1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <linux/falloc.h> 41 #include <asm/uaccess.h> 42 #include <linux/fiemap.h> 43 #include "ext4_jbd2.h" 44 #include "ext4_extents.h" 45 #include "xattr.h" 46 47 #include <trace/events/ext4.h> 48 49 /* 50 * used by extent splitting. 51 */ 52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 53 due to ENOSPC */ 54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */ 55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */ 56 57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 59 60 static __le32 ext4_extent_block_csum(struct inode *inode, 61 struct ext4_extent_header *eh) 62 { 63 struct ext4_inode_info *ei = EXT4_I(inode); 64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 65 __u32 csum; 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 68 EXT4_EXTENT_TAIL_OFFSET(eh)); 69 return cpu_to_le32(csum); 70 } 71 72 static int ext4_extent_block_csum_verify(struct inode *inode, 73 struct ext4_extent_header *eh) 74 { 75 struct ext4_extent_tail *et; 76 77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 79 return 1; 80 81 et = find_ext4_extent_tail(eh); 82 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 83 return 0; 84 return 1; 85 } 86 87 static void ext4_extent_block_csum_set(struct inode *inode, 88 struct ext4_extent_header *eh) 89 { 90 struct ext4_extent_tail *et; 91 92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 94 return; 95 96 et = find_ext4_extent_tail(eh); 97 et->et_checksum = ext4_extent_block_csum(inode, eh); 98 } 99 100 static int ext4_split_extent(handle_t *handle, 101 struct inode *inode, 102 struct ext4_ext_path *path, 103 struct ext4_map_blocks *map, 104 int split_flag, 105 int flags); 106 107 static int ext4_split_extent_at(handle_t *handle, 108 struct inode *inode, 109 struct ext4_ext_path *path, 110 ext4_lblk_t split, 111 int split_flag, 112 int flags); 113 114 static int ext4_find_delayed_extent(struct inode *inode, 115 struct extent_status *newes); 116 117 static int ext4_ext_truncate_extend_restart(handle_t *handle, 118 struct inode *inode, 119 int needed) 120 { 121 int err; 122 123 if (!ext4_handle_valid(handle)) 124 return 0; 125 if (handle->h_buffer_credits > needed) 126 return 0; 127 err = ext4_journal_extend(handle, needed); 128 if (err <= 0) 129 return err; 130 err = ext4_truncate_restart_trans(handle, inode, needed); 131 if (err == 0) 132 err = -EAGAIN; 133 134 return err; 135 } 136 137 /* 138 * could return: 139 * - EROFS 140 * - ENOMEM 141 */ 142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 143 struct ext4_ext_path *path) 144 { 145 if (path->p_bh) { 146 /* path points to block */ 147 return ext4_journal_get_write_access(handle, path->p_bh); 148 } 149 /* path points to leaf/index in inode body */ 150 /* we use in-core data, no need to protect them */ 151 return 0; 152 } 153 154 /* 155 * could return: 156 * - EROFS 157 * - ENOMEM 158 * - EIO 159 */ 160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 161 struct inode *inode, struct ext4_ext_path *path) 162 { 163 int err; 164 if (path->p_bh) { 165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 166 /* path points to block */ 167 err = __ext4_handle_dirty_metadata(where, line, handle, 168 inode, path->p_bh); 169 } else { 170 /* path points to leaf/index in inode body */ 171 err = ext4_mark_inode_dirty(handle, inode); 172 } 173 return err; 174 } 175 176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 177 struct ext4_ext_path *path, 178 ext4_lblk_t block) 179 { 180 if (path) { 181 int depth = path->p_depth; 182 struct ext4_extent *ex; 183 184 /* 185 * Try to predict block placement assuming that we are 186 * filling in a file which will eventually be 187 * non-sparse --- i.e., in the case of libbfd writing 188 * an ELF object sections out-of-order but in a way 189 * the eventually results in a contiguous object or 190 * executable file, or some database extending a table 191 * space file. However, this is actually somewhat 192 * non-ideal if we are writing a sparse file such as 193 * qemu or KVM writing a raw image file that is going 194 * to stay fairly sparse, since it will end up 195 * fragmenting the file system's free space. Maybe we 196 * should have some hueristics or some way to allow 197 * userspace to pass a hint to file system, 198 * especially if the latter case turns out to be 199 * common. 200 */ 201 ex = path[depth].p_ext; 202 if (ex) { 203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 205 206 if (block > ext_block) 207 return ext_pblk + (block - ext_block); 208 else 209 return ext_pblk - (ext_block - block); 210 } 211 212 /* it looks like index is empty; 213 * try to find starting block from index itself */ 214 if (path[depth].p_bh) 215 return path[depth].p_bh->b_blocknr; 216 } 217 218 /* OK. use inode's group */ 219 return ext4_inode_to_goal_block(inode); 220 } 221 222 /* 223 * Allocation for a meta data block 224 */ 225 static ext4_fsblk_t 226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 227 struct ext4_ext_path *path, 228 struct ext4_extent *ex, int *err, unsigned int flags) 229 { 230 ext4_fsblk_t goal, newblock; 231 232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 234 NULL, err); 235 return newblock; 236 } 237 238 static inline int ext4_ext_space_block(struct inode *inode, int check) 239 { 240 int size; 241 242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 243 / sizeof(struct ext4_extent); 244 #ifdef AGGRESSIVE_TEST 245 if (!check && size > 6) 246 size = 6; 247 #endif 248 return size; 249 } 250 251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 252 { 253 int size; 254 255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 256 / sizeof(struct ext4_extent_idx); 257 #ifdef AGGRESSIVE_TEST 258 if (!check && size > 5) 259 size = 5; 260 #endif 261 return size; 262 } 263 264 static inline int ext4_ext_space_root(struct inode *inode, int check) 265 { 266 int size; 267 268 size = sizeof(EXT4_I(inode)->i_data); 269 size -= sizeof(struct ext4_extent_header); 270 size /= sizeof(struct ext4_extent); 271 #ifdef AGGRESSIVE_TEST 272 if (!check && size > 3) 273 size = 3; 274 #endif 275 return size; 276 } 277 278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 279 { 280 int size; 281 282 size = sizeof(EXT4_I(inode)->i_data); 283 size -= sizeof(struct ext4_extent_header); 284 size /= sizeof(struct ext4_extent_idx); 285 #ifdef AGGRESSIVE_TEST 286 if (!check && size > 4) 287 size = 4; 288 #endif 289 return size; 290 } 291 292 /* 293 * Calculate the number of metadata blocks needed 294 * to allocate @blocks 295 * Worse case is one block per extent 296 */ 297 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 298 { 299 struct ext4_inode_info *ei = EXT4_I(inode); 300 int idxs; 301 302 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 303 / sizeof(struct ext4_extent_idx)); 304 305 /* 306 * If the new delayed allocation block is contiguous with the 307 * previous da block, it can share index blocks with the 308 * previous block, so we only need to allocate a new index 309 * block every idxs leaf blocks. At ldxs**2 blocks, we need 310 * an additional index block, and at ldxs**3 blocks, yet 311 * another index blocks. 312 */ 313 if (ei->i_da_metadata_calc_len && 314 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 315 int num = 0; 316 317 if ((ei->i_da_metadata_calc_len % idxs) == 0) 318 num++; 319 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 320 num++; 321 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 322 num++; 323 ei->i_da_metadata_calc_len = 0; 324 } else 325 ei->i_da_metadata_calc_len++; 326 ei->i_da_metadata_calc_last_lblock++; 327 return num; 328 } 329 330 /* 331 * In the worst case we need a new set of index blocks at 332 * every level of the inode's extent tree. 333 */ 334 ei->i_da_metadata_calc_len = 1; 335 ei->i_da_metadata_calc_last_lblock = lblock; 336 return ext_depth(inode) + 1; 337 } 338 339 static int 340 ext4_ext_max_entries(struct inode *inode, int depth) 341 { 342 int max; 343 344 if (depth == ext_depth(inode)) { 345 if (depth == 0) 346 max = ext4_ext_space_root(inode, 1); 347 else 348 max = ext4_ext_space_root_idx(inode, 1); 349 } else { 350 if (depth == 0) 351 max = ext4_ext_space_block(inode, 1); 352 else 353 max = ext4_ext_space_block_idx(inode, 1); 354 } 355 356 return max; 357 } 358 359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 360 { 361 ext4_fsblk_t block = ext4_ext_pblock(ext); 362 int len = ext4_ext_get_actual_len(ext); 363 364 if (len == 0) 365 return 0; 366 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 367 } 368 369 static int ext4_valid_extent_idx(struct inode *inode, 370 struct ext4_extent_idx *ext_idx) 371 { 372 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 373 374 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 375 } 376 377 static int ext4_valid_extent_entries(struct inode *inode, 378 struct ext4_extent_header *eh, 379 int depth) 380 { 381 unsigned short entries; 382 if (eh->eh_entries == 0) 383 return 1; 384 385 entries = le16_to_cpu(eh->eh_entries); 386 387 if (depth == 0) { 388 /* leaf entries */ 389 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 390 while (entries) { 391 if (!ext4_valid_extent(inode, ext)) 392 return 0; 393 ext++; 394 entries--; 395 } 396 } else { 397 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 398 while (entries) { 399 if (!ext4_valid_extent_idx(inode, ext_idx)) 400 return 0; 401 ext_idx++; 402 entries--; 403 } 404 } 405 return 1; 406 } 407 408 static int __ext4_ext_check(const char *function, unsigned int line, 409 struct inode *inode, struct ext4_extent_header *eh, 410 int depth) 411 { 412 const char *error_msg; 413 int max = 0; 414 415 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 416 error_msg = "invalid magic"; 417 goto corrupted; 418 } 419 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 420 error_msg = "unexpected eh_depth"; 421 goto corrupted; 422 } 423 if (unlikely(eh->eh_max == 0)) { 424 error_msg = "invalid eh_max"; 425 goto corrupted; 426 } 427 max = ext4_ext_max_entries(inode, depth); 428 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 429 error_msg = "too large eh_max"; 430 goto corrupted; 431 } 432 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 433 error_msg = "invalid eh_entries"; 434 goto corrupted; 435 } 436 if (!ext4_valid_extent_entries(inode, eh, depth)) { 437 error_msg = "invalid extent entries"; 438 goto corrupted; 439 } 440 /* Verify checksum on non-root extent tree nodes */ 441 if (ext_depth(inode) != depth && 442 !ext4_extent_block_csum_verify(inode, eh)) { 443 error_msg = "extent tree corrupted"; 444 goto corrupted; 445 } 446 return 0; 447 448 corrupted: 449 ext4_error_inode(inode, function, line, 0, 450 "bad header/extent: %s - magic %x, " 451 "entries %u, max %u(%u), depth %u(%u)", 452 error_msg, le16_to_cpu(eh->eh_magic), 453 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 454 max, le16_to_cpu(eh->eh_depth), depth); 455 456 return -EIO; 457 } 458 459 #define ext4_ext_check(inode, eh, depth) \ 460 __ext4_ext_check(__func__, __LINE__, inode, eh, depth) 461 462 int ext4_ext_check_inode(struct inode *inode) 463 { 464 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); 465 } 466 467 static int __ext4_ext_check_block(const char *function, unsigned int line, 468 struct inode *inode, 469 struct ext4_extent_header *eh, 470 int depth, 471 struct buffer_head *bh) 472 { 473 int ret; 474 475 if (buffer_verified(bh)) 476 return 0; 477 ret = ext4_ext_check(inode, eh, depth); 478 if (ret) 479 return ret; 480 set_buffer_verified(bh); 481 return ret; 482 } 483 484 #define ext4_ext_check_block(inode, eh, depth, bh) \ 485 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh) 486 487 #ifdef EXT_DEBUG 488 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 489 { 490 int k, l = path->p_depth; 491 492 ext_debug("path:"); 493 for (k = 0; k <= l; k++, path++) { 494 if (path->p_idx) { 495 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 496 ext4_idx_pblock(path->p_idx)); 497 } else if (path->p_ext) { 498 ext_debug(" %d:[%d]%d:%llu ", 499 le32_to_cpu(path->p_ext->ee_block), 500 ext4_ext_is_uninitialized(path->p_ext), 501 ext4_ext_get_actual_len(path->p_ext), 502 ext4_ext_pblock(path->p_ext)); 503 } else 504 ext_debug(" []"); 505 } 506 ext_debug("\n"); 507 } 508 509 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 510 { 511 int depth = ext_depth(inode); 512 struct ext4_extent_header *eh; 513 struct ext4_extent *ex; 514 int i; 515 516 if (!path) 517 return; 518 519 eh = path[depth].p_hdr; 520 ex = EXT_FIRST_EXTENT(eh); 521 522 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 523 524 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 525 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 526 ext4_ext_is_uninitialized(ex), 527 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 528 } 529 ext_debug("\n"); 530 } 531 532 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 533 ext4_fsblk_t newblock, int level) 534 { 535 int depth = ext_depth(inode); 536 struct ext4_extent *ex; 537 538 if (depth != level) { 539 struct ext4_extent_idx *idx; 540 idx = path[level].p_idx; 541 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 542 ext_debug("%d: move %d:%llu in new index %llu\n", level, 543 le32_to_cpu(idx->ei_block), 544 ext4_idx_pblock(idx), 545 newblock); 546 idx++; 547 } 548 549 return; 550 } 551 552 ex = path[depth].p_ext; 553 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 554 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 555 le32_to_cpu(ex->ee_block), 556 ext4_ext_pblock(ex), 557 ext4_ext_is_uninitialized(ex), 558 ext4_ext_get_actual_len(ex), 559 newblock); 560 ex++; 561 } 562 } 563 564 #else 565 #define ext4_ext_show_path(inode, path) 566 #define ext4_ext_show_leaf(inode, path) 567 #define ext4_ext_show_move(inode, path, newblock, level) 568 #endif 569 570 void ext4_ext_drop_refs(struct ext4_ext_path *path) 571 { 572 int depth = path->p_depth; 573 int i; 574 575 for (i = 0; i <= depth; i++, path++) 576 if (path->p_bh) { 577 brelse(path->p_bh); 578 path->p_bh = NULL; 579 } 580 } 581 582 /* 583 * ext4_ext_binsearch_idx: 584 * binary search for the closest index of the given block 585 * the header must be checked before calling this 586 */ 587 static void 588 ext4_ext_binsearch_idx(struct inode *inode, 589 struct ext4_ext_path *path, ext4_lblk_t block) 590 { 591 struct ext4_extent_header *eh = path->p_hdr; 592 struct ext4_extent_idx *r, *l, *m; 593 594 595 ext_debug("binsearch for %u(idx): ", block); 596 597 l = EXT_FIRST_INDEX(eh) + 1; 598 r = EXT_LAST_INDEX(eh); 599 while (l <= r) { 600 m = l + (r - l) / 2; 601 if (block < le32_to_cpu(m->ei_block)) 602 r = m - 1; 603 else 604 l = m + 1; 605 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 606 m, le32_to_cpu(m->ei_block), 607 r, le32_to_cpu(r->ei_block)); 608 } 609 610 path->p_idx = l - 1; 611 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 612 ext4_idx_pblock(path->p_idx)); 613 614 #ifdef CHECK_BINSEARCH 615 { 616 struct ext4_extent_idx *chix, *ix; 617 int k; 618 619 chix = ix = EXT_FIRST_INDEX(eh); 620 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 621 if (k != 0 && 622 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 623 printk(KERN_DEBUG "k=%d, ix=0x%p, " 624 "first=0x%p\n", k, 625 ix, EXT_FIRST_INDEX(eh)); 626 printk(KERN_DEBUG "%u <= %u\n", 627 le32_to_cpu(ix->ei_block), 628 le32_to_cpu(ix[-1].ei_block)); 629 } 630 BUG_ON(k && le32_to_cpu(ix->ei_block) 631 <= le32_to_cpu(ix[-1].ei_block)); 632 if (block < le32_to_cpu(ix->ei_block)) 633 break; 634 chix = ix; 635 } 636 BUG_ON(chix != path->p_idx); 637 } 638 #endif 639 640 } 641 642 /* 643 * ext4_ext_binsearch: 644 * binary search for closest extent of the given block 645 * the header must be checked before calling this 646 */ 647 static void 648 ext4_ext_binsearch(struct inode *inode, 649 struct ext4_ext_path *path, ext4_lblk_t block) 650 { 651 struct ext4_extent_header *eh = path->p_hdr; 652 struct ext4_extent *r, *l, *m; 653 654 if (eh->eh_entries == 0) { 655 /* 656 * this leaf is empty: 657 * we get such a leaf in split/add case 658 */ 659 return; 660 } 661 662 ext_debug("binsearch for %u: ", block); 663 664 l = EXT_FIRST_EXTENT(eh) + 1; 665 r = EXT_LAST_EXTENT(eh); 666 667 while (l <= r) { 668 m = l + (r - l) / 2; 669 if (block < le32_to_cpu(m->ee_block)) 670 r = m - 1; 671 else 672 l = m + 1; 673 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 674 m, le32_to_cpu(m->ee_block), 675 r, le32_to_cpu(r->ee_block)); 676 } 677 678 path->p_ext = l - 1; 679 ext_debug(" -> %d:%llu:[%d]%d ", 680 le32_to_cpu(path->p_ext->ee_block), 681 ext4_ext_pblock(path->p_ext), 682 ext4_ext_is_uninitialized(path->p_ext), 683 ext4_ext_get_actual_len(path->p_ext)); 684 685 #ifdef CHECK_BINSEARCH 686 { 687 struct ext4_extent *chex, *ex; 688 int k; 689 690 chex = ex = EXT_FIRST_EXTENT(eh); 691 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 692 BUG_ON(k && le32_to_cpu(ex->ee_block) 693 <= le32_to_cpu(ex[-1].ee_block)); 694 if (block < le32_to_cpu(ex->ee_block)) 695 break; 696 chex = ex; 697 } 698 BUG_ON(chex != path->p_ext); 699 } 700 #endif 701 702 } 703 704 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 705 { 706 struct ext4_extent_header *eh; 707 708 eh = ext_inode_hdr(inode); 709 eh->eh_depth = 0; 710 eh->eh_entries = 0; 711 eh->eh_magic = EXT4_EXT_MAGIC; 712 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 713 ext4_mark_inode_dirty(handle, inode); 714 return 0; 715 } 716 717 struct ext4_ext_path * 718 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 719 struct ext4_ext_path *path) 720 { 721 struct ext4_extent_header *eh; 722 struct buffer_head *bh; 723 short int depth, i, ppos = 0, alloc = 0; 724 int ret; 725 726 eh = ext_inode_hdr(inode); 727 depth = ext_depth(inode); 728 729 /* account possible depth increase */ 730 if (!path) { 731 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 732 GFP_NOFS); 733 if (!path) 734 return ERR_PTR(-ENOMEM); 735 alloc = 1; 736 } 737 path[0].p_hdr = eh; 738 path[0].p_bh = NULL; 739 740 i = depth; 741 /* walk through the tree */ 742 while (i) { 743 ext_debug("depth %d: num %d, max %d\n", 744 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 745 746 ext4_ext_binsearch_idx(inode, path + ppos, block); 747 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 748 path[ppos].p_depth = i; 749 path[ppos].p_ext = NULL; 750 751 bh = sb_getblk(inode->i_sb, path[ppos].p_block); 752 if (unlikely(!bh)) { 753 ret = -ENOMEM; 754 goto err; 755 } 756 if (!bh_uptodate_or_lock(bh)) { 757 trace_ext4_ext_load_extent(inode, block, 758 path[ppos].p_block); 759 ret = bh_submit_read(bh); 760 if (ret < 0) { 761 put_bh(bh); 762 goto err; 763 } 764 } 765 eh = ext_block_hdr(bh); 766 ppos++; 767 if (unlikely(ppos > depth)) { 768 put_bh(bh); 769 EXT4_ERROR_INODE(inode, 770 "ppos %d > depth %d", ppos, depth); 771 ret = -EIO; 772 goto err; 773 } 774 path[ppos].p_bh = bh; 775 path[ppos].p_hdr = eh; 776 i--; 777 778 ret = ext4_ext_check_block(inode, eh, i, bh); 779 if (ret < 0) 780 goto err; 781 } 782 783 path[ppos].p_depth = i; 784 path[ppos].p_ext = NULL; 785 path[ppos].p_idx = NULL; 786 787 /* find extent */ 788 ext4_ext_binsearch(inode, path + ppos, block); 789 /* if not an empty leaf */ 790 if (path[ppos].p_ext) 791 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 792 793 ext4_ext_show_path(inode, path); 794 795 return path; 796 797 err: 798 ext4_ext_drop_refs(path); 799 if (alloc) 800 kfree(path); 801 return ERR_PTR(ret); 802 } 803 804 /* 805 * ext4_ext_insert_index: 806 * insert new index [@logical;@ptr] into the block at @curp; 807 * check where to insert: before @curp or after @curp 808 */ 809 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 810 struct ext4_ext_path *curp, 811 int logical, ext4_fsblk_t ptr) 812 { 813 struct ext4_extent_idx *ix; 814 int len, err; 815 816 err = ext4_ext_get_access(handle, inode, curp); 817 if (err) 818 return err; 819 820 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 821 EXT4_ERROR_INODE(inode, 822 "logical %d == ei_block %d!", 823 logical, le32_to_cpu(curp->p_idx->ei_block)); 824 return -EIO; 825 } 826 827 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 828 >= le16_to_cpu(curp->p_hdr->eh_max))) { 829 EXT4_ERROR_INODE(inode, 830 "eh_entries %d >= eh_max %d!", 831 le16_to_cpu(curp->p_hdr->eh_entries), 832 le16_to_cpu(curp->p_hdr->eh_max)); 833 return -EIO; 834 } 835 836 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 837 /* insert after */ 838 ext_debug("insert new index %d after: %llu\n", logical, ptr); 839 ix = curp->p_idx + 1; 840 } else { 841 /* insert before */ 842 ext_debug("insert new index %d before: %llu\n", logical, ptr); 843 ix = curp->p_idx; 844 } 845 846 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 847 BUG_ON(len < 0); 848 if (len > 0) { 849 ext_debug("insert new index %d: " 850 "move %d indices from 0x%p to 0x%p\n", 851 logical, len, ix, ix + 1); 852 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 853 } 854 855 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 856 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 857 return -EIO; 858 } 859 860 ix->ei_block = cpu_to_le32(logical); 861 ext4_idx_store_pblock(ix, ptr); 862 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 863 864 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 865 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 866 return -EIO; 867 } 868 869 err = ext4_ext_dirty(handle, inode, curp); 870 ext4_std_error(inode->i_sb, err); 871 872 return err; 873 } 874 875 /* 876 * ext4_ext_split: 877 * inserts new subtree into the path, using free index entry 878 * at depth @at: 879 * - allocates all needed blocks (new leaf and all intermediate index blocks) 880 * - makes decision where to split 881 * - moves remaining extents and index entries (right to the split point) 882 * into the newly allocated blocks 883 * - initializes subtree 884 */ 885 static int ext4_ext_split(handle_t *handle, struct inode *inode, 886 unsigned int flags, 887 struct ext4_ext_path *path, 888 struct ext4_extent *newext, int at) 889 { 890 struct buffer_head *bh = NULL; 891 int depth = ext_depth(inode); 892 struct ext4_extent_header *neh; 893 struct ext4_extent_idx *fidx; 894 int i = at, k, m, a; 895 ext4_fsblk_t newblock, oldblock; 896 __le32 border; 897 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 898 int err = 0; 899 900 /* make decision: where to split? */ 901 /* FIXME: now decision is simplest: at current extent */ 902 903 /* if current leaf will be split, then we should use 904 * border from split point */ 905 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 906 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 907 return -EIO; 908 } 909 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 910 border = path[depth].p_ext[1].ee_block; 911 ext_debug("leaf will be split." 912 " next leaf starts at %d\n", 913 le32_to_cpu(border)); 914 } else { 915 border = newext->ee_block; 916 ext_debug("leaf will be added." 917 " next leaf starts at %d\n", 918 le32_to_cpu(border)); 919 } 920 921 /* 922 * If error occurs, then we break processing 923 * and mark filesystem read-only. index won't 924 * be inserted and tree will be in consistent 925 * state. Next mount will repair buffers too. 926 */ 927 928 /* 929 * Get array to track all allocated blocks. 930 * We need this to handle errors and free blocks 931 * upon them. 932 */ 933 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 934 if (!ablocks) 935 return -ENOMEM; 936 937 /* allocate all needed blocks */ 938 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 939 for (a = 0; a < depth - at; a++) { 940 newblock = ext4_ext_new_meta_block(handle, inode, path, 941 newext, &err, flags); 942 if (newblock == 0) 943 goto cleanup; 944 ablocks[a] = newblock; 945 } 946 947 /* initialize new leaf */ 948 newblock = ablocks[--a]; 949 if (unlikely(newblock == 0)) { 950 EXT4_ERROR_INODE(inode, "newblock == 0!"); 951 err = -EIO; 952 goto cleanup; 953 } 954 bh = sb_getblk(inode->i_sb, newblock); 955 if (unlikely(!bh)) { 956 err = -ENOMEM; 957 goto cleanup; 958 } 959 lock_buffer(bh); 960 961 err = ext4_journal_get_create_access(handle, bh); 962 if (err) 963 goto cleanup; 964 965 neh = ext_block_hdr(bh); 966 neh->eh_entries = 0; 967 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 968 neh->eh_magic = EXT4_EXT_MAGIC; 969 neh->eh_depth = 0; 970 971 /* move remainder of path[depth] to the new leaf */ 972 if (unlikely(path[depth].p_hdr->eh_entries != 973 path[depth].p_hdr->eh_max)) { 974 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 975 path[depth].p_hdr->eh_entries, 976 path[depth].p_hdr->eh_max); 977 err = -EIO; 978 goto cleanup; 979 } 980 /* start copy from next extent */ 981 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 982 ext4_ext_show_move(inode, path, newblock, depth); 983 if (m) { 984 struct ext4_extent *ex; 985 ex = EXT_FIRST_EXTENT(neh); 986 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 987 le16_add_cpu(&neh->eh_entries, m); 988 } 989 990 ext4_extent_block_csum_set(inode, neh); 991 set_buffer_uptodate(bh); 992 unlock_buffer(bh); 993 994 err = ext4_handle_dirty_metadata(handle, inode, bh); 995 if (err) 996 goto cleanup; 997 brelse(bh); 998 bh = NULL; 999 1000 /* correct old leaf */ 1001 if (m) { 1002 err = ext4_ext_get_access(handle, inode, path + depth); 1003 if (err) 1004 goto cleanup; 1005 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1006 err = ext4_ext_dirty(handle, inode, path + depth); 1007 if (err) 1008 goto cleanup; 1009 1010 } 1011 1012 /* create intermediate indexes */ 1013 k = depth - at - 1; 1014 if (unlikely(k < 0)) { 1015 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1016 err = -EIO; 1017 goto cleanup; 1018 } 1019 if (k) 1020 ext_debug("create %d intermediate indices\n", k); 1021 /* insert new index into current index block */ 1022 /* current depth stored in i var */ 1023 i = depth - 1; 1024 while (k--) { 1025 oldblock = newblock; 1026 newblock = ablocks[--a]; 1027 bh = sb_getblk(inode->i_sb, newblock); 1028 if (unlikely(!bh)) { 1029 err = -ENOMEM; 1030 goto cleanup; 1031 } 1032 lock_buffer(bh); 1033 1034 err = ext4_journal_get_create_access(handle, bh); 1035 if (err) 1036 goto cleanup; 1037 1038 neh = ext_block_hdr(bh); 1039 neh->eh_entries = cpu_to_le16(1); 1040 neh->eh_magic = EXT4_EXT_MAGIC; 1041 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1042 neh->eh_depth = cpu_to_le16(depth - i); 1043 fidx = EXT_FIRST_INDEX(neh); 1044 fidx->ei_block = border; 1045 ext4_idx_store_pblock(fidx, oldblock); 1046 1047 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1048 i, newblock, le32_to_cpu(border), oldblock); 1049 1050 /* move remainder of path[i] to the new index block */ 1051 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1052 EXT_LAST_INDEX(path[i].p_hdr))) { 1053 EXT4_ERROR_INODE(inode, 1054 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1055 le32_to_cpu(path[i].p_ext->ee_block)); 1056 err = -EIO; 1057 goto cleanup; 1058 } 1059 /* start copy indexes */ 1060 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1061 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1062 EXT_MAX_INDEX(path[i].p_hdr)); 1063 ext4_ext_show_move(inode, path, newblock, i); 1064 if (m) { 1065 memmove(++fidx, path[i].p_idx, 1066 sizeof(struct ext4_extent_idx) * m); 1067 le16_add_cpu(&neh->eh_entries, m); 1068 } 1069 ext4_extent_block_csum_set(inode, neh); 1070 set_buffer_uptodate(bh); 1071 unlock_buffer(bh); 1072 1073 err = ext4_handle_dirty_metadata(handle, inode, bh); 1074 if (err) 1075 goto cleanup; 1076 brelse(bh); 1077 bh = NULL; 1078 1079 /* correct old index */ 1080 if (m) { 1081 err = ext4_ext_get_access(handle, inode, path + i); 1082 if (err) 1083 goto cleanup; 1084 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1085 err = ext4_ext_dirty(handle, inode, path + i); 1086 if (err) 1087 goto cleanup; 1088 } 1089 1090 i--; 1091 } 1092 1093 /* insert new index */ 1094 err = ext4_ext_insert_index(handle, inode, path + at, 1095 le32_to_cpu(border), newblock); 1096 1097 cleanup: 1098 if (bh) { 1099 if (buffer_locked(bh)) 1100 unlock_buffer(bh); 1101 brelse(bh); 1102 } 1103 1104 if (err) { 1105 /* free all allocated blocks in error case */ 1106 for (i = 0; i < depth; i++) { 1107 if (!ablocks[i]) 1108 continue; 1109 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1110 EXT4_FREE_BLOCKS_METADATA); 1111 } 1112 } 1113 kfree(ablocks); 1114 1115 return err; 1116 } 1117 1118 /* 1119 * ext4_ext_grow_indepth: 1120 * implements tree growing procedure: 1121 * - allocates new block 1122 * - moves top-level data (index block or leaf) into the new block 1123 * - initializes new top-level, creating index that points to the 1124 * just created block 1125 */ 1126 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1127 unsigned int flags, 1128 struct ext4_extent *newext) 1129 { 1130 struct ext4_extent_header *neh; 1131 struct buffer_head *bh; 1132 ext4_fsblk_t newblock; 1133 int err = 0; 1134 1135 newblock = ext4_ext_new_meta_block(handle, inode, NULL, 1136 newext, &err, flags); 1137 if (newblock == 0) 1138 return err; 1139 1140 bh = sb_getblk(inode->i_sb, newblock); 1141 if (unlikely(!bh)) 1142 return -ENOMEM; 1143 lock_buffer(bh); 1144 1145 err = ext4_journal_get_create_access(handle, bh); 1146 if (err) { 1147 unlock_buffer(bh); 1148 goto out; 1149 } 1150 1151 /* move top-level index/leaf into new block */ 1152 memmove(bh->b_data, EXT4_I(inode)->i_data, 1153 sizeof(EXT4_I(inode)->i_data)); 1154 1155 /* set size of new block */ 1156 neh = ext_block_hdr(bh); 1157 /* old root could have indexes or leaves 1158 * so calculate e_max right way */ 1159 if (ext_depth(inode)) 1160 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1161 else 1162 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1163 neh->eh_magic = EXT4_EXT_MAGIC; 1164 ext4_extent_block_csum_set(inode, neh); 1165 set_buffer_uptodate(bh); 1166 unlock_buffer(bh); 1167 1168 err = ext4_handle_dirty_metadata(handle, inode, bh); 1169 if (err) 1170 goto out; 1171 1172 /* Update top-level index: num,max,pointer */ 1173 neh = ext_inode_hdr(inode); 1174 neh->eh_entries = cpu_to_le16(1); 1175 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1176 if (neh->eh_depth == 0) { 1177 /* Root extent block becomes index block */ 1178 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1179 EXT_FIRST_INDEX(neh)->ei_block = 1180 EXT_FIRST_EXTENT(neh)->ee_block; 1181 } 1182 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1183 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1184 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1185 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1186 1187 le16_add_cpu(&neh->eh_depth, 1); 1188 ext4_mark_inode_dirty(handle, inode); 1189 out: 1190 brelse(bh); 1191 1192 return err; 1193 } 1194 1195 /* 1196 * ext4_ext_create_new_leaf: 1197 * finds empty index and adds new leaf. 1198 * if no free index is found, then it requests in-depth growing. 1199 */ 1200 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1201 unsigned int flags, 1202 struct ext4_ext_path *path, 1203 struct ext4_extent *newext) 1204 { 1205 struct ext4_ext_path *curp; 1206 int depth, i, err = 0; 1207 1208 repeat: 1209 i = depth = ext_depth(inode); 1210 1211 /* walk up to the tree and look for free index entry */ 1212 curp = path + depth; 1213 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1214 i--; 1215 curp--; 1216 } 1217 1218 /* we use already allocated block for index block, 1219 * so subsequent data blocks should be contiguous */ 1220 if (EXT_HAS_FREE_INDEX(curp)) { 1221 /* if we found index with free entry, then use that 1222 * entry: create all needed subtree and add new leaf */ 1223 err = ext4_ext_split(handle, inode, flags, path, newext, i); 1224 if (err) 1225 goto out; 1226 1227 /* refill path */ 1228 ext4_ext_drop_refs(path); 1229 path = ext4_ext_find_extent(inode, 1230 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1231 path); 1232 if (IS_ERR(path)) 1233 err = PTR_ERR(path); 1234 } else { 1235 /* tree is full, time to grow in depth */ 1236 err = ext4_ext_grow_indepth(handle, inode, flags, newext); 1237 if (err) 1238 goto out; 1239 1240 /* refill path */ 1241 ext4_ext_drop_refs(path); 1242 path = ext4_ext_find_extent(inode, 1243 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1244 path); 1245 if (IS_ERR(path)) { 1246 err = PTR_ERR(path); 1247 goto out; 1248 } 1249 1250 /* 1251 * only first (depth 0 -> 1) produces free space; 1252 * in all other cases we have to split the grown tree 1253 */ 1254 depth = ext_depth(inode); 1255 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1256 /* now we need to split */ 1257 goto repeat; 1258 } 1259 } 1260 1261 out: 1262 return err; 1263 } 1264 1265 /* 1266 * search the closest allocated block to the left for *logical 1267 * and returns it at @logical + it's physical address at @phys 1268 * if *logical is the smallest allocated block, the function 1269 * returns 0 at @phys 1270 * return value contains 0 (success) or error code 1271 */ 1272 static int ext4_ext_search_left(struct inode *inode, 1273 struct ext4_ext_path *path, 1274 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1275 { 1276 struct ext4_extent_idx *ix; 1277 struct ext4_extent *ex; 1278 int depth, ee_len; 1279 1280 if (unlikely(path == NULL)) { 1281 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1282 return -EIO; 1283 } 1284 depth = path->p_depth; 1285 *phys = 0; 1286 1287 if (depth == 0 && path->p_ext == NULL) 1288 return 0; 1289 1290 /* usually extent in the path covers blocks smaller 1291 * then *logical, but it can be that extent is the 1292 * first one in the file */ 1293 1294 ex = path[depth].p_ext; 1295 ee_len = ext4_ext_get_actual_len(ex); 1296 if (*logical < le32_to_cpu(ex->ee_block)) { 1297 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1298 EXT4_ERROR_INODE(inode, 1299 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1300 *logical, le32_to_cpu(ex->ee_block)); 1301 return -EIO; 1302 } 1303 while (--depth >= 0) { 1304 ix = path[depth].p_idx; 1305 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1306 EXT4_ERROR_INODE(inode, 1307 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1308 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1309 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1310 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1311 depth); 1312 return -EIO; 1313 } 1314 } 1315 return 0; 1316 } 1317 1318 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1319 EXT4_ERROR_INODE(inode, 1320 "logical %d < ee_block %d + ee_len %d!", 1321 *logical, le32_to_cpu(ex->ee_block), ee_len); 1322 return -EIO; 1323 } 1324 1325 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1326 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1327 return 0; 1328 } 1329 1330 /* 1331 * search the closest allocated block to the right for *logical 1332 * and returns it at @logical + it's physical address at @phys 1333 * if *logical is the largest allocated block, the function 1334 * returns 0 at @phys 1335 * return value contains 0 (success) or error code 1336 */ 1337 static int ext4_ext_search_right(struct inode *inode, 1338 struct ext4_ext_path *path, 1339 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1340 struct ext4_extent **ret_ex) 1341 { 1342 struct buffer_head *bh = NULL; 1343 struct ext4_extent_header *eh; 1344 struct ext4_extent_idx *ix; 1345 struct ext4_extent *ex; 1346 ext4_fsblk_t block; 1347 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1348 int ee_len; 1349 1350 if (unlikely(path == NULL)) { 1351 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1352 return -EIO; 1353 } 1354 depth = path->p_depth; 1355 *phys = 0; 1356 1357 if (depth == 0 && path->p_ext == NULL) 1358 return 0; 1359 1360 /* usually extent in the path covers blocks smaller 1361 * then *logical, but it can be that extent is the 1362 * first one in the file */ 1363 1364 ex = path[depth].p_ext; 1365 ee_len = ext4_ext_get_actual_len(ex); 1366 if (*logical < le32_to_cpu(ex->ee_block)) { 1367 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1368 EXT4_ERROR_INODE(inode, 1369 "first_extent(path[%d].p_hdr) != ex", 1370 depth); 1371 return -EIO; 1372 } 1373 while (--depth >= 0) { 1374 ix = path[depth].p_idx; 1375 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1376 EXT4_ERROR_INODE(inode, 1377 "ix != EXT_FIRST_INDEX *logical %d!", 1378 *logical); 1379 return -EIO; 1380 } 1381 } 1382 goto found_extent; 1383 } 1384 1385 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1386 EXT4_ERROR_INODE(inode, 1387 "logical %d < ee_block %d + ee_len %d!", 1388 *logical, le32_to_cpu(ex->ee_block), ee_len); 1389 return -EIO; 1390 } 1391 1392 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1393 /* next allocated block in this leaf */ 1394 ex++; 1395 goto found_extent; 1396 } 1397 1398 /* go up and search for index to the right */ 1399 while (--depth >= 0) { 1400 ix = path[depth].p_idx; 1401 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1402 goto got_index; 1403 } 1404 1405 /* we've gone up to the root and found no index to the right */ 1406 return 0; 1407 1408 got_index: 1409 /* we've found index to the right, let's 1410 * follow it and find the closest allocated 1411 * block to the right */ 1412 ix++; 1413 block = ext4_idx_pblock(ix); 1414 while (++depth < path->p_depth) { 1415 bh = sb_bread(inode->i_sb, block); 1416 if (bh == NULL) 1417 return -EIO; 1418 eh = ext_block_hdr(bh); 1419 /* subtract from p_depth to get proper eh_depth */ 1420 if (ext4_ext_check_block(inode, eh, 1421 path->p_depth - depth, bh)) { 1422 put_bh(bh); 1423 return -EIO; 1424 } 1425 ix = EXT_FIRST_INDEX(eh); 1426 block = ext4_idx_pblock(ix); 1427 put_bh(bh); 1428 } 1429 1430 bh = sb_bread(inode->i_sb, block); 1431 if (bh == NULL) 1432 return -EIO; 1433 eh = ext_block_hdr(bh); 1434 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) { 1435 put_bh(bh); 1436 return -EIO; 1437 } 1438 ex = EXT_FIRST_EXTENT(eh); 1439 found_extent: 1440 *logical = le32_to_cpu(ex->ee_block); 1441 *phys = ext4_ext_pblock(ex); 1442 *ret_ex = ex; 1443 if (bh) 1444 put_bh(bh); 1445 return 0; 1446 } 1447 1448 /* 1449 * ext4_ext_next_allocated_block: 1450 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1451 * NOTE: it considers block number from index entry as 1452 * allocated block. Thus, index entries have to be consistent 1453 * with leaves. 1454 */ 1455 static ext4_lblk_t 1456 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1457 { 1458 int depth; 1459 1460 BUG_ON(path == NULL); 1461 depth = path->p_depth; 1462 1463 if (depth == 0 && path->p_ext == NULL) 1464 return EXT_MAX_BLOCKS; 1465 1466 while (depth >= 0) { 1467 if (depth == path->p_depth) { 1468 /* leaf */ 1469 if (path[depth].p_ext && 1470 path[depth].p_ext != 1471 EXT_LAST_EXTENT(path[depth].p_hdr)) 1472 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1473 } else { 1474 /* index */ 1475 if (path[depth].p_idx != 1476 EXT_LAST_INDEX(path[depth].p_hdr)) 1477 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1478 } 1479 depth--; 1480 } 1481 1482 return EXT_MAX_BLOCKS; 1483 } 1484 1485 /* 1486 * ext4_ext_next_leaf_block: 1487 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1488 */ 1489 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1490 { 1491 int depth; 1492 1493 BUG_ON(path == NULL); 1494 depth = path->p_depth; 1495 1496 /* zero-tree has no leaf blocks at all */ 1497 if (depth == 0) 1498 return EXT_MAX_BLOCKS; 1499 1500 /* go to index block */ 1501 depth--; 1502 1503 while (depth >= 0) { 1504 if (path[depth].p_idx != 1505 EXT_LAST_INDEX(path[depth].p_hdr)) 1506 return (ext4_lblk_t) 1507 le32_to_cpu(path[depth].p_idx[1].ei_block); 1508 depth--; 1509 } 1510 1511 return EXT_MAX_BLOCKS; 1512 } 1513 1514 /* 1515 * ext4_ext_correct_indexes: 1516 * if leaf gets modified and modified extent is first in the leaf, 1517 * then we have to correct all indexes above. 1518 * TODO: do we need to correct tree in all cases? 1519 */ 1520 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1521 struct ext4_ext_path *path) 1522 { 1523 struct ext4_extent_header *eh; 1524 int depth = ext_depth(inode); 1525 struct ext4_extent *ex; 1526 __le32 border; 1527 int k, err = 0; 1528 1529 eh = path[depth].p_hdr; 1530 ex = path[depth].p_ext; 1531 1532 if (unlikely(ex == NULL || eh == NULL)) { 1533 EXT4_ERROR_INODE(inode, 1534 "ex %p == NULL or eh %p == NULL", ex, eh); 1535 return -EIO; 1536 } 1537 1538 if (depth == 0) { 1539 /* there is no tree at all */ 1540 return 0; 1541 } 1542 1543 if (ex != EXT_FIRST_EXTENT(eh)) { 1544 /* we correct tree if first leaf got modified only */ 1545 return 0; 1546 } 1547 1548 /* 1549 * TODO: we need correction if border is smaller than current one 1550 */ 1551 k = depth - 1; 1552 border = path[depth].p_ext->ee_block; 1553 err = ext4_ext_get_access(handle, inode, path + k); 1554 if (err) 1555 return err; 1556 path[k].p_idx->ei_block = border; 1557 err = ext4_ext_dirty(handle, inode, path + k); 1558 if (err) 1559 return err; 1560 1561 while (k--) { 1562 /* change all left-side indexes */ 1563 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1564 break; 1565 err = ext4_ext_get_access(handle, inode, path + k); 1566 if (err) 1567 break; 1568 path[k].p_idx->ei_block = border; 1569 err = ext4_ext_dirty(handle, inode, path + k); 1570 if (err) 1571 break; 1572 } 1573 1574 return err; 1575 } 1576 1577 int 1578 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1579 struct ext4_extent *ex2) 1580 { 1581 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1582 1583 /* 1584 * Make sure that both extents are initialized. We don't merge 1585 * uninitialized extents so that we can be sure that end_io code has 1586 * the extent that was written properly split out and conversion to 1587 * initialized is trivial. 1588 */ 1589 if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2)) 1590 return 0; 1591 1592 if (ext4_ext_is_uninitialized(ex1)) 1593 max_len = EXT_UNINIT_MAX_LEN; 1594 else 1595 max_len = EXT_INIT_MAX_LEN; 1596 1597 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1598 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1599 1600 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1601 le32_to_cpu(ex2->ee_block)) 1602 return 0; 1603 1604 /* 1605 * To allow future support for preallocated extents to be added 1606 * as an RO_COMPAT feature, refuse to merge to extents if 1607 * this can result in the top bit of ee_len being set. 1608 */ 1609 if (ext1_ee_len + ext2_ee_len > max_len) 1610 return 0; 1611 #ifdef AGGRESSIVE_TEST 1612 if (ext1_ee_len >= 4) 1613 return 0; 1614 #endif 1615 1616 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1617 return 1; 1618 return 0; 1619 } 1620 1621 /* 1622 * This function tries to merge the "ex" extent to the next extent in the tree. 1623 * It always tries to merge towards right. If you want to merge towards 1624 * left, pass "ex - 1" as argument instead of "ex". 1625 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1626 * 1 if they got merged. 1627 */ 1628 static int ext4_ext_try_to_merge_right(struct inode *inode, 1629 struct ext4_ext_path *path, 1630 struct ext4_extent *ex) 1631 { 1632 struct ext4_extent_header *eh; 1633 unsigned int depth, len; 1634 int merge_done = 0; 1635 int uninitialized = 0; 1636 1637 depth = ext_depth(inode); 1638 BUG_ON(path[depth].p_hdr == NULL); 1639 eh = path[depth].p_hdr; 1640 1641 while (ex < EXT_LAST_EXTENT(eh)) { 1642 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1643 break; 1644 /* merge with next extent! */ 1645 if (ext4_ext_is_uninitialized(ex)) 1646 uninitialized = 1; 1647 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1648 + ext4_ext_get_actual_len(ex + 1)); 1649 if (uninitialized) 1650 ext4_ext_mark_uninitialized(ex); 1651 1652 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1653 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1654 * sizeof(struct ext4_extent); 1655 memmove(ex + 1, ex + 2, len); 1656 } 1657 le16_add_cpu(&eh->eh_entries, -1); 1658 merge_done = 1; 1659 WARN_ON(eh->eh_entries == 0); 1660 if (!eh->eh_entries) 1661 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1662 } 1663 1664 return merge_done; 1665 } 1666 1667 /* 1668 * This function does a very simple check to see if we can collapse 1669 * an extent tree with a single extent tree leaf block into the inode. 1670 */ 1671 static void ext4_ext_try_to_merge_up(handle_t *handle, 1672 struct inode *inode, 1673 struct ext4_ext_path *path) 1674 { 1675 size_t s; 1676 unsigned max_root = ext4_ext_space_root(inode, 0); 1677 ext4_fsblk_t blk; 1678 1679 if ((path[0].p_depth != 1) || 1680 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1681 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1682 return; 1683 1684 /* 1685 * We need to modify the block allocation bitmap and the block 1686 * group descriptor to release the extent tree block. If we 1687 * can't get the journal credits, give up. 1688 */ 1689 if (ext4_journal_extend(handle, 2)) 1690 return; 1691 1692 /* 1693 * Copy the extent data up to the inode 1694 */ 1695 blk = ext4_idx_pblock(path[0].p_idx); 1696 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1697 sizeof(struct ext4_extent_idx); 1698 s += sizeof(struct ext4_extent_header); 1699 1700 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1701 path[0].p_depth = 0; 1702 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1703 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1704 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1705 1706 brelse(path[1].p_bh); 1707 ext4_free_blocks(handle, inode, NULL, blk, 1, 1708 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1709 } 1710 1711 /* 1712 * This function tries to merge the @ex extent to neighbours in the tree. 1713 * return 1 if merge left else 0. 1714 */ 1715 static void ext4_ext_try_to_merge(handle_t *handle, 1716 struct inode *inode, 1717 struct ext4_ext_path *path, 1718 struct ext4_extent *ex) { 1719 struct ext4_extent_header *eh; 1720 unsigned int depth; 1721 int merge_done = 0; 1722 1723 depth = ext_depth(inode); 1724 BUG_ON(path[depth].p_hdr == NULL); 1725 eh = path[depth].p_hdr; 1726 1727 if (ex > EXT_FIRST_EXTENT(eh)) 1728 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1729 1730 if (!merge_done) 1731 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1732 1733 ext4_ext_try_to_merge_up(handle, inode, path); 1734 } 1735 1736 /* 1737 * check if a portion of the "newext" extent overlaps with an 1738 * existing extent. 1739 * 1740 * If there is an overlap discovered, it updates the length of the newext 1741 * such that there will be no overlap, and then returns 1. 1742 * If there is no overlap found, it returns 0. 1743 */ 1744 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1745 struct inode *inode, 1746 struct ext4_extent *newext, 1747 struct ext4_ext_path *path) 1748 { 1749 ext4_lblk_t b1, b2; 1750 unsigned int depth, len1; 1751 unsigned int ret = 0; 1752 1753 b1 = le32_to_cpu(newext->ee_block); 1754 len1 = ext4_ext_get_actual_len(newext); 1755 depth = ext_depth(inode); 1756 if (!path[depth].p_ext) 1757 goto out; 1758 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1759 b2 &= ~(sbi->s_cluster_ratio - 1); 1760 1761 /* 1762 * get the next allocated block if the extent in the path 1763 * is before the requested block(s) 1764 */ 1765 if (b2 < b1) { 1766 b2 = ext4_ext_next_allocated_block(path); 1767 if (b2 == EXT_MAX_BLOCKS) 1768 goto out; 1769 b2 &= ~(sbi->s_cluster_ratio - 1); 1770 } 1771 1772 /* check for wrap through zero on extent logical start block*/ 1773 if (b1 + len1 < b1) { 1774 len1 = EXT_MAX_BLOCKS - b1; 1775 newext->ee_len = cpu_to_le16(len1); 1776 ret = 1; 1777 } 1778 1779 /* check for overlap */ 1780 if (b1 + len1 > b2) { 1781 newext->ee_len = cpu_to_le16(b2 - b1); 1782 ret = 1; 1783 } 1784 out: 1785 return ret; 1786 } 1787 1788 /* 1789 * ext4_ext_insert_extent: 1790 * tries to merge requsted extent into the existing extent or 1791 * inserts requested extent as new one into the tree, 1792 * creating new leaf in the no-space case. 1793 */ 1794 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1795 struct ext4_ext_path *path, 1796 struct ext4_extent *newext, int flag) 1797 { 1798 struct ext4_extent_header *eh; 1799 struct ext4_extent *ex, *fex; 1800 struct ext4_extent *nearex; /* nearest extent */ 1801 struct ext4_ext_path *npath = NULL; 1802 int depth, len, err; 1803 ext4_lblk_t next; 1804 unsigned uninitialized = 0; 1805 int flags = 0; 1806 1807 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1808 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1809 return -EIO; 1810 } 1811 depth = ext_depth(inode); 1812 ex = path[depth].p_ext; 1813 eh = path[depth].p_hdr; 1814 if (unlikely(path[depth].p_hdr == NULL)) { 1815 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1816 return -EIO; 1817 } 1818 1819 /* try to insert block into found extent and return */ 1820 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)) { 1821 1822 /* 1823 * Try to see whether we should rather test the extent on 1824 * right from ex, or from the left of ex. This is because 1825 * ext4_ext_find_extent() can return either extent on the 1826 * left, or on the right from the searched position. This 1827 * will make merging more effective. 1828 */ 1829 if (ex < EXT_LAST_EXTENT(eh) && 1830 (le32_to_cpu(ex->ee_block) + 1831 ext4_ext_get_actual_len(ex) < 1832 le32_to_cpu(newext->ee_block))) { 1833 ex += 1; 1834 goto prepend; 1835 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1836 (le32_to_cpu(newext->ee_block) + 1837 ext4_ext_get_actual_len(newext) < 1838 le32_to_cpu(ex->ee_block))) 1839 ex -= 1; 1840 1841 /* Try to append newex to the ex */ 1842 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1843 ext_debug("append [%d]%d block to %u:[%d]%d" 1844 "(from %llu)\n", 1845 ext4_ext_is_uninitialized(newext), 1846 ext4_ext_get_actual_len(newext), 1847 le32_to_cpu(ex->ee_block), 1848 ext4_ext_is_uninitialized(ex), 1849 ext4_ext_get_actual_len(ex), 1850 ext4_ext_pblock(ex)); 1851 err = ext4_ext_get_access(handle, inode, 1852 path + depth); 1853 if (err) 1854 return err; 1855 1856 /* 1857 * ext4_can_extents_be_merged should have checked 1858 * that either both extents are uninitialized, or 1859 * both aren't. Thus we need to check only one of 1860 * them here. 1861 */ 1862 if (ext4_ext_is_uninitialized(ex)) 1863 uninitialized = 1; 1864 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1865 + ext4_ext_get_actual_len(newext)); 1866 if (uninitialized) 1867 ext4_ext_mark_uninitialized(ex); 1868 eh = path[depth].p_hdr; 1869 nearex = ex; 1870 goto merge; 1871 } 1872 1873 prepend: 1874 /* Try to prepend newex to the ex */ 1875 if (ext4_can_extents_be_merged(inode, newext, ex)) { 1876 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 1877 "(from %llu)\n", 1878 le32_to_cpu(newext->ee_block), 1879 ext4_ext_is_uninitialized(newext), 1880 ext4_ext_get_actual_len(newext), 1881 le32_to_cpu(ex->ee_block), 1882 ext4_ext_is_uninitialized(ex), 1883 ext4_ext_get_actual_len(ex), 1884 ext4_ext_pblock(ex)); 1885 err = ext4_ext_get_access(handle, inode, 1886 path + depth); 1887 if (err) 1888 return err; 1889 1890 /* 1891 * ext4_can_extents_be_merged should have checked 1892 * that either both extents are uninitialized, or 1893 * both aren't. Thus we need to check only one of 1894 * them here. 1895 */ 1896 if (ext4_ext_is_uninitialized(ex)) 1897 uninitialized = 1; 1898 ex->ee_block = newext->ee_block; 1899 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 1900 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1901 + ext4_ext_get_actual_len(newext)); 1902 if (uninitialized) 1903 ext4_ext_mark_uninitialized(ex); 1904 eh = path[depth].p_hdr; 1905 nearex = ex; 1906 goto merge; 1907 } 1908 } 1909 1910 depth = ext_depth(inode); 1911 eh = path[depth].p_hdr; 1912 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1913 goto has_space; 1914 1915 /* probably next leaf has space for us? */ 1916 fex = EXT_LAST_EXTENT(eh); 1917 next = EXT_MAX_BLOCKS; 1918 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 1919 next = ext4_ext_next_leaf_block(path); 1920 if (next != EXT_MAX_BLOCKS) { 1921 ext_debug("next leaf block - %u\n", next); 1922 BUG_ON(npath != NULL); 1923 npath = ext4_ext_find_extent(inode, next, NULL); 1924 if (IS_ERR(npath)) 1925 return PTR_ERR(npath); 1926 BUG_ON(npath->p_depth != path->p_depth); 1927 eh = npath[depth].p_hdr; 1928 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1929 ext_debug("next leaf isn't full(%d)\n", 1930 le16_to_cpu(eh->eh_entries)); 1931 path = npath; 1932 goto has_space; 1933 } 1934 ext_debug("next leaf has no free space(%d,%d)\n", 1935 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1936 } 1937 1938 /* 1939 * There is no free space in the found leaf. 1940 * We're gonna add a new leaf in the tree. 1941 */ 1942 if (flag & EXT4_GET_BLOCKS_METADATA_NOFAIL) 1943 flags = EXT4_MB_USE_RESERVED; 1944 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext); 1945 if (err) 1946 goto cleanup; 1947 depth = ext_depth(inode); 1948 eh = path[depth].p_hdr; 1949 1950 has_space: 1951 nearex = path[depth].p_ext; 1952 1953 err = ext4_ext_get_access(handle, inode, path + depth); 1954 if (err) 1955 goto cleanup; 1956 1957 if (!nearex) { 1958 /* there is no extent in this leaf, create first one */ 1959 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 1960 le32_to_cpu(newext->ee_block), 1961 ext4_ext_pblock(newext), 1962 ext4_ext_is_uninitialized(newext), 1963 ext4_ext_get_actual_len(newext)); 1964 nearex = EXT_FIRST_EXTENT(eh); 1965 } else { 1966 if (le32_to_cpu(newext->ee_block) 1967 > le32_to_cpu(nearex->ee_block)) { 1968 /* Insert after */ 1969 ext_debug("insert %u:%llu:[%d]%d before: " 1970 "nearest %p\n", 1971 le32_to_cpu(newext->ee_block), 1972 ext4_ext_pblock(newext), 1973 ext4_ext_is_uninitialized(newext), 1974 ext4_ext_get_actual_len(newext), 1975 nearex); 1976 nearex++; 1977 } else { 1978 /* Insert before */ 1979 BUG_ON(newext->ee_block == nearex->ee_block); 1980 ext_debug("insert %u:%llu:[%d]%d after: " 1981 "nearest %p\n", 1982 le32_to_cpu(newext->ee_block), 1983 ext4_ext_pblock(newext), 1984 ext4_ext_is_uninitialized(newext), 1985 ext4_ext_get_actual_len(newext), 1986 nearex); 1987 } 1988 len = EXT_LAST_EXTENT(eh) - nearex + 1; 1989 if (len > 0) { 1990 ext_debug("insert %u:%llu:[%d]%d: " 1991 "move %d extents from 0x%p to 0x%p\n", 1992 le32_to_cpu(newext->ee_block), 1993 ext4_ext_pblock(newext), 1994 ext4_ext_is_uninitialized(newext), 1995 ext4_ext_get_actual_len(newext), 1996 len, nearex, nearex + 1); 1997 memmove(nearex + 1, nearex, 1998 len * sizeof(struct ext4_extent)); 1999 } 2000 } 2001 2002 le16_add_cpu(&eh->eh_entries, 1); 2003 path[depth].p_ext = nearex; 2004 nearex->ee_block = newext->ee_block; 2005 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2006 nearex->ee_len = newext->ee_len; 2007 2008 merge: 2009 /* try to merge extents */ 2010 if (!(flag & EXT4_GET_BLOCKS_PRE_IO)) 2011 ext4_ext_try_to_merge(handle, inode, path, nearex); 2012 2013 2014 /* time to correct all indexes above */ 2015 err = ext4_ext_correct_indexes(handle, inode, path); 2016 if (err) 2017 goto cleanup; 2018 2019 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2020 2021 cleanup: 2022 if (npath) { 2023 ext4_ext_drop_refs(npath); 2024 kfree(npath); 2025 } 2026 return err; 2027 } 2028 2029 static int ext4_fill_fiemap_extents(struct inode *inode, 2030 ext4_lblk_t block, ext4_lblk_t num, 2031 struct fiemap_extent_info *fieinfo) 2032 { 2033 struct ext4_ext_path *path = NULL; 2034 struct ext4_extent *ex; 2035 struct extent_status es; 2036 ext4_lblk_t next, next_del, start = 0, end = 0; 2037 ext4_lblk_t last = block + num; 2038 int exists, depth = 0, err = 0; 2039 unsigned int flags = 0; 2040 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2041 2042 while (block < last && block != EXT_MAX_BLOCKS) { 2043 num = last - block; 2044 /* find extent for this block */ 2045 down_read(&EXT4_I(inode)->i_data_sem); 2046 2047 if (path && ext_depth(inode) != depth) { 2048 /* depth was changed. we have to realloc path */ 2049 kfree(path); 2050 path = NULL; 2051 } 2052 2053 path = ext4_ext_find_extent(inode, block, path); 2054 if (IS_ERR(path)) { 2055 up_read(&EXT4_I(inode)->i_data_sem); 2056 err = PTR_ERR(path); 2057 path = NULL; 2058 break; 2059 } 2060 2061 depth = ext_depth(inode); 2062 if (unlikely(path[depth].p_hdr == NULL)) { 2063 up_read(&EXT4_I(inode)->i_data_sem); 2064 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2065 err = -EIO; 2066 break; 2067 } 2068 ex = path[depth].p_ext; 2069 next = ext4_ext_next_allocated_block(path); 2070 ext4_ext_drop_refs(path); 2071 2072 flags = 0; 2073 exists = 0; 2074 if (!ex) { 2075 /* there is no extent yet, so try to allocate 2076 * all requested space */ 2077 start = block; 2078 end = block + num; 2079 } else if (le32_to_cpu(ex->ee_block) > block) { 2080 /* need to allocate space before found extent */ 2081 start = block; 2082 end = le32_to_cpu(ex->ee_block); 2083 if (block + num < end) 2084 end = block + num; 2085 } else if (block >= le32_to_cpu(ex->ee_block) 2086 + ext4_ext_get_actual_len(ex)) { 2087 /* need to allocate space after found extent */ 2088 start = block; 2089 end = block + num; 2090 if (end >= next) 2091 end = next; 2092 } else if (block >= le32_to_cpu(ex->ee_block)) { 2093 /* 2094 * some part of requested space is covered 2095 * by found extent 2096 */ 2097 start = block; 2098 end = le32_to_cpu(ex->ee_block) 2099 + ext4_ext_get_actual_len(ex); 2100 if (block + num < end) 2101 end = block + num; 2102 exists = 1; 2103 } else { 2104 BUG(); 2105 } 2106 BUG_ON(end <= start); 2107 2108 if (!exists) { 2109 es.es_lblk = start; 2110 es.es_len = end - start; 2111 es.es_pblk = 0; 2112 } else { 2113 es.es_lblk = le32_to_cpu(ex->ee_block); 2114 es.es_len = ext4_ext_get_actual_len(ex); 2115 es.es_pblk = ext4_ext_pblock(ex); 2116 if (ext4_ext_is_uninitialized(ex)) 2117 flags |= FIEMAP_EXTENT_UNWRITTEN; 2118 } 2119 2120 /* 2121 * Find delayed extent and update es accordingly. We call 2122 * it even in !exists case to find out whether es is the 2123 * last existing extent or not. 2124 */ 2125 next_del = ext4_find_delayed_extent(inode, &es); 2126 if (!exists && next_del) { 2127 exists = 1; 2128 flags |= FIEMAP_EXTENT_DELALLOC; 2129 } 2130 up_read(&EXT4_I(inode)->i_data_sem); 2131 2132 if (unlikely(es.es_len == 0)) { 2133 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2134 err = -EIO; 2135 break; 2136 } 2137 2138 /* 2139 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2140 * we need to check next == EXT_MAX_BLOCKS because it is 2141 * possible that an extent is with unwritten and delayed 2142 * status due to when an extent is delayed allocated and 2143 * is allocated by fallocate status tree will track both of 2144 * them in a extent. 2145 * 2146 * So we could return a unwritten and delayed extent, and 2147 * its block is equal to 'next'. 2148 */ 2149 if (next == next_del && next == EXT_MAX_BLOCKS) { 2150 flags |= FIEMAP_EXTENT_LAST; 2151 if (unlikely(next_del != EXT_MAX_BLOCKS || 2152 next != EXT_MAX_BLOCKS)) { 2153 EXT4_ERROR_INODE(inode, 2154 "next extent == %u, next " 2155 "delalloc extent = %u", 2156 next, next_del); 2157 err = -EIO; 2158 break; 2159 } 2160 } 2161 2162 if (exists) { 2163 err = fiemap_fill_next_extent(fieinfo, 2164 (__u64)es.es_lblk << blksize_bits, 2165 (__u64)es.es_pblk << blksize_bits, 2166 (__u64)es.es_len << blksize_bits, 2167 flags); 2168 if (err < 0) 2169 break; 2170 if (err == 1) { 2171 err = 0; 2172 break; 2173 } 2174 } 2175 2176 block = es.es_lblk + es.es_len; 2177 } 2178 2179 if (path) { 2180 ext4_ext_drop_refs(path); 2181 kfree(path); 2182 } 2183 2184 return err; 2185 } 2186 2187 /* 2188 * ext4_ext_put_gap_in_cache: 2189 * calculate boundaries of the gap that the requested block fits into 2190 * and cache this gap 2191 */ 2192 static void 2193 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2194 ext4_lblk_t block) 2195 { 2196 int depth = ext_depth(inode); 2197 unsigned long len; 2198 ext4_lblk_t lblock; 2199 struct ext4_extent *ex; 2200 2201 ex = path[depth].p_ext; 2202 if (ex == NULL) { 2203 /* 2204 * there is no extent yet, so gap is [0;-] and we 2205 * don't cache it 2206 */ 2207 ext_debug("cache gap(whole file):"); 2208 } else if (block < le32_to_cpu(ex->ee_block)) { 2209 lblock = block; 2210 len = le32_to_cpu(ex->ee_block) - block; 2211 ext_debug("cache gap(before): %u [%u:%u]", 2212 block, 2213 le32_to_cpu(ex->ee_block), 2214 ext4_ext_get_actual_len(ex)); 2215 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2216 ext4_es_insert_extent(inode, lblock, len, ~0, 2217 EXTENT_STATUS_HOLE); 2218 } else if (block >= le32_to_cpu(ex->ee_block) 2219 + ext4_ext_get_actual_len(ex)) { 2220 ext4_lblk_t next; 2221 lblock = le32_to_cpu(ex->ee_block) 2222 + ext4_ext_get_actual_len(ex); 2223 2224 next = ext4_ext_next_allocated_block(path); 2225 ext_debug("cache gap(after): [%u:%u] %u", 2226 le32_to_cpu(ex->ee_block), 2227 ext4_ext_get_actual_len(ex), 2228 block); 2229 BUG_ON(next == lblock); 2230 len = next - lblock; 2231 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2232 ext4_es_insert_extent(inode, lblock, len, ~0, 2233 EXTENT_STATUS_HOLE); 2234 } else { 2235 lblock = len = 0; 2236 BUG(); 2237 } 2238 2239 ext_debug(" -> %u:%lu\n", lblock, len); 2240 } 2241 2242 /* 2243 * ext4_ext_rm_idx: 2244 * removes index from the index block. 2245 */ 2246 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2247 struct ext4_ext_path *path, int depth) 2248 { 2249 int err; 2250 ext4_fsblk_t leaf; 2251 2252 /* free index block */ 2253 depth--; 2254 path = path + depth; 2255 leaf = ext4_idx_pblock(path->p_idx); 2256 if (unlikely(path->p_hdr->eh_entries == 0)) { 2257 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2258 return -EIO; 2259 } 2260 err = ext4_ext_get_access(handle, inode, path); 2261 if (err) 2262 return err; 2263 2264 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2265 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2266 len *= sizeof(struct ext4_extent_idx); 2267 memmove(path->p_idx, path->p_idx + 1, len); 2268 } 2269 2270 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2271 err = ext4_ext_dirty(handle, inode, path); 2272 if (err) 2273 return err; 2274 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2275 trace_ext4_ext_rm_idx(inode, leaf); 2276 2277 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2278 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2279 2280 while (--depth >= 0) { 2281 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2282 break; 2283 path--; 2284 err = ext4_ext_get_access(handle, inode, path); 2285 if (err) 2286 break; 2287 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2288 err = ext4_ext_dirty(handle, inode, path); 2289 if (err) 2290 break; 2291 } 2292 return err; 2293 } 2294 2295 /* 2296 * ext4_ext_calc_credits_for_single_extent: 2297 * This routine returns max. credits that needed to insert an extent 2298 * to the extent tree. 2299 * When pass the actual path, the caller should calculate credits 2300 * under i_data_sem. 2301 */ 2302 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2303 struct ext4_ext_path *path) 2304 { 2305 if (path) { 2306 int depth = ext_depth(inode); 2307 int ret = 0; 2308 2309 /* probably there is space in leaf? */ 2310 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2311 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2312 2313 /* 2314 * There are some space in the leaf tree, no 2315 * need to account for leaf block credit 2316 * 2317 * bitmaps and block group descriptor blocks 2318 * and other metadata blocks still need to be 2319 * accounted. 2320 */ 2321 /* 1 bitmap, 1 block group descriptor */ 2322 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2323 return ret; 2324 } 2325 } 2326 2327 return ext4_chunk_trans_blocks(inode, nrblocks); 2328 } 2329 2330 /* 2331 * How many index/leaf blocks need to change/allocate to modify nrblocks? 2332 * 2333 * if nrblocks are fit in a single extent (chunk flag is 1), then 2334 * in the worse case, each tree level index/leaf need to be changed 2335 * if the tree split due to insert a new extent, then the old tree 2336 * index/leaf need to be updated too 2337 * 2338 * If the nrblocks are discontiguous, they could cause 2339 * the whole tree split more than once, but this is really rare. 2340 */ 2341 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 2342 { 2343 int index; 2344 int depth; 2345 2346 /* If we are converting the inline data, only one is needed here. */ 2347 if (ext4_has_inline_data(inode)) 2348 return 1; 2349 2350 depth = ext_depth(inode); 2351 2352 if (chunk) 2353 index = depth * 2; 2354 else 2355 index = depth * 3; 2356 2357 return index; 2358 } 2359 2360 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2361 struct ext4_extent *ex, 2362 ext4_fsblk_t *partial_cluster, 2363 ext4_lblk_t from, ext4_lblk_t to) 2364 { 2365 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2366 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2367 ext4_fsblk_t pblk; 2368 int flags = 0; 2369 2370 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2371 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2372 else if (ext4_should_journal_data(inode)) 2373 flags |= EXT4_FREE_BLOCKS_FORGET; 2374 2375 /* 2376 * For bigalloc file systems, we never free a partial cluster 2377 * at the beginning of the extent. Instead, we make a note 2378 * that we tried freeing the cluster, and check to see if we 2379 * need to free it on a subsequent call to ext4_remove_blocks, 2380 * or at the end of the ext4_truncate() operation. 2381 */ 2382 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2383 2384 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2385 /* 2386 * If we have a partial cluster, and it's different from the 2387 * cluster of the last block, we need to explicitly free the 2388 * partial cluster here. 2389 */ 2390 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2391 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) { 2392 ext4_free_blocks(handle, inode, NULL, 2393 EXT4_C2B(sbi, *partial_cluster), 2394 sbi->s_cluster_ratio, flags); 2395 *partial_cluster = 0; 2396 } 2397 2398 #ifdef EXTENTS_STATS 2399 { 2400 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2401 spin_lock(&sbi->s_ext_stats_lock); 2402 sbi->s_ext_blocks += ee_len; 2403 sbi->s_ext_extents++; 2404 if (ee_len < sbi->s_ext_min) 2405 sbi->s_ext_min = ee_len; 2406 if (ee_len > sbi->s_ext_max) 2407 sbi->s_ext_max = ee_len; 2408 if (ext_depth(inode) > sbi->s_depth_max) 2409 sbi->s_depth_max = ext_depth(inode); 2410 spin_unlock(&sbi->s_ext_stats_lock); 2411 } 2412 #endif 2413 if (from >= le32_to_cpu(ex->ee_block) 2414 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2415 /* tail removal */ 2416 ext4_lblk_t num; 2417 2418 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2419 pblk = ext4_ext_pblock(ex) + ee_len - num; 2420 ext_debug("free last %u blocks starting %llu\n", num, pblk); 2421 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2422 /* 2423 * If the block range to be freed didn't start at the 2424 * beginning of a cluster, and we removed the entire 2425 * extent, save the partial cluster here, since we 2426 * might need to delete if we determine that the 2427 * truncate operation has removed all of the blocks in 2428 * the cluster. 2429 */ 2430 if (pblk & (sbi->s_cluster_ratio - 1) && 2431 (ee_len == num)) 2432 *partial_cluster = EXT4_B2C(sbi, pblk); 2433 else 2434 *partial_cluster = 0; 2435 } else if (from == le32_to_cpu(ex->ee_block) 2436 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { 2437 /* head removal */ 2438 ext4_lblk_t num; 2439 ext4_fsblk_t start; 2440 2441 num = to - from; 2442 start = ext4_ext_pblock(ex); 2443 2444 ext_debug("free first %u blocks starting %llu\n", num, start); 2445 ext4_free_blocks(handle, inode, NULL, start, num, flags); 2446 2447 } else { 2448 printk(KERN_INFO "strange request: removal(2) " 2449 "%u-%u from %u:%u\n", 2450 from, to, le32_to_cpu(ex->ee_block), ee_len); 2451 } 2452 return 0; 2453 } 2454 2455 2456 /* 2457 * ext4_ext_rm_leaf() Removes the extents associated with the 2458 * blocks appearing between "start" and "end", and splits the extents 2459 * if "start" and "end" appear in the same extent 2460 * 2461 * @handle: The journal handle 2462 * @inode: The files inode 2463 * @path: The path to the leaf 2464 * @start: The first block to remove 2465 * @end: The last block to remove 2466 */ 2467 static int 2468 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2469 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster, 2470 ext4_lblk_t start, ext4_lblk_t end) 2471 { 2472 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2473 int err = 0, correct_index = 0; 2474 int depth = ext_depth(inode), credits; 2475 struct ext4_extent_header *eh; 2476 ext4_lblk_t a, b; 2477 unsigned num; 2478 ext4_lblk_t ex_ee_block; 2479 unsigned short ex_ee_len; 2480 unsigned uninitialized = 0; 2481 struct ext4_extent *ex; 2482 2483 /* the header must be checked already in ext4_ext_remove_space() */ 2484 ext_debug("truncate since %u in leaf to %u\n", start, end); 2485 if (!path[depth].p_hdr) 2486 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2487 eh = path[depth].p_hdr; 2488 if (unlikely(path[depth].p_hdr == NULL)) { 2489 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2490 return -EIO; 2491 } 2492 /* find where to start removing */ 2493 ex = EXT_LAST_EXTENT(eh); 2494 2495 ex_ee_block = le32_to_cpu(ex->ee_block); 2496 ex_ee_len = ext4_ext_get_actual_len(ex); 2497 2498 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2499 2500 while (ex >= EXT_FIRST_EXTENT(eh) && 2501 ex_ee_block + ex_ee_len > start) { 2502 2503 if (ext4_ext_is_uninitialized(ex)) 2504 uninitialized = 1; 2505 else 2506 uninitialized = 0; 2507 2508 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2509 uninitialized, ex_ee_len); 2510 path[depth].p_ext = ex; 2511 2512 a = ex_ee_block > start ? ex_ee_block : start; 2513 b = ex_ee_block+ex_ee_len - 1 < end ? 2514 ex_ee_block+ex_ee_len - 1 : end; 2515 2516 ext_debug(" border %u:%u\n", a, b); 2517 2518 /* If this extent is beyond the end of the hole, skip it */ 2519 if (end < ex_ee_block) { 2520 ex--; 2521 ex_ee_block = le32_to_cpu(ex->ee_block); 2522 ex_ee_len = ext4_ext_get_actual_len(ex); 2523 continue; 2524 } else if (b != ex_ee_block + ex_ee_len - 1) { 2525 EXT4_ERROR_INODE(inode, 2526 "can not handle truncate %u:%u " 2527 "on extent %u:%u", 2528 start, end, ex_ee_block, 2529 ex_ee_block + ex_ee_len - 1); 2530 err = -EIO; 2531 goto out; 2532 } else if (a != ex_ee_block) { 2533 /* remove tail of the extent */ 2534 num = a - ex_ee_block; 2535 } else { 2536 /* remove whole extent: excellent! */ 2537 num = 0; 2538 } 2539 /* 2540 * 3 for leaf, sb, and inode plus 2 (bmap and group 2541 * descriptor) for each block group; assume two block 2542 * groups plus ex_ee_len/blocks_per_block_group for 2543 * the worst case 2544 */ 2545 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2546 if (ex == EXT_FIRST_EXTENT(eh)) { 2547 correct_index = 1; 2548 credits += (ext_depth(inode)) + 1; 2549 } 2550 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2551 2552 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2553 if (err) 2554 goto out; 2555 2556 err = ext4_ext_get_access(handle, inode, path + depth); 2557 if (err) 2558 goto out; 2559 2560 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2561 a, b); 2562 if (err) 2563 goto out; 2564 2565 if (num == 0) 2566 /* this extent is removed; mark slot entirely unused */ 2567 ext4_ext_store_pblock(ex, 0); 2568 2569 ex->ee_len = cpu_to_le16(num); 2570 /* 2571 * Do not mark uninitialized if all the blocks in the 2572 * extent have been removed. 2573 */ 2574 if (uninitialized && num) 2575 ext4_ext_mark_uninitialized(ex); 2576 /* 2577 * If the extent was completely released, 2578 * we need to remove it from the leaf 2579 */ 2580 if (num == 0) { 2581 if (end != EXT_MAX_BLOCKS - 1) { 2582 /* 2583 * For hole punching, we need to scoot all the 2584 * extents up when an extent is removed so that 2585 * we dont have blank extents in the middle 2586 */ 2587 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2588 sizeof(struct ext4_extent)); 2589 2590 /* Now get rid of the one at the end */ 2591 memset(EXT_LAST_EXTENT(eh), 0, 2592 sizeof(struct ext4_extent)); 2593 } 2594 le16_add_cpu(&eh->eh_entries, -1); 2595 } else 2596 *partial_cluster = 0; 2597 2598 err = ext4_ext_dirty(handle, inode, path + depth); 2599 if (err) 2600 goto out; 2601 2602 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2603 ext4_ext_pblock(ex)); 2604 ex--; 2605 ex_ee_block = le32_to_cpu(ex->ee_block); 2606 ex_ee_len = ext4_ext_get_actual_len(ex); 2607 } 2608 2609 if (correct_index && eh->eh_entries) 2610 err = ext4_ext_correct_indexes(handle, inode, path); 2611 2612 /* 2613 * If there is still a entry in the leaf node, check to see if 2614 * it references the partial cluster. This is the only place 2615 * where it could; if it doesn't, we can free the cluster. 2616 */ 2617 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) && 2618 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != 2619 *partial_cluster)) { 2620 int flags = EXT4_FREE_BLOCKS_FORGET; 2621 2622 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2623 flags |= EXT4_FREE_BLOCKS_METADATA; 2624 2625 ext4_free_blocks(handle, inode, NULL, 2626 EXT4_C2B(sbi, *partial_cluster), 2627 sbi->s_cluster_ratio, flags); 2628 *partial_cluster = 0; 2629 } 2630 2631 /* if this leaf is free, then we should 2632 * remove it from index block above */ 2633 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2634 err = ext4_ext_rm_idx(handle, inode, path, depth); 2635 2636 out: 2637 return err; 2638 } 2639 2640 /* 2641 * ext4_ext_more_to_rm: 2642 * returns 1 if current index has to be freed (even partial) 2643 */ 2644 static int 2645 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2646 { 2647 BUG_ON(path->p_idx == NULL); 2648 2649 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2650 return 0; 2651 2652 /* 2653 * if truncate on deeper level happened, it wasn't partial, 2654 * so we have to consider current index for truncation 2655 */ 2656 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2657 return 0; 2658 return 1; 2659 } 2660 2661 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2662 ext4_lblk_t end) 2663 { 2664 struct super_block *sb = inode->i_sb; 2665 int depth = ext_depth(inode); 2666 struct ext4_ext_path *path = NULL; 2667 ext4_fsblk_t partial_cluster = 0; 2668 handle_t *handle; 2669 int i = 0, err = 0; 2670 2671 ext_debug("truncate since %u to %u\n", start, end); 2672 2673 /* probably first extent we're gonna free will be last in block */ 2674 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2675 if (IS_ERR(handle)) 2676 return PTR_ERR(handle); 2677 2678 again: 2679 trace_ext4_ext_remove_space(inode, start, depth); 2680 2681 /* 2682 * Check if we are removing extents inside the extent tree. If that 2683 * is the case, we are going to punch a hole inside the extent tree 2684 * so we have to check whether we need to split the extent covering 2685 * the last block to remove so we can easily remove the part of it 2686 * in ext4_ext_rm_leaf(). 2687 */ 2688 if (end < EXT_MAX_BLOCKS - 1) { 2689 struct ext4_extent *ex; 2690 ext4_lblk_t ee_block; 2691 2692 /* find extent for this block */ 2693 path = ext4_ext_find_extent(inode, end, NULL); 2694 if (IS_ERR(path)) { 2695 ext4_journal_stop(handle); 2696 return PTR_ERR(path); 2697 } 2698 depth = ext_depth(inode); 2699 /* Leaf not may not exist only if inode has no blocks at all */ 2700 ex = path[depth].p_ext; 2701 if (!ex) { 2702 if (depth) { 2703 EXT4_ERROR_INODE(inode, 2704 "path[%d].p_hdr == NULL", 2705 depth); 2706 err = -EIO; 2707 } 2708 goto out; 2709 } 2710 2711 ee_block = le32_to_cpu(ex->ee_block); 2712 2713 /* 2714 * See if the last block is inside the extent, if so split 2715 * the extent at 'end' block so we can easily remove the 2716 * tail of the first part of the split extent in 2717 * ext4_ext_rm_leaf(). 2718 */ 2719 if (end >= ee_block && 2720 end < ee_block + ext4_ext_get_actual_len(ex) - 1) { 2721 int split_flag = 0; 2722 2723 if (ext4_ext_is_uninitialized(ex)) 2724 split_flag = EXT4_EXT_MARK_UNINIT1 | 2725 EXT4_EXT_MARK_UNINIT2; 2726 2727 /* 2728 * Split the extent in two so that 'end' is the last 2729 * block in the first new extent. Also we should not 2730 * fail removing space due to ENOSPC so try to use 2731 * reserved block if that happens. 2732 */ 2733 err = ext4_split_extent_at(handle, inode, path, 2734 end + 1, split_flag, 2735 EXT4_GET_BLOCKS_PRE_IO | 2736 EXT4_GET_BLOCKS_METADATA_NOFAIL); 2737 2738 if (err < 0) 2739 goto out; 2740 } 2741 } 2742 /* 2743 * We start scanning from right side, freeing all the blocks 2744 * after i_size and walking into the tree depth-wise. 2745 */ 2746 depth = ext_depth(inode); 2747 if (path) { 2748 int k = i = depth; 2749 while (--k > 0) 2750 path[k].p_block = 2751 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2752 } else { 2753 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2754 GFP_NOFS); 2755 if (path == NULL) { 2756 ext4_journal_stop(handle); 2757 return -ENOMEM; 2758 } 2759 path[0].p_depth = depth; 2760 path[0].p_hdr = ext_inode_hdr(inode); 2761 i = 0; 2762 2763 if (ext4_ext_check(inode, path[0].p_hdr, depth)) { 2764 err = -EIO; 2765 goto out; 2766 } 2767 } 2768 err = 0; 2769 2770 while (i >= 0 && err == 0) { 2771 if (i == depth) { 2772 /* this is leaf block */ 2773 err = ext4_ext_rm_leaf(handle, inode, path, 2774 &partial_cluster, start, 2775 end); 2776 /* root level has p_bh == NULL, brelse() eats this */ 2777 brelse(path[i].p_bh); 2778 path[i].p_bh = NULL; 2779 i--; 2780 continue; 2781 } 2782 2783 /* this is index block */ 2784 if (!path[i].p_hdr) { 2785 ext_debug("initialize header\n"); 2786 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2787 } 2788 2789 if (!path[i].p_idx) { 2790 /* this level hasn't been touched yet */ 2791 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2792 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2793 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2794 path[i].p_hdr, 2795 le16_to_cpu(path[i].p_hdr->eh_entries)); 2796 } else { 2797 /* we were already here, see at next index */ 2798 path[i].p_idx--; 2799 } 2800 2801 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2802 i, EXT_FIRST_INDEX(path[i].p_hdr), 2803 path[i].p_idx); 2804 if (ext4_ext_more_to_rm(path + i)) { 2805 struct buffer_head *bh; 2806 /* go to the next level */ 2807 ext_debug("move to level %d (block %llu)\n", 2808 i + 1, ext4_idx_pblock(path[i].p_idx)); 2809 memset(path + i + 1, 0, sizeof(*path)); 2810 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx)); 2811 if (!bh) { 2812 /* should we reset i_size? */ 2813 err = -EIO; 2814 break; 2815 } 2816 if (WARN_ON(i + 1 > depth)) { 2817 err = -EIO; 2818 break; 2819 } 2820 if (ext4_ext_check_block(inode, ext_block_hdr(bh), 2821 depth - i - 1, bh)) { 2822 err = -EIO; 2823 break; 2824 } 2825 path[i + 1].p_bh = bh; 2826 2827 /* save actual number of indexes since this 2828 * number is changed at the next iteration */ 2829 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2830 i++; 2831 } else { 2832 /* we finished processing this index, go up */ 2833 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2834 /* index is empty, remove it; 2835 * handle must be already prepared by the 2836 * truncatei_leaf() */ 2837 err = ext4_ext_rm_idx(handle, inode, path, i); 2838 } 2839 /* root level has p_bh == NULL, brelse() eats this */ 2840 brelse(path[i].p_bh); 2841 path[i].p_bh = NULL; 2842 i--; 2843 ext_debug("return to level %d\n", i); 2844 } 2845 } 2846 2847 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster, 2848 path->p_hdr->eh_entries); 2849 2850 /* If we still have something in the partial cluster and we have removed 2851 * even the first extent, then we should free the blocks in the partial 2852 * cluster as well. */ 2853 if (partial_cluster && path->p_hdr->eh_entries == 0) { 2854 int flags = EXT4_FREE_BLOCKS_FORGET; 2855 2856 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2857 flags |= EXT4_FREE_BLOCKS_METADATA; 2858 2859 ext4_free_blocks(handle, inode, NULL, 2860 EXT4_C2B(EXT4_SB(sb), partial_cluster), 2861 EXT4_SB(sb)->s_cluster_ratio, flags); 2862 partial_cluster = 0; 2863 } 2864 2865 /* TODO: flexible tree reduction should be here */ 2866 if (path->p_hdr->eh_entries == 0) { 2867 /* 2868 * truncate to zero freed all the tree, 2869 * so we need to correct eh_depth 2870 */ 2871 err = ext4_ext_get_access(handle, inode, path); 2872 if (err == 0) { 2873 ext_inode_hdr(inode)->eh_depth = 0; 2874 ext_inode_hdr(inode)->eh_max = 2875 cpu_to_le16(ext4_ext_space_root(inode, 0)); 2876 err = ext4_ext_dirty(handle, inode, path); 2877 } 2878 } 2879 out: 2880 ext4_ext_drop_refs(path); 2881 kfree(path); 2882 if (err == -EAGAIN) { 2883 path = NULL; 2884 goto again; 2885 } 2886 ext4_journal_stop(handle); 2887 2888 return err; 2889 } 2890 2891 /* 2892 * called at mount time 2893 */ 2894 void ext4_ext_init(struct super_block *sb) 2895 { 2896 /* 2897 * possible initialization would be here 2898 */ 2899 2900 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2901 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 2902 printk(KERN_INFO "EXT4-fs: file extents enabled" 2903 #ifdef AGGRESSIVE_TEST 2904 ", aggressive tests" 2905 #endif 2906 #ifdef CHECK_BINSEARCH 2907 ", check binsearch" 2908 #endif 2909 #ifdef EXTENTS_STATS 2910 ", stats" 2911 #endif 2912 "\n"); 2913 #endif 2914 #ifdef EXTENTS_STATS 2915 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2916 EXT4_SB(sb)->s_ext_min = 1 << 30; 2917 EXT4_SB(sb)->s_ext_max = 0; 2918 #endif 2919 } 2920 } 2921 2922 /* 2923 * called at umount time 2924 */ 2925 void ext4_ext_release(struct super_block *sb) 2926 { 2927 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 2928 return; 2929 2930 #ifdef EXTENTS_STATS 2931 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2932 struct ext4_sb_info *sbi = EXT4_SB(sb); 2933 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2934 sbi->s_ext_blocks, sbi->s_ext_extents, 2935 sbi->s_ext_blocks / sbi->s_ext_extents); 2936 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2937 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2938 } 2939 #endif 2940 } 2941 2942 /* FIXME!! we need to try to merge to left or right after zero-out */ 2943 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 2944 { 2945 ext4_fsblk_t ee_pblock; 2946 unsigned int ee_len; 2947 int ret; 2948 2949 ee_len = ext4_ext_get_actual_len(ex); 2950 ee_pblock = ext4_ext_pblock(ex); 2951 2952 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 2953 if (ret > 0) 2954 ret = 0; 2955 2956 return ret; 2957 } 2958 2959 /* 2960 * ext4_split_extent_at() splits an extent at given block. 2961 * 2962 * @handle: the journal handle 2963 * @inode: the file inode 2964 * @path: the path to the extent 2965 * @split: the logical block where the extent is splitted. 2966 * @split_flags: indicates if the extent could be zeroout if split fails, and 2967 * the states(init or uninit) of new extents. 2968 * @flags: flags used to insert new extent to extent tree. 2969 * 2970 * 2971 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 2972 * of which are deterimined by split_flag. 2973 * 2974 * There are two cases: 2975 * a> the extent are splitted into two extent. 2976 * b> split is not needed, and just mark the extent. 2977 * 2978 * return 0 on success. 2979 */ 2980 static int ext4_split_extent_at(handle_t *handle, 2981 struct inode *inode, 2982 struct ext4_ext_path *path, 2983 ext4_lblk_t split, 2984 int split_flag, 2985 int flags) 2986 { 2987 ext4_fsblk_t newblock; 2988 ext4_lblk_t ee_block; 2989 struct ext4_extent *ex, newex, orig_ex, zero_ex; 2990 struct ext4_extent *ex2 = NULL; 2991 unsigned int ee_len, depth; 2992 int err = 0; 2993 2994 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 2995 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 2996 2997 ext_debug("ext4_split_extents_at: inode %lu, logical" 2998 "block %llu\n", inode->i_ino, (unsigned long long)split); 2999 3000 ext4_ext_show_leaf(inode, path); 3001 3002 depth = ext_depth(inode); 3003 ex = path[depth].p_ext; 3004 ee_block = le32_to_cpu(ex->ee_block); 3005 ee_len = ext4_ext_get_actual_len(ex); 3006 newblock = split - ee_block + ext4_ext_pblock(ex); 3007 3008 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3009 BUG_ON(!ext4_ext_is_uninitialized(ex) && 3010 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3011 EXT4_EXT_MARK_UNINIT1 | 3012 EXT4_EXT_MARK_UNINIT2)); 3013 3014 err = ext4_ext_get_access(handle, inode, path + depth); 3015 if (err) 3016 goto out; 3017 3018 if (split == ee_block) { 3019 /* 3020 * case b: block @split is the block that the extent begins with 3021 * then we just change the state of the extent, and splitting 3022 * is not needed. 3023 */ 3024 if (split_flag & EXT4_EXT_MARK_UNINIT2) 3025 ext4_ext_mark_uninitialized(ex); 3026 else 3027 ext4_ext_mark_initialized(ex); 3028 3029 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3030 ext4_ext_try_to_merge(handle, inode, path, ex); 3031 3032 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3033 goto out; 3034 } 3035 3036 /* case a */ 3037 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3038 ex->ee_len = cpu_to_le16(split - ee_block); 3039 if (split_flag & EXT4_EXT_MARK_UNINIT1) 3040 ext4_ext_mark_uninitialized(ex); 3041 3042 /* 3043 * path may lead to new leaf, not to original leaf any more 3044 * after ext4_ext_insert_extent() returns, 3045 */ 3046 err = ext4_ext_dirty(handle, inode, path + depth); 3047 if (err) 3048 goto fix_extent_len; 3049 3050 ex2 = &newex; 3051 ex2->ee_block = cpu_to_le32(split); 3052 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3053 ext4_ext_store_pblock(ex2, newblock); 3054 if (split_flag & EXT4_EXT_MARK_UNINIT2) 3055 ext4_ext_mark_uninitialized(ex2); 3056 3057 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 3058 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3059 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3060 if (split_flag & EXT4_EXT_DATA_VALID1) { 3061 err = ext4_ext_zeroout(inode, ex2); 3062 zero_ex.ee_block = ex2->ee_block; 3063 zero_ex.ee_len = cpu_to_le16( 3064 ext4_ext_get_actual_len(ex2)); 3065 ext4_ext_store_pblock(&zero_ex, 3066 ext4_ext_pblock(ex2)); 3067 } else { 3068 err = ext4_ext_zeroout(inode, ex); 3069 zero_ex.ee_block = ex->ee_block; 3070 zero_ex.ee_len = cpu_to_le16( 3071 ext4_ext_get_actual_len(ex)); 3072 ext4_ext_store_pblock(&zero_ex, 3073 ext4_ext_pblock(ex)); 3074 } 3075 } else { 3076 err = ext4_ext_zeroout(inode, &orig_ex); 3077 zero_ex.ee_block = orig_ex.ee_block; 3078 zero_ex.ee_len = cpu_to_le16( 3079 ext4_ext_get_actual_len(&orig_ex)); 3080 ext4_ext_store_pblock(&zero_ex, 3081 ext4_ext_pblock(&orig_ex)); 3082 } 3083 3084 if (err) 3085 goto fix_extent_len; 3086 /* update the extent length and mark as initialized */ 3087 ex->ee_len = cpu_to_le16(ee_len); 3088 ext4_ext_try_to_merge(handle, inode, path, ex); 3089 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3090 if (err) 3091 goto fix_extent_len; 3092 3093 /* update extent status tree */ 3094 err = ext4_es_zeroout(inode, &zero_ex); 3095 3096 goto out; 3097 } else if (err) 3098 goto fix_extent_len; 3099 3100 out: 3101 ext4_ext_show_leaf(inode, path); 3102 return err; 3103 3104 fix_extent_len: 3105 ex->ee_len = orig_ex.ee_len; 3106 ext4_ext_dirty(handle, inode, path + depth); 3107 return err; 3108 } 3109 3110 /* 3111 * ext4_split_extents() splits an extent and mark extent which is covered 3112 * by @map as split_flags indicates 3113 * 3114 * It may result in splitting the extent into multiple extents (upto three) 3115 * There are three possibilities: 3116 * a> There is no split required 3117 * b> Splits in two extents: Split is happening at either end of the extent 3118 * c> Splits in three extents: Somone is splitting in middle of the extent 3119 * 3120 */ 3121 static int ext4_split_extent(handle_t *handle, 3122 struct inode *inode, 3123 struct ext4_ext_path *path, 3124 struct ext4_map_blocks *map, 3125 int split_flag, 3126 int flags) 3127 { 3128 ext4_lblk_t ee_block; 3129 struct ext4_extent *ex; 3130 unsigned int ee_len, depth; 3131 int err = 0; 3132 int uninitialized; 3133 int split_flag1, flags1; 3134 int allocated = map->m_len; 3135 3136 depth = ext_depth(inode); 3137 ex = path[depth].p_ext; 3138 ee_block = le32_to_cpu(ex->ee_block); 3139 ee_len = ext4_ext_get_actual_len(ex); 3140 uninitialized = ext4_ext_is_uninitialized(ex); 3141 3142 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3143 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3144 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3145 if (uninitialized) 3146 split_flag1 |= EXT4_EXT_MARK_UNINIT1 | 3147 EXT4_EXT_MARK_UNINIT2; 3148 if (split_flag & EXT4_EXT_DATA_VALID2) 3149 split_flag1 |= EXT4_EXT_DATA_VALID1; 3150 err = ext4_split_extent_at(handle, inode, path, 3151 map->m_lblk + map->m_len, split_flag1, flags1); 3152 if (err) 3153 goto out; 3154 } else { 3155 allocated = ee_len - (map->m_lblk - ee_block); 3156 } 3157 /* 3158 * Update path is required because previous ext4_split_extent_at() may 3159 * result in split of original leaf or extent zeroout. 3160 */ 3161 ext4_ext_drop_refs(path); 3162 path = ext4_ext_find_extent(inode, map->m_lblk, path); 3163 if (IS_ERR(path)) 3164 return PTR_ERR(path); 3165 depth = ext_depth(inode); 3166 ex = path[depth].p_ext; 3167 uninitialized = ext4_ext_is_uninitialized(ex); 3168 split_flag1 = 0; 3169 3170 if (map->m_lblk >= ee_block) { 3171 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3172 if (uninitialized) { 3173 split_flag1 |= EXT4_EXT_MARK_UNINIT1; 3174 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3175 EXT4_EXT_MARK_UNINIT2); 3176 } 3177 err = ext4_split_extent_at(handle, inode, path, 3178 map->m_lblk, split_flag1, flags); 3179 if (err) 3180 goto out; 3181 } 3182 3183 ext4_ext_show_leaf(inode, path); 3184 out: 3185 return err ? err : allocated; 3186 } 3187 3188 /* 3189 * This function is called by ext4_ext_map_blocks() if someone tries to write 3190 * to an uninitialized extent. It may result in splitting the uninitialized 3191 * extent into multiple extents (up to three - one initialized and two 3192 * uninitialized). 3193 * There are three possibilities: 3194 * a> There is no split required: Entire extent should be initialized 3195 * b> Splits in two extents: Write is happening at either end of the extent 3196 * c> Splits in three extents: Somone is writing in middle of the extent 3197 * 3198 * Pre-conditions: 3199 * - The extent pointed to by 'path' is uninitialized. 3200 * - The extent pointed to by 'path' contains a superset 3201 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3202 * 3203 * Post-conditions on success: 3204 * - the returned value is the number of blocks beyond map->l_lblk 3205 * that are allocated and initialized. 3206 * It is guaranteed to be >= map->m_len. 3207 */ 3208 static int ext4_ext_convert_to_initialized(handle_t *handle, 3209 struct inode *inode, 3210 struct ext4_map_blocks *map, 3211 struct ext4_ext_path *path, 3212 int flags) 3213 { 3214 struct ext4_sb_info *sbi; 3215 struct ext4_extent_header *eh; 3216 struct ext4_map_blocks split_map; 3217 struct ext4_extent zero_ex; 3218 struct ext4_extent *ex, *abut_ex; 3219 ext4_lblk_t ee_block, eof_block; 3220 unsigned int ee_len, depth, map_len = map->m_len; 3221 int allocated = 0, max_zeroout = 0; 3222 int err = 0; 3223 int split_flag = 0; 3224 3225 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3226 "block %llu, max_blocks %u\n", inode->i_ino, 3227 (unsigned long long)map->m_lblk, map_len); 3228 3229 sbi = EXT4_SB(inode->i_sb); 3230 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3231 inode->i_sb->s_blocksize_bits; 3232 if (eof_block < map->m_lblk + map_len) 3233 eof_block = map->m_lblk + map_len; 3234 3235 depth = ext_depth(inode); 3236 eh = path[depth].p_hdr; 3237 ex = path[depth].p_ext; 3238 ee_block = le32_to_cpu(ex->ee_block); 3239 ee_len = ext4_ext_get_actual_len(ex); 3240 zero_ex.ee_len = 0; 3241 3242 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3243 3244 /* Pre-conditions */ 3245 BUG_ON(!ext4_ext_is_uninitialized(ex)); 3246 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3247 3248 /* 3249 * Attempt to transfer newly initialized blocks from the currently 3250 * uninitialized extent to its neighbor. This is much cheaper 3251 * than an insertion followed by a merge as those involve costly 3252 * memmove() calls. Transferring to the left is the common case in 3253 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3254 * followed by append writes. 3255 * 3256 * Limitations of the current logic: 3257 * - L1: we do not deal with writes covering the whole extent. 3258 * This would require removing the extent if the transfer 3259 * is possible. 3260 * - L2: we only attempt to merge with an extent stored in the 3261 * same extent tree node. 3262 */ 3263 if ((map->m_lblk == ee_block) && 3264 /* See if we can merge left */ 3265 (map_len < ee_len) && /*L1*/ 3266 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3267 ext4_lblk_t prev_lblk; 3268 ext4_fsblk_t prev_pblk, ee_pblk; 3269 unsigned int prev_len; 3270 3271 abut_ex = ex - 1; 3272 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3273 prev_len = ext4_ext_get_actual_len(abut_ex); 3274 prev_pblk = ext4_ext_pblock(abut_ex); 3275 ee_pblk = ext4_ext_pblock(ex); 3276 3277 /* 3278 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3279 * upon those conditions: 3280 * - C1: abut_ex is initialized, 3281 * - C2: abut_ex is logically abutting ex, 3282 * - C3: abut_ex is physically abutting ex, 3283 * - C4: abut_ex can receive the additional blocks without 3284 * overflowing the (initialized) length limit. 3285 */ 3286 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/ 3287 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3288 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3289 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3290 err = ext4_ext_get_access(handle, inode, path + depth); 3291 if (err) 3292 goto out; 3293 3294 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3295 map, ex, abut_ex); 3296 3297 /* Shift the start of ex by 'map_len' blocks */ 3298 ex->ee_block = cpu_to_le32(ee_block + map_len); 3299 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3300 ex->ee_len = cpu_to_le16(ee_len - map_len); 3301 ext4_ext_mark_uninitialized(ex); /* Restore the flag */ 3302 3303 /* Extend abut_ex by 'map_len' blocks */ 3304 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3305 3306 /* Result: number of initialized blocks past m_lblk */ 3307 allocated = map_len; 3308 } 3309 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3310 (map_len < ee_len) && /*L1*/ 3311 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3312 /* See if we can merge right */ 3313 ext4_lblk_t next_lblk; 3314 ext4_fsblk_t next_pblk, ee_pblk; 3315 unsigned int next_len; 3316 3317 abut_ex = ex + 1; 3318 next_lblk = le32_to_cpu(abut_ex->ee_block); 3319 next_len = ext4_ext_get_actual_len(abut_ex); 3320 next_pblk = ext4_ext_pblock(abut_ex); 3321 ee_pblk = ext4_ext_pblock(ex); 3322 3323 /* 3324 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3325 * upon those conditions: 3326 * - C1: abut_ex is initialized, 3327 * - C2: abut_ex is logically abutting ex, 3328 * - C3: abut_ex is physically abutting ex, 3329 * - C4: abut_ex can receive the additional blocks without 3330 * overflowing the (initialized) length limit. 3331 */ 3332 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/ 3333 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3334 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3335 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3336 err = ext4_ext_get_access(handle, inode, path + depth); 3337 if (err) 3338 goto out; 3339 3340 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3341 map, ex, abut_ex); 3342 3343 /* Shift the start of abut_ex by 'map_len' blocks */ 3344 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3345 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3346 ex->ee_len = cpu_to_le16(ee_len - map_len); 3347 ext4_ext_mark_uninitialized(ex); /* Restore the flag */ 3348 3349 /* Extend abut_ex by 'map_len' blocks */ 3350 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3351 3352 /* Result: number of initialized blocks past m_lblk */ 3353 allocated = map_len; 3354 } 3355 } 3356 if (allocated) { 3357 /* Mark the block containing both extents as dirty */ 3358 ext4_ext_dirty(handle, inode, path + depth); 3359 3360 /* Update path to point to the right extent */ 3361 path[depth].p_ext = abut_ex; 3362 goto out; 3363 } else 3364 allocated = ee_len - (map->m_lblk - ee_block); 3365 3366 WARN_ON(map->m_lblk < ee_block); 3367 /* 3368 * It is safe to convert extent to initialized via explicit 3369 * zeroout only if extent is fully insde i_size or new_size. 3370 */ 3371 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3372 3373 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3374 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3375 (inode->i_sb->s_blocksize_bits - 10); 3376 3377 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3378 if (max_zeroout && (ee_len <= max_zeroout)) { 3379 err = ext4_ext_zeroout(inode, ex); 3380 if (err) 3381 goto out; 3382 zero_ex.ee_block = ex->ee_block; 3383 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)); 3384 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex)); 3385 3386 err = ext4_ext_get_access(handle, inode, path + depth); 3387 if (err) 3388 goto out; 3389 ext4_ext_mark_initialized(ex); 3390 ext4_ext_try_to_merge(handle, inode, path, ex); 3391 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3392 goto out; 3393 } 3394 3395 /* 3396 * four cases: 3397 * 1. split the extent into three extents. 3398 * 2. split the extent into two extents, zeroout the first half. 3399 * 3. split the extent into two extents, zeroout the second half. 3400 * 4. split the extent into two extents with out zeroout. 3401 */ 3402 split_map.m_lblk = map->m_lblk; 3403 split_map.m_len = map->m_len; 3404 3405 if (max_zeroout && (allocated > map->m_len)) { 3406 if (allocated <= max_zeroout) { 3407 /* case 3 */ 3408 zero_ex.ee_block = 3409 cpu_to_le32(map->m_lblk); 3410 zero_ex.ee_len = cpu_to_le16(allocated); 3411 ext4_ext_store_pblock(&zero_ex, 3412 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3413 err = ext4_ext_zeroout(inode, &zero_ex); 3414 if (err) 3415 goto out; 3416 split_map.m_lblk = map->m_lblk; 3417 split_map.m_len = allocated; 3418 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3419 /* case 2 */ 3420 if (map->m_lblk != ee_block) { 3421 zero_ex.ee_block = ex->ee_block; 3422 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3423 ee_block); 3424 ext4_ext_store_pblock(&zero_ex, 3425 ext4_ext_pblock(ex)); 3426 err = ext4_ext_zeroout(inode, &zero_ex); 3427 if (err) 3428 goto out; 3429 } 3430 3431 split_map.m_lblk = ee_block; 3432 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3433 allocated = map->m_len; 3434 } 3435 } 3436 3437 allocated = ext4_split_extent(handle, inode, path, 3438 &split_map, split_flag, flags); 3439 if (allocated < 0) 3440 err = allocated; 3441 3442 out: 3443 /* If we have gotten a failure, don't zero out status tree */ 3444 if (!err) 3445 err = ext4_es_zeroout(inode, &zero_ex); 3446 return err ? err : allocated; 3447 } 3448 3449 /* 3450 * This function is called by ext4_ext_map_blocks() from 3451 * ext4_get_blocks_dio_write() when DIO to write 3452 * to an uninitialized extent. 3453 * 3454 * Writing to an uninitialized extent may result in splitting the uninitialized 3455 * extent into multiple initialized/uninitialized extents (up to three) 3456 * There are three possibilities: 3457 * a> There is no split required: Entire extent should be uninitialized 3458 * b> Splits in two extents: Write is happening at either end of the extent 3459 * c> Splits in three extents: Somone is writing in middle of the extent 3460 * 3461 * One of more index blocks maybe needed if the extent tree grow after 3462 * the uninitialized extent split. To prevent ENOSPC occur at the IO 3463 * complete, we need to split the uninitialized extent before DIO submit 3464 * the IO. The uninitialized extent called at this time will be split 3465 * into three uninitialized extent(at most). After IO complete, the part 3466 * being filled will be convert to initialized by the end_io callback function 3467 * via ext4_convert_unwritten_extents(). 3468 * 3469 * Returns the size of uninitialized extent to be written on success. 3470 */ 3471 static int ext4_split_unwritten_extents(handle_t *handle, 3472 struct inode *inode, 3473 struct ext4_map_blocks *map, 3474 struct ext4_ext_path *path, 3475 int flags) 3476 { 3477 ext4_lblk_t eof_block; 3478 ext4_lblk_t ee_block; 3479 struct ext4_extent *ex; 3480 unsigned int ee_len; 3481 int split_flag = 0, depth; 3482 3483 ext_debug("ext4_split_unwritten_extents: inode %lu, logical" 3484 "block %llu, max_blocks %u\n", inode->i_ino, 3485 (unsigned long long)map->m_lblk, map->m_len); 3486 3487 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3488 inode->i_sb->s_blocksize_bits; 3489 if (eof_block < map->m_lblk + map->m_len) 3490 eof_block = map->m_lblk + map->m_len; 3491 /* 3492 * It is safe to convert extent to initialized via explicit 3493 * zeroout only if extent is fully insde i_size or new_size. 3494 */ 3495 depth = ext_depth(inode); 3496 ex = path[depth].p_ext; 3497 ee_block = le32_to_cpu(ex->ee_block); 3498 ee_len = ext4_ext_get_actual_len(ex); 3499 3500 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3501 split_flag |= EXT4_EXT_MARK_UNINIT2; 3502 if (flags & EXT4_GET_BLOCKS_CONVERT) 3503 split_flag |= EXT4_EXT_DATA_VALID2; 3504 flags |= EXT4_GET_BLOCKS_PRE_IO; 3505 return ext4_split_extent(handle, inode, path, map, split_flag, flags); 3506 } 3507 3508 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3509 struct inode *inode, 3510 struct ext4_map_blocks *map, 3511 struct ext4_ext_path *path) 3512 { 3513 struct ext4_extent *ex; 3514 ext4_lblk_t ee_block; 3515 unsigned int ee_len; 3516 int depth; 3517 int err = 0; 3518 3519 depth = ext_depth(inode); 3520 ex = path[depth].p_ext; 3521 ee_block = le32_to_cpu(ex->ee_block); 3522 ee_len = ext4_ext_get_actual_len(ex); 3523 3524 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3525 "block %llu, max_blocks %u\n", inode->i_ino, 3526 (unsigned long long)ee_block, ee_len); 3527 3528 /* If extent is larger than requested it is a clear sign that we still 3529 * have some extent state machine issues left. So extent_split is still 3530 * required. 3531 * TODO: Once all related issues will be fixed this situation should be 3532 * illegal. 3533 */ 3534 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3535 #ifdef EXT4_DEBUG 3536 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3537 " len %u; IO logical block %llu, len %u\n", 3538 inode->i_ino, (unsigned long long)ee_block, ee_len, 3539 (unsigned long long)map->m_lblk, map->m_len); 3540 #endif 3541 err = ext4_split_unwritten_extents(handle, inode, map, path, 3542 EXT4_GET_BLOCKS_CONVERT); 3543 if (err < 0) 3544 goto out; 3545 ext4_ext_drop_refs(path); 3546 path = ext4_ext_find_extent(inode, map->m_lblk, path); 3547 if (IS_ERR(path)) { 3548 err = PTR_ERR(path); 3549 goto out; 3550 } 3551 depth = ext_depth(inode); 3552 ex = path[depth].p_ext; 3553 } 3554 3555 err = ext4_ext_get_access(handle, inode, path + depth); 3556 if (err) 3557 goto out; 3558 /* first mark the extent as initialized */ 3559 ext4_ext_mark_initialized(ex); 3560 3561 /* note: ext4_ext_correct_indexes() isn't needed here because 3562 * borders are not changed 3563 */ 3564 ext4_ext_try_to_merge(handle, inode, path, ex); 3565 3566 /* Mark modified extent as dirty */ 3567 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3568 out: 3569 ext4_ext_show_leaf(inode, path); 3570 return err; 3571 } 3572 3573 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3574 sector_t block, int count) 3575 { 3576 int i; 3577 for (i = 0; i < count; i++) 3578 unmap_underlying_metadata(bdev, block + i); 3579 } 3580 3581 /* 3582 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3583 */ 3584 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3585 ext4_lblk_t lblk, 3586 struct ext4_ext_path *path, 3587 unsigned int len) 3588 { 3589 int i, depth; 3590 struct ext4_extent_header *eh; 3591 struct ext4_extent *last_ex; 3592 3593 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3594 return 0; 3595 3596 depth = ext_depth(inode); 3597 eh = path[depth].p_hdr; 3598 3599 /* 3600 * We're going to remove EOFBLOCKS_FL entirely in future so we 3601 * do not care for this case anymore. Simply remove the flag 3602 * if there are no extents. 3603 */ 3604 if (unlikely(!eh->eh_entries)) 3605 goto out; 3606 last_ex = EXT_LAST_EXTENT(eh); 3607 /* 3608 * We should clear the EOFBLOCKS_FL flag if we are writing the 3609 * last block in the last extent in the file. We test this by 3610 * first checking to see if the caller to 3611 * ext4_ext_get_blocks() was interested in the last block (or 3612 * a block beyond the last block) in the current extent. If 3613 * this turns out to be false, we can bail out from this 3614 * function immediately. 3615 */ 3616 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3617 ext4_ext_get_actual_len(last_ex)) 3618 return 0; 3619 /* 3620 * If the caller does appear to be planning to write at or 3621 * beyond the end of the current extent, we then test to see 3622 * if the current extent is the last extent in the file, by 3623 * checking to make sure it was reached via the rightmost node 3624 * at each level of the tree. 3625 */ 3626 for (i = depth-1; i >= 0; i--) 3627 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3628 return 0; 3629 out: 3630 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3631 return ext4_mark_inode_dirty(handle, inode); 3632 } 3633 3634 /** 3635 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3636 * 3637 * Return 1 if there is a delalloc block in the range, otherwise 0. 3638 */ 3639 int ext4_find_delalloc_range(struct inode *inode, 3640 ext4_lblk_t lblk_start, 3641 ext4_lblk_t lblk_end) 3642 { 3643 struct extent_status es; 3644 3645 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es); 3646 if (es.es_len == 0) 3647 return 0; /* there is no delay extent in this tree */ 3648 else if (es.es_lblk <= lblk_start && 3649 lblk_start < es.es_lblk + es.es_len) 3650 return 1; 3651 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3652 return 1; 3653 else 3654 return 0; 3655 } 3656 3657 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3658 { 3659 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3660 ext4_lblk_t lblk_start, lblk_end; 3661 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1)); 3662 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3663 3664 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3665 } 3666 3667 /** 3668 * Determines how many complete clusters (out of those specified by the 'map') 3669 * are under delalloc and were reserved quota for. 3670 * This function is called when we are writing out the blocks that were 3671 * originally written with their allocation delayed, but then the space was 3672 * allocated using fallocate() before the delayed allocation could be resolved. 3673 * The cases to look for are: 3674 * ('=' indicated delayed allocated blocks 3675 * '-' indicates non-delayed allocated blocks) 3676 * (a) partial clusters towards beginning and/or end outside of allocated range 3677 * are not delalloc'ed. 3678 * Ex: 3679 * |----c---=|====c====|====c====|===-c----| 3680 * |++++++ allocated ++++++| 3681 * ==> 4 complete clusters in above example 3682 * 3683 * (b) partial cluster (outside of allocated range) towards either end is 3684 * marked for delayed allocation. In this case, we will exclude that 3685 * cluster. 3686 * Ex: 3687 * |----====c========|========c========| 3688 * |++++++ allocated ++++++| 3689 * ==> 1 complete clusters in above example 3690 * 3691 * Ex: 3692 * |================c================| 3693 * |++++++ allocated ++++++| 3694 * ==> 0 complete clusters in above example 3695 * 3696 * The ext4_da_update_reserve_space will be called only if we 3697 * determine here that there were some "entire" clusters that span 3698 * this 'allocated' range. 3699 * In the non-bigalloc case, this function will just end up returning num_blks 3700 * without ever calling ext4_find_delalloc_range. 3701 */ 3702 static unsigned int 3703 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3704 unsigned int num_blks) 3705 { 3706 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3707 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3708 ext4_lblk_t lblk_from, lblk_to, c_offset; 3709 unsigned int allocated_clusters = 0; 3710 3711 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3712 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3713 3714 /* max possible clusters for this allocation */ 3715 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3716 3717 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3718 3719 /* Check towards left side */ 3720 c_offset = lblk_start & (sbi->s_cluster_ratio - 1); 3721 if (c_offset) { 3722 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1)); 3723 lblk_to = lblk_from + c_offset - 1; 3724 3725 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3726 allocated_clusters--; 3727 } 3728 3729 /* Now check towards right. */ 3730 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1); 3731 if (allocated_clusters && c_offset) { 3732 lblk_from = lblk_start + num_blks; 3733 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3734 3735 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3736 allocated_clusters--; 3737 } 3738 3739 return allocated_clusters; 3740 } 3741 3742 static int 3743 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, 3744 struct ext4_map_blocks *map, 3745 struct ext4_ext_path *path, int flags, 3746 unsigned int allocated, ext4_fsblk_t newblock) 3747 { 3748 int ret = 0; 3749 int err = 0; 3750 ext4_io_end_t *io = ext4_inode_aio(inode); 3751 3752 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical " 3753 "block %llu, max_blocks %u, flags %x, allocated %u\n", 3754 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3755 flags, allocated); 3756 ext4_ext_show_leaf(inode, path); 3757 3758 /* 3759 * When writing into uninitialized space, we should not fail to 3760 * allocate metadata blocks for the new extent block if needed. 3761 */ 3762 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 3763 3764 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags, 3765 allocated, newblock); 3766 3767 /* get_block() before submit the IO, split the extent */ 3768 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 3769 ret = ext4_split_unwritten_extents(handle, inode, map, 3770 path, flags); 3771 if (ret <= 0) 3772 goto out; 3773 /* 3774 * Flag the inode(non aio case) or end_io struct (aio case) 3775 * that this IO needs to conversion to written when IO is 3776 * completed 3777 */ 3778 if (io) 3779 ext4_set_io_unwritten_flag(inode, io); 3780 else 3781 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3782 map->m_flags |= EXT4_MAP_UNWRITTEN; 3783 if (ext4_should_dioread_nolock(inode)) 3784 map->m_flags |= EXT4_MAP_UNINIT; 3785 goto out; 3786 } 3787 /* IO end_io complete, convert the filled extent to written */ 3788 if ((flags & EXT4_GET_BLOCKS_CONVERT)) { 3789 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 3790 path); 3791 if (ret >= 0) { 3792 ext4_update_inode_fsync_trans(handle, inode, 1); 3793 err = check_eofblocks_fl(handle, inode, map->m_lblk, 3794 path, map->m_len); 3795 } else 3796 err = ret; 3797 map->m_flags |= EXT4_MAP_MAPPED; 3798 if (allocated > map->m_len) 3799 allocated = map->m_len; 3800 map->m_len = allocated; 3801 goto out2; 3802 } 3803 /* buffered IO case */ 3804 /* 3805 * repeat fallocate creation request 3806 * we already have an unwritten extent 3807 */ 3808 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) { 3809 map->m_flags |= EXT4_MAP_UNWRITTEN; 3810 goto map_out; 3811 } 3812 3813 /* buffered READ or buffered write_begin() lookup */ 3814 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3815 /* 3816 * We have blocks reserved already. We 3817 * return allocated blocks so that delalloc 3818 * won't do block reservation for us. But 3819 * the buffer head will be unmapped so that 3820 * a read from the block returns 0s. 3821 */ 3822 map->m_flags |= EXT4_MAP_UNWRITTEN; 3823 goto out1; 3824 } 3825 3826 /* buffered write, writepage time, convert*/ 3827 ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags); 3828 if (ret >= 0) 3829 ext4_update_inode_fsync_trans(handle, inode, 1); 3830 out: 3831 if (ret <= 0) { 3832 err = ret; 3833 goto out2; 3834 } else 3835 allocated = ret; 3836 map->m_flags |= EXT4_MAP_NEW; 3837 /* 3838 * if we allocated more blocks than requested 3839 * we need to make sure we unmap the extra block 3840 * allocated. The actual needed block will get 3841 * unmapped later when we find the buffer_head marked 3842 * new. 3843 */ 3844 if (allocated > map->m_len) { 3845 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 3846 newblock + map->m_len, 3847 allocated - map->m_len); 3848 allocated = map->m_len; 3849 } 3850 map->m_len = allocated; 3851 3852 /* 3853 * If we have done fallocate with the offset that is already 3854 * delayed allocated, we would have block reservation 3855 * and quota reservation done in the delayed write path. 3856 * But fallocate would have already updated quota and block 3857 * count for this offset. So cancel these reservation 3858 */ 3859 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 3860 unsigned int reserved_clusters; 3861 reserved_clusters = get_reserved_cluster_alloc(inode, 3862 map->m_lblk, map->m_len); 3863 if (reserved_clusters) 3864 ext4_da_update_reserve_space(inode, 3865 reserved_clusters, 3866 0); 3867 } 3868 3869 map_out: 3870 map->m_flags |= EXT4_MAP_MAPPED; 3871 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 3872 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 3873 map->m_len); 3874 if (err < 0) 3875 goto out2; 3876 } 3877 out1: 3878 if (allocated > map->m_len) 3879 allocated = map->m_len; 3880 ext4_ext_show_leaf(inode, path); 3881 map->m_pblk = newblock; 3882 map->m_len = allocated; 3883 out2: 3884 if (path) { 3885 ext4_ext_drop_refs(path); 3886 kfree(path); 3887 } 3888 return err ? err : allocated; 3889 } 3890 3891 /* 3892 * get_implied_cluster_alloc - check to see if the requested 3893 * allocation (in the map structure) overlaps with a cluster already 3894 * allocated in an extent. 3895 * @sb The filesystem superblock structure 3896 * @map The requested lblk->pblk mapping 3897 * @ex The extent structure which might contain an implied 3898 * cluster allocation 3899 * 3900 * This function is called by ext4_ext_map_blocks() after we failed to 3901 * find blocks that were already in the inode's extent tree. Hence, 3902 * we know that the beginning of the requested region cannot overlap 3903 * the extent from the inode's extent tree. There are three cases we 3904 * want to catch. The first is this case: 3905 * 3906 * |--- cluster # N--| 3907 * |--- extent ---| |---- requested region ---| 3908 * |==========| 3909 * 3910 * The second case that we need to test for is this one: 3911 * 3912 * |--------- cluster # N ----------------| 3913 * |--- requested region --| |------- extent ----| 3914 * |=======================| 3915 * 3916 * The third case is when the requested region lies between two extents 3917 * within the same cluster: 3918 * |------------- cluster # N-------------| 3919 * |----- ex -----| |---- ex_right ----| 3920 * |------ requested region ------| 3921 * |================| 3922 * 3923 * In each of the above cases, we need to set the map->m_pblk and 3924 * map->m_len so it corresponds to the return the extent labelled as 3925 * "|====|" from cluster #N, since it is already in use for data in 3926 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 3927 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 3928 * as a new "allocated" block region. Otherwise, we will return 0 and 3929 * ext4_ext_map_blocks() will then allocate one or more new clusters 3930 * by calling ext4_mb_new_blocks(). 3931 */ 3932 static int get_implied_cluster_alloc(struct super_block *sb, 3933 struct ext4_map_blocks *map, 3934 struct ext4_extent *ex, 3935 struct ext4_ext_path *path) 3936 { 3937 struct ext4_sb_info *sbi = EXT4_SB(sb); 3938 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 3939 ext4_lblk_t ex_cluster_start, ex_cluster_end; 3940 ext4_lblk_t rr_cluster_start; 3941 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3942 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3943 unsigned short ee_len = ext4_ext_get_actual_len(ex); 3944 3945 /* The extent passed in that we are trying to match */ 3946 ex_cluster_start = EXT4_B2C(sbi, ee_block); 3947 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 3948 3949 /* The requested region passed into ext4_map_blocks() */ 3950 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 3951 3952 if ((rr_cluster_start == ex_cluster_end) || 3953 (rr_cluster_start == ex_cluster_start)) { 3954 if (rr_cluster_start == ex_cluster_end) 3955 ee_start += ee_len - 1; 3956 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) + 3957 c_offset; 3958 map->m_len = min(map->m_len, 3959 (unsigned) sbi->s_cluster_ratio - c_offset); 3960 /* 3961 * Check for and handle this case: 3962 * 3963 * |--------- cluster # N-------------| 3964 * |------- extent ----| 3965 * |--- requested region ---| 3966 * |===========| 3967 */ 3968 3969 if (map->m_lblk < ee_block) 3970 map->m_len = min(map->m_len, ee_block - map->m_lblk); 3971 3972 /* 3973 * Check for the case where there is already another allocated 3974 * block to the right of 'ex' but before the end of the cluster. 3975 * 3976 * |------------- cluster # N-------------| 3977 * |----- ex -----| |---- ex_right ----| 3978 * |------ requested region ------| 3979 * |================| 3980 */ 3981 if (map->m_lblk > ee_block) { 3982 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 3983 map->m_len = min(map->m_len, next - map->m_lblk); 3984 } 3985 3986 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 3987 return 1; 3988 } 3989 3990 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 3991 return 0; 3992 } 3993 3994 3995 /* 3996 * Block allocation/map/preallocation routine for extents based files 3997 * 3998 * 3999 * Need to be called with 4000 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4001 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4002 * 4003 * return > 0, number of of blocks already mapped/allocated 4004 * if create == 0 and these are pre-allocated blocks 4005 * buffer head is unmapped 4006 * otherwise blocks are mapped 4007 * 4008 * return = 0, if plain look up failed (blocks have not been allocated) 4009 * buffer head is unmapped 4010 * 4011 * return < 0, error case. 4012 */ 4013 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4014 struct ext4_map_blocks *map, int flags) 4015 { 4016 struct ext4_ext_path *path = NULL; 4017 struct ext4_extent newex, *ex, *ex2; 4018 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4019 ext4_fsblk_t newblock = 0; 4020 int free_on_err = 0, err = 0, depth; 4021 unsigned int allocated = 0, offset = 0; 4022 unsigned int allocated_clusters = 0; 4023 struct ext4_allocation_request ar; 4024 ext4_io_end_t *io = ext4_inode_aio(inode); 4025 ext4_lblk_t cluster_offset; 4026 int set_unwritten = 0; 4027 4028 ext_debug("blocks %u/%u requested for inode %lu\n", 4029 map->m_lblk, map->m_len, inode->i_ino); 4030 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4031 4032 /* find extent for this block */ 4033 path = ext4_ext_find_extent(inode, map->m_lblk, NULL); 4034 if (IS_ERR(path)) { 4035 err = PTR_ERR(path); 4036 path = NULL; 4037 goto out2; 4038 } 4039 4040 depth = ext_depth(inode); 4041 4042 /* 4043 * consistent leaf must not be empty; 4044 * this situation is possible, though, _during_ tree modification; 4045 * this is why assert can't be put in ext4_ext_find_extent() 4046 */ 4047 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4048 EXT4_ERROR_INODE(inode, "bad extent address " 4049 "lblock: %lu, depth: %d pblock %lld", 4050 (unsigned long) map->m_lblk, depth, 4051 path[depth].p_block); 4052 err = -EIO; 4053 goto out2; 4054 } 4055 4056 ex = path[depth].p_ext; 4057 if (ex) { 4058 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4059 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4060 unsigned short ee_len; 4061 4062 /* 4063 * Uninitialized extents are treated as holes, except that 4064 * we split out initialized portions during a write. 4065 */ 4066 ee_len = ext4_ext_get_actual_len(ex); 4067 4068 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4069 4070 /* if found extent covers block, simply return it */ 4071 if (in_range(map->m_lblk, ee_block, ee_len)) { 4072 newblock = map->m_lblk - ee_block + ee_start; 4073 /* number of remaining blocks in the extent */ 4074 allocated = ee_len - (map->m_lblk - ee_block); 4075 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4076 ee_block, ee_len, newblock); 4077 4078 if (!ext4_ext_is_uninitialized(ex)) 4079 goto out; 4080 4081 allocated = ext4_ext_handle_uninitialized_extents( 4082 handle, inode, map, path, flags, 4083 allocated, newblock); 4084 goto out3; 4085 } 4086 } 4087 4088 if ((sbi->s_cluster_ratio > 1) && 4089 ext4_find_delalloc_cluster(inode, map->m_lblk)) 4090 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4091 4092 /* 4093 * requested block isn't allocated yet; 4094 * we couldn't try to create block if create flag is zero 4095 */ 4096 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4097 /* 4098 * put just found gap into cache to speed up 4099 * subsequent requests 4100 */ 4101 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0) 4102 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 4103 goto out2; 4104 } 4105 4106 /* 4107 * Okay, we need to do block allocation. 4108 */ 4109 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 4110 newex.ee_block = cpu_to_le32(map->m_lblk); 4111 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 4112 4113 /* 4114 * If we are doing bigalloc, check to see if the extent returned 4115 * by ext4_ext_find_extent() implies a cluster we can use. 4116 */ 4117 if (cluster_offset && ex && 4118 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4119 ar.len = allocated = map->m_len; 4120 newblock = map->m_pblk; 4121 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4122 goto got_allocated_blocks; 4123 } 4124 4125 /* find neighbour allocated blocks */ 4126 ar.lleft = map->m_lblk; 4127 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4128 if (err) 4129 goto out2; 4130 ar.lright = map->m_lblk; 4131 ex2 = NULL; 4132 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4133 if (err) 4134 goto out2; 4135 4136 /* Check if the extent after searching to the right implies a 4137 * cluster we can use. */ 4138 if ((sbi->s_cluster_ratio > 1) && ex2 && 4139 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4140 ar.len = allocated = map->m_len; 4141 newblock = map->m_pblk; 4142 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4143 goto got_allocated_blocks; 4144 } 4145 4146 /* 4147 * See if request is beyond maximum number of blocks we can have in 4148 * a single extent. For an initialized extent this limit is 4149 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 4150 * EXT_UNINIT_MAX_LEN. 4151 */ 4152 if (map->m_len > EXT_INIT_MAX_LEN && 4153 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 4154 map->m_len = EXT_INIT_MAX_LEN; 4155 else if (map->m_len > EXT_UNINIT_MAX_LEN && 4156 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 4157 map->m_len = EXT_UNINIT_MAX_LEN; 4158 4159 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4160 newex.ee_len = cpu_to_le16(map->m_len); 4161 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4162 if (err) 4163 allocated = ext4_ext_get_actual_len(&newex); 4164 else 4165 allocated = map->m_len; 4166 4167 /* allocate new block */ 4168 ar.inode = inode; 4169 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4170 ar.logical = map->m_lblk; 4171 /* 4172 * We calculate the offset from the beginning of the cluster 4173 * for the logical block number, since when we allocate a 4174 * physical cluster, the physical block should start at the 4175 * same offset from the beginning of the cluster. This is 4176 * needed so that future calls to get_implied_cluster_alloc() 4177 * work correctly. 4178 */ 4179 offset = map->m_lblk & (sbi->s_cluster_ratio - 1); 4180 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4181 ar.goal -= offset; 4182 ar.logical -= offset; 4183 if (S_ISREG(inode->i_mode)) 4184 ar.flags = EXT4_MB_HINT_DATA; 4185 else 4186 /* disable in-core preallocation for non-regular files */ 4187 ar.flags = 0; 4188 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4189 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4190 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4191 if (!newblock) 4192 goto out2; 4193 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4194 ar.goal, newblock, allocated); 4195 free_on_err = 1; 4196 allocated_clusters = ar.len; 4197 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4198 if (ar.len > allocated) 4199 ar.len = allocated; 4200 4201 got_allocated_blocks: 4202 /* try to insert new extent into found leaf and return */ 4203 ext4_ext_store_pblock(&newex, newblock + offset); 4204 newex.ee_len = cpu_to_le16(ar.len); 4205 /* Mark uninitialized */ 4206 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ 4207 ext4_ext_mark_uninitialized(&newex); 4208 map->m_flags |= EXT4_MAP_UNWRITTEN; 4209 /* 4210 * io_end structure was created for every IO write to an 4211 * uninitialized extent. To avoid unnecessary conversion, 4212 * here we flag the IO that really needs the conversion. 4213 * For non asycn direct IO case, flag the inode state 4214 * that we need to perform conversion when IO is done. 4215 */ 4216 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) 4217 set_unwritten = 1; 4218 if (ext4_should_dioread_nolock(inode)) 4219 map->m_flags |= EXT4_MAP_UNINIT; 4220 } 4221 4222 err = 0; 4223 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4224 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4225 path, ar.len); 4226 if (!err) 4227 err = ext4_ext_insert_extent(handle, inode, path, 4228 &newex, flags); 4229 4230 if (!err && set_unwritten) { 4231 if (io) 4232 ext4_set_io_unwritten_flag(inode, io); 4233 else 4234 ext4_set_inode_state(inode, 4235 EXT4_STATE_DIO_UNWRITTEN); 4236 } 4237 4238 if (err && free_on_err) { 4239 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4240 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4241 /* free data blocks we just allocated */ 4242 /* not a good idea to call discard here directly, 4243 * but otherwise we'd need to call it every free() */ 4244 ext4_discard_preallocations(inode); 4245 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex), 4246 ext4_ext_get_actual_len(&newex), fb_flags); 4247 goto out2; 4248 } 4249 4250 /* previous routine could use block we allocated */ 4251 newblock = ext4_ext_pblock(&newex); 4252 allocated = ext4_ext_get_actual_len(&newex); 4253 if (allocated > map->m_len) 4254 allocated = map->m_len; 4255 map->m_flags |= EXT4_MAP_NEW; 4256 4257 /* 4258 * Update reserved blocks/metadata blocks after successful 4259 * block allocation which had been deferred till now. 4260 */ 4261 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4262 unsigned int reserved_clusters; 4263 /* 4264 * Check how many clusters we had reserved this allocated range 4265 */ 4266 reserved_clusters = get_reserved_cluster_alloc(inode, 4267 map->m_lblk, allocated); 4268 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { 4269 if (reserved_clusters) { 4270 /* 4271 * We have clusters reserved for this range. 4272 * But since we are not doing actual allocation 4273 * and are simply using blocks from previously 4274 * allocated cluster, we should release the 4275 * reservation and not claim quota. 4276 */ 4277 ext4_da_update_reserve_space(inode, 4278 reserved_clusters, 0); 4279 } 4280 } else { 4281 BUG_ON(allocated_clusters < reserved_clusters); 4282 if (reserved_clusters < allocated_clusters) { 4283 struct ext4_inode_info *ei = EXT4_I(inode); 4284 int reservation = allocated_clusters - 4285 reserved_clusters; 4286 /* 4287 * It seems we claimed few clusters outside of 4288 * the range of this allocation. We should give 4289 * it back to the reservation pool. This can 4290 * happen in the following case: 4291 * 4292 * * Suppose s_cluster_ratio is 4 (i.e., each 4293 * cluster has 4 blocks. Thus, the clusters 4294 * are [0-3],[4-7],[8-11]... 4295 * * First comes delayed allocation write for 4296 * logical blocks 10 & 11. Since there were no 4297 * previous delayed allocated blocks in the 4298 * range [8-11], we would reserve 1 cluster 4299 * for this write. 4300 * * Next comes write for logical blocks 3 to 8. 4301 * In this case, we will reserve 2 clusters 4302 * (for [0-3] and [4-7]; and not for [8-11] as 4303 * that range has a delayed allocated blocks. 4304 * Thus total reserved clusters now becomes 3. 4305 * * Now, during the delayed allocation writeout 4306 * time, we will first write blocks [3-8] and 4307 * allocate 3 clusters for writing these 4308 * blocks. Also, we would claim all these 4309 * three clusters above. 4310 * * Now when we come here to writeout the 4311 * blocks [10-11], we would expect to claim 4312 * the reservation of 1 cluster we had made 4313 * (and we would claim it since there are no 4314 * more delayed allocated blocks in the range 4315 * [8-11]. But our reserved cluster count had 4316 * already gone to 0. 4317 * 4318 * Thus, at the step 4 above when we determine 4319 * that there are still some unwritten delayed 4320 * allocated blocks outside of our current 4321 * block range, we should increment the 4322 * reserved clusters count so that when the 4323 * remaining blocks finally gets written, we 4324 * could claim them. 4325 */ 4326 dquot_reserve_block(inode, 4327 EXT4_C2B(sbi, reservation)); 4328 spin_lock(&ei->i_block_reservation_lock); 4329 ei->i_reserved_data_blocks += reservation; 4330 spin_unlock(&ei->i_block_reservation_lock); 4331 } 4332 /* 4333 * We will claim quota for all newly allocated blocks. 4334 * We're updating the reserved space *after* the 4335 * correction above so we do not accidentally free 4336 * all the metadata reservation because we might 4337 * actually need it later on. 4338 */ 4339 ext4_da_update_reserve_space(inode, allocated_clusters, 4340 1); 4341 } 4342 } 4343 4344 /* 4345 * Cache the extent and update transaction to commit on fdatasync only 4346 * when it is _not_ an uninitialized extent. 4347 */ 4348 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) 4349 ext4_update_inode_fsync_trans(handle, inode, 1); 4350 else 4351 ext4_update_inode_fsync_trans(handle, inode, 0); 4352 out: 4353 if (allocated > map->m_len) 4354 allocated = map->m_len; 4355 ext4_ext_show_leaf(inode, path); 4356 map->m_flags |= EXT4_MAP_MAPPED; 4357 map->m_pblk = newblock; 4358 map->m_len = allocated; 4359 out2: 4360 if (path) { 4361 ext4_ext_drop_refs(path); 4362 kfree(path); 4363 } 4364 4365 out3: 4366 trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated); 4367 4368 return err ? err : allocated; 4369 } 4370 4371 void ext4_ext_truncate(handle_t *handle, struct inode *inode) 4372 { 4373 struct super_block *sb = inode->i_sb; 4374 ext4_lblk_t last_block; 4375 int err = 0; 4376 4377 /* 4378 * TODO: optimization is possible here. 4379 * Probably we need not scan at all, 4380 * because page truncation is enough. 4381 */ 4382 4383 /* we have to know where to truncate from in crash case */ 4384 EXT4_I(inode)->i_disksize = inode->i_size; 4385 ext4_mark_inode_dirty(handle, inode); 4386 4387 last_block = (inode->i_size + sb->s_blocksize - 1) 4388 >> EXT4_BLOCK_SIZE_BITS(sb); 4389 err = ext4_es_remove_extent(inode, last_block, 4390 EXT_MAX_BLOCKS - last_block); 4391 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4392 } 4393 4394 static void ext4_falloc_update_inode(struct inode *inode, 4395 int mode, loff_t new_size, int update_ctime) 4396 { 4397 struct timespec now; 4398 4399 if (update_ctime) { 4400 now = current_fs_time(inode->i_sb); 4401 if (!timespec_equal(&inode->i_ctime, &now)) 4402 inode->i_ctime = now; 4403 } 4404 /* 4405 * Update only when preallocation was requested beyond 4406 * the file size. 4407 */ 4408 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 4409 if (new_size > i_size_read(inode)) 4410 i_size_write(inode, new_size); 4411 if (new_size > EXT4_I(inode)->i_disksize) 4412 ext4_update_i_disksize(inode, new_size); 4413 } else { 4414 /* 4415 * Mark that we allocate beyond EOF so the subsequent truncate 4416 * can proceed even if the new size is the same as i_size. 4417 */ 4418 if (new_size > i_size_read(inode)) 4419 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4420 } 4421 4422 } 4423 4424 /* 4425 * preallocate space for a file. This implements ext4's fallocate file 4426 * operation, which gets called from sys_fallocate system call. 4427 * For block-mapped files, posix_fallocate should fall back to the method 4428 * of writing zeroes to the required new blocks (the same behavior which is 4429 * expected for file systems which do not support fallocate() system call). 4430 */ 4431 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4432 { 4433 struct inode *inode = file_inode(file); 4434 handle_t *handle; 4435 loff_t new_size; 4436 unsigned int max_blocks; 4437 int ret = 0; 4438 int ret2 = 0; 4439 int retries = 0; 4440 int flags; 4441 struct ext4_map_blocks map; 4442 unsigned int credits, blkbits = inode->i_blkbits; 4443 4444 /* Return error if mode is not supported */ 4445 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 4446 return -EOPNOTSUPP; 4447 4448 if (mode & FALLOC_FL_PUNCH_HOLE) 4449 return ext4_punch_hole(file, offset, len); 4450 4451 ret = ext4_convert_inline_data(inode); 4452 if (ret) 4453 return ret; 4454 4455 /* 4456 * currently supporting (pre)allocate mode for extent-based 4457 * files _only_ 4458 */ 4459 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4460 return -EOPNOTSUPP; 4461 4462 trace_ext4_fallocate_enter(inode, offset, len, mode); 4463 map.m_lblk = offset >> blkbits; 4464 /* 4465 * We can't just convert len to max_blocks because 4466 * If blocksize = 4096 offset = 3072 and len = 2048 4467 */ 4468 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4469 - map.m_lblk; 4470 /* 4471 * credits to insert 1 extent into extent tree 4472 */ 4473 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4474 mutex_lock(&inode->i_mutex); 4475 ret = inode_newsize_ok(inode, (len + offset)); 4476 if (ret) { 4477 mutex_unlock(&inode->i_mutex); 4478 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4479 return ret; 4480 } 4481 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT; 4482 if (mode & FALLOC_FL_KEEP_SIZE) 4483 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4484 /* 4485 * Don't normalize the request if it can fit in one extent so 4486 * that it doesn't get unnecessarily split into multiple 4487 * extents. 4488 */ 4489 if (len <= EXT_UNINIT_MAX_LEN << blkbits) 4490 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4491 4492 retry: 4493 while (ret >= 0 && ret < max_blocks) { 4494 map.m_lblk = map.m_lblk + ret; 4495 map.m_len = max_blocks = max_blocks - ret; 4496 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4497 credits); 4498 if (IS_ERR(handle)) { 4499 ret = PTR_ERR(handle); 4500 break; 4501 } 4502 ret = ext4_map_blocks(handle, inode, &map, flags); 4503 if (ret <= 0) { 4504 #ifdef EXT4FS_DEBUG 4505 ext4_warning(inode->i_sb, 4506 "inode #%lu: block %u: len %u: " 4507 "ext4_ext_map_blocks returned %d", 4508 inode->i_ino, map.m_lblk, 4509 map.m_len, ret); 4510 #endif 4511 ext4_mark_inode_dirty(handle, inode); 4512 ret2 = ext4_journal_stop(handle); 4513 break; 4514 } 4515 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 4516 blkbits) >> blkbits)) 4517 new_size = offset + len; 4518 else 4519 new_size = ((loff_t) map.m_lblk + ret) << blkbits; 4520 4521 ext4_falloc_update_inode(inode, mode, new_size, 4522 (map.m_flags & EXT4_MAP_NEW)); 4523 ext4_mark_inode_dirty(handle, inode); 4524 if ((file->f_flags & O_SYNC) && ret >= max_blocks) 4525 ext4_handle_sync(handle); 4526 ret2 = ext4_journal_stop(handle); 4527 if (ret2) 4528 break; 4529 } 4530 if (ret == -ENOSPC && 4531 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4532 ret = 0; 4533 goto retry; 4534 } 4535 mutex_unlock(&inode->i_mutex); 4536 trace_ext4_fallocate_exit(inode, offset, max_blocks, 4537 ret > 0 ? ret2 : ret); 4538 return ret > 0 ? ret2 : ret; 4539 } 4540 4541 /* 4542 * This function convert a range of blocks to written extents 4543 * The caller of this function will pass the start offset and the size. 4544 * all unwritten extents within this range will be converted to 4545 * written extents. 4546 * 4547 * This function is called from the direct IO end io call back 4548 * function, to convert the fallocated extents after IO is completed. 4549 * Returns 0 on success. 4550 */ 4551 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset, 4552 ssize_t len) 4553 { 4554 handle_t *handle; 4555 unsigned int max_blocks; 4556 int ret = 0; 4557 int ret2 = 0; 4558 struct ext4_map_blocks map; 4559 unsigned int credits, blkbits = inode->i_blkbits; 4560 4561 map.m_lblk = offset >> blkbits; 4562 /* 4563 * We can't just convert len to max_blocks because 4564 * If blocksize = 4096 offset = 3072 and len = 2048 4565 */ 4566 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 4567 map.m_lblk); 4568 /* 4569 * credits to insert 1 extent into extent tree 4570 */ 4571 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4572 while (ret >= 0 && ret < max_blocks) { 4573 map.m_lblk += ret; 4574 map.m_len = (max_blocks -= ret); 4575 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits); 4576 if (IS_ERR(handle)) { 4577 ret = PTR_ERR(handle); 4578 break; 4579 } 4580 ret = ext4_map_blocks(handle, inode, &map, 4581 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4582 if (ret <= 0) 4583 ext4_warning(inode->i_sb, 4584 "inode #%lu: block %u: len %u: " 4585 "ext4_ext_map_blocks returned %d", 4586 inode->i_ino, map.m_lblk, 4587 map.m_len, ret); 4588 ext4_mark_inode_dirty(handle, inode); 4589 ret2 = ext4_journal_stop(handle); 4590 if (ret <= 0 || ret2 ) 4591 break; 4592 } 4593 return ret > 0 ? ret2 : ret; 4594 } 4595 4596 /* 4597 * If newes is not existing extent (newes->ec_pblk equals zero) find 4598 * delayed extent at start of newes and update newes accordingly and 4599 * return start of the next delayed extent. 4600 * 4601 * If newes is existing extent (newes->ec_pblk is not equal zero) 4602 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 4603 * extent found. Leave newes unmodified. 4604 */ 4605 static int ext4_find_delayed_extent(struct inode *inode, 4606 struct extent_status *newes) 4607 { 4608 struct extent_status es; 4609 ext4_lblk_t block, next_del; 4610 4611 if (newes->es_pblk == 0) { 4612 ext4_es_find_delayed_extent_range(inode, newes->es_lblk, 4613 newes->es_lblk + newes->es_len - 1, &es); 4614 4615 /* 4616 * No extent in extent-tree contains block @newes->es_pblk, 4617 * then the block may stay in 1)a hole or 2)delayed-extent. 4618 */ 4619 if (es.es_len == 0) 4620 /* A hole found. */ 4621 return 0; 4622 4623 if (es.es_lblk > newes->es_lblk) { 4624 /* A hole found. */ 4625 newes->es_len = min(es.es_lblk - newes->es_lblk, 4626 newes->es_len); 4627 return 0; 4628 } 4629 4630 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 4631 } 4632 4633 block = newes->es_lblk + newes->es_len; 4634 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es); 4635 if (es.es_len == 0) 4636 next_del = EXT_MAX_BLOCKS; 4637 else 4638 next_del = es.es_lblk; 4639 4640 return next_del; 4641 } 4642 /* fiemap flags we can handle specified here */ 4643 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 4644 4645 static int ext4_xattr_fiemap(struct inode *inode, 4646 struct fiemap_extent_info *fieinfo) 4647 { 4648 __u64 physical = 0; 4649 __u64 length; 4650 __u32 flags = FIEMAP_EXTENT_LAST; 4651 int blockbits = inode->i_sb->s_blocksize_bits; 4652 int error = 0; 4653 4654 /* in-inode? */ 4655 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4656 struct ext4_iloc iloc; 4657 int offset; /* offset of xattr in inode */ 4658 4659 error = ext4_get_inode_loc(inode, &iloc); 4660 if (error) 4661 return error; 4662 physical = iloc.bh->b_blocknr << blockbits; 4663 offset = EXT4_GOOD_OLD_INODE_SIZE + 4664 EXT4_I(inode)->i_extra_isize; 4665 physical += offset; 4666 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4667 flags |= FIEMAP_EXTENT_DATA_INLINE; 4668 brelse(iloc.bh); 4669 } else { /* external block */ 4670 physical = EXT4_I(inode)->i_file_acl << blockbits; 4671 length = inode->i_sb->s_blocksize; 4672 } 4673 4674 if (physical) 4675 error = fiemap_fill_next_extent(fieinfo, 0, physical, 4676 length, flags); 4677 return (error < 0 ? error : 0); 4678 } 4679 4680 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4681 __u64 start, __u64 len) 4682 { 4683 ext4_lblk_t start_blk; 4684 int error = 0; 4685 4686 if (ext4_has_inline_data(inode)) { 4687 int has_inline = 1; 4688 4689 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline); 4690 4691 if (has_inline) 4692 return error; 4693 } 4694 4695 /* fallback to generic here if not in extents fmt */ 4696 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4697 return generic_block_fiemap(inode, fieinfo, start, len, 4698 ext4_get_block); 4699 4700 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 4701 return -EBADR; 4702 4703 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 4704 error = ext4_xattr_fiemap(inode, fieinfo); 4705 } else { 4706 ext4_lblk_t len_blks; 4707 __u64 last_blk; 4708 4709 start_blk = start >> inode->i_sb->s_blocksize_bits; 4710 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 4711 if (last_blk >= EXT_MAX_BLOCKS) 4712 last_blk = EXT_MAX_BLOCKS-1; 4713 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 4714 4715 /* 4716 * Walk the extent tree gathering extent information 4717 * and pushing extents back to the user. 4718 */ 4719 error = ext4_fill_fiemap_extents(inode, start_blk, 4720 len_blks, fieinfo); 4721 } 4722 4723 return error; 4724 } 4725