1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <linux/falloc.h> 41 #include <asm/uaccess.h> 42 #include <linux/fiemap.h> 43 #include "ext4_jbd2.h" 44 #include "ext4_extents.h" 45 #include "xattr.h" 46 47 #include <trace/events/ext4.h> 48 49 /* 50 * used by extent splitting. 51 */ 52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 53 due to ENOSPC */ 54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */ 55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */ 56 57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 59 60 static __le32 ext4_extent_block_csum(struct inode *inode, 61 struct ext4_extent_header *eh) 62 { 63 struct ext4_inode_info *ei = EXT4_I(inode); 64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 65 __u32 csum; 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 68 EXT4_EXTENT_TAIL_OFFSET(eh)); 69 return cpu_to_le32(csum); 70 } 71 72 static int ext4_extent_block_csum_verify(struct inode *inode, 73 struct ext4_extent_header *eh) 74 { 75 struct ext4_extent_tail *et; 76 77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 79 return 1; 80 81 et = find_ext4_extent_tail(eh); 82 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 83 return 0; 84 return 1; 85 } 86 87 static void ext4_extent_block_csum_set(struct inode *inode, 88 struct ext4_extent_header *eh) 89 { 90 struct ext4_extent_tail *et; 91 92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 94 return; 95 96 et = find_ext4_extent_tail(eh); 97 et->et_checksum = ext4_extent_block_csum(inode, eh); 98 } 99 100 static int ext4_split_extent(handle_t *handle, 101 struct inode *inode, 102 struct ext4_ext_path *path, 103 struct ext4_map_blocks *map, 104 int split_flag, 105 int flags); 106 107 static int ext4_split_extent_at(handle_t *handle, 108 struct inode *inode, 109 struct ext4_ext_path *path, 110 ext4_lblk_t split, 111 int split_flag, 112 int flags); 113 114 static int ext4_find_delayed_extent(struct inode *inode, 115 struct extent_status *newes); 116 117 static int ext4_ext_truncate_extend_restart(handle_t *handle, 118 struct inode *inode, 119 int needed) 120 { 121 int err; 122 123 if (!ext4_handle_valid(handle)) 124 return 0; 125 if (handle->h_buffer_credits > needed) 126 return 0; 127 err = ext4_journal_extend(handle, needed); 128 if (err <= 0) 129 return err; 130 err = ext4_truncate_restart_trans(handle, inode, needed); 131 if (err == 0) 132 err = -EAGAIN; 133 134 return err; 135 } 136 137 /* 138 * could return: 139 * - EROFS 140 * - ENOMEM 141 */ 142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 143 struct ext4_ext_path *path) 144 { 145 if (path->p_bh) { 146 /* path points to block */ 147 return ext4_journal_get_write_access(handle, path->p_bh); 148 } 149 /* path points to leaf/index in inode body */ 150 /* we use in-core data, no need to protect them */ 151 return 0; 152 } 153 154 /* 155 * could return: 156 * - EROFS 157 * - ENOMEM 158 * - EIO 159 */ 160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 161 struct inode *inode, struct ext4_ext_path *path) 162 { 163 int err; 164 if (path->p_bh) { 165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 166 /* path points to block */ 167 err = __ext4_handle_dirty_metadata(where, line, handle, 168 inode, path->p_bh); 169 } else { 170 /* path points to leaf/index in inode body */ 171 err = ext4_mark_inode_dirty(handle, inode); 172 } 173 return err; 174 } 175 176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 177 struct ext4_ext_path *path, 178 ext4_lblk_t block) 179 { 180 if (path) { 181 int depth = path->p_depth; 182 struct ext4_extent *ex; 183 184 /* 185 * Try to predict block placement assuming that we are 186 * filling in a file which will eventually be 187 * non-sparse --- i.e., in the case of libbfd writing 188 * an ELF object sections out-of-order but in a way 189 * the eventually results in a contiguous object or 190 * executable file, or some database extending a table 191 * space file. However, this is actually somewhat 192 * non-ideal if we are writing a sparse file such as 193 * qemu or KVM writing a raw image file that is going 194 * to stay fairly sparse, since it will end up 195 * fragmenting the file system's free space. Maybe we 196 * should have some hueristics or some way to allow 197 * userspace to pass a hint to file system, 198 * especially if the latter case turns out to be 199 * common. 200 */ 201 ex = path[depth].p_ext; 202 if (ex) { 203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 205 206 if (block > ext_block) 207 return ext_pblk + (block - ext_block); 208 else 209 return ext_pblk - (ext_block - block); 210 } 211 212 /* it looks like index is empty; 213 * try to find starting block from index itself */ 214 if (path[depth].p_bh) 215 return path[depth].p_bh->b_blocknr; 216 } 217 218 /* OK. use inode's group */ 219 return ext4_inode_to_goal_block(inode); 220 } 221 222 /* 223 * Allocation for a meta data block 224 */ 225 static ext4_fsblk_t 226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 227 struct ext4_ext_path *path, 228 struct ext4_extent *ex, int *err, unsigned int flags) 229 { 230 ext4_fsblk_t goal, newblock; 231 232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 234 NULL, err); 235 return newblock; 236 } 237 238 static inline int ext4_ext_space_block(struct inode *inode, int check) 239 { 240 int size; 241 242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 243 / sizeof(struct ext4_extent); 244 #ifdef AGGRESSIVE_TEST 245 if (!check && size > 6) 246 size = 6; 247 #endif 248 return size; 249 } 250 251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 252 { 253 int size; 254 255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 256 / sizeof(struct ext4_extent_idx); 257 #ifdef AGGRESSIVE_TEST 258 if (!check && size > 5) 259 size = 5; 260 #endif 261 return size; 262 } 263 264 static inline int ext4_ext_space_root(struct inode *inode, int check) 265 { 266 int size; 267 268 size = sizeof(EXT4_I(inode)->i_data); 269 size -= sizeof(struct ext4_extent_header); 270 size /= sizeof(struct ext4_extent); 271 #ifdef AGGRESSIVE_TEST 272 if (!check && size > 3) 273 size = 3; 274 #endif 275 return size; 276 } 277 278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 279 { 280 int size; 281 282 size = sizeof(EXT4_I(inode)->i_data); 283 size -= sizeof(struct ext4_extent_header); 284 size /= sizeof(struct ext4_extent_idx); 285 #ifdef AGGRESSIVE_TEST 286 if (!check && size > 4) 287 size = 4; 288 #endif 289 return size; 290 } 291 292 /* 293 * Calculate the number of metadata blocks needed 294 * to allocate @blocks 295 * Worse case is one block per extent 296 */ 297 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 298 { 299 struct ext4_inode_info *ei = EXT4_I(inode); 300 int idxs; 301 302 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 303 / sizeof(struct ext4_extent_idx)); 304 305 /* 306 * If the new delayed allocation block is contiguous with the 307 * previous da block, it can share index blocks with the 308 * previous block, so we only need to allocate a new index 309 * block every idxs leaf blocks. At ldxs**2 blocks, we need 310 * an additional index block, and at ldxs**3 blocks, yet 311 * another index blocks. 312 */ 313 if (ei->i_da_metadata_calc_len && 314 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 315 int num = 0; 316 317 if ((ei->i_da_metadata_calc_len % idxs) == 0) 318 num++; 319 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 320 num++; 321 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 322 num++; 323 ei->i_da_metadata_calc_len = 0; 324 } else 325 ei->i_da_metadata_calc_len++; 326 ei->i_da_metadata_calc_last_lblock++; 327 return num; 328 } 329 330 /* 331 * In the worst case we need a new set of index blocks at 332 * every level of the inode's extent tree. 333 */ 334 ei->i_da_metadata_calc_len = 1; 335 ei->i_da_metadata_calc_last_lblock = lblock; 336 return ext_depth(inode) + 1; 337 } 338 339 static int 340 ext4_ext_max_entries(struct inode *inode, int depth) 341 { 342 int max; 343 344 if (depth == ext_depth(inode)) { 345 if (depth == 0) 346 max = ext4_ext_space_root(inode, 1); 347 else 348 max = ext4_ext_space_root_idx(inode, 1); 349 } else { 350 if (depth == 0) 351 max = ext4_ext_space_block(inode, 1); 352 else 353 max = ext4_ext_space_block_idx(inode, 1); 354 } 355 356 return max; 357 } 358 359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 360 { 361 ext4_fsblk_t block = ext4_ext_pblock(ext); 362 int len = ext4_ext_get_actual_len(ext); 363 364 if (len == 0) 365 return 0; 366 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 367 } 368 369 static int ext4_valid_extent_idx(struct inode *inode, 370 struct ext4_extent_idx *ext_idx) 371 { 372 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 373 374 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 375 } 376 377 static int ext4_valid_extent_entries(struct inode *inode, 378 struct ext4_extent_header *eh, 379 int depth) 380 { 381 unsigned short entries; 382 if (eh->eh_entries == 0) 383 return 1; 384 385 entries = le16_to_cpu(eh->eh_entries); 386 387 if (depth == 0) { 388 /* leaf entries */ 389 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 390 while (entries) { 391 if (!ext4_valid_extent(inode, ext)) 392 return 0; 393 ext++; 394 entries--; 395 } 396 } else { 397 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 398 while (entries) { 399 if (!ext4_valid_extent_idx(inode, ext_idx)) 400 return 0; 401 ext_idx++; 402 entries--; 403 } 404 } 405 return 1; 406 } 407 408 static int __ext4_ext_check(const char *function, unsigned int line, 409 struct inode *inode, struct ext4_extent_header *eh, 410 int depth, ext4_fsblk_t pblk) 411 { 412 const char *error_msg; 413 int max = 0; 414 415 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 416 error_msg = "invalid magic"; 417 goto corrupted; 418 } 419 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 420 error_msg = "unexpected eh_depth"; 421 goto corrupted; 422 } 423 if (unlikely(eh->eh_max == 0)) { 424 error_msg = "invalid eh_max"; 425 goto corrupted; 426 } 427 max = ext4_ext_max_entries(inode, depth); 428 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 429 error_msg = "too large eh_max"; 430 goto corrupted; 431 } 432 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 433 error_msg = "invalid eh_entries"; 434 goto corrupted; 435 } 436 if (!ext4_valid_extent_entries(inode, eh, depth)) { 437 error_msg = "invalid extent entries"; 438 goto corrupted; 439 } 440 /* Verify checksum on non-root extent tree nodes */ 441 if (ext_depth(inode) != depth && 442 !ext4_extent_block_csum_verify(inode, eh)) { 443 error_msg = "extent tree corrupted"; 444 goto corrupted; 445 } 446 return 0; 447 448 corrupted: 449 ext4_error_inode(inode, function, line, 0, 450 "pblk %llu bad header/extent: %s - magic %x, " 451 "entries %u, max %u(%u), depth %u(%u)", 452 (unsigned long long) pblk, error_msg, 453 le16_to_cpu(eh->eh_magic), 454 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 455 max, le16_to_cpu(eh->eh_depth), depth); 456 return -EIO; 457 } 458 459 #define ext4_ext_check(inode, eh, depth, pblk) \ 460 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 461 462 int ext4_ext_check_inode(struct inode *inode) 463 { 464 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 465 } 466 467 static struct buffer_head * 468 __read_extent_tree_block(const char *function, unsigned int line, 469 struct inode *inode, ext4_fsblk_t pblk, int depth, 470 int flags) 471 { 472 struct buffer_head *bh; 473 int err; 474 475 bh = sb_getblk(inode->i_sb, pblk); 476 if (unlikely(!bh)) 477 return ERR_PTR(-ENOMEM); 478 479 if (!bh_uptodate_or_lock(bh)) { 480 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 481 err = bh_submit_read(bh); 482 if (err < 0) 483 goto errout; 484 } 485 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 486 return bh; 487 err = __ext4_ext_check(function, line, inode, 488 ext_block_hdr(bh), depth, pblk); 489 if (err) 490 goto errout; 491 set_buffer_verified(bh); 492 /* 493 * If this is a leaf block, cache all of its entries 494 */ 495 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 496 struct ext4_extent_header *eh = ext_block_hdr(bh); 497 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 498 ext4_lblk_t prev = 0; 499 int i; 500 501 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 502 unsigned int status = EXTENT_STATUS_WRITTEN; 503 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 504 int len = ext4_ext_get_actual_len(ex); 505 506 if (prev && (prev != lblk)) 507 ext4_es_cache_extent(inode, prev, 508 lblk - prev, ~0, 509 EXTENT_STATUS_HOLE); 510 511 if (ext4_ext_is_uninitialized(ex)) 512 status = EXTENT_STATUS_UNWRITTEN; 513 ext4_es_cache_extent(inode, lblk, len, 514 ext4_ext_pblock(ex), status); 515 prev = lblk + len; 516 } 517 } 518 return bh; 519 errout: 520 put_bh(bh); 521 return ERR_PTR(err); 522 523 } 524 525 #define read_extent_tree_block(inode, pblk, depth, flags) \ 526 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 527 (depth), (flags)) 528 529 /* 530 * This function is called to cache a file's extent information in the 531 * extent status tree 532 */ 533 int ext4_ext_precache(struct inode *inode) 534 { 535 struct ext4_inode_info *ei = EXT4_I(inode); 536 struct ext4_ext_path *path = NULL; 537 struct buffer_head *bh; 538 int i = 0, depth, ret = 0; 539 540 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 541 return 0; /* not an extent-mapped inode */ 542 543 down_read(&ei->i_data_sem); 544 depth = ext_depth(inode); 545 546 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 547 GFP_NOFS); 548 if (path == NULL) { 549 up_read(&ei->i_data_sem); 550 return -ENOMEM; 551 } 552 553 /* Don't cache anything if there are no external extent blocks */ 554 if (depth == 0) 555 goto out; 556 path[0].p_hdr = ext_inode_hdr(inode); 557 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 558 if (ret) 559 goto out; 560 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 561 while (i >= 0) { 562 /* 563 * If this is a leaf block or we've reached the end of 564 * the index block, go up 565 */ 566 if ((i == depth) || 567 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 568 brelse(path[i].p_bh); 569 path[i].p_bh = NULL; 570 i--; 571 continue; 572 } 573 bh = read_extent_tree_block(inode, 574 ext4_idx_pblock(path[i].p_idx++), 575 depth - i - 1, 576 EXT4_EX_FORCE_CACHE); 577 if (IS_ERR(bh)) { 578 ret = PTR_ERR(bh); 579 break; 580 } 581 i++; 582 path[i].p_bh = bh; 583 path[i].p_hdr = ext_block_hdr(bh); 584 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 585 } 586 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 587 out: 588 up_read(&ei->i_data_sem); 589 ext4_ext_drop_refs(path); 590 kfree(path); 591 return ret; 592 } 593 594 #ifdef EXT_DEBUG 595 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 596 { 597 int k, l = path->p_depth; 598 599 ext_debug("path:"); 600 for (k = 0; k <= l; k++, path++) { 601 if (path->p_idx) { 602 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 603 ext4_idx_pblock(path->p_idx)); 604 } else if (path->p_ext) { 605 ext_debug(" %d:[%d]%d:%llu ", 606 le32_to_cpu(path->p_ext->ee_block), 607 ext4_ext_is_uninitialized(path->p_ext), 608 ext4_ext_get_actual_len(path->p_ext), 609 ext4_ext_pblock(path->p_ext)); 610 } else 611 ext_debug(" []"); 612 } 613 ext_debug("\n"); 614 } 615 616 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 617 { 618 int depth = ext_depth(inode); 619 struct ext4_extent_header *eh; 620 struct ext4_extent *ex; 621 int i; 622 623 if (!path) 624 return; 625 626 eh = path[depth].p_hdr; 627 ex = EXT_FIRST_EXTENT(eh); 628 629 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 630 631 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 632 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 633 ext4_ext_is_uninitialized(ex), 634 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 635 } 636 ext_debug("\n"); 637 } 638 639 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 640 ext4_fsblk_t newblock, int level) 641 { 642 int depth = ext_depth(inode); 643 struct ext4_extent *ex; 644 645 if (depth != level) { 646 struct ext4_extent_idx *idx; 647 idx = path[level].p_idx; 648 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 649 ext_debug("%d: move %d:%llu in new index %llu\n", level, 650 le32_to_cpu(idx->ei_block), 651 ext4_idx_pblock(idx), 652 newblock); 653 idx++; 654 } 655 656 return; 657 } 658 659 ex = path[depth].p_ext; 660 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 661 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 662 le32_to_cpu(ex->ee_block), 663 ext4_ext_pblock(ex), 664 ext4_ext_is_uninitialized(ex), 665 ext4_ext_get_actual_len(ex), 666 newblock); 667 ex++; 668 } 669 } 670 671 #else 672 #define ext4_ext_show_path(inode, path) 673 #define ext4_ext_show_leaf(inode, path) 674 #define ext4_ext_show_move(inode, path, newblock, level) 675 #endif 676 677 void ext4_ext_drop_refs(struct ext4_ext_path *path) 678 { 679 int depth = path->p_depth; 680 int i; 681 682 for (i = 0; i <= depth; i++, path++) 683 if (path->p_bh) { 684 brelse(path->p_bh); 685 path->p_bh = NULL; 686 } 687 } 688 689 /* 690 * ext4_ext_binsearch_idx: 691 * binary search for the closest index of the given block 692 * the header must be checked before calling this 693 */ 694 static void 695 ext4_ext_binsearch_idx(struct inode *inode, 696 struct ext4_ext_path *path, ext4_lblk_t block) 697 { 698 struct ext4_extent_header *eh = path->p_hdr; 699 struct ext4_extent_idx *r, *l, *m; 700 701 702 ext_debug("binsearch for %u(idx): ", block); 703 704 l = EXT_FIRST_INDEX(eh) + 1; 705 r = EXT_LAST_INDEX(eh); 706 while (l <= r) { 707 m = l + (r - l) / 2; 708 if (block < le32_to_cpu(m->ei_block)) 709 r = m - 1; 710 else 711 l = m + 1; 712 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 713 m, le32_to_cpu(m->ei_block), 714 r, le32_to_cpu(r->ei_block)); 715 } 716 717 path->p_idx = l - 1; 718 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 719 ext4_idx_pblock(path->p_idx)); 720 721 #ifdef CHECK_BINSEARCH 722 { 723 struct ext4_extent_idx *chix, *ix; 724 int k; 725 726 chix = ix = EXT_FIRST_INDEX(eh); 727 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 728 if (k != 0 && 729 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 730 printk(KERN_DEBUG "k=%d, ix=0x%p, " 731 "first=0x%p\n", k, 732 ix, EXT_FIRST_INDEX(eh)); 733 printk(KERN_DEBUG "%u <= %u\n", 734 le32_to_cpu(ix->ei_block), 735 le32_to_cpu(ix[-1].ei_block)); 736 } 737 BUG_ON(k && le32_to_cpu(ix->ei_block) 738 <= le32_to_cpu(ix[-1].ei_block)); 739 if (block < le32_to_cpu(ix->ei_block)) 740 break; 741 chix = ix; 742 } 743 BUG_ON(chix != path->p_idx); 744 } 745 #endif 746 747 } 748 749 /* 750 * ext4_ext_binsearch: 751 * binary search for closest extent of the given block 752 * the header must be checked before calling this 753 */ 754 static void 755 ext4_ext_binsearch(struct inode *inode, 756 struct ext4_ext_path *path, ext4_lblk_t block) 757 { 758 struct ext4_extent_header *eh = path->p_hdr; 759 struct ext4_extent *r, *l, *m; 760 761 if (eh->eh_entries == 0) { 762 /* 763 * this leaf is empty: 764 * we get such a leaf in split/add case 765 */ 766 return; 767 } 768 769 ext_debug("binsearch for %u: ", block); 770 771 l = EXT_FIRST_EXTENT(eh) + 1; 772 r = EXT_LAST_EXTENT(eh); 773 774 while (l <= r) { 775 m = l + (r - l) / 2; 776 if (block < le32_to_cpu(m->ee_block)) 777 r = m - 1; 778 else 779 l = m + 1; 780 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 781 m, le32_to_cpu(m->ee_block), 782 r, le32_to_cpu(r->ee_block)); 783 } 784 785 path->p_ext = l - 1; 786 ext_debug(" -> %d:%llu:[%d]%d ", 787 le32_to_cpu(path->p_ext->ee_block), 788 ext4_ext_pblock(path->p_ext), 789 ext4_ext_is_uninitialized(path->p_ext), 790 ext4_ext_get_actual_len(path->p_ext)); 791 792 #ifdef CHECK_BINSEARCH 793 { 794 struct ext4_extent *chex, *ex; 795 int k; 796 797 chex = ex = EXT_FIRST_EXTENT(eh); 798 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 799 BUG_ON(k && le32_to_cpu(ex->ee_block) 800 <= le32_to_cpu(ex[-1].ee_block)); 801 if (block < le32_to_cpu(ex->ee_block)) 802 break; 803 chex = ex; 804 } 805 BUG_ON(chex != path->p_ext); 806 } 807 #endif 808 809 } 810 811 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 812 { 813 struct ext4_extent_header *eh; 814 815 eh = ext_inode_hdr(inode); 816 eh->eh_depth = 0; 817 eh->eh_entries = 0; 818 eh->eh_magic = EXT4_EXT_MAGIC; 819 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 820 ext4_mark_inode_dirty(handle, inode); 821 return 0; 822 } 823 824 struct ext4_ext_path * 825 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 826 struct ext4_ext_path *path, int flags) 827 { 828 struct ext4_extent_header *eh; 829 struct buffer_head *bh; 830 short int depth, i, ppos = 0, alloc = 0; 831 int ret; 832 833 eh = ext_inode_hdr(inode); 834 depth = ext_depth(inode); 835 836 /* account possible depth increase */ 837 if (!path) { 838 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 839 GFP_NOFS); 840 if (!path) 841 return ERR_PTR(-ENOMEM); 842 alloc = 1; 843 } 844 path[0].p_hdr = eh; 845 path[0].p_bh = NULL; 846 847 i = depth; 848 /* walk through the tree */ 849 while (i) { 850 ext_debug("depth %d: num %d, max %d\n", 851 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 852 853 ext4_ext_binsearch_idx(inode, path + ppos, block); 854 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 855 path[ppos].p_depth = i; 856 path[ppos].p_ext = NULL; 857 858 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 859 flags); 860 if (IS_ERR(bh)) { 861 ret = PTR_ERR(bh); 862 goto err; 863 } 864 865 eh = ext_block_hdr(bh); 866 ppos++; 867 if (unlikely(ppos > depth)) { 868 put_bh(bh); 869 EXT4_ERROR_INODE(inode, 870 "ppos %d > depth %d", ppos, depth); 871 ret = -EIO; 872 goto err; 873 } 874 path[ppos].p_bh = bh; 875 path[ppos].p_hdr = eh; 876 } 877 878 path[ppos].p_depth = i; 879 path[ppos].p_ext = NULL; 880 path[ppos].p_idx = NULL; 881 882 /* find extent */ 883 ext4_ext_binsearch(inode, path + ppos, block); 884 /* if not an empty leaf */ 885 if (path[ppos].p_ext) 886 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 887 888 ext4_ext_show_path(inode, path); 889 890 return path; 891 892 err: 893 ext4_ext_drop_refs(path); 894 if (alloc) 895 kfree(path); 896 return ERR_PTR(ret); 897 } 898 899 /* 900 * ext4_ext_insert_index: 901 * insert new index [@logical;@ptr] into the block at @curp; 902 * check where to insert: before @curp or after @curp 903 */ 904 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 905 struct ext4_ext_path *curp, 906 int logical, ext4_fsblk_t ptr) 907 { 908 struct ext4_extent_idx *ix; 909 int len, err; 910 911 err = ext4_ext_get_access(handle, inode, curp); 912 if (err) 913 return err; 914 915 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 916 EXT4_ERROR_INODE(inode, 917 "logical %d == ei_block %d!", 918 logical, le32_to_cpu(curp->p_idx->ei_block)); 919 return -EIO; 920 } 921 922 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 923 >= le16_to_cpu(curp->p_hdr->eh_max))) { 924 EXT4_ERROR_INODE(inode, 925 "eh_entries %d >= eh_max %d!", 926 le16_to_cpu(curp->p_hdr->eh_entries), 927 le16_to_cpu(curp->p_hdr->eh_max)); 928 return -EIO; 929 } 930 931 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 932 /* insert after */ 933 ext_debug("insert new index %d after: %llu\n", logical, ptr); 934 ix = curp->p_idx + 1; 935 } else { 936 /* insert before */ 937 ext_debug("insert new index %d before: %llu\n", logical, ptr); 938 ix = curp->p_idx; 939 } 940 941 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 942 BUG_ON(len < 0); 943 if (len > 0) { 944 ext_debug("insert new index %d: " 945 "move %d indices from 0x%p to 0x%p\n", 946 logical, len, ix, ix + 1); 947 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 948 } 949 950 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 951 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 952 return -EIO; 953 } 954 955 ix->ei_block = cpu_to_le32(logical); 956 ext4_idx_store_pblock(ix, ptr); 957 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 958 959 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 960 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 961 return -EIO; 962 } 963 964 err = ext4_ext_dirty(handle, inode, curp); 965 ext4_std_error(inode->i_sb, err); 966 967 return err; 968 } 969 970 /* 971 * ext4_ext_split: 972 * inserts new subtree into the path, using free index entry 973 * at depth @at: 974 * - allocates all needed blocks (new leaf and all intermediate index blocks) 975 * - makes decision where to split 976 * - moves remaining extents and index entries (right to the split point) 977 * into the newly allocated blocks 978 * - initializes subtree 979 */ 980 static int ext4_ext_split(handle_t *handle, struct inode *inode, 981 unsigned int flags, 982 struct ext4_ext_path *path, 983 struct ext4_extent *newext, int at) 984 { 985 struct buffer_head *bh = NULL; 986 int depth = ext_depth(inode); 987 struct ext4_extent_header *neh; 988 struct ext4_extent_idx *fidx; 989 int i = at, k, m, a; 990 ext4_fsblk_t newblock, oldblock; 991 __le32 border; 992 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 993 int err = 0; 994 995 /* make decision: where to split? */ 996 /* FIXME: now decision is simplest: at current extent */ 997 998 /* if current leaf will be split, then we should use 999 * border from split point */ 1000 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1001 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1002 return -EIO; 1003 } 1004 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1005 border = path[depth].p_ext[1].ee_block; 1006 ext_debug("leaf will be split." 1007 " next leaf starts at %d\n", 1008 le32_to_cpu(border)); 1009 } else { 1010 border = newext->ee_block; 1011 ext_debug("leaf will be added." 1012 " next leaf starts at %d\n", 1013 le32_to_cpu(border)); 1014 } 1015 1016 /* 1017 * If error occurs, then we break processing 1018 * and mark filesystem read-only. index won't 1019 * be inserted and tree will be in consistent 1020 * state. Next mount will repair buffers too. 1021 */ 1022 1023 /* 1024 * Get array to track all allocated blocks. 1025 * We need this to handle errors and free blocks 1026 * upon them. 1027 */ 1028 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 1029 if (!ablocks) 1030 return -ENOMEM; 1031 1032 /* allocate all needed blocks */ 1033 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1034 for (a = 0; a < depth - at; a++) { 1035 newblock = ext4_ext_new_meta_block(handle, inode, path, 1036 newext, &err, flags); 1037 if (newblock == 0) 1038 goto cleanup; 1039 ablocks[a] = newblock; 1040 } 1041 1042 /* initialize new leaf */ 1043 newblock = ablocks[--a]; 1044 if (unlikely(newblock == 0)) { 1045 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1046 err = -EIO; 1047 goto cleanup; 1048 } 1049 bh = sb_getblk(inode->i_sb, newblock); 1050 if (unlikely(!bh)) { 1051 err = -ENOMEM; 1052 goto cleanup; 1053 } 1054 lock_buffer(bh); 1055 1056 err = ext4_journal_get_create_access(handle, bh); 1057 if (err) 1058 goto cleanup; 1059 1060 neh = ext_block_hdr(bh); 1061 neh->eh_entries = 0; 1062 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1063 neh->eh_magic = EXT4_EXT_MAGIC; 1064 neh->eh_depth = 0; 1065 1066 /* move remainder of path[depth] to the new leaf */ 1067 if (unlikely(path[depth].p_hdr->eh_entries != 1068 path[depth].p_hdr->eh_max)) { 1069 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1070 path[depth].p_hdr->eh_entries, 1071 path[depth].p_hdr->eh_max); 1072 err = -EIO; 1073 goto cleanup; 1074 } 1075 /* start copy from next extent */ 1076 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1077 ext4_ext_show_move(inode, path, newblock, depth); 1078 if (m) { 1079 struct ext4_extent *ex; 1080 ex = EXT_FIRST_EXTENT(neh); 1081 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1082 le16_add_cpu(&neh->eh_entries, m); 1083 } 1084 1085 ext4_extent_block_csum_set(inode, neh); 1086 set_buffer_uptodate(bh); 1087 unlock_buffer(bh); 1088 1089 err = ext4_handle_dirty_metadata(handle, inode, bh); 1090 if (err) 1091 goto cleanup; 1092 brelse(bh); 1093 bh = NULL; 1094 1095 /* correct old leaf */ 1096 if (m) { 1097 err = ext4_ext_get_access(handle, inode, path + depth); 1098 if (err) 1099 goto cleanup; 1100 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1101 err = ext4_ext_dirty(handle, inode, path + depth); 1102 if (err) 1103 goto cleanup; 1104 1105 } 1106 1107 /* create intermediate indexes */ 1108 k = depth - at - 1; 1109 if (unlikely(k < 0)) { 1110 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1111 err = -EIO; 1112 goto cleanup; 1113 } 1114 if (k) 1115 ext_debug("create %d intermediate indices\n", k); 1116 /* insert new index into current index block */ 1117 /* current depth stored in i var */ 1118 i = depth - 1; 1119 while (k--) { 1120 oldblock = newblock; 1121 newblock = ablocks[--a]; 1122 bh = sb_getblk(inode->i_sb, newblock); 1123 if (unlikely(!bh)) { 1124 err = -ENOMEM; 1125 goto cleanup; 1126 } 1127 lock_buffer(bh); 1128 1129 err = ext4_journal_get_create_access(handle, bh); 1130 if (err) 1131 goto cleanup; 1132 1133 neh = ext_block_hdr(bh); 1134 neh->eh_entries = cpu_to_le16(1); 1135 neh->eh_magic = EXT4_EXT_MAGIC; 1136 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1137 neh->eh_depth = cpu_to_le16(depth - i); 1138 fidx = EXT_FIRST_INDEX(neh); 1139 fidx->ei_block = border; 1140 ext4_idx_store_pblock(fidx, oldblock); 1141 1142 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1143 i, newblock, le32_to_cpu(border), oldblock); 1144 1145 /* move remainder of path[i] to the new index block */ 1146 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1147 EXT_LAST_INDEX(path[i].p_hdr))) { 1148 EXT4_ERROR_INODE(inode, 1149 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1150 le32_to_cpu(path[i].p_ext->ee_block)); 1151 err = -EIO; 1152 goto cleanup; 1153 } 1154 /* start copy indexes */ 1155 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1156 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1157 EXT_MAX_INDEX(path[i].p_hdr)); 1158 ext4_ext_show_move(inode, path, newblock, i); 1159 if (m) { 1160 memmove(++fidx, path[i].p_idx, 1161 sizeof(struct ext4_extent_idx) * m); 1162 le16_add_cpu(&neh->eh_entries, m); 1163 } 1164 ext4_extent_block_csum_set(inode, neh); 1165 set_buffer_uptodate(bh); 1166 unlock_buffer(bh); 1167 1168 err = ext4_handle_dirty_metadata(handle, inode, bh); 1169 if (err) 1170 goto cleanup; 1171 brelse(bh); 1172 bh = NULL; 1173 1174 /* correct old index */ 1175 if (m) { 1176 err = ext4_ext_get_access(handle, inode, path + i); 1177 if (err) 1178 goto cleanup; 1179 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1180 err = ext4_ext_dirty(handle, inode, path + i); 1181 if (err) 1182 goto cleanup; 1183 } 1184 1185 i--; 1186 } 1187 1188 /* insert new index */ 1189 err = ext4_ext_insert_index(handle, inode, path + at, 1190 le32_to_cpu(border), newblock); 1191 1192 cleanup: 1193 if (bh) { 1194 if (buffer_locked(bh)) 1195 unlock_buffer(bh); 1196 brelse(bh); 1197 } 1198 1199 if (err) { 1200 /* free all allocated blocks in error case */ 1201 for (i = 0; i < depth; i++) { 1202 if (!ablocks[i]) 1203 continue; 1204 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1205 EXT4_FREE_BLOCKS_METADATA); 1206 } 1207 } 1208 kfree(ablocks); 1209 1210 return err; 1211 } 1212 1213 /* 1214 * ext4_ext_grow_indepth: 1215 * implements tree growing procedure: 1216 * - allocates new block 1217 * - moves top-level data (index block or leaf) into the new block 1218 * - initializes new top-level, creating index that points to the 1219 * just created block 1220 */ 1221 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1222 unsigned int flags, 1223 struct ext4_extent *newext) 1224 { 1225 struct ext4_extent_header *neh; 1226 struct buffer_head *bh; 1227 ext4_fsblk_t newblock; 1228 int err = 0; 1229 1230 newblock = ext4_ext_new_meta_block(handle, inode, NULL, 1231 newext, &err, flags); 1232 if (newblock == 0) 1233 return err; 1234 1235 bh = sb_getblk(inode->i_sb, newblock); 1236 if (unlikely(!bh)) 1237 return -ENOMEM; 1238 lock_buffer(bh); 1239 1240 err = ext4_journal_get_create_access(handle, bh); 1241 if (err) { 1242 unlock_buffer(bh); 1243 goto out; 1244 } 1245 1246 /* move top-level index/leaf into new block */ 1247 memmove(bh->b_data, EXT4_I(inode)->i_data, 1248 sizeof(EXT4_I(inode)->i_data)); 1249 1250 /* set size of new block */ 1251 neh = ext_block_hdr(bh); 1252 /* old root could have indexes or leaves 1253 * so calculate e_max right way */ 1254 if (ext_depth(inode)) 1255 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1256 else 1257 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1258 neh->eh_magic = EXT4_EXT_MAGIC; 1259 ext4_extent_block_csum_set(inode, neh); 1260 set_buffer_uptodate(bh); 1261 unlock_buffer(bh); 1262 1263 err = ext4_handle_dirty_metadata(handle, inode, bh); 1264 if (err) 1265 goto out; 1266 1267 /* Update top-level index: num,max,pointer */ 1268 neh = ext_inode_hdr(inode); 1269 neh->eh_entries = cpu_to_le16(1); 1270 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1271 if (neh->eh_depth == 0) { 1272 /* Root extent block becomes index block */ 1273 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1274 EXT_FIRST_INDEX(neh)->ei_block = 1275 EXT_FIRST_EXTENT(neh)->ee_block; 1276 } 1277 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1278 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1279 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1280 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1281 1282 le16_add_cpu(&neh->eh_depth, 1); 1283 ext4_mark_inode_dirty(handle, inode); 1284 out: 1285 brelse(bh); 1286 1287 return err; 1288 } 1289 1290 /* 1291 * ext4_ext_create_new_leaf: 1292 * finds empty index and adds new leaf. 1293 * if no free index is found, then it requests in-depth growing. 1294 */ 1295 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1296 unsigned int mb_flags, 1297 unsigned int gb_flags, 1298 struct ext4_ext_path *path, 1299 struct ext4_extent *newext) 1300 { 1301 struct ext4_ext_path *curp; 1302 int depth, i, err = 0; 1303 1304 repeat: 1305 i = depth = ext_depth(inode); 1306 1307 /* walk up to the tree and look for free index entry */ 1308 curp = path + depth; 1309 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1310 i--; 1311 curp--; 1312 } 1313 1314 /* we use already allocated block for index block, 1315 * so subsequent data blocks should be contiguous */ 1316 if (EXT_HAS_FREE_INDEX(curp)) { 1317 /* if we found index with free entry, then use that 1318 * entry: create all needed subtree and add new leaf */ 1319 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1320 if (err) 1321 goto out; 1322 1323 /* refill path */ 1324 ext4_ext_drop_refs(path); 1325 path = ext4_ext_find_extent(inode, 1326 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1327 path, gb_flags); 1328 if (IS_ERR(path)) 1329 err = PTR_ERR(path); 1330 } else { 1331 /* tree is full, time to grow in depth */ 1332 err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext); 1333 if (err) 1334 goto out; 1335 1336 /* refill path */ 1337 ext4_ext_drop_refs(path); 1338 path = ext4_ext_find_extent(inode, 1339 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1340 path, gb_flags); 1341 if (IS_ERR(path)) { 1342 err = PTR_ERR(path); 1343 goto out; 1344 } 1345 1346 /* 1347 * only first (depth 0 -> 1) produces free space; 1348 * in all other cases we have to split the grown tree 1349 */ 1350 depth = ext_depth(inode); 1351 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1352 /* now we need to split */ 1353 goto repeat; 1354 } 1355 } 1356 1357 out: 1358 return err; 1359 } 1360 1361 /* 1362 * search the closest allocated block to the left for *logical 1363 * and returns it at @logical + it's physical address at @phys 1364 * if *logical is the smallest allocated block, the function 1365 * returns 0 at @phys 1366 * return value contains 0 (success) or error code 1367 */ 1368 static int ext4_ext_search_left(struct inode *inode, 1369 struct ext4_ext_path *path, 1370 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1371 { 1372 struct ext4_extent_idx *ix; 1373 struct ext4_extent *ex; 1374 int depth, ee_len; 1375 1376 if (unlikely(path == NULL)) { 1377 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1378 return -EIO; 1379 } 1380 depth = path->p_depth; 1381 *phys = 0; 1382 1383 if (depth == 0 && path->p_ext == NULL) 1384 return 0; 1385 1386 /* usually extent in the path covers blocks smaller 1387 * then *logical, but it can be that extent is the 1388 * first one in the file */ 1389 1390 ex = path[depth].p_ext; 1391 ee_len = ext4_ext_get_actual_len(ex); 1392 if (*logical < le32_to_cpu(ex->ee_block)) { 1393 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1394 EXT4_ERROR_INODE(inode, 1395 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1396 *logical, le32_to_cpu(ex->ee_block)); 1397 return -EIO; 1398 } 1399 while (--depth >= 0) { 1400 ix = path[depth].p_idx; 1401 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1402 EXT4_ERROR_INODE(inode, 1403 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1404 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1405 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1406 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1407 depth); 1408 return -EIO; 1409 } 1410 } 1411 return 0; 1412 } 1413 1414 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1415 EXT4_ERROR_INODE(inode, 1416 "logical %d < ee_block %d + ee_len %d!", 1417 *logical, le32_to_cpu(ex->ee_block), ee_len); 1418 return -EIO; 1419 } 1420 1421 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1422 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1423 return 0; 1424 } 1425 1426 /* 1427 * search the closest allocated block to the right for *logical 1428 * and returns it at @logical + it's physical address at @phys 1429 * if *logical is the largest allocated block, the function 1430 * returns 0 at @phys 1431 * return value contains 0 (success) or error code 1432 */ 1433 static int ext4_ext_search_right(struct inode *inode, 1434 struct ext4_ext_path *path, 1435 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1436 struct ext4_extent **ret_ex) 1437 { 1438 struct buffer_head *bh = NULL; 1439 struct ext4_extent_header *eh; 1440 struct ext4_extent_idx *ix; 1441 struct ext4_extent *ex; 1442 ext4_fsblk_t block; 1443 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1444 int ee_len; 1445 1446 if (unlikely(path == NULL)) { 1447 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1448 return -EIO; 1449 } 1450 depth = path->p_depth; 1451 *phys = 0; 1452 1453 if (depth == 0 && path->p_ext == NULL) 1454 return 0; 1455 1456 /* usually extent in the path covers blocks smaller 1457 * then *logical, but it can be that extent is the 1458 * first one in the file */ 1459 1460 ex = path[depth].p_ext; 1461 ee_len = ext4_ext_get_actual_len(ex); 1462 if (*logical < le32_to_cpu(ex->ee_block)) { 1463 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1464 EXT4_ERROR_INODE(inode, 1465 "first_extent(path[%d].p_hdr) != ex", 1466 depth); 1467 return -EIO; 1468 } 1469 while (--depth >= 0) { 1470 ix = path[depth].p_idx; 1471 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1472 EXT4_ERROR_INODE(inode, 1473 "ix != EXT_FIRST_INDEX *logical %d!", 1474 *logical); 1475 return -EIO; 1476 } 1477 } 1478 goto found_extent; 1479 } 1480 1481 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1482 EXT4_ERROR_INODE(inode, 1483 "logical %d < ee_block %d + ee_len %d!", 1484 *logical, le32_to_cpu(ex->ee_block), ee_len); 1485 return -EIO; 1486 } 1487 1488 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1489 /* next allocated block in this leaf */ 1490 ex++; 1491 goto found_extent; 1492 } 1493 1494 /* go up and search for index to the right */ 1495 while (--depth >= 0) { 1496 ix = path[depth].p_idx; 1497 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1498 goto got_index; 1499 } 1500 1501 /* we've gone up to the root and found no index to the right */ 1502 return 0; 1503 1504 got_index: 1505 /* we've found index to the right, let's 1506 * follow it and find the closest allocated 1507 * block to the right */ 1508 ix++; 1509 block = ext4_idx_pblock(ix); 1510 while (++depth < path->p_depth) { 1511 /* subtract from p_depth to get proper eh_depth */ 1512 bh = read_extent_tree_block(inode, block, 1513 path->p_depth - depth, 0); 1514 if (IS_ERR(bh)) 1515 return PTR_ERR(bh); 1516 eh = ext_block_hdr(bh); 1517 ix = EXT_FIRST_INDEX(eh); 1518 block = ext4_idx_pblock(ix); 1519 put_bh(bh); 1520 } 1521 1522 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1523 if (IS_ERR(bh)) 1524 return PTR_ERR(bh); 1525 eh = ext_block_hdr(bh); 1526 ex = EXT_FIRST_EXTENT(eh); 1527 found_extent: 1528 *logical = le32_to_cpu(ex->ee_block); 1529 *phys = ext4_ext_pblock(ex); 1530 *ret_ex = ex; 1531 if (bh) 1532 put_bh(bh); 1533 return 0; 1534 } 1535 1536 /* 1537 * ext4_ext_next_allocated_block: 1538 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1539 * NOTE: it considers block number from index entry as 1540 * allocated block. Thus, index entries have to be consistent 1541 * with leaves. 1542 */ 1543 static ext4_lblk_t 1544 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1545 { 1546 int depth; 1547 1548 BUG_ON(path == NULL); 1549 depth = path->p_depth; 1550 1551 if (depth == 0 && path->p_ext == NULL) 1552 return EXT_MAX_BLOCKS; 1553 1554 while (depth >= 0) { 1555 if (depth == path->p_depth) { 1556 /* leaf */ 1557 if (path[depth].p_ext && 1558 path[depth].p_ext != 1559 EXT_LAST_EXTENT(path[depth].p_hdr)) 1560 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1561 } else { 1562 /* index */ 1563 if (path[depth].p_idx != 1564 EXT_LAST_INDEX(path[depth].p_hdr)) 1565 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1566 } 1567 depth--; 1568 } 1569 1570 return EXT_MAX_BLOCKS; 1571 } 1572 1573 /* 1574 * ext4_ext_next_leaf_block: 1575 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1576 */ 1577 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1578 { 1579 int depth; 1580 1581 BUG_ON(path == NULL); 1582 depth = path->p_depth; 1583 1584 /* zero-tree has no leaf blocks at all */ 1585 if (depth == 0) 1586 return EXT_MAX_BLOCKS; 1587 1588 /* go to index block */ 1589 depth--; 1590 1591 while (depth >= 0) { 1592 if (path[depth].p_idx != 1593 EXT_LAST_INDEX(path[depth].p_hdr)) 1594 return (ext4_lblk_t) 1595 le32_to_cpu(path[depth].p_idx[1].ei_block); 1596 depth--; 1597 } 1598 1599 return EXT_MAX_BLOCKS; 1600 } 1601 1602 /* 1603 * ext4_ext_correct_indexes: 1604 * if leaf gets modified and modified extent is first in the leaf, 1605 * then we have to correct all indexes above. 1606 * TODO: do we need to correct tree in all cases? 1607 */ 1608 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1609 struct ext4_ext_path *path) 1610 { 1611 struct ext4_extent_header *eh; 1612 int depth = ext_depth(inode); 1613 struct ext4_extent *ex; 1614 __le32 border; 1615 int k, err = 0; 1616 1617 eh = path[depth].p_hdr; 1618 ex = path[depth].p_ext; 1619 1620 if (unlikely(ex == NULL || eh == NULL)) { 1621 EXT4_ERROR_INODE(inode, 1622 "ex %p == NULL or eh %p == NULL", ex, eh); 1623 return -EIO; 1624 } 1625 1626 if (depth == 0) { 1627 /* there is no tree at all */ 1628 return 0; 1629 } 1630 1631 if (ex != EXT_FIRST_EXTENT(eh)) { 1632 /* we correct tree if first leaf got modified only */ 1633 return 0; 1634 } 1635 1636 /* 1637 * TODO: we need correction if border is smaller than current one 1638 */ 1639 k = depth - 1; 1640 border = path[depth].p_ext->ee_block; 1641 err = ext4_ext_get_access(handle, inode, path + k); 1642 if (err) 1643 return err; 1644 path[k].p_idx->ei_block = border; 1645 err = ext4_ext_dirty(handle, inode, path + k); 1646 if (err) 1647 return err; 1648 1649 while (k--) { 1650 /* change all left-side indexes */ 1651 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1652 break; 1653 err = ext4_ext_get_access(handle, inode, path + k); 1654 if (err) 1655 break; 1656 path[k].p_idx->ei_block = border; 1657 err = ext4_ext_dirty(handle, inode, path + k); 1658 if (err) 1659 break; 1660 } 1661 1662 return err; 1663 } 1664 1665 int 1666 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1667 struct ext4_extent *ex2) 1668 { 1669 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1670 1671 /* 1672 * Make sure that both extents are initialized. We don't merge 1673 * uninitialized extents so that we can be sure that end_io code has 1674 * the extent that was written properly split out and conversion to 1675 * initialized is trivial. 1676 */ 1677 if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2)) 1678 return 0; 1679 1680 if (ext4_ext_is_uninitialized(ex1)) 1681 max_len = EXT_UNINIT_MAX_LEN; 1682 else 1683 max_len = EXT_INIT_MAX_LEN; 1684 1685 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1686 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1687 1688 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1689 le32_to_cpu(ex2->ee_block)) 1690 return 0; 1691 1692 /* 1693 * To allow future support for preallocated extents to be added 1694 * as an RO_COMPAT feature, refuse to merge to extents if 1695 * this can result in the top bit of ee_len being set. 1696 */ 1697 if (ext1_ee_len + ext2_ee_len > max_len) 1698 return 0; 1699 #ifdef AGGRESSIVE_TEST 1700 if (ext1_ee_len >= 4) 1701 return 0; 1702 #endif 1703 1704 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1705 return 1; 1706 return 0; 1707 } 1708 1709 /* 1710 * This function tries to merge the "ex" extent to the next extent in the tree. 1711 * It always tries to merge towards right. If you want to merge towards 1712 * left, pass "ex - 1" as argument instead of "ex". 1713 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1714 * 1 if they got merged. 1715 */ 1716 static int ext4_ext_try_to_merge_right(struct inode *inode, 1717 struct ext4_ext_path *path, 1718 struct ext4_extent *ex) 1719 { 1720 struct ext4_extent_header *eh; 1721 unsigned int depth, len; 1722 int merge_done = 0; 1723 int uninitialized = 0; 1724 1725 depth = ext_depth(inode); 1726 BUG_ON(path[depth].p_hdr == NULL); 1727 eh = path[depth].p_hdr; 1728 1729 while (ex < EXT_LAST_EXTENT(eh)) { 1730 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1731 break; 1732 /* merge with next extent! */ 1733 if (ext4_ext_is_uninitialized(ex)) 1734 uninitialized = 1; 1735 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1736 + ext4_ext_get_actual_len(ex + 1)); 1737 if (uninitialized) 1738 ext4_ext_mark_uninitialized(ex); 1739 1740 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1741 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1742 * sizeof(struct ext4_extent); 1743 memmove(ex + 1, ex + 2, len); 1744 } 1745 le16_add_cpu(&eh->eh_entries, -1); 1746 merge_done = 1; 1747 WARN_ON(eh->eh_entries == 0); 1748 if (!eh->eh_entries) 1749 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1750 } 1751 1752 return merge_done; 1753 } 1754 1755 /* 1756 * This function does a very simple check to see if we can collapse 1757 * an extent tree with a single extent tree leaf block into the inode. 1758 */ 1759 static void ext4_ext_try_to_merge_up(handle_t *handle, 1760 struct inode *inode, 1761 struct ext4_ext_path *path) 1762 { 1763 size_t s; 1764 unsigned max_root = ext4_ext_space_root(inode, 0); 1765 ext4_fsblk_t blk; 1766 1767 if ((path[0].p_depth != 1) || 1768 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1769 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1770 return; 1771 1772 /* 1773 * We need to modify the block allocation bitmap and the block 1774 * group descriptor to release the extent tree block. If we 1775 * can't get the journal credits, give up. 1776 */ 1777 if (ext4_journal_extend(handle, 2)) 1778 return; 1779 1780 /* 1781 * Copy the extent data up to the inode 1782 */ 1783 blk = ext4_idx_pblock(path[0].p_idx); 1784 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1785 sizeof(struct ext4_extent_idx); 1786 s += sizeof(struct ext4_extent_header); 1787 1788 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1789 path[0].p_depth = 0; 1790 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1791 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1792 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1793 1794 brelse(path[1].p_bh); 1795 ext4_free_blocks(handle, inode, NULL, blk, 1, 1796 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET | 1797 EXT4_FREE_BLOCKS_RESERVE); 1798 } 1799 1800 /* 1801 * This function tries to merge the @ex extent to neighbours in the tree. 1802 * return 1 if merge left else 0. 1803 */ 1804 static void ext4_ext_try_to_merge(handle_t *handle, 1805 struct inode *inode, 1806 struct ext4_ext_path *path, 1807 struct ext4_extent *ex) { 1808 struct ext4_extent_header *eh; 1809 unsigned int depth; 1810 int merge_done = 0; 1811 1812 depth = ext_depth(inode); 1813 BUG_ON(path[depth].p_hdr == NULL); 1814 eh = path[depth].p_hdr; 1815 1816 if (ex > EXT_FIRST_EXTENT(eh)) 1817 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1818 1819 if (!merge_done) 1820 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1821 1822 ext4_ext_try_to_merge_up(handle, inode, path); 1823 } 1824 1825 /* 1826 * check if a portion of the "newext" extent overlaps with an 1827 * existing extent. 1828 * 1829 * If there is an overlap discovered, it updates the length of the newext 1830 * such that there will be no overlap, and then returns 1. 1831 * If there is no overlap found, it returns 0. 1832 */ 1833 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1834 struct inode *inode, 1835 struct ext4_extent *newext, 1836 struct ext4_ext_path *path) 1837 { 1838 ext4_lblk_t b1, b2; 1839 unsigned int depth, len1; 1840 unsigned int ret = 0; 1841 1842 b1 = le32_to_cpu(newext->ee_block); 1843 len1 = ext4_ext_get_actual_len(newext); 1844 depth = ext_depth(inode); 1845 if (!path[depth].p_ext) 1846 goto out; 1847 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1848 b2 &= ~(sbi->s_cluster_ratio - 1); 1849 1850 /* 1851 * get the next allocated block if the extent in the path 1852 * is before the requested block(s) 1853 */ 1854 if (b2 < b1) { 1855 b2 = ext4_ext_next_allocated_block(path); 1856 if (b2 == EXT_MAX_BLOCKS) 1857 goto out; 1858 b2 &= ~(sbi->s_cluster_ratio - 1); 1859 } 1860 1861 /* check for wrap through zero on extent logical start block*/ 1862 if (b1 + len1 < b1) { 1863 len1 = EXT_MAX_BLOCKS - b1; 1864 newext->ee_len = cpu_to_le16(len1); 1865 ret = 1; 1866 } 1867 1868 /* check for overlap */ 1869 if (b1 + len1 > b2) { 1870 newext->ee_len = cpu_to_le16(b2 - b1); 1871 ret = 1; 1872 } 1873 out: 1874 return ret; 1875 } 1876 1877 /* 1878 * ext4_ext_insert_extent: 1879 * tries to merge requsted extent into the existing extent or 1880 * inserts requested extent as new one into the tree, 1881 * creating new leaf in the no-space case. 1882 */ 1883 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1884 struct ext4_ext_path *path, 1885 struct ext4_extent *newext, int gb_flags) 1886 { 1887 struct ext4_extent_header *eh; 1888 struct ext4_extent *ex, *fex; 1889 struct ext4_extent *nearex; /* nearest extent */ 1890 struct ext4_ext_path *npath = NULL; 1891 int depth, len, err; 1892 ext4_lblk_t next; 1893 unsigned uninitialized = 0; 1894 int mb_flags = 0; 1895 1896 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1897 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1898 return -EIO; 1899 } 1900 depth = ext_depth(inode); 1901 ex = path[depth].p_ext; 1902 eh = path[depth].p_hdr; 1903 if (unlikely(path[depth].p_hdr == NULL)) { 1904 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1905 return -EIO; 1906 } 1907 1908 /* try to insert block into found extent and return */ 1909 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1910 1911 /* 1912 * Try to see whether we should rather test the extent on 1913 * right from ex, or from the left of ex. This is because 1914 * ext4_ext_find_extent() can return either extent on the 1915 * left, or on the right from the searched position. This 1916 * will make merging more effective. 1917 */ 1918 if (ex < EXT_LAST_EXTENT(eh) && 1919 (le32_to_cpu(ex->ee_block) + 1920 ext4_ext_get_actual_len(ex) < 1921 le32_to_cpu(newext->ee_block))) { 1922 ex += 1; 1923 goto prepend; 1924 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1925 (le32_to_cpu(newext->ee_block) + 1926 ext4_ext_get_actual_len(newext) < 1927 le32_to_cpu(ex->ee_block))) 1928 ex -= 1; 1929 1930 /* Try to append newex to the ex */ 1931 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1932 ext_debug("append [%d]%d block to %u:[%d]%d" 1933 "(from %llu)\n", 1934 ext4_ext_is_uninitialized(newext), 1935 ext4_ext_get_actual_len(newext), 1936 le32_to_cpu(ex->ee_block), 1937 ext4_ext_is_uninitialized(ex), 1938 ext4_ext_get_actual_len(ex), 1939 ext4_ext_pblock(ex)); 1940 err = ext4_ext_get_access(handle, inode, 1941 path + depth); 1942 if (err) 1943 return err; 1944 1945 /* 1946 * ext4_can_extents_be_merged should have checked 1947 * that either both extents are uninitialized, or 1948 * both aren't. Thus we need to check only one of 1949 * them here. 1950 */ 1951 if (ext4_ext_is_uninitialized(ex)) 1952 uninitialized = 1; 1953 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1954 + ext4_ext_get_actual_len(newext)); 1955 if (uninitialized) 1956 ext4_ext_mark_uninitialized(ex); 1957 eh = path[depth].p_hdr; 1958 nearex = ex; 1959 goto merge; 1960 } 1961 1962 prepend: 1963 /* Try to prepend newex to the ex */ 1964 if (ext4_can_extents_be_merged(inode, newext, ex)) { 1965 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 1966 "(from %llu)\n", 1967 le32_to_cpu(newext->ee_block), 1968 ext4_ext_is_uninitialized(newext), 1969 ext4_ext_get_actual_len(newext), 1970 le32_to_cpu(ex->ee_block), 1971 ext4_ext_is_uninitialized(ex), 1972 ext4_ext_get_actual_len(ex), 1973 ext4_ext_pblock(ex)); 1974 err = ext4_ext_get_access(handle, inode, 1975 path + depth); 1976 if (err) 1977 return err; 1978 1979 /* 1980 * ext4_can_extents_be_merged should have checked 1981 * that either both extents are uninitialized, or 1982 * both aren't. Thus we need to check only one of 1983 * them here. 1984 */ 1985 if (ext4_ext_is_uninitialized(ex)) 1986 uninitialized = 1; 1987 ex->ee_block = newext->ee_block; 1988 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 1989 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1990 + ext4_ext_get_actual_len(newext)); 1991 if (uninitialized) 1992 ext4_ext_mark_uninitialized(ex); 1993 eh = path[depth].p_hdr; 1994 nearex = ex; 1995 goto merge; 1996 } 1997 } 1998 1999 depth = ext_depth(inode); 2000 eh = path[depth].p_hdr; 2001 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2002 goto has_space; 2003 2004 /* probably next leaf has space for us? */ 2005 fex = EXT_LAST_EXTENT(eh); 2006 next = EXT_MAX_BLOCKS; 2007 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2008 next = ext4_ext_next_leaf_block(path); 2009 if (next != EXT_MAX_BLOCKS) { 2010 ext_debug("next leaf block - %u\n", next); 2011 BUG_ON(npath != NULL); 2012 npath = ext4_ext_find_extent(inode, next, NULL, 0); 2013 if (IS_ERR(npath)) 2014 return PTR_ERR(npath); 2015 BUG_ON(npath->p_depth != path->p_depth); 2016 eh = npath[depth].p_hdr; 2017 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2018 ext_debug("next leaf isn't full(%d)\n", 2019 le16_to_cpu(eh->eh_entries)); 2020 path = npath; 2021 goto has_space; 2022 } 2023 ext_debug("next leaf has no free space(%d,%d)\n", 2024 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2025 } 2026 2027 /* 2028 * There is no free space in the found leaf. 2029 * We're gonna add a new leaf in the tree. 2030 */ 2031 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2032 mb_flags = EXT4_MB_USE_RESERVED; 2033 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2034 path, newext); 2035 if (err) 2036 goto cleanup; 2037 depth = ext_depth(inode); 2038 eh = path[depth].p_hdr; 2039 2040 has_space: 2041 nearex = path[depth].p_ext; 2042 2043 err = ext4_ext_get_access(handle, inode, path + depth); 2044 if (err) 2045 goto cleanup; 2046 2047 if (!nearex) { 2048 /* there is no extent in this leaf, create first one */ 2049 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2050 le32_to_cpu(newext->ee_block), 2051 ext4_ext_pblock(newext), 2052 ext4_ext_is_uninitialized(newext), 2053 ext4_ext_get_actual_len(newext)); 2054 nearex = EXT_FIRST_EXTENT(eh); 2055 } else { 2056 if (le32_to_cpu(newext->ee_block) 2057 > le32_to_cpu(nearex->ee_block)) { 2058 /* Insert after */ 2059 ext_debug("insert %u:%llu:[%d]%d before: " 2060 "nearest %p\n", 2061 le32_to_cpu(newext->ee_block), 2062 ext4_ext_pblock(newext), 2063 ext4_ext_is_uninitialized(newext), 2064 ext4_ext_get_actual_len(newext), 2065 nearex); 2066 nearex++; 2067 } else { 2068 /* Insert before */ 2069 BUG_ON(newext->ee_block == nearex->ee_block); 2070 ext_debug("insert %u:%llu:[%d]%d after: " 2071 "nearest %p\n", 2072 le32_to_cpu(newext->ee_block), 2073 ext4_ext_pblock(newext), 2074 ext4_ext_is_uninitialized(newext), 2075 ext4_ext_get_actual_len(newext), 2076 nearex); 2077 } 2078 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2079 if (len > 0) { 2080 ext_debug("insert %u:%llu:[%d]%d: " 2081 "move %d extents from 0x%p to 0x%p\n", 2082 le32_to_cpu(newext->ee_block), 2083 ext4_ext_pblock(newext), 2084 ext4_ext_is_uninitialized(newext), 2085 ext4_ext_get_actual_len(newext), 2086 len, nearex, nearex + 1); 2087 memmove(nearex + 1, nearex, 2088 len * sizeof(struct ext4_extent)); 2089 } 2090 } 2091 2092 le16_add_cpu(&eh->eh_entries, 1); 2093 path[depth].p_ext = nearex; 2094 nearex->ee_block = newext->ee_block; 2095 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2096 nearex->ee_len = newext->ee_len; 2097 2098 merge: 2099 /* try to merge extents */ 2100 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2101 ext4_ext_try_to_merge(handle, inode, path, nearex); 2102 2103 2104 /* time to correct all indexes above */ 2105 err = ext4_ext_correct_indexes(handle, inode, path); 2106 if (err) 2107 goto cleanup; 2108 2109 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2110 2111 cleanup: 2112 if (npath) { 2113 ext4_ext_drop_refs(npath); 2114 kfree(npath); 2115 } 2116 return err; 2117 } 2118 2119 static int ext4_fill_fiemap_extents(struct inode *inode, 2120 ext4_lblk_t block, ext4_lblk_t num, 2121 struct fiemap_extent_info *fieinfo) 2122 { 2123 struct ext4_ext_path *path = NULL; 2124 struct ext4_extent *ex; 2125 struct extent_status es; 2126 ext4_lblk_t next, next_del, start = 0, end = 0; 2127 ext4_lblk_t last = block + num; 2128 int exists, depth = 0, err = 0; 2129 unsigned int flags = 0; 2130 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2131 2132 while (block < last && block != EXT_MAX_BLOCKS) { 2133 num = last - block; 2134 /* find extent for this block */ 2135 down_read(&EXT4_I(inode)->i_data_sem); 2136 2137 if (path && ext_depth(inode) != depth) { 2138 /* depth was changed. we have to realloc path */ 2139 kfree(path); 2140 path = NULL; 2141 } 2142 2143 path = ext4_ext_find_extent(inode, block, path, 0); 2144 if (IS_ERR(path)) { 2145 up_read(&EXT4_I(inode)->i_data_sem); 2146 err = PTR_ERR(path); 2147 path = NULL; 2148 break; 2149 } 2150 2151 depth = ext_depth(inode); 2152 if (unlikely(path[depth].p_hdr == NULL)) { 2153 up_read(&EXT4_I(inode)->i_data_sem); 2154 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2155 err = -EIO; 2156 break; 2157 } 2158 ex = path[depth].p_ext; 2159 next = ext4_ext_next_allocated_block(path); 2160 ext4_ext_drop_refs(path); 2161 2162 flags = 0; 2163 exists = 0; 2164 if (!ex) { 2165 /* there is no extent yet, so try to allocate 2166 * all requested space */ 2167 start = block; 2168 end = block + num; 2169 } else if (le32_to_cpu(ex->ee_block) > block) { 2170 /* need to allocate space before found extent */ 2171 start = block; 2172 end = le32_to_cpu(ex->ee_block); 2173 if (block + num < end) 2174 end = block + num; 2175 } else if (block >= le32_to_cpu(ex->ee_block) 2176 + ext4_ext_get_actual_len(ex)) { 2177 /* need to allocate space after found extent */ 2178 start = block; 2179 end = block + num; 2180 if (end >= next) 2181 end = next; 2182 } else if (block >= le32_to_cpu(ex->ee_block)) { 2183 /* 2184 * some part of requested space is covered 2185 * by found extent 2186 */ 2187 start = block; 2188 end = le32_to_cpu(ex->ee_block) 2189 + ext4_ext_get_actual_len(ex); 2190 if (block + num < end) 2191 end = block + num; 2192 exists = 1; 2193 } else { 2194 BUG(); 2195 } 2196 BUG_ON(end <= start); 2197 2198 if (!exists) { 2199 es.es_lblk = start; 2200 es.es_len = end - start; 2201 es.es_pblk = 0; 2202 } else { 2203 es.es_lblk = le32_to_cpu(ex->ee_block); 2204 es.es_len = ext4_ext_get_actual_len(ex); 2205 es.es_pblk = ext4_ext_pblock(ex); 2206 if (ext4_ext_is_uninitialized(ex)) 2207 flags |= FIEMAP_EXTENT_UNWRITTEN; 2208 } 2209 2210 /* 2211 * Find delayed extent and update es accordingly. We call 2212 * it even in !exists case to find out whether es is the 2213 * last existing extent or not. 2214 */ 2215 next_del = ext4_find_delayed_extent(inode, &es); 2216 if (!exists && next_del) { 2217 exists = 1; 2218 flags |= (FIEMAP_EXTENT_DELALLOC | 2219 FIEMAP_EXTENT_UNKNOWN); 2220 } 2221 up_read(&EXT4_I(inode)->i_data_sem); 2222 2223 if (unlikely(es.es_len == 0)) { 2224 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2225 err = -EIO; 2226 break; 2227 } 2228 2229 /* 2230 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2231 * we need to check next == EXT_MAX_BLOCKS because it is 2232 * possible that an extent is with unwritten and delayed 2233 * status due to when an extent is delayed allocated and 2234 * is allocated by fallocate status tree will track both of 2235 * them in a extent. 2236 * 2237 * So we could return a unwritten and delayed extent, and 2238 * its block is equal to 'next'. 2239 */ 2240 if (next == next_del && next == EXT_MAX_BLOCKS) { 2241 flags |= FIEMAP_EXTENT_LAST; 2242 if (unlikely(next_del != EXT_MAX_BLOCKS || 2243 next != EXT_MAX_BLOCKS)) { 2244 EXT4_ERROR_INODE(inode, 2245 "next extent == %u, next " 2246 "delalloc extent = %u", 2247 next, next_del); 2248 err = -EIO; 2249 break; 2250 } 2251 } 2252 2253 if (exists) { 2254 err = fiemap_fill_next_extent(fieinfo, 2255 (__u64)es.es_lblk << blksize_bits, 2256 (__u64)es.es_pblk << blksize_bits, 2257 (__u64)es.es_len << blksize_bits, 2258 flags); 2259 if (err < 0) 2260 break; 2261 if (err == 1) { 2262 err = 0; 2263 break; 2264 } 2265 } 2266 2267 block = es.es_lblk + es.es_len; 2268 } 2269 2270 if (path) { 2271 ext4_ext_drop_refs(path); 2272 kfree(path); 2273 } 2274 2275 return err; 2276 } 2277 2278 /* 2279 * ext4_ext_put_gap_in_cache: 2280 * calculate boundaries of the gap that the requested block fits into 2281 * and cache this gap 2282 */ 2283 static void 2284 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2285 ext4_lblk_t block) 2286 { 2287 int depth = ext_depth(inode); 2288 unsigned long len = 0; 2289 ext4_lblk_t lblock = 0; 2290 struct ext4_extent *ex; 2291 2292 ex = path[depth].p_ext; 2293 if (ex == NULL) { 2294 /* 2295 * there is no extent yet, so gap is [0;-] and we 2296 * don't cache it 2297 */ 2298 ext_debug("cache gap(whole file):"); 2299 } else if (block < le32_to_cpu(ex->ee_block)) { 2300 lblock = block; 2301 len = le32_to_cpu(ex->ee_block) - block; 2302 ext_debug("cache gap(before): %u [%u:%u]", 2303 block, 2304 le32_to_cpu(ex->ee_block), 2305 ext4_ext_get_actual_len(ex)); 2306 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2307 ext4_es_insert_extent(inode, lblock, len, ~0, 2308 EXTENT_STATUS_HOLE); 2309 } else if (block >= le32_to_cpu(ex->ee_block) 2310 + ext4_ext_get_actual_len(ex)) { 2311 ext4_lblk_t next; 2312 lblock = le32_to_cpu(ex->ee_block) 2313 + ext4_ext_get_actual_len(ex); 2314 2315 next = ext4_ext_next_allocated_block(path); 2316 ext_debug("cache gap(after): [%u:%u] %u", 2317 le32_to_cpu(ex->ee_block), 2318 ext4_ext_get_actual_len(ex), 2319 block); 2320 BUG_ON(next == lblock); 2321 len = next - lblock; 2322 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2323 ext4_es_insert_extent(inode, lblock, len, ~0, 2324 EXTENT_STATUS_HOLE); 2325 } else { 2326 BUG(); 2327 } 2328 2329 ext_debug(" -> %u:%lu\n", lblock, len); 2330 } 2331 2332 /* 2333 * ext4_ext_rm_idx: 2334 * removes index from the index block. 2335 */ 2336 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2337 struct ext4_ext_path *path, int depth) 2338 { 2339 int err; 2340 ext4_fsblk_t leaf; 2341 2342 /* free index block */ 2343 depth--; 2344 path = path + depth; 2345 leaf = ext4_idx_pblock(path->p_idx); 2346 if (unlikely(path->p_hdr->eh_entries == 0)) { 2347 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2348 return -EIO; 2349 } 2350 err = ext4_ext_get_access(handle, inode, path); 2351 if (err) 2352 return err; 2353 2354 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2355 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2356 len *= sizeof(struct ext4_extent_idx); 2357 memmove(path->p_idx, path->p_idx + 1, len); 2358 } 2359 2360 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2361 err = ext4_ext_dirty(handle, inode, path); 2362 if (err) 2363 return err; 2364 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2365 trace_ext4_ext_rm_idx(inode, leaf); 2366 2367 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2368 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2369 2370 while (--depth >= 0) { 2371 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2372 break; 2373 path--; 2374 err = ext4_ext_get_access(handle, inode, path); 2375 if (err) 2376 break; 2377 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2378 err = ext4_ext_dirty(handle, inode, path); 2379 if (err) 2380 break; 2381 } 2382 return err; 2383 } 2384 2385 /* 2386 * ext4_ext_calc_credits_for_single_extent: 2387 * This routine returns max. credits that needed to insert an extent 2388 * to the extent tree. 2389 * When pass the actual path, the caller should calculate credits 2390 * under i_data_sem. 2391 */ 2392 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2393 struct ext4_ext_path *path) 2394 { 2395 if (path) { 2396 int depth = ext_depth(inode); 2397 int ret = 0; 2398 2399 /* probably there is space in leaf? */ 2400 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2401 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2402 2403 /* 2404 * There are some space in the leaf tree, no 2405 * need to account for leaf block credit 2406 * 2407 * bitmaps and block group descriptor blocks 2408 * and other metadata blocks still need to be 2409 * accounted. 2410 */ 2411 /* 1 bitmap, 1 block group descriptor */ 2412 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2413 return ret; 2414 } 2415 } 2416 2417 return ext4_chunk_trans_blocks(inode, nrblocks); 2418 } 2419 2420 /* 2421 * How many index/leaf blocks need to change/allocate to add @extents extents? 2422 * 2423 * If we add a single extent, then in the worse case, each tree level 2424 * index/leaf need to be changed in case of the tree split. 2425 * 2426 * If more extents are inserted, they could cause the whole tree split more 2427 * than once, but this is really rare. 2428 */ 2429 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2430 { 2431 int index; 2432 int depth; 2433 2434 /* If we are converting the inline data, only one is needed here. */ 2435 if (ext4_has_inline_data(inode)) 2436 return 1; 2437 2438 depth = ext_depth(inode); 2439 2440 if (extents <= 1) 2441 index = depth * 2; 2442 else 2443 index = depth * 3; 2444 2445 return index; 2446 } 2447 2448 static inline int get_default_free_blocks_flags(struct inode *inode) 2449 { 2450 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2451 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2452 else if (ext4_should_journal_data(inode)) 2453 return EXT4_FREE_BLOCKS_FORGET; 2454 return 0; 2455 } 2456 2457 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2458 struct ext4_extent *ex, 2459 long long *partial_cluster, 2460 ext4_lblk_t from, ext4_lblk_t to) 2461 { 2462 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2463 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2464 ext4_fsblk_t pblk; 2465 int flags = get_default_free_blocks_flags(inode); 2466 2467 /* 2468 * For bigalloc file systems, we never free a partial cluster 2469 * at the beginning of the extent. Instead, we make a note 2470 * that we tried freeing the cluster, and check to see if we 2471 * need to free it on a subsequent call to ext4_remove_blocks, 2472 * or at the end of the ext4_truncate() operation. 2473 */ 2474 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2475 2476 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2477 /* 2478 * If we have a partial cluster, and it's different from the 2479 * cluster of the last block, we need to explicitly free the 2480 * partial cluster here. 2481 */ 2482 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2483 if ((*partial_cluster > 0) && 2484 (EXT4_B2C(sbi, pblk) != *partial_cluster)) { 2485 ext4_free_blocks(handle, inode, NULL, 2486 EXT4_C2B(sbi, *partial_cluster), 2487 sbi->s_cluster_ratio, flags); 2488 *partial_cluster = 0; 2489 } 2490 2491 #ifdef EXTENTS_STATS 2492 { 2493 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2494 spin_lock(&sbi->s_ext_stats_lock); 2495 sbi->s_ext_blocks += ee_len; 2496 sbi->s_ext_extents++; 2497 if (ee_len < sbi->s_ext_min) 2498 sbi->s_ext_min = ee_len; 2499 if (ee_len > sbi->s_ext_max) 2500 sbi->s_ext_max = ee_len; 2501 if (ext_depth(inode) > sbi->s_depth_max) 2502 sbi->s_depth_max = ext_depth(inode); 2503 spin_unlock(&sbi->s_ext_stats_lock); 2504 } 2505 #endif 2506 if (from >= le32_to_cpu(ex->ee_block) 2507 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2508 /* tail removal */ 2509 ext4_lblk_t num; 2510 unsigned int unaligned; 2511 2512 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2513 pblk = ext4_ext_pblock(ex) + ee_len - num; 2514 /* 2515 * Usually we want to free partial cluster at the end of the 2516 * extent, except for the situation when the cluster is still 2517 * used by any other extent (partial_cluster is negative). 2518 */ 2519 if (*partial_cluster < 0 && 2520 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1)) 2521 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2522 2523 ext_debug("free last %u blocks starting %llu partial %lld\n", 2524 num, pblk, *partial_cluster); 2525 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2526 /* 2527 * If the block range to be freed didn't start at the 2528 * beginning of a cluster, and we removed the entire 2529 * extent and the cluster is not used by any other extent, 2530 * save the partial cluster here, since we might need to 2531 * delete if we determine that the truncate operation has 2532 * removed all of the blocks in the cluster. 2533 * 2534 * On the other hand, if we did not manage to free the whole 2535 * extent, we have to mark the cluster as used (store negative 2536 * cluster number in partial_cluster). 2537 */ 2538 unaligned = pblk & (sbi->s_cluster_ratio - 1); 2539 if (unaligned && (ee_len == num) && 2540 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk)))) 2541 *partial_cluster = EXT4_B2C(sbi, pblk); 2542 else if (unaligned) 2543 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk)); 2544 else if (*partial_cluster > 0) 2545 *partial_cluster = 0; 2546 } else 2547 ext4_error(sbi->s_sb, "strange request: removal(2) " 2548 "%u-%u from %u:%u\n", 2549 from, to, le32_to_cpu(ex->ee_block), ee_len); 2550 return 0; 2551 } 2552 2553 2554 /* 2555 * ext4_ext_rm_leaf() Removes the extents associated with the 2556 * blocks appearing between "start" and "end", and splits the extents 2557 * if "start" and "end" appear in the same extent 2558 * 2559 * @handle: The journal handle 2560 * @inode: The files inode 2561 * @path: The path to the leaf 2562 * @partial_cluster: The cluster which we'll have to free if all extents 2563 * has been released from it. It gets negative in case 2564 * that the cluster is still used. 2565 * @start: The first block to remove 2566 * @end: The last block to remove 2567 */ 2568 static int 2569 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2570 struct ext4_ext_path *path, 2571 long long *partial_cluster, 2572 ext4_lblk_t start, ext4_lblk_t end) 2573 { 2574 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2575 int err = 0, correct_index = 0; 2576 int depth = ext_depth(inode), credits; 2577 struct ext4_extent_header *eh; 2578 ext4_lblk_t a, b; 2579 unsigned num; 2580 ext4_lblk_t ex_ee_block; 2581 unsigned short ex_ee_len; 2582 unsigned uninitialized = 0; 2583 struct ext4_extent *ex; 2584 ext4_fsblk_t pblk; 2585 2586 /* the header must be checked already in ext4_ext_remove_space() */ 2587 ext_debug("truncate since %u in leaf to %u\n", start, end); 2588 if (!path[depth].p_hdr) 2589 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2590 eh = path[depth].p_hdr; 2591 if (unlikely(path[depth].p_hdr == NULL)) { 2592 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2593 return -EIO; 2594 } 2595 /* find where to start removing */ 2596 ex = path[depth].p_ext; 2597 if (!ex) 2598 ex = EXT_LAST_EXTENT(eh); 2599 2600 ex_ee_block = le32_to_cpu(ex->ee_block); 2601 ex_ee_len = ext4_ext_get_actual_len(ex); 2602 2603 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2604 2605 while (ex >= EXT_FIRST_EXTENT(eh) && 2606 ex_ee_block + ex_ee_len > start) { 2607 2608 if (ext4_ext_is_uninitialized(ex)) 2609 uninitialized = 1; 2610 else 2611 uninitialized = 0; 2612 2613 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2614 uninitialized, ex_ee_len); 2615 path[depth].p_ext = ex; 2616 2617 a = ex_ee_block > start ? ex_ee_block : start; 2618 b = ex_ee_block+ex_ee_len - 1 < end ? 2619 ex_ee_block+ex_ee_len - 1 : end; 2620 2621 ext_debug(" border %u:%u\n", a, b); 2622 2623 /* If this extent is beyond the end of the hole, skip it */ 2624 if (end < ex_ee_block) { 2625 /* 2626 * We're going to skip this extent and move to another, 2627 * so if this extent is not cluster aligned we have 2628 * to mark the current cluster as used to avoid 2629 * accidentally freeing it later on 2630 */ 2631 pblk = ext4_ext_pblock(ex); 2632 if (pblk & (sbi->s_cluster_ratio - 1)) 2633 *partial_cluster = 2634 -((long long)EXT4_B2C(sbi, pblk)); 2635 ex--; 2636 ex_ee_block = le32_to_cpu(ex->ee_block); 2637 ex_ee_len = ext4_ext_get_actual_len(ex); 2638 continue; 2639 } else if (b != ex_ee_block + ex_ee_len - 1) { 2640 EXT4_ERROR_INODE(inode, 2641 "can not handle truncate %u:%u " 2642 "on extent %u:%u", 2643 start, end, ex_ee_block, 2644 ex_ee_block + ex_ee_len - 1); 2645 err = -EIO; 2646 goto out; 2647 } else if (a != ex_ee_block) { 2648 /* remove tail of the extent */ 2649 num = a - ex_ee_block; 2650 } else { 2651 /* remove whole extent: excellent! */ 2652 num = 0; 2653 } 2654 /* 2655 * 3 for leaf, sb, and inode plus 2 (bmap and group 2656 * descriptor) for each block group; assume two block 2657 * groups plus ex_ee_len/blocks_per_block_group for 2658 * the worst case 2659 */ 2660 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2661 if (ex == EXT_FIRST_EXTENT(eh)) { 2662 correct_index = 1; 2663 credits += (ext_depth(inode)) + 1; 2664 } 2665 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2666 2667 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2668 if (err) 2669 goto out; 2670 2671 err = ext4_ext_get_access(handle, inode, path + depth); 2672 if (err) 2673 goto out; 2674 2675 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2676 a, b); 2677 if (err) 2678 goto out; 2679 2680 if (num == 0) 2681 /* this extent is removed; mark slot entirely unused */ 2682 ext4_ext_store_pblock(ex, 0); 2683 2684 ex->ee_len = cpu_to_le16(num); 2685 /* 2686 * Do not mark uninitialized if all the blocks in the 2687 * extent have been removed. 2688 */ 2689 if (uninitialized && num) 2690 ext4_ext_mark_uninitialized(ex); 2691 /* 2692 * If the extent was completely released, 2693 * we need to remove it from the leaf 2694 */ 2695 if (num == 0) { 2696 if (end != EXT_MAX_BLOCKS - 1) { 2697 /* 2698 * For hole punching, we need to scoot all the 2699 * extents up when an extent is removed so that 2700 * we dont have blank extents in the middle 2701 */ 2702 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2703 sizeof(struct ext4_extent)); 2704 2705 /* Now get rid of the one at the end */ 2706 memset(EXT_LAST_EXTENT(eh), 0, 2707 sizeof(struct ext4_extent)); 2708 } 2709 le16_add_cpu(&eh->eh_entries, -1); 2710 } else if (*partial_cluster > 0) 2711 *partial_cluster = 0; 2712 2713 err = ext4_ext_dirty(handle, inode, path + depth); 2714 if (err) 2715 goto out; 2716 2717 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2718 ext4_ext_pblock(ex)); 2719 ex--; 2720 ex_ee_block = le32_to_cpu(ex->ee_block); 2721 ex_ee_len = ext4_ext_get_actual_len(ex); 2722 } 2723 2724 if (correct_index && eh->eh_entries) 2725 err = ext4_ext_correct_indexes(handle, inode, path); 2726 2727 /* 2728 * Free the partial cluster only if the current extent does not 2729 * reference it. Otherwise we might free used cluster. 2730 */ 2731 if (*partial_cluster > 0 && 2732 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != 2733 *partial_cluster)) { 2734 int flags = get_default_free_blocks_flags(inode); 2735 2736 ext4_free_blocks(handle, inode, NULL, 2737 EXT4_C2B(sbi, *partial_cluster), 2738 sbi->s_cluster_ratio, flags); 2739 *partial_cluster = 0; 2740 } 2741 2742 /* if this leaf is free, then we should 2743 * remove it from index block above */ 2744 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2745 err = ext4_ext_rm_idx(handle, inode, path, depth); 2746 2747 out: 2748 return err; 2749 } 2750 2751 /* 2752 * ext4_ext_more_to_rm: 2753 * returns 1 if current index has to be freed (even partial) 2754 */ 2755 static int 2756 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2757 { 2758 BUG_ON(path->p_idx == NULL); 2759 2760 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2761 return 0; 2762 2763 /* 2764 * if truncate on deeper level happened, it wasn't partial, 2765 * so we have to consider current index for truncation 2766 */ 2767 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2768 return 0; 2769 return 1; 2770 } 2771 2772 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2773 ext4_lblk_t end) 2774 { 2775 struct super_block *sb = inode->i_sb; 2776 int depth = ext_depth(inode); 2777 struct ext4_ext_path *path = NULL; 2778 long long partial_cluster = 0; 2779 handle_t *handle; 2780 int i = 0, err = 0; 2781 2782 ext_debug("truncate since %u to %u\n", start, end); 2783 2784 /* probably first extent we're gonna free will be last in block */ 2785 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2786 if (IS_ERR(handle)) 2787 return PTR_ERR(handle); 2788 2789 again: 2790 trace_ext4_ext_remove_space(inode, start, end, depth); 2791 2792 /* 2793 * Check if we are removing extents inside the extent tree. If that 2794 * is the case, we are going to punch a hole inside the extent tree 2795 * so we have to check whether we need to split the extent covering 2796 * the last block to remove so we can easily remove the part of it 2797 * in ext4_ext_rm_leaf(). 2798 */ 2799 if (end < EXT_MAX_BLOCKS - 1) { 2800 struct ext4_extent *ex; 2801 ext4_lblk_t ee_block; 2802 2803 /* find extent for this block */ 2804 path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2805 if (IS_ERR(path)) { 2806 ext4_journal_stop(handle); 2807 return PTR_ERR(path); 2808 } 2809 depth = ext_depth(inode); 2810 /* Leaf not may not exist only if inode has no blocks at all */ 2811 ex = path[depth].p_ext; 2812 if (!ex) { 2813 if (depth) { 2814 EXT4_ERROR_INODE(inode, 2815 "path[%d].p_hdr == NULL", 2816 depth); 2817 err = -EIO; 2818 } 2819 goto out; 2820 } 2821 2822 ee_block = le32_to_cpu(ex->ee_block); 2823 2824 /* 2825 * See if the last block is inside the extent, if so split 2826 * the extent at 'end' block so we can easily remove the 2827 * tail of the first part of the split extent in 2828 * ext4_ext_rm_leaf(). 2829 */ 2830 if (end >= ee_block && 2831 end < ee_block + ext4_ext_get_actual_len(ex) - 1) { 2832 int split_flag = 0; 2833 2834 if (ext4_ext_is_uninitialized(ex)) 2835 split_flag = EXT4_EXT_MARK_UNINIT1 | 2836 EXT4_EXT_MARK_UNINIT2; 2837 2838 /* 2839 * Split the extent in two so that 'end' is the last 2840 * block in the first new extent. Also we should not 2841 * fail removing space due to ENOSPC so try to use 2842 * reserved block if that happens. 2843 */ 2844 err = ext4_split_extent_at(handle, inode, path, 2845 end + 1, split_flag, 2846 EXT4_EX_NOCACHE | 2847 EXT4_GET_BLOCKS_PRE_IO | 2848 EXT4_GET_BLOCKS_METADATA_NOFAIL); 2849 2850 if (err < 0) 2851 goto out; 2852 } 2853 } 2854 /* 2855 * We start scanning from right side, freeing all the blocks 2856 * after i_size and walking into the tree depth-wise. 2857 */ 2858 depth = ext_depth(inode); 2859 if (path) { 2860 int k = i = depth; 2861 while (--k > 0) 2862 path[k].p_block = 2863 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2864 } else { 2865 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2866 GFP_NOFS); 2867 if (path == NULL) { 2868 ext4_journal_stop(handle); 2869 return -ENOMEM; 2870 } 2871 path[0].p_depth = depth; 2872 path[0].p_hdr = ext_inode_hdr(inode); 2873 i = 0; 2874 2875 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2876 err = -EIO; 2877 goto out; 2878 } 2879 } 2880 err = 0; 2881 2882 while (i >= 0 && err == 0) { 2883 if (i == depth) { 2884 /* this is leaf block */ 2885 err = ext4_ext_rm_leaf(handle, inode, path, 2886 &partial_cluster, start, 2887 end); 2888 /* root level has p_bh == NULL, brelse() eats this */ 2889 brelse(path[i].p_bh); 2890 path[i].p_bh = NULL; 2891 i--; 2892 continue; 2893 } 2894 2895 /* this is index block */ 2896 if (!path[i].p_hdr) { 2897 ext_debug("initialize header\n"); 2898 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2899 } 2900 2901 if (!path[i].p_idx) { 2902 /* this level hasn't been touched yet */ 2903 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2904 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2905 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2906 path[i].p_hdr, 2907 le16_to_cpu(path[i].p_hdr->eh_entries)); 2908 } else { 2909 /* we were already here, see at next index */ 2910 path[i].p_idx--; 2911 } 2912 2913 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2914 i, EXT_FIRST_INDEX(path[i].p_hdr), 2915 path[i].p_idx); 2916 if (ext4_ext_more_to_rm(path + i)) { 2917 struct buffer_head *bh; 2918 /* go to the next level */ 2919 ext_debug("move to level %d (block %llu)\n", 2920 i + 1, ext4_idx_pblock(path[i].p_idx)); 2921 memset(path + i + 1, 0, sizeof(*path)); 2922 bh = read_extent_tree_block(inode, 2923 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 2924 EXT4_EX_NOCACHE); 2925 if (IS_ERR(bh)) { 2926 /* should we reset i_size? */ 2927 err = PTR_ERR(bh); 2928 break; 2929 } 2930 /* Yield here to deal with large extent trees. 2931 * Should be a no-op if we did IO above. */ 2932 cond_resched(); 2933 if (WARN_ON(i + 1 > depth)) { 2934 err = -EIO; 2935 break; 2936 } 2937 path[i + 1].p_bh = bh; 2938 2939 /* save actual number of indexes since this 2940 * number is changed at the next iteration */ 2941 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2942 i++; 2943 } else { 2944 /* we finished processing this index, go up */ 2945 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2946 /* index is empty, remove it; 2947 * handle must be already prepared by the 2948 * truncatei_leaf() */ 2949 err = ext4_ext_rm_idx(handle, inode, path, i); 2950 } 2951 /* root level has p_bh == NULL, brelse() eats this */ 2952 brelse(path[i].p_bh); 2953 path[i].p_bh = NULL; 2954 i--; 2955 ext_debug("return to level %d\n", i); 2956 } 2957 } 2958 2959 trace_ext4_ext_remove_space_done(inode, start, end, depth, 2960 partial_cluster, path->p_hdr->eh_entries); 2961 2962 /* If we still have something in the partial cluster and we have removed 2963 * even the first extent, then we should free the blocks in the partial 2964 * cluster as well. */ 2965 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) { 2966 int flags = get_default_free_blocks_flags(inode); 2967 2968 ext4_free_blocks(handle, inode, NULL, 2969 EXT4_C2B(EXT4_SB(sb), partial_cluster), 2970 EXT4_SB(sb)->s_cluster_ratio, flags); 2971 partial_cluster = 0; 2972 } 2973 2974 /* TODO: flexible tree reduction should be here */ 2975 if (path->p_hdr->eh_entries == 0) { 2976 /* 2977 * truncate to zero freed all the tree, 2978 * so we need to correct eh_depth 2979 */ 2980 err = ext4_ext_get_access(handle, inode, path); 2981 if (err == 0) { 2982 ext_inode_hdr(inode)->eh_depth = 0; 2983 ext_inode_hdr(inode)->eh_max = 2984 cpu_to_le16(ext4_ext_space_root(inode, 0)); 2985 err = ext4_ext_dirty(handle, inode, path); 2986 } 2987 } 2988 out: 2989 ext4_ext_drop_refs(path); 2990 kfree(path); 2991 if (err == -EAGAIN) { 2992 path = NULL; 2993 goto again; 2994 } 2995 ext4_journal_stop(handle); 2996 2997 return err; 2998 } 2999 3000 /* 3001 * called at mount time 3002 */ 3003 void ext4_ext_init(struct super_block *sb) 3004 { 3005 /* 3006 * possible initialization would be here 3007 */ 3008 3009 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 3010 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3011 printk(KERN_INFO "EXT4-fs: file extents enabled" 3012 #ifdef AGGRESSIVE_TEST 3013 ", aggressive tests" 3014 #endif 3015 #ifdef CHECK_BINSEARCH 3016 ", check binsearch" 3017 #endif 3018 #ifdef EXTENTS_STATS 3019 ", stats" 3020 #endif 3021 "\n"); 3022 #endif 3023 #ifdef EXTENTS_STATS 3024 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3025 EXT4_SB(sb)->s_ext_min = 1 << 30; 3026 EXT4_SB(sb)->s_ext_max = 0; 3027 #endif 3028 } 3029 } 3030 3031 /* 3032 * called at umount time 3033 */ 3034 void ext4_ext_release(struct super_block *sb) 3035 { 3036 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3037 return; 3038 3039 #ifdef EXTENTS_STATS 3040 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3041 struct ext4_sb_info *sbi = EXT4_SB(sb); 3042 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3043 sbi->s_ext_blocks, sbi->s_ext_extents, 3044 sbi->s_ext_blocks / sbi->s_ext_extents); 3045 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3046 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3047 } 3048 #endif 3049 } 3050 3051 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3052 { 3053 ext4_lblk_t ee_block; 3054 ext4_fsblk_t ee_pblock; 3055 unsigned int ee_len; 3056 3057 ee_block = le32_to_cpu(ex->ee_block); 3058 ee_len = ext4_ext_get_actual_len(ex); 3059 ee_pblock = ext4_ext_pblock(ex); 3060 3061 if (ee_len == 0) 3062 return 0; 3063 3064 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3065 EXTENT_STATUS_WRITTEN); 3066 } 3067 3068 /* FIXME!! we need to try to merge to left or right after zero-out */ 3069 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3070 { 3071 ext4_fsblk_t ee_pblock; 3072 unsigned int ee_len; 3073 int ret; 3074 3075 ee_len = ext4_ext_get_actual_len(ex); 3076 ee_pblock = ext4_ext_pblock(ex); 3077 3078 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 3079 if (ret > 0) 3080 ret = 0; 3081 3082 return ret; 3083 } 3084 3085 /* 3086 * ext4_split_extent_at() splits an extent at given block. 3087 * 3088 * @handle: the journal handle 3089 * @inode: the file inode 3090 * @path: the path to the extent 3091 * @split: the logical block where the extent is splitted. 3092 * @split_flags: indicates if the extent could be zeroout if split fails, and 3093 * the states(init or uninit) of new extents. 3094 * @flags: flags used to insert new extent to extent tree. 3095 * 3096 * 3097 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3098 * of which are deterimined by split_flag. 3099 * 3100 * There are two cases: 3101 * a> the extent are splitted into two extent. 3102 * b> split is not needed, and just mark the extent. 3103 * 3104 * return 0 on success. 3105 */ 3106 static int ext4_split_extent_at(handle_t *handle, 3107 struct inode *inode, 3108 struct ext4_ext_path *path, 3109 ext4_lblk_t split, 3110 int split_flag, 3111 int flags) 3112 { 3113 ext4_fsblk_t newblock; 3114 ext4_lblk_t ee_block; 3115 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3116 struct ext4_extent *ex2 = NULL; 3117 unsigned int ee_len, depth; 3118 int err = 0; 3119 3120 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3121 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3122 3123 ext_debug("ext4_split_extents_at: inode %lu, logical" 3124 "block %llu\n", inode->i_ino, (unsigned long long)split); 3125 3126 ext4_ext_show_leaf(inode, path); 3127 3128 depth = ext_depth(inode); 3129 ex = path[depth].p_ext; 3130 ee_block = le32_to_cpu(ex->ee_block); 3131 ee_len = ext4_ext_get_actual_len(ex); 3132 newblock = split - ee_block + ext4_ext_pblock(ex); 3133 3134 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3135 BUG_ON(!ext4_ext_is_uninitialized(ex) && 3136 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3137 EXT4_EXT_MARK_UNINIT1 | 3138 EXT4_EXT_MARK_UNINIT2)); 3139 3140 err = ext4_ext_get_access(handle, inode, path + depth); 3141 if (err) 3142 goto out; 3143 3144 if (split == ee_block) { 3145 /* 3146 * case b: block @split is the block that the extent begins with 3147 * then we just change the state of the extent, and splitting 3148 * is not needed. 3149 */ 3150 if (split_flag & EXT4_EXT_MARK_UNINIT2) 3151 ext4_ext_mark_uninitialized(ex); 3152 else 3153 ext4_ext_mark_initialized(ex); 3154 3155 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3156 ext4_ext_try_to_merge(handle, inode, path, ex); 3157 3158 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3159 goto out; 3160 } 3161 3162 /* case a */ 3163 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3164 ex->ee_len = cpu_to_le16(split - ee_block); 3165 if (split_flag & EXT4_EXT_MARK_UNINIT1) 3166 ext4_ext_mark_uninitialized(ex); 3167 3168 /* 3169 * path may lead to new leaf, not to original leaf any more 3170 * after ext4_ext_insert_extent() returns, 3171 */ 3172 err = ext4_ext_dirty(handle, inode, path + depth); 3173 if (err) 3174 goto fix_extent_len; 3175 3176 ex2 = &newex; 3177 ex2->ee_block = cpu_to_le32(split); 3178 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3179 ext4_ext_store_pblock(ex2, newblock); 3180 if (split_flag & EXT4_EXT_MARK_UNINIT2) 3181 ext4_ext_mark_uninitialized(ex2); 3182 3183 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 3184 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3185 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3186 if (split_flag & EXT4_EXT_DATA_VALID1) { 3187 err = ext4_ext_zeroout(inode, ex2); 3188 zero_ex.ee_block = ex2->ee_block; 3189 zero_ex.ee_len = cpu_to_le16( 3190 ext4_ext_get_actual_len(ex2)); 3191 ext4_ext_store_pblock(&zero_ex, 3192 ext4_ext_pblock(ex2)); 3193 } else { 3194 err = ext4_ext_zeroout(inode, ex); 3195 zero_ex.ee_block = ex->ee_block; 3196 zero_ex.ee_len = cpu_to_le16( 3197 ext4_ext_get_actual_len(ex)); 3198 ext4_ext_store_pblock(&zero_ex, 3199 ext4_ext_pblock(ex)); 3200 } 3201 } else { 3202 err = ext4_ext_zeroout(inode, &orig_ex); 3203 zero_ex.ee_block = orig_ex.ee_block; 3204 zero_ex.ee_len = cpu_to_le16( 3205 ext4_ext_get_actual_len(&orig_ex)); 3206 ext4_ext_store_pblock(&zero_ex, 3207 ext4_ext_pblock(&orig_ex)); 3208 } 3209 3210 if (err) 3211 goto fix_extent_len; 3212 /* update the extent length and mark as initialized */ 3213 ex->ee_len = cpu_to_le16(ee_len); 3214 ext4_ext_try_to_merge(handle, inode, path, ex); 3215 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3216 if (err) 3217 goto fix_extent_len; 3218 3219 /* update extent status tree */ 3220 err = ext4_zeroout_es(inode, &zero_ex); 3221 3222 goto out; 3223 } else if (err) 3224 goto fix_extent_len; 3225 3226 out: 3227 ext4_ext_show_leaf(inode, path); 3228 return err; 3229 3230 fix_extent_len: 3231 ex->ee_len = orig_ex.ee_len; 3232 ext4_ext_dirty(handle, inode, path + depth); 3233 return err; 3234 } 3235 3236 /* 3237 * ext4_split_extents() splits an extent and mark extent which is covered 3238 * by @map as split_flags indicates 3239 * 3240 * It may result in splitting the extent into multiple extents (up to three) 3241 * There are three possibilities: 3242 * a> There is no split required 3243 * b> Splits in two extents: Split is happening at either end of the extent 3244 * c> Splits in three extents: Somone is splitting in middle of the extent 3245 * 3246 */ 3247 static int ext4_split_extent(handle_t *handle, 3248 struct inode *inode, 3249 struct ext4_ext_path *path, 3250 struct ext4_map_blocks *map, 3251 int split_flag, 3252 int flags) 3253 { 3254 ext4_lblk_t ee_block; 3255 struct ext4_extent *ex; 3256 unsigned int ee_len, depth; 3257 int err = 0; 3258 int uninitialized; 3259 int split_flag1, flags1; 3260 int allocated = map->m_len; 3261 3262 depth = ext_depth(inode); 3263 ex = path[depth].p_ext; 3264 ee_block = le32_to_cpu(ex->ee_block); 3265 ee_len = ext4_ext_get_actual_len(ex); 3266 uninitialized = ext4_ext_is_uninitialized(ex); 3267 3268 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3269 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3270 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3271 if (uninitialized) 3272 split_flag1 |= EXT4_EXT_MARK_UNINIT1 | 3273 EXT4_EXT_MARK_UNINIT2; 3274 if (split_flag & EXT4_EXT_DATA_VALID2) 3275 split_flag1 |= EXT4_EXT_DATA_VALID1; 3276 err = ext4_split_extent_at(handle, inode, path, 3277 map->m_lblk + map->m_len, split_flag1, flags1); 3278 if (err) 3279 goto out; 3280 } else { 3281 allocated = ee_len - (map->m_lblk - ee_block); 3282 } 3283 /* 3284 * Update path is required because previous ext4_split_extent_at() may 3285 * result in split of original leaf or extent zeroout. 3286 */ 3287 ext4_ext_drop_refs(path); 3288 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0); 3289 if (IS_ERR(path)) 3290 return PTR_ERR(path); 3291 depth = ext_depth(inode); 3292 ex = path[depth].p_ext; 3293 uninitialized = ext4_ext_is_uninitialized(ex); 3294 split_flag1 = 0; 3295 3296 if (map->m_lblk >= ee_block) { 3297 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3298 if (uninitialized) { 3299 split_flag1 |= EXT4_EXT_MARK_UNINIT1; 3300 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3301 EXT4_EXT_MARK_UNINIT2); 3302 } 3303 err = ext4_split_extent_at(handle, inode, path, 3304 map->m_lblk, split_flag1, flags); 3305 if (err) 3306 goto out; 3307 } 3308 3309 ext4_ext_show_leaf(inode, path); 3310 out: 3311 return err ? err : allocated; 3312 } 3313 3314 /* 3315 * This function is called by ext4_ext_map_blocks() if someone tries to write 3316 * to an uninitialized extent. It may result in splitting the uninitialized 3317 * extent into multiple extents (up to three - one initialized and two 3318 * uninitialized). 3319 * There are three possibilities: 3320 * a> There is no split required: Entire extent should be initialized 3321 * b> Splits in two extents: Write is happening at either end of the extent 3322 * c> Splits in three extents: Somone is writing in middle of the extent 3323 * 3324 * Pre-conditions: 3325 * - The extent pointed to by 'path' is uninitialized. 3326 * - The extent pointed to by 'path' contains a superset 3327 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3328 * 3329 * Post-conditions on success: 3330 * - the returned value is the number of blocks beyond map->l_lblk 3331 * that are allocated and initialized. 3332 * It is guaranteed to be >= map->m_len. 3333 */ 3334 static int ext4_ext_convert_to_initialized(handle_t *handle, 3335 struct inode *inode, 3336 struct ext4_map_blocks *map, 3337 struct ext4_ext_path *path, 3338 int flags) 3339 { 3340 struct ext4_sb_info *sbi; 3341 struct ext4_extent_header *eh; 3342 struct ext4_map_blocks split_map; 3343 struct ext4_extent zero_ex; 3344 struct ext4_extent *ex, *abut_ex; 3345 ext4_lblk_t ee_block, eof_block; 3346 unsigned int ee_len, depth, map_len = map->m_len; 3347 int allocated = 0, max_zeroout = 0; 3348 int err = 0; 3349 int split_flag = 0; 3350 3351 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3352 "block %llu, max_blocks %u\n", inode->i_ino, 3353 (unsigned long long)map->m_lblk, map_len); 3354 3355 sbi = EXT4_SB(inode->i_sb); 3356 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3357 inode->i_sb->s_blocksize_bits; 3358 if (eof_block < map->m_lblk + map_len) 3359 eof_block = map->m_lblk + map_len; 3360 3361 depth = ext_depth(inode); 3362 eh = path[depth].p_hdr; 3363 ex = path[depth].p_ext; 3364 ee_block = le32_to_cpu(ex->ee_block); 3365 ee_len = ext4_ext_get_actual_len(ex); 3366 zero_ex.ee_len = 0; 3367 3368 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3369 3370 /* Pre-conditions */ 3371 BUG_ON(!ext4_ext_is_uninitialized(ex)); 3372 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3373 3374 /* 3375 * Attempt to transfer newly initialized blocks from the currently 3376 * uninitialized extent to its neighbor. This is much cheaper 3377 * than an insertion followed by a merge as those involve costly 3378 * memmove() calls. Transferring to the left is the common case in 3379 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3380 * followed by append writes. 3381 * 3382 * Limitations of the current logic: 3383 * - L1: we do not deal with writes covering the whole extent. 3384 * This would require removing the extent if the transfer 3385 * is possible. 3386 * - L2: we only attempt to merge with an extent stored in the 3387 * same extent tree node. 3388 */ 3389 if ((map->m_lblk == ee_block) && 3390 /* See if we can merge left */ 3391 (map_len < ee_len) && /*L1*/ 3392 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3393 ext4_lblk_t prev_lblk; 3394 ext4_fsblk_t prev_pblk, ee_pblk; 3395 unsigned int prev_len; 3396 3397 abut_ex = ex - 1; 3398 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3399 prev_len = ext4_ext_get_actual_len(abut_ex); 3400 prev_pblk = ext4_ext_pblock(abut_ex); 3401 ee_pblk = ext4_ext_pblock(ex); 3402 3403 /* 3404 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3405 * upon those conditions: 3406 * - C1: abut_ex is initialized, 3407 * - C2: abut_ex is logically abutting ex, 3408 * - C3: abut_ex is physically abutting ex, 3409 * - C4: abut_ex can receive the additional blocks without 3410 * overflowing the (initialized) length limit. 3411 */ 3412 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/ 3413 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3414 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3415 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3416 err = ext4_ext_get_access(handle, inode, path + depth); 3417 if (err) 3418 goto out; 3419 3420 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3421 map, ex, abut_ex); 3422 3423 /* Shift the start of ex by 'map_len' blocks */ 3424 ex->ee_block = cpu_to_le32(ee_block + map_len); 3425 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3426 ex->ee_len = cpu_to_le16(ee_len - map_len); 3427 ext4_ext_mark_uninitialized(ex); /* Restore the flag */ 3428 3429 /* Extend abut_ex by 'map_len' blocks */ 3430 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3431 3432 /* Result: number of initialized blocks past m_lblk */ 3433 allocated = map_len; 3434 } 3435 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3436 (map_len < ee_len) && /*L1*/ 3437 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3438 /* See if we can merge right */ 3439 ext4_lblk_t next_lblk; 3440 ext4_fsblk_t next_pblk, ee_pblk; 3441 unsigned int next_len; 3442 3443 abut_ex = ex + 1; 3444 next_lblk = le32_to_cpu(abut_ex->ee_block); 3445 next_len = ext4_ext_get_actual_len(abut_ex); 3446 next_pblk = ext4_ext_pblock(abut_ex); 3447 ee_pblk = ext4_ext_pblock(ex); 3448 3449 /* 3450 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3451 * upon those conditions: 3452 * - C1: abut_ex is initialized, 3453 * - C2: abut_ex is logically abutting ex, 3454 * - C3: abut_ex is physically abutting ex, 3455 * - C4: abut_ex can receive the additional blocks without 3456 * overflowing the (initialized) length limit. 3457 */ 3458 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/ 3459 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3460 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3461 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3462 err = ext4_ext_get_access(handle, inode, path + depth); 3463 if (err) 3464 goto out; 3465 3466 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3467 map, ex, abut_ex); 3468 3469 /* Shift the start of abut_ex by 'map_len' blocks */ 3470 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3471 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3472 ex->ee_len = cpu_to_le16(ee_len - map_len); 3473 ext4_ext_mark_uninitialized(ex); /* Restore the flag */ 3474 3475 /* Extend abut_ex by 'map_len' blocks */ 3476 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3477 3478 /* Result: number of initialized blocks past m_lblk */ 3479 allocated = map_len; 3480 } 3481 } 3482 if (allocated) { 3483 /* Mark the block containing both extents as dirty */ 3484 ext4_ext_dirty(handle, inode, path + depth); 3485 3486 /* Update path to point to the right extent */ 3487 path[depth].p_ext = abut_ex; 3488 goto out; 3489 } else 3490 allocated = ee_len - (map->m_lblk - ee_block); 3491 3492 WARN_ON(map->m_lblk < ee_block); 3493 /* 3494 * It is safe to convert extent to initialized via explicit 3495 * zeroout only if extent is fully insde i_size or new_size. 3496 */ 3497 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3498 3499 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3500 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3501 (inode->i_sb->s_blocksize_bits - 10); 3502 3503 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3504 if (max_zeroout && (ee_len <= max_zeroout)) { 3505 err = ext4_ext_zeroout(inode, ex); 3506 if (err) 3507 goto out; 3508 zero_ex.ee_block = ex->ee_block; 3509 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)); 3510 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex)); 3511 3512 err = ext4_ext_get_access(handle, inode, path + depth); 3513 if (err) 3514 goto out; 3515 ext4_ext_mark_initialized(ex); 3516 ext4_ext_try_to_merge(handle, inode, path, ex); 3517 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3518 goto out; 3519 } 3520 3521 /* 3522 * four cases: 3523 * 1. split the extent into three extents. 3524 * 2. split the extent into two extents, zeroout the first half. 3525 * 3. split the extent into two extents, zeroout the second half. 3526 * 4. split the extent into two extents with out zeroout. 3527 */ 3528 split_map.m_lblk = map->m_lblk; 3529 split_map.m_len = map->m_len; 3530 3531 if (max_zeroout && (allocated > map->m_len)) { 3532 if (allocated <= max_zeroout) { 3533 /* case 3 */ 3534 zero_ex.ee_block = 3535 cpu_to_le32(map->m_lblk); 3536 zero_ex.ee_len = cpu_to_le16(allocated); 3537 ext4_ext_store_pblock(&zero_ex, 3538 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3539 err = ext4_ext_zeroout(inode, &zero_ex); 3540 if (err) 3541 goto out; 3542 split_map.m_lblk = map->m_lblk; 3543 split_map.m_len = allocated; 3544 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3545 /* case 2 */ 3546 if (map->m_lblk != ee_block) { 3547 zero_ex.ee_block = ex->ee_block; 3548 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3549 ee_block); 3550 ext4_ext_store_pblock(&zero_ex, 3551 ext4_ext_pblock(ex)); 3552 err = ext4_ext_zeroout(inode, &zero_ex); 3553 if (err) 3554 goto out; 3555 } 3556 3557 split_map.m_lblk = ee_block; 3558 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3559 allocated = map->m_len; 3560 } 3561 } 3562 3563 allocated = ext4_split_extent(handle, inode, path, 3564 &split_map, split_flag, flags); 3565 if (allocated < 0) 3566 err = allocated; 3567 3568 out: 3569 /* If we have gotten a failure, don't zero out status tree */ 3570 if (!err) 3571 err = ext4_zeroout_es(inode, &zero_ex); 3572 return err ? err : allocated; 3573 } 3574 3575 /* 3576 * This function is called by ext4_ext_map_blocks() from 3577 * ext4_get_blocks_dio_write() when DIO to write 3578 * to an uninitialized extent. 3579 * 3580 * Writing to an uninitialized extent may result in splitting the uninitialized 3581 * extent into multiple initialized/uninitialized extents (up to three) 3582 * There are three possibilities: 3583 * a> There is no split required: Entire extent should be uninitialized 3584 * b> Splits in two extents: Write is happening at either end of the extent 3585 * c> Splits in three extents: Somone is writing in middle of the extent 3586 * 3587 * One of more index blocks maybe needed if the extent tree grow after 3588 * the uninitialized extent split. To prevent ENOSPC occur at the IO 3589 * complete, we need to split the uninitialized extent before DIO submit 3590 * the IO. The uninitialized extent called at this time will be split 3591 * into three uninitialized extent(at most). After IO complete, the part 3592 * being filled will be convert to initialized by the end_io callback function 3593 * via ext4_convert_unwritten_extents(). 3594 * 3595 * Returns the size of uninitialized extent to be written on success. 3596 */ 3597 static int ext4_split_unwritten_extents(handle_t *handle, 3598 struct inode *inode, 3599 struct ext4_map_blocks *map, 3600 struct ext4_ext_path *path, 3601 int flags) 3602 { 3603 ext4_lblk_t eof_block; 3604 ext4_lblk_t ee_block; 3605 struct ext4_extent *ex; 3606 unsigned int ee_len; 3607 int split_flag = 0, depth; 3608 3609 ext_debug("ext4_split_unwritten_extents: inode %lu, logical" 3610 "block %llu, max_blocks %u\n", inode->i_ino, 3611 (unsigned long long)map->m_lblk, map->m_len); 3612 3613 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3614 inode->i_sb->s_blocksize_bits; 3615 if (eof_block < map->m_lblk + map->m_len) 3616 eof_block = map->m_lblk + map->m_len; 3617 /* 3618 * It is safe to convert extent to initialized via explicit 3619 * zeroout only if extent is fully insde i_size or new_size. 3620 */ 3621 depth = ext_depth(inode); 3622 ex = path[depth].p_ext; 3623 ee_block = le32_to_cpu(ex->ee_block); 3624 ee_len = ext4_ext_get_actual_len(ex); 3625 3626 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3627 split_flag |= EXT4_EXT_MARK_UNINIT2; 3628 if (flags & EXT4_GET_BLOCKS_CONVERT) 3629 split_flag |= EXT4_EXT_DATA_VALID2; 3630 flags |= EXT4_GET_BLOCKS_PRE_IO; 3631 return ext4_split_extent(handle, inode, path, map, split_flag, flags); 3632 } 3633 3634 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3635 struct inode *inode, 3636 struct ext4_map_blocks *map, 3637 struct ext4_ext_path *path) 3638 { 3639 struct ext4_extent *ex; 3640 ext4_lblk_t ee_block; 3641 unsigned int ee_len; 3642 int depth; 3643 int err = 0; 3644 3645 depth = ext_depth(inode); 3646 ex = path[depth].p_ext; 3647 ee_block = le32_to_cpu(ex->ee_block); 3648 ee_len = ext4_ext_get_actual_len(ex); 3649 3650 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3651 "block %llu, max_blocks %u\n", inode->i_ino, 3652 (unsigned long long)ee_block, ee_len); 3653 3654 /* If extent is larger than requested it is a clear sign that we still 3655 * have some extent state machine issues left. So extent_split is still 3656 * required. 3657 * TODO: Once all related issues will be fixed this situation should be 3658 * illegal. 3659 */ 3660 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3661 #ifdef EXT4_DEBUG 3662 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3663 " len %u; IO logical block %llu, len %u\n", 3664 inode->i_ino, (unsigned long long)ee_block, ee_len, 3665 (unsigned long long)map->m_lblk, map->m_len); 3666 #endif 3667 err = ext4_split_unwritten_extents(handle, inode, map, path, 3668 EXT4_GET_BLOCKS_CONVERT); 3669 if (err < 0) 3670 goto out; 3671 ext4_ext_drop_refs(path); 3672 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0); 3673 if (IS_ERR(path)) { 3674 err = PTR_ERR(path); 3675 goto out; 3676 } 3677 depth = ext_depth(inode); 3678 ex = path[depth].p_ext; 3679 } 3680 3681 err = ext4_ext_get_access(handle, inode, path + depth); 3682 if (err) 3683 goto out; 3684 /* first mark the extent as initialized */ 3685 ext4_ext_mark_initialized(ex); 3686 3687 /* note: ext4_ext_correct_indexes() isn't needed here because 3688 * borders are not changed 3689 */ 3690 ext4_ext_try_to_merge(handle, inode, path, ex); 3691 3692 /* Mark modified extent as dirty */ 3693 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3694 out: 3695 ext4_ext_show_leaf(inode, path); 3696 return err; 3697 } 3698 3699 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3700 sector_t block, int count) 3701 { 3702 int i; 3703 for (i = 0; i < count; i++) 3704 unmap_underlying_metadata(bdev, block + i); 3705 } 3706 3707 /* 3708 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3709 */ 3710 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3711 ext4_lblk_t lblk, 3712 struct ext4_ext_path *path, 3713 unsigned int len) 3714 { 3715 int i, depth; 3716 struct ext4_extent_header *eh; 3717 struct ext4_extent *last_ex; 3718 3719 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3720 return 0; 3721 3722 depth = ext_depth(inode); 3723 eh = path[depth].p_hdr; 3724 3725 /* 3726 * We're going to remove EOFBLOCKS_FL entirely in future so we 3727 * do not care for this case anymore. Simply remove the flag 3728 * if there are no extents. 3729 */ 3730 if (unlikely(!eh->eh_entries)) 3731 goto out; 3732 last_ex = EXT_LAST_EXTENT(eh); 3733 /* 3734 * We should clear the EOFBLOCKS_FL flag if we are writing the 3735 * last block in the last extent in the file. We test this by 3736 * first checking to see if the caller to 3737 * ext4_ext_get_blocks() was interested in the last block (or 3738 * a block beyond the last block) in the current extent. If 3739 * this turns out to be false, we can bail out from this 3740 * function immediately. 3741 */ 3742 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3743 ext4_ext_get_actual_len(last_ex)) 3744 return 0; 3745 /* 3746 * If the caller does appear to be planning to write at or 3747 * beyond the end of the current extent, we then test to see 3748 * if the current extent is the last extent in the file, by 3749 * checking to make sure it was reached via the rightmost node 3750 * at each level of the tree. 3751 */ 3752 for (i = depth-1; i >= 0; i--) 3753 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3754 return 0; 3755 out: 3756 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3757 return ext4_mark_inode_dirty(handle, inode); 3758 } 3759 3760 /** 3761 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3762 * 3763 * Return 1 if there is a delalloc block in the range, otherwise 0. 3764 */ 3765 int ext4_find_delalloc_range(struct inode *inode, 3766 ext4_lblk_t lblk_start, 3767 ext4_lblk_t lblk_end) 3768 { 3769 struct extent_status es; 3770 3771 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es); 3772 if (es.es_len == 0) 3773 return 0; /* there is no delay extent in this tree */ 3774 else if (es.es_lblk <= lblk_start && 3775 lblk_start < es.es_lblk + es.es_len) 3776 return 1; 3777 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3778 return 1; 3779 else 3780 return 0; 3781 } 3782 3783 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3784 { 3785 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3786 ext4_lblk_t lblk_start, lblk_end; 3787 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1)); 3788 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3789 3790 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3791 } 3792 3793 /** 3794 * Determines how many complete clusters (out of those specified by the 'map') 3795 * are under delalloc and were reserved quota for. 3796 * This function is called when we are writing out the blocks that were 3797 * originally written with their allocation delayed, but then the space was 3798 * allocated using fallocate() before the delayed allocation could be resolved. 3799 * The cases to look for are: 3800 * ('=' indicated delayed allocated blocks 3801 * '-' indicates non-delayed allocated blocks) 3802 * (a) partial clusters towards beginning and/or end outside of allocated range 3803 * are not delalloc'ed. 3804 * Ex: 3805 * |----c---=|====c====|====c====|===-c----| 3806 * |++++++ allocated ++++++| 3807 * ==> 4 complete clusters in above example 3808 * 3809 * (b) partial cluster (outside of allocated range) towards either end is 3810 * marked for delayed allocation. In this case, we will exclude that 3811 * cluster. 3812 * Ex: 3813 * |----====c========|========c========| 3814 * |++++++ allocated ++++++| 3815 * ==> 1 complete clusters in above example 3816 * 3817 * Ex: 3818 * |================c================| 3819 * |++++++ allocated ++++++| 3820 * ==> 0 complete clusters in above example 3821 * 3822 * The ext4_da_update_reserve_space will be called only if we 3823 * determine here that there were some "entire" clusters that span 3824 * this 'allocated' range. 3825 * In the non-bigalloc case, this function will just end up returning num_blks 3826 * without ever calling ext4_find_delalloc_range. 3827 */ 3828 static unsigned int 3829 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3830 unsigned int num_blks) 3831 { 3832 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3833 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3834 ext4_lblk_t lblk_from, lblk_to, c_offset; 3835 unsigned int allocated_clusters = 0; 3836 3837 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3838 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3839 3840 /* max possible clusters for this allocation */ 3841 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3842 3843 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3844 3845 /* Check towards left side */ 3846 c_offset = lblk_start & (sbi->s_cluster_ratio - 1); 3847 if (c_offset) { 3848 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1)); 3849 lblk_to = lblk_from + c_offset - 1; 3850 3851 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3852 allocated_clusters--; 3853 } 3854 3855 /* Now check towards right. */ 3856 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1); 3857 if (allocated_clusters && c_offset) { 3858 lblk_from = lblk_start + num_blks; 3859 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3860 3861 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3862 allocated_clusters--; 3863 } 3864 3865 return allocated_clusters; 3866 } 3867 3868 static int 3869 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, 3870 struct ext4_map_blocks *map, 3871 struct ext4_ext_path *path, int flags, 3872 unsigned int allocated, ext4_fsblk_t newblock) 3873 { 3874 int ret = 0; 3875 int err = 0; 3876 ext4_io_end_t *io = ext4_inode_aio(inode); 3877 3878 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical " 3879 "block %llu, max_blocks %u, flags %x, allocated %u\n", 3880 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3881 flags, allocated); 3882 ext4_ext_show_leaf(inode, path); 3883 3884 /* 3885 * When writing into uninitialized space, we should not fail to 3886 * allocate metadata blocks for the new extent block if needed. 3887 */ 3888 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 3889 3890 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags, 3891 allocated, newblock); 3892 3893 /* get_block() before submit the IO, split the extent */ 3894 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 3895 ret = ext4_split_unwritten_extents(handle, inode, map, 3896 path, flags); 3897 if (ret <= 0) 3898 goto out; 3899 /* 3900 * Flag the inode(non aio case) or end_io struct (aio case) 3901 * that this IO needs to conversion to written when IO is 3902 * completed 3903 */ 3904 if (io) 3905 ext4_set_io_unwritten_flag(inode, io); 3906 else 3907 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3908 map->m_flags |= EXT4_MAP_UNWRITTEN; 3909 if (ext4_should_dioread_nolock(inode)) 3910 map->m_flags |= EXT4_MAP_UNINIT; 3911 goto out; 3912 } 3913 /* IO end_io complete, convert the filled extent to written */ 3914 if ((flags & EXT4_GET_BLOCKS_CONVERT)) { 3915 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 3916 path); 3917 if (ret >= 0) { 3918 ext4_update_inode_fsync_trans(handle, inode, 1); 3919 err = check_eofblocks_fl(handle, inode, map->m_lblk, 3920 path, map->m_len); 3921 } else 3922 err = ret; 3923 map->m_flags |= EXT4_MAP_MAPPED; 3924 if (allocated > map->m_len) 3925 allocated = map->m_len; 3926 map->m_len = allocated; 3927 goto out2; 3928 } 3929 /* buffered IO case */ 3930 /* 3931 * repeat fallocate creation request 3932 * we already have an unwritten extent 3933 */ 3934 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) { 3935 map->m_flags |= EXT4_MAP_UNWRITTEN; 3936 goto map_out; 3937 } 3938 3939 /* buffered READ or buffered write_begin() lookup */ 3940 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3941 /* 3942 * We have blocks reserved already. We 3943 * return allocated blocks so that delalloc 3944 * won't do block reservation for us. But 3945 * the buffer head will be unmapped so that 3946 * a read from the block returns 0s. 3947 */ 3948 map->m_flags |= EXT4_MAP_UNWRITTEN; 3949 goto out1; 3950 } 3951 3952 /* buffered write, writepage time, convert*/ 3953 ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags); 3954 if (ret >= 0) 3955 ext4_update_inode_fsync_trans(handle, inode, 1); 3956 out: 3957 if (ret <= 0) { 3958 err = ret; 3959 goto out2; 3960 } else 3961 allocated = ret; 3962 map->m_flags |= EXT4_MAP_NEW; 3963 /* 3964 * if we allocated more blocks than requested 3965 * we need to make sure we unmap the extra block 3966 * allocated. The actual needed block will get 3967 * unmapped later when we find the buffer_head marked 3968 * new. 3969 */ 3970 if (allocated > map->m_len) { 3971 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 3972 newblock + map->m_len, 3973 allocated - map->m_len); 3974 allocated = map->m_len; 3975 } 3976 map->m_len = allocated; 3977 3978 /* 3979 * If we have done fallocate with the offset that is already 3980 * delayed allocated, we would have block reservation 3981 * and quota reservation done in the delayed write path. 3982 * But fallocate would have already updated quota and block 3983 * count for this offset. So cancel these reservation 3984 */ 3985 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 3986 unsigned int reserved_clusters; 3987 reserved_clusters = get_reserved_cluster_alloc(inode, 3988 map->m_lblk, map->m_len); 3989 if (reserved_clusters) 3990 ext4_da_update_reserve_space(inode, 3991 reserved_clusters, 3992 0); 3993 } 3994 3995 map_out: 3996 map->m_flags |= EXT4_MAP_MAPPED; 3997 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 3998 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 3999 map->m_len); 4000 if (err < 0) 4001 goto out2; 4002 } 4003 out1: 4004 if (allocated > map->m_len) 4005 allocated = map->m_len; 4006 ext4_ext_show_leaf(inode, path); 4007 map->m_pblk = newblock; 4008 map->m_len = allocated; 4009 out2: 4010 if (path) { 4011 ext4_ext_drop_refs(path); 4012 kfree(path); 4013 } 4014 return err ? err : allocated; 4015 } 4016 4017 /* 4018 * get_implied_cluster_alloc - check to see if the requested 4019 * allocation (in the map structure) overlaps with a cluster already 4020 * allocated in an extent. 4021 * @sb The filesystem superblock structure 4022 * @map The requested lblk->pblk mapping 4023 * @ex The extent structure which might contain an implied 4024 * cluster allocation 4025 * 4026 * This function is called by ext4_ext_map_blocks() after we failed to 4027 * find blocks that were already in the inode's extent tree. Hence, 4028 * we know that the beginning of the requested region cannot overlap 4029 * the extent from the inode's extent tree. There are three cases we 4030 * want to catch. The first is this case: 4031 * 4032 * |--- cluster # N--| 4033 * |--- extent ---| |---- requested region ---| 4034 * |==========| 4035 * 4036 * The second case that we need to test for is this one: 4037 * 4038 * |--------- cluster # N ----------------| 4039 * |--- requested region --| |------- extent ----| 4040 * |=======================| 4041 * 4042 * The third case is when the requested region lies between two extents 4043 * within the same cluster: 4044 * |------------- cluster # N-------------| 4045 * |----- ex -----| |---- ex_right ----| 4046 * |------ requested region ------| 4047 * |================| 4048 * 4049 * In each of the above cases, we need to set the map->m_pblk and 4050 * map->m_len so it corresponds to the return the extent labelled as 4051 * "|====|" from cluster #N, since it is already in use for data in 4052 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 4053 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 4054 * as a new "allocated" block region. Otherwise, we will return 0 and 4055 * ext4_ext_map_blocks() will then allocate one or more new clusters 4056 * by calling ext4_mb_new_blocks(). 4057 */ 4058 static int get_implied_cluster_alloc(struct super_block *sb, 4059 struct ext4_map_blocks *map, 4060 struct ext4_extent *ex, 4061 struct ext4_ext_path *path) 4062 { 4063 struct ext4_sb_info *sbi = EXT4_SB(sb); 4064 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 4065 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4066 ext4_lblk_t rr_cluster_start; 4067 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4068 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4069 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4070 4071 /* The extent passed in that we are trying to match */ 4072 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4073 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4074 4075 /* The requested region passed into ext4_map_blocks() */ 4076 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4077 4078 if ((rr_cluster_start == ex_cluster_end) || 4079 (rr_cluster_start == ex_cluster_start)) { 4080 if (rr_cluster_start == ex_cluster_end) 4081 ee_start += ee_len - 1; 4082 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) + 4083 c_offset; 4084 map->m_len = min(map->m_len, 4085 (unsigned) sbi->s_cluster_ratio - c_offset); 4086 /* 4087 * Check for and handle this case: 4088 * 4089 * |--------- cluster # N-------------| 4090 * |------- extent ----| 4091 * |--- requested region ---| 4092 * |===========| 4093 */ 4094 4095 if (map->m_lblk < ee_block) 4096 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4097 4098 /* 4099 * Check for the case where there is already another allocated 4100 * block to the right of 'ex' but before the end of the cluster. 4101 * 4102 * |------------- cluster # N-------------| 4103 * |----- ex -----| |---- ex_right ----| 4104 * |------ requested region ------| 4105 * |================| 4106 */ 4107 if (map->m_lblk > ee_block) { 4108 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4109 map->m_len = min(map->m_len, next - map->m_lblk); 4110 } 4111 4112 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4113 return 1; 4114 } 4115 4116 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4117 return 0; 4118 } 4119 4120 4121 /* 4122 * Block allocation/map/preallocation routine for extents based files 4123 * 4124 * 4125 * Need to be called with 4126 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4127 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4128 * 4129 * return > 0, number of of blocks already mapped/allocated 4130 * if create == 0 and these are pre-allocated blocks 4131 * buffer head is unmapped 4132 * otherwise blocks are mapped 4133 * 4134 * return = 0, if plain look up failed (blocks have not been allocated) 4135 * buffer head is unmapped 4136 * 4137 * return < 0, error case. 4138 */ 4139 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4140 struct ext4_map_blocks *map, int flags) 4141 { 4142 struct ext4_ext_path *path = NULL; 4143 struct ext4_extent newex, *ex, *ex2; 4144 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4145 ext4_fsblk_t newblock = 0; 4146 int free_on_err = 0, err = 0, depth; 4147 unsigned int allocated = 0, offset = 0; 4148 unsigned int allocated_clusters = 0; 4149 struct ext4_allocation_request ar; 4150 ext4_io_end_t *io = ext4_inode_aio(inode); 4151 ext4_lblk_t cluster_offset; 4152 int set_unwritten = 0; 4153 4154 ext_debug("blocks %u/%u requested for inode %lu\n", 4155 map->m_lblk, map->m_len, inode->i_ino); 4156 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4157 4158 /* find extent for this block */ 4159 path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0); 4160 if (IS_ERR(path)) { 4161 err = PTR_ERR(path); 4162 path = NULL; 4163 goto out2; 4164 } 4165 4166 depth = ext_depth(inode); 4167 4168 /* 4169 * consistent leaf must not be empty; 4170 * this situation is possible, though, _during_ tree modification; 4171 * this is why assert can't be put in ext4_ext_find_extent() 4172 */ 4173 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4174 EXT4_ERROR_INODE(inode, "bad extent address " 4175 "lblock: %lu, depth: %d pblock %lld", 4176 (unsigned long) map->m_lblk, depth, 4177 path[depth].p_block); 4178 err = -EIO; 4179 goto out2; 4180 } 4181 4182 ex = path[depth].p_ext; 4183 if (ex) { 4184 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4185 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4186 unsigned short ee_len; 4187 4188 /* 4189 * Uninitialized extents are treated as holes, except that 4190 * we split out initialized portions during a write. 4191 */ 4192 ee_len = ext4_ext_get_actual_len(ex); 4193 4194 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4195 4196 /* if found extent covers block, simply return it */ 4197 if (in_range(map->m_lblk, ee_block, ee_len)) { 4198 newblock = map->m_lblk - ee_block + ee_start; 4199 /* number of remaining blocks in the extent */ 4200 allocated = ee_len - (map->m_lblk - ee_block); 4201 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4202 ee_block, ee_len, newblock); 4203 4204 if (!ext4_ext_is_uninitialized(ex)) 4205 goto out; 4206 4207 allocated = ext4_ext_handle_uninitialized_extents( 4208 handle, inode, map, path, flags, 4209 allocated, newblock); 4210 goto out3; 4211 } 4212 } 4213 4214 if ((sbi->s_cluster_ratio > 1) && 4215 ext4_find_delalloc_cluster(inode, map->m_lblk)) 4216 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4217 4218 /* 4219 * requested block isn't allocated yet; 4220 * we couldn't try to create block if create flag is zero 4221 */ 4222 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4223 /* 4224 * put just found gap into cache to speed up 4225 * subsequent requests 4226 */ 4227 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0) 4228 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 4229 goto out2; 4230 } 4231 4232 /* 4233 * Okay, we need to do block allocation. 4234 */ 4235 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 4236 newex.ee_block = cpu_to_le32(map->m_lblk); 4237 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 4238 4239 /* 4240 * If we are doing bigalloc, check to see if the extent returned 4241 * by ext4_ext_find_extent() implies a cluster we can use. 4242 */ 4243 if (cluster_offset && ex && 4244 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4245 ar.len = allocated = map->m_len; 4246 newblock = map->m_pblk; 4247 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4248 goto got_allocated_blocks; 4249 } 4250 4251 /* find neighbour allocated blocks */ 4252 ar.lleft = map->m_lblk; 4253 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4254 if (err) 4255 goto out2; 4256 ar.lright = map->m_lblk; 4257 ex2 = NULL; 4258 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4259 if (err) 4260 goto out2; 4261 4262 /* Check if the extent after searching to the right implies a 4263 * cluster we can use. */ 4264 if ((sbi->s_cluster_ratio > 1) && ex2 && 4265 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4266 ar.len = allocated = map->m_len; 4267 newblock = map->m_pblk; 4268 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4269 goto got_allocated_blocks; 4270 } 4271 4272 /* 4273 * See if request is beyond maximum number of blocks we can have in 4274 * a single extent. For an initialized extent this limit is 4275 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 4276 * EXT_UNINIT_MAX_LEN. 4277 */ 4278 if (map->m_len > EXT_INIT_MAX_LEN && 4279 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 4280 map->m_len = EXT_INIT_MAX_LEN; 4281 else if (map->m_len > EXT_UNINIT_MAX_LEN && 4282 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 4283 map->m_len = EXT_UNINIT_MAX_LEN; 4284 4285 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4286 newex.ee_len = cpu_to_le16(map->m_len); 4287 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4288 if (err) 4289 allocated = ext4_ext_get_actual_len(&newex); 4290 else 4291 allocated = map->m_len; 4292 4293 /* allocate new block */ 4294 ar.inode = inode; 4295 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4296 ar.logical = map->m_lblk; 4297 /* 4298 * We calculate the offset from the beginning of the cluster 4299 * for the logical block number, since when we allocate a 4300 * physical cluster, the physical block should start at the 4301 * same offset from the beginning of the cluster. This is 4302 * needed so that future calls to get_implied_cluster_alloc() 4303 * work correctly. 4304 */ 4305 offset = map->m_lblk & (sbi->s_cluster_ratio - 1); 4306 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4307 ar.goal -= offset; 4308 ar.logical -= offset; 4309 if (S_ISREG(inode->i_mode)) 4310 ar.flags = EXT4_MB_HINT_DATA; 4311 else 4312 /* disable in-core preallocation for non-regular files */ 4313 ar.flags = 0; 4314 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4315 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4316 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4317 if (!newblock) 4318 goto out2; 4319 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4320 ar.goal, newblock, allocated); 4321 free_on_err = 1; 4322 allocated_clusters = ar.len; 4323 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4324 if (ar.len > allocated) 4325 ar.len = allocated; 4326 4327 got_allocated_blocks: 4328 /* try to insert new extent into found leaf and return */ 4329 ext4_ext_store_pblock(&newex, newblock + offset); 4330 newex.ee_len = cpu_to_le16(ar.len); 4331 /* Mark uninitialized */ 4332 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ 4333 ext4_ext_mark_uninitialized(&newex); 4334 map->m_flags |= EXT4_MAP_UNWRITTEN; 4335 /* 4336 * io_end structure was created for every IO write to an 4337 * uninitialized extent. To avoid unnecessary conversion, 4338 * here we flag the IO that really needs the conversion. 4339 * For non asycn direct IO case, flag the inode state 4340 * that we need to perform conversion when IO is done. 4341 */ 4342 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) 4343 set_unwritten = 1; 4344 if (ext4_should_dioread_nolock(inode)) 4345 map->m_flags |= EXT4_MAP_UNINIT; 4346 } 4347 4348 err = 0; 4349 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4350 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4351 path, ar.len); 4352 if (!err) 4353 err = ext4_ext_insert_extent(handle, inode, path, 4354 &newex, flags); 4355 4356 if (!err && set_unwritten) { 4357 if (io) 4358 ext4_set_io_unwritten_flag(inode, io); 4359 else 4360 ext4_set_inode_state(inode, 4361 EXT4_STATE_DIO_UNWRITTEN); 4362 } 4363 4364 if (err && free_on_err) { 4365 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4366 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4367 /* free data blocks we just allocated */ 4368 /* not a good idea to call discard here directly, 4369 * but otherwise we'd need to call it every free() */ 4370 ext4_discard_preallocations(inode); 4371 ext4_free_blocks(handle, inode, NULL, newblock, 4372 EXT4_C2B(sbi, allocated_clusters), fb_flags); 4373 goto out2; 4374 } 4375 4376 /* previous routine could use block we allocated */ 4377 newblock = ext4_ext_pblock(&newex); 4378 allocated = ext4_ext_get_actual_len(&newex); 4379 if (allocated > map->m_len) 4380 allocated = map->m_len; 4381 map->m_flags |= EXT4_MAP_NEW; 4382 4383 /* 4384 * Update reserved blocks/metadata blocks after successful 4385 * block allocation which had been deferred till now. 4386 */ 4387 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4388 unsigned int reserved_clusters; 4389 /* 4390 * Check how many clusters we had reserved this allocated range 4391 */ 4392 reserved_clusters = get_reserved_cluster_alloc(inode, 4393 map->m_lblk, allocated); 4394 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { 4395 if (reserved_clusters) { 4396 /* 4397 * We have clusters reserved for this range. 4398 * But since we are not doing actual allocation 4399 * and are simply using blocks from previously 4400 * allocated cluster, we should release the 4401 * reservation and not claim quota. 4402 */ 4403 ext4_da_update_reserve_space(inode, 4404 reserved_clusters, 0); 4405 } 4406 } else { 4407 BUG_ON(allocated_clusters < reserved_clusters); 4408 if (reserved_clusters < allocated_clusters) { 4409 struct ext4_inode_info *ei = EXT4_I(inode); 4410 int reservation = allocated_clusters - 4411 reserved_clusters; 4412 /* 4413 * It seems we claimed few clusters outside of 4414 * the range of this allocation. We should give 4415 * it back to the reservation pool. This can 4416 * happen in the following case: 4417 * 4418 * * Suppose s_cluster_ratio is 4 (i.e., each 4419 * cluster has 4 blocks. Thus, the clusters 4420 * are [0-3],[4-7],[8-11]... 4421 * * First comes delayed allocation write for 4422 * logical blocks 10 & 11. Since there were no 4423 * previous delayed allocated blocks in the 4424 * range [8-11], we would reserve 1 cluster 4425 * for this write. 4426 * * Next comes write for logical blocks 3 to 8. 4427 * In this case, we will reserve 2 clusters 4428 * (for [0-3] and [4-7]; and not for [8-11] as 4429 * that range has a delayed allocated blocks. 4430 * Thus total reserved clusters now becomes 3. 4431 * * Now, during the delayed allocation writeout 4432 * time, we will first write blocks [3-8] and 4433 * allocate 3 clusters for writing these 4434 * blocks. Also, we would claim all these 4435 * three clusters above. 4436 * * Now when we come here to writeout the 4437 * blocks [10-11], we would expect to claim 4438 * the reservation of 1 cluster we had made 4439 * (and we would claim it since there are no 4440 * more delayed allocated blocks in the range 4441 * [8-11]. But our reserved cluster count had 4442 * already gone to 0. 4443 * 4444 * Thus, at the step 4 above when we determine 4445 * that there are still some unwritten delayed 4446 * allocated blocks outside of our current 4447 * block range, we should increment the 4448 * reserved clusters count so that when the 4449 * remaining blocks finally gets written, we 4450 * could claim them. 4451 */ 4452 dquot_reserve_block(inode, 4453 EXT4_C2B(sbi, reservation)); 4454 spin_lock(&ei->i_block_reservation_lock); 4455 ei->i_reserved_data_blocks += reservation; 4456 spin_unlock(&ei->i_block_reservation_lock); 4457 } 4458 /* 4459 * We will claim quota for all newly allocated blocks. 4460 * We're updating the reserved space *after* the 4461 * correction above so we do not accidentally free 4462 * all the metadata reservation because we might 4463 * actually need it later on. 4464 */ 4465 ext4_da_update_reserve_space(inode, allocated_clusters, 4466 1); 4467 } 4468 } 4469 4470 /* 4471 * Cache the extent and update transaction to commit on fdatasync only 4472 * when it is _not_ an uninitialized extent. 4473 */ 4474 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) 4475 ext4_update_inode_fsync_trans(handle, inode, 1); 4476 else 4477 ext4_update_inode_fsync_trans(handle, inode, 0); 4478 out: 4479 if (allocated > map->m_len) 4480 allocated = map->m_len; 4481 ext4_ext_show_leaf(inode, path); 4482 map->m_flags |= EXT4_MAP_MAPPED; 4483 map->m_pblk = newblock; 4484 map->m_len = allocated; 4485 out2: 4486 if (path) { 4487 ext4_ext_drop_refs(path); 4488 kfree(path); 4489 } 4490 4491 out3: 4492 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4493 err ? err : allocated); 4494 ext4_es_lru_add(inode); 4495 return err ? err : allocated; 4496 } 4497 4498 void ext4_ext_truncate(handle_t *handle, struct inode *inode) 4499 { 4500 struct super_block *sb = inode->i_sb; 4501 ext4_lblk_t last_block; 4502 int err = 0; 4503 4504 /* 4505 * TODO: optimization is possible here. 4506 * Probably we need not scan at all, 4507 * because page truncation is enough. 4508 */ 4509 4510 /* we have to know where to truncate from in crash case */ 4511 EXT4_I(inode)->i_disksize = inode->i_size; 4512 ext4_mark_inode_dirty(handle, inode); 4513 4514 last_block = (inode->i_size + sb->s_blocksize - 1) 4515 >> EXT4_BLOCK_SIZE_BITS(sb); 4516 retry: 4517 err = ext4_es_remove_extent(inode, last_block, 4518 EXT_MAX_BLOCKS - last_block); 4519 if (err == -ENOMEM) { 4520 cond_resched(); 4521 congestion_wait(BLK_RW_ASYNC, HZ/50); 4522 goto retry; 4523 } 4524 if (err) { 4525 ext4_std_error(inode->i_sb, err); 4526 return; 4527 } 4528 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4529 ext4_std_error(inode->i_sb, err); 4530 } 4531 4532 static void ext4_falloc_update_inode(struct inode *inode, 4533 int mode, loff_t new_size, int update_ctime) 4534 { 4535 struct timespec now; 4536 4537 if (update_ctime) { 4538 now = current_fs_time(inode->i_sb); 4539 if (!timespec_equal(&inode->i_ctime, &now)) 4540 inode->i_ctime = now; 4541 } 4542 /* 4543 * Update only when preallocation was requested beyond 4544 * the file size. 4545 */ 4546 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 4547 if (new_size > i_size_read(inode)) 4548 i_size_write(inode, new_size); 4549 if (new_size > EXT4_I(inode)->i_disksize) 4550 ext4_update_i_disksize(inode, new_size); 4551 } else { 4552 /* 4553 * Mark that we allocate beyond EOF so the subsequent truncate 4554 * can proceed even if the new size is the same as i_size. 4555 */ 4556 if (new_size > i_size_read(inode)) 4557 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4558 } 4559 4560 } 4561 4562 /* 4563 * preallocate space for a file. This implements ext4's fallocate file 4564 * operation, which gets called from sys_fallocate system call. 4565 * For block-mapped files, posix_fallocate should fall back to the method 4566 * of writing zeroes to the required new blocks (the same behavior which is 4567 * expected for file systems which do not support fallocate() system call). 4568 */ 4569 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4570 { 4571 struct inode *inode = file_inode(file); 4572 handle_t *handle; 4573 loff_t new_size; 4574 unsigned int max_blocks; 4575 int ret = 0; 4576 int ret2 = 0; 4577 int retries = 0; 4578 int flags; 4579 struct ext4_map_blocks map; 4580 unsigned int credits, blkbits = inode->i_blkbits; 4581 4582 /* Return error if mode is not supported */ 4583 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 4584 return -EOPNOTSUPP; 4585 4586 if (mode & FALLOC_FL_PUNCH_HOLE) 4587 return ext4_punch_hole(inode, offset, len); 4588 4589 ret = ext4_convert_inline_data(inode); 4590 if (ret) 4591 return ret; 4592 4593 /* 4594 * currently supporting (pre)allocate mode for extent-based 4595 * files _only_ 4596 */ 4597 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4598 return -EOPNOTSUPP; 4599 4600 trace_ext4_fallocate_enter(inode, offset, len, mode); 4601 map.m_lblk = offset >> blkbits; 4602 /* 4603 * We can't just convert len to max_blocks because 4604 * If blocksize = 4096 offset = 3072 and len = 2048 4605 */ 4606 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4607 - map.m_lblk; 4608 /* 4609 * credits to insert 1 extent into extent tree 4610 */ 4611 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4612 mutex_lock(&inode->i_mutex); 4613 ret = inode_newsize_ok(inode, (len + offset)); 4614 if (ret) { 4615 mutex_unlock(&inode->i_mutex); 4616 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4617 return ret; 4618 } 4619 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT; 4620 if (mode & FALLOC_FL_KEEP_SIZE) 4621 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4622 /* 4623 * Don't normalize the request if it can fit in one extent so 4624 * that it doesn't get unnecessarily split into multiple 4625 * extents. 4626 */ 4627 if (len <= EXT_UNINIT_MAX_LEN << blkbits) 4628 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4629 4630 retry: 4631 while (ret >= 0 && ret < max_blocks) { 4632 map.m_lblk = map.m_lblk + ret; 4633 map.m_len = max_blocks = max_blocks - ret; 4634 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4635 credits); 4636 if (IS_ERR(handle)) { 4637 ret = PTR_ERR(handle); 4638 break; 4639 } 4640 ret = ext4_map_blocks(handle, inode, &map, flags); 4641 if (ret <= 0) { 4642 #ifdef EXT4FS_DEBUG 4643 ext4_warning(inode->i_sb, 4644 "inode #%lu: block %u: len %u: " 4645 "ext4_ext_map_blocks returned %d", 4646 inode->i_ino, map.m_lblk, 4647 map.m_len, ret); 4648 #endif 4649 ext4_mark_inode_dirty(handle, inode); 4650 ret2 = ext4_journal_stop(handle); 4651 break; 4652 } 4653 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 4654 blkbits) >> blkbits)) 4655 new_size = offset + len; 4656 else 4657 new_size = ((loff_t) map.m_lblk + ret) << blkbits; 4658 4659 ext4_falloc_update_inode(inode, mode, new_size, 4660 (map.m_flags & EXT4_MAP_NEW)); 4661 ext4_mark_inode_dirty(handle, inode); 4662 if ((file->f_flags & O_SYNC) && ret >= max_blocks) 4663 ext4_handle_sync(handle); 4664 ret2 = ext4_journal_stop(handle); 4665 if (ret2) 4666 break; 4667 } 4668 if (ret == -ENOSPC && 4669 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4670 ret = 0; 4671 goto retry; 4672 } 4673 mutex_unlock(&inode->i_mutex); 4674 trace_ext4_fallocate_exit(inode, offset, max_blocks, 4675 ret > 0 ? ret2 : ret); 4676 return ret > 0 ? ret2 : ret; 4677 } 4678 4679 /* 4680 * This function convert a range of blocks to written extents 4681 * The caller of this function will pass the start offset and the size. 4682 * all unwritten extents within this range will be converted to 4683 * written extents. 4684 * 4685 * This function is called from the direct IO end io call back 4686 * function, to convert the fallocated extents after IO is completed. 4687 * Returns 0 on success. 4688 */ 4689 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4690 loff_t offset, ssize_t len) 4691 { 4692 unsigned int max_blocks; 4693 int ret = 0; 4694 int ret2 = 0; 4695 struct ext4_map_blocks map; 4696 unsigned int credits, blkbits = inode->i_blkbits; 4697 4698 map.m_lblk = offset >> blkbits; 4699 /* 4700 * We can't just convert len to max_blocks because 4701 * If blocksize = 4096 offset = 3072 and len = 2048 4702 */ 4703 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 4704 map.m_lblk); 4705 /* 4706 * This is somewhat ugly but the idea is clear: When transaction is 4707 * reserved, everything goes into it. Otherwise we rather start several 4708 * smaller transactions for conversion of each extent separately. 4709 */ 4710 if (handle) { 4711 handle = ext4_journal_start_reserved(handle, 4712 EXT4_HT_EXT_CONVERT); 4713 if (IS_ERR(handle)) 4714 return PTR_ERR(handle); 4715 credits = 0; 4716 } else { 4717 /* 4718 * credits to insert 1 extent into extent tree 4719 */ 4720 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4721 } 4722 while (ret >= 0 && ret < max_blocks) { 4723 map.m_lblk += ret; 4724 map.m_len = (max_blocks -= ret); 4725 if (credits) { 4726 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4727 credits); 4728 if (IS_ERR(handle)) { 4729 ret = PTR_ERR(handle); 4730 break; 4731 } 4732 } 4733 ret = ext4_map_blocks(handle, inode, &map, 4734 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4735 if (ret <= 0) 4736 ext4_warning(inode->i_sb, 4737 "inode #%lu: block %u: len %u: " 4738 "ext4_ext_map_blocks returned %d", 4739 inode->i_ino, map.m_lblk, 4740 map.m_len, ret); 4741 ext4_mark_inode_dirty(handle, inode); 4742 if (credits) 4743 ret2 = ext4_journal_stop(handle); 4744 if (ret <= 0 || ret2) 4745 break; 4746 } 4747 if (!credits) 4748 ret2 = ext4_journal_stop(handle); 4749 return ret > 0 ? ret2 : ret; 4750 } 4751 4752 /* 4753 * If newes is not existing extent (newes->ec_pblk equals zero) find 4754 * delayed extent at start of newes and update newes accordingly and 4755 * return start of the next delayed extent. 4756 * 4757 * If newes is existing extent (newes->ec_pblk is not equal zero) 4758 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 4759 * extent found. Leave newes unmodified. 4760 */ 4761 static int ext4_find_delayed_extent(struct inode *inode, 4762 struct extent_status *newes) 4763 { 4764 struct extent_status es; 4765 ext4_lblk_t block, next_del; 4766 4767 if (newes->es_pblk == 0) { 4768 ext4_es_find_delayed_extent_range(inode, newes->es_lblk, 4769 newes->es_lblk + newes->es_len - 1, &es); 4770 4771 /* 4772 * No extent in extent-tree contains block @newes->es_pblk, 4773 * then the block may stay in 1)a hole or 2)delayed-extent. 4774 */ 4775 if (es.es_len == 0) 4776 /* A hole found. */ 4777 return 0; 4778 4779 if (es.es_lblk > newes->es_lblk) { 4780 /* A hole found. */ 4781 newes->es_len = min(es.es_lblk - newes->es_lblk, 4782 newes->es_len); 4783 return 0; 4784 } 4785 4786 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 4787 } 4788 4789 block = newes->es_lblk + newes->es_len; 4790 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es); 4791 if (es.es_len == 0) 4792 next_del = EXT_MAX_BLOCKS; 4793 else 4794 next_del = es.es_lblk; 4795 4796 return next_del; 4797 } 4798 /* fiemap flags we can handle specified here */ 4799 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 4800 4801 static int ext4_xattr_fiemap(struct inode *inode, 4802 struct fiemap_extent_info *fieinfo) 4803 { 4804 __u64 physical = 0; 4805 __u64 length; 4806 __u32 flags = FIEMAP_EXTENT_LAST; 4807 int blockbits = inode->i_sb->s_blocksize_bits; 4808 int error = 0; 4809 4810 /* in-inode? */ 4811 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4812 struct ext4_iloc iloc; 4813 int offset; /* offset of xattr in inode */ 4814 4815 error = ext4_get_inode_loc(inode, &iloc); 4816 if (error) 4817 return error; 4818 physical = (__u64)iloc.bh->b_blocknr << blockbits; 4819 offset = EXT4_GOOD_OLD_INODE_SIZE + 4820 EXT4_I(inode)->i_extra_isize; 4821 physical += offset; 4822 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4823 flags |= FIEMAP_EXTENT_DATA_INLINE; 4824 brelse(iloc.bh); 4825 } else { /* external block */ 4826 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 4827 length = inode->i_sb->s_blocksize; 4828 } 4829 4830 if (physical) 4831 error = fiemap_fill_next_extent(fieinfo, 0, physical, 4832 length, flags); 4833 return (error < 0 ? error : 0); 4834 } 4835 4836 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4837 __u64 start, __u64 len) 4838 { 4839 ext4_lblk_t start_blk; 4840 int error = 0; 4841 4842 if (ext4_has_inline_data(inode)) { 4843 int has_inline = 1; 4844 4845 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline); 4846 4847 if (has_inline) 4848 return error; 4849 } 4850 4851 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 4852 error = ext4_ext_precache(inode); 4853 if (error) 4854 return error; 4855 } 4856 4857 /* fallback to generic here if not in extents fmt */ 4858 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4859 return generic_block_fiemap(inode, fieinfo, start, len, 4860 ext4_get_block); 4861 4862 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 4863 return -EBADR; 4864 4865 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 4866 error = ext4_xattr_fiemap(inode, fieinfo); 4867 } else { 4868 ext4_lblk_t len_blks; 4869 __u64 last_blk; 4870 4871 start_blk = start >> inode->i_sb->s_blocksize_bits; 4872 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 4873 if (last_blk >= EXT_MAX_BLOCKS) 4874 last_blk = EXT_MAX_BLOCKS-1; 4875 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 4876 4877 /* 4878 * Walk the extent tree gathering extent information 4879 * and pushing extents back to the user. 4880 */ 4881 error = ext4_fill_fiemap_extents(inode, start_blk, 4882 len_blks, fieinfo); 4883 } 4884 ext4_es_lru_add(inode); 4885 return error; 4886 } 4887