += newes->es_len;
802 				es = ext4_es_try_to_merge_right(inode, es);
803 				goto out;
804 			}
805 			p = &(*p)->rb_right;
806 		} else {
807 			BUG();
808 			return -EINVAL;
809 		}
810 	}
811 
812 	if (prealloc)
813 		es = prealloc;
814 	else
815 		es = __es_alloc_extent(false);
816 	if (!es)
817 		return -ENOMEM;
818 	ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
819 			    newes->es_pblk);
820 
821 	rb_link_node(&es->rb_node, parent, p);
822 	rb_insert_color(&es->rb_node, &tree->root);
823 
824 out:
825 	tree->cache_es = es;
826 	return 0;
827 }
828 
829 /*
830  * ext4_es_insert_extent() adds information to an inode's extent
831  * status tree.
832  *
833  * Return 0 on success, error code on failure.
834  */
835 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
836 			  ext4_lblk_t len, ext4_fsblk_t pblk,
837 			  unsigned int status)
838 {
839 	struct extent_status newes;
840 	ext4_lblk_t end = lblk + len - 1;
841 	int err1 = 0;
842 	int err2 = 0;
843 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
844 	struct extent_status *es1 = NULL;
845 	struct extent_status *es2 = NULL;
846 
847 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
848 		return 0;
849 
850 	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
851 		 lblk, len, pblk, status, inode->i_ino);
852 
853 	if (!len)
854 		return 0;
855 
856 	BUG_ON(end < lblk);
857 
858 	if ((status & EXTENT_STATUS_DELAYED) &&
859 	    (status & EXTENT_STATUS_WRITTEN)) {
860 		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
861 				" delayed and written which can potentially "
862 				" cause data loss.", lblk, len);
863 		WARN_ON(1);
864 	}
865 
866 	newes.es_lblk = lblk;
867 	newes.es_len = len;
868 	ext4_es_store_pblock_status(&newes, pblk, status);
869 	trace_ext4_es_insert_extent(inode, &newes);
870 
871 	ext4_es_insert_extent_check(inode, &newes);
872 
873 retry:
874 	if (err1 && !es1)
875 		es1 = __es_alloc_extent(true);
876 	if ((err1 || err2) && !es2)
877 		es2 = __es_alloc_extent(true);
878 	write_lock(&EXT4_I(inode)->i_es_lock);
879 
880 	err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
881 	if (err1 != 0)
882 		goto error;
883 
884 	err2 = __es_insert_extent(inode, &newes, es2);
885 	if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
886 		err2 = 0;
887 	if (err2 != 0)
888 		goto error;
889 
890 	if (sbi->s_cluster_ratio > 1 && test_opt(inode->i_sb, DELALLOC) &&
891 	    (status & EXTENT_STATUS_WRITTEN ||
892 	     status & EXTENT_STATUS_UNWRITTEN))
893 		__revise_pending(inode, lblk, len);
894 
895 	/* es is pre-allocated but not used, free it. */
896 	if (es1 && !es1->es_len)
897 		__es_free_extent(es1);
898 	if (es2 && !es2->es_len)
899 		__es_free_extent(es2);
900 error:
901 	write_unlock(&EXT4_I(inode)->i_es_lock);
902 	if (err1 || err2)
903 		goto retry;
904 
905 	ext4_es_print_tree(inode);
906 	return 0;
907 }
908 
909 /*
910  * ext4_es_cache_extent() inserts information into the extent status
911  * tree if and only if there isn't information about the range in
912  * question already.
913  */
914 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
915 			  ext4_lblk_t len, ext4_fsblk_t pblk,
916 			  unsigned int status)
917 {
918 	struct extent_status *es;
919 	struct extent_status newes;
920 	ext4_lblk_t end = lblk + len - 1;
921 
922 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
923 		return;
924 
925 	newes.es_lblk = lblk;
926 	newes.es_len = len;
927 	ext4_es_store_pblock_status(&newes, pblk, status);
928 	trace_ext4_es_cache_extent(inode, &newes);
929 
930 	if (!len)
931 		return;
932 
933 	BUG_ON(end < lblk);
934 
935 	write_lock(&EXT4_I(inode)->i_es_lock);
936 
937 	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
938 	if (!es || es->es_lblk > end)
939 		__es_insert_extent(inode, &newes, NULL);
940 	write_unlock(&EXT4_I(inode)->i_es_lock);
941 }
942 
943 /*
944  * ext4_es_lookup_extent() looks up an extent in extent status tree.
945  *
946  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
947  *
948  * Return: 1 on found, 0 on not
949  */
950 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
951 			  ext4_lblk_t *next_lblk,
952 			  struct extent_status *es)
953 {
954 	struct ext4_es_tree *tree;
955 	struct ext4_es_stats *stats;
956 	struct extent_status *es1 = NULL;
957 	struct rb_node *node;
958 	int found = 0;
959 
960 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
961 		return 0;
962 
963 	trace_ext4_es_lookup_extent_enter(inode, lblk);
964 	es_debug("lookup extent in block %u\n", lblk);
965 
966 	tree = &EXT4_I(inode)->i_es_tree;
967 	read_lock(&EXT4_I(inode)->i_es_lock);
968 
969 	/* find extent in cache firstly */
970 	es->es_lblk = es->es_len = es->es_pblk = 0;
971 	es1 = READ_ONCE(tree->cache_es);
972 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
973 		es_debug("%u cached by [%u/%u)\n",
974 			 lblk, es1->es_lblk, es1->es_len);
975 		found = 1;
976 		goto out;
977 	}
978 
979 	node = tree->root.rb_node;
980 	while (node) {
981 		es1 = rb_entry(node, struct extent_status, rb_node);
982 		if (lblk < es1->es_lblk)
983 			node = node->rb_left;
984 		else if (lblk > ext4_es_end(es1))
985 			node = node->rb_right;
986 		else {
987 			found = 1;
988 			break;
989 		}
990 	}
991 
992 out:
993 	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
994 	if (found) {
995 		BUG_ON(!es1);
996 		es->es_lblk = es1->es_lblk;
997 		es->es_len = es1->es_len;
998 		es->es_pblk = es1->es_pblk;
999 		if (!ext4_es_is_referenced(es1))
1000 			ext4_es_set_referenced(es1);
1001 		percpu_counter_inc(&stats->es_stats_cache_hits);
1002 		if (next_lblk) {
1003 			node = rb_next(&es1->rb_node);
1004 			if (node) {
1005 				es1 = rb_entry(node, struct extent_status,
1006 					       rb_node);
1007 				*next_lblk = es1->es_lblk;
1008 			} else
1009 				*next_lblk = 0;
1010 		}
1011 	} else {
1012 		percpu_counter_inc(&stats->es_stats_cache_misses);
1013 	}
1014 
1015 	read_unlock(&EXT4_I(inode)->i_es_lock);
1016 
1017 	trace_ext4_es_lookup_extent_exit(inode, es, found);
1018 	return found;
1019 }
1020 
1021 struct rsvd_count {
1022 	int ndelonly;
1023 	bool first_do_lblk_found;
1024 	ext4_lblk_t first_do_lblk;
1025 	ext4_lblk_t last_do_lblk;
1026 	struct extent_status *left_es;
1027 	bool partial;
1028 	ext4_lblk_t lclu;
1029 };
1030 
1031 /*
1032  * init_rsvd - initialize reserved count data before removing block range
1033  *	       in file from extent status tree
1034  *
1035  * @inode - file containing range
1036  * @lblk - first block in range
1037  * @es - pointer to first extent in range
1038  * @rc - pointer to reserved count data
1039  *
1040  * Assumes es is not NULL
1041  */
1042 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1043 		      struct extent_status *es, struct rsvd_count *rc)
1044 {
1045 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1046 	struct rb_node *node;
1047 
1048 	rc->ndelonly = 0;
1049 
1050 	/*
1051 	 * for bigalloc, note the first delonly block in the range has not
1052 	 * been found, record the extent containing the block to the left of
1053 	 * the region to be removed, if any, and note that there's no partial
1054 	 * cluster to track
1055 	 */
1056 	if (sbi->s_cluster_ratio > 1) {
1057 		rc->first_do_lblk_found = false;
1058 		if (lblk > es->es_lblk) {
1059 			rc->left_es = es;
1060 		} else {
1061 			node = rb_prev(&es->rb_node);
1062 			rc->left_es = node ? rb_entry(node,
1063 						      struct extent_status,
1064 						      rb_node) : NULL;
1065 		}
1066 		rc->partial = false;
1067 	}
1068 }
1069 
1070 /*
1071  * count_rsvd - count the clusters containing delayed and not unwritten
1072  *		(delonly) blocks in a range within an extent and add to
1073  *	        the running tally in rsvd_count
1074  *
1075  * @inode - file containing extent
1076  * @lblk - first block in range
1077  * @len - length of range in blocks
1078  * @es - pointer to extent containing clusters to be counted
1079  * @rc - pointer to reserved count data
1080  *
1081  * Tracks partial clusters found at the beginning and end of extents so
1082  * they aren't overcounted when they span adjacent extents
1083  */
1084 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1085 		       struct extent_status *es, struct rsvd_count *rc)
1086 {
1087 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1088 	ext4_lblk_t i, end, nclu;
1089 
1090 	if (!ext4_es_is_delonly(es))
1091 		return;
1092 
1093 	WARN_ON(len <= 0);
1094 
1095 	if (sbi->s_cluster_ratio == 1) {
1096 		rc->ndelonly += (int) len;
1097 		return;
1098 	}
1099 
1100 	/* bigalloc */
1101 
1102 	i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1103 	end = lblk + (ext4_lblk_t) len - 1;
1104 	end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1105 
1106 	/* record the first block of the first delonly extent seen */
1107 	if (!rc->first_do_lblk_found) {
1108 		rc->first_do_lblk = i;
1109 		rc->first_do_lblk_found = true;
1110 	}
1111 
1112 	/* update the last lblk in the region seen so far */
1113 	rc->last_do_lblk = end;
1114 
1115 	/*
1116 	 * if we're tracking a partial cluster and the current extent
1117 	 * doesn't start with it, count it and stop tracking
1118 	 */
1119 	if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1120 		rc->ndelonly++;
1121 		rc->partial = false;
1122 	}
1123 
1124 	/*
1125 	 * if the first cluster doesn't start on a cluster boundary but
1126 	 * ends on one, count it
1127 	 */
1128 	if (EXT4_LBLK_COFF(sbi, i) != 0) {
1129 		if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1130 			rc->ndelonly++;
1131 			rc->partial = false;
1132 			i = EXT4_LBLK_CFILL(sbi, i) + 1;
1133 		}
1134 	}
1135 
1136 	/*
1137 	 * if the current cluster starts on a cluster boundary, count the
1138 	 * number of whole delonly clusters in the extent
1139 	 */
1140 	if ((i + sbi->s_cluster_ratio - 1) <= end) {
1141 		nclu = (end - i + 1) >> sbi->s_cluster_bits;
1142 		rc->ndelonly += nclu;
1143 		i += nclu << sbi->s_cluster_bits;
1144 	}
1145 
1146 	/*
1147 	 * start tracking a partial cluster if there's a partial at the end
1148 	 * of the current extent and we're not already tracking one
1149 	 */
1150 	if (!rc->partial && i <= end) {
1151 		rc->partial = true;
1152 		rc->lclu = EXT4_B2C(sbi, i);
1153 	}
1154 }
1155 
1156 /*
1157  * __pr_tree_search - search for a pending cluster reservation
1158  *
1159  * @root - root of pending reservation tree
1160  * @lclu - logical cluster to search for
1161  *
1162  * Returns the pending reservation for the cluster identified by @lclu
1163  * if found.  If not, returns a reservation for the next cluster if any,
1164  * and if not, returns NULL.
1165  */
1166 static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1167 						    ext4_lblk_t lclu)
1168 {
1169 	struct rb_node *node = root->rb_node;
1170 	struct pending_reservation *pr = NULL;
1171 
1172 	while (node) {
1173 		pr = rb_entry(node, struct pending_reservation, rb_node);
1174 		if (lclu < pr->lclu)
1175 			node = node->rb_left;
1176 		else if (lclu > pr->lclu)
1177 			node = node->rb_right;
1178 		else
1179 			return pr;
1180 	}
1181 	if (pr && lclu < pr->lclu)
1182 		return pr;
1183 	if (pr && lclu > pr->lclu) {
1184 		node = rb_next(&pr->rb_node);
1185 		return node ? rb_entry(node, struct pending_reservation,
1186 				       rb_node) : NULL;
1187 	}
1188 	return NULL;
1189 }
1190 
1191 /*
1192  * get_rsvd - calculates and returns the number of cluster reservations to be
1193  *	      released when removing a block range from the extent status tree
1194  *	      and releases any pending reservations within the range
1195  *
1196  * @inode - file containing block range
1197  * @end - last block in range
1198  * @right_es - pointer to extent containing next block beyond end or NULL
1199  * @rc - pointer to reserved count data
1200  *
1201  * The number of reservations to be released is equal to the number of
1202  * clusters containing delayed and not unwritten (delonly) blocks within
1203  * the range, minus the number of clusters still containing delonly blocks
1204  * at the ends of the range, and minus the number of pending reservations
1205  * within the range.
1206  */
1207 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1208 			     struct extent_status *right_es,
1209 			     struct rsvd_count *rc)
1210 {
1211 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1212 	struct pending_reservation *pr;
1213 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1214 	struct rb_node *node;
1215 	ext4_lblk_t first_lclu, last_lclu;
1216 	bool left_delonly, right_delonly, count_pending;
1217 	struct extent_status *es;
1218 
1219 	if (sbi->s_cluster_ratio > 1) {
1220 		/* count any remaining partial cluster */
1221 		if (rc->partial)
1222 			rc->ndelonly++;
1223 
1224 		if (rc->ndelonly == 0)
1225 			return 0;
1226 
1227 		first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1228 		last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1229 
1230 		/*
1231 		 * decrease the delonly count by the number of clusters at the
1232 		 * ends of the range that still contain delonly blocks -
1233 		 * these clusters still need to be reserved
1234 		 */
1235 		left_delonly = right_delonly = false;
1236 
1237 		es = rc->left_es;
1238 		while (es && ext4_es_end(es) >=
1239 		       EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1240 			if (ext4_es_is_delonly(es)) {
1241 				rc->ndelonly--;
1242 				left_delonly = true;
1243 				break;
1244 			}
1245 			node = rb_prev(&es->rb_node);
1246 			if (!node)
1247 				break;
1248 			es = rb_entry(node, struct extent_status, rb_node);
1249 		}
1250 		if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1251 			if (end < ext4_es_end(right_es)) {
1252 				es = right_es;
1253 			} else {
1254 				node = rb_next(&right_es->rb_node);
1255 				es = node ? rb_entry(node, struct extent_status,
1256 						     rb_node) : NULL;
1257 			}
1258 			while (es && es->es_lblk <=
1259 			       EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1260 				if (ext4_es_is_delonly(es)) {
1261 					rc->ndelonly--;
1262 					right_delonly = true;
1263 					break;
1264 				}
1265 				node = rb_next(&es->rb_node);
1266 				if (!node)
1267 					break;
1268 				es = rb_entry(node, struct extent_status,
1269 					      rb_node);
1270 			}
1271 		}
1272 
1273 		/*
1274 		 * Determine the block range that should be searched for
1275 		 * pending reservations, if any.  Clusters on the ends of the
1276 		 * original removed range containing delonly blocks are
1277 		 * excluded.  They've already been accounted for and it's not
1278 		 * possible to determine if an associated pending reservation
1279 		 * should be released with the information available in the
1280 		 * extents status tree.
1281 		 */
1282 		if (first_lclu == last_lclu) {
1283 			if (left_delonly | right_delonly)
1284 				count_pending = false;
1285 			else
1286 				count_pending = true;
1287 		} else {
1288 			if (left_delonly)
1289 				first_lclu++;
1290 			if (right_delonly)
1291 				last_lclu--;
1292 			if (first_lclu <= last_lclu)
1293 				count_pending = true;
1294 			else
1295 				count_pending = false;
1296 		}
1297 
1298 		/*
1299 		 * a pending reservation found between first_lclu and last_lclu
1300 		 * represents an allocated cluster that contained at least one
1301 		 * delonly block, so the delonly total must be reduced by one
1302 		 * for each pending reservation found and released
1303 		 */
1304 		if (count_pending) {
1305 			pr = __pr_tree_search(&tree->root, first_lclu);
1306 			while (pr && pr->lclu <= last_lclu) {
1307 				rc->ndelonly--;
1308 				node = rb_next(&pr->rb_node);
1309 				rb_erase(&pr->rb_node, &tree->root);
1310 				kmem_cache_free(ext4_pending_cachep, pr);
1311 				if (!node)
1312 					break;
1313 				pr = rb_entry(node, struct pending_reservation,
1314 					      rb_node);
1315 			}
1316 		}
1317 	}
1318 	return rc->ndelonly;
1319 }
1320 
1321 
1322 /*
1323  * __es_remove_extent - removes block range from extent status tree
1324  *
1325  * @inode - file containing range
1326  * @lblk - first block in range
1327  * @end - last block in range
1328  * @reserved - number of cluster reservations released
1329  * @prealloc - pre-allocated es to avoid memory allocation failures
1330  *
1331  * If @reserved is not NULL and delayed allocation is enabled, counts
1332  * block/cluster reservations freed by removing range and if bigalloc
1333  * enabled cancels pending reservations as needed. Returns 0 on success,
1334  * error code on failure.
1335  */
1336 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1337 			      ext4_lblk_t end, int *reserved,
1338 			      struct extent_status *prealloc)
1339 {
1340 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1341 	struct rb_node *node;
1342 	struct extent_status *es;
1343 	struct extent_status orig_es;
1344 	ext4_lblk_t len1, len2;
1345 	ext4_fsblk_t block;
1346 	int err = 0;
1347 	bool count_reserved = true;
1348 	struct rsvd_count rc;
1349 
1350 	if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1351 		count_reserved = false;
1352 
1353 	es = __es_tree_search(&tree->root, lblk);
1354 	if (!es)
1355 		goto out;
1356 	if (es->es_lblk > end)
1357 		goto out;
1358 
1359 	/* Simply invalidate cache_es. */
1360 	tree->cache_es = NULL;
1361 	if (count_reserved)
1362 		init_rsvd(inode, lblk, es, &rc);
1363 
1364 	orig_es.es_lblk = es->es_lblk;
1365 	orig_es.es_len = es->es_len;
1366 	orig_es.es_pblk = es->es_pblk;
1367 
1368 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1369 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1370 	if (len1 > 0)
1371 		es->es_len = len1;
1372 	if (len2 > 0) {
1373 		if (len1 > 0) {
1374 			struct extent_status newes;
1375 
1376 			newes.es_lblk = end + 1;
1377 			newes.es_len = len2;
1378 			block = 0x7FDEADBEEFULL;
1379 			if (ext4_es_is_written(&orig_es) ||
1380 			    ext4_es_is_unwritten(&orig_es))
1381 				block = ext4_es_pblock(&orig_es) +
1382 					orig_es.es_len - len2;
1383 			ext4_es_store_pblock_status(&newes, block,
1384 						    ext4_es_status(&orig_es));
1385 			err = __es_insert_extent(inode, &newes, prealloc);
1386 			if (err) {
1387 				if (!ext4_es_must_keep(&newes))
1388 					return 0;
1389 
1390 				es->es_lblk = orig_es.es_lblk;
1391 				es->es_len = orig_es.es_len;
1392 				goto out;
1393 			}
1394 		} else {
1395 			es->es_lblk = end + 1;
1396 			es->es_len = len2;
1397 			if (ext4_es_is_written(es) ||
1398 			    ext4_es_is_unwritten(es)) {
1399 				block = orig_es.es_pblk + orig_es.es_len - len2;
1400 				ext4_es_store_pblock(es, block);
1401 			}
1402 		}
1403 		if (count_reserved)
1404 			count_rsvd(inode, lblk, orig_es.es_len - len1 - len2,
1405 				   &orig_es, &rc);
1406 		goto out_get_reserved;
1407 	}
1408 
1409 	if (len1 > 0) {
1410 		if (count_reserved)
1411 			count_rsvd(inode, lblk, orig_es.es_len - len1,
1412 				   &orig_es, &rc);
1413 		node = rb_next(&es->rb_node);
1414 		if (node)
1415 			es = rb_entry(node, struct extent_status, rb_node);
1416 		else
1417 			es = NULL;
1418 	}
1419 
1420 	while (es && ext4_es_end(es) <= end) {
1421 		if (count_reserved)
1422 			count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1423 		node = rb_next(&es->rb_node);
1424 		rb_erase(&es->rb_node, &tree->root);
1425 		ext4_es_free_extent(inode, es);
1426 		if (!node) {
1427 			es = NULL;
1428 			break;
1429 		}
1430 		es = rb_entry(node, struct extent_status, rb_node);
1431 	}
1432 
1433 	if (es && es->es_lblk < end + 1) {
1434 		ext4_lblk_t orig_len = es->es_len;
1435 
1436 		len1 = ext4_es_end(es) - end;
1437 		if (count_reserved)
1438 			count_rsvd(inode, es->es_lblk, orig_len - len1,
1439 				   es, &rc);
1440 		es->es_lblk = end + 1;
1441 		es->es_len = len1;
1442 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1443 			block = es->es_pblk + orig_len - len1;
1444 			ext4_es_store_pblock(es, block);
1445 		}
1446 	}
1447 
1448 out_get_reserved:
1449 	if (count_reserved)
1450 		*reserved = get_rsvd(inode, end, es, &rc);
1451 out:
1452 	return err;
1453 }
1454 
1455 /*
1456  * ext4_es_remove_extent - removes block range from extent status tree
1457  *
1458  * @inode - file containing range
1459  * @lblk - first block in range
1460  * @len - number of blocks to remove
1461  *
1462  * Reduces block/cluster reservation count and for bigalloc cancels pending
1463  * reservations as needed. Returns 0 on success, error code on failure.
1464  */
1465 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1466 			  ext4_lblk_t len)
1467 {
1468 	ext4_lblk_t end;
1469 	int err = 0;
1470 	int reserved = 0;
1471 	struct extent_status *es = NULL;
1472 
1473 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1474 		return 0;
1475 
1476 	trace_ext4_es_remove_extent(inode, lblk, len);
1477 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1478 		 lblk, len, inode->i_ino);
1479 
1480 	if (!len)
1481 		return err;
1482 
1483 	end = lblk + len - 1;
1484 	BUG_ON(end < lblk);
1485 
1486 retry:
1487 	if (err && !es)
1488 		es = __es_alloc_extent(true);
1489 	/*
1490 	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1491 	 * so that we are sure __es_shrink() is done with the inode before it
1492 	 * is reclaimed.
1493 	 */
1494 	write_lock(&EXT4_I(inode)->i_es_lock);
1495 	err = __es_remove_extent(inode, lblk, end, &reserved, es);
1496 	if (es && !es->es_len)
1497 		__es_free_extent(es);
1498 	write_unlock(&EXT4_I(inode)->i_es_lock);
1499 	if (err)
1500 		goto retry;
1501 
1502 	ext4_es_print_tree(inode);
1503 	ext4_da_release_space(inode, reserved);
1504 	return 0;
1505 }
1506 
1507 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1508 		       struct ext4_inode_info *locked_ei)
1509 {
1510 	struct ext4_inode_info *ei;
1511 	struct ext4_es_stats *es_stats;
1512 	ktime_t start_time;
1513 	u64 scan_time;
1514 	int nr_to_walk;
1515 	int nr_shrunk = 0;
1516 	int retried = 0, nr_skipped = 0;
1517 
1518 	es_stats = &sbi->s_es_stats;
1519 	start_time = ktime_get();
1520 
1521 retry:
1522 	spin_lock(&sbi->s_es_lock);
1523 	nr_to_walk = sbi->s_es_nr_inode;
1524 	while (nr_to_walk-- > 0) {
1525 		if (list_empty(&sbi->s_es_list)) {
1526 			spin_unlock(&sbi->s_es_lock);
1527 			goto out;
1528 		}
1529 		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1530 				      i_es_list);
1531 		/* Move the inode to the tail */
1532 		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1533 
1534 		/*
1535 		 * Normally we try hard to avoid shrinking precached inodes,
1536 		 * but we will as a last resort.
1537 		 */
1538 		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1539 						EXT4_STATE_EXT_PRECACHED)) {
1540 			nr_skipped++;
1541 			continue;
1542 		}
1543 
1544 		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1545 			nr_skipped++;
1546 			continue;
1547 		}
1548 		/*
1549 		 * Now we hold i_es_lock which protects us from inode reclaim
1550 		 * freeing inode under us
1551 		 */
1552 		spin_unlock(&sbi->s_es_lock);
1553 
1554 		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1555 		write_unlock(&ei->i_es_lock);
1556 
1557 		if (nr_to_scan <= 0)
1558 			goto out;
1559 		spin_lock(&sbi->s_es_lock);
1560 	}
1561 	spin_unlock(&sbi->s_es_lock);
1562 
1563 	/*
1564 	 * If we skipped any inodes, and we weren't able to make any
1565 	 * forward progress, try again to scan precached inodes.
1566 	 */
1567 	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1568 		retried++;
1569 		goto retry;
1570 	}
1571 
1572 	if (locked_ei && nr_shrunk == 0)
1573 		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1574 
1575 out:
1576 	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1577 	if (likely(es_stats->es_stats_scan_time))
1578 		es_stats->es_stats_scan_time = (scan_time +
1579 				es_stats->es_stats_scan_time*3) / 4;
1580 	else
1581 		es_stats->es_stats_scan_time = scan_time;
1582 	if (scan_time > es_stats->es_stats_max_scan_time)
1583 		es_stats->es_stats_max_scan_time = scan_time;
1584 	if (likely(es_stats->es_stats_shrunk))
1585 		es_stats->es_stats_shrunk = (nr_shrunk +
1586 				es_stats->es_stats_shrunk*3) / 4;
1587 	else
1588 		es_stats->es_stats_shrunk = nr_shrunk;
1589 
1590 	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1591 			     nr_skipped, retried);
1592 	return nr_shrunk;
1593 }
1594 
1595 static unsigned long ext4_es_count(struct shrinker *shrink,
1596 				   struct shrink_control *sc)
1597 {
1598 	unsigned long nr;
1599 	struct ext4_sb_info *sbi;
1600 
1601 	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1602 	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1603 	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1604 	return nr;
1605 }
1606 
1607 static unsigned long ext4_es_scan(struct shrinker *shrink,
1608 				  struct shrink_control *sc)
1609 {
1610 	struct ext4_sb_info *sbi = container_of(shrink,
1611 					struct ext4_sb_info, s_es_shrinker);
1612 	int nr_to_scan = sc->nr_to_scan;
1613 	int ret, nr_shrunk;
1614 
1615 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1616 	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1617 
1618 	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1619 
1620 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1621 	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1622 	return nr_shrunk;
1623 }
1624 
1625 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1626 {
1627 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1628 	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1629 	struct ext4_inode_info *ei, *max = NULL;
1630 	unsigned int inode_cnt = 0;
1631 
1632 	if (v != SEQ_START_TOKEN)
1633 		return 0;
1634 
1635 	/* here we just find an inode that has the max nr. of objects */
1636 	spin_lock(&sbi->s_es_lock);
1637 	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1638 		inode_cnt++;
1639 		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1640 			max = ei;
1641 		else if (!max)
1642 			max = ei;
1643 	}
1644 	spin_unlock(&sbi->s_es_lock);
1645 
1646 	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1647 		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1648 		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1649 	seq_printf(seq, "  %lld/%lld cache hits/misses\n",
1650 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1651 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1652 	if (inode_cnt)
1653 		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1654 
1655 	seq_printf(seq, "average:\n  %llu us scan time\n",
1656 	    div_u64(es_stats->es_stats_scan_time, 1000));
1657 	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1658 	if (inode_cnt)
1659 		seq_printf(seq,
1660 		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1661 		    "  %llu us max scan time\n",
1662 		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1663 		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1664 
1665 	return 0;
1666 }
1667 
1668 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1669 {
1670 	int err;
1671 
1672 	/* Make sure we have enough bits for physical block number */
1673 	BUILD_BUG_ON(ES_SHIFT < 48);
1674 	INIT_LIST_HEAD(&sbi->s_es_list);
1675 	sbi->s_es_nr_inode = 0;
1676 	spin_lock_init(&sbi->s_es_lock);
1677 	sbi->s_es_stats.es_stats_shrunk = 0;
1678 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1679 				  GFP_KERNEL);
1680 	if (err)
1681 		return err;
1682 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1683 				  GFP_KERNEL);
1684 	if (err)
1685 		goto err1;
1686 	sbi->s_es_stats.es_stats_scan_time = 0;
1687 	sbi->s_es_stats.es_stats_max_scan_time = 0;
1688 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1689 	if (err)
1690 		goto err2;
1691 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1692 	if (err)
1693 		goto err3;
1694 
1695 	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1696 	sbi->s_es_shrinker.count_objects = ext4_es_count;
1697 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1698 	err = register_shrinker(&sbi->s_es_shrinker, "ext4-es:%s",
1699 				sbi->s_sb->s_id);
1700 	if (err)
1701 		goto err4;
1702 
1703 	return 0;
1704 err4:
1705 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1706 err3:
1707 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1708 err2:
1709 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1710 err1:
1711 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1712 	return err;
1713 }
1714 
1715 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1716 {
1717 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1718 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1719 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1720 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1721 	unregister_shrinker(&sbi->s_es_shrinker);
1722 }
1723 
1724 /*
1725  * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1726  * most *nr_to_scan extents, update *nr_to_scan accordingly.
1727  *
1728  * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1729  * Increment *nr_shrunk by the number of reclaimed extents. Also update
1730  * ei->i_es_shrink_lblk to where we should continue scanning.
1731  */
1732 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1733 				 int *nr_to_scan, int *nr_shrunk)
1734 {
1735 	struct inode *inode = &ei->vfs_inode;
1736 	struct ext4_es_tree *tree = &ei->i_es_tree;
1737 	struct extent_status *es;
1738 	struct rb_node *node;
1739 
1740 	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1741 	if (!es)
1742 		goto out_wrap;
1743 
1744 	while (*nr_to_scan > 0) {
1745 		if (es->es_lblk > end) {
1746 			ei->i_es_shrink_lblk = end + 1;
1747 			return 0;
1748 		}
1749 
1750 		(*nr_to_scan)--;
1751 		node = rb_next(&es->rb_node);
1752 
1753 		if (ext4_es_must_keep(es))
1754 			goto next;
1755 		if (ext4_es_is_referenced(es)) {
1756 			ext4_es_clear_referenced(es);
1757 			goto next;
1758 		}
1759 
1760 		rb_erase(&es->rb_node, &tree->root);
1761 		ext4_es_free_extent(inode, es);
1762 		(*nr_shrunk)++;
1763 next:
1764 		if (!node)
1765 			goto out_wrap;
1766 		es = rb_entry(node, struct extent_status, rb_node);
1767 	}
1768 	ei->i_es_shrink_lblk = es->es_lblk;
1769 	return 1;
1770 out_wrap:
1771 	ei->i_es_shrink_lblk = 0;
1772 	return 0;
1773 }
1774 
1775 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1776 {
1777 	struct inode *inode = &ei->vfs_inode;
1778 	int nr_shrunk = 0;
1779 	ext4_lblk_t start = ei->i_es_shrink_lblk;
1780 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1781 				      DEFAULT_RATELIMIT_BURST);
1782 
1783 	if (ei->i_es_shk_nr == 0)
1784 		return 0;
1785 
1786 	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1787 	    __ratelimit(&_rs))
1788 		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1789 
1790 	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1791 	    start != 0)
1792 		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1793 
1794 	ei->i_es_tree.cache_es = NULL;
1795 	return nr_shrunk;
1796 }
1797 
1798 /*
1799  * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
1800  * discretionary entries from the extent status cache.  (Some entries
1801  * must be present for proper operations.)
1802  */
1803 void ext4_clear_inode_es(struct inode *inode)
1804 {
1805 	struct ext4_inode_info *ei = EXT4_I(inode);
1806 	struct extent_status *es;
1807 	struct ext4_es_tree *tree;
1808 	struct rb_node *node;
1809 
1810 	write_lock(&ei->i_es_lock);
1811 	tree = &EXT4_I(inode)->i_es_tree;
1812 	tree->cache_es = NULL;
1813 	node = rb_first(&tree->root);
1814 	while (node) {
1815 		es = rb_entry(node, struct extent_status, rb_node);
1816 		node = rb_next(node);
1817 		if (!ext4_es_must_keep(es)) {
1818 			rb_erase(&es->rb_node, &tree->root);
1819 			ext4_es_free_extent(inode, es);
1820 		}
1821 	}
1822 	ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1823 	write_unlock(&ei->i_es_lock);
1824 }
1825 
1826 #ifdef ES_DEBUG__
1827 static void ext4_print_pending_tree(struct inode *inode)
1828 {
1829 	struct ext4_pending_tree *tree;
1830 	struct rb_node *node;
1831 	struct pending_reservation *pr;
1832 
1833 	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1834 	tree = &EXT4_I(inode)->i_pending_tree;
1835 	node = rb_first(&tree->root);
1836 	while (node) {
1837 		pr = rb_entry(node, struct pending_reservation, rb_node);
1838 		printk(KERN_DEBUG " %u", pr->lclu);
1839 		node = rb_next(node);
1840 	}
1841 	printk(KERN_DEBUG "\n");
1842 }
1843 #else
1844 #define ext4_print_pending_tree(inode)
1845 #endif
1846 
1847 int __init ext4_init_pending(void)
1848 {
1849 	ext4_pending_cachep = KMEM_CACHE(pending_reservation, SLAB_RECLAIM_ACCOUNT);
1850 	if (ext4_pending_cachep == NULL)
1851 		return -ENOMEM;
1852 	return 0;
1853 }
1854 
1855 void ext4_exit_pending(void)
1856 {
1857 	kmem_cache_destroy(ext4_pending_cachep);
1858 }
1859 
1860 void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1861 {
1862 	tree->root = RB_ROOT;
1863 }
1864 
1865 /*
1866  * __get_pending - retrieve a pointer to a pending reservation
1867  *
1868  * @inode - file containing the pending cluster reservation
1869  * @lclu - logical cluster of interest
1870  *
1871  * Returns a pointer to a pending reservation if it's a member of
1872  * the set, and NULL if not.  Must be called holding i_es_lock.
1873  */
1874 static struct pending_reservation *__get_pending(struct inode *inode,
1875 						 ext4_lblk_t lclu)
1876 {
1877 	struct ext4_pending_tree *tree;
1878 	struct rb_node *node;
1879 	struct pending_reservation *pr = NULL;
1880 
1881 	tree = &EXT4_I(inode)->i_pending_tree;
1882 	node = (&tree->root)->rb_node;
1883 
1884 	while (node) {
1885 		pr = rb_entry(node, struct pending_reservation, rb_node);
1886 		if (lclu < pr->lclu)
1887 			node = node->rb_left;
1888 		else if (lclu > pr->lclu)
1889 			node = node->rb_right;
1890 		else if (lclu == pr->lclu)
1891 			return pr;
1892 	}
1893 	return NULL;
1894 }
1895 
1896 /*
1897  * __insert_pending - adds a pending cluster reservation to the set of
1898  *                    pending reservations
1899  *
1900  * @inode - file containing the cluster
1901  * @lblk - logical block in the cluster to be added
1902  *
1903  * Returns 0 on successful insertion and -ENOMEM on failure.  If the
1904  * pending reservation is already in the set, returns successfully.
1905  */
1906 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk)
1907 {
1908 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1909 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1910 	struct rb_node **p = &tree->root.rb_node;
1911 	struct rb_node *parent = NULL;
1912 	struct pending_reservation *pr;
1913 	ext4_lblk_t lclu;
1914 	int ret = 0;
1915 
1916 	lclu = EXT4_B2C(sbi, lblk);
1917 	/* search to find parent for insertion */
1918 	while (*p) {
1919 		parent = *p;
1920 		pr = rb_entry(parent, struct pending_reservation, rb_node);
1921 
1922 		if (lclu < pr->lclu) {
1923 			p = &(*p)->rb_left;
1924 		} else if (lclu > pr->lclu) {
1925 			p = &(*p)->rb_right;
1926 		} else {
1927 			/* pending reservation already inserted */
1928 			goto out;
1929 		}
1930 	}
1931 
1932 	pr = kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
1933 	if (pr == NULL) {
1934 		ret = -ENOMEM;
1935 		goto out;
1936 	}
1937 	pr->lclu = lclu;
1938 
1939 	rb_link_node(&pr->rb_node, parent, p);
1940 	rb_insert_color(&pr->rb_node, &tree->root);
1941 
1942 out:
1943 	return ret;
1944 }
1945 
1946 /*
1947  * __remove_pending - removes a pending cluster reservation from the set
1948  *                    of pending reservations
1949  *
1950  * @inode - file containing the cluster
1951  * @lblk - logical block in the pending cluster reservation to be removed
1952  *
1953  * Returns successfully if pending reservation is not a member of the set.
1954  */
1955 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
1956 {
1957 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1958 	struct pending_reservation *pr;
1959 	struct ext4_pending_tree *tree;
1960 
1961 	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
1962 	if (pr != NULL) {
1963 		tree = &EXT4_I(inode)->i_pending_tree;
1964 		rb_erase(&pr->rb_node, &tree->root);
1965 		kmem_cache_free(ext4_pending_cachep, pr);
1966 	}
1967 }
1968 
1969 /*
1970  * ext4_remove_pending - removes a pending cluster reservation from the set
1971  *                       of pending reservations
1972  *
1973  * @inode - file containing the cluster
1974  * @lblk - logical block in the pending cluster reservation to be removed
1975  *
1976  * Locking for external use of __remove_pending.
1977  */
1978 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
1979 {
1980 	struct ext4_inode_info *ei = EXT4_I(inode);
1981 
1982 	write_lock(&ei->i_es_lock);
1983 	__remove_pending(inode, lblk);
1984 	write_unlock(&ei->i_es_lock);
1985 }
1986 
1987 /*
1988  * ext4_is_pending - determine whether a cluster has a pending reservation
1989  *                   on it
1990  *
1991  * @inode - file containing the cluster
1992  * @lblk - logical block in the cluster
1993  *
1994  * Returns true if there's a pending reservation for the cluster in the
1995  * set of pending reservations, and false if not.
1996  */
1997 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
1998 {
1999 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2000 	struct ext4_inode_info *ei = EXT4_I(inode);
2001 	bool ret;
2002 
2003 	read_lock(&ei->i_es_lock);
2004 	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
2005 	read_unlock(&ei->i_es_lock);
2006 
2007 	return ret;
2008 }
2009 
2010 /*
2011  * ext4_es_insert_delayed_block - adds a delayed block to the extents status
2012  *                                tree, adding a pending reservation where
2013  *                                needed
2014  *
2015  * @inode - file containing the newly added block
2016  * @lblk - logical block to be added
2017  * @allocated - indicates whether a physical cluster has been allocated for
2018  *              the logical cluster that contains the block
2019  *
2020  * Returns 0 on success, negative error code on failure.
2021  */
2022 int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
2023 				 bool allocated)
2024 {
2025 	struct extent_status newes;
2026 	int err1 = 0;
2027 	int err2 = 0;
2028 	struct extent_status *es1 = NULL;
2029 	struct extent_status *es2 = NULL;
2030 
2031 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
2032 		return 0;
2033 
2034 	es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
2035 		 lblk, inode->i_ino);
2036 
2037 	newes.es_lblk = lblk;
2038 	newes.es_len = 1;
2039 	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2040 	trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
2041 
2042 	ext4_es_insert_extent_check(inode, &newes);
2043 
2044 retry:
2045 	if (err1 && !es1)
2046 		es1 = __es_alloc_extent(true);
2047 	if ((err1 || err2) && !es2)
2048 		es2 = __es_alloc_extent(true);
2049 	write_lock(&EXT4_I(inode)->i_es_lock);
2050 
2051 	err1 = __es_remove_extent(inode, lblk, lblk, NULL, es1);
2052 	if (err1 != 0)
2053 		goto error;
2054 
2055 	err2 = __es_insert_extent(inode, &newes, es2);
2056 	if (err2 != 0)
2057 		goto error;
2058 
2059 	if (allocated)
2060 		__insert_pending(inode, lblk);
2061 
2062 	/* es is pre-allocated but not used, free it. */
2063 	if (es1 && !es1->es_len)
2064 		__es_free_extent(es1);
2065 	if (es2 && !es2->es_len)
2066 		__es_free_extent(es2);
2067 error:
2068 	write_unlock(&EXT4_I(inode)->i_es_lock);
2069 	if (err1 || err2)
2070 		goto retry;
2071 
2072 	ext4_es_print_tree(inode);
2073 	ext4_print_pending_tree(inode);
2074 	return 0;
2075 }
2076 
2077 /*
2078  * __es_delayed_clu - count number of clusters containing blocks that
2079  *                    are delayed only
2080  *
2081  * @inode - file containing block range
2082  * @start - logical block defining start of range
2083  * @end - logical block defining end of range
2084  *
2085  * Returns the number of clusters containing only delayed (not delayed
2086  * and unwritten) blocks in the range specified by @start and @end.  Any
2087  * cluster or part of a cluster within the range and containing a delayed
2088  * and not unwritten block within the range is counted as a whole cluster.
2089  */
2090 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2091 				     ext4_lblk_t end)
2092 {
2093 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2094 	struct extent_status *es;
2095 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2096 	struct rb_node *node;
2097 	ext4_lblk_t first_lclu, last_lclu;
2098 	unsigned long long last_counted_lclu;
2099 	unsigned int n = 0;
2100 
2101 	/* guaranteed to be unequal to any ext4_lblk_t value */
2102 	last_counted_lclu = ~0ULL;
2103 
2104 	es = __es_tree_search(&tree->root, start);
2105 
2106 	while (es && (es->es_lblk <= end)) {
2107 		if (ext4_es_is_delonly(es)) {
2108 			if (es->es_lblk <= start)
2109 				first_lclu = EXT4_B2C(sbi, start);
2110 			else
2111 				first_lclu = EXT4_B2C(sbi, es->es_lblk);
2112 
2113 			if (ext4_es_end(es) >= end)
2114 				last_lclu = EXT4_B2C(sbi, end);
2115 			else
2116 				last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2117 
2118 			if (first_lclu == last_counted_lclu)
2119 				n += last_lclu - first_lclu;
2120 			else
2121 				n += last_lclu - first_lclu + 1;
2122 			last_counted_lclu = last_lclu;
2123 		}
2124 		node = rb_next(&es->rb_node);
2125 		if (!node)
2126 			break;
2127 		es = rb_entry(node, struct extent_status, rb_node);
2128 	}
2129 
2130 	return n;
2131 }
2132 
2133 /*
2134  * ext4_es_delayed_clu - count number of clusters containing blocks that
2135  *                       are both delayed and unwritten
2136  *
2137  * @inode - file containing block range
2138  * @lblk - logical block defining start of range
2139  * @len - number of blocks in range
2140  *
2141  * Locking for external use of __es_delayed_clu().
2142  */
2143 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2144 				 ext4_lblk_t len)
2145 {
2146 	struct ext4_inode_info *ei = EXT4_I(inode);
2147 	ext4_lblk_t end;
2148 	unsigned int n;
2149 
2150 	if (len == 0)
2151 		return 0;
2152 
2153 	end = lblk + len - 1;
2154 	WARN_ON(end < lblk);
2155 
2156 	read_lock(&ei->i_es_lock);
2157 
2158 	n = __es_delayed_clu(inode, lblk, end);
2159 
2160 	read_unlock(&ei->i_es_lock);
2161 
2162 	return n;
2163 }
2164 
2165 /*
2166  * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2167  *                    reservations for a specified block range depending
2168  *                    upon the presence or absence of delayed blocks
2169  *                    outside the range within clusters at the ends of the
2170  *                    range
2171  *
2172  * @inode - file containing the range
2173  * @lblk - logical block defining the start of range
2174  * @len  - length of range in blocks
2175  *
2176  * Used after a newly allocated extent is added to the extents status tree.
2177  * Requires that the extents in the range have either written or unwritten
2178  * status.  Must be called while holding i_es_lock.
2179  */
2180 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2181 			     ext4_lblk_t len)
2182 {
2183 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2184 	ext4_lblk_t end = lblk + len - 1;
2185 	ext4_lblk_t first, last;
2186 	bool f_del = false, l_del = false;
2187 
2188 	if (len == 0)
2189 		return;
2190 
2191 	/*
2192 	 * Two cases - block range within single cluster and block range
2193 	 * spanning two or more clusters.  Note that a cluster belonging
2194 	 * to a range starting and/or ending on a cluster boundary is treated
2195 	 * as if it does not contain a delayed extent.  The new range may
2196 	 * have allocated space for previously delayed blocks out to the
2197 	 * cluster boundary, requiring that any pre-existing pending
2198 	 * reservation be canceled.  Because this code only looks at blocks
2199 	 * outside the range, it should revise pending reservations
2200 	 * correctly even if the extent represented by the range can't be
2201 	 * inserted in the extents status tree due to ENOSPC.
2202 	 */
2203 
2204 	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2205 		first = EXT4_LBLK_CMASK(sbi, lblk);
2206 		if (first != lblk)
2207 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2208 						first, lblk - 1);
2209 		if (f_del) {
2210 			__insert_pending(inode, first);
2211 		} else {
2212 			last = EXT4_LBLK_CMASK(sbi, end) +
2213 			       sbi->s_cluster_ratio - 1;
2214 			if (last != end)
2215 				l_del = __es_scan_range(inode,
2216 							&ext4_es_is_delonly,
2217 							end + 1, last);
2218 			if (l_del)
2219 				__insert_pending(inode, last);
2220 			else
2221 				__remove_pending(inode, last);
2222 		}
2223 	} else {
2224 		first = EXT4_LBLK_CMASK(sbi, lblk);
2225 		if (first != lblk)
2226 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2227 						first, lblk - 1);
2228 		if (f_del)
2229 			__insert_pending(inode, first);
2230 		else
2231 			__remove_pending(inode, first);
2232 
2233 		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2234 		if (last != end)
2235 			l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2236 						end + 1, last);
2237 		if (l_del)
2238 			__insert_pending(inode, last);
2239 		else
2240 			__remove_pending(inode, last);
2241 	}
2242 }
2243