xref: /openbmc/linux/fs/ext4/extents.c (revision f99cb7a4)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/ext4_jbd2.h>
36 #include <linux/jbd2.h>
37 #include <linux/highuid.h>
38 #include <linux/pagemap.h>
39 #include <linux/quotaops.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/falloc.h>
43 #include <linux/ext4_fs_extents.h>
44 #include <asm/uaccess.h>
45 
46 
47 /*
48  * ext_pblock:
49  * combine low and high parts of physical block number into ext4_fsblk_t
50  */
51 static ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
52 {
53 	ext4_fsblk_t block;
54 
55 	block = le32_to_cpu(ex->ee_start_lo);
56 	block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
57 	return block;
58 }
59 
60 /*
61  * idx_pblock:
62  * combine low and high parts of a leaf physical block number into ext4_fsblk_t
63  */
64 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
65 {
66 	ext4_fsblk_t block;
67 
68 	block = le32_to_cpu(ix->ei_leaf_lo);
69 	block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
70 	return block;
71 }
72 
73 /*
74  * ext4_ext_store_pblock:
75  * stores a large physical block number into an extent struct,
76  * breaking it into parts
77  */
78 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
79 {
80 	ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
81 	ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
82 }
83 
84 /*
85  * ext4_idx_store_pblock:
86  * stores a large physical block number into an index struct,
87  * breaking it into parts
88  */
89 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
90 {
91 	ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
92 	ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
93 }
94 
95 static handle_t *ext4_ext_journal_restart(handle_t *handle, int needed)
96 {
97 	int err;
98 
99 	if (handle->h_buffer_credits > needed)
100 		return handle;
101 	if (!ext4_journal_extend(handle, needed))
102 		return handle;
103 	err = ext4_journal_restart(handle, needed);
104 
105 	return handle;
106 }
107 
108 /*
109  * could return:
110  *  - EROFS
111  *  - ENOMEM
112  */
113 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
114 				struct ext4_ext_path *path)
115 {
116 	if (path->p_bh) {
117 		/* path points to block */
118 		return ext4_journal_get_write_access(handle, path->p_bh);
119 	}
120 	/* path points to leaf/index in inode body */
121 	/* we use in-core data, no need to protect them */
122 	return 0;
123 }
124 
125 /*
126  * could return:
127  *  - EROFS
128  *  - ENOMEM
129  *  - EIO
130  */
131 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
132 				struct ext4_ext_path *path)
133 {
134 	int err;
135 	if (path->p_bh) {
136 		/* path points to block */
137 		err = ext4_journal_dirty_metadata(handle, path->p_bh);
138 	} else {
139 		/* path points to leaf/index in inode body */
140 		err = ext4_mark_inode_dirty(handle, inode);
141 	}
142 	return err;
143 }
144 
145 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
146 			      struct ext4_ext_path *path,
147 			      ext4_lblk_t block)
148 {
149 	struct ext4_inode_info *ei = EXT4_I(inode);
150 	ext4_fsblk_t bg_start;
151 	ext4_grpblk_t colour;
152 	int depth;
153 
154 	if (path) {
155 		struct ext4_extent *ex;
156 		depth = path->p_depth;
157 
158 		/* try to predict block placement */
159 		ex = path[depth].p_ext;
160 		if (ex)
161 			return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
162 
163 		/* it looks like index is empty;
164 		 * try to find starting block from index itself */
165 		if (path[depth].p_bh)
166 			return path[depth].p_bh->b_blocknr;
167 	}
168 
169 	/* OK. use inode's group */
170 	bg_start = (ei->i_block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
171 		le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
172 	colour = (current->pid % 16) *
173 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
174 	return bg_start + colour + block;
175 }
176 
177 static ext4_fsblk_t
178 ext4_ext_new_block(handle_t *handle, struct inode *inode,
179 			struct ext4_ext_path *path,
180 			struct ext4_extent *ex, int *err)
181 {
182 	ext4_fsblk_t goal, newblock;
183 
184 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
185 	newblock = ext4_new_block(handle, inode, goal, err);
186 	return newblock;
187 }
188 
189 static int ext4_ext_space_block(struct inode *inode)
190 {
191 	int size;
192 
193 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
194 			/ sizeof(struct ext4_extent);
195 #ifdef AGGRESSIVE_TEST
196 	if (size > 6)
197 		size = 6;
198 #endif
199 	return size;
200 }
201 
202 static int ext4_ext_space_block_idx(struct inode *inode)
203 {
204 	int size;
205 
206 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
207 			/ sizeof(struct ext4_extent_idx);
208 #ifdef AGGRESSIVE_TEST
209 	if (size > 5)
210 		size = 5;
211 #endif
212 	return size;
213 }
214 
215 static int ext4_ext_space_root(struct inode *inode)
216 {
217 	int size;
218 
219 	size = sizeof(EXT4_I(inode)->i_data);
220 	size -= sizeof(struct ext4_extent_header);
221 	size /= sizeof(struct ext4_extent);
222 #ifdef AGGRESSIVE_TEST
223 	if (size > 3)
224 		size = 3;
225 #endif
226 	return size;
227 }
228 
229 static int ext4_ext_space_root_idx(struct inode *inode)
230 {
231 	int size;
232 
233 	size = sizeof(EXT4_I(inode)->i_data);
234 	size -= sizeof(struct ext4_extent_header);
235 	size /= sizeof(struct ext4_extent_idx);
236 #ifdef AGGRESSIVE_TEST
237 	if (size > 4)
238 		size = 4;
239 #endif
240 	return size;
241 }
242 
243 static int
244 ext4_ext_max_entries(struct inode *inode, int depth)
245 {
246 	int max;
247 
248 	if (depth == ext_depth(inode)) {
249 		if (depth == 0)
250 			max = ext4_ext_space_root(inode);
251 		else
252 			max = ext4_ext_space_root_idx(inode);
253 	} else {
254 		if (depth == 0)
255 			max = ext4_ext_space_block(inode);
256 		else
257 			max = ext4_ext_space_block_idx(inode);
258 	}
259 
260 	return max;
261 }
262 
263 static int __ext4_ext_check_header(const char *function, struct inode *inode,
264 					struct ext4_extent_header *eh,
265 					int depth)
266 {
267 	const char *error_msg;
268 	int max = 0;
269 
270 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
271 		error_msg = "invalid magic";
272 		goto corrupted;
273 	}
274 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
275 		error_msg = "unexpected eh_depth";
276 		goto corrupted;
277 	}
278 	if (unlikely(eh->eh_max == 0)) {
279 		error_msg = "invalid eh_max";
280 		goto corrupted;
281 	}
282 	max = ext4_ext_max_entries(inode, depth);
283 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
284 		error_msg = "too large eh_max";
285 		goto corrupted;
286 	}
287 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
288 		error_msg = "invalid eh_entries";
289 		goto corrupted;
290 	}
291 	return 0;
292 
293 corrupted:
294 	ext4_error(inode->i_sb, function,
295 			"bad header in inode #%lu: %s - magic %x, "
296 			"entries %u, max %u(%u), depth %u(%u)",
297 			inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
298 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
299 			max, le16_to_cpu(eh->eh_depth), depth);
300 
301 	return -EIO;
302 }
303 
304 #define ext4_ext_check_header(inode, eh, depth)	\
305 	__ext4_ext_check_header(__FUNCTION__, inode, eh, depth)
306 
307 #ifdef EXT_DEBUG
308 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
309 {
310 	int k, l = path->p_depth;
311 
312 	ext_debug("path:");
313 	for (k = 0; k <= l; k++, path++) {
314 		if (path->p_idx) {
315 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
316 			    idx_pblock(path->p_idx));
317 		} else if (path->p_ext) {
318 			ext_debug("  %d:%d:%llu ",
319 				  le32_to_cpu(path->p_ext->ee_block),
320 				  ext4_ext_get_actual_len(path->p_ext),
321 				  ext_pblock(path->p_ext));
322 		} else
323 			ext_debug("  []");
324 	}
325 	ext_debug("\n");
326 }
327 
328 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
329 {
330 	int depth = ext_depth(inode);
331 	struct ext4_extent_header *eh;
332 	struct ext4_extent *ex;
333 	int i;
334 
335 	if (!path)
336 		return;
337 
338 	eh = path[depth].p_hdr;
339 	ex = EXT_FIRST_EXTENT(eh);
340 
341 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
342 		ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
343 			  ext4_ext_get_actual_len(ex), ext_pblock(ex));
344 	}
345 	ext_debug("\n");
346 }
347 #else
348 #define ext4_ext_show_path(inode,path)
349 #define ext4_ext_show_leaf(inode,path)
350 #endif
351 
352 static void ext4_ext_drop_refs(struct ext4_ext_path *path)
353 {
354 	int depth = path->p_depth;
355 	int i;
356 
357 	for (i = 0; i <= depth; i++, path++)
358 		if (path->p_bh) {
359 			brelse(path->p_bh);
360 			path->p_bh = NULL;
361 		}
362 }
363 
364 /*
365  * ext4_ext_binsearch_idx:
366  * binary search for the closest index of the given block
367  * the header must be checked before calling this
368  */
369 static void
370 ext4_ext_binsearch_idx(struct inode *inode,
371 			struct ext4_ext_path *path, ext4_lblk_t block)
372 {
373 	struct ext4_extent_header *eh = path->p_hdr;
374 	struct ext4_extent_idx *r, *l, *m;
375 
376 
377 	ext_debug("binsearch for %u(idx):  ", block);
378 
379 	l = EXT_FIRST_INDEX(eh) + 1;
380 	r = EXT_LAST_INDEX(eh);
381 	while (l <= r) {
382 		m = l + (r - l) / 2;
383 		if (block < le32_to_cpu(m->ei_block))
384 			r = m - 1;
385 		else
386 			l = m + 1;
387 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
388 				m, le32_to_cpu(m->ei_block),
389 				r, le32_to_cpu(r->ei_block));
390 	}
391 
392 	path->p_idx = l - 1;
393 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
394 		  idx_pblock(path->p_idx));
395 
396 #ifdef CHECK_BINSEARCH
397 	{
398 		struct ext4_extent_idx *chix, *ix;
399 		int k;
400 
401 		chix = ix = EXT_FIRST_INDEX(eh);
402 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
403 		  if (k != 0 &&
404 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
405 				printk("k=%d, ix=0x%p, first=0x%p\n", k,
406 					ix, EXT_FIRST_INDEX(eh));
407 				printk("%u <= %u\n",
408 				       le32_to_cpu(ix->ei_block),
409 				       le32_to_cpu(ix[-1].ei_block));
410 			}
411 			BUG_ON(k && le32_to_cpu(ix->ei_block)
412 					   <= le32_to_cpu(ix[-1].ei_block));
413 			if (block < le32_to_cpu(ix->ei_block))
414 				break;
415 			chix = ix;
416 		}
417 		BUG_ON(chix != path->p_idx);
418 	}
419 #endif
420 
421 }
422 
423 /*
424  * ext4_ext_binsearch:
425  * binary search for closest extent of the given block
426  * the header must be checked before calling this
427  */
428 static void
429 ext4_ext_binsearch(struct inode *inode,
430 		struct ext4_ext_path *path, ext4_lblk_t block)
431 {
432 	struct ext4_extent_header *eh = path->p_hdr;
433 	struct ext4_extent *r, *l, *m;
434 
435 	if (eh->eh_entries == 0) {
436 		/*
437 		 * this leaf is empty:
438 		 * we get such a leaf in split/add case
439 		 */
440 		return;
441 	}
442 
443 	ext_debug("binsearch for %u:  ", block);
444 
445 	l = EXT_FIRST_EXTENT(eh) + 1;
446 	r = EXT_LAST_EXTENT(eh);
447 
448 	while (l <= r) {
449 		m = l + (r - l) / 2;
450 		if (block < le32_to_cpu(m->ee_block))
451 			r = m - 1;
452 		else
453 			l = m + 1;
454 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
455 				m, le32_to_cpu(m->ee_block),
456 				r, le32_to_cpu(r->ee_block));
457 	}
458 
459 	path->p_ext = l - 1;
460 	ext_debug("  -> %d:%llu:%d ",
461 			le32_to_cpu(path->p_ext->ee_block),
462 			ext_pblock(path->p_ext),
463 			ext4_ext_get_actual_len(path->p_ext));
464 
465 #ifdef CHECK_BINSEARCH
466 	{
467 		struct ext4_extent *chex, *ex;
468 		int k;
469 
470 		chex = ex = EXT_FIRST_EXTENT(eh);
471 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
472 			BUG_ON(k && le32_to_cpu(ex->ee_block)
473 					  <= le32_to_cpu(ex[-1].ee_block));
474 			if (block < le32_to_cpu(ex->ee_block))
475 				break;
476 			chex = ex;
477 		}
478 		BUG_ON(chex != path->p_ext);
479 	}
480 #endif
481 
482 }
483 
484 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
485 {
486 	struct ext4_extent_header *eh;
487 
488 	eh = ext_inode_hdr(inode);
489 	eh->eh_depth = 0;
490 	eh->eh_entries = 0;
491 	eh->eh_magic = EXT4_EXT_MAGIC;
492 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
493 	ext4_mark_inode_dirty(handle, inode);
494 	ext4_ext_invalidate_cache(inode);
495 	return 0;
496 }
497 
498 struct ext4_ext_path *
499 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
500 					struct ext4_ext_path *path)
501 {
502 	struct ext4_extent_header *eh;
503 	struct buffer_head *bh;
504 	short int depth, i, ppos = 0, alloc = 0;
505 
506 	eh = ext_inode_hdr(inode);
507 	depth = ext_depth(inode);
508 	if (ext4_ext_check_header(inode, eh, depth))
509 		return ERR_PTR(-EIO);
510 
511 
512 	/* account possible depth increase */
513 	if (!path) {
514 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
515 				GFP_NOFS);
516 		if (!path)
517 			return ERR_PTR(-ENOMEM);
518 		alloc = 1;
519 	}
520 	path[0].p_hdr = eh;
521 
522 	i = depth;
523 	/* walk through the tree */
524 	while (i) {
525 		ext_debug("depth %d: num %d, max %d\n",
526 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
527 
528 		ext4_ext_binsearch_idx(inode, path + ppos, block);
529 		path[ppos].p_block = idx_pblock(path[ppos].p_idx);
530 		path[ppos].p_depth = i;
531 		path[ppos].p_ext = NULL;
532 
533 		bh = sb_bread(inode->i_sb, path[ppos].p_block);
534 		if (!bh)
535 			goto err;
536 
537 		eh = ext_block_hdr(bh);
538 		ppos++;
539 		BUG_ON(ppos > depth);
540 		path[ppos].p_bh = bh;
541 		path[ppos].p_hdr = eh;
542 		i--;
543 
544 		if (ext4_ext_check_header(inode, eh, i))
545 			goto err;
546 	}
547 
548 	path[ppos].p_depth = i;
549 	path[ppos].p_hdr = eh;
550 	path[ppos].p_ext = NULL;
551 	path[ppos].p_idx = NULL;
552 
553 	/* find extent */
554 	ext4_ext_binsearch(inode, path + ppos, block);
555 
556 	ext4_ext_show_path(inode, path);
557 
558 	return path;
559 
560 err:
561 	ext4_ext_drop_refs(path);
562 	if (alloc)
563 		kfree(path);
564 	return ERR_PTR(-EIO);
565 }
566 
567 /*
568  * ext4_ext_insert_index:
569  * insert new index [@logical;@ptr] into the block at @curp;
570  * check where to insert: before @curp or after @curp
571  */
572 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
573 				struct ext4_ext_path *curp,
574 				int logical, ext4_fsblk_t ptr)
575 {
576 	struct ext4_extent_idx *ix;
577 	int len, err;
578 
579 	err = ext4_ext_get_access(handle, inode, curp);
580 	if (err)
581 		return err;
582 
583 	BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
584 	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
585 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
586 		/* insert after */
587 		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
588 			len = (len - 1) * sizeof(struct ext4_extent_idx);
589 			len = len < 0 ? 0 : len;
590 			ext_debug("insert new index %d after: %llu. "
591 					"move %d from 0x%p to 0x%p\n",
592 					logical, ptr, len,
593 					(curp->p_idx + 1), (curp->p_idx + 2));
594 			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
595 		}
596 		ix = curp->p_idx + 1;
597 	} else {
598 		/* insert before */
599 		len = len * sizeof(struct ext4_extent_idx);
600 		len = len < 0 ? 0 : len;
601 		ext_debug("insert new index %d before: %llu. "
602 				"move %d from 0x%p to 0x%p\n",
603 				logical, ptr, len,
604 				curp->p_idx, (curp->p_idx + 1));
605 		memmove(curp->p_idx + 1, curp->p_idx, len);
606 		ix = curp->p_idx;
607 	}
608 
609 	ix->ei_block = cpu_to_le32(logical);
610 	ext4_idx_store_pblock(ix, ptr);
611 	curp->p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(curp->p_hdr->eh_entries)+1);
612 
613 	BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
614 			     > le16_to_cpu(curp->p_hdr->eh_max));
615 	BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
616 
617 	err = ext4_ext_dirty(handle, inode, curp);
618 	ext4_std_error(inode->i_sb, err);
619 
620 	return err;
621 }
622 
623 /*
624  * ext4_ext_split:
625  * inserts new subtree into the path, using free index entry
626  * at depth @at:
627  * - allocates all needed blocks (new leaf and all intermediate index blocks)
628  * - makes decision where to split
629  * - moves remaining extents and index entries (right to the split point)
630  *   into the newly allocated blocks
631  * - initializes subtree
632  */
633 static int ext4_ext_split(handle_t *handle, struct inode *inode,
634 				struct ext4_ext_path *path,
635 				struct ext4_extent *newext, int at)
636 {
637 	struct buffer_head *bh = NULL;
638 	int depth = ext_depth(inode);
639 	struct ext4_extent_header *neh;
640 	struct ext4_extent_idx *fidx;
641 	struct ext4_extent *ex;
642 	int i = at, k, m, a;
643 	ext4_fsblk_t newblock, oldblock;
644 	__le32 border;
645 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
646 	int err = 0;
647 
648 	/* make decision: where to split? */
649 	/* FIXME: now decision is simplest: at current extent */
650 
651 	/* if current leaf will be split, then we should use
652 	 * border from split point */
653 	BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
654 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
655 		border = path[depth].p_ext[1].ee_block;
656 		ext_debug("leaf will be split."
657 				" next leaf starts at %d\n",
658 				  le32_to_cpu(border));
659 	} else {
660 		border = newext->ee_block;
661 		ext_debug("leaf will be added."
662 				" next leaf starts at %d\n",
663 				le32_to_cpu(border));
664 	}
665 
666 	/*
667 	 * If error occurs, then we break processing
668 	 * and mark filesystem read-only. index won't
669 	 * be inserted and tree will be in consistent
670 	 * state. Next mount will repair buffers too.
671 	 */
672 
673 	/*
674 	 * Get array to track all allocated blocks.
675 	 * We need this to handle errors and free blocks
676 	 * upon them.
677 	 */
678 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
679 	if (!ablocks)
680 		return -ENOMEM;
681 
682 	/* allocate all needed blocks */
683 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
684 	for (a = 0; a < depth - at; a++) {
685 		newblock = ext4_ext_new_block(handle, inode, path, newext, &err);
686 		if (newblock == 0)
687 			goto cleanup;
688 		ablocks[a] = newblock;
689 	}
690 
691 	/* initialize new leaf */
692 	newblock = ablocks[--a];
693 	BUG_ON(newblock == 0);
694 	bh = sb_getblk(inode->i_sb, newblock);
695 	if (!bh) {
696 		err = -EIO;
697 		goto cleanup;
698 	}
699 	lock_buffer(bh);
700 
701 	err = ext4_journal_get_create_access(handle, bh);
702 	if (err)
703 		goto cleanup;
704 
705 	neh = ext_block_hdr(bh);
706 	neh->eh_entries = 0;
707 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
708 	neh->eh_magic = EXT4_EXT_MAGIC;
709 	neh->eh_depth = 0;
710 	ex = EXT_FIRST_EXTENT(neh);
711 
712 	/* move remainder of path[depth] to the new leaf */
713 	BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
714 	/* start copy from next extent */
715 	/* TODO: we could do it by single memmove */
716 	m = 0;
717 	path[depth].p_ext++;
718 	while (path[depth].p_ext <=
719 			EXT_MAX_EXTENT(path[depth].p_hdr)) {
720 		ext_debug("move %d:%llu:%d in new leaf %llu\n",
721 				le32_to_cpu(path[depth].p_ext->ee_block),
722 				ext_pblock(path[depth].p_ext),
723 				ext4_ext_get_actual_len(path[depth].p_ext),
724 				newblock);
725 		/*memmove(ex++, path[depth].p_ext++,
726 				sizeof(struct ext4_extent));
727 		neh->eh_entries++;*/
728 		path[depth].p_ext++;
729 		m++;
730 	}
731 	if (m) {
732 		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
733 		neh->eh_entries = cpu_to_le16(le16_to_cpu(neh->eh_entries)+m);
734 	}
735 
736 	set_buffer_uptodate(bh);
737 	unlock_buffer(bh);
738 
739 	err = ext4_journal_dirty_metadata(handle, bh);
740 	if (err)
741 		goto cleanup;
742 	brelse(bh);
743 	bh = NULL;
744 
745 	/* correct old leaf */
746 	if (m) {
747 		err = ext4_ext_get_access(handle, inode, path + depth);
748 		if (err)
749 			goto cleanup;
750 		path[depth].p_hdr->eh_entries =
751 		     cpu_to_le16(le16_to_cpu(path[depth].p_hdr->eh_entries)-m);
752 		err = ext4_ext_dirty(handle, inode, path + depth);
753 		if (err)
754 			goto cleanup;
755 
756 	}
757 
758 	/* create intermediate indexes */
759 	k = depth - at - 1;
760 	BUG_ON(k < 0);
761 	if (k)
762 		ext_debug("create %d intermediate indices\n", k);
763 	/* insert new index into current index block */
764 	/* current depth stored in i var */
765 	i = depth - 1;
766 	while (k--) {
767 		oldblock = newblock;
768 		newblock = ablocks[--a];
769 		bh = sb_getblk(inode->i_sb, newblock);
770 		if (!bh) {
771 			err = -EIO;
772 			goto cleanup;
773 		}
774 		lock_buffer(bh);
775 
776 		err = ext4_journal_get_create_access(handle, bh);
777 		if (err)
778 			goto cleanup;
779 
780 		neh = ext_block_hdr(bh);
781 		neh->eh_entries = cpu_to_le16(1);
782 		neh->eh_magic = EXT4_EXT_MAGIC;
783 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
784 		neh->eh_depth = cpu_to_le16(depth - i);
785 		fidx = EXT_FIRST_INDEX(neh);
786 		fidx->ei_block = border;
787 		ext4_idx_store_pblock(fidx, oldblock);
788 
789 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
790 				i, newblock, le32_to_cpu(border), oldblock);
791 		/* copy indexes */
792 		m = 0;
793 		path[i].p_idx++;
794 
795 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
796 				EXT_MAX_INDEX(path[i].p_hdr));
797 		BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
798 				EXT_LAST_INDEX(path[i].p_hdr));
799 		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
800 			ext_debug("%d: move %d:%llu in new index %llu\n", i,
801 					le32_to_cpu(path[i].p_idx->ei_block),
802 					idx_pblock(path[i].p_idx),
803 					newblock);
804 			/*memmove(++fidx, path[i].p_idx++,
805 					sizeof(struct ext4_extent_idx));
806 			neh->eh_entries++;
807 			BUG_ON(neh->eh_entries > neh->eh_max);*/
808 			path[i].p_idx++;
809 			m++;
810 		}
811 		if (m) {
812 			memmove(++fidx, path[i].p_idx - m,
813 				sizeof(struct ext4_extent_idx) * m);
814 			neh->eh_entries =
815 				cpu_to_le16(le16_to_cpu(neh->eh_entries) + m);
816 		}
817 		set_buffer_uptodate(bh);
818 		unlock_buffer(bh);
819 
820 		err = ext4_journal_dirty_metadata(handle, bh);
821 		if (err)
822 			goto cleanup;
823 		brelse(bh);
824 		bh = NULL;
825 
826 		/* correct old index */
827 		if (m) {
828 			err = ext4_ext_get_access(handle, inode, path + i);
829 			if (err)
830 				goto cleanup;
831 			path[i].p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(path[i].p_hdr->eh_entries)-m);
832 			err = ext4_ext_dirty(handle, inode, path + i);
833 			if (err)
834 				goto cleanup;
835 		}
836 
837 		i--;
838 	}
839 
840 	/* insert new index */
841 	err = ext4_ext_insert_index(handle, inode, path + at,
842 				    le32_to_cpu(border), newblock);
843 
844 cleanup:
845 	if (bh) {
846 		if (buffer_locked(bh))
847 			unlock_buffer(bh);
848 		brelse(bh);
849 	}
850 
851 	if (err) {
852 		/* free all allocated blocks in error case */
853 		for (i = 0; i < depth; i++) {
854 			if (!ablocks[i])
855 				continue;
856 			ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
857 		}
858 	}
859 	kfree(ablocks);
860 
861 	return err;
862 }
863 
864 /*
865  * ext4_ext_grow_indepth:
866  * implements tree growing procedure:
867  * - allocates new block
868  * - moves top-level data (index block or leaf) into the new block
869  * - initializes new top-level, creating index that points to the
870  *   just created block
871  */
872 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
873 					struct ext4_ext_path *path,
874 					struct ext4_extent *newext)
875 {
876 	struct ext4_ext_path *curp = path;
877 	struct ext4_extent_header *neh;
878 	struct ext4_extent_idx *fidx;
879 	struct buffer_head *bh;
880 	ext4_fsblk_t newblock;
881 	int err = 0;
882 
883 	newblock = ext4_ext_new_block(handle, inode, path, newext, &err);
884 	if (newblock == 0)
885 		return err;
886 
887 	bh = sb_getblk(inode->i_sb, newblock);
888 	if (!bh) {
889 		err = -EIO;
890 		ext4_std_error(inode->i_sb, err);
891 		return err;
892 	}
893 	lock_buffer(bh);
894 
895 	err = ext4_journal_get_create_access(handle, bh);
896 	if (err) {
897 		unlock_buffer(bh);
898 		goto out;
899 	}
900 
901 	/* move top-level index/leaf into new block */
902 	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
903 
904 	/* set size of new block */
905 	neh = ext_block_hdr(bh);
906 	/* old root could have indexes or leaves
907 	 * so calculate e_max right way */
908 	if (ext_depth(inode))
909 	  neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
910 	else
911 	  neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
912 	neh->eh_magic = EXT4_EXT_MAGIC;
913 	set_buffer_uptodate(bh);
914 	unlock_buffer(bh);
915 
916 	err = ext4_journal_dirty_metadata(handle, bh);
917 	if (err)
918 		goto out;
919 
920 	/* create index in new top-level index: num,max,pointer */
921 	err = ext4_ext_get_access(handle, inode, curp);
922 	if (err)
923 		goto out;
924 
925 	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
926 	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
927 	curp->p_hdr->eh_entries = cpu_to_le16(1);
928 	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
929 
930 	if (path[0].p_hdr->eh_depth)
931 		curp->p_idx->ei_block =
932 			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
933 	else
934 		curp->p_idx->ei_block =
935 			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
936 	ext4_idx_store_pblock(curp->p_idx, newblock);
937 
938 	neh = ext_inode_hdr(inode);
939 	fidx = EXT_FIRST_INDEX(neh);
940 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
941 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
942 		  le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
943 
944 	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
945 	err = ext4_ext_dirty(handle, inode, curp);
946 out:
947 	brelse(bh);
948 
949 	return err;
950 }
951 
952 /*
953  * ext4_ext_create_new_leaf:
954  * finds empty index and adds new leaf.
955  * if no free index is found, then it requests in-depth growing.
956  */
957 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
958 					struct ext4_ext_path *path,
959 					struct ext4_extent *newext)
960 {
961 	struct ext4_ext_path *curp;
962 	int depth, i, err = 0;
963 
964 repeat:
965 	i = depth = ext_depth(inode);
966 
967 	/* walk up to the tree and look for free index entry */
968 	curp = path + depth;
969 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
970 		i--;
971 		curp--;
972 	}
973 
974 	/* we use already allocated block for index block,
975 	 * so subsequent data blocks should be contiguous */
976 	if (EXT_HAS_FREE_INDEX(curp)) {
977 		/* if we found index with free entry, then use that
978 		 * entry: create all needed subtree and add new leaf */
979 		err = ext4_ext_split(handle, inode, path, newext, i);
980 
981 		/* refill path */
982 		ext4_ext_drop_refs(path);
983 		path = ext4_ext_find_extent(inode,
984 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
985 				    path);
986 		if (IS_ERR(path))
987 			err = PTR_ERR(path);
988 	} else {
989 		/* tree is full, time to grow in depth */
990 		err = ext4_ext_grow_indepth(handle, inode, path, newext);
991 		if (err)
992 			goto out;
993 
994 		/* refill path */
995 		ext4_ext_drop_refs(path);
996 		path = ext4_ext_find_extent(inode,
997 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
998 				    path);
999 		if (IS_ERR(path)) {
1000 			err = PTR_ERR(path);
1001 			goto out;
1002 		}
1003 
1004 		/*
1005 		 * only first (depth 0 -> 1) produces free space;
1006 		 * in all other cases we have to split the grown tree
1007 		 */
1008 		depth = ext_depth(inode);
1009 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1010 			/* now we need to split */
1011 			goto repeat;
1012 		}
1013 	}
1014 
1015 out:
1016 	return err;
1017 }
1018 
1019 /*
1020  * search the closest allocated block to the left for *logical
1021  * and returns it at @logical + it's physical address at @phys
1022  * if *logical is the smallest allocated block, the function
1023  * returns 0 at @phys
1024  * return value contains 0 (success) or error code
1025  */
1026 int
1027 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1028 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1029 {
1030 	struct ext4_extent_idx *ix;
1031 	struct ext4_extent *ex;
1032 	int depth, ee_len;
1033 
1034 	BUG_ON(path == NULL);
1035 	depth = path->p_depth;
1036 	*phys = 0;
1037 
1038 	if (depth == 0 && path->p_ext == NULL)
1039 		return 0;
1040 
1041 	/* usually extent in the path covers blocks smaller
1042 	 * then *logical, but it can be that extent is the
1043 	 * first one in the file */
1044 
1045 	ex = path[depth].p_ext;
1046 	ee_len = ext4_ext_get_actual_len(ex);
1047 	if (*logical < le32_to_cpu(ex->ee_block)) {
1048 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1049 		while (--depth >= 0) {
1050 			ix = path[depth].p_idx;
1051 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1052 		}
1053 		return 0;
1054 	}
1055 
1056 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1057 
1058 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1059 	*phys = ext_pblock(ex) + ee_len - 1;
1060 	return 0;
1061 }
1062 
1063 /*
1064  * search the closest allocated block to the right for *logical
1065  * and returns it at @logical + it's physical address at @phys
1066  * if *logical is the smallest allocated block, the function
1067  * returns 0 at @phys
1068  * return value contains 0 (success) or error code
1069  */
1070 int
1071 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1072 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1073 {
1074 	struct buffer_head *bh = NULL;
1075 	struct ext4_extent_header *eh;
1076 	struct ext4_extent_idx *ix;
1077 	struct ext4_extent *ex;
1078 	ext4_fsblk_t block;
1079 	int depth, ee_len;
1080 
1081 	BUG_ON(path == NULL);
1082 	depth = path->p_depth;
1083 	*phys = 0;
1084 
1085 	if (depth == 0 && path->p_ext == NULL)
1086 		return 0;
1087 
1088 	/* usually extent in the path covers blocks smaller
1089 	 * then *logical, but it can be that extent is the
1090 	 * first one in the file */
1091 
1092 	ex = path[depth].p_ext;
1093 	ee_len = ext4_ext_get_actual_len(ex);
1094 	if (*logical < le32_to_cpu(ex->ee_block)) {
1095 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1096 		while (--depth >= 0) {
1097 			ix = path[depth].p_idx;
1098 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1099 		}
1100 		*logical = le32_to_cpu(ex->ee_block);
1101 		*phys = ext_pblock(ex);
1102 		return 0;
1103 	}
1104 
1105 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1106 
1107 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1108 		/* next allocated block in this leaf */
1109 		ex++;
1110 		*logical = le32_to_cpu(ex->ee_block);
1111 		*phys = ext_pblock(ex);
1112 		return 0;
1113 	}
1114 
1115 	/* go up and search for index to the right */
1116 	while (--depth >= 0) {
1117 		ix = path[depth].p_idx;
1118 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1119 			break;
1120 	}
1121 
1122 	if (depth < 0) {
1123 		/* we've gone up to the root and
1124 		 * found no index to the right */
1125 		return 0;
1126 	}
1127 
1128 	/* we've found index to the right, let's
1129 	 * follow it and find the closest allocated
1130 	 * block to the right */
1131 	ix++;
1132 	block = idx_pblock(ix);
1133 	while (++depth < path->p_depth) {
1134 		bh = sb_bread(inode->i_sb, block);
1135 		if (bh == NULL)
1136 			return -EIO;
1137 		eh = ext_block_hdr(bh);
1138 		if (ext4_ext_check_header(inode, eh, depth)) {
1139 			put_bh(bh);
1140 			return -EIO;
1141 		}
1142 		ix = EXT_FIRST_INDEX(eh);
1143 		block = idx_pblock(ix);
1144 		put_bh(bh);
1145 	}
1146 
1147 	bh = sb_bread(inode->i_sb, block);
1148 	if (bh == NULL)
1149 		return -EIO;
1150 	eh = ext_block_hdr(bh);
1151 	if (ext4_ext_check_header(inode, eh, path->p_depth - depth)) {
1152 		put_bh(bh);
1153 		return -EIO;
1154 	}
1155 	ex = EXT_FIRST_EXTENT(eh);
1156 	*logical = le32_to_cpu(ex->ee_block);
1157 	*phys = ext_pblock(ex);
1158 	put_bh(bh);
1159 	return 0;
1160 
1161 }
1162 
1163 /*
1164  * ext4_ext_next_allocated_block:
1165  * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1166  * NOTE: it considers block number from index entry as
1167  * allocated block. Thus, index entries have to be consistent
1168  * with leaves.
1169  */
1170 static ext4_lblk_t
1171 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1172 {
1173 	int depth;
1174 
1175 	BUG_ON(path == NULL);
1176 	depth = path->p_depth;
1177 
1178 	if (depth == 0 && path->p_ext == NULL)
1179 		return EXT_MAX_BLOCK;
1180 
1181 	while (depth >= 0) {
1182 		if (depth == path->p_depth) {
1183 			/* leaf */
1184 			if (path[depth].p_ext !=
1185 					EXT_LAST_EXTENT(path[depth].p_hdr))
1186 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1187 		} else {
1188 			/* index */
1189 			if (path[depth].p_idx !=
1190 					EXT_LAST_INDEX(path[depth].p_hdr))
1191 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1192 		}
1193 		depth--;
1194 	}
1195 
1196 	return EXT_MAX_BLOCK;
1197 }
1198 
1199 /*
1200  * ext4_ext_next_leaf_block:
1201  * returns first allocated block from next leaf or EXT_MAX_BLOCK
1202  */
1203 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1204 					struct ext4_ext_path *path)
1205 {
1206 	int depth;
1207 
1208 	BUG_ON(path == NULL);
1209 	depth = path->p_depth;
1210 
1211 	/* zero-tree has no leaf blocks at all */
1212 	if (depth == 0)
1213 		return EXT_MAX_BLOCK;
1214 
1215 	/* go to index block */
1216 	depth--;
1217 
1218 	while (depth >= 0) {
1219 		if (path[depth].p_idx !=
1220 				EXT_LAST_INDEX(path[depth].p_hdr))
1221 			return (ext4_lblk_t)
1222 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1223 		depth--;
1224 	}
1225 
1226 	return EXT_MAX_BLOCK;
1227 }
1228 
1229 /*
1230  * ext4_ext_correct_indexes:
1231  * if leaf gets modified and modified extent is first in the leaf,
1232  * then we have to correct all indexes above.
1233  * TODO: do we need to correct tree in all cases?
1234  */
1235 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1236 				struct ext4_ext_path *path)
1237 {
1238 	struct ext4_extent_header *eh;
1239 	int depth = ext_depth(inode);
1240 	struct ext4_extent *ex;
1241 	__le32 border;
1242 	int k, err = 0;
1243 
1244 	eh = path[depth].p_hdr;
1245 	ex = path[depth].p_ext;
1246 	BUG_ON(ex == NULL);
1247 	BUG_ON(eh == NULL);
1248 
1249 	if (depth == 0) {
1250 		/* there is no tree at all */
1251 		return 0;
1252 	}
1253 
1254 	if (ex != EXT_FIRST_EXTENT(eh)) {
1255 		/* we correct tree if first leaf got modified only */
1256 		return 0;
1257 	}
1258 
1259 	/*
1260 	 * TODO: we need correction if border is smaller than current one
1261 	 */
1262 	k = depth - 1;
1263 	border = path[depth].p_ext->ee_block;
1264 	err = ext4_ext_get_access(handle, inode, path + k);
1265 	if (err)
1266 		return err;
1267 	path[k].p_idx->ei_block = border;
1268 	err = ext4_ext_dirty(handle, inode, path + k);
1269 	if (err)
1270 		return err;
1271 
1272 	while (k--) {
1273 		/* change all left-side indexes */
1274 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1275 			break;
1276 		err = ext4_ext_get_access(handle, inode, path + k);
1277 		if (err)
1278 			break;
1279 		path[k].p_idx->ei_block = border;
1280 		err = ext4_ext_dirty(handle, inode, path + k);
1281 		if (err)
1282 			break;
1283 	}
1284 
1285 	return err;
1286 }
1287 
1288 static int
1289 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1290 				struct ext4_extent *ex2)
1291 {
1292 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1293 
1294 	/*
1295 	 * Make sure that either both extents are uninitialized, or
1296 	 * both are _not_.
1297 	 */
1298 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1299 		return 0;
1300 
1301 	if (ext4_ext_is_uninitialized(ex1))
1302 		max_len = EXT_UNINIT_MAX_LEN;
1303 	else
1304 		max_len = EXT_INIT_MAX_LEN;
1305 
1306 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1307 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1308 
1309 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1310 			le32_to_cpu(ex2->ee_block))
1311 		return 0;
1312 
1313 	/*
1314 	 * To allow future support for preallocated extents to be added
1315 	 * as an RO_COMPAT feature, refuse to merge to extents if
1316 	 * this can result in the top bit of ee_len being set.
1317 	 */
1318 	if (ext1_ee_len + ext2_ee_len > max_len)
1319 		return 0;
1320 #ifdef AGGRESSIVE_TEST
1321 	if (ext1_ee_len >= 4)
1322 		return 0;
1323 #endif
1324 
1325 	if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1326 		return 1;
1327 	return 0;
1328 }
1329 
1330 /*
1331  * This function tries to merge the "ex" extent to the next extent in the tree.
1332  * It always tries to merge towards right. If you want to merge towards
1333  * left, pass "ex - 1" as argument instead of "ex".
1334  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1335  * 1 if they got merged.
1336  */
1337 int ext4_ext_try_to_merge(struct inode *inode,
1338 			  struct ext4_ext_path *path,
1339 			  struct ext4_extent *ex)
1340 {
1341 	struct ext4_extent_header *eh;
1342 	unsigned int depth, len;
1343 	int merge_done = 0;
1344 	int uninitialized = 0;
1345 
1346 	depth = ext_depth(inode);
1347 	BUG_ON(path[depth].p_hdr == NULL);
1348 	eh = path[depth].p_hdr;
1349 
1350 	while (ex < EXT_LAST_EXTENT(eh)) {
1351 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1352 			break;
1353 		/* merge with next extent! */
1354 		if (ext4_ext_is_uninitialized(ex))
1355 			uninitialized = 1;
1356 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1357 				+ ext4_ext_get_actual_len(ex + 1));
1358 		if (uninitialized)
1359 			ext4_ext_mark_uninitialized(ex);
1360 
1361 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1362 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1363 				* sizeof(struct ext4_extent);
1364 			memmove(ex + 1, ex + 2, len);
1365 		}
1366 		eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries) - 1);
1367 		merge_done = 1;
1368 		WARN_ON(eh->eh_entries == 0);
1369 		if (!eh->eh_entries)
1370 			ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1371 			   "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1372 	}
1373 
1374 	return merge_done;
1375 }
1376 
1377 /*
1378  * check if a portion of the "newext" extent overlaps with an
1379  * existing extent.
1380  *
1381  * If there is an overlap discovered, it updates the length of the newext
1382  * such that there will be no overlap, and then returns 1.
1383  * If there is no overlap found, it returns 0.
1384  */
1385 unsigned int ext4_ext_check_overlap(struct inode *inode,
1386 				    struct ext4_extent *newext,
1387 				    struct ext4_ext_path *path)
1388 {
1389 	ext4_lblk_t b1, b2;
1390 	unsigned int depth, len1;
1391 	unsigned int ret = 0;
1392 
1393 	b1 = le32_to_cpu(newext->ee_block);
1394 	len1 = ext4_ext_get_actual_len(newext);
1395 	depth = ext_depth(inode);
1396 	if (!path[depth].p_ext)
1397 		goto out;
1398 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1399 
1400 	/*
1401 	 * get the next allocated block if the extent in the path
1402 	 * is before the requested block(s)
1403 	 */
1404 	if (b2 < b1) {
1405 		b2 = ext4_ext_next_allocated_block(path);
1406 		if (b2 == EXT_MAX_BLOCK)
1407 			goto out;
1408 	}
1409 
1410 	/* check for wrap through zero on extent logical start block*/
1411 	if (b1 + len1 < b1) {
1412 		len1 = EXT_MAX_BLOCK - b1;
1413 		newext->ee_len = cpu_to_le16(len1);
1414 		ret = 1;
1415 	}
1416 
1417 	/* check for overlap */
1418 	if (b1 + len1 > b2) {
1419 		newext->ee_len = cpu_to_le16(b2 - b1);
1420 		ret = 1;
1421 	}
1422 out:
1423 	return ret;
1424 }
1425 
1426 /*
1427  * ext4_ext_insert_extent:
1428  * tries to merge requsted extent into the existing extent or
1429  * inserts requested extent as new one into the tree,
1430  * creating new leaf in the no-space case.
1431  */
1432 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1433 				struct ext4_ext_path *path,
1434 				struct ext4_extent *newext)
1435 {
1436 	struct ext4_extent_header * eh;
1437 	struct ext4_extent *ex, *fex;
1438 	struct ext4_extent *nearex; /* nearest extent */
1439 	struct ext4_ext_path *npath = NULL;
1440 	int depth, len, err;
1441 	ext4_lblk_t next;
1442 	unsigned uninitialized = 0;
1443 
1444 	BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1445 	depth = ext_depth(inode);
1446 	ex = path[depth].p_ext;
1447 	BUG_ON(path[depth].p_hdr == NULL);
1448 
1449 	/* try to insert block into found extent and return */
1450 	if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1451 		ext_debug("append %d block to %d:%d (from %llu)\n",
1452 				ext4_ext_get_actual_len(newext),
1453 				le32_to_cpu(ex->ee_block),
1454 				ext4_ext_get_actual_len(ex), ext_pblock(ex));
1455 		err = ext4_ext_get_access(handle, inode, path + depth);
1456 		if (err)
1457 			return err;
1458 
1459 		/*
1460 		 * ext4_can_extents_be_merged should have checked that either
1461 		 * both extents are uninitialized, or both aren't. Thus we
1462 		 * need to check only one of them here.
1463 		 */
1464 		if (ext4_ext_is_uninitialized(ex))
1465 			uninitialized = 1;
1466 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1467 					+ ext4_ext_get_actual_len(newext));
1468 		if (uninitialized)
1469 			ext4_ext_mark_uninitialized(ex);
1470 		eh = path[depth].p_hdr;
1471 		nearex = ex;
1472 		goto merge;
1473 	}
1474 
1475 repeat:
1476 	depth = ext_depth(inode);
1477 	eh = path[depth].p_hdr;
1478 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1479 		goto has_space;
1480 
1481 	/* probably next leaf has space for us? */
1482 	fex = EXT_LAST_EXTENT(eh);
1483 	next = ext4_ext_next_leaf_block(inode, path);
1484 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1485 	    && next != EXT_MAX_BLOCK) {
1486 		ext_debug("next leaf block - %d\n", next);
1487 		BUG_ON(npath != NULL);
1488 		npath = ext4_ext_find_extent(inode, next, NULL);
1489 		if (IS_ERR(npath))
1490 			return PTR_ERR(npath);
1491 		BUG_ON(npath->p_depth != path->p_depth);
1492 		eh = npath[depth].p_hdr;
1493 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1494 			ext_debug("next leaf isnt full(%d)\n",
1495 				  le16_to_cpu(eh->eh_entries));
1496 			path = npath;
1497 			goto repeat;
1498 		}
1499 		ext_debug("next leaf has no free space(%d,%d)\n",
1500 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1501 	}
1502 
1503 	/*
1504 	 * There is no free space in the found leaf.
1505 	 * We're gonna add a new leaf in the tree.
1506 	 */
1507 	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1508 	if (err)
1509 		goto cleanup;
1510 	depth = ext_depth(inode);
1511 	eh = path[depth].p_hdr;
1512 
1513 has_space:
1514 	nearex = path[depth].p_ext;
1515 
1516 	err = ext4_ext_get_access(handle, inode, path + depth);
1517 	if (err)
1518 		goto cleanup;
1519 
1520 	if (!nearex) {
1521 		/* there is no extent in this leaf, create first one */
1522 		ext_debug("first extent in the leaf: %d:%llu:%d\n",
1523 				le32_to_cpu(newext->ee_block),
1524 				ext_pblock(newext),
1525 				ext4_ext_get_actual_len(newext));
1526 		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1527 	} else if (le32_to_cpu(newext->ee_block)
1528 			   > le32_to_cpu(nearex->ee_block)) {
1529 /*		BUG_ON(newext->ee_block == nearex->ee_block); */
1530 		if (nearex != EXT_LAST_EXTENT(eh)) {
1531 			len = EXT_MAX_EXTENT(eh) - nearex;
1532 			len = (len - 1) * sizeof(struct ext4_extent);
1533 			len = len < 0 ? 0 : len;
1534 			ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1535 					"move %d from 0x%p to 0x%p\n",
1536 					le32_to_cpu(newext->ee_block),
1537 					ext_pblock(newext),
1538 					ext4_ext_get_actual_len(newext),
1539 					nearex, len, nearex + 1, nearex + 2);
1540 			memmove(nearex + 2, nearex + 1, len);
1541 		}
1542 		path[depth].p_ext = nearex + 1;
1543 	} else {
1544 		BUG_ON(newext->ee_block == nearex->ee_block);
1545 		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1546 		len = len < 0 ? 0 : len;
1547 		ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1548 				"move %d from 0x%p to 0x%p\n",
1549 				le32_to_cpu(newext->ee_block),
1550 				ext_pblock(newext),
1551 				ext4_ext_get_actual_len(newext),
1552 				nearex, len, nearex + 1, nearex + 2);
1553 		memmove(nearex + 1, nearex, len);
1554 		path[depth].p_ext = nearex;
1555 	}
1556 
1557 	eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries)+1);
1558 	nearex = path[depth].p_ext;
1559 	nearex->ee_block = newext->ee_block;
1560 	ext4_ext_store_pblock(nearex, ext_pblock(newext));
1561 	nearex->ee_len = newext->ee_len;
1562 
1563 merge:
1564 	/* try to merge extents to the right */
1565 	ext4_ext_try_to_merge(inode, path, nearex);
1566 
1567 	/* try to merge extents to the left */
1568 
1569 	/* time to correct all indexes above */
1570 	err = ext4_ext_correct_indexes(handle, inode, path);
1571 	if (err)
1572 		goto cleanup;
1573 
1574 	err = ext4_ext_dirty(handle, inode, path + depth);
1575 
1576 cleanup:
1577 	if (npath) {
1578 		ext4_ext_drop_refs(npath);
1579 		kfree(npath);
1580 	}
1581 	ext4_ext_tree_changed(inode);
1582 	ext4_ext_invalidate_cache(inode);
1583 	return err;
1584 }
1585 
1586 static void
1587 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1588 			__u32 len, ext4_fsblk_t start, int type)
1589 {
1590 	struct ext4_ext_cache *cex;
1591 	BUG_ON(len == 0);
1592 	cex = &EXT4_I(inode)->i_cached_extent;
1593 	cex->ec_type = type;
1594 	cex->ec_block = block;
1595 	cex->ec_len = len;
1596 	cex->ec_start = start;
1597 }
1598 
1599 /*
1600  * ext4_ext_put_gap_in_cache:
1601  * calculate boundaries of the gap that the requested block fits into
1602  * and cache this gap
1603  */
1604 static void
1605 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1606 				ext4_lblk_t block)
1607 {
1608 	int depth = ext_depth(inode);
1609 	unsigned long len;
1610 	ext4_lblk_t lblock;
1611 	struct ext4_extent *ex;
1612 
1613 	ex = path[depth].p_ext;
1614 	if (ex == NULL) {
1615 		/* there is no extent yet, so gap is [0;-] */
1616 		lblock = 0;
1617 		len = EXT_MAX_BLOCK;
1618 		ext_debug("cache gap(whole file):");
1619 	} else if (block < le32_to_cpu(ex->ee_block)) {
1620 		lblock = block;
1621 		len = le32_to_cpu(ex->ee_block) - block;
1622 		ext_debug("cache gap(before): %u [%u:%u]",
1623 				block,
1624 				le32_to_cpu(ex->ee_block),
1625 				 ext4_ext_get_actual_len(ex));
1626 	} else if (block >= le32_to_cpu(ex->ee_block)
1627 			+ ext4_ext_get_actual_len(ex)) {
1628 		ext4_lblk_t next;
1629 		lblock = le32_to_cpu(ex->ee_block)
1630 			+ ext4_ext_get_actual_len(ex);
1631 
1632 		next = ext4_ext_next_allocated_block(path);
1633 		ext_debug("cache gap(after): [%u:%u] %u",
1634 				le32_to_cpu(ex->ee_block),
1635 				ext4_ext_get_actual_len(ex),
1636 				block);
1637 		BUG_ON(next == lblock);
1638 		len = next - lblock;
1639 	} else {
1640 		lblock = len = 0;
1641 		BUG();
1642 	}
1643 
1644 	ext_debug(" -> %u:%lu\n", lblock, len);
1645 	ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1646 }
1647 
1648 static int
1649 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1650 			struct ext4_extent *ex)
1651 {
1652 	struct ext4_ext_cache *cex;
1653 
1654 	cex = &EXT4_I(inode)->i_cached_extent;
1655 
1656 	/* has cache valid data? */
1657 	if (cex->ec_type == EXT4_EXT_CACHE_NO)
1658 		return EXT4_EXT_CACHE_NO;
1659 
1660 	BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1661 			cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1662 	if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1663 		ex->ee_block = cpu_to_le32(cex->ec_block);
1664 		ext4_ext_store_pblock(ex, cex->ec_start);
1665 		ex->ee_len = cpu_to_le16(cex->ec_len);
1666 		ext_debug("%u cached by %u:%u:%llu\n",
1667 				block,
1668 				cex->ec_block, cex->ec_len, cex->ec_start);
1669 		return cex->ec_type;
1670 	}
1671 
1672 	/* not in cache */
1673 	return EXT4_EXT_CACHE_NO;
1674 }
1675 
1676 /*
1677  * ext4_ext_rm_idx:
1678  * removes index from the index block.
1679  * It's used in truncate case only, thus all requests are for
1680  * last index in the block only.
1681  */
1682 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1683 			struct ext4_ext_path *path)
1684 {
1685 	struct buffer_head *bh;
1686 	int err;
1687 	ext4_fsblk_t leaf;
1688 
1689 	/* free index block */
1690 	path--;
1691 	leaf = idx_pblock(path->p_idx);
1692 	BUG_ON(path->p_hdr->eh_entries == 0);
1693 	err = ext4_ext_get_access(handle, inode, path);
1694 	if (err)
1695 		return err;
1696 	path->p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(path->p_hdr->eh_entries)-1);
1697 	err = ext4_ext_dirty(handle, inode, path);
1698 	if (err)
1699 		return err;
1700 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
1701 	bh = sb_find_get_block(inode->i_sb, leaf);
1702 	ext4_forget(handle, 1, inode, bh, leaf);
1703 	ext4_free_blocks(handle, inode, leaf, 1, 1);
1704 	return err;
1705 }
1706 
1707 /*
1708  * ext4_ext_calc_credits_for_insert:
1709  * This routine returns max. credits that the extent tree can consume.
1710  * It should be OK for low-performance paths like ->writepage()
1711  * To allow many writing processes to fit into a single transaction,
1712  * the caller should calculate credits under i_data_sem and
1713  * pass the actual path.
1714  */
1715 int ext4_ext_calc_credits_for_insert(struct inode *inode,
1716 						struct ext4_ext_path *path)
1717 {
1718 	int depth, needed;
1719 
1720 	if (path) {
1721 		/* probably there is space in leaf? */
1722 		depth = ext_depth(inode);
1723 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1724 				< le16_to_cpu(path[depth].p_hdr->eh_max))
1725 			return 1;
1726 	}
1727 
1728 	/*
1729 	 * given 32-bit logical block (4294967296 blocks), max. tree
1730 	 * can be 4 levels in depth -- 4 * 340^4 == 53453440000.
1731 	 * Let's also add one more level for imbalance.
1732 	 */
1733 	depth = 5;
1734 
1735 	/* allocation of new data block(s) */
1736 	needed = 2;
1737 
1738 	/*
1739 	 * tree can be full, so it would need to grow in depth:
1740 	 * we need one credit to modify old root, credits for
1741 	 * new root will be added in split accounting
1742 	 */
1743 	needed += 1;
1744 
1745 	/*
1746 	 * Index split can happen, we would need:
1747 	 *    allocate intermediate indexes (bitmap + group)
1748 	 *  + change two blocks at each level, but root (already included)
1749 	 */
1750 	needed += (depth * 2) + (depth * 2);
1751 
1752 	/* any allocation modifies superblock */
1753 	needed += 1;
1754 
1755 	return needed;
1756 }
1757 
1758 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
1759 				struct ext4_extent *ex,
1760 				ext4_lblk_t from, ext4_lblk_t to)
1761 {
1762 	struct buffer_head *bh;
1763 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
1764 	int i, metadata = 0;
1765 
1766 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1767 		metadata = 1;
1768 #ifdef EXTENTS_STATS
1769 	{
1770 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1771 		spin_lock(&sbi->s_ext_stats_lock);
1772 		sbi->s_ext_blocks += ee_len;
1773 		sbi->s_ext_extents++;
1774 		if (ee_len < sbi->s_ext_min)
1775 			sbi->s_ext_min = ee_len;
1776 		if (ee_len > sbi->s_ext_max)
1777 			sbi->s_ext_max = ee_len;
1778 		if (ext_depth(inode) > sbi->s_depth_max)
1779 			sbi->s_depth_max = ext_depth(inode);
1780 		spin_unlock(&sbi->s_ext_stats_lock);
1781 	}
1782 #endif
1783 	if (from >= le32_to_cpu(ex->ee_block)
1784 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
1785 		/* tail removal */
1786 		ext4_lblk_t num;
1787 		ext4_fsblk_t start;
1788 
1789 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
1790 		start = ext_pblock(ex) + ee_len - num;
1791 		ext_debug("free last %u blocks starting %llu\n", num, start);
1792 		for (i = 0; i < num; i++) {
1793 			bh = sb_find_get_block(inode->i_sb, start + i);
1794 			ext4_forget(handle, 0, inode, bh, start + i);
1795 		}
1796 		ext4_free_blocks(handle, inode, start, num, metadata);
1797 	} else if (from == le32_to_cpu(ex->ee_block)
1798 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
1799 		printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
1800 			from, to, le32_to_cpu(ex->ee_block), ee_len);
1801 	} else {
1802 		printk(KERN_INFO "strange request: removal(2) "
1803 				"%u-%u from %u:%u\n",
1804 				from, to, le32_to_cpu(ex->ee_block), ee_len);
1805 	}
1806 	return 0;
1807 }
1808 
1809 static int
1810 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
1811 		struct ext4_ext_path *path, ext4_lblk_t start)
1812 {
1813 	int err = 0, correct_index = 0;
1814 	int depth = ext_depth(inode), credits;
1815 	struct ext4_extent_header *eh;
1816 	ext4_lblk_t a, b, block;
1817 	unsigned num;
1818 	ext4_lblk_t ex_ee_block;
1819 	unsigned short ex_ee_len;
1820 	unsigned uninitialized = 0;
1821 	struct ext4_extent *ex;
1822 
1823 	/* the header must be checked already in ext4_ext_remove_space() */
1824 	ext_debug("truncate since %u in leaf\n", start);
1825 	if (!path[depth].p_hdr)
1826 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
1827 	eh = path[depth].p_hdr;
1828 	BUG_ON(eh == NULL);
1829 
1830 	/* find where to start removing */
1831 	ex = EXT_LAST_EXTENT(eh);
1832 
1833 	ex_ee_block = le32_to_cpu(ex->ee_block);
1834 	if (ext4_ext_is_uninitialized(ex))
1835 		uninitialized = 1;
1836 	ex_ee_len = ext4_ext_get_actual_len(ex);
1837 
1838 	while (ex >= EXT_FIRST_EXTENT(eh) &&
1839 			ex_ee_block + ex_ee_len > start) {
1840 		ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
1841 		path[depth].p_ext = ex;
1842 
1843 		a = ex_ee_block > start ? ex_ee_block : start;
1844 		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
1845 			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
1846 
1847 		ext_debug("  border %u:%u\n", a, b);
1848 
1849 		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
1850 			block = 0;
1851 			num = 0;
1852 			BUG();
1853 		} else if (a != ex_ee_block) {
1854 			/* remove tail of the extent */
1855 			block = ex_ee_block;
1856 			num = a - block;
1857 		} else if (b != ex_ee_block + ex_ee_len - 1) {
1858 			/* remove head of the extent */
1859 			block = a;
1860 			num = b - a;
1861 			/* there is no "make a hole" API yet */
1862 			BUG();
1863 		} else {
1864 			/* remove whole extent: excellent! */
1865 			block = ex_ee_block;
1866 			num = 0;
1867 			BUG_ON(a != ex_ee_block);
1868 			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
1869 		}
1870 
1871 		/* at present, extent can't cross block group: */
1872 		/* leaf + bitmap + group desc + sb + inode */
1873 		credits = 5;
1874 		if (ex == EXT_FIRST_EXTENT(eh)) {
1875 			correct_index = 1;
1876 			credits += (ext_depth(inode)) + 1;
1877 		}
1878 #ifdef CONFIG_QUOTA
1879 		credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
1880 #endif
1881 
1882 		handle = ext4_ext_journal_restart(handle, credits);
1883 		if (IS_ERR(handle)) {
1884 			err = PTR_ERR(handle);
1885 			goto out;
1886 		}
1887 
1888 		err = ext4_ext_get_access(handle, inode, path + depth);
1889 		if (err)
1890 			goto out;
1891 
1892 		err = ext4_remove_blocks(handle, inode, ex, a, b);
1893 		if (err)
1894 			goto out;
1895 
1896 		if (num == 0) {
1897 			/* this extent is removed; mark slot entirely unused */
1898 			ext4_ext_store_pblock(ex, 0);
1899 			eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries)-1);
1900 		}
1901 
1902 		ex->ee_block = cpu_to_le32(block);
1903 		ex->ee_len = cpu_to_le16(num);
1904 		/*
1905 		 * Do not mark uninitialized if all the blocks in the
1906 		 * extent have been removed.
1907 		 */
1908 		if (uninitialized && num)
1909 			ext4_ext_mark_uninitialized(ex);
1910 
1911 		err = ext4_ext_dirty(handle, inode, path + depth);
1912 		if (err)
1913 			goto out;
1914 
1915 		ext_debug("new extent: %u:%u:%llu\n", block, num,
1916 				ext_pblock(ex));
1917 		ex--;
1918 		ex_ee_block = le32_to_cpu(ex->ee_block);
1919 		ex_ee_len = ext4_ext_get_actual_len(ex);
1920 	}
1921 
1922 	if (correct_index && eh->eh_entries)
1923 		err = ext4_ext_correct_indexes(handle, inode, path);
1924 
1925 	/* if this leaf is free, then we should
1926 	 * remove it from index block above */
1927 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
1928 		err = ext4_ext_rm_idx(handle, inode, path + depth);
1929 
1930 out:
1931 	return err;
1932 }
1933 
1934 /*
1935  * ext4_ext_more_to_rm:
1936  * returns 1 if current index has to be freed (even partial)
1937  */
1938 static int
1939 ext4_ext_more_to_rm(struct ext4_ext_path *path)
1940 {
1941 	BUG_ON(path->p_idx == NULL);
1942 
1943 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
1944 		return 0;
1945 
1946 	/*
1947 	 * if truncate on deeper level happened, it wasn't partial,
1948 	 * so we have to consider current index for truncation
1949 	 */
1950 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
1951 		return 0;
1952 	return 1;
1953 }
1954 
1955 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
1956 {
1957 	struct super_block *sb = inode->i_sb;
1958 	int depth = ext_depth(inode);
1959 	struct ext4_ext_path *path;
1960 	handle_t *handle;
1961 	int i = 0, err = 0;
1962 
1963 	ext_debug("truncate since %u\n", start);
1964 
1965 	/* probably first extent we're gonna free will be last in block */
1966 	handle = ext4_journal_start(inode, depth + 1);
1967 	if (IS_ERR(handle))
1968 		return PTR_ERR(handle);
1969 
1970 	ext4_ext_invalidate_cache(inode);
1971 
1972 	/*
1973 	 * We start scanning from right side, freeing all the blocks
1974 	 * after i_size and walking into the tree depth-wise.
1975 	 */
1976 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_KERNEL);
1977 	if (path == NULL) {
1978 		ext4_journal_stop(handle);
1979 		return -ENOMEM;
1980 	}
1981 	path[0].p_hdr = ext_inode_hdr(inode);
1982 	if (ext4_ext_check_header(inode, path[0].p_hdr, depth)) {
1983 		err = -EIO;
1984 		goto out;
1985 	}
1986 	path[0].p_depth = depth;
1987 
1988 	while (i >= 0 && err == 0) {
1989 		if (i == depth) {
1990 			/* this is leaf block */
1991 			err = ext4_ext_rm_leaf(handle, inode, path, start);
1992 			/* root level has p_bh == NULL, brelse() eats this */
1993 			brelse(path[i].p_bh);
1994 			path[i].p_bh = NULL;
1995 			i--;
1996 			continue;
1997 		}
1998 
1999 		/* this is index block */
2000 		if (!path[i].p_hdr) {
2001 			ext_debug("initialize header\n");
2002 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2003 		}
2004 
2005 		if (!path[i].p_idx) {
2006 			/* this level hasn't been touched yet */
2007 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2008 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2009 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2010 				  path[i].p_hdr,
2011 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2012 		} else {
2013 			/* we were already here, see at next index */
2014 			path[i].p_idx--;
2015 		}
2016 
2017 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2018 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2019 				path[i].p_idx);
2020 		if (ext4_ext_more_to_rm(path + i)) {
2021 			struct buffer_head *bh;
2022 			/* go to the next level */
2023 			ext_debug("move to level %d (block %llu)\n",
2024 				  i + 1, idx_pblock(path[i].p_idx));
2025 			memset(path + i + 1, 0, sizeof(*path));
2026 			bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2027 			if (!bh) {
2028 				/* should we reset i_size? */
2029 				err = -EIO;
2030 				break;
2031 			}
2032 			if (WARN_ON(i + 1 > depth)) {
2033 				err = -EIO;
2034 				break;
2035 			}
2036 			if (ext4_ext_check_header(inode, ext_block_hdr(bh),
2037 							depth - i - 1)) {
2038 				err = -EIO;
2039 				break;
2040 			}
2041 			path[i + 1].p_bh = bh;
2042 
2043 			/* save actual number of indexes since this
2044 			 * number is changed at the next iteration */
2045 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2046 			i++;
2047 		} else {
2048 			/* we finished processing this index, go up */
2049 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2050 				/* index is empty, remove it;
2051 				 * handle must be already prepared by the
2052 				 * truncatei_leaf() */
2053 				err = ext4_ext_rm_idx(handle, inode, path + i);
2054 			}
2055 			/* root level has p_bh == NULL, brelse() eats this */
2056 			brelse(path[i].p_bh);
2057 			path[i].p_bh = NULL;
2058 			i--;
2059 			ext_debug("return to level %d\n", i);
2060 		}
2061 	}
2062 
2063 	/* TODO: flexible tree reduction should be here */
2064 	if (path->p_hdr->eh_entries == 0) {
2065 		/*
2066 		 * truncate to zero freed all the tree,
2067 		 * so we need to correct eh_depth
2068 		 */
2069 		err = ext4_ext_get_access(handle, inode, path);
2070 		if (err == 0) {
2071 			ext_inode_hdr(inode)->eh_depth = 0;
2072 			ext_inode_hdr(inode)->eh_max =
2073 				cpu_to_le16(ext4_ext_space_root(inode));
2074 			err = ext4_ext_dirty(handle, inode, path);
2075 		}
2076 	}
2077 out:
2078 	ext4_ext_tree_changed(inode);
2079 	ext4_ext_drop_refs(path);
2080 	kfree(path);
2081 	ext4_journal_stop(handle);
2082 
2083 	return err;
2084 }
2085 
2086 /*
2087  * called at mount time
2088  */
2089 void ext4_ext_init(struct super_block *sb)
2090 {
2091 	/*
2092 	 * possible initialization would be here
2093 	 */
2094 
2095 	if (test_opt(sb, EXTENTS)) {
2096 		printk("EXT4-fs: file extents enabled");
2097 #ifdef AGGRESSIVE_TEST
2098 		printk(", aggressive tests");
2099 #endif
2100 #ifdef CHECK_BINSEARCH
2101 		printk(", check binsearch");
2102 #endif
2103 #ifdef EXTENTS_STATS
2104 		printk(", stats");
2105 #endif
2106 		printk("\n");
2107 #ifdef EXTENTS_STATS
2108 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2109 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2110 		EXT4_SB(sb)->s_ext_max = 0;
2111 #endif
2112 	}
2113 }
2114 
2115 /*
2116  * called at umount time
2117  */
2118 void ext4_ext_release(struct super_block *sb)
2119 {
2120 	if (!test_opt(sb, EXTENTS))
2121 		return;
2122 
2123 #ifdef EXTENTS_STATS
2124 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2125 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2126 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2127 			sbi->s_ext_blocks, sbi->s_ext_extents,
2128 			sbi->s_ext_blocks / sbi->s_ext_extents);
2129 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2130 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2131 	}
2132 #endif
2133 }
2134 
2135 /*
2136  * This function is called by ext4_ext_get_blocks() if someone tries to write
2137  * to an uninitialized extent. It may result in splitting the uninitialized
2138  * extent into multiple extents (upto three - one initialized and two
2139  * uninitialized).
2140  * There are three possibilities:
2141  *   a> There is no split required: Entire extent should be initialized
2142  *   b> Splits in two extents: Write is happening at either end of the extent
2143  *   c> Splits in three extents: Somone is writing in middle of the extent
2144  */
2145 static int ext4_ext_convert_to_initialized(handle_t *handle,
2146 						struct inode *inode,
2147 						struct ext4_ext_path *path,
2148 						ext4_lblk_t iblock,
2149 						unsigned long max_blocks)
2150 {
2151 	struct ext4_extent *ex, newex;
2152 	struct ext4_extent *ex1 = NULL;
2153 	struct ext4_extent *ex2 = NULL;
2154 	struct ext4_extent *ex3 = NULL;
2155 	struct ext4_extent_header *eh;
2156 	ext4_lblk_t ee_block;
2157 	unsigned int allocated, ee_len, depth;
2158 	ext4_fsblk_t newblock;
2159 	int err = 0;
2160 	int ret = 0;
2161 
2162 	depth = ext_depth(inode);
2163 	eh = path[depth].p_hdr;
2164 	ex = path[depth].p_ext;
2165 	ee_block = le32_to_cpu(ex->ee_block);
2166 	ee_len = ext4_ext_get_actual_len(ex);
2167 	allocated = ee_len - (iblock - ee_block);
2168 	newblock = iblock - ee_block + ext_pblock(ex);
2169 	ex2 = ex;
2170 
2171 	/* ex1: ee_block to iblock - 1 : uninitialized */
2172 	if (iblock > ee_block) {
2173 		ex1 = ex;
2174 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2175 		ext4_ext_mark_uninitialized(ex1);
2176 		ex2 = &newex;
2177 	}
2178 	/*
2179 	 * for sanity, update the length of the ex2 extent before
2180 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2181 	 * overlap of blocks.
2182 	 */
2183 	if (!ex1 && allocated > max_blocks)
2184 		ex2->ee_len = cpu_to_le16(max_blocks);
2185 	/* ex3: to ee_block + ee_len : uninitialised */
2186 	if (allocated > max_blocks) {
2187 		unsigned int newdepth;
2188 		ex3 = &newex;
2189 		ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2190 		ext4_ext_store_pblock(ex3, newblock + max_blocks);
2191 		ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2192 		ext4_ext_mark_uninitialized(ex3);
2193 		err = ext4_ext_insert_extent(handle, inode, path, ex3);
2194 		if (err)
2195 			goto out;
2196 		/*
2197 		 * The depth, and hence eh & ex might change
2198 		 * as part of the insert above.
2199 		 */
2200 		newdepth = ext_depth(inode);
2201 		if (newdepth != depth) {
2202 			depth = newdepth;
2203 			path = ext4_ext_find_extent(inode, iblock, NULL);
2204 			if (IS_ERR(path)) {
2205 				err = PTR_ERR(path);
2206 				path = NULL;
2207 				goto out;
2208 			}
2209 			eh = path[depth].p_hdr;
2210 			ex = path[depth].p_ext;
2211 			if (ex2 != &newex)
2212 				ex2 = ex;
2213 		}
2214 		allocated = max_blocks;
2215 	}
2216 	/*
2217 	 * If there was a change of depth as part of the
2218 	 * insertion of ex3 above, we need to update the length
2219 	 * of the ex1 extent again here
2220 	 */
2221 	if (ex1 && ex1 != ex) {
2222 		ex1 = ex;
2223 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2224 		ext4_ext_mark_uninitialized(ex1);
2225 		ex2 = &newex;
2226 	}
2227 	/* ex2: iblock to iblock + maxblocks-1 : initialised */
2228 	ex2->ee_block = cpu_to_le32(iblock);
2229 	ext4_ext_store_pblock(ex2, newblock);
2230 	ex2->ee_len = cpu_to_le16(allocated);
2231 	if (ex2 != ex)
2232 		goto insert;
2233 	err = ext4_ext_get_access(handle, inode, path + depth);
2234 	if (err)
2235 		goto out;
2236 	/*
2237 	 * New (initialized) extent starts from the first block
2238 	 * in the current extent. i.e., ex2 == ex
2239 	 * We have to see if it can be merged with the extent
2240 	 * on the left.
2241 	 */
2242 	if (ex2 > EXT_FIRST_EXTENT(eh)) {
2243 		/*
2244 		 * To merge left, pass "ex2 - 1" to try_to_merge(),
2245 		 * since it merges towards right _only_.
2246 		 */
2247 		ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2248 		if (ret) {
2249 			err = ext4_ext_correct_indexes(handle, inode, path);
2250 			if (err)
2251 				goto out;
2252 			depth = ext_depth(inode);
2253 			ex2--;
2254 		}
2255 	}
2256 	/*
2257 	 * Try to Merge towards right. This might be required
2258 	 * only when the whole extent is being written to.
2259 	 * i.e. ex2 == ex and ex3 == NULL.
2260 	 */
2261 	if (!ex3) {
2262 		ret = ext4_ext_try_to_merge(inode, path, ex2);
2263 		if (ret) {
2264 			err = ext4_ext_correct_indexes(handle, inode, path);
2265 			if (err)
2266 				goto out;
2267 		}
2268 	}
2269 	/* Mark modified extent as dirty */
2270 	err = ext4_ext_dirty(handle, inode, path + depth);
2271 	goto out;
2272 insert:
2273 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2274 out:
2275 	return err ? err : allocated;
2276 }
2277 
2278 /*
2279  * Need to be called with
2280  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
2281  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
2282  */
2283 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
2284 			ext4_lblk_t iblock,
2285 			unsigned long max_blocks, struct buffer_head *bh_result,
2286 			int create, int extend_disksize)
2287 {
2288 	struct ext4_ext_path *path = NULL;
2289 	struct ext4_extent_header *eh;
2290 	struct ext4_extent newex, *ex;
2291 	ext4_fsblk_t goal, newblock;
2292 	int err = 0, depth, ret;
2293 	unsigned long allocated = 0;
2294 	struct ext4_allocation_request ar;
2295 
2296 	__clear_bit(BH_New, &bh_result->b_state);
2297 	ext_debug("blocks %u/%lu requested for inode %u\n",
2298 			iblock, max_blocks, inode->i_ino);
2299 
2300 	/* check in cache */
2301 	goal = ext4_ext_in_cache(inode, iblock, &newex);
2302 	if (goal) {
2303 		if (goal == EXT4_EXT_CACHE_GAP) {
2304 			if (!create) {
2305 				/*
2306 				 * block isn't allocated yet and
2307 				 * user doesn't want to allocate it
2308 				 */
2309 				goto out2;
2310 			}
2311 			/* we should allocate requested block */
2312 		} else if (goal == EXT4_EXT_CACHE_EXTENT) {
2313 			/* block is already allocated */
2314 			newblock = iblock
2315 				   - le32_to_cpu(newex.ee_block)
2316 				   + ext_pblock(&newex);
2317 			/* number of remaining blocks in the extent */
2318 			allocated = ext4_ext_get_actual_len(&newex) -
2319 					(iblock - le32_to_cpu(newex.ee_block));
2320 			goto out;
2321 		} else {
2322 			BUG();
2323 		}
2324 	}
2325 
2326 	/* find extent for this block */
2327 	path = ext4_ext_find_extent(inode, iblock, NULL);
2328 	if (IS_ERR(path)) {
2329 		err = PTR_ERR(path);
2330 		path = NULL;
2331 		goto out2;
2332 	}
2333 
2334 	depth = ext_depth(inode);
2335 
2336 	/*
2337 	 * consistent leaf must not be empty;
2338 	 * this situation is possible, though, _during_ tree modification;
2339 	 * this is why assert can't be put in ext4_ext_find_extent()
2340 	 */
2341 	BUG_ON(path[depth].p_ext == NULL && depth != 0);
2342 	eh = path[depth].p_hdr;
2343 
2344 	ex = path[depth].p_ext;
2345 	if (ex) {
2346 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
2347 		ext4_fsblk_t ee_start = ext_pblock(ex);
2348 		unsigned short ee_len;
2349 
2350 		/*
2351 		 * Uninitialized extents are treated as holes, except that
2352 		 * we split out initialized portions during a write.
2353 		 */
2354 		ee_len = ext4_ext_get_actual_len(ex);
2355 		/* if found extent covers block, simply return it */
2356 		if (iblock >= ee_block && iblock < ee_block + ee_len) {
2357 			newblock = iblock - ee_block + ee_start;
2358 			/* number of remaining blocks in the extent */
2359 			allocated = ee_len - (iblock - ee_block);
2360 			ext_debug("%u fit into %lu:%d -> %llu\n", iblock,
2361 					ee_block, ee_len, newblock);
2362 
2363 			/* Do not put uninitialized extent in the cache */
2364 			if (!ext4_ext_is_uninitialized(ex)) {
2365 				ext4_ext_put_in_cache(inode, ee_block,
2366 							ee_len, ee_start,
2367 							EXT4_EXT_CACHE_EXTENT);
2368 				goto out;
2369 			}
2370 			if (create == EXT4_CREATE_UNINITIALIZED_EXT)
2371 				goto out;
2372 			if (!create)
2373 				goto out2;
2374 
2375 			ret = ext4_ext_convert_to_initialized(handle, inode,
2376 								path, iblock,
2377 								max_blocks);
2378 			if (ret <= 0) {
2379 				err = ret;
2380 				goto out2;
2381 			} else
2382 				allocated = ret;
2383 			goto outnew;
2384 		}
2385 	}
2386 
2387 	/*
2388 	 * requested block isn't allocated yet;
2389 	 * we couldn't try to create block if create flag is zero
2390 	 */
2391 	if (!create) {
2392 		/*
2393 		 * put just found gap into cache to speed up
2394 		 * subsequent requests
2395 		 */
2396 		ext4_ext_put_gap_in_cache(inode, path, iblock);
2397 		goto out2;
2398 	}
2399 	/*
2400 	 * Okay, we need to do block allocation.  Lazily initialize the block
2401 	 * allocation info here if necessary.
2402 	 */
2403 	if (S_ISREG(inode->i_mode) && (!EXT4_I(inode)->i_block_alloc_info))
2404 		ext4_init_block_alloc_info(inode);
2405 
2406 	/* find neighbour allocated blocks */
2407 	ar.lleft = iblock;
2408 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
2409 	if (err)
2410 		goto out2;
2411 	ar.lright = iblock;
2412 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
2413 	if (err)
2414 		goto out2;
2415 
2416 	/*
2417 	 * See if request is beyond maximum number of blocks we can have in
2418 	 * a single extent. For an initialized extent this limit is
2419 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2420 	 * EXT_UNINIT_MAX_LEN.
2421 	 */
2422 	if (max_blocks > EXT_INIT_MAX_LEN &&
2423 	    create != EXT4_CREATE_UNINITIALIZED_EXT)
2424 		max_blocks = EXT_INIT_MAX_LEN;
2425 	else if (max_blocks > EXT_UNINIT_MAX_LEN &&
2426 		 create == EXT4_CREATE_UNINITIALIZED_EXT)
2427 		max_blocks = EXT_UNINIT_MAX_LEN;
2428 
2429 	/* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2430 	newex.ee_block = cpu_to_le32(iblock);
2431 	newex.ee_len = cpu_to_le16(max_blocks);
2432 	err = ext4_ext_check_overlap(inode, &newex, path);
2433 	if (err)
2434 		allocated = ext4_ext_get_actual_len(&newex);
2435 	else
2436 		allocated = max_blocks;
2437 
2438 	/* allocate new block */
2439 	ar.inode = inode;
2440 	ar.goal = ext4_ext_find_goal(inode, path, iblock);
2441 	ar.logical = iblock;
2442 	ar.len = allocated;
2443 	if (S_ISREG(inode->i_mode))
2444 		ar.flags = EXT4_MB_HINT_DATA;
2445 	else
2446 		/* disable in-core preallocation for non-regular files */
2447 		ar.flags = 0;
2448 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
2449 	if (!newblock)
2450 		goto out2;
2451 	ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2452 			goal, newblock, allocated);
2453 
2454 	/* try to insert new extent into found leaf and return */
2455 	ext4_ext_store_pblock(&newex, newblock);
2456 	newex.ee_len = cpu_to_le16(ar.len);
2457 	if (create == EXT4_CREATE_UNINITIALIZED_EXT)  /* Mark uninitialized */
2458 		ext4_ext_mark_uninitialized(&newex);
2459 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2460 	if (err) {
2461 		/* free data blocks we just allocated */
2462 		/* not a good idea to call discard here directly,
2463 		 * but otherwise we'd need to call it every free() */
2464 		ext4_mb_discard_inode_preallocations(inode);
2465 		ext4_free_blocks(handle, inode, ext_pblock(&newex),
2466 					ext4_ext_get_actual_len(&newex), 0);
2467 		goto out2;
2468 	}
2469 
2470 	if (extend_disksize && inode->i_size > EXT4_I(inode)->i_disksize)
2471 		EXT4_I(inode)->i_disksize = inode->i_size;
2472 
2473 	/* previous routine could use block we allocated */
2474 	newblock = ext_pblock(&newex);
2475 	allocated = ext4_ext_get_actual_len(&newex);
2476 outnew:
2477 	__set_bit(BH_New, &bh_result->b_state);
2478 
2479 	/* Cache only when it is _not_ an uninitialized extent */
2480 	if (create != EXT4_CREATE_UNINITIALIZED_EXT)
2481 		ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2482 						EXT4_EXT_CACHE_EXTENT);
2483 out:
2484 	if (allocated > max_blocks)
2485 		allocated = max_blocks;
2486 	ext4_ext_show_leaf(inode, path);
2487 	__set_bit(BH_Mapped, &bh_result->b_state);
2488 	bh_result->b_bdev = inode->i_sb->s_bdev;
2489 	bh_result->b_blocknr = newblock;
2490 out2:
2491 	if (path) {
2492 		ext4_ext_drop_refs(path);
2493 		kfree(path);
2494 	}
2495 	return err ? err : allocated;
2496 }
2497 
2498 void ext4_ext_truncate(struct inode * inode, struct page *page)
2499 {
2500 	struct address_space *mapping = inode->i_mapping;
2501 	struct super_block *sb = inode->i_sb;
2502 	ext4_lblk_t last_block;
2503 	handle_t *handle;
2504 	int err = 0;
2505 
2506 	/*
2507 	 * probably first extent we're gonna free will be last in block
2508 	 */
2509 	err = ext4_writepage_trans_blocks(inode) + 3;
2510 	handle = ext4_journal_start(inode, err);
2511 	if (IS_ERR(handle)) {
2512 		if (page) {
2513 			clear_highpage(page);
2514 			flush_dcache_page(page);
2515 			unlock_page(page);
2516 			page_cache_release(page);
2517 		}
2518 		return;
2519 	}
2520 
2521 	if (page)
2522 		ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2523 
2524 	down_write(&EXT4_I(inode)->i_data_sem);
2525 	ext4_ext_invalidate_cache(inode);
2526 
2527 	ext4_mb_discard_inode_preallocations(inode);
2528 
2529 	/*
2530 	 * TODO: optimization is possible here.
2531 	 * Probably we need not scan at all,
2532 	 * because page truncation is enough.
2533 	 */
2534 	if (ext4_orphan_add(handle, inode))
2535 		goto out_stop;
2536 
2537 	/* we have to know where to truncate from in crash case */
2538 	EXT4_I(inode)->i_disksize = inode->i_size;
2539 	ext4_mark_inode_dirty(handle, inode);
2540 
2541 	last_block = (inode->i_size + sb->s_blocksize - 1)
2542 			>> EXT4_BLOCK_SIZE_BITS(sb);
2543 	err = ext4_ext_remove_space(inode, last_block);
2544 
2545 	/* In a multi-transaction truncate, we only make the final
2546 	 * transaction synchronous.
2547 	 */
2548 	if (IS_SYNC(inode))
2549 		handle->h_sync = 1;
2550 
2551 out_stop:
2552 	/*
2553 	 * If this was a simple ftruncate() and the file will remain alive,
2554 	 * then we need to clear up the orphan record which we created above.
2555 	 * However, if this was a real unlink then we were called by
2556 	 * ext4_delete_inode(), and we allow that function to clean up the
2557 	 * orphan info for us.
2558 	 */
2559 	if (inode->i_nlink)
2560 		ext4_orphan_del(handle, inode);
2561 
2562 	up_write(&EXT4_I(inode)->i_data_sem);
2563 	ext4_journal_stop(handle);
2564 }
2565 
2566 /*
2567  * ext4_ext_writepage_trans_blocks:
2568  * calculate max number of blocks we could modify
2569  * in order to allocate new block for an inode
2570  */
2571 int ext4_ext_writepage_trans_blocks(struct inode *inode, int num)
2572 {
2573 	int needed;
2574 
2575 	needed = ext4_ext_calc_credits_for_insert(inode, NULL);
2576 
2577 	/* caller wants to allocate num blocks, but note it includes sb */
2578 	needed = needed * num - (num - 1);
2579 
2580 #ifdef CONFIG_QUOTA
2581 	needed += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2582 #endif
2583 
2584 	return needed;
2585 }
2586 
2587 /*
2588  * preallocate space for a file. This implements ext4's fallocate inode
2589  * operation, which gets called from sys_fallocate system call.
2590  * For block-mapped files, posix_fallocate should fall back to the method
2591  * of writing zeroes to the required new blocks (the same behavior which is
2592  * expected for file systems which do not support fallocate() system call).
2593  */
2594 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
2595 {
2596 	handle_t *handle;
2597 	ext4_lblk_t block;
2598 	unsigned long max_blocks;
2599 	ext4_fsblk_t nblocks = 0;
2600 	int ret = 0;
2601 	int ret2 = 0;
2602 	int retries = 0;
2603 	struct buffer_head map_bh;
2604 	unsigned int credits, blkbits = inode->i_blkbits;
2605 
2606 	/*
2607 	 * currently supporting (pre)allocate mode for extent-based
2608 	 * files _only_
2609 	 */
2610 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
2611 		return -EOPNOTSUPP;
2612 
2613 	/* preallocation to directories is currently not supported */
2614 	if (S_ISDIR(inode->i_mode))
2615 		return -ENODEV;
2616 
2617 	block = offset >> blkbits;
2618 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
2619 			- block;
2620 
2621 	/*
2622 	 * credits to insert 1 extent into extent tree + buffers to be able to
2623 	 * modify 1 super block, 1 block bitmap and 1 group descriptor.
2624 	 */
2625 	credits = EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + 3;
2626 	down_write((&EXT4_I(inode)->i_data_sem));
2627 retry:
2628 	while (ret >= 0 && ret < max_blocks) {
2629 		block = block + ret;
2630 		max_blocks = max_blocks - ret;
2631 		handle = ext4_journal_start(inode, credits);
2632 		if (IS_ERR(handle)) {
2633 			ret = PTR_ERR(handle);
2634 			break;
2635 		}
2636 
2637 		ret = ext4_ext_get_blocks(handle, inode, block,
2638 					  max_blocks, &map_bh,
2639 					  EXT4_CREATE_UNINITIALIZED_EXT, 0);
2640 		WARN_ON(ret <= 0);
2641 		if (ret <= 0) {
2642 			ext4_error(inode->i_sb, "ext4_fallocate",
2643 				    "ext4_ext_get_blocks returned error: "
2644 				    "inode#%lu, block=%u, max_blocks=%lu",
2645 				    inode->i_ino, block, max_blocks);
2646 			ret = -EIO;
2647 			ext4_mark_inode_dirty(handle, inode);
2648 			ret2 = ext4_journal_stop(handle);
2649 			break;
2650 		}
2651 		if (ret > 0) {
2652 			/* check wrap through sign-bit/zero here */
2653 			if ((block + ret) < 0 || (block + ret) < block) {
2654 				ret = -EIO;
2655 				ext4_mark_inode_dirty(handle, inode);
2656 				ret2 = ext4_journal_stop(handle);
2657 				break;
2658 			}
2659 			if (buffer_new(&map_bh) && ((block + ret) >
2660 			    (EXT4_BLOCK_ALIGN(i_size_read(inode), blkbits)
2661 			    >> blkbits)))
2662 					nblocks = nblocks + ret;
2663 		}
2664 
2665 		/* Update ctime if new blocks get allocated */
2666 		if (nblocks) {
2667 			struct timespec now;
2668 
2669 			now = current_fs_time(inode->i_sb);
2670 			if (!timespec_equal(&inode->i_ctime, &now))
2671 				inode->i_ctime = now;
2672 		}
2673 
2674 		ext4_mark_inode_dirty(handle, inode);
2675 		ret2 = ext4_journal_stop(handle);
2676 		if (ret2)
2677 			break;
2678 	}
2679 
2680 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2681 		goto retry;
2682 
2683 	up_write((&EXT4_I(inode)->i_data_sem));
2684 	/*
2685 	 * Time to update the file size.
2686 	 * Update only when preallocation was requested beyond the file size.
2687 	 */
2688 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
2689 	    (offset + len) > i_size_read(inode)) {
2690 		if (ret > 0) {
2691 			/*
2692 			 * if no error, we assume preallocation succeeded
2693 			 * completely
2694 			 */
2695 			mutex_lock(&inode->i_mutex);
2696 			i_size_write(inode, offset + len);
2697 			EXT4_I(inode)->i_disksize = i_size_read(inode);
2698 			mutex_unlock(&inode->i_mutex);
2699 		} else if (ret < 0 && nblocks) {
2700 			/* Handle partial allocation scenario */
2701 			loff_t newsize;
2702 
2703 			mutex_lock(&inode->i_mutex);
2704 			newsize  = (nblocks << blkbits) + i_size_read(inode);
2705 			i_size_write(inode, EXT4_BLOCK_ALIGN(newsize, blkbits));
2706 			EXT4_I(inode)->i_disksize = i_size_read(inode);
2707 			mutex_unlock(&inode->i_mutex);
2708 		}
2709 	}
2710 
2711 	return ret > 0 ? ret2 : ret;
2712 }
2713