1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 * 6 * Architecture independence: 7 * Copyright (c) 2005, Bull S.A. 8 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 9 */ 10 11 /* 12 * Extents support for EXT4 13 * 14 * TODO: 15 * - ext4*_error() should be used in some situations 16 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 17 * - smart tree reduction 18 */ 19 20 #include <linux/fs.h> 21 #include <linux/time.h> 22 #include <linux/jbd2.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/quotaops.h> 26 #include <linux/string.h> 27 #include <linux/slab.h> 28 #include <linux/uaccess.h> 29 #include <linux/fiemap.h> 30 #include <linux/backing-dev.h> 31 #include "ext4_jbd2.h" 32 #include "ext4_extents.h" 33 #include "xattr.h" 34 35 #include <trace/events/ext4.h> 36 37 /* 38 * used by extent splitting. 39 */ 40 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 41 due to ENOSPC */ 42 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 43 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 44 45 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 46 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 47 48 static __le32 ext4_extent_block_csum(struct inode *inode, 49 struct ext4_extent_header *eh) 50 { 51 struct ext4_inode_info *ei = EXT4_I(inode); 52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 53 __u32 csum; 54 55 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 56 EXT4_EXTENT_TAIL_OFFSET(eh)); 57 return cpu_to_le32(csum); 58 } 59 60 static int ext4_extent_block_csum_verify(struct inode *inode, 61 struct ext4_extent_header *eh) 62 { 63 struct ext4_extent_tail *et; 64 65 if (!ext4_has_metadata_csum(inode->i_sb)) 66 return 1; 67 68 et = find_ext4_extent_tail(eh); 69 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 70 return 0; 71 return 1; 72 } 73 74 static void ext4_extent_block_csum_set(struct inode *inode, 75 struct ext4_extent_header *eh) 76 { 77 struct ext4_extent_tail *et; 78 79 if (!ext4_has_metadata_csum(inode->i_sb)) 80 return; 81 82 et = find_ext4_extent_tail(eh); 83 et->et_checksum = ext4_extent_block_csum(inode, eh); 84 } 85 86 static int ext4_split_extent(handle_t *handle, 87 struct inode *inode, 88 struct ext4_ext_path **ppath, 89 struct ext4_map_blocks *map, 90 int split_flag, 91 int flags); 92 93 static int ext4_split_extent_at(handle_t *handle, 94 struct inode *inode, 95 struct ext4_ext_path **ppath, 96 ext4_lblk_t split, 97 int split_flag, 98 int flags); 99 100 static int ext4_find_delayed_extent(struct inode *inode, 101 struct extent_status *newes); 102 103 static int ext4_ext_truncate_extend_restart(handle_t *handle, 104 struct inode *inode, 105 int needed) 106 { 107 int err; 108 109 if (!ext4_handle_valid(handle)) 110 return 0; 111 if (handle->h_buffer_credits >= needed) 112 return 0; 113 /* 114 * If we need to extend the journal get a few extra blocks 115 * while we're at it for efficiency's sake. 116 */ 117 needed += 3; 118 err = ext4_journal_extend(handle, needed - handle->h_buffer_credits); 119 if (err <= 0) 120 return err; 121 err = ext4_truncate_restart_trans(handle, inode, needed); 122 if (err == 0) 123 err = -EAGAIN; 124 125 return err; 126 } 127 128 /* 129 * could return: 130 * - EROFS 131 * - ENOMEM 132 */ 133 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 134 struct ext4_ext_path *path) 135 { 136 if (path->p_bh) { 137 /* path points to block */ 138 BUFFER_TRACE(path->p_bh, "get_write_access"); 139 return ext4_journal_get_write_access(handle, path->p_bh); 140 } 141 /* path points to leaf/index in inode body */ 142 /* we use in-core data, no need to protect them */ 143 return 0; 144 } 145 146 /* 147 * could return: 148 * - EROFS 149 * - ENOMEM 150 * - EIO 151 */ 152 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 153 struct inode *inode, struct ext4_ext_path *path) 154 { 155 int err; 156 157 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 158 if (path->p_bh) { 159 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 160 /* path points to block */ 161 err = __ext4_handle_dirty_metadata(where, line, handle, 162 inode, path->p_bh); 163 } else { 164 /* path points to leaf/index in inode body */ 165 err = ext4_mark_inode_dirty(handle, inode); 166 } 167 return err; 168 } 169 170 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 171 struct ext4_ext_path *path, 172 ext4_lblk_t block) 173 { 174 if (path) { 175 int depth = path->p_depth; 176 struct ext4_extent *ex; 177 178 /* 179 * Try to predict block placement assuming that we are 180 * filling in a file which will eventually be 181 * non-sparse --- i.e., in the case of libbfd writing 182 * an ELF object sections out-of-order but in a way 183 * the eventually results in a contiguous object or 184 * executable file, or some database extending a table 185 * space file. However, this is actually somewhat 186 * non-ideal if we are writing a sparse file such as 187 * qemu or KVM writing a raw image file that is going 188 * to stay fairly sparse, since it will end up 189 * fragmenting the file system's free space. Maybe we 190 * should have some hueristics or some way to allow 191 * userspace to pass a hint to file system, 192 * especially if the latter case turns out to be 193 * common. 194 */ 195 ex = path[depth].p_ext; 196 if (ex) { 197 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 198 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 199 200 if (block > ext_block) 201 return ext_pblk + (block - ext_block); 202 else 203 return ext_pblk - (ext_block - block); 204 } 205 206 /* it looks like index is empty; 207 * try to find starting block from index itself */ 208 if (path[depth].p_bh) 209 return path[depth].p_bh->b_blocknr; 210 } 211 212 /* OK. use inode's group */ 213 return ext4_inode_to_goal_block(inode); 214 } 215 216 /* 217 * Allocation for a meta data block 218 */ 219 static ext4_fsblk_t 220 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 221 struct ext4_ext_path *path, 222 struct ext4_extent *ex, int *err, unsigned int flags) 223 { 224 ext4_fsblk_t goal, newblock; 225 226 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 227 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 228 NULL, err); 229 return newblock; 230 } 231 232 static inline int ext4_ext_space_block(struct inode *inode, int check) 233 { 234 int size; 235 236 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 237 / sizeof(struct ext4_extent); 238 #ifdef AGGRESSIVE_TEST 239 if (!check && size > 6) 240 size = 6; 241 #endif 242 return size; 243 } 244 245 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 246 { 247 int size; 248 249 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 250 / sizeof(struct ext4_extent_idx); 251 #ifdef AGGRESSIVE_TEST 252 if (!check && size > 5) 253 size = 5; 254 #endif 255 return size; 256 } 257 258 static inline int ext4_ext_space_root(struct inode *inode, int check) 259 { 260 int size; 261 262 size = sizeof(EXT4_I(inode)->i_data); 263 size -= sizeof(struct ext4_extent_header); 264 size /= sizeof(struct ext4_extent); 265 #ifdef AGGRESSIVE_TEST 266 if (!check && size > 3) 267 size = 3; 268 #endif 269 return size; 270 } 271 272 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 273 { 274 int size; 275 276 size = sizeof(EXT4_I(inode)->i_data); 277 size -= sizeof(struct ext4_extent_header); 278 size /= sizeof(struct ext4_extent_idx); 279 #ifdef AGGRESSIVE_TEST 280 if (!check && size > 4) 281 size = 4; 282 #endif 283 return size; 284 } 285 286 static inline int 287 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 288 struct ext4_ext_path **ppath, ext4_lblk_t lblk, 289 int nofail) 290 { 291 struct ext4_ext_path *path = *ppath; 292 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 293 294 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ? 295 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 296 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO | 297 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0)); 298 } 299 300 /* 301 * Calculate the number of metadata blocks needed 302 * to allocate @blocks 303 * Worse case is one block per extent 304 */ 305 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 306 { 307 struct ext4_inode_info *ei = EXT4_I(inode); 308 int idxs; 309 310 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 311 / sizeof(struct ext4_extent_idx)); 312 313 /* 314 * If the new delayed allocation block is contiguous with the 315 * previous da block, it can share index blocks with the 316 * previous block, so we only need to allocate a new index 317 * block every idxs leaf blocks. At ldxs**2 blocks, we need 318 * an additional index block, and at ldxs**3 blocks, yet 319 * another index blocks. 320 */ 321 if (ei->i_da_metadata_calc_len && 322 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 323 int num = 0; 324 325 if ((ei->i_da_metadata_calc_len % idxs) == 0) 326 num++; 327 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 328 num++; 329 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 330 num++; 331 ei->i_da_metadata_calc_len = 0; 332 } else 333 ei->i_da_metadata_calc_len++; 334 ei->i_da_metadata_calc_last_lblock++; 335 return num; 336 } 337 338 /* 339 * In the worst case we need a new set of index blocks at 340 * every level of the inode's extent tree. 341 */ 342 ei->i_da_metadata_calc_len = 1; 343 ei->i_da_metadata_calc_last_lblock = lblock; 344 return ext_depth(inode) + 1; 345 } 346 347 static int 348 ext4_ext_max_entries(struct inode *inode, int depth) 349 { 350 int max; 351 352 if (depth == ext_depth(inode)) { 353 if (depth == 0) 354 max = ext4_ext_space_root(inode, 1); 355 else 356 max = ext4_ext_space_root_idx(inode, 1); 357 } else { 358 if (depth == 0) 359 max = ext4_ext_space_block(inode, 1); 360 else 361 max = ext4_ext_space_block_idx(inode, 1); 362 } 363 364 return max; 365 } 366 367 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 368 { 369 ext4_fsblk_t block = ext4_ext_pblock(ext); 370 int len = ext4_ext_get_actual_len(ext); 371 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 372 373 /* 374 * We allow neither: 375 * - zero length 376 * - overflow/wrap-around 377 */ 378 if (lblock + len <= lblock) 379 return 0; 380 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 381 } 382 383 static int ext4_valid_extent_idx(struct inode *inode, 384 struct ext4_extent_idx *ext_idx) 385 { 386 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 387 388 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 389 } 390 391 static int ext4_valid_extent_entries(struct inode *inode, 392 struct ext4_extent_header *eh, 393 int depth) 394 { 395 unsigned short entries; 396 if (eh->eh_entries == 0) 397 return 1; 398 399 entries = le16_to_cpu(eh->eh_entries); 400 401 if (depth == 0) { 402 /* leaf entries */ 403 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 404 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 405 ext4_fsblk_t pblock = 0; 406 ext4_lblk_t lblock = 0; 407 ext4_lblk_t prev = 0; 408 int len = 0; 409 while (entries) { 410 if (!ext4_valid_extent(inode, ext)) 411 return 0; 412 413 /* Check for overlapping extents */ 414 lblock = le32_to_cpu(ext->ee_block); 415 len = ext4_ext_get_actual_len(ext); 416 if ((lblock <= prev) && prev) { 417 pblock = ext4_ext_pblock(ext); 418 es->s_last_error_block = cpu_to_le64(pblock); 419 return 0; 420 } 421 ext++; 422 entries--; 423 prev = lblock + len - 1; 424 } 425 } else { 426 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 427 while (entries) { 428 if (!ext4_valid_extent_idx(inode, ext_idx)) 429 return 0; 430 ext_idx++; 431 entries--; 432 } 433 } 434 return 1; 435 } 436 437 static int __ext4_ext_check(const char *function, unsigned int line, 438 struct inode *inode, struct ext4_extent_header *eh, 439 int depth, ext4_fsblk_t pblk) 440 { 441 const char *error_msg; 442 int max = 0, err = -EFSCORRUPTED; 443 444 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 445 error_msg = "invalid magic"; 446 goto corrupted; 447 } 448 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 449 error_msg = "unexpected eh_depth"; 450 goto corrupted; 451 } 452 if (unlikely(eh->eh_max == 0)) { 453 error_msg = "invalid eh_max"; 454 goto corrupted; 455 } 456 max = ext4_ext_max_entries(inode, depth); 457 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 458 error_msg = "too large eh_max"; 459 goto corrupted; 460 } 461 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 462 error_msg = "invalid eh_entries"; 463 goto corrupted; 464 } 465 if (!ext4_valid_extent_entries(inode, eh, depth)) { 466 error_msg = "invalid extent entries"; 467 goto corrupted; 468 } 469 if (unlikely(depth > 32)) { 470 error_msg = "too large eh_depth"; 471 goto corrupted; 472 } 473 /* Verify checksum on non-root extent tree nodes */ 474 if (ext_depth(inode) != depth && 475 !ext4_extent_block_csum_verify(inode, eh)) { 476 error_msg = "extent tree corrupted"; 477 err = -EFSBADCRC; 478 goto corrupted; 479 } 480 return 0; 481 482 corrupted: 483 ext4_error_inode(inode, function, line, 0, 484 "pblk %llu bad header/extent: %s - magic %x, " 485 "entries %u, max %u(%u), depth %u(%u)", 486 (unsigned long long) pblk, error_msg, 487 le16_to_cpu(eh->eh_magic), 488 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 489 max, le16_to_cpu(eh->eh_depth), depth); 490 return err; 491 } 492 493 #define ext4_ext_check(inode, eh, depth, pblk) \ 494 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 495 496 int ext4_ext_check_inode(struct inode *inode) 497 { 498 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 499 } 500 501 static struct buffer_head * 502 __read_extent_tree_block(const char *function, unsigned int line, 503 struct inode *inode, ext4_fsblk_t pblk, int depth, 504 int flags) 505 { 506 struct buffer_head *bh; 507 int err; 508 509 bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS); 510 if (unlikely(!bh)) 511 return ERR_PTR(-ENOMEM); 512 513 if (!bh_uptodate_or_lock(bh)) { 514 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 515 err = bh_submit_read(bh); 516 if (err < 0) 517 goto errout; 518 } 519 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 520 return bh; 521 err = __ext4_ext_check(function, line, inode, 522 ext_block_hdr(bh), depth, pblk); 523 if (err) 524 goto errout; 525 set_buffer_verified(bh); 526 /* 527 * If this is a leaf block, cache all of its entries 528 */ 529 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 530 struct ext4_extent_header *eh = ext_block_hdr(bh); 531 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 532 ext4_lblk_t prev = 0; 533 int i; 534 535 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 536 unsigned int status = EXTENT_STATUS_WRITTEN; 537 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 538 int len = ext4_ext_get_actual_len(ex); 539 540 if (prev && (prev != lblk)) 541 ext4_es_cache_extent(inode, prev, 542 lblk - prev, ~0, 543 EXTENT_STATUS_HOLE); 544 545 if (ext4_ext_is_unwritten(ex)) 546 status = EXTENT_STATUS_UNWRITTEN; 547 ext4_es_cache_extent(inode, lblk, len, 548 ext4_ext_pblock(ex), status); 549 prev = lblk + len; 550 } 551 } 552 return bh; 553 errout: 554 put_bh(bh); 555 return ERR_PTR(err); 556 557 } 558 559 #define read_extent_tree_block(inode, pblk, depth, flags) \ 560 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 561 (depth), (flags)) 562 563 /* 564 * This function is called to cache a file's extent information in the 565 * extent status tree 566 */ 567 int ext4_ext_precache(struct inode *inode) 568 { 569 struct ext4_inode_info *ei = EXT4_I(inode); 570 struct ext4_ext_path *path = NULL; 571 struct buffer_head *bh; 572 int i = 0, depth, ret = 0; 573 574 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 575 return 0; /* not an extent-mapped inode */ 576 577 down_read(&ei->i_data_sem); 578 depth = ext_depth(inode); 579 580 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 581 GFP_NOFS); 582 if (path == NULL) { 583 up_read(&ei->i_data_sem); 584 return -ENOMEM; 585 } 586 587 /* Don't cache anything if there are no external extent blocks */ 588 if (depth == 0) 589 goto out; 590 path[0].p_hdr = ext_inode_hdr(inode); 591 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 592 if (ret) 593 goto out; 594 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 595 while (i >= 0) { 596 /* 597 * If this is a leaf block or we've reached the end of 598 * the index block, go up 599 */ 600 if ((i == depth) || 601 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 602 brelse(path[i].p_bh); 603 path[i].p_bh = NULL; 604 i--; 605 continue; 606 } 607 bh = read_extent_tree_block(inode, 608 ext4_idx_pblock(path[i].p_idx++), 609 depth - i - 1, 610 EXT4_EX_FORCE_CACHE); 611 if (IS_ERR(bh)) { 612 ret = PTR_ERR(bh); 613 break; 614 } 615 i++; 616 path[i].p_bh = bh; 617 path[i].p_hdr = ext_block_hdr(bh); 618 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 619 } 620 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 621 out: 622 up_read(&ei->i_data_sem); 623 ext4_ext_drop_refs(path); 624 kfree(path); 625 return ret; 626 } 627 628 #ifdef EXT_DEBUG 629 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 630 { 631 int k, l = path->p_depth; 632 633 ext_debug("path:"); 634 for (k = 0; k <= l; k++, path++) { 635 if (path->p_idx) { 636 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 637 ext4_idx_pblock(path->p_idx)); 638 } else if (path->p_ext) { 639 ext_debug(" %d:[%d]%d:%llu ", 640 le32_to_cpu(path->p_ext->ee_block), 641 ext4_ext_is_unwritten(path->p_ext), 642 ext4_ext_get_actual_len(path->p_ext), 643 ext4_ext_pblock(path->p_ext)); 644 } else 645 ext_debug(" []"); 646 } 647 ext_debug("\n"); 648 } 649 650 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 651 { 652 int depth = ext_depth(inode); 653 struct ext4_extent_header *eh; 654 struct ext4_extent *ex; 655 int i; 656 657 if (!path) 658 return; 659 660 eh = path[depth].p_hdr; 661 ex = EXT_FIRST_EXTENT(eh); 662 663 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 664 665 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 666 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 667 ext4_ext_is_unwritten(ex), 668 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 669 } 670 ext_debug("\n"); 671 } 672 673 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 674 ext4_fsblk_t newblock, int level) 675 { 676 int depth = ext_depth(inode); 677 struct ext4_extent *ex; 678 679 if (depth != level) { 680 struct ext4_extent_idx *idx; 681 idx = path[level].p_idx; 682 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 683 ext_debug("%d: move %d:%llu in new index %llu\n", level, 684 le32_to_cpu(idx->ei_block), 685 ext4_idx_pblock(idx), 686 newblock); 687 idx++; 688 } 689 690 return; 691 } 692 693 ex = path[depth].p_ext; 694 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 695 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 696 le32_to_cpu(ex->ee_block), 697 ext4_ext_pblock(ex), 698 ext4_ext_is_unwritten(ex), 699 ext4_ext_get_actual_len(ex), 700 newblock); 701 ex++; 702 } 703 } 704 705 #else 706 #define ext4_ext_show_path(inode, path) 707 #define ext4_ext_show_leaf(inode, path) 708 #define ext4_ext_show_move(inode, path, newblock, level) 709 #endif 710 711 void ext4_ext_drop_refs(struct ext4_ext_path *path) 712 { 713 int depth, i; 714 715 if (!path) 716 return; 717 depth = path->p_depth; 718 for (i = 0; i <= depth; i++, path++) 719 if (path->p_bh) { 720 brelse(path->p_bh); 721 path->p_bh = NULL; 722 } 723 } 724 725 /* 726 * ext4_ext_binsearch_idx: 727 * binary search for the closest index of the given block 728 * the header must be checked before calling this 729 */ 730 static void 731 ext4_ext_binsearch_idx(struct inode *inode, 732 struct ext4_ext_path *path, ext4_lblk_t block) 733 { 734 struct ext4_extent_header *eh = path->p_hdr; 735 struct ext4_extent_idx *r, *l, *m; 736 737 738 ext_debug("binsearch for %u(idx): ", block); 739 740 l = EXT_FIRST_INDEX(eh) + 1; 741 r = EXT_LAST_INDEX(eh); 742 while (l <= r) { 743 m = l + (r - l) / 2; 744 if (block < le32_to_cpu(m->ei_block)) 745 r = m - 1; 746 else 747 l = m + 1; 748 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 749 m, le32_to_cpu(m->ei_block), 750 r, le32_to_cpu(r->ei_block)); 751 } 752 753 path->p_idx = l - 1; 754 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 755 ext4_idx_pblock(path->p_idx)); 756 757 #ifdef CHECK_BINSEARCH 758 { 759 struct ext4_extent_idx *chix, *ix; 760 int k; 761 762 chix = ix = EXT_FIRST_INDEX(eh); 763 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 764 if (k != 0 && 765 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 766 printk(KERN_DEBUG "k=%d, ix=0x%p, " 767 "first=0x%p\n", k, 768 ix, EXT_FIRST_INDEX(eh)); 769 printk(KERN_DEBUG "%u <= %u\n", 770 le32_to_cpu(ix->ei_block), 771 le32_to_cpu(ix[-1].ei_block)); 772 } 773 BUG_ON(k && le32_to_cpu(ix->ei_block) 774 <= le32_to_cpu(ix[-1].ei_block)); 775 if (block < le32_to_cpu(ix->ei_block)) 776 break; 777 chix = ix; 778 } 779 BUG_ON(chix != path->p_idx); 780 } 781 #endif 782 783 } 784 785 /* 786 * ext4_ext_binsearch: 787 * binary search for closest extent of the given block 788 * the header must be checked before calling this 789 */ 790 static void 791 ext4_ext_binsearch(struct inode *inode, 792 struct ext4_ext_path *path, ext4_lblk_t block) 793 { 794 struct ext4_extent_header *eh = path->p_hdr; 795 struct ext4_extent *r, *l, *m; 796 797 if (eh->eh_entries == 0) { 798 /* 799 * this leaf is empty: 800 * we get such a leaf in split/add case 801 */ 802 return; 803 } 804 805 ext_debug("binsearch for %u: ", block); 806 807 l = EXT_FIRST_EXTENT(eh) + 1; 808 r = EXT_LAST_EXTENT(eh); 809 810 while (l <= r) { 811 m = l + (r - l) / 2; 812 if (block < le32_to_cpu(m->ee_block)) 813 r = m - 1; 814 else 815 l = m + 1; 816 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 817 m, le32_to_cpu(m->ee_block), 818 r, le32_to_cpu(r->ee_block)); 819 } 820 821 path->p_ext = l - 1; 822 ext_debug(" -> %d:%llu:[%d]%d ", 823 le32_to_cpu(path->p_ext->ee_block), 824 ext4_ext_pblock(path->p_ext), 825 ext4_ext_is_unwritten(path->p_ext), 826 ext4_ext_get_actual_len(path->p_ext)); 827 828 #ifdef CHECK_BINSEARCH 829 { 830 struct ext4_extent *chex, *ex; 831 int k; 832 833 chex = ex = EXT_FIRST_EXTENT(eh); 834 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 835 BUG_ON(k && le32_to_cpu(ex->ee_block) 836 <= le32_to_cpu(ex[-1].ee_block)); 837 if (block < le32_to_cpu(ex->ee_block)) 838 break; 839 chex = ex; 840 } 841 BUG_ON(chex != path->p_ext); 842 } 843 #endif 844 845 } 846 847 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 848 { 849 struct ext4_extent_header *eh; 850 851 eh = ext_inode_hdr(inode); 852 eh->eh_depth = 0; 853 eh->eh_entries = 0; 854 eh->eh_magic = EXT4_EXT_MAGIC; 855 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 856 ext4_mark_inode_dirty(handle, inode); 857 return 0; 858 } 859 860 struct ext4_ext_path * 861 ext4_find_extent(struct inode *inode, ext4_lblk_t block, 862 struct ext4_ext_path **orig_path, int flags) 863 { 864 struct ext4_extent_header *eh; 865 struct buffer_head *bh; 866 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 867 short int depth, i, ppos = 0; 868 int ret; 869 870 eh = ext_inode_hdr(inode); 871 depth = ext_depth(inode); 872 if (depth < 0 || depth > EXT4_MAX_EXTENT_DEPTH) { 873 EXT4_ERROR_INODE(inode, "inode has invalid extent depth: %d", 874 depth); 875 ret = -EFSCORRUPTED; 876 goto err; 877 } 878 879 if (path) { 880 ext4_ext_drop_refs(path); 881 if (depth > path[0].p_maxdepth) { 882 kfree(path); 883 *orig_path = path = NULL; 884 } 885 } 886 if (!path) { 887 /* account possible depth increase */ 888 path = kcalloc(depth + 2, sizeof(struct ext4_ext_path), 889 GFP_NOFS); 890 if (unlikely(!path)) 891 return ERR_PTR(-ENOMEM); 892 path[0].p_maxdepth = depth + 1; 893 } 894 path[0].p_hdr = eh; 895 path[0].p_bh = NULL; 896 897 i = depth; 898 /* walk through the tree */ 899 while (i) { 900 ext_debug("depth %d: num %d, max %d\n", 901 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 902 903 ext4_ext_binsearch_idx(inode, path + ppos, block); 904 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 905 path[ppos].p_depth = i; 906 path[ppos].p_ext = NULL; 907 908 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 909 flags); 910 if (IS_ERR(bh)) { 911 ret = PTR_ERR(bh); 912 goto err; 913 } 914 915 eh = ext_block_hdr(bh); 916 ppos++; 917 path[ppos].p_bh = bh; 918 path[ppos].p_hdr = eh; 919 } 920 921 path[ppos].p_depth = i; 922 path[ppos].p_ext = NULL; 923 path[ppos].p_idx = NULL; 924 925 /* find extent */ 926 ext4_ext_binsearch(inode, path + ppos, block); 927 /* if not an empty leaf */ 928 if (path[ppos].p_ext) 929 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 930 931 ext4_ext_show_path(inode, path); 932 933 return path; 934 935 err: 936 ext4_ext_drop_refs(path); 937 kfree(path); 938 if (orig_path) 939 *orig_path = NULL; 940 return ERR_PTR(ret); 941 } 942 943 /* 944 * ext4_ext_insert_index: 945 * insert new index [@logical;@ptr] into the block at @curp; 946 * check where to insert: before @curp or after @curp 947 */ 948 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 949 struct ext4_ext_path *curp, 950 int logical, ext4_fsblk_t ptr) 951 { 952 struct ext4_extent_idx *ix; 953 int len, err; 954 955 err = ext4_ext_get_access(handle, inode, curp); 956 if (err) 957 return err; 958 959 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 960 EXT4_ERROR_INODE(inode, 961 "logical %d == ei_block %d!", 962 logical, le32_to_cpu(curp->p_idx->ei_block)); 963 return -EFSCORRUPTED; 964 } 965 966 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 967 >= le16_to_cpu(curp->p_hdr->eh_max))) { 968 EXT4_ERROR_INODE(inode, 969 "eh_entries %d >= eh_max %d!", 970 le16_to_cpu(curp->p_hdr->eh_entries), 971 le16_to_cpu(curp->p_hdr->eh_max)); 972 return -EFSCORRUPTED; 973 } 974 975 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 976 /* insert after */ 977 ext_debug("insert new index %d after: %llu\n", logical, ptr); 978 ix = curp->p_idx + 1; 979 } else { 980 /* insert before */ 981 ext_debug("insert new index %d before: %llu\n", logical, ptr); 982 ix = curp->p_idx; 983 } 984 985 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 986 BUG_ON(len < 0); 987 if (len > 0) { 988 ext_debug("insert new index %d: " 989 "move %d indices from 0x%p to 0x%p\n", 990 logical, len, ix, ix + 1); 991 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 992 } 993 994 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 995 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 996 return -EFSCORRUPTED; 997 } 998 999 ix->ei_block = cpu_to_le32(logical); 1000 ext4_idx_store_pblock(ix, ptr); 1001 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 1002 1003 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 1004 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 1005 return -EFSCORRUPTED; 1006 } 1007 1008 err = ext4_ext_dirty(handle, inode, curp); 1009 ext4_std_error(inode->i_sb, err); 1010 1011 return err; 1012 } 1013 1014 /* 1015 * ext4_ext_split: 1016 * inserts new subtree into the path, using free index entry 1017 * at depth @at: 1018 * - allocates all needed blocks (new leaf and all intermediate index blocks) 1019 * - makes decision where to split 1020 * - moves remaining extents and index entries (right to the split point) 1021 * into the newly allocated blocks 1022 * - initializes subtree 1023 */ 1024 static int ext4_ext_split(handle_t *handle, struct inode *inode, 1025 unsigned int flags, 1026 struct ext4_ext_path *path, 1027 struct ext4_extent *newext, int at) 1028 { 1029 struct buffer_head *bh = NULL; 1030 int depth = ext_depth(inode); 1031 struct ext4_extent_header *neh; 1032 struct ext4_extent_idx *fidx; 1033 int i = at, k, m, a; 1034 ext4_fsblk_t newblock, oldblock; 1035 __le32 border; 1036 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1037 int err = 0; 1038 1039 /* make decision: where to split? */ 1040 /* FIXME: now decision is simplest: at current extent */ 1041 1042 /* if current leaf will be split, then we should use 1043 * border from split point */ 1044 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1045 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1046 return -EFSCORRUPTED; 1047 } 1048 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1049 border = path[depth].p_ext[1].ee_block; 1050 ext_debug("leaf will be split." 1051 " next leaf starts at %d\n", 1052 le32_to_cpu(border)); 1053 } else { 1054 border = newext->ee_block; 1055 ext_debug("leaf will be added." 1056 " next leaf starts at %d\n", 1057 le32_to_cpu(border)); 1058 } 1059 1060 /* 1061 * If error occurs, then we break processing 1062 * and mark filesystem read-only. index won't 1063 * be inserted and tree will be in consistent 1064 * state. Next mount will repair buffers too. 1065 */ 1066 1067 /* 1068 * Get array to track all allocated blocks. 1069 * We need this to handle errors and free blocks 1070 * upon them. 1071 */ 1072 ablocks = kcalloc(depth, sizeof(ext4_fsblk_t), GFP_NOFS); 1073 if (!ablocks) 1074 return -ENOMEM; 1075 1076 /* allocate all needed blocks */ 1077 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1078 for (a = 0; a < depth - at; a++) { 1079 newblock = ext4_ext_new_meta_block(handle, inode, path, 1080 newext, &err, flags); 1081 if (newblock == 0) 1082 goto cleanup; 1083 ablocks[a] = newblock; 1084 } 1085 1086 /* initialize new leaf */ 1087 newblock = ablocks[--a]; 1088 if (unlikely(newblock == 0)) { 1089 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1090 err = -EFSCORRUPTED; 1091 goto cleanup; 1092 } 1093 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1094 if (unlikely(!bh)) { 1095 err = -ENOMEM; 1096 goto cleanup; 1097 } 1098 lock_buffer(bh); 1099 1100 err = ext4_journal_get_create_access(handle, bh); 1101 if (err) 1102 goto cleanup; 1103 1104 neh = ext_block_hdr(bh); 1105 neh->eh_entries = 0; 1106 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1107 neh->eh_magic = EXT4_EXT_MAGIC; 1108 neh->eh_depth = 0; 1109 1110 /* move remainder of path[depth] to the new leaf */ 1111 if (unlikely(path[depth].p_hdr->eh_entries != 1112 path[depth].p_hdr->eh_max)) { 1113 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1114 path[depth].p_hdr->eh_entries, 1115 path[depth].p_hdr->eh_max); 1116 err = -EFSCORRUPTED; 1117 goto cleanup; 1118 } 1119 /* start copy from next extent */ 1120 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1121 ext4_ext_show_move(inode, path, newblock, depth); 1122 if (m) { 1123 struct ext4_extent *ex; 1124 ex = EXT_FIRST_EXTENT(neh); 1125 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1126 le16_add_cpu(&neh->eh_entries, m); 1127 } 1128 1129 ext4_extent_block_csum_set(inode, neh); 1130 set_buffer_uptodate(bh); 1131 unlock_buffer(bh); 1132 1133 err = ext4_handle_dirty_metadata(handle, inode, bh); 1134 if (err) 1135 goto cleanup; 1136 brelse(bh); 1137 bh = NULL; 1138 1139 /* correct old leaf */ 1140 if (m) { 1141 err = ext4_ext_get_access(handle, inode, path + depth); 1142 if (err) 1143 goto cleanup; 1144 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1145 err = ext4_ext_dirty(handle, inode, path + depth); 1146 if (err) 1147 goto cleanup; 1148 1149 } 1150 1151 /* create intermediate indexes */ 1152 k = depth - at - 1; 1153 if (unlikely(k < 0)) { 1154 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1155 err = -EFSCORRUPTED; 1156 goto cleanup; 1157 } 1158 if (k) 1159 ext_debug("create %d intermediate indices\n", k); 1160 /* insert new index into current index block */ 1161 /* current depth stored in i var */ 1162 i = depth - 1; 1163 while (k--) { 1164 oldblock = newblock; 1165 newblock = ablocks[--a]; 1166 bh = sb_getblk(inode->i_sb, newblock); 1167 if (unlikely(!bh)) { 1168 err = -ENOMEM; 1169 goto cleanup; 1170 } 1171 lock_buffer(bh); 1172 1173 err = ext4_journal_get_create_access(handle, bh); 1174 if (err) 1175 goto cleanup; 1176 1177 neh = ext_block_hdr(bh); 1178 neh->eh_entries = cpu_to_le16(1); 1179 neh->eh_magic = EXT4_EXT_MAGIC; 1180 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1181 neh->eh_depth = cpu_to_le16(depth - i); 1182 fidx = EXT_FIRST_INDEX(neh); 1183 fidx->ei_block = border; 1184 ext4_idx_store_pblock(fidx, oldblock); 1185 1186 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1187 i, newblock, le32_to_cpu(border), oldblock); 1188 1189 /* move remainder of path[i] to the new index block */ 1190 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1191 EXT_LAST_INDEX(path[i].p_hdr))) { 1192 EXT4_ERROR_INODE(inode, 1193 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1194 le32_to_cpu(path[i].p_ext->ee_block)); 1195 err = -EFSCORRUPTED; 1196 goto cleanup; 1197 } 1198 /* start copy indexes */ 1199 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1200 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1201 EXT_MAX_INDEX(path[i].p_hdr)); 1202 ext4_ext_show_move(inode, path, newblock, i); 1203 if (m) { 1204 memmove(++fidx, path[i].p_idx, 1205 sizeof(struct ext4_extent_idx) * m); 1206 le16_add_cpu(&neh->eh_entries, m); 1207 } 1208 ext4_extent_block_csum_set(inode, neh); 1209 set_buffer_uptodate(bh); 1210 unlock_buffer(bh); 1211 1212 err = ext4_handle_dirty_metadata(handle, inode, bh); 1213 if (err) 1214 goto cleanup; 1215 brelse(bh); 1216 bh = NULL; 1217 1218 /* correct old index */ 1219 if (m) { 1220 err = ext4_ext_get_access(handle, inode, path + i); 1221 if (err) 1222 goto cleanup; 1223 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1224 err = ext4_ext_dirty(handle, inode, path + i); 1225 if (err) 1226 goto cleanup; 1227 } 1228 1229 i--; 1230 } 1231 1232 /* insert new index */ 1233 err = ext4_ext_insert_index(handle, inode, path + at, 1234 le32_to_cpu(border), newblock); 1235 1236 cleanup: 1237 if (bh) { 1238 if (buffer_locked(bh)) 1239 unlock_buffer(bh); 1240 brelse(bh); 1241 } 1242 1243 if (err) { 1244 /* free all allocated blocks in error case */ 1245 for (i = 0; i < depth; i++) { 1246 if (!ablocks[i]) 1247 continue; 1248 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1249 EXT4_FREE_BLOCKS_METADATA); 1250 } 1251 } 1252 kfree(ablocks); 1253 1254 return err; 1255 } 1256 1257 /* 1258 * ext4_ext_grow_indepth: 1259 * implements tree growing procedure: 1260 * - allocates new block 1261 * - moves top-level data (index block or leaf) into the new block 1262 * - initializes new top-level, creating index that points to the 1263 * just created block 1264 */ 1265 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1266 unsigned int flags) 1267 { 1268 struct ext4_extent_header *neh; 1269 struct buffer_head *bh; 1270 ext4_fsblk_t newblock, goal = 0; 1271 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 1272 int err = 0; 1273 1274 /* Try to prepend new index to old one */ 1275 if (ext_depth(inode)) 1276 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); 1277 if (goal > le32_to_cpu(es->s_first_data_block)) { 1278 flags |= EXT4_MB_HINT_TRY_GOAL; 1279 goal--; 1280 } else 1281 goal = ext4_inode_to_goal_block(inode); 1282 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 1283 NULL, &err); 1284 if (newblock == 0) 1285 return err; 1286 1287 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1288 if (unlikely(!bh)) 1289 return -ENOMEM; 1290 lock_buffer(bh); 1291 1292 err = ext4_journal_get_create_access(handle, bh); 1293 if (err) { 1294 unlock_buffer(bh); 1295 goto out; 1296 } 1297 1298 /* move top-level index/leaf into new block */ 1299 memmove(bh->b_data, EXT4_I(inode)->i_data, 1300 sizeof(EXT4_I(inode)->i_data)); 1301 1302 /* set size of new block */ 1303 neh = ext_block_hdr(bh); 1304 /* old root could have indexes or leaves 1305 * so calculate e_max right way */ 1306 if (ext_depth(inode)) 1307 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1308 else 1309 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1310 neh->eh_magic = EXT4_EXT_MAGIC; 1311 ext4_extent_block_csum_set(inode, neh); 1312 set_buffer_uptodate(bh); 1313 unlock_buffer(bh); 1314 1315 err = ext4_handle_dirty_metadata(handle, inode, bh); 1316 if (err) 1317 goto out; 1318 1319 /* Update top-level index: num,max,pointer */ 1320 neh = ext_inode_hdr(inode); 1321 neh->eh_entries = cpu_to_le16(1); 1322 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1323 if (neh->eh_depth == 0) { 1324 /* Root extent block becomes index block */ 1325 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1326 EXT_FIRST_INDEX(neh)->ei_block = 1327 EXT_FIRST_EXTENT(neh)->ee_block; 1328 } 1329 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1330 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1331 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1332 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1333 1334 le16_add_cpu(&neh->eh_depth, 1); 1335 ext4_mark_inode_dirty(handle, inode); 1336 out: 1337 brelse(bh); 1338 1339 return err; 1340 } 1341 1342 /* 1343 * ext4_ext_create_new_leaf: 1344 * finds empty index and adds new leaf. 1345 * if no free index is found, then it requests in-depth growing. 1346 */ 1347 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1348 unsigned int mb_flags, 1349 unsigned int gb_flags, 1350 struct ext4_ext_path **ppath, 1351 struct ext4_extent *newext) 1352 { 1353 struct ext4_ext_path *path = *ppath; 1354 struct ext4_ext_path *curp; 1355 int depth, i, err = 0; 1356 1357 repeat: 1358 i = depth = ext_depth(inode); 1359 1360 /* walk up to the tree and look for free index entry */ 1361 curp = path + depth; 1362 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1363 i--; 1364 curp--; 1365 } 1366 1367 /* we use already allocated block for index block, 1368 * so subsequent data blocks should be contiguous */ 1369 if (EXT_HAS_FREE_INDEX(curp)) { 1370 /* if we found index with free entry, then use that 1371 * entry: create all needed subtree and add new leaf */ 1372 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1373 if (err) 1374 goto out; 1375 1376 /* refill path */ 1377 path = ext4_find_extent(inode, 1378 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1379 ppath, gb_flags); 1380 if (IS_ERR(path)) 1381 err = PTR_ERR(path); 1382 } else { 1383 /* tree is full, time to grow in depth */ 1384 err = ext4_ext_grow_indepth(handle, inode, mb_flags); 1385 if (err) 1386 goto out; 1387 1388 /* refill path */ 1389 path = ext4_find_extent(inode, 1390 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1391 ppath, gb_flags); 1392 if (IS_ERR(path)) { 1393 err = PTR_ERR(path); 1394 goto out; 1395 } 1396 1397 /* 1398 * only first (depth 0 -> 1) produces free space; 1399 * in all other cases we have to split the grown tree 1400 */ 1401 depth = ext_depth(inode); 1402 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1403 /* now we need to split */ 1404 goto repeat; 1405 } 1406 } 1407 1408 out: 1409 return err; 1410 } 1411 1412 /* 1413 * search the closest allocated block to the left for *logical 1414 * and returns it at @logical + it's physical address at @phys 1415 * if *logical is the smallest allocated block, the function 1416 * returns 0 at @phys 1417 * return value contains 0 (success) or error code 1418 */ 1419 static int ext4_ext_search_left(struct inode *inode, 1420 struct ext4_ext_path *path, 1421 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1422 { 1423 struct ext4_extent_idx *ix; 1424 struct ext4_extent *ex; 1425 int depth, ee_len; 1426 1427 if (unlikely(path == NULL)) { 1428 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1429 return -EFSCORRUPTED; 1430 } 1431 depth = path->p_depth; 1432 *phys = 0; 1433 1434 if (depth == 0 && path->p_ext == NULL) 1435 return 0; 1436 1437 /* usually extent in the path covers blocks smaller 1438 * then *logical, but it can be that extent is the 1439 * first one in the file */ 1440 1441 ex = path[depth].p_ext; 1442 ee_len = ext4_ext_get_actual_len(ex); 1443 if (*logical < le32_to_cpu(ex->ee_block)) { 1444 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1445 EXT4_ERROR_INODE(inode, 1446 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1447 *logical, le32_to_cpu(ex->ee_block)); 1448 return -EFSCORRUPTED; 1449 } 1450 while (--depth >= 0) { 1451 ix = path[depth].p_idx; 1452 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1453 EXT4_ERROR_INODE(inode, 1454 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1455 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1456 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1457 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1458 depth); 1459 return -EFSCORRUPTED; 1460 } 1461 } 1462 return 0; 1463 } 1464 1465 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1466 EXT4_ERROR_INODE(inode, 1467 "logical %d < ee_block %d + ee_len %d!", 1468 *logical, le32_to_cpu(ex->ee_block), ee_len); 1469 return -EFSCORRUPTED; 1470 } 1471 1472 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1473 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1474 return 0; 1475 } 1476 1477 /* 1478 * search the closest allocated block to the right for *logical 1479 * and returns it at @logical + it's physical address at @phys 1480 * if *logical is the largest allocated block, the function 1481 * returns 0 at @phys 1482 * return value contains 0 (success) or error code 1483 */ 1484 static int ext4_ext_search_right(struct inode *inode, 1485 struct ext4_ext_path *path, 1486 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1487 struct ext4_extent **ret_ex) 1488 { 1489 struct buffer_head *bh = NULL; 1490 struct ext4_extent_header *eh; 1491 struct ext4_extent_idx *ix; 1492 struct ext4_extent *ex; 1493 ext4_fsblk_t block; 1494 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1495 int ee_len; 1496 1497 if (unlikely(path == NULL)) { 1498 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1499 return -EFSCORRUPTED; 1500 } 1501 depth = path->p_depth; 1502 *phys = 0; 1503 1504 if (depth == 0 && path->p_ext == NULL) 1505 return 0; 1506 1507 /* usually extent in the path covers blocks smaller 1508 * then *logical, but it can be that extent is the 1509 * first one in the file */ 1510 1511 ex = path[depth].p_ext; 1512 ee_len = ext4_ext_get_actual_len(ex); 1513 if (*logical < le32_to_cpu(ex->ee_block)) { 1514 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1515 EXT4_ERROR_INODE(inode, 1516 "first_extent(path[%d].p_hdr) != ex", 1517 depth); 1518 return -EFSCORRUPTED; 1519 } 1520 while (--depth >= 0) { 1521 ix = path[depth].p_idx; 1522 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1523 EXT4_ERROR_INODE(inode, 1524 "ix != EXT_FIRST_INDEX *logical %d!", 1525 *logical); 1526 return -EFSCORRUPTED; 1527 } 1528 } 1529 goto found_extent; 1530 } 1531 1532 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1533 EXT4_ERROR_INODE(inode, 1534 "logical %d < ee_block %d + ee_len %d!", 1535 *logical, le32_to_cpu(ex->ee_block), ee_len); 1536 return -EFSCORRUPTED; 1537 } 1538 1539 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1540 /* next allocated block in this leaf */ 1541 ex++; 1542 goto found_extent; 1543 } 1544 1545 /* go up and search for index to the right */ 1546 while (--depth >= 0) { 1547 ix = path[depth].p_idx; 1548 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1549 goto got_index; 1550 } 1551 1552 /* we've gone up to the root and found no index to the right */ 1553 return 0; 1554 1555 got_index: 1556 /* we've found index to the right, let's 1557 * follow it and find the closest allocated 1558 * block to the right */ 1559 ix++; 1560 block = ext4_idx_pblock(ix); 1561 while (++depth < path->p_depth) { 1562 /* subtract from p_depth to get proper eh_depth */ 1563 bh = read_extent_tree_block(inode, block, 1564 path->p_depth - depth, 0); 1565 if (IS_ERR(bh)) 1566 return PTR_ERR(bh); 1567 eh = ext_block_hdr(bh); 1568 ix = EXT_FIRST_INDEX(eh); 1569 block = ext4_idx_pblock(ix); 1570 put_bh(bh); 1571 } 1572 1573 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1574 if (IS_ERR(bh)) 1575 return PTR_ERR(bh); 1576 eh = ext_block_hdr(bh); 1577 ex = EXT_FIRST_EXTENT(eh); 1578 found_extent: 1579 *logical = le32_to_cpu(ex->ee_block); 1580 *phys = ext4_ext_pblock(ex); 1581 *ret_ex = ex; 1582 if (bh) 1583 put_bh(bh); 1584 return 0; 1585 } 1586 1587 /* 1588 * ext4_ext_next_allocated_block: 1589 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1590 * NOTE: it considers block number from index entry as 1591 * allocated block. Thus, index entries have to be consistent 1592 * with leaves. 1593 */ 1594 ext4_lblk_t 1595 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1596 { 1597 int depth; 1598 1599 BUG_ON(path == NULL); 1600 depth = path->p_depth; 1601 1602 if (depth == 0 && path->p_ext == NULL) 1603 return EXT_MAX_BLOCKS; 1604 1605 while (depth >= 0) { 1606 if (depth == path->p_depth) { 1607 /* leaf */ 1608 if (path[depth].p_ext && 1609 path[depth].p_ext != 1610 EXT_LAST_EXTENT(path[depth].p_hdr)) 1611 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1612 } else { 1613 /* index */ 1614 if (path[depth].p_idx != 1615 EXT_LAST_INDEX(path[depth].p_hdr)) 1616 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1617 } 1618 depth--; 1619 } 1620 1621 return EXT_MAX_BLOCKS; 1622 } 1623 1624 /* 1625 * ext4_ext_next_leaf_block: 1626 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1627 */ 1628 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1629 { 1630 int depth; 1631 1632 BUG_ON(path == NULL); 1633 depth = path->p_depth; 1634 1635 /* zero-tree has no leaf blocks at all */ 1636 if (depth == 0) 1637 return EXT_MAX_BLOCKS; 1638 1639 /* go to index block */ 1640 depth--; 1641 1642 while (depth >= 0) { 1643 if (path[depth].p_idx != 1644 EXT_LAST_INDEX(path[depth].p_hdr)) 1645 return (ext4_lblk_t) 1646 le32_to_cpu(path[depth].p_idx[1].ei_block); 1647 depth--; 1648 } 1649 1650 return EXT_MAX_BLOCKS; 1651 } 1652 1653 /* 1654 * ext4_ext_correct_indexes: 1655 * if leaf gets modified and modified extent is first in the leaf, 1656 * then we have to correct all indexes above. 1657 * TODO: do we need to correct tree in all cases? 1658 */ 1659 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1660 struct ext4_ext_path *path) 1661 { 1662 struct ext4_extent_header *eh; 1663 int depth = ext_depth(inode); 1664 struct ext4_extent *ex; 1665 __le32 border; 1666 int k, err = 0; 1667 1668 eh = path[depth].p_hdr; 1669 ex = path[depth].p_ext; 1670 1671 if (unlikely(ex == NULL || eh == NULL)) { 1672 EXT4_ERROR_INODE(inode, 1673 "ex %p == NULL or eh %p == NULL", ex, eh); 1674 return -EFSCORRUPTED; 1675 } 1676 1677 if (depth == 0) { 1678 /* there is no tree at all */ 1679 return 0; 1680 } 1681 1682 if (ex != EXT_FIRST_EXTENT(eh)) { 1683 /* we correct tree if first leaf got modified only */ 1684 return 0; 1685 } 1686 1687 /* 1688 * TODO: we need correction if border is smaller than current one 1689 */ 1690 k = depth - 1; 1691 border = path[depth].p_ext->ee_block; 1692 err = ext4_ext_get_access(handle, inode, path + k); 1693 if (err) 1694 return err; 1695 path[k].p_idx->ei_block = border; 1696 err = ext4_ext_dirty(handle, inode, path + k); 1697 if (err) 1698 return err; 1699 1700 while (k--) { 1701 /* change all left-side indexes */ 1702 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1703 break; 1704 err = ext4_ext_get_access(handle, inode, path + k); 1705 if (err) 1706 break; 1707 path[k].p_idx->ei_block = border; 1708 err = ext4_ext_dirty(handle, inode, path + k); 1709 if (err) 1710 break; 1711 } 1712 1713 return err; 1714 } 1715 1716 int 1717 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1718 struct ext4_extent *ex2) 1719 { 1720 unsigned short ext1_ee_len, ext2_ee_len; 1721 1722 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1723 return 0; 1724 1725 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1726 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1727 1728 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1729 le32_to_cpu(ex2->ee_block)) 1730 return 0; 1731 1732 /* 1733 * To allow future support for preallocated extents to be added 1734 * as an RO_COMPAT feature, refuse to merge to extents if 1735 * this can result in the top bit of ee_len being set. 1736 */ 1737 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1738 return 0; 1739 /* 1740 * The check for IO to unwritten extent is somewhat racy as we 1741 * increment i_unwritten / set EXT4_STATE_DIO_UNWRITTEN only after 1742 * dropping i_data_sem. But reserved blocks should save us in that 1743 * case. 1744 */ 1745 if (ext4_ext_is_unwritten(ex1) && 1746 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) || 1747 atomic_read(&EXT4_I(inode)->i_unwritten) || 1748 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN))) 1749 return 0; 1750 #ifdef AGGRESSIVE_TEST 1751 if (ext1_ee_len >= 4) 1752 return 0; 1753 #endif 1754 1755 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1756 return 1; 1757 return 0; 1758 } 1759 1760 /* 1761 * This function tries to merge the "ex" extent to the next extent in the tree. 1762 * It always tries to merge towards right. If you want to merge towards 1763 * left, pass "ex - 1" as argument instead of "ex". 1764 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1765 * 1 if they got merged. 1766 */ 1767 static int ext4_ext_try_to_merge_right(struct inode *inode, 1768 struct ext4_ext_path *path, 1769 struct ext4_extent *ex) 1770 { 1771 struct ext4_extent_header *eh; 1772 unsigned int depth, len; 1773 int merge_done = 0, unwritten; 1774 1775 depth = ext_depth(inode); 1776 BUG_ON(path[depth].p_hdr == NULL); 1777 eh = path[depth].p_hdr; 1778 1779 while (ex < EXT_LAST_EXTENT(eh)) { 1780 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1781 break; 1782 /* merge with next extent! */ 1783 unwritten = ext4_ext_is_unwritten(ex); 1784 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1785 + ext4_ext_get_actual_len(ex + 1)); 1786 if (unwritten) 1787 ext4_ext_mark_unwritten(ex); 1788 1789 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1790 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1791 * sizeof(struct ext4_extent); 1792 memmove(ex + 1, ex + 2, len); 1793 } 1794 le16_add_cpu(&eh->eh_entries, -1); 1795 merge_done = 1; 1796 WARN_ON(eh->eh_entries == 0); 1797 if (!eh->eh_entries) 1798 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1799 } 1800 1801 return merge_done; 1802 } 1803 1804 /* 1805 * This function does a very simple check to see if we can collapse 1806 * an extent tree with a single extent tree leaf block into the inode. 1807 */ 1808 static void ext4_ext_try_to_merge_up(handle_t *handle, 1809 struct inode *inode, 1810 struct ext4_ext_path *path) 1811 { 1812 size_t s; 1813 unsigned max_root = ext4_ext_space_root(inode, 0); 1814 ext4_fsblk_t blk; 1815 1816 if ((path[0].p_depth != 1) || 1817 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1818 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1819 return; 1820 1821 /* 1822 * We need to modify the block allocation bitmap and the block 1823 * group descriptor to release the extent tree block. If we 1824 * can't get the journal credits, give up. 1825 */ 1826 if (ext4_journal_extend(handle, 2)) 1827 return; 1828 1829 /* 1830 * Copy the extent data up to the inode 1831 */ 1832 blk = ext4_idx_pblock(path[0].p_idx); 1833 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1834 sizeof(struct ext4_extent_idx); 1835 s += sizeof(struct ext4_extent_header); 1836 1837 path[1].p_maxdepth = path[0].p_maxdepth; 1838 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1839 path[0].p_depth = 0; 1840 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1841 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1842 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1843 1844 brelse(path[1].p_bh); 1845 ext4_free_blocks(handle, inode, NULL, blk, 1, 1846 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1847 } 1848 1849 /* 1850 * This function tries to merge the @ex extent to neighbours in the tree. 1851 * return 1 if merge left else 0. 1852 */ 1853 static void ext4_ext_try_to_merge(handle_t *handle, 1854 struct inode *inode, 1855 struct ext4_ext_path *path, 1856 struct ext4_extent *ex) { 1857 struct ext4_extent_header *eh; 1858 unsigned int depth; 1859 int merge_done = 0; 1860 1861 depth = ext_depth(inode); 1862 BUG_ON(path[depth].p_hdr == NULL); 1863 eh = path[depth].p_hdr; 1864 1865 if (ex > EXT_FIRST_EXTENT(eh)) 1866 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1867 1868 if (!merge_done) 1869 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1870 1871 ext4_ext_try_to_merge_up(handle, inode, path); 1872 } 1873 1874 /* 1875 * check if a portion of the "newext" extent overlaps with an 1876 * existing extent. 1877 * 1878 * If there is an overlap discovered, it updates the length of the newext 1879 * such that there will be no overlap, and then returns 1. 1880 * If there is no overlap found, it returns 0. 1881 */ 1882 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1883 struct inode *inode, 1884 struct ext4_extent *newext, 1885 struct ext4_ext_path *path) 1886 { 1887 ext4_lblk_t b1, b2; 1888 unsigned int depth, len1; 1889 unsigned int ret = 0; 1890 1891 b1 = le32_to_cpu(newext->ee_block); 1892 len1 = ext4_ext_get_actual_len(newext); 1893 depth = ext_depth(inode); 1894 if (!path[depth].p_ext) 1895 goto out; 1896 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1897 1898 /* 1899 * get the next allocated block if the extent in the path 1900 * is before the requested block(s) 1901 */ 1902 if (b2 < b1) { 1903 b2 = ext4_ext_next_allocated_block(path); 1904 if (b2 == EXT_MAX_BLOCKS) 1905 goto out; 1906 b2 = EXT4_LBLK_CMASK(sbi, b2); 1907 } 1908 1909 /* check for wrap through zero on extent logical start block*/ 1910 if (b1 + len1 < b1) { 1911 len1 = EXT_MAX_BLOCKS - b1; 1912 newext->ee_len = cpu_to_le16(len1); 1913 ret = 1; 1914 } 1915 1916 /* check for overlap */ 1917 if (b1 + len1 > b2) { 1918 newext->ee_len = cpu_to_le16(b2 - b1); 1919 ret = 1; 1920 } 1921 out: 1922 return ret; 1923 } 1924 1925 /* 1926 * ext4_ext_insert_extent: 1927 * tries to merge requsted extent into the existing extent or 1928 * inserts requested extent as new one into the tree, 1929 * creating new leaf in the no-space case. 1930 */ 1931 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1932 struct ext4_ext_path **ppath, 1933 struct ext4_extent *newext, int gb_flags) 1934 { 1935 struct ext4_ext_path *path = *ppath; 1936 struct ext4_extent_header *eh; 1937 struct ext4_extent *ex, *fex; 1938 struct ext4_extent *nearex; /* nearest extent */ 1939 struct ext4_ext_path *npath = NULL; 1940 int depth, len, err; 1941 ext4_lblk_t next; 1942 int mb_flags = 0, unwritten; 1943 1944 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1945 mb_flags |= EXT4_MB_DELALLOC_RESERVED; 1946 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1947 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1948 return -EFSCORRUPTED; 1949 } 1950 depth = ext_depth(inode); 1951 ex = path[depth].p_ext; 1952 eh = path[depth].p_hdr; 1953 if (unlikely(path[depth].p_hdr == NULL)) { 1954 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1955 return -EFSCORRUPTED; 1956 } 1957 1958 /* try to insert block into found extent and return */ 1959 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1960 1961 /* 1962 * Try to see whether we should rather test the extent on 1963 * right from ex, or from the left of ex. This is because 1964 * ext4_find_extent() can return either extent on the 1965 * left, or on the right from the searched position. This 1966 * will make merging more effective. 1967 */ 1968 if (ex < EXT_LAST_EXTENT(eh) && 1969 (le32_to_cpu(ex->ee_block) + 1970 ext4_ext_get_actual_len(ex) < 1971 le32_to_cpu(newext->ee_block))) { 1972 ex += 1; 1973 goto prepend; 1974 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1975 (le32_to_cpu(newext->ee_block) + 1976 ext4_ext_get_actual_len(newext) < 1977 le32_to_cpu(ex->ee_block))) 1978 ex -= 1; 1979 1980 /* Try to append newex to the ex */ 1981 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1982 ext_debug("append [%d]%d block to %u:[%d]%d" 1983 "(from %llu)\n", 1984 ext4_ext_is_unwritten(newext), 1985 ext4_ext_get_actual_len(newext), 1986 le32_to_cpu(ex->ee_block), 1987 ext4_ext_is_unwritten(ex), 1988 ext4_ext_get_actual_len(ex), 1989 ext4_ext_pblock(ex)); 1990 err = ext4_ext_get_access(handle, inode, 1991 path + depth); 1992 if (err) 1993 return err; 1994 unwritten = ext4_ext_is_unwritten(ex); 1995 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1996 + ext4_ext_get_actual_len(newext)); 1997 if (unwritten) 1998 ext4_ext_mark_unwritten(ex); 1999 eh = path[depth].p_hdr; 2000 nearex = ex; 2001 goto merge; 2002 } 2003 2004 prepend: 2005 /* Try to prepend newex to the ex */ 2006 if (ext4_can_extents_be_merged(inode, newext, ex)) { 2007 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 2008 "(from %llu)\n", 2009 le32_to_cpu(newext->ee_block), 2010 ext4_ext_is_unwritten(newext), 2011 ext4_ext_get_actual_len(newext), 2012 le32_to_cpu(ex->ee_block), 2013 ext4_ext_is_unwritten(ex), 2014 ext4_ext_get_actual_len(ex), 2015 ext4_ext_pblock(ex)); 2016 err = ext4_ext_get_access(handle, inode, 2017 path + depth); 2018 if (err) 2019 return err; 2020 2021 unwritten = ext4_ext_is_unwritten(ex); 2022 ex->ee_block = newext->ee_block; 2023 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 2024 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2025 + ext4_ext_get_actual_len(newext)); 2026 if (unwritten) 2027 ext4_ext_mark_unwritten(ex); 2028 eh = path[depth].p_hdr; 2029 nearex = ex; 2030 goto merge; 2031 } 2032 } 2033 2034 depth = ext_depth(inode); 2035 eh = path[depth].p_hdr; 2036 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2037 goto has_space; 2038 2039 /* probably next leaf has space for us? */ 2040 fex = EXT_LAST_EXTENT(eh); 2041 next = EXT_MAX_BLOCKS; 2042 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2043 next = ext4_ext_next_leaf_block(path); 2044 if (next != EXT_MAX_BLOCKS) { 2045 ext_debug("next leaf block - %u\n", next); 2046 BUG_ON(npath != NULL); 2047 npath = ext4_find_extent(inode, next, NULL, 0); 2048 if (IS_ERR(npath)) 2049 return PTR_ERR(npath); 2050 BUG_ON(npath->p_depth != path->p_depth); 2051 eh = npath[depth].p_hdr; 2052 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2053 ext_debug("next leaf isn't full(%d)\n", 2054 le16_to_cpu(eh->eh_entries)); 2055 path = npath; 2056 goto has_space; 2057 } 2058 ext_debug("next leaf has no free space(%d,%d)\n", 2059 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2060 } 2061 2062 /* 2063 * There is no free space in the found leaf. 2064 * We're gonna add a new leaf in the tree. 2065 */ 2066 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2067 mb_flags |= EXT4_MB_USE_RESERVED; 2068 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2069 ppath, newext); 2070 if (err) 2071 goto cleanup; 2072 depth = ext_depth(inode); 2073 eh = path[depth].p_hdr; 2074 2075 has_space: 2076 nearex = path[depth].p_ext; 2077 2078 err = ext4_ext_get_access(handle, inode, path + depth); 2079 if (err) 2080 goto cleanup; 2081 2082 if (!nearex) { 2083 /* there is no extent in this leaf, create first one */ 2084 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2085 le32_to_cpu(newext->ee_block), 2086 ext4_ext_pblock(newext), 2087 ext4_ext_is_unwritten(newext), 2088 ext4_ext_get_actual_len(newext)); 2089 nearex = EXT_FIRST_EXTENT(eh); 2090 } else { 2091 if (le32_to_cpu(newext->ee_block) 2092 > le32_to_cpu(nearex->ee_block)) { 2093 /* Insert after */ 2094 ext_debug("insert %u:%llu:[%d]%d before: " 2095 "nearest %p\n", 2096 le32_to_cpu(newext->ee_block), 2097 ext4_ext_pblock(newext), 2098 ext4_ext_is_unwritten(newext), 2099 ext4_ext_get_actual_len(newext), 2100 nearex); 2101 nearex++; 2102 } else { 2103 /* Insert before */ 2104 BUG_ON(newext->ee_block == nearex->ee_block); 2105 ext_debug("insert %u:%llu:[%d]%d after: " 2106 "nearest %p\n", 2107 le32_to_cpu(newext->ee_block), 2108 ext4_ext_pblock(newext), 2109 ext4_ext_is_unwritten(newext), 2110 ext4_ext_get_actual_len(newext), 2111 nearex); 2112 } 2113 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2114 if (len > 0) { 2115 ext_debug("insert %u:%llu:[%d]%d: " 2116 "move %d extents from 0x%p to 0x%p\n", 2117 le32_to_cpu(newext->ee_block), 2118 ext4_ext_pblock(newext), 2119 ext4_ext_is_unwritten(newext), 2120 ext4_ext_get_actual_len(newext), 2121 len, nearex, nearex + 1); 2122 memmove(nearex + 1, nearex, 2123 len * sizeof(struct ext4_extent)); 2124 } 2125 } 2126 2127 le16_add_cpu(&eh->eh_entries, 1); 2128 path[depth].p_ext = nearex; 2129 nearex->ee_block = newext->ee_block; 2130 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2131 nearex->ee_len = newext->ee_len; 2132 2133 merge: 2134 /* try to merge extents */ 2135 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2136 ext4_ext_try_to_merge(handle, inode, path, nearex); 2137 2138 2139 /* time to correct all indexes above */ 2140 err = ext4_ext_correct_indexes(handle, inode, path); 2141 if (err) 2142 goto cleanup; 2143 2144 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2145 2146 cleanup: 2147 ext4_ext_drop_refs(npath); 2148 kfree(npath); 2149 return err; 2150 } 2151 2152 static int ext4_fill_fiemap_extents(struct inode *inode, 2153 ext4_lblk_t block, ext4_lblk_t num, 2154 struct fiemap_extent_info *fieinfo) 2155 { 2156 struct ext4_ext_path *path = NULL; 2157 struct ext4_extent *ex; 2158 struct extent_status es; 2159 ext4_lblk_t next, next_del, start = 0, end = 0; 2160 ext4_lblk_t last = block + num; 2161 int exists, depth = 0, err = 0; 2162 unsigned int flags = 0; 2163 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2164 2165 while (block < last && block != EXT_MAX_BLOCKS) { 2166 num = last - block; 2167 /* find extent for this block */ 2168 down_read(&EXT4_I(inode)->i_data_sem); 2169 2170 path = ext4_find_extent(inode, block, &path, 0); 2171 if (IS_ERR(path)) { 2172 up_read(&EXT4_I(inode)->i_data_sem); 2173 err = PTR_ERR(path); 2174 path = NULL; 2175 break; 2176 } 2177 2178 depth = ext_depth(inode); 2179 if (unlikely(path[depth].p_hdr == NULL)) { 2180 up_read(&EXT4_I(inode)->i_data_sem); 2181 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2182 err = -EFSCORRUPTED; 2183 break; 2184 } 2185 ex = path[depth].p_ext; 2186 next = ext4_ext_next_allocated_block(path); 2187 2188 flags = 0; 2189 exists = 0; 2190 if (!ex) { 2191 /* there is no extent yet, so try to allocate 2192 * all requested space */ 2193 start = block; 2194 end = block + num; 2195 } else if (le32_to_cpu(ex->ee_block) > block) { 2196 /* need to allocate space before found extent */ 2197 start = block; 2198 end = le32_to_cpu(ex->ee_block); 2199 if (block + num < end) 2200 end = block + num; 2201 } else if (block >= le32_to_cpu(ex->ee_block) 2202 + ext4_ext_get_actual_len(ex)) { 2203 /* need to allocate space after found extent */ 2204 start = block; 2205 end = block + num; 2206 if (end >= next) 2207 end = next; 2208 } else if (block >= le32_to_cpu(ex->ee_block)) { 2209 /* 2210 * some part of requested space is covered 2211 * by found extent 2212 */ 2213 start = block; 2214 end = le32_to_cpu(ex->ee_block) 2215 + ext4_ext_get_actual_len(ex); 2216 if (block + num < end) 2217 end = block + num; 2218 exists = 1; 2219 } else { 2220 BUG(); 2221 } 2222 BUG_ON(end <= start); 2223 2224 if (!exists) { 2225 es.es_lblk = start; 2226 es.es_len = end - start; 2227 es.es_pblk = 0; 2228 } else { 2229 es.es_lblk = le32_to_cpu(ex->ee_block); 2230 es.es_len = ext4_ext_get_actual_len(ex); 2231 es.es_pblk = ext4_ext_pblock(ex); 2232 if (ext4_ext_is_unwritten(ex)) 2233 flags |= FIEMAP_EXTENT_UNWRITTEN; 2234 } 2235 2236 /* 2237 * Find delayed extent and update es accordingly. We call 2238 * it even in !exists case to find out whether es is the 2239 * last existing extent or not. 2240 */ 2241 next_del = ext4_find_delayed_extent(inode, &es); 2242 if (!exists && next_del) { 2243 exists = 1; 2244 flags |= (FIEMAP_EXTENT_DELALLOC | 2245 FIEMAP_EXTENT_UNKNOWN); 2246 } 2247 up_read(&EXT4_I(inode)->i_data_sem); 2248 2249 if (unlikely(es.es_len == 0)) { 2250 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2251 err = -EFSCORRUPTED; 2252 break; 2253 } 2254 2255 /* 2256 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2257 * we need to check next == EXT_MAX_BLOCKS because it is 2258 * possible that an extent is with unwritten and delayed 2259 * status due to when an extent is delayed allocated and 2260 * is allocated by fallocate status tree will track both of 2261 * them in a extent. 2262 * 2263 * So we could return a unwritten and delayed extent, and 2264 * its block is equal to 'next'. 2265 */ 2266 if (next == next_del && next == EXT_MAX_BLOCKS) { 2267 flags |= FIEMAP_EXTENT_LAST; 2268 if (unlikely(next_del != EXT_MAX_BLOCKS || 2269 next != EXT_MAX_BLOCKS)) { 2270 EXT4_ERROR_INODE(inode, 2271 "next extent == %u, next " 2272 "delalloc extent = %u", 2273 next, next_del); 2274 err = -EFSCORRUPTED; 2275 break; 2276 } 2277 } 2278 2279 if (exists) { 2280 err = fiemap_fill_next_extent(fieinfo, 2281 (__u64)es.es_lblk << blksize_bits, 2282 (__u64)es.es_pblk << blksize_bits, 2283 (__u64)es.es_len << blksize_bits, 2284 flags); 2285 if (err < 0) 2286 break; 2287 if (err == 1) { 2288 err = 0; 2289 break; 2290 } 2291 } 2292 2293 block = es.es_lblk + es.es_len; 2294 } 2295 2296 ext4_ext_drop_refs(path); 2297 kfree(path); 2298 return err; 2299 } 2300 2301 /* 2302 * ext4_ext_determine_hole - determine hole around given block 2303 * @inode: inode we lookup in 2304 * @path: path in extent tree to @lblk 2305 * @lblk: pointer to logical block around which we want to determine hole 2306 * 2307 * Determine hole length (and start if easily possible) around given logical 2308 * block. We don't try too hard to find the beginning of the hole but @path 2309 * actually points to extent before @lblk, we provide it. 2310 * 2311 * The function returns the length of a hole starting at @lblk. We update @lblk 2312 * to the beginning of the hole if we managed to find it. 2313 */ 2314 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode, 2315 struct ext4_ext_path *path, 2316 ext4_lblk_t *lblk) 2317 { 2318 int depth = ext_depth(inode); 2319 struct ext4_extent *ex; 2320 ext4_lblk_t len; 2321 2322 ex = path[depth].p_ext; 2323 if (ex == NULL) { 2324 /* there is no extent yet, so gap is [0;-] */ 2325 *lblk = 0; 2326 len = EXT_MAX_BLOCKS; 2327 } else if (*lblk < le32_to_cpu(ex->ee_block)) { 2328 len = le32_to_cpu(ex->ee_block) - *lblk; 2329 } else if (*lblk >= le32_to_cpu(ex->ee_block) 2330 + ext4_ext_get_actual_len(ex)) { 2331 ext4_lblk_t next; 2332 2333 *lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); 2334 next = ext4_ext_next_allocated_block(path); 2335 BUG_ON(next == *lblk); 2336 len = next - *lblk; 2337 } else { 2338 BUG(); 2339 } 2340 return len; 2341 } 2342 2343 /* 2344 * ext4_ext_put_gap_in_cache: 2345 * calculate boundaries of the gap that the requested block fits into 2346 * and cache this gap 2347 */ 2348 static void 2349 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start, 2350 ext4_lblk_t hole_len) 2351 { 2352 struct extent_status es; 2353 2354 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, hole_start, 2355 hole_start + hole_len - 1, &es); 2356 if (es.es_len) { 2357 /* There's delayed extent containing lblock? */ 2358 if (es.es_lblk <= hole_start) 2359 return; 2360 hole_len = min(es.es_lblk - hole_start, hole_len); 2361 } 2362 ext_debug(" -> %u:%u\n", hole_start, hole_len); 2363 ext4_es_insert_extent(inode, hole_start, hole_len, ~0, 2364 EXTENT_STATUS_HOLE); 2365 } 2366 2367 /* 2368 * ext4_ext_rm_idx: 2369 * removes index from the index block. 2370 */ 2371 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2372 struct ext4_ext_path *path, int depth) 2373 { 2374 int err; 2375 ext4_fsblk_t leaf; 2376 2377 /* free index block */ 2378 depth--; 2379 path = path + depth; 2380 leaf = ext4_idx_pblock(path->p_idx); 2381 if (unlikely(path->p_hdr->eh_entries == 0)) { 2382 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2383 return -EFSCORRUPTED; 2384 } 2385 err = ext4_ext_get_access(handle, inode, path); 2386 if (err) 2387 return err; 2388 2389 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2390 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2391 len *= sizeof(struct ext4_extent_idx); 2392 memmove(path->p_idx, path->p_idx + 1, len); 2393 } 2394 2395 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2396 err = ext4_ext_dirty(handle, inode, path); 2397 if (err) 2398 return err; 2399 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2400 trace_ext4_ext_rm_idx(inode, leaf); 2401 2402 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2403 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2404 2405 while (--depth >= 0) { 2406 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2407 break; 2408 path--; 2409 err = ext4_ext_get_access(handle, inode, path); 2410 if (err) 2411 break; 2412 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2413 err = ext4_ext_dirty(handle, inode, path); 2414 if (err) 2415 break; 2416 } 2417 return err; 2418 } 2419 2420 /* 2421 * ext4_ext_calc_credits_for_single_extent: 2422 * This routine returns max. credits that needed to insert an extent 2423 * to the extent tree. 2424 * When pass the actual path, the caller should calculate credits 2425 * under i_data_sem. 2426 */ 2427 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2428 struct ext4_ext_path *path) 2429 { 2430 if (path) { 2431 int depth = ext_depth(inode); 2432 int ret = 0; 2433 2434 /* probably there is space in leaf? */ 2435 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2436 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2437 2438 /* 2439 * There are some space in the leaf tree, no 2440 * need to account for leaf block credit 2441 * 2442 * bitmaps and block group descriptor blocks 2443 * and other metadata blocks still need to be 2444 * accounted. 2445 */ 2446 /* 1 bitmap, 1 block group descriptor */ 2447 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2448 return ret; 2449 } 2450 } 2451 2452 return ext4_chunk_trans_blocks(inode, nrblocks); 2453 } 2454 2455 /* 2456 * How many index/leaf blocks need to change/allocate to add @extents extents? 2457 * 2458 * If we add a single extent, then in the worse case, each tree level 2459 * index/leaf need to be changed in case of the tree split. 2460 * 2461 * If more extents are inserted, they could cause the whole tree split more 2462 * than once, but this is really rare. 2463 */ 2464 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2465 { 2466 int index; 2467 int depth; 2468 2469 /* If we are converting the inline data, only one is needed here. */ 2470 if (ext4_has_inline_data(inode)) 2471 return 1; 2472 2473 depth = ext_depth(inode); 2474 2475 if (extents <= 1) 2476 index = depth * 2; 2477 else 2478 index = depth * 3; 2479 2480 return index; 2481 } 2482 2483 static inline int get_default_free_blocks_flags(struct inode *inode) 2484 { 2485 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) || 2486 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE)) 2487 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2488 else if (ext4_should_journal_data(inode)) 2489 return EXT4_FREE_BLOCKS_FORGET; 2490 return 0; 2491 } 2492 2493 /* 2494 * ext4_rereserve_cluster - increment the reserved cluster count when 2495 * freeing a cluster with a pending reservation 2496 * 2497 * @inode - file containing the cluster 2498 * @lblk - logical block in cluster to be reserved 2499 * 2500 * Increments the reserved cluster count and adjusts quota in a bigalloc 2501 * file system when freeing a partial cluster containing at least one 2502 * delayed and unwritten block. A partial cluster meeting that 2503 * requirement will have a pending reservation. If so, the 2504 * RERESERVE_CLUSTER flag is used when calling ext4_free_blocks() to 2505 * defer reserved and allocated space accounting to a subsequent call 2506 * to this function. 2507 */ 2508 static void ext4_rereserve_cluster(struct inode *inode, ext4_lblk_t lblk) 2509 { 2510 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2511 struct ext4_inode_info *ei = EXT4_I(inode); 2512 2513 dquot_reclaim_block(inode, EXT4_C2B(sbi, 1)); 2514 2515 spin_lock(&ei->i_block_reservation_lock); 2516 ei->i_reserved_data_blocks++; 2517 percpu_counter_add(&sbi->s_dirtyclusters_counter, 1); 2518 spin_unlock(&ei->i_block_reservation_lock); 2519 2520 percpu_counter_add(&sbi->s_freeclusters_counter, 1); 2521 ext4_remove_pending(inode, lblk); 2522 } 2523 2524 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2525 struct ext4_extent *ex, 2526 struct partial_cluster *partial, 2527 ext4_lblk_t from, ext4_lblk_t to) 2528 { 2529 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2530 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2531 ext4_fsblk_t last_pblk, pblk; 2532 ext4_lblk_t num; 2533 int flags; 2534 2535 /* only extent tail removal is allowed */ 2536 if (from < le32_to_cpu(ex->ee_block) || 2537 to != le32_to_cpu(ex->ee_block) + ee_len - 1) { 2538 ext4_error(sbi->s_sb, 2539 "strange request: removal(2) %u-%u from %u:%u", 2540 from, to, le32_to_cpu(ex->ee_block), ee_len); 2541 return 0; 2542 } 2543 2544 #ifdef EXTENTS_STATS 2545 spin_lock(&sbi->s_ext_stats_lock); 2546 sbi->s_ext_blocks += ee_len; 2547 sbi->s_ext_extents++; 2548 if (ee_len < sbi->s_ext_min) 2549 sbi->s_ext_min = ee_len; 2550 if (ee_len > sbi->s_ext_max) 2551 sbi->s_ext_max = ee_len; 2552 if (ext_depth(inode) > sbi->s_depth_max) 2553 sbi->s_depth_max = ext_depth(inode); 2554 spin_unlock(&sbi->s_ext_stats_lock); 2555 #endif 2556 2557 trace_ext4_remove_blocks(inode, ex, from, to, partial); 2558 2559 /* 2560 * if we have a partial cluster, and it's different from the 2561 * cluster of the last block in the extent, we free it 2562 */ 2563 last_pblk = ext4_ext_pblock(ex) + ee_len - 1; 2564 2565 if (partial->state != initial && 2566 partial->pclu != EXT4_B2C(sbi, last_pblk)) { 2567 if (partial->state == tofree) { 2568 flags = get_default_free_blocks_flags(inode); 2569 if (ext4_is_pending(inode, partial->lblk)) 2570 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2571 ext4_free_blocks(handle, inode, NULL, 2572 EXT4_C2B(sbi, partial->pclu), 2573 sbi->s_cluster_ratio, flags); 2574 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2575 ext4_rereserve_cluster(inode, partial->lblk); 2576 } 2577 partial->state = initial; 2578 } 2579 2580 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2581 pblk = ext4_ext_pblock(ex) + ee_len - num; 2582 2583 /* 2584 * We free the partial cluster at the end of the extent (if any), 2585 * unless the cluster is used by another extent (partial_cluster 2586 * state is nofree). If a partial cluster exists here, it must be 2587 * shared with the last block in the extent. 2588 */ 2589 flags = get_default_free_blocks_flags(inode); 2590 2591 /* partial, left end cluster aligned, right end unaligned */ 2592 if ((EXT4_LBLK_COFF(sbi, to) != sbi->s_cluster_ratio - 1) && 2593 (EXT4_LBLK_CMASK(sbi, to) >= from) && 2594 (partial->state != nofree)) { 2595 if (ext4_is_pending(inode, to)) 2596 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2597 ext4_free_blocks(handle, inode, NULL, 2598 EXT4_PBLK_CMASK(sbi, last_pblk), 2599 sbi->s_cluster_ratio, flags); 2600 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2601 ext4_rereserve_cluster(inode, to); 2602 partial->state = initial; 2603 flags = get_default_free_blocks_flags(inode); 2604 } 2605 2606 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2607 2608 /* 2609 * For bigalloc file systems, we never free a partial cluster 2610 * at the beginning of the extent. Instead, we check to see if we 2611 * need to free it on a subsequent call to ext4_remove_blocks, 2612 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. 2613 */ 2614 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2615 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2616 2617 /* reset the partial cluster if we've freed past it */ 2618 if (partial->state != initial && partial->pclu != EXT4_B2C(sbi, pblk)) 2619 partial->state = initial; 2620 2621 /* 2622 * If we've freed the entire extent but the beginning is not left 2623 * cluster aligned and is not marked as ineligible for freeing we 2624 * record the partial cluster at the beginning of the extent. It 2625 * wasn't freed by the preceding ext4_free_blocks() call, and we 2626 * need to look farther to the left to determine if it's to be freed 2627 * (not shared with another extent). Else, reset the partial 2628 * cluster - we're either done freeing or the beginning of the 2629 * extent is left cluster aligned. 2630 */ 2631 if (EXT4_LBLK_COFF(sbi, from) && num == ee_len) { 2632 if (partial->state == initial) { 2633 partial->pclu = EXT4_B2C(sbi, pblk); 2634 partial->lblk = from; 2635 partial->state = tofree; 2636 } 2637 } else { 2638 partial->state = initial; 2639 } 2640 2641 return 0; 2642 } 2643 2644 /* 2645 * ext4_ext_rm_leaf() Removes the extents associated with the 2646 * blocks appearing between "start" and "end". Both "start" 2647 * and "end" must appear in the same extent or EIO is returned. 2648 * 2649 * @handle: The journal handle 2650 * @inode: The files inode 2651 * @path: The path to the leaf 2652 * @partial_cluster: The cluster which we'll have to free if all extents 2653 * has been released from it. However, if this value is 2654 * negative, it's a cluster just to the right of the 2655 * punched region and it must not be freed. 2656 * @start: The first block to remove 2657 * @end: The last block to remove 2658 */ 2659 static int 2660 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2661 struct ext4_ext_path *path, 2662 struct partial_cluster *partial, 2663 ext4_lblk_t start, ext4_lblk_t end) 2664 { 2665 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2666 int err = 0, correct_index = 0; 2667 int depth = ext_depth(inode), credits; 2668 struct ext4_extent_header *eh; 2669 ext4_lblk_t a, b; 2670 unsigned num; 2671 ext4_lblk_t ex_ee_block; 2672 unsigned short ex_ee_len; 2673 unsigned unwritten = 0; 2674 struct ext4_extent *ex; 2675 ext4_fsblk_t pblk; 2676 2677 /* the header must be checked already in ext4_ext_remove_space() */ 2678 ext_debug("truncate since %u in leaf to %u\n", start, end); 2679 if (!path[depth].p_hdr) 2680 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2681 eh = path[depth].p_hdr; 2682 if (unlikely(path[depth].p_hdr == NULL)) { 2683 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2684 return -EFSCORRUPTED; 2685 } 2686 /* find where to start removing */ 2687 ex = path[depth].p_ext; 2688 if (!ex) 2689 ex = EXT_LAST_EXTENT(eh); 2690 2691 ex_ee_block = le32_to_cpu(ex->ee_block); 2692 ex_ee_len = ext4_ext_get_actual_len(ex); 2693 2694 trace_ext4_ext_rm_leaf(inode, start, ex, partial); 2695 2696 while (ex >= EXT_FIRST_EXTENT(eh) && 2697 ex_ee_block + ex_ee_len > start) { 2698 2699 if (ext4_ext_is_unwritten(ex)) 2700 unwritten = 1; 2701 else 2702 unwritten = 0; 2703 2704 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2705 unwritten, ex_ee_len); 2706 path[depth].p_ext = ex; 2707 2708 a = ex_ee_block > start ? ex_ee_block : start; 2709 b = ex_ee_block+ex_ee_len - 1 < end ? 2710 ex_ee_block+ex_ee_len - 1 : end; 2711 2712 ext_debug(" border %u:%u\n", a, b); 2713 2714 /* If this extent is beyond the end of the hole, skip it */ 2715 if (end < ex_ee_block) { 2716 /* 2717 * We're going to skip this extent and move to another, 2718 * so note that its first cluster is in use to avoid 2719 * freeing it when removing blocks. Eventually, the 2720 * right edge of the truncated/punched region will 2721 * be just to the left. 2722 */ 2723 if (sbi->s_cluster_ratio > 1) { 2724 pblk = ext4_ext_pblock(ex); 2725 partial->pclu = EXT4_B2C(sbi, pblk); 2726 partial->state = nofree; 2727 } 2728 ex--; 2729 ex_ee_block = le32_to_cpu(ex->ee_block); 2730 ex_ee_len = ext4_ext_get_actual_len(ex); 2731 continue; 2732 } else if (b != ex_ee_block + ex_ee_len - 1) { 2733 EXT4_ERROR_INODE(inode, 2734 "can not handle truncate %u:%u " 2735 "on extent %u:%u", 2736 start, end, ex_ee_block, 2737 ex_ee_block + ex_ee_len - 1); 2738 err = -EFSCORRUPTED; 2739 goto out; 2740 } else if (a != ex_ee_block) { 2741 /* remove tail of the extent */ 2742 num = a - ex_ee_block; 2743 } else { 2744 /* remove whole extent: excellent! */ 2745 num = 0; 2746 } 2747 /* 2748 * 3 for leaf, sb, and inode plus 2 (bmap and group 2749 * descriptor) for each block group; assume two block 2750 * groups plus ex_ee_len/blocks_per_block_group for 2751 * the worst case 2752 */ 2753 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2754 if (ex == EXT_FIRST_EXTENT(eh)) { 2755 correct_index = 1; 2756 credits += (ext_depth(inode)) + 1; 2757 } 2758 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2759 2760 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2761 if (err) 2762 goto out; 2763 2764 err = ext4_ext_get_access(handle, inode, path + depth); 2765 if (err) 2766 goto out; 2767 2768 err = ext4_remove_blocks(handle, inode, ex, partial, a, b); 2769 if (err) 2770 goto out; 2771 2772 if (num == 0) 2773 /* this extent is removed; mark slot entirely unused */ 2774 ext4_ext_store_pblock(ex, 0); 2775 2776 ex->ee_len = cpu_to_le16(num); 2777 /* 2778 * Do not mark unwritten if all the blocks in the 2779 * extent have been removed. 2780 */ 2781 if (unwritten && num) 2782 ext4_ext_mark_unwritten(ex); 2783 /* 2784 * If the extent was completely released, 2785 * we need to remove it from the leaf 2786 */ 2787 if (num == 0) { 2788 if (end != EXT_MAX_BLOCKS - 1) { 2789 /* 2790 * For hole punching, we need to scoot all the 2791 * extents up when an extent is removed so that 2792 * we dont have blank extents in the middle 2793 */ 2794 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2795 sizeof(struct ext4_extent)); 2796 2797 /* Now get rid of the one at the end */ 2798 memset(EXT_LAST_EXTENT(eh), 0, 2799 sizeof(struct ext4_extent)); 2800 } 2801 le16_add_cpu(&eh->eh_entries, -1); 2802 } 2803 2804 err = ext4_ext_dirty(handle, inode, path + depth); 2805 if (err) 2806 goto out; 2807 2808 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2809 ext4_ext_pblock(ex)); 2810 ex--; 2811 ex_ee_block = le32_to_cpu(ex->ee_block); 2812 ex_ee_len = ext4_ext_get_actual_len(ex); 2813 } 2814 2815 if (correct_index && eh->eh_entries) 2816 err = ext4_ext_correct_indexes(handle, inode, path); 2817 2818 /* 2819 * If there's a partial cluster and at least one extent remains in 2820 * the leaf, free the partial cluster if it isn't shared with the 2821 * current extent. If it is shared with the current extent 2822 * we reset the partial cluster because we've reached the start of the 2823 * truncated/punched region and we're done removing blocks. 2824 */ 2825 if (partial->state == tofree && ex >= EXT_FIRST_EXTENT(eh)) { 2826 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2827 if (partial->pclu != EXT4_B2C(sbi, pblk)) { 2828 int flags = get_default_free_blocks_flags(inode); 2829 2830 if (ext4_is_pending(inode, partial->lblk)) 2831 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2832 ext4_free_blocks(handle, inode, NULL, 2833 EXT4_C2B(sbi, partial->pclu), 2834 sbi->s_cluster_ratio, flags); 2835 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2836 ext4_rereserve_cluster(inode, partial->lblk); 2837 } 2838 partial->state = initial; 2839 } 2840 2841 /* if this leaf is free, then we should 2842 * remove it from index block above */ 2843 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2844 err = ext4_ext_rm_idx(handle, inode, path, depth); 2845 2846 out: 2847 return err; 2848 } 2849 2850 /* 2851 * ext4_ext_more_to_rm: 2852 * returns 1 if current index has to be freed (even partial) 2853 */ 2854 static int 2855 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2856 { 2857 BUG_ON(path->p_idx == NULL); 2858 2859 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2860 return 0; 2861 2862 /* 2863 * if truncate on deeper level happened, it wasn't partial, 2864 * so we have to consider current index for truncation 2865 */ 2866 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2867 return 0; 2868 return 1; 2869 } 2870 2871 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2872 ext4_lblk_t end) 2873 { 2874 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2875 int depth = ext_depth(inode); 2876 struct ext4_ext_path *path = NULL; 2877 struct partial_cluster partial; 2878 handle_t *handle; 2879 int i = 0, err = 0; 2880 2881 partial.pclu = 0; 2882 partial.lblk = 0; 2883 partial.state = initial; 2884 2885 ext_debug("truncate since %u to %u\n", start, end); 2886 2887 /* probably first extent we're gonna free will be last in block */ 2888 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2889 if (IS_ERR(handle)) 2890 return PTR_ERR(handle); 2891 2892 again: 2893 trace_ext4_ext_remove_space(inode, start, end, depth); 2894 2895 /* 2896 * Check if we are removing extents inside the extent tree. If that 2897 * is the case, we are going to punch a hole inside the extent tree 2898 * so we have to check whether we need to split the extent covering 2899 * the last block to remove so we can easily remove the part of it 2900 * in ext4_ext_rm_leaf(). 2901 */ 2902 if (end < EXT_MAX_BLOCKS - 1) { 2903 struct ext4_extent *ex; 2904 ext4_lblk_t ee_block, ex_end, lblk; 2905 ext4_fsblk_t pblk; 2906 2907 /* find extent for or closest extent to this block */ 2908 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2909 if (IS_ERR(path)) { 2910 ext4_journal_stop(handle); 2911 return PTR_ERR(path); 2912 } 2913 depth = ext_depth(inode); 2914 /* Leaf not may not exist only if inode has no blocks at all */ 2915 ex = path[depth].p_ext; 2916 if (!ex) { 2917 if (depth) { 2918 EXT4_ERROR_INODE(inode, 2919 "path[%d].p_hdr == NULL", 2920 depth); 2921 err = -EFSCORRUPTED; 2922 } 2923 goto out; 2924 } 2925 2926 ee_block = le32_to_cpu(ex->ee_block); 2927 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1; 2928 2929 /* 2930 * See if the last block is inside the extent, if so split 2931 * the extent at 'end' block so we can easily remove the 2932 * tail of the first part of the split extent in 2933 * ext4_ext_rm_leaf(). 2934 */ 2935 if (end >= ee_block && end < ex_end) { 2936 2937 /* 2938 * If we're going to split the extent, note that 2939 * the cluster containing the block after 'end' is 2940 * in use to avoid freeing it when removing blocks. 2941 */ 2942 if (sbi->s_cluster_ratio > 1) { 2943 pblk = ext4_ext_pblock(ex) + end - ee_block + 2; 2944 partial.pclu = EXT4_B2C(sbi, pblk); 2945 partial.state = nofree; 2946 } 2947 2948 /* 2949 * Split the extent in two so that 'end' is the last 2950 * block in the first new extent. Also we should not 2951 * fail removing space due to ENOSPC so try to use 2952 * reserved block if that happens. 2953 */ 2954 err = ext4_force_split_extent_at(handle, inode, &path, 2955 end + 1, 1); 2956 if (err < 0) 2957 goto out; 2958 2959 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end) { 2960 /* 2961 * If there's an extent to the right its first cluster 2962 * contains the immediate right boundary of the 2963 * truncated/punched region. Set partial_cluster to 2964 * its negative value so it won't be freed if shared 2965 * with the current extent. The end < ee_block case 2966 * is handled in ext4_ext_rm_leaf(). 2967 */ 2968 lblk = ex_end + 1; 2969 err = ext4_ext_search_right(inode, path, &lblk, &pblk, 2970 &ex); 2971 if (err) 2972 goto out; 2973 if (pblk) { 2974 partial.pclu = EXT4_B2C(sbi, pblk); 2975 partial.state = nofree; 2976 } 2977 } 2978 } 2979 /* 2980 * We start scanning from right side, freeing all the blocks 2981 * after i_size and walking into the tree depth-wise. 2982 */ 2983 depth = ext_depth(inode); 2984 if (path) { 2985 int k = i = depth; 2986 while (--k > 0) 2987 path[k].p_block = 2988 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2989 } else { 2990 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 2991 GFP_NOFS); 2992 if (path == NULL) { 2993 ext4_journal_stop(handle); 2994 return -ENOMEM; 2995 } 2996 path[0].p_maxdepth = path[0].p_depth = depth; 2997 path[0].p_hdr = ext_inode_hdr(inode); 2998 i = 0; 2999 3000 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 3001 err = -EFSCORRUPTED; 3002 goto out; 3003 } 3004 } 3005 err = 0; 3006 3007 while (i >= 0 && err == 0) { 3008 if (i == depth) { 3009 /* this is leaf block */ 3010 err = ext4_ext_rm_leaf(handle, inode, path, 3011 &partial, start, end); 3012 /* root level has p_bh == NULL, brelse() eats this */ 3013 brelse(path[i].p_bh); 3014 path[i].p_bh = NULL; 3015 i--; 3016 continue; 3017 } 3018 3019 /* this is index block */ 3020 if (!path[i].p_hdr) { 3021 ext_debug("initialize header\n"); 3022 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 3023 } 3024 3025 if (!path[i].p_idx) { 3026 /* this level hasn't been touched yet */ 3027 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 3028 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 3029 ext_debug("init index ptr: hdr 0x%p, num %d\n", 3030 path[i].p_hdr, 3031 le16_to_cpu(path[i].p_hdr->eh_entries)); 3032 } else { 3033 /* we were already here, see at next index */ 3034 path[i].p_idx--; 3035 } 3036 3037 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 3038 i, EXT_FIRST_INDEX(path[i].p_hdr), 3039 path[i].p_idx); 3040 if (ext4_ext_more_to_rm(path + i)) { 3041 struct buffer_head *bh; 3042 /* go to the next level */ 3043 ext_debug("move to level %d (block %llu)\n", 3044 i + 1, ext4_idx_pblock(path[i].p_idx)); 3045 memset(path + i + 1, 0, sizeof(*path)); 3046 bh = read_extent_tree_block(inode, 3047 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 3048 EXT4_EX_NOCACHE); 3049 if (IS_ERR(bh)) { 3050 /* should we reset i_size? */ 3051 err = PTR_ERR(bh); 3052 break; 3053 } 3054 /* Yield here to deal with large extent trees. 3055 * Should be a no-op if we did IO above. */ 3056 cond_resched(); 3057 if (WARN_ON(i + 1 > depth)) { 3058 err = -EFSCORRUPTED; 3059 break; 3060 } 3061 path[i + 1].p_bh = bh; 3062 3063 /* save actual number of indexes since this 3064 * number is changed at the next iteration */ 3065 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 3066 i++; 3067 } else { 3068 /* we finished processing this index, go up */ 3069 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 3070 /* index is empty, remove it; 3071 * handle must be already prepared by the 3072 * truncatei_leaf() */ 3073 err = ext4_ext_rm_idx(handle, inode, path, i); 3074 } 3075 /* root level has p_bh == NULL, brelse() eats this */ 3076 brelse(path[i].p_bh); 3077 path[i].p_bh = NULL; 3078 i--; 3079 ext_debug("return to level %d\n", i); 3080 } 3081 } 3082 3083 trace_ext4_ext_remove_space_done(inode, start, end, depth, &partial, 3084 path->p_hdr->eh_entries); 3085 3086 /* 3087 * if there's a partial cluster and we have removed the first extent 3088 * in the file, then we also free the partial cluster, if any 3089 */ 3090 if (partial.state == tofree && err == 0) { 3091 int flags = get_default_free_blocks_flags(inode); 3092 3093 if (ext4_is_pending(inode, partial.lblk)) 3094 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 3095 ext4_free_blocks(handle, inode, NULL, 3096 EXT4_C2B(sbi, partial.pclu), 3097 sbi->s_cluster_ratio, flags); 3098 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 3099 ext4_rereserve_cluster(inode, partial.lblk); 3100 partial.state = initial; 3101 } 3102 3103 /* TODO: flexible tree reduction should be here */ 3104 if (path->p_hdr->eh_entries == 0) { 3105 /* 3106 * truncate to zero freed all the tree, 3107 * so we need to correct eh_depth 3108 */ 3109 err = ext4_ext_get_access(handle, inode, path); 3110 if (err == 0) { 3111 ext_inode_hdr(inode)->eh_depth = 0; 3112 ext_inode_hdr(inode)->eh_max = 3113 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3114 err = ext4_ext_dirty(handle, inode, path); 3115 } 3116 } 3117 out: 3118 ext4_ext_drop_refs(path); 3119 kfree(path); 3120 path = NULL; 3121 if (err == -EAGAIN) 3122 goto again; 3123 ext4_journal_stop(handle); 3124 3125 return err; 3126 } 3127 3128 /* 3129 * called at mount time 3130 */ 3131 void ext4_ext_init(struct super_block *sb) 3132 { 3133 /* 3134 * possible initialization would be here 3135 */ 3136 3137 if (ext4_has_feature_extents(sb)) { 3138 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3139 printk(KERN_INFO "EXT4-fs: file extents enabled" 3140 #ifdef AGGRESSIVE_TEST 3141 ", aggressive tests" 3142 #endif 3143 #ifdef CHECK_BINSEARCH 3144 ", check binsearch" 3145 #endif 3146 #ifdef EXTENTS_STATS 3147 ", stats" 3148 #endif 3149 "\n"); 3150 #endif 3151 #ifdef EXTENTS_STATS 3152 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3153 EXT4_SB(sb)->s_ext_min = 1 << 30; 3154 EXT4_SB(sb)->s_ext_max = 0; 3155 #endif 3156 } 3157 } 3158 3159 /* 3160 * called at umount time 3161 */ 3162 void ext4_ext_release(struct super_block *sb) 3163 { 3164 if (!ext4_has_feature_extents(sb)) 3165 return; 3166 3167 #ifdef EXTENTS_STATS 3168 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3169 struct ext4_sb_info *sbi = EXT4_SB(sb); 3170 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3171 sbi->s_ext_blocks, sbi->s_ext_extents, 3172 sbi->s_ext_blocks / sbi->s_ext_extents); 3173 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3174 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3175 } 3176 #endif 3177 } 3178 3179 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3180 { 3181 ext4_lblk_t ee_block; 3182 ext4_fsblk_t ee_pblock; 3183 unsigned int ee_len; 3184 3185 ee_block = le32_to_cpu(ex->ee_block); 3186 ee_len = ext4_ext_get_actual_len(ex); 3187 ee_pblock = ext4_ext_pblock(ex); 3188 3189 if (ee_len == 0) 3190 return 0; 3191 3192 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3193 EXTENT_STATUS_WRITTEN); 3194 } 3195 3196 /* FIXME!! we need to try to merge to left or right after zero-out */ 3197 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3198 { 3199 ext4_fsblk_t ee_pblock; 3200 unsigned int ee_len; 3201 3202 ee_len = ext4_ext_get_actual_len(ex); 3203 ee_pblock = ext4_ext_pblock(ex); 3204 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock, 3205 ee_len); 3206 } 3207 3208 /* 3209 * ext4_split_extent_at() splits an extent at given block. 3210 * 3211 * @handle: the journal handle 3212 * @inode: the file inode 3213 * @path: the path to the extent 3214 * @split: the logical block where the extent is splitted. 3215 * @split_flags: indicates if the extent could be zeroout if split fails, and 3216 * the states(init or unwritten) of new extents. 3217 * @flags: flags used to insert new extent to extent tree. 3218 * 3219 * 3220 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3221 * of which are deterimined by split_flag. 3222 * 3223 * There are two cases: 3224 * a> the extent are splitted into two extent. 3225 * b> split is not needed, and just mark the extent. 3226 * 3227 * return 0 on success. 3228 */ 3229 static int ext4_split_extent_at(handle_t *handle, 3230 struct inode *inode, 3231 struct ext4_ext_path **ppath, 3232 ext4_lblk_t split, 3233 int split_flag, 3234 int flags) 3235 { 3236 struct ext4_ext_path *path = *ppath; 3237 ext4_fsblk_t newblock; 3238 ext4_lblk_t ee_block; 3239 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3240 struct ext4_extent *ex2 = NULL; 3241 unsigned int ee_len, depth; 3242 int err = 0; 3243 3244 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3245 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3246 3247 ext_debug("ext4_split_extents_at: inode %lu, logical" 3248 "block %llu\n", inode->i_ino, (unsigned long long)split); 3249 3250 ext4_ext_show_leaf(inode, path); 3251 3252 depth = ext_depth(inode); 3253 ex = path[depth].p_ext; 3254 ee_block = le32_to_cpu(ex->ee_block); 3255 ee_len = ext4_ext_get_actual_len(ex); 3256 newblock = split - ee_block + ext4_ext_pblock(ex); 3257 3258 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3259 BUG_ON(!ext4_ext_is_unwritten(ex) && 3260 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3261 EXT4_EXT_MARK_UNWRIT1 | 3262 EXT4_EXT_MARK_UNWRIT2)); 3263 3264 err = ext4_ext_get_access(handle, inode, path + depth); 3265 if (err) 3266 goto out; 3267 3268 if (split == ee_block) { 3269 /* 3270 * case b: block @split is the block that the extent begins with 3271 * then we just change the state of the extent, and splitting 3272 * is not needed. 3273 */ 3274 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3275 ext4_ext_mark_unwritten(ex); 3276 else 3277 ext4_ext_mark_initialized(ex); 3278 3279 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3280 ext4_ext_try_to_merge(handle, inode, path, ex); 3281 3282 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3283 goto out; 3284 } 3285 3286 /* case a */ 3287 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3288 ex->ee_len = cpu_to_le16(split - ee_block); 3289 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3290 ext4_ext_mark_unwritten(ex); 3291 3292 /* 3293 * path may lead to new leaf, not to original leaf any more 3294 * after ext4_ext_insert_extent() returns, 3295 */ 3296 err = ext4_ext_dirty(handle, inode, path + depth); 3297 if (err) 3298 goto fix_extent_len; 3299 3300 ex2 = &newex; 3301 ex2->ee_block = cpu_to_le32(split); 3302 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3303 ext4_ext_store_pblock(ex2, newblock); 3304 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3305 ext4_ext_mark_unwritten(ex2); 3306 3307 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags); 3308 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3309 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3310 if (split_flag & EXT4_EXT_DATA_VALID1) { 3311 err = ext4_ext_zeroout(inode, ex2); 3312 zero_ex.ee_block = ex2->ee_block; 3313 zero_ex.ee_len = cpu_to_le16( 3314 ext4_ext_get_actual_len(ex2)); 3315 ext4_ext_store_pblock(&zero_ex, 3316 ext4_ext_pblock(ex2)); 3317 } else { 3318 err = ext4_ext_zeroout(inode, ex); 3319 zero_ex.ee_block = ex->ee_block; 3320 zero_ex.ee_len = cpu_to_le16( 3321 ext4_ext_get_actual_len(ex)); 3322 ext4_ext_store_pblock(&zero_ex, 3323 ext4_ext_pblock(ex)); 3324 } 3325 } else { 3326 err = ext4_ext_zeroout(inode, &orig_ex); 3327 zero_ex.ee_block = orig_ex.ee_block; 3328 zero_ex.ee_len = cpu_to_le16( 3329 ext4_ext_get_actual_len(&orig_ex)); 3330 ext4_ext_store_pblock(&zero_ex, 3331 ext4_ext_pblock(&orig_ex)); 3332 } 3333 3334 if (err) 3335 goto fix_extent_len; 3336 /* update the extent length and mark as initialized */ 3337 ex->ee_len = cpu_to_le16(ee_len); 3338 ext4_ext_try_to_merge(handle, inode, path, ex); 3339 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3340 if (err) 3341 goto fix_extent_len; 3342 3343 /* update extent status tree */ 3344 err = ext4_zeroout_es(inode, &zero_ex); 3345 3346 goto out; 3347 } else if (err) 3348 goto fix_extent_len; 3349 3350 out: 3351 ext4_ext_show_leaf(inode, path); 3352 return err; 3353 3354 fix_extent_len: 3355 ex->ee_len = orig_ex.ee_len; 3356 ext4_ext_dirty(handle, inode, path + path->p_depth); 3357 return err; 3358 } 3359 3360 /* 3361 * ext4_split_extents() splits an extent and mark extent which is covered 3362 * by @map as split_flags indicates 3363 * 3364 * It may result in splitting the extent into multiple extents (up to three) 3365 * There are three possibilities: 3366 * a> There is no split required 3367 * b> Splits in two extents: Split is happening at either end of the extent 3368 * c> Splits in three extents: Somone is splitting in middle of the extent 3369 * 3370 */ 3371 static int ext4_split_extent(handle_t *handle, 3372 struct inode *inode, 3373 struct ext4_ext_path **ppath, 3374 struct ext4_map_blocks *map, 3375 int split_flag, 3376 int flags) 3377 { 3378 struct ext4_ext_path *path = *ppath; 3379 ext4_lblk_t ee_block; 3380 struct ext4_extent *ex; 3381 unsigned int ee_len, depth; 3382 int err = 0; 3383 int unwritten; 3384 int split_flag1, flags1; 3385 int allocated = map->m_len; 3386 3387 depth = ext_depth(inode); 3388 ex = path[depth].p_ext; 3389 ee_block = le32_to_cpu(ex->ee_block); 3390 ee_len = ext4_ext_get_actual_len(ex); 3391 unwritten = ext4_ext_is_unwritten(ex); 3392 3393 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3394 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3395 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3396 if (unwritten) 3397 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3398 EXT4_EXT_MARK_UNWRIT2; 3399 if (split_flag & EXT4_EXT_DATA_VALID2) 3400 split_flag1 |= EXT4_EXT_DATA_VALID1; 3401 err = ext4_split_extent_at(handle, inode, ppath, 3402 map->m_lblk + map->m_len, split_flag1, flags1); 3403 if (err) 3404 goto out; 3405 } else { 3406 allocated = ee_len - (map->m_lblk - ee_block); 3407 } 3408 /* 3409 * Update path is required because previous ext4_split_extent_at() may 3410 * result in split of original leaf or extent zeroout. 3411 */ 3412 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3413 if (IS_ERR(path)) 3414 return PTR_ERR(path); 3415 depth = ext_depth(inode); 3416 ex = path[depth].p_ext; 3417 if (!ex) { 3418 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3419 (unsigned long) map->m_lblk); 3420 return -EFSCORRUPTED; 3421 } 3422 unwritten = ext4_ext_is_unwritten(ex); 3423 split_flag1 = 0; 3424 3425 if (map->m_lblk >= ee_block) { 3426 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3427 if (unwritten) { 3428 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3429 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3430 EXT4_EXT_MARK_UNWRIT2); 3431 } 3432 err = ext4_split_extent_at(handle, inode, ppath, 3433 map->m_lblk, split_flag1, flags); 3434 if (err) 3435 goto out; 3436 } 3437 3438 ext4_ext_show_leaf(inode, path); 3439 out: 3440 return err ? err : allocated; 3441 } 3442 3443 /* 3444 * This function is called by ext4_ext_map_blocks() if someone tries to write 3445 * to an unwritten extent. It may result in splitting the unwritten 3446 * extent into multiple extents (up to three - one initialized and two 3447 * unwritten). 3448 * There are three possibilities: 3449 * a> There is no split required: Entire extent should be initialized 3450 * b> Splits in two extents: Write is happening at either end of the extent 3451 * c> Splits in three extents: Somone is writing in middle of the extent 3452 * 3453 * Pre-conditions: 3454 * - The extent pointed to by 'path' is unwritten. 3455 * - The extent pointed to by 'path' contains a superset 3456 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3457 * 3458 * Post-conditions on success: 3459 * - the returned value is the number of blocks beyond map->l_lblk 3460 * that are allocated and initialized. 3461 * It is guaranteed to be >= map->m_len. 3462 */ 3463 static int ext4_ext_convert_to_initialized(handle_t *handle, 3464 struct inode *inode, 3465 struct ext4_map_blocks *map, 3466 struct ext4_ext_path **ppath, 3467 int flags) 3468 { 3469 struct ext4_ext_path *path = *ppath; 3470 struct ext4_sb_info *sbi; 3471 struct ext4_extent_header *eh; 3472 struct ext4_map_blocks split_map; 3473 struct ext4_extent zero_ex1, zero_ex2; 3474 struct ext4_extent *ex, *abut_ex; 3475 ext4_lblk_t ee_block, eof_block; 3476 unsigned int ee_len, depth, map_len = map->m_len; 3477 int allocated = 0, max_zeroout = 0; 3478 int err = 0; 3479 int split_flag = EXT4_EXT_DATA_VALID2; 3480 3481 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3482 "block %llu, max_blocks %u\n", inode->i_ino, 3483 (unsigned long long)map->m_lblk, map_len); 3484 3485 sbi = EXT4_SB(inode->i_sb); 3486 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3487 inode->i_sb->s_blocksize_bits; 3488 if (eof_block < map->m_lblk + map_len) 3489 eof_block = map->m_lblk + map_len; 3490 3491 depth = ext_depth(inode); 3492 eh = path[depth].p_hdr; 3493 ex = path[depth].p_ext; 3494 ee_block = le32_to_cpu(ex->ee_block); 3495 ee_len = ext4_ext_get_actual_len(ex); 3496 zero_ex1.ee_len = 0; 3497 zero_ex2.ee_len = 0; 3498 3499 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3500 3501 /* Pre-conditions */ 3502 BUG_ON(!ext4_ext_is_unwritten(ex)); 3503 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3504 3505 /* 3506 * Attempt to transfer newly initialized blocks from the currently 3507 * unwritten extent to its neighbor. This is much cheaper 3508 * than an insertion followed by a merge as those involve costly 3509 * memmove() calls. Transferring to the left is the common case in 3510 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3511 * followed by append writes. 3512 * 3513 * Limitations of the current logic: 3514 * - L1: we do not deal with writes covering the whole extent. 3515 * This would require removing the extent if the transfer 3516 * is possible. 3517 * - L2: we only attempt to merge with an extent stored in the 3518 * same extent tree node. 3519 */ 3520 if ((map->m_lblk == ee_block) && 3521 /* See if we can merge left */ 3522 (map_len < ee_len) && /*L1*/ 3523 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3524 ext4_lblk_t prev_lblk; 3525 ext4_fsblk_t prev_pblk, ee_pblk; 3526 unsigned int prev_len; 3527 3528 abut_ex = ex - 1; 3529 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3530 prev_len = ext4_ext_get_actual_len(abut_ex); 3531 prev_pblk = ext4_ext_pblock(abut_ex); 3532 ee_pblk = ext4_ext_pblock(ex); 3533 3534 /* 3535 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3536 * upon those conditions: 3537 * - C1: abut_ex is initialized, 3538 * - C2: abut_ex is logically abutting ex, 3539 * - C3: abut_ex is physically abutting ex, 3540 * - C4: abut_ex can receive the additional blocks without 3541 * overflowing the (initialized) length limit. 3542 */ 3543 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3544 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3545 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3546 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3547 err = ext4_ext_get_access(handle, inode, path + depth); 3548 if (err) 3549 goto out; 3550 3551 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3552 map, ex, abut_ex); 3553 3554 /* Shift the start of ex by 'map_len' blocks */ 3555 ex->ee_block = cpu_to_le32(ee_block + map_len); 3556 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3557 ex->ee_len = cpu_to_le16(ee_len - map_len); 3558 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3559 3560 /* Extend abut_ex by 'map_len' blocks */ 3561 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3562 3563 /* Result: number of initialized blocks past m_lblk */ 3564 allocated = map_len; 3565 } 3566 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3567 (map_len < ee_len) && /*L1*/ 3568 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3569 /* See if we can merge right */ 3570 ext4_lblk_t next_lblk; 3571 ext4_fsblk_t next_pblk, ee_pblk; 3572 unsigned int next_len; 3573 3574 abut_ex = ex + 1; 3575 next_lblk = le32_to_cpu(abut_ex->ee_block); 3576 next_len = ext4_ext_get_actual_len(abut_ex); 3577 next_pblk = ext4_ext_pblock(abut_ex); 3578 ee_pblk = ext4_ext_pblock(ex); 3579 3580 /* 3581 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3582 * upon those conditions: 3583 * - C1: abut_ex is initialized, 3584 * - C2: abut_ex is logically abutting ex, 3585 * - C3: abut_ex is physically abutting ex, 3586 * - C4: abut_ex can receive the additional blocks without 3587 * overflowing the (initialized) length limit. 3588 */ 3589 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3590 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3591 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3592 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3593 err = ext4_ext_get_access(handle, inode, path + depth); 3594 if (err) 3595 goto out; 3596 3597 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3598 map, ex, abut_ex); 3599 3600 /* Shift the start of abut_ex by 'map_len' blocks */ 3601 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3602 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3603 ex->ee_len = cpu_to_le16(ee_len - map_len); 3604 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3605 3606 /* Extend abut_ex by 'map_len' blocks */ 3607 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3608 3609 /* Result: number of initialized blocks past m_lblk */ 3610 allocated = map_len; 3611 } 3612 } 3613 if (allocated) { 3614 /* Mark the block containing both extents as dirty */ 3615 ext4_ext_dirty(handle, inode, path + depth); 3616 3617 /* Update path to point to the right extent */ 3618 path[depth].p_ext = abut_ex; 3619 goto out; 3620 } else 3621 allocated = ee_len - (map->m_lblk - ee_block); 3622 3623 WARN_ON(map->m_lblk < ee_block); 3624 /* 3625 * It is safe to convert extent to initialized via explicit 3626 * zeroout only if extent is fully inside i_size or new_size. 3627 */ 3628 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3629 3630 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3631 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3632 (inode->i_sb->s_blocksize_bits - 10); 3633 3634 if (ext4_encrypted_inode(inode)) 3635 max_zeroout = 0; 3636 3637 /* 3638 * five cases: 3639 * 1. split the extent into three extents. 3640 * 2. split the extent into two extents, zeroout the head of the first 3641 * extent. 3642 * 3. split the extent into two extents, zeroout the tail of the second 3643 * extent. 3644 * 4. split the extent into two extents with out zeroout. 3645 * 5. no splitting needed, just possibly zeroout the head and / or the 3646 * tail of the extent. 3647 */ 3648 split_map.m_lblk = map->m_lblk; 3649 split_map.m_len = map->m_len; 3650 3651 if (max_zeroout && (allocated > split_map.m_len)) { 3652 if (allocated <= max_zeroout) { 3653 /* case 3 or 5 */ 3654 zero_ex1.ee_block = 3655 cpu_to_le32(split_map.m_lblk + 3656 split_map.m_len); 3657 zero_ex1.ee_len = 3658 cpu_to_le16(allocated - split_map.m_len); 3659 ext4_ext_store_pblock(&zero_ex1, 3660 ext4_ext_pblock(ex) + split_map.m_lblk + 3661 split_map.m_len - ee_block); 3662 err = ext4_ext_zeroout(inode, &zero_ex1); 3663 if (err) 3664 goto out; 3665 split_map.m_len = allocated; 3666 } 3667 if (split_map.m_lblk - ee_block + split_map.m_len < 3668 max_zeroout) { 3669 /* case 2 or 5 */ 3670 if (split_map.m_lblk != ee_block) { 3671 zero_ex2.ee_block = ex->ee_block; 3672 zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk - 3673 ee_block); 3674 ext4_ext_store_pblock(&zero_ex2, 3675 ext4_ext_pblock(ex)); 3676 err = ext4_ext_zeroout(inode, &zero_ex2); 3677 if (err) 3678 goto out; 3679 } 3680 3681 split_map.m_len += split_map.m_lblk - ee_block; 3682 split_map.m_lblk = ee_block; 3683 allocated = map->m_len; 3684 } 3685 } 3686 3687 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag, 3688 flags); 3689 if (err > 0) 3690 err = 0; 3691 out: 3692 /* If we have gotten a failure, don't zero out status tree */ 3693 if (!err) { 3694 err = ext4_zeroout_es(inode, &zero_ex1); 3695 if (!err) 3696 err = ext4_zeroout_es(inode, &zero_ex2); 3697 } 3698 return err ? err : allocated; 3699 } 3700 3701 /* 3702 * This function is called by ext4_ext_map_blocks() from 3703 * ext4_get_blocks_dio_write() when DIO to write 3704 * to an unwritten extent. 3705 * 3706 * Writing to an unwritten extent may result in splitting the unwritten 3707 * extent into multiple initialized/unwritten extents (up to three) 3708 * There are three possibilities: 3709 * a> There is no split required: Entire extent should be unwritten 3710 * b> Splits in two extents: Write is happening at either end of the extent 3711 * c> Splits in three extents: Somone is writing in middle of the extent 3712 * 3713 * This works the same way in the case of initialized -> unwritten conversion. 3714 * 3715 * One of more index blocks maybe needed if the extent tree grow after 3716 * the unwritten extent split. To prevent ENOSPC occur at the IO 3717 * complete, we need to split the unwritten extent before DIO submit 3718 * the IO. The unwritten extent called at this time will be split 3719 * into three unwritten extent(at most). After IO complete, the part 3720 * being filled will be convert to initialized by the end_io callback function 3721 * via ext4_convert_unwritten_extents(). 3722 * 3723 * Returns the size of unwritten extent to be written on success. 3724 */ 3725 static int ext4_split_convert_extents(handle_t *handle, 3726 struct inode *inode, 3727 struct ext4_map_blocks *map, 3728 struct ext4_ext_path **ppath, 3729 int flags) 3730 { 3731 struct ext4_ext_path *path = *ppath; 3732 ext4_lblk_t eof_block; 3733 ext4_lblk_t ee_block; 3734 struct ext4_extent *ex; 3735 unsigned int ee_len; 3736 int split_flag = 0, depth; 3737 3738 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3739 __func__, inode->i_ino, 3740 (unsigned long long)map->m_lblk, map->m_len); 3741 3742 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3743 inode->i_sb->s_blocksize_bits; 3744 if (eof_block < map->m_lblk + map->m_len) 3745 eof_block = map->m_lblk + map->m_len; 3746 /* 3747 * It is safe to convert extent to initialized via explicit 3748 * zeroout only if extent is fully insde i_size or new_size. 3749 */ 3750 depth = ext_depth(inode); 3751 ex = path[depth].p_ext; 3752 ee_block = le32_to_cpu(ex->ee_block); 3753 ee_len = ext4_ext_get_actual_len(ex); 3754 3755 /* Convert to unwritten */ 3756 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3757 split_flag |= EXT4_EXT_DATA_VALID1; 3758 /* Convert to initialized */ 3759 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3760 split_flag |= ee_block + ee_len <= eof_block ? 3761 EXT4_EXT_MAY_ZEROOUT : 0; 3762 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3763 } 3764 flags |= EXT4_GET_BLOCKS_PRE_IO; 3765 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags); 3766 } 3767 3768 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3769 struct inode *inode, 3770 struct ext4_map_blocks *map, 3771 struct ext4_ext_path **ppath) 3772 { 3773 struct ext4_ext_path *path = *ppath; 3774 struct ext4_extent *ex; 3775 ext4_lblk_t ee_block; 3776 unsigned int ee_len; 3777 int depth; 3778 int err = 0; 3779 3780 depth = ext_depth(inode); 3781 ex = path[depth].p_ext; 3782 ee_block = le32_to_cpu(ex->ee_block); 3783 ee_len = ext4_ext_get_actual_len(ex); 3784 3785 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3786 "block %llu, max_blocks %u\n", inode->i_ino, 3787 (unsigned long long)ee_block, ee_len); 3788 3789 /* If extent is larger than requested it is a clear sign that we still 3790 * have some extent state machine issues left. So extent_split is still 3791 * required. 3792 * TODO: Once all related issues will be fixed this situation should be 3793 * illegal. 3794 */ 3795 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3796 #ifdef EXT4_DEBUG 3797 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3798 " len %u; IO logical block %llu, len %u", 3799 inode->i_ino, (unsigned long long)ee_block, ee_len, 3800 (unsigned long long)map->m_lblk, map->m_len); 3801 #endif 3802 err = ext4_split_convert_extents(handle, inode, map, ppath, 3803 EXT4_GET_BLOCKS_CONVERT); 3804 if (err < 0) 3805 return err; 3806 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3807 if (IS_ERR(path)) 3808 return PTR_ERR(path); 3809 depth = ext_depth(inode); 3810 ex = path[depth].p_ext; 3811 } 3812 3813 err = ext4_ext_get_access(handle, inode, path + depth); 3814 if (err) 3815 goto out; 3816 /* first mark the extent as initialized */ 3817 ext4_ext_mark_initialized(ex); 3818 3819 /* note: ext4_ext_correct_indexes() isn't needed here because 3820 * borders are not changed 3821 */ 3822 ext4_ext_try_to_merge(handle, inode, path, ex); 3823 3824 /* Mark modified extent as dirty */ 3825 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3826 out: 3827 ext4_ext_show_leaf(inode, path); 3828 return err; 3829 } 3830 3831 /* 3832 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3833 */ 3834 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3835 ext4_lblk_t lblk, 3836 struct ext4_ext_path *path, 3837 unsigned int len) 3838 { 3839 int i, depth; 3840 struct ext4_extent_header *eh; 3841 struct ext4_extent *last_ex; 3842 3843 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3844 return 0; 3845 3846 depth = ext_depth(inode); 3847 eh = path[depth].p_hdr; 3848 3849 /* 3850 * We're going to remove EOFBLOCKS_FL entirely in future so we 3851 * do not care for this case anymore. Simply remove the flag 3852 * if there are no extents. 3853 */ 3854 if (unlikely(!eh->eh_entries)) 3855 goto out; 3856 last_ex = EXT_LAST_EXTENT(eh); 3857 /* 3858 * We should clear the EOFBLOCKS_FL flag if we are writing the 3859 * last block in the last extent in the file. We test this by 3860 * first checking to see if the caller to 3861 * ext4_ext_get_blocks() was interested in the last block (or 3862 * a block beyond the last block) in the current extent. If 3863 * this turns out to be false, we can bail out from this 3864 * function immediately. 3865 */ 3866 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3867 ext4_ext_get_actual_len(last_ex)) 3868 return 0; 3869 /* 3870 * If the caller does appear to be planning to write at or 3871 * beyond the end of the current extent, we then test to see 3872 * if the current extent is the last extent in the file, by 3873 * checking to make sure it was reached via the rightmost node 3874 * at each level of the tree. 3875 */ 3876 for (i = depth-1; i >= 0; i--) 3877 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3878 return 0; 3879 out: 3880 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3881 return ext4_mark_inode_dirty(handle, inode); 3882 } 3883 3884 static int 3885 convert_initialized_extent(handle_t *handle, struct inode *inode, 3886 struct ext4_map_blocks *map, 3887 struct ext4_ext_path **ppath, 3888 unsigned int allocated) 3889 { 3890 struct ext4_ext_path *path = *ppath; 3891 struct ext4_extent *ex; 3892 ext4_lblk_t ee_block; 3893 unsigned int ee_len; 3894 int depth; 3895 int err = 0; 3896 3897 /* 3898 * Make sure that the extent is no bigger than we support with 3899 * unwritten extent 3900 */ 3901 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3902 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3903 3904 depth = ext_depth(inode); 3905 ex = path[depth].p_ext; 3906 ee_block = le32_to_cpu(ex->ee_block); 3907 ee_len = ext4_ext_get_actual_len(ex); 3908 3909 ext_debug("%s: inode %lu, logical" 3910 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3911 (unsigned long long)ee_block, ee_len); 3912 3913 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3914 err = ext4_split_convert_extents(handle, inode, map, ppath, 3915 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3916 if (err < 0) 3917 return err; 3918 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3919 if (IS_ERR(path)) 3920 return PTR_ERR(path); 3921 depth = ext_depth(inode); 3922 ex = path[depth].p_ext; 3923 if (!ex) { 3924 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3925 (unsigned long) map->m_lblk); 3926 return -EFSCORRUPTED; 3927 } 3928 } 3929 3930 err = ext4_ext_get_access(handle, inode, path + depth); 3931 if (err) 3932 return err; 3933 /* first mark the extent as unwritten */ 3934 ext4_ext_mark_unwritten(ex); 3935 3936 /* note: ext4_ext_correct_indexes() isn't needed here because 3937 * borders are not changed 3938 */ 3939 ext4_ext_try_to_merge(handle, inode, path, ex); 3940 3941 /* Mark modified extent as dirty */ 3942 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3943 if (err) 3944 return err; 3945 ext4_ext_show_leaf(inode, path); 3946 3947 ext4_update_inode_fsync_trans(handle, inode, 1); 3948 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len); 3949 if (err) 3950 return err; 3951 map->m_flags |= EXT4_MAP_UNWRITTEN; 3952 if (allocated > map->m_len) 3953 allocated = map->m_len; 3954 map->m_len = allocated; 3955 return allocated; 3956 } 3957 3958 static int 3959 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 3960 struct ext4_map_blocks *map, 3961 struct ext4_ext_path **ppath, int flags, 3962 unsigned int allocated, ext4_fsblk_t newblock) 3963 { 3964 struct ext4_ext_path *path = *ppath; 3965 int ret = 0; 3966 int err = 0; 3967 3968 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 3969 "block %llu, max_blocks %u, flags %x, allocated %u\n", 3970 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3971 flags, allocated); 3972 ext4_ext_show_leaf(inode, path); 3973 3974 /* 3975 * When writing into unwritten space, we should not fail to 3976 * allocate metadata blocks for the new extent block if needed. 3977 */ 3978 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 3979 3980 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 3981 allocated, newblock); 3982 3983 /* get_block() before submit the IO, split the extent */ 3984 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 3985 ret = ext4_split_convert_extents(handle, inode, map, ppath, 3986 flags | EXT4_GET_BLOCKS_CONVERT); 3987 if (ret <= 0) 3988 goto out; 3989 map->m_flags |= EXT4_MAP_UNWRITTEN; 3990 goto out; 3991 } 3992 /* IO end_io complete, convert the filled extent to written */ 3993 if (flags & EXT4_GET_BLOCKS_CONVERT) { 3994 if (flags & EXT4_GET_BLOCKS_ZERO) { 3995 if (allocated > map->m_len) 3996 allocated = map->m_len; 3997 err = ext4_issue_zeroout(inode, map->m_lblk, newblock, 3998 allocated); 3999 if (err < 0) 4000 goto out2; 4001 } 4002 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 4003 ppath); 4004 if (ret >= 0) { 4005 ext4_update_inode_fsync_trans(handle, inode, 1); 4006 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4007 path, map->m_len); 4008 } else 4009 err = ret; 4010 map->m_flags |= EXT4_MAP_MAPPED; 4011 map->m_pblk = newblock; 4012 if (allocated > map->m_len) 4013 allocated = map->m_len; 4014 map->m_len = allocated; 4015 goto out2; 4016 } 4017 /* buffered IO case */ 4018 /* 4019 * repeat fallocate creation request 4020 * we already have an unwritten extent 4021 */ 4022 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4023 map->m_flags |= EXT4_MAP_UNWRITTEN; 4024 goto map_out; 4025 } 4026 4027 /* buffered READ or buffered write_begin() lookup */ 4028 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4029 /* 4030 * We have blocks reserved already. We 4031 * return allocated blocks so that delalloc 4032 * won't do block reservation for us. But 4033 * the buffer head will be unmapped so that 4034 * a read from the block returns 0s. 4035 */ 4036 map->m_flags |= EXT4_MAP_UNWRITTEN; 4037 goto out1; 4038 } 4039 4040 /* buffered write, writepage time, convert*/ 4041 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags); 4042 if (ret >= 0) 4043 ext4_update_inode_fsync_trans(handle, inode, 1); 4044 out: 4045 if (ret <= 0) { 4046 err = ret; 4047 goto out2; 4048 } else 4049 allocated = ret; 4050 map->m_flags |= EXT4_MAP_NEW; 4051 /* 4052 * if we allocated more blocks than requested 4053 * we need to make sure we unmap the extra block 4054 * allocated. The actual needed block will get 4055 * unmapped later when we find the buffer_head marked 4056 * new. 4057 */ 4058 if (allocated > map->m_len) { 4059 clean_bdev_aliases(inode->i_sb->s_bdev, newblock + map->m_len, 4060 allocated - map->m_len); 4061 allocated = map->m_len; 4062 } 4063 map->m_len = allocated; 4064 4065 map_out: 4066 map->m_flags |= EXT4_MAP_MAPPED; 4067 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 4068 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 4069 map->m_len); 4070 if (err < 0) 4071 goto out2; 4072 } 4073 out1: 4074 if (allocated > map->m_len) 4075 allocated = map->m_len; 4076 ext4_ext_show_leaf(inode, path); 4077 map->m_pblk = newblock; 4078 map->m_len = allocated; 4079 out2: 4080 return err ? err : allocated; 4081 } 4082 4083 /* 4084 * get_implied_cluster_alloc - check to see if the requested 4085 * allocation (in the map structure) overlaps with a cluster already 4086 * allocated in an extent. 4087 * @sb The filesystem superblock structure 4088 * @map The requested lblk->pblk mapping 4089 * @ex The extent structure which might contain an implied 4090 * cluster allocation 4091 * 4092 * This function is called by ext4_ext_map_blocks() after we failed to 4093 * find blocks that were already in the inode's extent tree. Hence, 4094 * we know that the beginning of the requested region cannot overlap 4095 * the extent from the inode's extent tree. There are three cases we 4096 * want to catch. The first is this case: 4097 * 4098 * |--- cluster # N--| 4099 * |--- extent ---| |---- requested region ---| 4100 * |==========| 4101 * 4102 * The second case that we need to test for is this one: 4103 * 4104 * |--------- cluster # N ----------------| 4105 * |--- requested region --| |------- extent ----| 4106 * |=======================| 4107 * 4108 * The third case is when the requested region lies between two extents 4109 * within the same cluster: 4110 * |------------- cluster # N-------------| 4111 * |----- ex -----| |---- ex_right ----| 4112 * |------ requested region ------| 4113 * |================| 4114 * 4115 * In each of the above cases, we need to set the map->m_pblk and 4116 * map->m_len so it corresponds to the return the extent labelled as 4117 * "|====|" from cluster #N, since it is already in use for data in 4118 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 4119 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 4120 * as a new "allocated" block region. Otherwise, we will return 0 and 4121 * ext4_ext_map_blocks() will then allocate one or more new clusters 4122 * by calling ext4_mb_new_blocks(). 4123 */ 4124 static int get_implied_cluster_alloc(struct super_block *sb, 4125 struct ext4_map_blocks *map, 4126 struct ext4_extent *ex, 4127 struct ext4_ext_path *path) 4128 { 4129 struct ext4_sb_info *sbi = EXT4_SB(sb); 4130 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4131 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4132 ext4_lblk_t rr_cluster_start; 4133 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4134 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4135 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4136 4137 /* The extent passed in that we are trying to match */ 4138 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4139 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4140 4141 /* The requested region passed into ext4_map_blocks() */ 4142 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4143 4144 if ((rr_cluster_start == ex_cluster_end) || 4145 (rr_cluster_start == ex_cluster_start)) { 4146 if (rr_cluster_start == ex_cluster_end) 4147 ee_start += ee_len - 1; 4148 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 4149 map->m_len = min(map->m_len, 4150 (unsigned) sbi->s_cluster_ratio - c_offset); 4151 /* 4152 * Check for and handle this case: 4153 * 4154 * |--------- cluster # N-------------| 4155 * |------- extent ----| 4156 * |--- requested region ---| 4157 * |===========| 4158 */ 4159 4160 if (map->m_lblk < ee_block) 4161 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4162 4163 /* 4164 * Check for the case where there is already another allocated 4165 * block to the right of 'ex' but before the end of the cluster. 4166 * 4167 * |------------- cluster # N-------------| 4168 * |----- ex -----| |---- ex_right ----| 4169 * |------ requested region ------| 4170 * |================| 4171 */ 4172 if (map->m_lblk > ee_block) { 4173 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4174 map->m_len = min(map->m_len, next - map->m_lblk); 4175 } 4176 4177 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4178 return 1; 4179 } 4180 4181 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4182 return 0; 4183 } 4184 4185 4186 /* 4187 * Block allocation/map/preallocation routine for extents based files 4188 * 4189 * 4190 * Need to be called with 4191 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4192 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4193 * 4194 * return > 0, number of of blocks already mapped/allocated 4195 * if create == 0 and these are pre-allocated blocks 4196 * buffer head is unmapped 4197 * otherwise blocks are mapped 4198 * 4199 * return = 0, if plain look up failed (blocks have not been allocated) 4200 * buffer head is unmapped 4201 * 4202 * return < 0, error case. 4203 */ 4204 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4205 struct ext4_map_blocks *map, int flags) 4206 { 4207 struct ext4_ext_path *path = NULL; 4208 struct ext4_extent newex, *ex, *ex2; 4209 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4210 ext4_fsblk_t newblock = 0; 4211 int free_on_err = 0, err = 0, depth, ret; 4212 unsigned int allocated = 0, offset = 0; 4213 unsigned int allocated_clusters = 0; 4214 struct ext4_allocation_request ar; 4215 ext4_lblk_t cluster_offset; 4216 bool map_from_cluster = false; 4217 4218 ext_debug("blocks %u/%u requested for inode %lu\n", 4219 map->m_lblk, map->m_len, inode->i_ino); 4220 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4221 4222 /* find extent for this block */ 4223 path = ext4_find_extent(inode, map->m_lblk, NULL, 0); 4224 if (IS_ERR(path)) { 4225 err = PTR_ERR(path); 4226 path = NULL; 4227 goto out2; 4228 } 4229 4230 depth = ext_depth(inode); 4231 4232 /* 4233 * consistent leaf must not be empty; 4234 * this situation is possible, though, _during_ tree modification; 4235 * this is why assert can't be put in ext4_find_extent() 4236 */ 4237 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4238 EXT4_ERROR_INODE(inode, "bad extent address " 4239 "lblock: %lu, depth: %d pblock %lld", 4240 (unsigned long) map->m_lblk, depth, 4241 path[depth].p_block); 4242 err = -EFSCORRUPTED; 4243 goto out2; 4244 } 4245 4246 ex = path[depth].p_ext; 4247 if (ex) { 4248 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4249 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4250 unsigned short ee_len; 4251 4252 4253 /* 4254 * unwritten extents are treated as holes, except that 4255 * we split out initialized portions during a write. 4256 */ 4257 ee_len = ext4_ext_get_actual_len(ex); 4258 4259 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4260 4261 /* if found extent covers block, simply return it */ 4262 if (in_range(map->m_lblk, ee_block, ee_len)) { 4263 newblock = map->m_lblk - ee_block + ee_start; 4264 /* number of remaining blocks in the extent */ 4265 allocated = ee_len - (map->m_lblk - ee_block); 4266 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4267 ee_block, ee_len, newblock); 4268 4269 /* 4270 * If the extent is initialized check whether the 4271 * caller wants to convert it to unwritten. 4272 */ 4273 if ((!ext4_ext_is_unwritten(ex)) && 4274 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4275 allocated = convert_initialized_extent( 4276 handle, inode, map, &path, 4277 allocated); 4278 goto out2; 4279 } else if (!ext4_ext_is_unwritten(ex)) 4280 goto out; 4281 4282 ret = ext4_ext_handle_unwritten_extents( 4283 handle, inode, map, &path, flags, 4284 allocated, newblock); 4285 if (ret < 0) 4286 err = ret; 4287 else 4288 allocated = ret; 4289 goto out2; 4290 } 4291 } 4292 4293 /* 4294 * requested block isn't allocated yet; 4295 * we couldn't try to create block if create flag is zero 4296 */ 4297 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4298 ext4_lblk_t hole_start, hole_len; 4299 4300 hole_start = map->m_lblk; 4301 hole_len = ext4_ext_determine_hole(inode, path, &hole_start); 4302 /* 4303 * put just found gap into cache to speed up 4304 * subsequent requests 4305 */ 4306 ext4_ext_put_gap_in_cache(inode, hole_start, hole_len); 4307 4308 /* Update hole_len to reflect hole size after map->m_lblk */ 4309 if (hole_start != map->m_lblk) 4310 hole_len -= map->m_lblk - hole_start; 4311 map->m_pblk = 0; 4312 map->m_len = min_t(unsigned int, map->m_len, hole_len); 4313 4314 goto out2; 4315 } 4316 4317 /* 4318 * Okay, we need to do block allocation. 4319 */ 4320 newex.ee_block = cpu_to_le32(map->m_lblk); 4321 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4322 4323 /* 4324 * If we are doing bigalloc, check to see if the extent returned 4325 * by ext4_find_extent() implies a cluster we can use. 4326 */ 4327 if (cluster_offset && ex && 4328 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4329 ar.len = allocated = map->m_len; 4330 newblock = map->m_pblk; 4331 map_from_cluster = true; 4332 goto got_allocated_blocks; 4333 } 4334 4335 /* find neighbour allocated blocks */ 4336 ar.lleft = map->m_lblk; 4337 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4338 if (err) 4339 goto out2; 4340 ar.lright = map->m_lblk; 4341 ex2 = NULL; 4342 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4343 if (err) 4344 goto out2; 4345 4346 /* Check if the extent after searching to the right implies a 4347 * cluster we can use. */ 4348 if ((sbi->s_cluster_ratio > 1) && ex2 && 4349 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4350 ar.len = allocated = map->m_len; 4351 newblock = map->m_pblk; 4352 map_from_cluster = true; 4353 goto got_allocated_blocks; 4354 } 4355 4356 /* 4357 * See if request is beyond maximum number of blocks we can have in 4358 * a single extent. For an initialized extent this limit is 4359 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4360 * EXT_UNWRITTEN_MAX_LEN. 4361 */ 4362 if (map->m_len > EXT_INIT_MAX_LEN && 4363 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4364 map->m_len = EXT_INIT_MAX_LEN; 4365 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4366 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4367 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4368 4369 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4370 newex.ee_len = cpu_to_le16(map->m_len); 4371 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4372 if (err) 4373 allocated = ext4_ext_get_actual_len(&newex); 4374 else 4375 allocated = map->m_len; 4376 4377 /* allocate new block */ 4378 ar.inode = inode; 4379 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4380 ar.logical = map->m_lblk; 4381 /* 4382 * We calculate the offset from the beginning of the cluster 4383 * for the logical block number, since when we allocate a 4384 * physical cluster, the physical block should start at the 4385 * same offset from the beginning of the cluster. This is 4386 * needed so that future calls to get_implied_cluster_alloc() 4387 * work correctly. 4388 */ 4389 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4390 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4391 ar.goal -= offset; 4392 ar.logical -= offset; 4393 if (S_ISREG(inode->i_mode)) 4394 ar.flags = EXT4_MB_HINT_DATA; 4395 else 4396 /* disable in-core preallocation for non-regular files */ 4397 ar.flags = 0; 4398 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4399 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4400 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4401 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 4402 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 4403 ar.flags |= EXT4_MB_USE_RESERVED; 4404 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4405 if (!newblock) 4406 goto out2; 4407 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4408 ar.goal, newblock, allocated); 4409 free_on_err = 1; 4410 allocated_clusters = ar.len; 4411 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4412 if (ar.len > allocated) 4413 ar.len = allocated; 4414 4415 got_allocated_blocks: 4416 /* try to insert new extent into found leaf and return */ 4417 ext4_ext_store_pblock(&newex, newblock + offset); 4418 newex.ee_len = cpu_to_le16(ar.len); 4419 /* Mark unwritten */ 4420 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){ 4421 ext4_ext_mark_unwritten(&newex); 4422 map->m_flags |= EXT4_MAP_UNWRITTEN; 4423 } 4424 4425 err = 0; 4426 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4427 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4428 path, ar.len); 4429 if (!err) 4430 err = ext4_ext_insert_extent(handle, inode, &path, 4431 &newex, flags); 4432 4433 if (err && free_on_err) { 4434 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4435 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4436 /* free data blocks we just allocated */ 4437 /* not a good idea to call discard here directly, 4438 * but otherwise we'd need to call it every free() */ 4439 ext4_discard_preallocations(inode); 4440 ext4_free_blocks(handle, inode, NULL, newblock, 4441 EXT4_C2B(sbi, allocated_clusters), fb_flags); 4442 goto out2; 4443 } 4444 4445 /* previous routine could use block we allocated */ 4446 newblock = ext4_ext_pblock(&newex); 4447 allocated = ext4_ext_get_actual_len(&newex); 4448 if (allocated > map->m_len) 4449 allocated = map->m_len; 4450 map->m_flags |= EXT4_MAP_NEW; 4451 4452 /* 4453 * Reduce the reserved cluster count to reflect successful deferred 4454 * allocation of delayed allocated clusters or direct allocation of 4455 * clusters discovered to be delayed allocated. Once allocated, a 4456 * cluster is not included in the reserved count. 4457 */ 4458 if (test_opt(inode->i_sb, DELALLOC) && !map_from_cluster) { 4459 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4460 /* 4461 * When allocating delayed allocated clusters, simply 4462 * reduce the reserved cluster count and claim quota 4463 */ 4464 ext4_da_update_reserve_space(inode, allocated_clusters, 4465 1); 4466 } else { 4467 ext4_lblk_t lblk, len; 4468 unsigned int n; 4469 4470 /* 4471 * When allocating non-delayed allocated clusters 4472 * (from fallocate, filemap, DIO, or clusters 4473 * allocated when delalloc has been disabled by 4474 * ext4_nonda_switch), reduce the reserved cluster 4475 * count by the number of allocated clusters that 4476 * have previously been delayed allocated. Quota 4477 * has been claimed by ext4_mb_new_blocks() above, 4478 * so release the quota reservations made for any 4479 * previously delayed allocated clusters. 4480 */ 4481 lblk = EXT4_LBLK_CMASK(sbi, map->m_lblk); 4482 len = allocated_clusters << sbi->s_cluster_bits; 4483 n = ext4_es_delayed_clu(inode, lblk, len); 4484 if (n > 0) 4485 ext4_da_update_reserve_space(inode, (int) n, 0); 4486 } 4487 } 4488 4489 /* 4490 * Cache the extent and update transaction to commit on fdatasync only 4491 * when it is _not_ an unwritten extent. 4492 */ 4493 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4494 ext4_update_inode_fsync_trans(handle, inode, 1); 4495 else 4496 ext4_update_inode_fsync_trans(handle, inode, 0); 4497 out: 4498 if (allocated > map->m_len) 4499 allocated = map->m_len; 4500 ext4_ext_show_leaf(inode, path); 4501 map->m_flags |= EXT4_MAP_MAPPED; 4502 map->m_pblk = newblock; 4503 map->m_len = allocated; 4504 out2: 4505 ext4_ext_drop_refs(path); 4506 kfree(path); 4507 4508 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4509 err ? err : allocated); 4510 return err ? err : allocated; 4511 } 4512 4513 int ext4_ext_truncate(handle_t *handle, struct inode *inode) 4514 { 4515 struct super_block *sb = inode->i_sb; 4516 ext4_lblk_t last_block; 4517 int err = 0; 4518 4519 /* 4520 * TODO: optimization is possible here. 4521 * Probably we need not scan at all, 4522 * because page truncation is enough. 4523 */ 4524 4525 /* we have to know where to truncate from in crash case */ 4526 EXT4_I(inode)->i_disksize = inode->i_size; 4527 err = ext4_mark_inode_dirty(handle, inode); 4528 if (err) 4529 return err; 4530 4531 last_block = (inode->i_size + sb->s_blocksize - 1) 4532 >> EXT4_BLOCK_SIZE_BITS(sb); 4533 retry: 4534 err = ext4_es_remove_extent(inode, last_block, 4535 EXT_MAX_BLOCKS - last_block); 4536 if (err == -ENOMEM) { 4537 cond_resched(); 4538 congestion_wait(BLK_RW_ASYNC, HZ/50); 4539 goto retry; 4540 } 4541 if (err) 4542 return err; 4543 return ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4544 } 4545 4546 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4547 ext4_lblk_t len, loff_t new_size, 4548 int flags) 4549 { 4550 struct inode *inode = file_inode(file); 4551 handle_t *handle; 4552 int ret = 0; 4553 int ret2 = 0; 4554 int retries = 0; 4555 int depth = 0; 4556 struct ext4_map_blocks map; 4557 unsigned int credits; 4558 loff_t epos; 4559 4560 BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)); 4561 map.m_lblk = offset; 4562 map.m_len = len; 4563 /* 4564 * Don't normalize the request if it can fit in one extent so 4565 * that it doesn't get unnecessarily split into multiple 4566 * extents. 4567 */ 4568 if (len <= EXT_UNWRITTEN_MAX_LEN) 4569 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4570 4571 /* 4572 * credits to insert 1 extent into extent tree 4573 */ 4574 credits = ext4_chunk_trans_blocks(inode, len); 4575 depth = ext_depth(inode); 4576 4577 retry: 4578 while (ret >= 0 && len) { 4579 /* 4580 * Recalculate credits when extent tree depth changes. 4581 */ 4582 if (depth != ext_depth(inode)) { 4583 credits = ext4_chunk_trans_blocks(inode, len); 4584 depth = ext_depth(inode); 4585 } 4586 4587 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4588 credits); 4589 if (IS_ERR(handle)) { 4590 ret = PTR_ERR(handle); 4591 break; 4592 } 4593 ret = ext4_map_blocks(handle, inode, &map, flags); 4594 if (ret <= 0) { 4595 ext4_debug("inode #%lu: block %u: len %u: " 4596 "ext4_ext_map_blocks returned %d", 4597 inode->i_ino, map.m_lblk, 4598 map.m_len, ret); 4599 ext4_mark_inode_dirty(handle, inode); 4600 ret2 = ext4_journal_stop(handle); 4601 break; 4602 } 4603 map.m_lblk += ret; 4604 map.m_len = len = len - ret; 4605 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4606 inode->i_ctime = current_time(inode); 4607 if (new_size) { 4608 if (epos > new_size) 4609 epos = new_size; 4610 if (ext4_update_inode_size(inode, epos) & 0x1) 4611 inode->i_mtime = inode->i_ctime; 4612 } else { 4613 if (epos > inode->i_size) 4614 ext4_set_inode_flag(inode, 4615 EXT4_INODE_EOFBLOCKS); 4616 } 4617 ext4_mark_inode_dirty(handle, inode); 4618 ext4_update_inode_fsync_trans(handle, inode, 1); 4619 ret2 = ext4_journal_stop(handle); 4620 if (ret2) 4621 break; 4622 } 4623 if (ret == -ENOSPC && 4624 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4625 ret = 0; 4626 goto retry; 4627 } 4628 4629 return ret > 0 ? ret2 : ret; 4630 } 4631 4632 static long ext4_zero_range(struct file *file, loff_t offset, 4633 loff_t len, int mode) 4634 { 4635 struct inode *inode = file_inode(file); 4636 handle_t *handle = NULL; 4637 unsigned int max_blocks; 4638 loff_t new_size = 0; 4639 int ret = 0; 4640 int flags; 4641 int credits; 4642 int partial_begin, partial_end; 4643 loff_t start, end; 4644 ext4_lblk_t lblk; 4645 unsigned int blkbits = inode->i_blkbits; 4646 4647 trace_ext4_zero_range(inode, offset, len, mode); 4648 4649 if (!S_ISREG(inode->i_mode)) 4650 return -EINVAL; 4651 4652 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4653 if (ext4_should_journal_data(inode)) { 4654 ret = ext4_force_commit(inode->i_sb); 4655 if (ret) 4656 return ret; 4657 } 4658 4659 /* 4660 * Round up offset. This is not fallocate, we neet to zero out 4661 * blocks, so convert interior block aligned part of the range to 4662 * unwritten and possibly manually zero out unaligned parts of the 4663 * range. 4664 */ 4665 start = round_up(offset, 1 << blkbits); 4666 end = round_down((offset + len), 1 << blkbits); 4667 4668 if (start < offset || end > offset + len) 4669 return -EINVAL; 4670 partial_begin = offset & ((1 << blkbits) - 1); 4671 partial_end = (offset + len) & ((1 << blkbits) - 1); 4672 4673 lblk = start >> blkbits; 4674 max_blocks = (end >> blkbits); 4675 if (max_blocks < lblk) 4676 max_blocks = 0; 4677 else 4678 max_blocks -= lblk; 4679 4680 inode_lock(inode); 4681 4682 /* 4683 * Indirect files do not support unwritten extnets 4684 */ 4685 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4686 ret = -EOPNOTSUPP; 4687 goto out_mutex; 4688 } 4689 4690 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4691 (offset + len > i_size_read(inode) || 4692 offset + len > EXT4_I(inode)->i_disksize)) { 4693 new_size = offset + len; 4694 ret = inode_newsize_ok(inode, new_size); 4695 if (ret) 4696 goto out_mutex; 4697 } 4698 4699 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4700 if (mode & FALLOC_FL_KEEP_SIZE) 4701 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4702 4703 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4704 inode_dio_wait(inode); 4705 4706 /* Preallocate the range including the unaligned edges */ 4707 if (partial_begin || partial_end) { 4708 ret = ext4_alloc_file_blocks(file, 4709 round_down(offset, 1 << blkbits) >> blkbits, 4710 (round_up((offset + len), 1 << blkbits) - 4711 round_down(offset, 1 << blkbits)) >> blkbits, 4712 new_size, flags); 4713 if (ret) 4714 goto out_mutex; 4715 4716 } 4717 4718 /* Zero range excluding the unaligned edges */ 4719 if (max_blocks > 0) { 4720 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4721 EXT4_EX_NOCACHE); 4722 4723 /* 4724 * Prevent page faults from reinstantiating pages we have 4725 * released from page cache. 4726 */ 4727 down_write(&EXT4_I(inode)->i_mmap_sem); 4728 4729 ret = ext4_break_layouts(inode); 4730 if (ret) { 4731 up_write(&EXT4_I(inode)->i_mmap_sem); 4732 goto out_mutex; 4733 } 4734 4735 ret = ext4_update_disksize_before_punch(inode, offset, len); 4736 if (ret) { 4737 up_write(&EXT4_I(inode)->i_mmap_sem); 4738 goto out_mutex; 4739 } 4740 /* Now release the pages and zero block aligned part of pages */ 4741 truncate_pagecache_range(inode, start, end - 1); 4742 inode->i_mtime = inode->i_ctime = current_time(inode); 4743 4744 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4745 flags); 4746 up_write(&EXT4_I(inode)->i_mmap_sem); 4747 if (ret) 4748 goto out_mutex; 4749 } 4750 if (!partial_begin && !partial_end) 4751 goto out_mutex; 4752 4753 /* 4754 * In worst case we have to writeout two nonadjacent unwritten 4755 * blocks and update the inode 4756 */ 4757 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4758 if (ext4_should_journal_data(inode)) 4759 credits += 2; 4760 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4761 if (IS_ERR(handle)) { 4762 ret = PTR_ERR(handle); 4763 ext4_std_error(inode->i_sb, ret); 4764 goto out_mutex; 4765 } 4766 4767 inode->i_mtime = inode->i_ctime = current_time(inode); 4768 if (new_size) { 4769 ext4_update_inode_size(inode, new_size); 4770 } else { 4771 /* 4772 * Mark that we allocate beyond EOF so the subsequent truncate 4773 * can proceed even if the new size is the same as i_size. 4774 */ 4775 if ((offset + len) > i_size_read(inode)) 4776 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4777 } 4778 ext4_mark_inode_dirty(handle, inode); 4779 4780 /* Zero out partial block at the edges of the range */ 4781 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4782 if (ret >= 0) 4783 ext4_update_inode_fsync_trans(handle, inode, 1); 4784 4785 if (file->f_flags & O_SYNC) 4786 ext4_handle_sync(handle); 4787 4788 ext4_journal_stop(handle); 4789 out_mutex: 4790 inode_unlock(inode); 4791 return ret; 4792 } 4793 4794 /* 4795 * preallocate space for a file. This implements ext4's fallocate file 4796 * operation, which gets called from sys_fallocate system call. 4797 * For block-mapped files, posix_fallocate should fall back to the method 4798 * of writing zeroes to the required new blocks (the same behavior which is 4799 * expected for file systems which do not support fallocate() system call). 4800 */ 4801 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4802 { 4803 struct inode *inode = file_inode(file); 4804 loff_t new_size = 0; 4805 unsigned int max_blocks; 4806 int ret = 0; 4807 int flags; 4808 ext4_lblk_t lblk; 4809 unsigned int blkbits = inode->i_blkbits; 4810 4811 /* 4812 * Encrypted inodes can't handle collapse range or insert 4813 * range since we would need to re-encrypt blocks with a 4814 * different IV or XTS tweak (which are based on the logical 4815 * block number). 4816 * 4817 * XXX It's not clear why zero range isn't working, but we'll 4818 * leave it disabled for encrypted inodes for now. This is a 4819 * bug we should fix.... 4820 */ 4821 if (ext4_encrypted_inode(inode) && 4822 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE | 4823 FALLOC_FL_ZERO_RANGE))) 4824 return -EOPNOTSUPP; 4825 4826 /* Return error if mode is not supported */ 4827 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4828 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 4829 FALLOC_FL_INSERT_RANGE)) 4830 return -EOPNOTSUPP; 4831 4832 if (mode & FALLOC_FL_PUNCH_HOLE) 4833 return ext4_punch_hole(inode, offset, len); 4834 4835 ret = ext4_convert_inline_data(inode); 4836 if (ret) 4837 return ret; 4838 4839 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4840 return ext4_collapse_range(inode, offset, len); 4841 4842 if (mode & FALLOC_FL_INSERT_RANGE) 4843 return ext4_insert_range(inode, offset, len); 4844 4845 if (mode & FALLOC_FL_ZERO_RANGE) 4846 return ext4_zero_range(file, offset, len, mode); 4847 4848 trace_ext4_fallocate_enter(inode, offset, len, mode); 4849 lblk = offset >> blkbits; 4850 4851 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 4852 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4853 if (mode & FALLOC_FL_KEEP_SIZE) 4854 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4855 4856 inode_lock(inode); 4857 4858 /* 4859 * We only support preallocation for extent-based files only 4860 */ 4861 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4862 ret = -EOPNOTSUPP; 4863 goto out; 4864 } 4865 4866 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4867 (offset + len > i_size_read(inode) || 4868 offset + len > EXT4_I(inode)->i_disksize)) { 4869 new_size = offset + len; 4870 ret = inode_newsize_ok(inode, new_size); 4871 if (ret) 4872 goto out; 4873 } 4874 4875 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4876 inode_dio_wait(inode); 4877 4878 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags); 4879 if (ret) 4880 goto out; 4881 4882 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 4883 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 4884 EXT4_I(inode)->i_sync_tid); 4885 } 4886 out: 4887 inode_unlock(inode); 4888 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4889 return ret; 4890 } 4891 4892 /* 4893 * This function convert a range of blocks to written extents 4894 * The caller of this function will pass the start offset and the size. 4895 * all unwritten extents within this range will be converted to 4896 * written extents. 4897 * 4898 * This function is called from the direct IO end io call back 4899 * function, to convert the fallocated extents after IO is completed. 4900 * Returns 0 on success. 4901 */ 4902 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4903 loff_t offset, ssize_t len) 4904 { 4905 unsigned int max_blocks; 4906 int ret = 0; 4907 int ret2 = 0; 4908 struct ext4_map_blocks map; 4909 unsigned int credits, blkbits = inode->i_blkbits; 4910 4911 map.m_lblk = offset >> blkbits; 4912 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 4913 4914 /* 4915 * This is somewhat ugly but the idea is clear: When transaction is 4916 * reserved, everything goes into it. Otherwise we rather start several 4917 * smaller transactions for conversion of each extent separately. 4918 */ 4919 if (handle) { 4920 handle = ext4_journal_start_reserved(handle, 4921 EXT4_HT_EXT_CONVERT); 4922 if (IS_ERR(handle)) 4923 return PTR_ERR(handle); 4924 credits = 0; 4925 } else { 4926 /* 4927 * credits to insert 1 extent into extent tree 4928 */ 4929 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4930 } 4931 while (ret >= 0 && ret < max_blocks) { 4932 map.m_lblk += ret; 4933 map.m_len = (max_blocks -= ret); 4934 if (credits) { 4935 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4936 credits); 4937 if (IS_ERR(handle)) { 4938 ret = PTR_ERR(handle); 4939 break; 4940 } 4941 } 4942 ret = ext4_map_blocks(handle, inode, &map, 4943 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4944 if (ret <= 0) 4945 ext4_warning(inode->i_sb, 4946 "inode #%lu: block %u: len %u: " 4947 "ext4_ext_map_blocks returned %d", 4948 inode->i_ino, map.m_lblk, 4949 map.m_len, ret); 4950 ext4_mark_inode_dirty(handle, inode); 4951 if (credits) 4952 ret2 = ext4_journal_stop(handle); 4953 if (ret <= 0 || ret2) 4954 break; 4955 } 4956 if (!credits) 4957 ret2 = ext4_journal_stop(handle); 4958 return ret > 0 ? ret2 : ret; 4959 } 4960 4961 /* 4962 * If newes is not existing extent (newes->ec_pblk equals zero) find 4963 * delayed extent at start of newes and update newes accordingly and 4964 * return start of the next delayed extent. 4965 * 4966 * If newes is existing extent (newes->ec_pblk is not equal zero) 4967 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 4968 * extent found. Leave newes unmodified. 4969 */ 4970 static int ext4_find_delayed_extent(struct inode *inode, 4971 struct extent_status *newes) 4972 { 4973 struct extent_status es; 4974 ext4_lblk_t block, next_del; 4975 4976 if (newes->es_pblk == 0) { 4977 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 4978 newes->es_lblk, 4979 newes->es_lblk + newes->es_len - 1, 4980 &es); 4981 4982 /* 4983 * No extent in extent-tree contains block @newes->es_pblk, 4984 * then the block may stay in 1)a hole or 2)delayed-extent. 4985 */ 4986 if (es.es_len == 0) 4987 /* A hole found. */ 4988 return 0; 4989 4990 if (es.es_lblk > newes->es_lblk) { 4991 /* A hole found. */ 4992 newes->es_len = min(es.es_lblk - newes->es_lblk, 4993 newes->es_len); 4994 return 0; 4995 } 4996 4997 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 4998 } 4999 5000 block = newes->es_lblk + newes->es_len; 5001 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, block, 5002 EXT_MAX_BLOCKS, &es); 5003 if (es.es_len == 0) 5004 next_del = EXT_MAX_BLOCKS; 5005 else 5006 next_del = es.es_lblk; 5007 5008 return next_del; 5009 } 5010 /* fiemap flags we can handle specified here */ 5011 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 5012 5013 static int ext4_xattr_fiemap(struct inode *inode, 5014 struct fiemap_extent_info *fieinfo) 5015 { 5016 __u64 physical = 0; 5017 __u64 length; 5018 __u32 flags = FIEMAP_EXTENT_LAST; 5019 int blockbits = inode->i_sb->s_blocksize_bits; 5020 int error = 0; 5021 5022 /* in-inode? */ 5023 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 5024 struct ext4_iloc iloc; 5025 int offset; /* offset of xattr in inode */ 5026 5027 error = ext4_get_inode_loc(inode, &iloc); 5028 if (error) 5029 return error; 5030 physical = (__u64)iloc.bh->b_blocknr << blockbits; 5031 offset = EXT4_GOOD_OLD_INODE_SIZE + 5032 EXT4_I(inode)->i_extra_isize; 5033 physical += offset; 5034 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 5035 flags |= FIEMAP_EXTENT_DATA_INLINE; 5036 brelse(iloc.bh); 5037 } else { /* external block */ 5038 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 5039 length = inode->i_sb->s_blocksize; 5040 } 5041 5042 if (physical) 5043 error = fiemap_fill_next_extent(fieinfo, 0, physical, 5044 length, flags); 5045 return (error < 0 ? error : 0); 5046 } 5047 5048 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5049 __u64 start, __u64 len) 5050 { 5051 ext4_lblk_t start_blk; 5052 int error = 0; 5053 5054 if (ext4_has_inline_data(inode)) { 5055 int has_inline = 1; 5056 5057 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline, 5058 start, len); 5059 5060 if (has_inline) 5061 return error; 5062 } 5063 5064 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 5065 error = ext4_ext_precache(inode); 5066 if (error) 5067 return error; 5068 } 5069 5070 /* fallback to generic here if not in extents fmt */ 5071 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5072 return generic_block_fiemap(inode, fieinfo, start, len, 5073 ext4_get_block); 5074 5075 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 5076 return -EBADR; 5077 5078 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 5079 error = ext4_xattr_fiemap(inode, fieinfo); 5080 } else { 5081 ext4_lblk_t len_blks; 5082 __u64 last_blk; 5083 5084 start_blk = start >> inode->i_sb->s_blocksize_bits; 5085 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5086 if (last_blk >= EXT_MAX_BLOCKS) 5087 last_blk = EXT_MAX_BLOCKS-1; 5088 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5089 5090 /* 5091 * Walk the extent tree gathering extent information 5092 * and pushing extents back to the user. 5093 */ 5094 error = ext4_fill_fiemap_extents(inode, start_blk, 5095 len_blks, fieinfo); 5096 } 5097 return error; 5098 } 5099 5100 /* 5101 * ext4_access_path: 5102 * Function to access the path buffer for marking it dirty. 5103 * It also checks if there are sufficient credits left in the journal handle 5104 * to update path. 5105 */ 5106 static int 5107 ext4_access_path(handle_t *handle, struct inode *inode, 5108 struct ext4_ext_path *path) 5109 { 5110 int credits, err; 5111 5112 if (!ext4_handle_valid(handle)) 5113 return 0; 5114 5115 /* 5116 * Check if need to extend journal credits 5117 * 3 for leaf, sb, and inode plus 2 (bmap and group 5118 * descriptor) for each block group; assume two block 5119 * groups 5120 */ 5121 if (handle->h_buffer_credits < 7) { 5122 credits = ext4_writepage_trans_blocks(inode); 5123 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 5124 /* EAGAIN is success */ 5125 if (err && err != -EAGAIN) 5126 return err; 5127 } 5128 5129 err = ext4_ext_get_access(handle, inode, path); 5130 return err; 5131 } 5132 5133 /* 5134 * ext4_ext_shift_path_extents: 5135 * Shift the extents of a path structure lying between path[depth].p_ext 5136 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells 5137 * if it is right shift or left shift operation. 5138 */ 5139 static int 5140 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5141 struct inode *inode, handle_t *handle, 5142 enum SHIFT_DIRECTION SHIFT) 5143 { 5144 int depth, err = 0; 5145 struct ext4_extent *ex_start, *ex_last; 5146 bool update = 0; 5147 depth = path->p_depth; 5148 5149 while (depth >= 0) { 5150 if (depth == path->p_depth) { 5151 ex_start = path[depth].p_ext; 5152 if (!ex_start) 5153 return -EFSCORRUPTED; 5154 5155 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5156 5157 err = ext4_access_path(handle, inode, path + depth); 5158 if (err) 5159 goto out; 5160 5161 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 5162 update = 1; 5163 5164 while (ex_start <= ex_last) { 5165 if (SHIFT == SHIFT_LEFT) { 5166 le32_add_cpu(&ex_start->ee_block, 5167 -shift); 5168 /* Try to merge to the left. */ 5169 if ((ex_start > 5170 EXT_FIRST_EXTENT(path[depth].p_hdr)) 5171 && 5172 ext4_ext_try_to_merge_right(inode, 5173 path, ex_start - 1)) 5174 ex_last--; 5175 else 5176 ex_start++; 5177 } else { 5178 le32_add_cpu(&ex_last->ee_block, shift); 5179 ext4_ext_try_to_merge_right(inode, path, 5180 ex_last); 5181 ex_last--; 5182 } 5183 } 5184 err = ext4_ext_dirty(handle, inode, path + depth); 5185 if (err) 5186 goto out; 5187 5188 if (--depth < 0 || !update) 5189 break; 5190 } 5191 5192 /* Update index too */ 5193 err = ext4_access_path(handle, inode, path + depth); 5194 if (err) 5195 goto out; 5196 5197 if (SHIFT == SHIFT_LEFT) 5198 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5199 else 5200 le32_add_cpu(&path[depth].p_idx->ei_block, shift); 5201 err = ext4_ext_dirty(handle, inode, path + depth); 5202 if (err) 5203 goto out; 5204 5205 /* we are done if current index is not a starting index */ 5206 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5207 break; 5208 5209 depth--; 5210 } 5211 5212 out: 5213 return err; 5214 } 5215 5216 /* 5217 * ext4_ext_shift_extents: 5218 * All the extents which lies in the range from @start to the last allocated 5219 * block for the @inode are shifted either towards left or right (depending 5220 * upon @SHIFT) by @shift blocks. 5221 * On success, 0 is returned, error otherwise. 5222 */ 5223 static int 5224 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5225 ext4_lblk_t start, ext4_lblk_t shift, 5226 enum SHIFT_DIRECTION SHIFT) 5227 { 5228 struct ext4_ext_path *path; 5229 int ret = 0, depth; 5230 struct ext4_extent *extent; 5231 ext4_lblk_t stop, *iterator, ex_start, ex_end; 5232 5233 /* Let path point to the last extent */ 5234 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 5235 EXT4_EX_NOCACHE); 5236 if (IS_ERR(path)) 5237 return PTR_ERR(path); 5238 5239 depth = path->p_depth; 5240 extent = path[depth].p_ext; 5241 if (!extent) 5242 goto out; 5243 5244 stop = le32_to_cpu(extent->ee_block); 5245 5246 /* 5247 * For left shifts, make sure the hole on the left is big enough to 5248 * accommodate the shift. For right shifts, make sure the last extent 5249 * won't be shifted beyond EXT_MAX_BLOCKS. 5250 */ 5251 if (SHIFT == SHIFT_LEFT) { 5252 path = ext4_find_extent(inode, start - 1, &path, 5253 EXT4_EX_NOCACHE); 5254 if (IS_ERR(path)) 5255 return PTR_ERR(path); 5256 depth = path->p_depth; 5257 extent = path[depth].p_ext; 5258 if (extent) { 5259 ex_start = le32_to_cpu(extent->ee_block); 5260 ex_end = le32_to_cpu(extent->ee_block) + 5261 ext4_ext_get_actual_len(extent); 5262 } else { 5263 ex_start = 0; 5264 ex_end = 0; 5265 } 5266 5267 if ((start == ex_start && shift > ex_start) || 5268 (shift > start - ex_end)) { 5269 ret = -EINVAL; 5270 goto out; 5271 } 5272 } else { 5273 if (shift > EXT_MAX_BLOCKS - 5274 (stop + ext4_ext_get_actual_len(extent))) { 5275 ret = -EINVAL; 5276 goto out; 5277 } 5278 } 5279 5280 /* 5281 * In case of left shift, iterator points to start and it is increased 5282 * till we reach stop. In case of right shift, iterator points to stop 5283 * and it is decreased till we reach start. 5284 */ 5285 if (SHIFT == SHIFT_LEFT) 5286 iterator = &start; 5287 else 5288 iterator = &stop; 5289 5290 /* 5291 * Its safe to start updating extents. Start and stop are unsigned, so 5292 * in case of right shift if extent with 0 block is reached, iterator 5293 * becomes NULL to indicate the end of the loop. 5294 */ 5295 while (iterator && start <= stop) { 5296 path = ext4_find_extent(inode, *iterator, &path, 5297 EXT4_EX_NOCACHE); 5298 if (IS_ERR(path)) 5299 return PTR_ERR(path); 5300 depth = path->p_depth; 5301 extent = path[depth].p_ext; 5302 if (!extent) { 5303 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5304 (unsigned long) *iterator); 5305 return -EFSCORRUPTED; 5306 } 5307 if (SHIFT == SHIFT_LEFT && *iterator > 5308 le32_to_cpu(extent->ee_block)) { 5309 /* Hole, move to the next extent */ 5310 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5311 path[depth].p_ext++; 5312 } else { 5313 *iterator = ext4_ext_next_allocated_block(path); 5314 continue; 5315 } 5316 } 5317 5318 if (SHIFT == SHIFT_LEFT) { 5319 extent = EXT_LAST_EXTENT(path[depth].p_hdr); 5320 *iterator = le32_to_cpu(extent->ee_block) + 5321 ext4_ext_get_actual_len(extent); 5322 } else { 5323 extent = EXT_FIRST_EXTENT(path[depth].p_hdr); 5324 if (le32_to_cpu(extent->ee_block) > 0) 5325 *iterator = le32_to_cpu(extent->ee_block) - 1; 5326 else 5327 /* Beginning is reached, end of the loop */ 5328 iterator = NULL; 5329 /* Update path extent in case we need to stop */ 5330 while (le32_to_cpu(extent->ee_block) < start) 5331 extent++; 5332 path[depth].p_ext = extent; 5333 } 5334 ret = ext4_ext_shift_path_extents(path, shift, inode, 5335 handle, SHIFT); 5336 if (ret) 5337 break; 5338 } 5339 out: 5340 ext4_ext_drop_refs(path); 5341 kfree(path); 5342 return ret; 5343 } 5344 5345 /* 5346 * ext4_collapse_range: 5347 * This implements the fallocate's collapse range functionality for ext4 5348 * Returns: 0 and non-zero on error. 5349 */ 5350 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5351 { 5352 struct super_block *sb = inode->i_sb; 5353 ext4_lblk_t punch_start, punch_stop; 5354 handle_t *handle; 5355 unsigned int credits; 5356 loff_t new_size, ioffset; 5357 int ret; 5358 5359 /* 5360 * We need to test this early because xfstests assumes that a 5361 * collapse range of (0, 1) will return EOPNOTSUPP if the file 5362 * system does not support collapse range. 5363 */ 5364 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5365 return -EOPNOTSUPP; 5366 5367 /* Collapse range works only on fs block size aligned offsets. */ 5368 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5369 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5370 return -EINVAL; 5371 5372 if (!S_ISREG(inode->i_mode)) 5373 return -EINVAL; 5374 5375 trace_ext4_collapse_range(inode, offset, len); 5376 5377 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5378 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5379 5380 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5381 if (ext4_should_journal_data(inode)) { 5382 ret = ext4_force_commit(inode->i_sb); 5383 if (ret) 5384 return ret; 5385 } 5386 5387 inode_lock(inode); 5388 /* 5389 * There is no need to overlap collapse range with EOF, in which case 5390 * it is effectively a truncate operation 5391 */ 5392 if (offset + len >= i_size_read(inode)) { 5393 ret = -EINVAL; 5394 goto out_mutex; 5395 } 5396 5397 /* Currently just for extent based files */ 5398 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5399 ret = -EOPNOTSUPP; 5400 goto out_mutex; 5401 } 5402 5403 /* Wait for existing dio to complete */ 5404 inode_dio_wait(inode); 5405 5406 /* 5407 * Prevent page faults from reinstantiating pages we have released from 5408 * page cache. 5409 */ 5410 down_write(&EXT4_I(inode)->i_mmap_sem); 5411 5412 ret = ext4_break_layouts(inode); 5413 if (ret) 5414 goto out_mmap; 5415 5416 /* 5417 * Need to round down offset to be aligned with page size boundary 5418 * for page size > block size. 5419 */ 5420 ioffset = round_down(offset, PAGE_SIZE); 5421 /* 5422 * Write tail of the last page before removed range since it will get 5423 * removed from the page cache below. 5424 */ 5425 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset); 5426 if (ret) 5427 goto out_mmap; 5428 /* 5429 * Write data that will be shifted to preserve them when discarding 5430 * page cache below. We are also protected from pages becoming dirty 5431 * by i_mmap_sem. 5432 */ 5433 ret = filemap_write_and_wait_range(inode->i_mapping, offset + len, 5434 LLONG_MAX); 5435 if (ret) 5436 goto out_mmap; 5437 truncate_pagecache(inode, ioffset); 5438 5439 credits = ext4_writepage_trans_blocks(inode); 5440 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5441 if (IS_ERR(handle)) { 5442 ret = PTR_ERR(handle); 5443 goto out_mmap; 5444 } 5445 5446 down_write(&EXT4_I(inode)->i_data_sem); 5447 ext4_discard_preallocations(inode); 5448 5449 ret = ext4_es_remove_extent(inode, punch_start, 5450 EXT_MAX_BLOCKS - punch_start); 5451 if (ret) { 5452 up_write(&EXT4_I(inode)->i_data_sem); 5453 goto out_stop; 5454 } 5455 5456 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5457 if (ret) { 5458 up_write(&EXT4_I(inode)->i_data_sem); 5459 goto out_stop; 5460 } 5461 ext4_discard_preallocations(inode); 5462 5463 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5464 punch_stop - punch_start, SHIFT_LEFT); 5465 if (ret) { 5466 up_write(&EXT4_I(inode)->i_data_sem); 5467 goto out_stop; 5468 } 5469 5470 new_size = i_size_read(inode) - len; 5471 i_size_write(inode, new_size); 5472 EXT4_I(inode)->i_disksize = new_size; 5473 5474 up_write(&EXT4_I(inode)->i_data_sem); 5475 if (IS_SYNC(inode)) 5476 ext4_handle_sync(handle); 5477 inode->i_mtime = inode->i_ctime = current_time(inode); 5478 ext4_mark_inode_dirty(handle, inode); 5479 ext4_update_inode_fsync_trans(handle, inode, 1); 5480 5481 out_stop: 5482 ext4_journal_stop(handle); 5483 out_mmap: 5484 up_write(&EXT4_I(inode)->i_mmap_sem); 5485 out_mutex: 5486 inode_unlock(inode); 5487 return ret; 5488 } 5489 5490 /* 5491 * ext4_insert_range: 5492 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate. 5493 * The data blocks starting from @offset to the EOF are shifted by @len 5494 * towards right to create a hole in the @inode. Inode size is increased 5495 * by len bytes. 5496 * Returns 0 on success, error otherwise. 5497 */ 5498 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len) 5499 { 5500 struct super_block *sb = inode->i_sb; 5501 handle_t *handle; 5502 struct ext4_ext_path *path; 5503 struct ext4_extent *extent; 5504 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0; 5505 unsigned int credits, ee_len; 5506 int ret = 0, depth, split_flag = 0; 5507 loff_t ioffset; 5508 5509 /* 5510 * We need to test this early because xfstests assumes that an 5511 * insert range of (0, 1) will return EOPNOTSUPP if the file 5512 * system does not support insert range. 5513 */ 5514 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5515 return -EOPNOTSUPP; 5516 5517 /* Insert range works only on fs block size aligned offsets. */ 5518 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5519 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5520 return -EINVAL; 5521 5522 if (!S_ISREG(inode->i_mode)) 5523 return -EOPNOTSUPP; 5524 5525 trace_ext4_insert_range(inode, offset, len); 5526 5527 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5528 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb); 5529 5530 /* Call ext4_force_commit to flush all data in case of data=journal */ 5531 if (ext4_should_journal_data(inode)) { 5532 ret = ext4_force_commit(inode->i_sb); 5533 if (ret) 5534 return ret; 5535 } 5536 5537 inode_lock(inode); 5538 /* Currently just for extent based files */ 5539 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5540 ret = -EOPNOTSUPP; 5541 goto out_mutex; 5542 } 5543 5544 /* Check for wrap through zero */ 5545 if (inode->i_size + len > inode->i_sb->s_maxbytes) { 5546 ret = -EFBIG; 5547 goto out_mutex; 5548 } 5549 5550 /* Offset should be less than i_size */ 5551 if (offset >= i_size_read(inode)) { 5552 ret = -EINVAL; 5553 goto out_mutex; 5554 } 5555 5556 /* Wait for existing dio to complete */ 5557 inode_dio_wait(inode); 5558 5559 /* 5560 * Prevent page faults from reinstantiating pages we have released from 5561 * page cache. 5562 */ 5563 down_write(&EXT4_I(inode)->i_mmap_sem); 5564 5565 ret = ext4_break_layouts(inode); 5566 if (ret) 5567 goto out_mmap; 5568 5569 /* 5570 * Need to round down to align start offset to page size boundary 5571 * for page size > block size. 5572 */ 5573 ioffset = round_down(offset, PAGE_SIZE); 5574 /* Write out all dirty pages */ 5575 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5576 LLONG_MAX); 5577 if (ret) 5578 goto out_mmap; 5579 truncate_pagecache(inode, ioffset); 5580 5581 credits = ext4_writepage_trans_blocks(inode); 5582 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5583 if (IS_ERR(handle)) { 5584 ret = PTR_ERR(handle); 5585 goto out_mmap; 5586 } 5587 5588 /* Expand file to avoid data loss if there is error while shifting */ 5589 inode->i_size += len; 5590 EXT4_I(inode)->i_disksize += len; 5591 inode->i_mtime = inode->i_ctime = current_time(inode); 5592 ret = ext4_mark_inode_dirty(handle, inode); 5593 if (ret) 5594 goto out_stop; 5595 5596 down_write(&EXT4_I(inode)->i_data_sem); 5597 ext4_discard_preallocations(inode); 5598 5599 path = ext4_find_extent(inode, offset_lblk, NULL, 0); 5600 if (IS_ERR(path)) { 5601 up_write(&EXT4_I(inode)->i_data_sem); 5602 goto out_stop; 5603 } 5604 5605 depth = ext_depth(inode); 5606 extent = path[depth].p_ext; 5607 if (extent) { 5608 ee_start_lblk = le32_to_cpu(extent->ee_block); 5609 ee_len = ext4_ext_get_actual_len(extent); 5610 5611 /* 5612 * If offset_lblk is not the starting block of extent, split 5613 * the extent @offset_lblk 5614 */ 5615 if ((offset_lblk > ee_start_lblk) && 5616 (offset_lblk < (ee_start_lblk + ee_len))) { 5617 if (ext4_ext_is_unwritten(extent)) 5618 split_flag = EXT4_EXT_MARK_UNWRIT1 | 5619 EXT4_EXT_MARK_UNWRIT2; 5620 ret = ext4_split_extent_at(handle, inode, &path, 5621 offset_lblk, split_flag, 5622 EXT4_EX_NOCACHE | 5623 EXT4_GET_BLOCKS_PRE_IO | 5624 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5625 } 5626 5627 ext4_ext_drop_refs(path); 5628 kfree(path); 5629 if (ret < 0) { 5630 up_write(&EXT4_I(inode)->i_data_sem); 5631 goto out_stop; 5632 } 5633 } else { 5634 ext4_ext_drop_refs(path); 5635 kfree(path); 5636 } 5637 5638 ret = ext4_es_remove_extent(inode, offset_lblk, 5639 EXT_MAX_BLOCKS - offset_lblk); 5640 if (ret) { 5641 up_write(&EXT4_I(inode)->i_data_sem); 5642 goto out_stop; 5643 } 5644 5645 /* 5646 * if offset_lblk lies in a hole which is at start of file, use 5647 * ee_start_lblk to shift extents 5648 */ 5649 ret = ext4_ext_shift_extents(inode, handle, 5650 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk, 5651 len_lblk, SHIFT_RIGHT); 5652 5653 up_write(&EXT4_I(inode)->i_data_sem); 5654 if (IS_SYNC(inode)) 5655 ext4_handle_sync(handle); 5656 if (ret >= 0) 5657 ext4_update_inode_fsync_trans(handle, inode, 1); 5658 5659 out_stop: 5660 ext4_journal_stop(handle); 5661 out_mmap: 5662 up_write(&EXT4_I(inode)->i_mmap_sem); 5663 out_mutex: 5664 inode_unlock(inode); 5665 return ret; 5666 } 5667 5668 /** 5669 * ext4_swap_extents - Swap extents between two inodes 5670 * 5671 * @inode1: First inode 5672 * @inode2: Second inode 5673 * @lblk1: Start block for first inode 5674 * @lblk2: Start block for second inode 5675 * @count: Number of blocks to swap 5676 * @unwritten: Mark second inode's extents as unwritten after swap 5677 * @erp: Pointer to save error value 5678 * 5679 * This helper routine does exactly what is promise "swap extents". All other 5680 * stuff such as page-cache locking consistency, bh mapping consistency or 5681 * extent's data copying must be performed by caller. 5682 * Locking: 5683 * i_mutex is held for both inodes 5684 * i_data_sem is locked for write for both inodes 5685 * Assumptions: 5686 * All pages from requested range are locked for both inodes 5687 */ 5688 int 5689 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5690 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5691 ext4_lblk_t count, int unwritten, int *erp) 5692 { 5693 struct ext4_ext_path *path1 = NULL; 5694 struct ext4_ext_path *path2 = NULL; 5695 int replaced_count = 0; 5696 5697 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5698 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5699 BUG_ON(!inode_is_locked(inode1)); 5700 BUG_ON(!inode_is_locked(inode2)); 5701 5702 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5703 if (unlikely(*erp)) 5704 return 0; 5705 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5706 if (unlikely(*erp)) 5707 return 0; 5708 5709 while (count) { 5710 struct ext4_extent *ex1, *ex2, tmp_ex; 5711 ext4_lblk_t e1_blk, e2_blk; 5712 int e1_len, e2_len, len; 5713 int split = 0; 5714 5715 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5716 if (IS_ERR(path1)) { 5717 *erp = PTR_ERR(path1); 5718 path1 = NULL; 5719 finish: 5720 count = 0; 5721 goto repeat; 5722 } 5723 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5724 if (IS_ERR(path2)) { 5725 *erp = PTR_ERR(path2); 5726 path2 = NULL; 5727 goto finish; 5728 } 5729 ex1 = path1[path1->p_depth].p_ext; 5730 ex2 = path2[path2->p_depth].p_ext; 5731 /* Do we have somthing to swap ? */ 5732 if (unlikely(!ex2 || !ex1)) 5733 goto finish; 5734 5735 e1_blk = le32_to_cpu(ex1->ee_block); 5736 e2_blk = le32_to_cpu(ex2->ee_block); 5737 e1_len = ext4_ext_get_actual_len(ex1); 5738 e2_len = ext4_ext_get_actual_len(ex2); 5739 5740 /* Hole handling */ 5741 if (!in_range(lblk1, e1_blk, e1_len) || 5742 !in_range(lblk2, e2_blk, e2_len)) { 5743 ext4_lblk_t next1, next2; 5744 5745 /* if hole after extent, then go to next extent */ 5746 next1 = ext4_ext_next_allocated_block(path1); 5747 next2 = ext4_ext_next_allocated_block(path2); 5748 /* If hole before extent, then shift to that extent */ 5749 if (e1_blk > lblk1) 5750 next1 = e1_blk; 5751 if (e2_blk > lblk2) 5752 next2 = e2_blk; 5753 /* Do we have something to swap */ 5754 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5755 goto finish; 5756 /* Move to the rightest boundary */ 5757 len = next1 - lblk1; 5758 if (len < next2 - lblk2) 5759 len = next2 - lblk2; 5760 if (len > count) 5761 len = count; 5762 lblk1 += len; 5763 lblk2 += len; 5764 count -= len; 5765 goto repeat; 5766 } 5767 5768 /* Prepare left boundary */ 5769 if (e1_blk < lblk1) { 5770 split = 1; 5771 *erp = ext4_force_split_extent_at(handle, inode1, 5772 &path1, lblk1, 0); 5773 if (unlikely(*erp)) 5774 goto finish; 5775 } 5776 if (e2_blk < lblk2) { 5777 split = 1; 5778 *erp = ext4_force_split_extent_at(handle, inode2, 5779 &path2, lblk2, 0); 5780 if (unlikely(*erp)) 5781 goto finish; 5782 } 5783 /* ext4_split_extent_at() may result in leaf extent split, 5784 * path must to be revalidated. */ 5785 if (split) 5786 goto repeat; 5787 5788 /* Prepare right boundary */ 5789 len = count; 5790 if (len > e1_blk + e1_len - lblk1) 5791 len = e1_blk + e1_len - lblk1; 5792 if (len > e2_blk + e2_len - lblk2) 5793 len = e2_blk + e2_len - lblk2; 5794 5795 if (len != e1_len) { 5796 split = 1; 5797 *erp = ext4_force_split_extent_at(handle, inode1, 5798 &path1, lblk1 + len, 0); 5799 if (unlikely(*erp)) 5800 goto finish; 5801 } 5802 if (len != e2_len) { 5803 split = 1; 5804 *erp = ext4_force_split_extent_at(handle, inode2, 5805 &path2, lblk2 + len, 0); 5806 if (*erp) 5807 goto finish; 5808 } 5809 /* ext4_split_extent_at() may result in leaf extent split, 5810 * path must to be revalidated. */ 5811 if (split) 5812 goto repeat; 5813 5814 BUG_ON(e2_len != e1_len); 5815 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5816 if (unlikely(*erp)) 5817 goto finish; 5818 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5819 if (unlikely(*erp)) 5820 goto finish; 5821 5822 /* Both extents are fully inside boundaries. Swap it now */ 5823 tmp_ex = *ex1; 5824 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5825 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5826 ex1->ee_len = cpu_to_le16(e2_len); 5827 ex2->ee_len = cpu_to_le16(e1_len); 5828 if (unwritten) 5829 ext4_ext_mark_unwritten(ex2); 5830 if (ext4_ext_is_unwritten(&tmp_ex)) 5831 ext4_ext_mark_unwritten(ex1); 5832 5833 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5834 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5835 *erp = ext4_ext_dirty(handle, inode2, path2 + 5836 path2->p_depth); 5837 if (unlikely(*erp)) 5838 goto finish; 5839 *erp = ext4_ext_dirty(handle, inode1, path1 + 5840 path1->p_depth); 5841 /* 5842 * Looks scarry ah..? second inode already points to new blocks, 5843 * and it was successfully dirtied. But luckily error may happen 5844 * only due to journal error, so full transaction will be 5845 * aborted anyway. 5846 */ 5847 if (unlikely(*erp)) 5848 goto finish; 5849 lblk1 += len; 5850 lblk2 += len; 5851 replaced_count += len; 5852 count -= len; 5853 5854 repeat: 5855 ext4_ext_drop_refs(path1); 5856 kfree(path1); 5857 ext4_ext_drop_refs(path2); 5858 kfree(path2); 5859 path1 = path2 = NULL; 5860 } 5861 return replaced_count; 5862 } 5863 5864 /* 5865 * ext4_clu_mapped - determine whether any block in a logical cluster has 5866 * been mapped to a physical cluster 5867 * 5868 * @inode - file containing the logical cluster 5869 * @lclu - logical cluster of interest 5870 * 5871 * Returns 1 if any block in the logical cluster is mapped, signifying 5872 * that a physical cluster has been allocated for it. Otherwise, 5873 * returns 0. Can also return negative error codes. Derived from 5874 * ext4_ext_map_blocks(). 5875 */ 5876 int ext4_clu_mapped(struct inode *inode, ext4_lblk_t lclu) 5877 { 5878 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5879 struct ext4_ext_path *path; 5880 int depth, mapped = 0, err = 0; 5881 struct ext4_extent *extent; 5882 ext4_lblk_t first_lblk, first_lclu, last_lclu; 5883 5884 /* search for the extent closest to the first block in the cluster */ 5885 path = ext4_find_extent(inode, EXT4_C2B(sbi, lclu), NULL, 0); 5886 if (IS_ERR(path)) { 5887 err = PTR_ERR(path); 5888 path = NULL; 5889 goto out; 5890 } 5891 5892 depth = ext_depth(inode); 5893 5894 /* 5895 * A consistent leaf must not be empty. This situation is possible, 5896 * though, _during_ tree modification, and it's why an assert can't 5897 * be put in ext4_find_extent(). 5898 */ 5899 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 5900 EXT4_ERROR_INODE(inode, 5901 "bad extent address - lblock: %lu, depth: %d, pblock: %lld", 5902 (unsigned long) EXT4_C2B(sbi, lclu), 5903 depth, path[depth].p_block); 5904 err = -EFSCORRUPTED; 5905 goto out; 5906 } 5907 5908 extent = path[depth].p_ext; 5909 5910 /* can't be mapped if the extent tree is empty */ 5911 if (extent == NULL) 5912 goto out; 5913 5914 first_lblk = le32_to_cpu(extent->ee_block); 5915 first_lclu = EXT4_B2C(sbi, first_lblk); 5916 5917 /* 5918 * Three possible outcomes at this point - found extent spanning 5919 * the target cluster, to the left of the target cluster, or to the 5920 * right of the target cluster. The first two cases are handled here. 5921 * The last case indicates the target cluster is not mapped. 5922 */ 5923 if (lclu >= first_lclu) { 5924 last_lclu = EXT4_B2C(sbi, first_lblk + 5925 ext4_ext_get_actual_len(extent) - 1); 5926 if (lclu <= last_lclu) { 5927 mapped = 1; 5928 } else { 5929 first_lblk = ext4_ext_next_allocated_block(path); 5930 first_lclu = EXT4_B2C(sbi, first_lblk); 5931 if (lclu == first_lclu) 5932 mapped = 1; 5933 } 5934 } 5935 5936 out: 5937 ext4_ext_drop_refs(path); 5938 kfree(path); 5939 5940 return err ? err : mapped; 5941 } 5942