xref: /openbmc/linux/fs/ext4/extents.c (revision e23feb16)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46 
47 #include <trace/events/ext4.h>
48 
49 /*
50  * used by extent splitting.
51  */
52 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
53 					due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
56 
57 #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
59 
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 				     struct ext4_extent_header *eh)
62 {
63 	struct ext4_inode_info *ei = EXT4_I(inode);
64 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 	__u32 csum;
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 			   EXT4_EXTENT_TAIL_OFFSET(eh));
69 	return cpu_to_le32(csum);
70 }
71 
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 					 struct ext4_extent_header *eh)
74 {
75 	struct ext4_extent_tail *et;
76 
77 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 		return 1;
80 
81 	et = find_ext4_extent_tail(eh);
82 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 		return 0;
84 	return 1;
85 }
86 
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 				       struct ext4_extent_header *eh)
89 {
90 	struct ext4_extent_tail *et;
91 
92 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 		return;
95 
96 	et = find_ext4_extent_tail(eh);
97 	et->et_checksum = ext4_extent_block_csum(inode, eh);
98 }
99 
100 static int ext4_split_extent(handle_t *handle,
101 				struct inode *inode,
102 				struct ext4_ext_path *path,
103 				struct ext4_map_blocks *map,
104 				int split_flag,
105 				int flags);
106 
107 static int ext4_split_extent_at(handle_t *handle,
108 			     struct inode *inode,
109 			     struct ext4_ext_path *path,
110 			     ext4_lblk_t split,
111 			     int split_flag,
112 			     int flags);
113 
114 static int ext4_find_delayed_extent(struct inode *inode,
115 				    struct extent_status *newes);
116 
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 					    struct inode *inode,
119 					    int needed)
120 {
121 	int err;
122 
123 	if (!ext4_handle_valid(handle))
124 		return 0;
125 	if (handle->h_buffer_credits > needed)
126 		return 0;
127 	err = ext4_journal_extend(handle, needed);
128 	if (err <= 0)
129 		return err;
130 	err = ext4_truncate_restart_trans(handle, inode, needed);
131 	if (err == 0)
132 		err = -EAGAIN;
133 
134 	return err;
135 }
136 
137 /*
138  * could return:
139  *  - EROFS
140  *  - ENOMEM
141  */
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 				struct ext4_ext_path *path)
144 {
145 	if (path->p_bh) {
146 		/* path points to block */
147 		return ext4_journal_get_write_access(handle, path->p_bh);
148 	}
149 	/* path points to leaf/index in inode body */
150 	/* we use in-core data, no need to protect them */
151 	return 0;
152 }
153 
154 /*
155  * could return:
156  *  - EROFS
157  *  - ENOMEM
158  *  - EIO
159  */
160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161 		     struct inode *inode, struct ext4_ext_path *path)
162 {
163 	int err;
164 	if (path->p_bh) {
165 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166 		/* path points to block */
167 		err = __ext4_handle_dirty_metadata(where, line, handle,
168 						   inode, path->p_bh);
169 	} else {
170 		/* path points to leaf/index in inode body */
171 		err = ext4_mark_inode_dirty(handle, inode);
172 	}
173 	return err;
174 }
175 
176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177 			      struct ext4_ext_path *path,
178 			      ext4_lblk_t block)
179 {
180 	if (path) {
181 		int depth = path->p_depth;
182 		struct ext4_extent *ex;
183 
184 		/*
185 		 * Try to predict block placement assuming that we are
186 		 * filling in a file which will eventually be
187 		 * non-sparse --- i.e., in the case of libbfd writing
188 		 * an ELF object sections out-of-order but in a way
189 		 * the eventually results in a contiguous object or
190 		 * executable file, or some database extending a table
191 		 * space file.  However, this is actually somewhat
192 		 * non-ideal if we are writing a sparse file such as
193 		 * qemu or KVM writing a raw image file that is going
194 		 * to stay fairly sparse, since it will end up
195 		 * fragmenting the file system's free space.  Maybe we
196 		 * should have some hueristics or some way to allow
197 		 * userspace to pass a hint to file system,
198 		 * especially if the latter case turns out to be
199 		 * common.
200 		 */
201 		ex = path[depth].p_ext;
202 		if (ex) {
203 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
205 
206 			if (block > ext_block)
207 				return ext_pblk + (block - ext_block);
208 			else
209 				return ext_pblk - (ext_block - block);
210 		}
211 
212 		/* it looks like index is empty;
213 		 * try to find starting block from index itself */
214 		if (path[depth].p_bh)
215 			return path[depth].p_bh->b_blocknr;
216 	}
217 
218 	/* OK. use inode's group */
219 	return ext4_inode_to_goal_block(inode);
220 }
221 
222 /*
223  * Allocation for a meta data block
224  */
225 static ext4_fsblk_t
226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227 			struct ext4_ext_path *path,
228 			struct ext4_extent *ex, int *err, unsigned int flags)
229 {
230 	ext4_fsblk_t goal, newblock;
231 
232 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234 					NULL, err);
235 	return newblock;
236 }
237 
238 static inline int ext4_ext_space_block(struct inode *inode, int check)
239 {
240 	int size;
241 
242 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243 			/ sizeof(struct ext4_extent);
244 #ifdef AGGRESSIVE_TEST
245 	if (!check && size > 6)
246 		size = 6;
247 #endif
248 	return size;
249 }
250 
251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
252 {
253 	int size;
254 
255 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256 			/ sizeof(struct ext4_extent_idx);
257 #ifdef AGGRESSIVE_TEST
258 	if (!check && size > 5)
259 		size = 5;
260 #endif
261 	return size;
262 }
263 
264 static inline int ext4_ext_space_root(struct inode *inode, int check)
265 {
266 	int size;
267 
268 	size = sizeof(EXT4_I(inode)->i_data);
269 	size -= sizeof(struct ext4_extent_header);
270 	size /= sizeof(struct ext4_extent);
271 #ifdef AGGRESSIVE_TEST
272 	if (!check && size > 3)
273 		size = 3;
274 #endif
275 	return size;
276 }
277 
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279 {
280 	int size;
281 
282 	size = sizeof(EXT4_I(inode)->i_data);
283 	size -= sizeof(struct ext4_extent_header);
284 	size /= sizeof(struct ext4_extent_idx);
285 #ifdef AGGRESSIVE_TEST
286 	if (!check && size > 4)
287 		size = 4;
288 #endif
289 	return size;
290 }
291 
292 /*
293  * Calculate the number of metadata blocks needed
294  * to allocate @blocks
295  * Worse case is one block per extent
296  */
297 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
298 {
299 	struct ext4_inode_info *ei = EXT4_I(inode);
300 	int idxs;
301 
302 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
303 		/ sizeof(struct ext4_extent_idx));
304 
305 	/*
306 	 * If the new delayed allocation block is contiguous with the
307 	 * previous da block, it can share index blocks with the
308 	 * previous block, so we only need to allocate a new index
309 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
310 	 * an additional index block, and at ldxs**3 blocks, yet
311 	 * another index blocks.
312 	 */
313 	if (ei->i_da_metadata_calc_len &&
314 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
315 		int num = 0;
316 
317 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
318 			num++;
319 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
320 			num++;
321 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
322 			num++;
323 			ei->i_da_metadata_calc_len = 0;
324 		} else
325 			ei->i_da_metadata_calc_len++;
326 		ei->i_da_metadata_calc_last_lblock++;
327 		return num;
328 	}
329 
330 	/*
331 	 * In the worst case we need a new set of index blocks at
332 	 * every level of the inode's extent tree.
333 	 */
334 	ei->i_da_metadata_calc_len = 1;
335 	ei->i_da_metadata_calc_last_lblock = lblock;
336 	return ext_depth(inode) + 1;
337 }
338 
339 static int
340 ext4_ext_max_entries(struct inode *inode, int depth)
341 {
342 	int max;
343 
344 	if (depth == ext_depth(inode)) {
345 		if (depth == 0)
346 			max = ext4_ext_space_root(inode, 1);
347 		else
348 			max = ext4_ext_space_root_idx(inode, 1);
349 	} else {
350 		if (depth == 0)
351 			max = ext4_ext_space_block(inode, 1);
352 		else
353 			max = ext4_ext_space_block_idx(inode, 1);
354 	}
355 
356 	return max;
357 }
358 
359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
360 {
361 	ext4_fsblk_t block = ext4_ext_pblock(ext);
362 	int len = ext4_ext_get_actual_len(ext);
363 
364 	if (len == 0)
365 		return 0;
366 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
367 }
368 
369 static int ext4_valid_extent_idx(struct inode *inode,
370 				struct ext4_extent_idx *ext_idx)
371 {
372 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
373 
374 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
375 }
376 
377 static int ext4_valid_extent_entries(struct inode *inode,
378 				struct ext4_extent_header *eh,
379 				int depth)
380 {
381 	unsigned short entries;
382 	if (eh->eh_entries == 0)
383 		return 1;
384 
385 	entries = le16_to_cpu(eh->eh_entries);
386 
387 	if (depth == 0) {
388 		/* leaf entries */
389 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
390 		while (entries) {
391 			if (!ext4_valid_extent(inode, ext))
392 				return 0;
393 			ext++;
394 			entries--;
395 		}
396 	} else {
397 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
398 		while (entries) {
399 			if (!ext4_valid_extent_idx(inode, ext_idx))
400 				return 0;
401 			ext_idx++;
402 			entries--;
403 		}
404 	}
405 	return 1;
406 }
407 
408 static int __ext4_ext_check(const char *function, unsigned int line,
409 			    struct inode *inode, struct ext4_extent_header *eh,
410 			    int depth, ext4_fsblk_t pblk)
411 {
412 	const char *error_msg;
413 	int max = 0;
414 
415 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
416 		error_msg = "invalid magic";
417 		goto corrupted;
418 	}
419 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
420 		error_msg = "unexpected eh_depth";
421 		goto corrupted;
422 	}
423 	if (unlikely(eh->eh_max == 0)) {
424 		error_msg = "invalid eh_max";
425 		goto corrupted;
426 	}
427 	max = ext4_ext_max_entries(inode, depth);
428 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
429 		error_msg = "too large eh_max";
430 		goto corrupted;
431 	}
432 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
433 		error_msg = "invalid eh_entries";
434 		goto corrupted;
435 	}
436 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
437 		error_msg = "invalid extent entries";
438 		goto corrupted;
439 	}
440 	/* Verify checksum on non-root extent tree nodes */
441 	if (ext_depth(inode) != depth &&
442 	    !ext4_extent_block_csum_verify(inode, eh)) {
443 		error_msg = "extent tree corrupted";
444 		goto corrupted;
445 	}
446 	return 0;
447 
448 corrupted:
449 	ext4_error_inode(inode, function, line, 0,
450 			 "pblk %llu bad header/extent: %s - magic %x, "
451 			 "entries %u, max %u(%u), depth %u(%u)",
452 			 (unsigned long long) pblk, error_msg,
453 			 le16_to_cpu(eh->eh_magic),
454 			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
455 			 max, le16_to_cpu(eh->eh_depth), depth);
456 	return -EIO;
457 }
458 
459 #define ext4_ext_check(inode, eh, depth, pblk)			\
460 	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
461 
462 int ext4_ext_check_inode(struct inode *inode)
463 {
464 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
465 }
466 
467 static struct buffer_head *
468 __read_extent_tree_block(const char *function, unsigned int line,
469 			 struct inode *inode, ext4_fsblk_t pblk, int depth,
470 			 int flags)
471 {
472 	struct buffer_head		*bh;
473 	int				err;
474 
475 	bh = sb_getblk(inode->i_sb, pblk);
476 	if (unlikely(!bh))
477 		return ERR_PTR(-ENOMEM);
478 
479 	if (!bh_uptodate_or_lock(bh)) {
480 		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
481 		err = bh_submit_read(bh);
482 		if (err < 0)
483 			goto errout;
484 	}
485 	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
486 		return bh;
487 	err = __ext4_ext_check(function, line, inode,
488 			       ext_block_hdr(bh), depth, pblk);
489 	if (err)
490 		goto errout;
491 	set_buffer_verified(bh);
492 	/*
493 	 * If this is a leaf block, cache all of its entries
494 	 */
495 	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
496 		struct ext4_extent_header *eh = ext_block_hdr(bh);
497 		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
498 		ext4_lblk_t prev = 0;
499 		int i;
500 
501 		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
502 			unsigned int status = EXTENT_STATUS_WRITTEN;
503 			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
504 			int len = ext4_ext_get_actual_len(ex);
505 
506 			if (prev && (prev != lblk))
507 				ext4_es_cache_extent(inode, prev,
508 						     lblk - prev, ~0,
509 						     EXTENT_STATUS_HOLE);
510 
511 			if (ext4_ext_is_uninitialized(ex))
512 				status = EXTENT_STATUS_UNWRITTEN;
513 			ext4_es_cache_extent(inode, lblk, len,
514 					     ext4_ext_pblock(ex), status);
515 			prev = lblk + len;
516 		}
517 	}
518 	return bh;
519 errout:
520 	put_bh(bh);
521 	return ERR_PTR(err);
522 
523 }
524 
525 #define read_extent_tree_block(inode, pblk, depth, flags)		\
526 	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
527 				 (depth), (flags))
528 
529 /*
530  * This function is called to cache a file's extent information in the
531  * extent status tree
532  */
533 int ext4_ext_precache(struct inode *inode)
534 {
535 	struct ext4_inode_info *ei = EXT4_I(inode);
536 	struct ext4_ext_path *path = NULL;
537 	struct buffer_head *bh;
538 	int i = 0, depth, ret = 0;
539 
540 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
541 		return 0;	/* not an extent-mapped inode */
542 
543 	down_read(&ei->i_data_sem);
544 	depth = ext_depth(inode);
545 
546 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
547 		       GFP_NOFS);
548 	if (path == NULL) {
549 		up_read(&ei->i_data_sem);
550 		return -ENOMEM;
551 	}
552 
553 	/* Don't cache anything if there are no external extent blocks */
554 	if (depth == 0)
555 		goto out;
556 	path[0].p_hdr = ext_inode_hdr(inode);
557 	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
558 	if (ret)
559 		goto out;
560 	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
561 	while (i >= 0) {
562 		/*
563 		 * If this is a leaf block or we've reached the end of
564 		 * the index block, go up
565 		 */
566 		if ((i == depth) ||
567 		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
568 			brelse(path[i].p_bh);
569 			path[i].p_bh = NULL;
570 			i--;
571 			continue;
572 		}
573 		bh = read_extent_tree_block(inode,
574 					    ext4_idx_pblock(path[i].p_idx++),
575 					    depth - i - 1,
576 					    EXT4_EX_FORCE_CACHE);
577 		if (IS_ERR(bh)) {
578 			ret = PTR_ERR(bh);
579 			break;
580 		}
581 		i++;
582 		path[i].p_bh = bh;
583 		path[i].p_hdr = ext_block_hdr(bh);
584 		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
585 	}
586 	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
587 out:
588 	up_read(&ei->i_data_sem);
589 	ext4_ext_drop_refs(path);
590 	kfree(path);
591 	return ret;
592 }
593 
594 #ifdef EXT_DEBUG
595 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
596 {
597 	int k, l = path->p_depth;
598 
599 	ext_debug("path:");
600 	for (k = 0; k <= l; k++, path++) {
601 		if (path->p_idx) {
602 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
603 			    ext4_idx_pblock(path->p_idx));
604 		} else if (path->p_ext) {
605 			ext_debug("  %d:[%d]%d:%llu ",
606 				  le32_to_cpu(path->p_ext->ee_block),
607 				  ext4_ext_is_uninitialized(path->p_ext),
608 				  ext4_ext_get_actual_len(path->p_ext),
609 				  ext4_ext_pblock(path->p_ext));
610 		} else
611 			ext_debug("  []");
612 	}
613 	ext_debug("\n");
614 }
615 
616 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
617 {
618 	int depth = ext_depth(inode);
619 	struct ext4_extent_header *eh;
620 	struct ext4_extent *ex;
621 	int i;
622 
623 	if (!path)
624 		return;
625 
626 	eh = path[depth].p_hdr;
627 	ex = EXT_FIRST_EXTENT(eh);
628 
629 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
630 
631 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
632 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
633 			  ext4_ext_is_uninitialized(ex),
634 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
635 	}
636 	ext_debug("\n");
637 }
638 
639 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
640 			ext4_fsblk_t newblock, int level)
641 {
642 	int depth = ext_depth(inode);
643 	struct ext4_extent *ex;
644 
645 	if (depth != level) {
646 		struct ext4_extent_idx *idx;
647 		idx = path[level].p_idx;
648 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
649 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
650 					le32_to_cpu(idx->ei_block),
651 					ext4_idx_pblock(idx),
652 					newblock);
653 			idx++;
654 		}
655 
656 		return;
657 	}
658 
659 	ex = path[depth].p_ext;
660 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
661 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
662 				le32_to_cpu(ex->ee_block),
663 				ext4_ext_pblock(ex),
664 				ext4_ext_is_uninitialized(ex),
665 				ext4_ext_get_actual_len(ex),
666 				newblock);
667 		ex++;
668 	}
669 }
670 
671 #else
672 #define ext4_ext_show_path(inode, path)
673 #define ext4_ext_show_leaf(inode, path)
674 #define ext4_ext_show_move(inode, path, newblock, level)
675 #endif
676 
677 void ext4_ext_drop_refs(struct ext4_ext_path *path)
678 {
679 	int depth = path->p_depth;
680 	int i;
681 
682 	for (i = 0; i <= depth; i++, path++)
683 		if (path->p_bh) {
684 			brelse(path->p_bh);
685 			path->p_bh = NULL;
686 		}
687 }
688 
689 /*
690  * ext4_ext_binsearch_idx:
691  * binary search for the closest index of the given block
692  * the header must be checked before calling this
693  */
694 static void
695 ext4_ext_binsearch_idx(struct inode *inode,
696 			struct ext4_ext_path *path, ext4_lblk_t block)
697 {
698 	struct ext4_extent_header *eh = path->p_hdr;
699 	struct ext4_extent_idx *r, *l, *m;
700 
701 
702 	ext_debug("binsearch for %u(idx):  ", block);
703 
704 	l = EXT_FIRST_INDEX(eh) + 1;
705 	r = EXT_LAST_INDEX(eh);
706 	while (l <= r) {
707 		m = l + (r - l) / 2;
708 		if (block < le32_to_cpu(m->ei_block))
709 			r = m - 1;
710 		else
711 			l = m + 1;
712 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
713 				m, le32_to_cpu(m->ei_block),
714 				r, le32_to_cpu(r->ei_block));
715 	}
716 
717 	path->p_idx = l - 1;
718 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
719 		  ext4_idx_pblock(path->p_idx));
720 
721 #ifdef CHECK_BINSEARCH
722 	{
723 		struct ext4_extent_idx *chix, *ix;
724 		int k;
725 
726 		chix = ix = EXT_FIRST_INDEX(eh);
727 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
728 		  if (k != 0 &&
729 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
730 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
731 				       "first=0x%p\n", k,
732 				       ix, EXT_FIRST_INDEX(eh));
733 				printk(KERN_DEBUG "%u <= %u\n",
734 				       le32_to_cpu(ix->ei_block),
735 				       le32_to_cpu(ix[-1].ei_block));
736 			}
737 			BUG_ON(k && le32_to_cpu(ix->ei_block)
738 					   <= le32_to_cpu(ix[-1].ei_block));
739 			if (block < le32_to_cpu(ix->ei_block))
740 				break;
741 			chix = ix;
742 		}
743 		BUG_ON(chix != path->p_idx);
744 	}
745 #endif
746 
747 }
748 
749 /*
750  * ext4_ext_binsearch:
751  * binary search for closest extent of the given block
752  * the header must be checked before calling this
753  */
754 static void
755 ext4_ext_binsearch(struct inode *inode,
756 		struct ext4_ext_path *path, ext4_lblk_t block)
757 {
758 	struct ext4_extent_header *eh = path->p_hdr;
759 	struct ext4_extent *r, *l, *m;
760 
761 	if (eh->eh_entries == 0) {
762 		/*
763 		 * this leaf is empty:
764 		 * we get such a leaf in split/add case
765 		 */
766 		return;
767 	}
768 
769 	ext_debug("binsearch for %u:  ", block);
770 
771 	l = EXT_FIRST_EXTENT(eh) + 1;
772 	r = EXT_LAST_EXTENT(eh);
773 
774 	while (l <= r) {
775 		m = l + (r - l) / 2;
776 		if (block < le32_to_cpu(m->ee_block))
777 			r = m - 1;
778 		else
779 			l = m + 1;
780 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
781 				m, le32_to_cpu(m->ee_block),
782 				r, le32_to_cpu(r->ee_block));
783 	}
784 
785 	path->p_ext = l - 1;
786 	ext_debug("  -> %d:%llu:[%d]%d ",
787 			le32_to_cpu(path->p_ext->ee_block),
788 			ext4_ext_pblock(path->p_ext),
789 			ext4_ext_is_uninitialized(path->p_ext),
790 			ext4_ext_get_actual_len(path->p_ext));
791 
792 #ifdef CHECK_BINSEARCH
793 	{
794 		struct ext4_extent *chex, *ex;
795 		int k;
796 
797 		chex = ex = EXT_FIRST_EXTENT(eh);
798 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
799 			BUG_ON(k && le32_to_cpu(ex->ee_block)
800 					  <= le32_to_cpu(ex[-1].ee_block));
801 			if (block < le32_to_cpu(ex->ee_block))
802 				break;
803 			chex = ex;
804 		}
805 		BUG_ON(chex != path->p_ext);
806 	}
807 #endif
808 
809 }
810 
811 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
812 {
813 	struct ext4_extent_header *eh;
814 
815 	eh = ext_inode_hdr(inode);
816 	eh->eh_depth = 0;
817 	eh->eh_entries = 0;
818 	eh->eh_magic = EXT4_EXT_MAGIC;
819 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
820 	ext4_mark_inode_dirty(handle, inode);
821 	return 0;
822 }
823 
824 struct ext4_ext_path *
825 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
826 		     struct ext4_ext_path *path, int flags)
827 {
828 	struct ext4_extent_header *eh;
829 	struct buffer_head *bh;
830 	short int depth, i, ppos = 0, alloc = 0;
831 	int ret;
832 
833 	eh = ext_inode_hdr(inode);
834 	depth = ext_depth(inode);
835 
836 	/* account possible depth increase */
837 	if (!path) {
838 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
839 				GFP_NOFS);
840 		if (!path)
841 			return ERR_PTR(-ENOMEM);
842 		alloc = 1;
843 	}
844 	path[0].p_hdr = eh;
845 	path[0].p_bh = NULL;
846 
847 	i = depth;
848 	/* walk through the tree */
849 	while (i) {
850 		ext_debug("depth %d: num %d, max %d\n",
851 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
852 
853 		ext4_ext_binsearch_idx(inode, path + ppos, block);
854 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
855 		path[ppos].p_depth = i;
856 		path[ppos].p_ext = NULL;
857 
858 		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
859 					    flags);
860 		if (IS_ERR(bh)) {
861 			ret = PTR_ERR(bh);
862 			goto err;
863 		}
864 
865 		eh = ext_block_hdr(bh);
866 		ppos++;
867 		if (unlikely(ppos > depth)) {
868 			put_bh(bh);
869 			EXT4_ERROR_INODE(inode,
870 					 "ppos %d > depth %d", ppos, depth);
871 			ret = -EIO;
872 			goto err;
873 		}
874 		path[ppos].p_bh = bh;
875 		path[ppos].p_hdr = eh;
876 	}
877 
878 	path[ppos].p_depth = i;
879 	path[ppos].p_ext = NULL;
880 	path[ppos].p_idx = NULL;
881 
882 	/* find extent */
883 	ext4_ext_binsearch(inode, path + ppos, block);
884 	/* if not an empty leaf */
885 	if (path[ppos].p_ext)
886 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
887 
888 	ext4_ext_show_path(inode, path);
889 
890 	return path;
891 
892 err:
893 	ext4_ext_drop_refs(path);
894 	if (alloc)
895 		kfree(path);
896 	return ERR_PTR(ret);
897 }
898 
899 /*
900  * ext4_ext_insert_index:
901  * insert new index [@logical;@ptr] into the block at @curp;
902  * check where to insert: before @curp or after @curp
903  */
904 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
905 				 struct ext4_ext_path *curp,
906 				 int logical, ext4_fsblk_t ptr)
907 {
908 	struct ext4_extent_idx *ix;
909 	int len, err;
910 
911 	err = ext4_ext_get_access(handle, inode, curp);
912 	if (err)
913 		return err;
914 
915 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
916 		EXT4_ERROR_INODE(inode,
917 				 "logical %d == ei_block %d!",
918 				 logical, le32_to_cpu(curp->p_idx->ei_block));
919 		return -EIO;
920 	}
921 
922 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
923 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
924 		EXT4_ERROR_INODE(inode,
925 				 "eh_entries %d >= eh_max %d!",
926 				 le16_to_cpu(curp->p_hdr->eh_entries),
927 				 le16_to_cpu(curp->p_hdr->eh_max));
928 		return -EIO;
929 	}
930 
931 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
932 		/* insert after */
933 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
934 		ix = curp->p_idx + 1;
935 	} else {
936 		/* insert before */
937 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
938 		ix = curp->p_idx;
939 	}
940 
941 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
942 	BUG_ON(len < 0);
943 	if (len > 0) {
944 		ext_debug("insert new index %d: "
945 				"move %d indices from 0x%p to 0x%p\n",
946 				logical, len, ix, ix + 1);
947 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
948 	}
949 
950 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
951 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
952 		return -EIO;
953 	}
954 
955 	ix->ei_block = cpu_to_le32(logical);
956 	ext4_idx_store_pblock(ix, ptr);
957 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
958 
959 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
960 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
961 		return -EIO;
962 	}
963 
964 	err = ext4_ext_dirty(handle, inode, curp);
965 	ext4_std_error(inode->i_sb, err);
966 
967 	return err;
968 }
969 
970 /*
971  * ext4_ext_split:
972  * inserts new subtree into the path, using free index entry
973  * at depth @at:
974  * - allocates all needed blocks (new leaf and all intermediate index blocks)
975  * - makes decision where to split
976  * - moves remaining extents and index entries (right to the split point)
977  *   into the newly allocated blocks
978  * - initializes subtree
979  */
980 static int ext4_ext_split(handle_t *handle, struct inode *inode,
981 			  unsigned int flags,
982 			  struct ext4_ext_path *path,
983 			  struct ext4_extent *newext, int at)
984 {
985 	struct buffer_head *bh = NULL;
986 	int depth = ext_depth(inode);
987 	struct ext4_extent_header *neh;
988 	struct ext4_extent_idx *fidx;
989 	int i = at, k, m, a;
990 	ext4_fsblk_t newblock, oldblock;
991 	__le32 border;
992 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
993 	int err = 0;
994 
995 	/* make decision: where to split? */
996 	/* FIXME: now decision is simplest: at current extent */
997 
998 	/* if current leaf will be split, then we should use
999 	 * border from split point */
1000 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1001 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1002 		return -EIO;
1003 	}
1004 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1005 		border = path[depth].p_ext[1].ee_block;
1006 		ext_debug("leaf will be split."
1007 				" next leaf starts at %d\n",
1008 				  le32_to_cpu(border));
1009 	} else {
1010 		border = newext->ee_block;
1011 		ext_debug("leaf will be added."
1012 				" next leaf starts at %d\n",
1013 				le32_to_cpu(border));
1014 	}
1015 
1016 	/*
1017 	 * If error occurs, then we break processing
1018 	 * and mark filesystem read-only. index won't
1019 	 * be inserted and tree will be in consistent
1020 	 * state. Next mount will repair buffers too.
1021 	 */
1022 
1023 	/*
1024 	 * Get array to track all allocated blocks.
1025 	 * We need this to handle errors and free blocks
1026 	 * upon them.
1027 	 */
1028 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1029 	if (!ablocks)
1030 		return -ENOMEM;
1031 
1032 	/* allocate all needed blocks */
1033 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1034 	for (a = 0; a < depth - at; a++) {
1035 		newblock = ext4_ext_new_meta_block(handle, inode, path,
1036 						   newext, &err, flags);
1037 		if (newblock == 0)
1038 			goto cleanup;
1039 		ablocks[a] = newblock;
1040 	}
1041 
1042 	/* initialize new leaf */
1043 	newblock = ablocks[--a];
1044 	if (unlikely(newblock == 0)) {
1045 		EXT4_ERROR_INODE(inode, "newblock == 0!");
1046 		err = -EIO;
1047 		goto cleanup;
1048 	}
1049 	bh = sb_getblk(inode->i_sb, newblock);
1050 	if (unlikely(!bh)) {
1051 		err = -ENOMEM;
1052 		goto cleanup;
1053 	}
1054 	lock_buffer(bh);
1055 
1056 	err = ext4_journal_get_create_access(handle, bh);
1057 	if (err)
1058 		goto cleanup;
1059 
1060 	neh = ext_block_hdr(bh);
1061 	neh->eh_entries = 0;
1062 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1063 	neh->eh_magic = EXT4_EXT_MAGIC;
1064 	neh->eh_depth = 0;
1065 
1066 	/* move remainder of path[depth] to the new leaf */
1067 	if (unlikely(path[depth].p_hdr->eh_entries !=
1068 		     path[depth].p_hdr->eh_max)) {
1069 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1070 				 path[depth].p_hdr->eh_entries,
1071 				 path[depth].p_hdr->eh_max);
1072 		err = -EIO;
1073 		goto cleanup;
1074 	}
1075 	/* start copy from next extent */
1076 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1077 	ext4_ext_show_move(inode, path, newblock, depth);
1078 	if (m) {
1079 		struct ext4_extent *ex;
1080 		ex = EXT_FIRST_EXTENT(neh);
1081 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1082 		le16_add_cpu(&neh->eh_entries, m);
1083 	}
1084 
1085 	ext4_extent_block_csum_set(inode, neh);
1086 	set_buffer_uptodate(bh);
1087 	unlock_buffer(bh);
1088 
1089 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1090 	if (err)
1091 		goto cleanup;
1092 	brelse(bh);
1093 	bh = NULL;
1094 
1095 	/* correct old leaf */
1096 	if (m) {
1097 		err = ext4_ext_get_access(handle, inode, path + depth);
1098 		if (err)
1099 			goto cleanup;
1100 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1101 		err = ext4_ext_dirty(handle, inode, path + depth);
1102 		if (err)
1103 			goto cleanup;
1104 
1105 	}
1106 
1107 	/* create intermediate indexes */
1108 	k = depth - at - 1;
1109 	if (unlikely(k < 0)) {
1110 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1111 		err = -EIO;
1112 		goto cleanup;
1113 	}
1114 	if (k)
1115 		ext_debug("create %d intermediate indices\n", k);
1116 	/* insert new index into current index block */
1117 	/* current depth stored in i var */
1118 	i = depth - 1;
1119 	while (k--) {
1120 		oldblock = newblock;
1121 		newblock = ablocks[--a];
1122 		bh = sb_getblk(inode->i_sb, newblock);
1123 		if (unlikely(!bh)) {
1124 			err = -ENOMEM;
1125 			goto cleanup;
1126 		}
1127 		lock_buffer(bh);
1128 
1129 		err = ext4_journal_get_create_access(handle, bh);
1130 		if (err)
1131 			goto cleanup;
1132 
1133 		neh = ext_block_hdr(bh);
1134 		neh->eh_entries = cpu_to_le16(1);
1135 		neh->eh_magic = EXT4_EXT_MAGIC;
1136 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1137 		neh->eh_depth = cpu_to_le16(depth - i);
1138 		fidx = EXT_FIRST_INDEX(neh);
1139 		fidx->ei_block = border;
1140 		ext4_idx_store_pblock(fidx, oldblock);
1141 
1142 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1143 				i, newblock, le32_to_cpu(border), oldblock);
1144 
1145 		/* move remainder of path[i] to the new index block */
1146 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1147 					EXT_LAST_INDEX(path[i].p_hdr))) {
1148 			EXT4_ERROR_INODE(inode,
1149 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1150 					 le32_to_cpu(path[i].p_ext->ee_block));
1151 			err = -EIO;
1152 			goto cleanup;
1153 		}
1154 		/* start copy indexes */
1155 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1156 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1157 				EXT_MAX_INDEX(path[i].p_hdr));
1158 		ext4_ext_show_move(inode, path, newblock, i);
1159 		if (m) {
1160 			memmove(++fidx, path[i].p_idx,
1161 				sizeof(struct ext4_extent_idx) * m);
1162 			le16_add_cpu(&neh->eh_entries, m);
1163 		}
1164 		ext4_extent_block_csum_set(inode, neh);
1165 		set_buffer_uptodate(bh);
1166 		unlock_buffer(bh);
1167 
1168 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1169 		if (err)
1170 			goto cleanup;
1171 		brelse(bh);
1172 		bh = NULL;
1173 
1174 		/* correct old index */
1175 		if (m) {
1176 			err = ext4_ext_get_access(handle, inode, path + i);
1177 			if (err)
1178 				goto cleanup;
1179 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1180 			err = ext4_ext_dirty(handle, inode, path + i);
1181 			if (err)
1182 				goto cleanup;
1183 		}
1184 
1185 		i--;
1186 	}
1187 
1188 	/* insert new index */
1189 	err = ext4_ext_insert_index(handle, inode, path + at,
1190 				    le32_to_cpu(border), newblock);
1191 
1192 cleanup:
1193 	if (bh) {
1194 		if (buffer_locked(bh))
1195 			unlock_buffer(bh);
1196 		brelse(bh);
1197 	}
1198 
1199 	if (err) {
1200 		/* free all allocated blocks in error case */
1201 		for (i = 0; i < depth; i++) {
1202 			if (!ablocks[i])
1203 				continue;
1204 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1205 					 EXT4_FREE_BLOCKS_METADATA);
1206 		}
1207 	}
1208 	kfree(ablocks);
1209 
1210 	return err;
1211 }
1212 
1213 /*
1214  * ext4_ext_grow_indepth:
1215  * implements tree growing procedure:
1216  * - allocates new block
1217  * - moves top-level data (index block or leaf) into the new block
1218  * - initializes new top-level, creating index that points to the
1219  *   just created block
1220  */
1221 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1222 				 unsigned int flags,
1223 				 struct ext4_extent *newext)
1224 {
1225 	struct ext4_extent_header *neh;
1226 	struct buffer_head *bh;
1227 	ext4_fsblk_t newblock;
1228 	int err = 0;
1229 
1230 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1231 		newext, &err, flags);
1232 	if (newblock == 0)
1233 		return err;
1234 
1235 	bh = sb_getblk(inode->i_sb, newblock);
1236 	if (unlikely(!bh))
1237 		return -ENOMEM;
1238 	lock_buffer(bh);
1239 
1240 	err = ext4_journal_get_create_access(handle, bh);
1241 	if (err) {
1242 		unlock_buffer(bh);
1243 		goto out;
1244 	}
1245 
1246 	/* move top-level index/leaf into new block */
1247 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1248 		sizeof(EXT4_I(inode)->i_data));
1249 
1250 	/* set size of new block */
1251 	neh = ext_block_hdr(bh);
1252 	/* old root could have indexes or leaves
1253 	 * so calculate e_max right way */
1254 	if (ext_depth(inode))
1255 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1256 	else
1257 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1258 	neh->eh_magic = EXT4_EXT_MAGIC;
1259 	ext4_extent_block_csum_set(inode, neh);
1260 	set_buffer_uptodate(bh);
1261 	unlock_buffer(bh);
1262 
1263 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1264 	if (err)
1265 		goto out;
1266 
1267 	/* Update top-level index: num,max,pointer */
1268 	neh = ext_inode_hdr(inode);
1269 	neh->eh_entries = cpu_to_le16(1);
1270 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1271 	if (neh->eh_depth == 0) {
1272 		/* Root extent block becomes index block */
1273 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1274 		EXT_FIRST_INDEX(neh)->ei_block =
1275 			EXT_FIRST_EXTENT(neh)->ee_block;
1276 	}
1277 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1278 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1279 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1280 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1281 
1282 	le16_add_cpu(&neh->eh_depth, 1);
1283 	ext4_mark_inode_dirty(handle, inode);
1284 out:
1285 	brelse(bh);
1286 
1287 	return err;
1288 }
1289 
1290 /*
1291  * ext4_ext_create_new_leaf:
1292  * finds empty index and adds new leaf.
1293  * if no free index is found, then it requests in-depth growing.
1294  */
1295 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1296 				    unsigned int mb_flags,
1297 				    unsigned int gb_flags,
1298 				    struct ext4_ext_path *path,
1299 				    struct ext4_extent *newext)
1300 {
1301 	struct ext4_ext_path *curp;
1302 	int depth, i, err = 0;
1303 
1304 repeat:
1305 	i = depth = ext_depth(inode);
1306 
1307 	/* walk up to the tree and look for free index entry */
1308 	curp = path + depth;
1309 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1310 		i--;
1311 		curp--;
1312 	}
1313 
1314 	/* we use already allocated block for index block,
1315 	 * so subsequent data blocks should be contiguous */
1316 	if (EXT_HAS_FREE_INDEX(curp)) {
1317 		/* if we found index with free entry, then use that
1318 		 * entry: create all needed subtree and add new leaf */
1319 		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1320 		if (err)
1321 			goto out;
1322 
1323 		/* refill path */
1324 		ext4_ext_drop_refs(path);
1325 		path = ext4_ext_find_extent(inode,
1326 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1327 				    path, gb_flags);
1328 		if (IS_ERR(path))
1329 			err = PTR_ERR(path);
1330 	} else {
1331 		/* tree is full, time to grow in depth */
1332 		err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1333 		if (err)
1334 			goto out;
1335 
1336 		/* refill path */
1337 		ext4_ext_drop_refs(path);
1338 		path = ext4_ext_find_extent(inode,
1339 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1340 				    path, gb_flags);
1341 		if (IS_ERR(path)) {
1342 			err = PTR_ERR(path);
1343 			goto out;
1344 		}
1345 
1346 		/*
1347 		 * only first (depth 0 -> 1) produces free space;
1348 		 * in all other cases we have to split the grown tree
1349 		 */
1350 		depth = ext_depth(inode);
1351 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1352 			/* now we need to split */
1353 			goto repeat;
1354 		}
1355 	}
1356 
1357 out:
1358 	return err;
1359 }
1360 
1361 /*
1362  * search the closest allocated block to the left for *logical
1363  * and returns it at @logical + it's physical address at @phys
1364  * if *logical is the smallest allocated block, the function
1365  * returns 0 at @phys
1366  * return value contains 0 (success) or error code
1367  */
1368 static int ext4_ext_search_left(struct inode *inode,
1369 				struct ext4_ext_path *path,
1370 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1371 {
1372 	struct ext4_extent_idx *ix;
1373 	struct ext4_extent *ex;
1374 	int depth, ee_len;
1375 
1376 	if (unlikely(path == NULL)) {
1377 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1378 		return -EIO;
1379 	}
1380 	depth = path->p_depth;
1381 	*phys = 0;
1382 
1383 	if (depth == 0 && path->p_ext == NULL)
1384 		return 0;
1385 
1386 	/* usually extent in the path covers blocks smaller
1387 	 * then *logical, but it can be that extent is the
1388 	 * first one in the file */
1389 
1390 	ex = path[depth].p_ext;
1391 	ee_len = ext4_ext_get_actual_len(ex);
1392 	if (*logical < le32_to_cpu(ex->ee_block)) {
1393 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1394 			EXT4_ERROR_INODE(inode,
1395 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1396 					 *logical, le32_to_cpu(ex->ee_block));
1397 			return -EIO;
1398 		}
1399 		while (--depth >= 0) {
1400 			ix = path[depth].p_idx;
1401 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1402 				EXT4_ERROR_INODE(inode,
1403 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1404 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1405 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1406 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1407 				  depth);
1408 				return -EIO;
1409 			}
1410 		}
1411 		return 0;
1412 	}
1413 
1414 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1415 		EXT4_ERROR_INODE(inode,
1416 				 "logical %d < ee_block %d + ee_len %d!",
1417 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1418 		return -EIO;
1419 	}
1420 
1421 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1422 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1423 	return 0;
1424 }
1425 
1426 /*
1427  * search the closest allocated block to the right for *logical
1428  * and returns it at @logical + it's physical address at @phys
1429  * if *logical is the largest allocated block, the function
1430  * returns 0 at @phys
1431  * return value contains 0 (success) or error code
1432  */
1433 static int ext4_ext_search_right(struct inode *inode,
1434 				 struct ext4_ext_path *path,
1435 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1436 				 struct ext4_extent **ret_ex)
1437 {
1438 	struct buffer_head *bh = NULL;
1439 	struct ext4_extent_header *eh;
1440 	struct ext4_extent_idx *ix;
1441 	struct ext4_extent *ex;
1442 	ext4_fsblk_t block;
1443 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1444 	int ee_len;
1445 
1446 	if (unlikely(path == NULL)) {
1447 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1448 		return -EIO;
1449 	}
1450 	depth = path->p_depth;
1451 	*phys = 0;
1452 
1453 	if (depth == 0 && path->p_ext == NULL)
1454 		return 0;
1455 
1456 	/* usually extent in the path covers blocks smaller
1457 	 * then *logical, but it can be that extent is the
1458 	 * first one in the file */
1459 
1460 	ex = path[depth].p_ext;
1461 	ee_len = ext4_ext_get_actual_len(ex);
1462 	if (*logical < le32_to_cpu(ex->ee_block)) {
1463 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1464 			EXT4_ERROR_INODE(inode,
1465 					 "first_extent(path[%d].p_hdr) != ex",
1466 					 depth);
1467 			return -EIO;
1468 		}
1469 		while (--depth >= 0) {
1470 			ix = path[depth].p_idx;
1471 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1472 				EXT4_ERROR_INODE(inode,
1473 						 "ix != EXT_FIRST_INDEX *logical %d!",
1474 						 *logical);
1475 				return -EIO;
1476 			}
1477 		}
1478 		goto found_extent;
1479 	}
1480 
1481 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1482 		EXT4_ERROR_INODE(inode,
1483 				 "logical %d < ee_block %d + ee_len %d!",
1484 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1485 		return -EIO;
1486 	}
1487 
1488 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1489 		/* next allocated block in this leaf */
1490 		ex++;
1491 		goto found_extent;
1492 	}
1493 
1494 	/* go up and search for index to the right */
1495 	while (--depth >= 0) {
1496 		ix = path[depth].p_idx;
1497 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1498 			goto got_index;
1499 	}
1500 
1501 	/* we've gone up to the root and found no index to the right */
1502 	return 0;
1503 
1504 got_index:
1505 	/* we've found index to the right, let's
1506 	 * follow it and find the closest allocated
1507 	 * block to the right */
1508 	ix++;
1509 	block = ext4_idx_pblock(ix);
1510 	while (++depth < path->p_depth) {
1511 		/* subtract from p_depth to get proper eh_depth */
1512 		bh = read_extent_tree_block(inode, block,
1513 					    path->p_depth - depth, 0);
1514 		if (IS_ERR(bh))
1515 			return PTR_ERR(bh);
1516 		eh = ext_block_hdr(bh);
1517 		ix = EXT_FIRST_INDEX(eh);
1518 		block = ext4_idx_pblock(ix);
1519 		put_bh(bh);
1520 	}
1521 
1522 	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1523 	if (IS_ERR(bh))
1524 		return PTR_ERR(bh);
1525 	eh = ext_block_hdr(bh);
1526 	ex = EXT_FIRST_EXTENT(eh);
1527 found_extent:
1528 	*logical = le32_to_cpu(ex->ee_block);
1529 	*phys = ext4_ext_pblock(ex);
1530 	*ret_ex = ex;
1531 	if (bh)
1532 		put_bh(bh);
1533 	return 0;
1534 }
1535 
1536 /*
1537  * ext4_ext_next_allocated_block:
1538  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1539  * NOTE: it considers block number from index entry as
1540  * allocated block. Thus, index entries have to be consistent
1541  * with leaves.
1542  */
1543 static ext4_lblk_t
1544 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1545 {
1546 	int depth;
1547 
1548 	BUG_ON(path == NULL);
1549 	depth = path->p_depth;
1550 
1551 	if (depth == 0 && path->p_ext == NULL)
1552 		return EXT_MAX_BLOCKS;
1553 
1554 	while (depth >= 0) {
1555 		if (depth == path->p_depth) {
1556 			/* leaf */
1557 			if (path[depth].p_ext &&
1558 				path[depth].p_ext !=
1559 					EXT_LAST_EXTENT(path[depth].p_hdr))
1560 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1561 		} else {
1562 			/* index */
1563 			if (path[depth].p_idx !=
1564 					EXT_LAST_INDEX(path[depth].p_hdr))
1565 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1566 		}
1567 		depth--;
1568 	}
1569 
1570 	return EXT_MAX_BLOCKS;
1571 }
1572 
1573 /*
1574  * ext4_ext_next_leaf_block:
1575  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1576  */
1577 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1578 {
1579 	int depth;
1580 
1581 	BUG_ON(path == NULL);
1582 	depth = path->p_depth;
1583 
1584 	/* zero-tree has no leaf blocks at all */
1585 	if (depth == 0)
1586 		return EXT_MAX_BLOCKS;
1587 
1588 	/* go to index block */
1589 	depth--;
1590 
1591 	while (depth >= 0) {
1592 		if (path[depth].p_idx !=
1593 				EXT_LAST_INDEX(path[depth].p_hdr))
1594 			return (ext4_lblk_t)
1595 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1596 		depth--;
1597 	}
1598 
1599 	return EXT_MAX_BLOCKS;
1600 }
1601 
1602 /*
1603  * ext4_ext_correct_indexes:
1604  * if leaf gets modified and modified extent is first in the leaf,
1605  * then we have to correct all indexes above.
1606  * TODO: do we need to correct tree in all cases?
1607  */
1608 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1609 				struct ext4_ext_path *path)
1610 {
1611 	struct ext4_extent_header *eh;
1612 	int depth = ext_depth(inode);
1613 	struct ext4_extent *ex;
1614 	__le32 border;
1615 	int k, err = 0;
1616 
1617 	eh = path[depth].p_hdr;
1618 	ex = path[depth].p_ext;
1619 
1620 	if (unlikely(ex == NULL || eh == NULL)) {
1621 		EXT4_ERROR_INODE(inode,
1622 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1623 		return -EIO;
1624 	}
1625 
1626 	if (depth == 0) {
1627 		/* there is no tree at all */
1628 		return 0;
1629 	}
1630 
1631 	if (ex != EXT_FIRST_EXTENT(eh)) {
1632 		/* we correct tree if first leaf got modified only */
1633 		return 0;
1634 	}
1635 
1636 	/*
1637 	 * TODO: we need correction if border is smaller than current one
1638 	 */
1639 	k = depth - 1;
1640 	border = path[depth].p_ext->ee_block;
1641 	err = ext4_ext_get_access(handle, inode, path + k);
1642 	if (err)
1643 		return err;
1644 	path[k].p_idx->ei_block = border;
1645 	err = ext4_ext_dirty(handle, inode, path + k);
1646 	if (err)
1647 		return err;
1648 
1649 	while (k--) {
1650 		/* change all left-side indexes */
1651 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1652 			break;
1653 		err = ext4_ext_get_access(handle, inode, path + k);
1654 		if (err)
1655 			break;
1656 		path[k].p_idx->ei_block = border;
1657 		err = ext4_ext_dirty(handle, inode, path + k);
1658 		if (err)
1659 			break;
1660 	}
1661 
1662 	return err;
1663 }
1664 
1665 int
1666 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1667 				struct ext4_extent *ex2)
1668 {
1669 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1670 
1671 	/*
1672 	 * Make sure that both extents are initialized. We don't merge
1673 	 * uninitialized extents so that we can be sure that end_io code has
1674 	 * the extent that was written properly split out and conversion to
1675 	 * initialized is trivial.
1676 	 */
1677 	if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1678 		return 0;
1679 
1680 	if (ext4_ext_is_uninitialized(ex1))
1681 		max_len = EXT_UNINIT_MAX_LEN;
1682 	else
1683 		max_len = EXT_INIT_MAX_LEN;
1684 
1685 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1686 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1687 
1688 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1689 			le32_to_cpu(ex2->ee_block))
1690 		return 0;
1691 
1692 	/*
1693 	 * To allow future support for preallocated extents to be added
1694 	 * as an RO_COMPAT feature, refuse to merge to extents if
1695 	 * this can result in the top bit of ee_len being set.
1696 	 */
1697 	if (ext1_ee_len + ext2_ee_len > max_len)
1698 		return 0;
1699 #ifdef AGGRESSIVE_TEST
1700 	if (ext1_ee_len >= 4)
1701 		return 0;
1702 #endif
1703 
1704 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1705 		return 1;
1706 	return 0;
1707 }
1708 
1709 /*
1710  * This function tries to merge the "ex" extent to the next extent in the tree.
1711  * It always tries to merge towards right. If you want to merge towards
1712  * left, pass "ex - 1" as argument instead of "ex".
1713  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1714  * 1 if they got merged.
1715  */
1716 static int ext4_ext_try_to_merge_right(struct inode *inode,
1717 				 struct ext4_ext_path *path,
1718 				 struct ext4_extent *ex)
1719 {
1720 	struct ext4_extent_header *eh;
1721 	unsigned int depth, len;
1722 	int merge_done = 0;
1723 	int uninitialized = 0;
1724 
1725 	depth = ext_depth(inode);
1726 	BUG_ON(path[depth].p_hdr == NULL);
1727 	eh = path[depth].p_hdr;
1728 
1729 	while (ex < EXT_LAST_EXTENT(eh)) {
1730 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1731 			break;
1732 		/* merge with next extent! */
1733 		if (ext4_ext_is_uninitialized(ex))
1734 			uninitialized = 1;
1735 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1736 				+ ext4_ext_get_actual_len(ex + 1));
1737 		if (uninitialized)
1738 			ext4_ext_mark_uninitialized(ex);
1739 
1740 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1741 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1742 				* sizeof(struct ext4_extent);
1743 			memmove(ex + 1, ex + 2, len);
1744 		}
1745 		le16_add_cpu(&eh->eh_entries, -1);
1746 		merge_done = 1;
1747 		WARN_ON(eh->eh_entries == 0);
1748 		if (!eh->eh_entries)
1749 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1750 	}
1751 
1752 	return merge_done;
1753 }
1754 
1755 /*
1756  * This function does a very simple check to see if we can collapse
1757  * an extent tree with a single extent tree leaf block into the inode.
1758  */
1759 static void ext4_ext_try_to_merge_up(handle_t *handle,
1760 				     struct inode *inode,
1761 				     struct ext4_ext_path *path)
1762 {
1763 	size_t s;
1764 	unsigned max_root = ext4_ext_space_root(inode, 0);
1765 	ext4_fsblk_t blk;
1766 
1767 	if ((path[0].p_depth != 1) ||
1768 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1769 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1770 		return;
1771 
1772 	/*
1773 	 * We need to modify the block allocation bitmap and the block
1774 	 * group descriptor to release the extent tree block.  If we
1775 	 * can't get the journal credits, give up.
1776 	 */
1777 	if (ext4_journal_extend(handle, 2))
1778 		return;
1779 
1780 	/*
1781 	 * Copy the extent data up to the inode
1782 	 */
1783 	blk = ext4_idx_pblock(path[0].p_idx);
1784 	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1785 		sizeof(struct ext4_extent_idx);
1786 	s += sizeof(struct ext4_extent_header);
1787 
1788 	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1789 	path[0].p_depth = 0;
1790 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1791 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1792 	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1793 
1794 	brelse(path[1].p_bh);
1795 	ext4_free_blocks(handle, inode, NULL, blk, 1,
1796 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET |
1797 			 EXT4_FREE_BLOCKS_RESERVE);
1798 }
1799 
1800 /*
1801  * This function tries to merge the @ex extent to neighbours in the tree.
1802  * return 1 if merge left else 0.
1803  */
1804 static void ext4_ext_try_to_merge(handle_t *handle,
1805 				  struct inode *inode,
1806 				  struct ext4_ext_path *path,
1807 				  struct ext4_extent *ex) {
1808 	struct ext4_extent_header *eh;
1809 	unsigned int depth;
1810 	int merge_done = 0;
1811 
1812 	depth = ext_depth(inode);
1813 	BUG_ON(path[depth].p_hdr == NULL);
1814 	eh = path[depth].p_hdr;
1815 
1816 	if (ex > EXT_FIRST_EXTENT(eh))
1817 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1818 
1819 	if (!merge_done)
1820 		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1821 
1822 	ext4_ext_try_to_merge_up(handle, inode, path);
1823 }
1824 
1825 /*
1826  * check if a portion of the "newext" extent overlaps with an
1827  * existing extent.
1828  *
1829  * If there is an overlap discovered, it updates the length of the newext
1830  * such that there will be no overlap, and then returns 1.
1831  * If there is no overlap found, it returns 0.
1832  */
1833 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1834 					   struct inode *inode,
1835 					   struct ext4_extent *newext,
1836 					   struct ext4_ext_path *path)
1837 {
1838 	ext4_lblk_t b1, b2;
1839 	unsigned int depth, len1;
1840 	unsigned int ret = 0;
1841 
1842 	b1 = le32_to_cpu(newext->ee_block);
1843 	len1 = ext4_ext_get_actual_len(newext);
1844 	depth = ext_depth(inode);
1845 	if (!path[depth].p_ext)
1846 		goto out;
1847 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1848 	b2 &= ~(sbi->s_cluster_ratio - 1);
1849 
1850 	/*
1851 	 * get the next allocated block if the extent in the path
1852 	 * is before the requested block(s)
1853 	 */
1854 	if (b2 < b1) {
1855 		b2 = ext4_ext_next_allocated_block(path);
1856 		if (b2 == EXT_MAX_BLOCKS)
1857 			goto out;
1858 		b2 &= ~(sbi->s_cluster_ratio - 1);
1859 	}
1860 
1861 	/* check for wrap through zero on extent logical start block*/
1862 	if (b1 + len1 < b1) {
1863 		len1 = EXT_MAX_BLOCKS - b1;
1864 		newext->ee_len = cpu_to_le16(len1);
1865 		ret = 1;
1866 	}
1867 
1868 	/* check for overlap */
1869 	if (b1 + len1 > b2) {
1870 		newext->ee_len = cpu_to_le16(b2 - b1);
1871 		ret = 1;
1872 	}
1873 out:
1874 	return ret;
1875 }
1876 
1877 /*
1878  * ext4_ext_insert_extent:
1879  * tries to merge requsted extent into the existing extent or
1880  * inserts requested extent as new one into the tree,
1881  * creating new leaf in the no-space case.
1882  */
1883 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1884 				struct ext4_ext_path *path,
1885 				struct ext4_extent *newext, int gb_flags)
1886 {
1887 	struct ext4_extent_header *eh;
1888 	struct ext4_extent *ex, *fex;
1889 	struct ext4_extent *nearex; /* nearest extent */
1890 	struct ext4_ext_path *npath = NULL;
1891 	int depth, len, err;
1892 	ext4_lblk_t next;
1893 	unsigned uninitialized = 0;
1894 	int mb_flags = 0;
1895 
1896 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1897 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1898 		return -EIO;
1899 	}
1900 	depth = ext_depth(inode);
1901 	ex = path[depth].p_ext;
1902 	eh = path[depth].p_hdr;
1903 	if (unlikely(path[depth].p_hdr == NULL)) {
1904 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1905 		return -EIO;
1906 	}
1907 
1908 	/* try to insert block into found extent and return */
1909 	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1910 
1911 		/*
1912 		 * Try to see whether we should rather test the extent on
1913 		 * right from ex, or from the left of ex. This is because
1914 		 * ext4_ext_find_extent() can return either extent on the
1915 		 * left, or on the right from the searched position. This
1916 		 * will make merging more effective.
1917 		 */
1918 		if (ex < EXT_LAST_EXTENT(eh) &&
1919 		    (le32_to_cpu(ex->ee_block) +
1920 		    ext4_ext_get_actual_len(ex) <
1921 		    le32_to_cpu(newext->ee_block))) {
1922 			ex += 1;
1923 			goto prepend;
1924 		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1925 			   (le32_to_cpu(newext->ee_block) +
1926 			   ext4_ext_get_actual_len(newext) <
1927 			   le32_to_cpu(ex->ee_block)))
1928 			ex -= 1;
1929 
1930 		/* Try to append newex to the ex */
1931 		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1932 			ext_debug("append [%d]%d block to %u:[%d]%d"
1933 				  "(from %llu)\n",
1934 				  ext4_ext_is_uninitialized(newext),
1935 				  ext4_ext_get_actual_len(newext),
1936 				  le32_to_cpu(ex->ee_block),
1937 				  ext4_ext_is_uninitialized(ex),
1938 				  ext4_ext_get_actual_len(ex),
1939 				  ext4_ext_pblock(ex));
1940 			err = ext4_ext_get_access(handle, inode,
1941 						  path + depth);
1942 			if (err)
1943 				return err;
1944 
1945 			/*
1946 			 * ext4_can_extents_be_merged should have checked
1947 			 * that either both extents are uninitialized, or
1948 			 * both aren't. Thus we need to check only one of
1949 			 * them here.
1950 			 */
1951 			if (ext4_ext_is_uninitialized(ex))
1952 				uninitialized = 1;
1953 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1954 					+ ext4_ext_get_actual_len(newext));
1955 			if (uninitialized)
1956 				ext4_ext_mark_uninitialized(ex);
1957 			eh = path[depth].p_hdr;
1958 			nearex = ex;
1959 			goto merge;
1960 		}
1961 
1962 prepend:
1963 		/* Try to prepend newex to the ex */
1964 		if (ext4_can_extents_be_merged(inode, newext, ex)) {
1965 			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1966 				  "(from %llu)\n",
1967 				  le32_to_cpu(newext->ee_block),
1968 				  ext4_ext_is_uninitialized(newext),
1969 				  ext4_ext_get_actual_len(newext),
1970 				  le32_to_cpu(ex->ee_block),
1971 				  ext4_ext_is_uninitialized(ex),
1972 				  ext4_ext_get_actual_len(ex),
1973 				  ext4_ext_pblock(ex));
1974 			err = ext4_ext_get_access(handle, inode,
1975 						  path + depth);
1976 			if (err)
1977 				return err;
1978 
1979 			/*
1980 			 * ext4_can_extents_be_merged should have checked
1981 			 * that either both extents are uninitialized, or
1982 			 * both aren't. Thus we need to check only one of
1983 			 * them here.
1984 			 */
1985 			if (ext4_ext_is_uninitialized(ex))
1986 				uninitialized = 1;
1987 			ex->ee_block = newext->ee_block;
1988 			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1989 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1990 					+ ext4_ext_get_actual_len(newext));
1991 			if (uninitialized)
1992 				ext4_ext_mark_uninitialized(ex);
1993 			eh = path[depth].p_hdr;
1994 			nearex = ex;
1995 			goto merge;
1996 		}
1997 	}
1998 
1999 	depth = ext_depth(inode);
2000 	eh = path[depth].p_hdr;
2001 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2002 		goto has_space;
2003 
2004 	/* probably next leaf has space for us? */
2005 	fex = EXT_LAST_EXTENT(eh);
2006 	next = EXT_MAX_BLOCKS;
2007 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2008 		next = ext4_ext_next_leaf_block(path);
2009 	if (next != EXT_MAX_BLOCKS) {
2010 		ext_debug("next leaf block - %u\n", next);
2011 		BUG_ON(npath != NULL);
2012 		npath = ext4_ext_find_extent(inode, next, NULL, 0);
2013 		if (IS_ERR(npath))
2014 			return PTR_ERR(npath);
2015 		BUG_ON(npath->p_depth != path->p_depth);
2016 		eh = npath[depth].p_hdr;
2017 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2018 			ext_debug("next leaf isn't full(%d)\n",
2019 				  le16_to_cpu(eh->eh_entries));
2020 			path = npath;
2021 			goto has_space;
2022 		}
2023 		ext_debug("next leaf has no free space(%d,%d)\n",
2024 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2025 	}
2026 
2027 	/*
2028 	 * There is no free space in the found leaf.
2029 	 * We're gonna add a new leaf in the tree.
2030 	 */
2031 	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2032 		mb_flags = EXT4_MB_USE_RESERVED;
2033 	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2034 				       path, newext);
2035 	if (err)
2036 		goto cleanup;
2037 	depth = ext_depth(inode);
2038 	eh = path[depth].p_hdr;
2039 
2040 has_space:
2041 	nearex = path[depth].p_ext;
2042 
2043 	err = ext4_ext_get_access(handle, inode, path + depth);
2044 	if (err)
2045 		goto cleanup;
2046 
2047 	if (!nearex) {
2048 		/* there is no extent in this leaf, create first one */
2049 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2050 				le32_to_cpu(newext->ee_block),
2051 				ext4_ext_pblock(newext),
2052 				ext4_ext_is_uninitialized(newext),
2053 				ext4_ext_get_actual_len(newext));
2054 		nearex = EXT_FIRST_EXTENT(eh);
2055 	} else {
2056 		if (le32_to_cpu(newext->ee_block)
2057 			   > le32_to_cpu(nearex->ee_block)) {
2058 			/* Insert after */
2059 			ext_debug("insert %u:%llu:[%d]%d before: "
2060 					"nearest %p\n",
2061 					le32_to_cpu(newext->ee_block),
2062 					ext4_ext_pblock(newext),
2063 					ext4_ext_is_uninitialized(newext),
2064 					ext4_ext_get_actual_len(newext),
2065 					nearex);
2066 			nearex++;
2067 		} else {
2068 			/* Insert before */
2069 			BUG_ON(newext->ee_block == nearex->ee_block);
2070 			ext_debug("insert %u:%llu:[%d]%d after: "
2071 					"nearest %p\n",
2072 					le32_to_cpu(newext->ee_block),
2073 					ext4_ext_pblock(newext),
2074 					ext4_ext_is_uninitialized(newext),
2075 					ext4_ext_get_actual_len(newext),
2076 					nearex);
2077 		}
2078 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2079 		if (len > 0) {
2080 			ext_debug("insert %u:%llu:[%d]%d: "
2081 					"move %d extents from 0x%p to 0x%p\n",
2082 					le32_to_cpu(newext->ee_block),
2083 					ext4_ext_pblock(newext),
2084 					ext4_ext_is_uninitialized(newext),
2085 					ext4_ext_get_actual_len(newext),
2086 					len, nearex, nearex + 1);
2087 			memmove(nearex + 1, nearex,
2088 				len * sizeof(struct ext4_extent));
2089 		}
2090 	}
2091 
2092 	le16_add_cpu(&eh->eh_entries, 1);
2093 	path[depth].p_ext = nearex;
2094 	nearex->ee_block = newext->ee_block;
2095 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2096 	nearex->ee_len = newext->ee_len;
2097 
2098 merge:
2099 	/* try to merge extents */
2100 	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2101 		ext4_ext_try_to_merge(handle, inode, path, nearex);
2102 
2103 
2104 	/* time to correct all indexes above */
2105 	err = ext4_ext_correct_indexes(handle, inode, path);
2106 	if (err)
2107 		goto cleanup;
2108 
2109 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2110 
2111 cleanup:
2112 	if (npath) {
2113 		ext4_ext_drop_refs(npath);
2114 		kfree(npath);
2115 	}
2116 	return err;
2117 }
2118 
2119 static int ext4_fill_fiemap_extents(struct inode *inode,
2120 				    ext4_lblk_t block, ext4_lblk_t num,
2121 				    struct fiemap_extent_info *fieinfo)
2122 {
2123 	struct ext4_ext_path *path = NULL;
2124 	struct ext4_extent *ex;
2125 	struct extent_status es;
2126 	ext4_lblk_t next, next_del, start = 0, end = 0;
2127 	ext4_lblk_t last = block + num;
2128 	int exists, depth = 0, err = 0;
2129 	unsigned int flags = 0;
2130 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2131 
2132 	while (block < last && block != EXT_MAX_BLOCKS) {
2133 		num = last - block;
2134 		/* find extent for this block */
2135 		down_read(&EXT4_I(inode)->i_data_sem);
2136 
2137 		if (path && ext_depth(inode) != depth) {
2138 			/* depth was changed. we have to realloc path */
2139 			kfree(path);
2140 			path = NULL;
2141 		}
2142 
2143 		path = ext4_ext_find_extent(inode, block, path, 0);
2144 		if (IS_ERR(path)) {
2145 			up_read(&EXT4_I(inode)->i_data_sem);
2146 			err = PTR_ERR(path);
2147 			path = NULL;
2148 			break;
2149 		}
2150 
2151 		depth = ext_depth(inode);
2152 		if (unlikely(path[depth].p_hdr == NULL)) {
2153 			up_read(&EXT4_I(inode)->i_data_sem);
2154 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2155 			err = -EIO;
2156 			break;
2157 		}
2158 		ex = path[depth].p_ext;
2159 		next = ext4_ext_next_allocated_block(path);
2160 		ext4_ext_drop_refs(path);
2161 
2162 		flags = 0;
2163 		exists = 0;
2164 		if (!ex) {
2165 			/* there is no extent yet, so try to allocate
2166 			 * all requested space */
2167 			start = block;
2168 			end = block + num;
2169 		} else if (le32_to_cpu(ex->ee_block) > block) {
2170 			/* need to allocate space before found extent */
2171 			start = block;
2172 			end = le32_to_cpu(ex->ee_block);
2173 			if (block + num < end)
2174 				end = block + num;
2175 		} else if (block >= le32_to_cpu(ex->ee_block)
2176 					+ ext4_ext_get_actual_len(ex)) {
2177 			/* need to allocate space after found extent */
2178 			start = block;
2179 			end = block + num;
2180 			if (end >= next)
2181 				end = next;
2182 		} else if (block >= le32_to_cpu(ex->ee_block)) {
2183 			/*
2184 			 * some part of requested space is covered
2185 			 * by found extent
2186 			 */
2187 			start = block;
2188 			end = le32_to_cpu(ex->ee_block)
2189 				+ ext4_ext_get_actual_len(ex);
2190 			if (block + num < end)
2191 				end = block + num;
2192 			exists = 1;
2193 		} else {
2194 			BUG();
2195 		}
2196 		BUG_ON(end <= start);
2197 
2198 		if (!exists) {
2199 			es.es_lblk = start;
2200 			es.es_len = end - start;
2201 			es.es_pblk = 0;
2202 		} else {
2203 			es.es_lblk = le32_to_cpu(ex->ee_block);
2204 			es.es_len = ext4_ext_get_actual_len(ex);
2205 			es.es_pblk = ext4_ext_pblock(ex);
2206 			if (ext4_ext_is_uninitialized(ex))
2207 				flags |= FIEMAP_EXTENT_UNWRITTEN;
2208 		}
2209 
2210 		/*
2211 		 * Find delayed extent and update es accordingly. We call
2212 		 * it even in !exists case to find out whether es is the
2213 		 * last existing extent or not.
2214 		 */
2215 		next_del = ext4_find_delayed_extent(inode, &es);
2216 		if (!exists && next_del) {
2217 			exists = 1;
2218 			flags |= (FIEMAP_EXTENT_DELALLOC |
2219 				  FIEMAP_EXTENT_UNKNOWN);
2220 		}
2221 		up_read(&EXT4_I(inode)->i_data_sem);
2222 
2223 		if (unlikely(es.es_len == 0)) {
2224 			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2225 			err = -EIO;
2226 			break;
2227 		}
2228 
2229 		/*
2230 		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2231 		 * we need to check next == EXT_MAX_BLOCKS because it is
2232 		 * possible that an extent is with unwritten and delayed
2233 		 * status due to when an extent is delayed allocated and
2234 		 * is allocated by fallocate status tree will track both of
2235 		 * them in a extent.
2236 		 *
2237 		 * So we could return a unwritten and delayed extent, and
2238 		 * its block is equal to 'next'.
2239 		 */
2240 		if (next == next_del && next == EXT_MAX_BLOCKS) {
2241 			flags |= FIEMAP_EXTENT_LAST;
2242 			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2243 				     next != EXT_MAX_BLOCKS)) {
2244 				EXT4_ERROR_INODE(inode,
2245 						 "next extent == %u, next "
2246 						 "delalloc extent = %u",
2247 						 next, next_del);
2248 				err = -EIO;
2249 				break;
2250 			}
2251 		}
2252 
2253 		if (exists) {
2254 			err = fiemap_fill_next_extent(fieinfo,
2255 				(__u64)es.es_lblk << blksize_bits,
2256 				(__u64)es.es_pblk << blksize_bits,
2257 				(__u64)es.es_len << blksize_bits,
2258 				flags);
2259 			if (err < 0)
2260 				break;
2261 			if (err == 1) {
2262 				err = 0;
2263 				break;
2264 			}
2265 		}
2266 
2267 		block = es.es_lblk + es.es_len;
2268 	}
2269 
2270 	if (path) {
2271 		ext4_ext_drop_refs(path);
2272 		kfree(path);
2273 	}
2274 
2275 	return err;
2276 }
2277 
2278 /*
2279  * ext4_ext_put_gap_in_cache:
2280  * calculate boundaries of the gap that the requested block fits into
2281  * and cache this gap
2282  */
2283 static void
2284 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2285 				ext4_lblk_t block)
2286 {
2287 	int depth = ext_depth(inode);
2288 	unsigned long len = 0;
2289 	ext4_lblk_t lblock = 0;
2290 	struct ext4_extent *ex;
2291 
2292 	ex = path[depth].p_ext;
2293 	if (ex == NULL) {
2294 		/*
2295 		 * there is no extent yet, so gap is [0;-] and we
2296 		 * don't cache it
2297 		 */
2298 		ext_debug("cache gap(whole file):");
2299 	} else if (block < le32_to_cpu(ex->ee_block)) {
2300 		lblock = block;
2301 		len = le32_to_cpu(ex->ee_block) - block;
2302 		ext_debug("cache gap(before): %u [%u:%u]",
2303 				block,
2304 				le32_to_cpu(ex->ee_block),
2305 				 ext4_ext_get_actual_len(ex));
2306 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2307 			ext4_es_insert_extent(inode, lblock, len, ~0,
2308 					      EXTENT_STATUS_HOLE);
2309 	} else if (block >= le32_to_cpu(ex->ee_block)
2310 			+ ext4_ext_get_actual_len(ex)) {
2311 		ext4_lblk_t next;
2312 		lblock = le32_to_cpu(ex->ee_block)
2313 			+ ext4_ext_get_actual_len(ex);
2314 
2315 		next = ext4_ext_next_allocated_block(path);
2316 		ext_debug("cache gap(after): [%u:%u] %u",
2317 				le32_to_cpu(ex->ee_block),
2318 				ext4_ext_get_actual_len(ex),
2319 				block);
2320 		BUG_ON(next == lblock);
2321 		len = next - lblock;
2322 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2323 			ext4_es_insert_extent(inode, lblock, len, ~0,
2324 					      EXTENT_STATUS_HOLE);
2325 	} else {
2326 		BUG();
2327 	}
2328 
2329 	ext_debug(" -> %u:%lu\n", lblock, len);
2330 }
2331 
2332 /*
2333  * ext4_ext_rm_idx:
2334  * removes index from the index block.
2335  */
2336 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2337 			struct ext4_ext_path *path, int depth)
2338 {
2339 	int err;
2340 	ext4_fsblk_t leaf;
2341 
2342 	/* free index block */
2343 	depth--;
2344 	path = path + depth;
2345 	leaf = ext4_idx_pblock(path->p_idx);
2346 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2347 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2348 		return -EIO;
2349 	}
2350 	err = ext4_ext_get_access(handle, inode, path);
2351 	if (err)
2352 		return err;
2353 
2354 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2355 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2356 		len *= sizeof(struct ext4_extent_idx);
2357 		memmove(path->p_idx, path->p_idx + 1, len);
2358 	}
2359 
2360 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2361 	err = ext4_ext_dirty(handle, inode, path);
2362 	if (err)
2363 		return err;
2364 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2365 	trace_ext4_ext_rm_idx(inode, leaf);
2366 
2367 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2368 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2369 
2370 	while (--depth >= 0) {
2371 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2372 			break;
2373 		path--;
2374 		err = ext4_ext_get_access(handle, inode, path);
2375 		if (err)
2376 			break;
2377 		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2378 		err = ext4_ext_dirty(handle, inode, path);
2379 		if (err)
2380 			break;
2381 	}
2382 	return err;
2383 }
2384 
2385 /*
2386  * ext4_ext_calc_credits_for_single_extent:
2387  * This routine returns max. credits that needed to insert an extent
2388  * to the extent tree.
2389  * When pass the actual path, the caller should calculate credits
2390  * under i_data_sem.
2391  */
2392 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2393 						struct ext4_ext_path *path)
2394 {
2395 	if (path) {
2396 		int depth = ext_depth(inode);
2397 		int ret = 0;
2398 
2399 		/* probably there is space in leaf? */
2400 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2401 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2402 
2403 			/*
2404 			 *  There are some space in the leaf tree, no
2405 			 *  need to account for leaf block credit
2406 			 *
2407 			 *  bitmaps and block group descriptor blocks
2408 			 *  and other metadata blocks still need to be
2409 			 *  accounted.
2410 			 */
2411 			/* 1 bitmap, 1 block group descriptor */
2412 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2413 			return ret;
2414 		}
2415 	}
2416 
2417 	return ext4_chunk_trans_blocks(inode, nrblocks);
2418 }
2419 
2420 /*
2421  * How many index/leaf blocks need to change/allocate to add @extents extents?
2422  *
2423  * If we add a single extent, then in the worse case, each tree level
2424  * index/leaf need to be changed in case of the tree split.
2425  *
2426  * If more extents are inserted, they could cause the whole tree split more
2427  * than once, but this is really rare.
2428  */
2429 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2430 {
2431 	int index;
2432 	int depth;
2433 
2434 	/* If we are converting the inline data, only one is needed here. */
2435 	if (ext4_has_inline_data(inode))
2436 		return 1;
2437 
2438 	depth = ext_depth(inode);
2439 
2440 	if (extents <= 1)
2441 		index = depth * 2;
2442 	else
2443 		index = depth * 3;
2444 
2445 	return index;
2446 }
2447 
2448 static inline int get_default_free_blocks_flags(struct inode *inode)
2449 {
2450 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2451 		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2452 	else if (ext4_should_journal_data(inode))
2453 		return EXT4_FREE_BLOCKS_FORGET;
2454 	return 0;
2455 }
2456 
2457 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2458 			      struct ext4_extent *ex,
2459 			      long long *partial_cluster,
2460 			      ext4_lblk_t from, ext4_lblk_t to)
2461 {
2462 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2463 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2464 	ext4_fsblk_t pblk;
2465 	int flags = get_default_free_blocks_flags(inode);
2466 
2467 	/*
2468 	 * For bigalloc file systems, we never free a partial cluster
2469 	 * at the beginning of the extent.  Instead, we make a note
2470 	 * that we tried freeing the cluster, and check to see if we
2471 	 * need to free it on a subsequent call to ext4_remove_blocks,
2472 	 * or at the end of the ext4_truncate() operation.
2473 	 */
2474 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2475 
2476 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2477 	/*
2478 	 * If we have a partial cluster, and it's different from the
2479 	 * cluster of the last block, we need to explicitly free the
2480 	 * partial cluster here.
2481 	 */
2482 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2483 	if ((*partial_cluster > 0) &&
2484 	    (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2485 		ext4_free_blocks(handle, inode, NULL,
2486 				 EXT4_C2B(sbi, *partial_cluster),
2487 				 sbi->s_cluster_ratio, flags);
2488 		*partial_cluster = 0;
2489 	}
2490 
2491 #ifdef EXTENTS_STATS
2492 	{
2493 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2494 		spin_lock(&sbi->s_ext_stats_lock);
2495 		sbi->s_ext_blocks += ee_len;
2496 		sbi->s_ext_extents++;
2497 		if (ee_len < sbi->s_ext_min)
2498 			sbi->s_ext_min = ee_len;
2499 		if (ee_len > sbi->s_ext_max)
2500 			sbi->s_ext_max = ee_len;
2501 		if (ext_depth(inode) > sbi->s_depth_max)
2502 			sbi->s_depth_max = ext_depth(inode);
2503 		spin_unlock(&sbi->s_ext_stats_lock);
2504 	}
2505 #endif
2506 	if (from >= le32_to_cpu(ex->ee_block)
2507 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2508 		/* tail removal */
2509 		ext4_lblk_t num;
2510 		unsigned int unaligned;
2511 
2512 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2513 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2514 		/*
2515 		 * Usually we want to free partial cluster at the end of the
2516 		 * extent, except for the situation when the cluster is still
2517 		 * used by any other extent (partial_cluster is negative).
2518 		 */
2519 		if (*partial_cluster < 0 &&
2520 		    -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2521 			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2522 
2523 		ext_debug("free last %u blocks starting %llu partial %lld\n",
2524 			  num, pblk, *partial_cluster);
2525 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2526 		/*
2527 		 * If the block range to be freed didn't start at the
2528 		 * beginning of a cluster, and we removed the entire
2529 		 * extent and the cluster is not used by any other extent,
2530 		 * save the partial cluster here, since we might need to
2531 		 * delete if we determine that the truncate operation has
2532 		 * removed all of the blocks in the cluster.
2533 		 *
2534 		 * On the other hand, if we did not manage to free the whole
2535 		 * extent, we have to mark the cluster as used (store negative
2536 		 * cluster number in partial_cluster).
2537 		 */
2538 		unaligned = pblk & (sbi->s_cluster_ratio - 1);
2539 		if (unaligned && (ee_len == num) &&
2540 		    (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2541 			*partial_cluster = EXT4_B2C(sbi, pblk);
2542 		else if (unaligned)
2543 			*partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2544 		else if (*partial_cluster > 0)
2545 			*partial_cluster = 0;
2546 	} else
2547 		ext4_error(sbi->s_sb, "strange request: removal(2) "
2548 			   "%u-%u from %u:%u\n",
2549 			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2550 	return 0;
2551 }
2552 
2553 
2554 /*
2555  * ext4_ext_rm_leaf() Removes the extents associated with the
2556  * blocks appearing between "start" and "end", and splits the extents
2557  * if "start" and "end" appear in the same extent
2558  *
2559  * @handle: The journal handle
2560  * @inode:  The files inode
2561  * @path:   The path to the leaf
2562  * @partial_cluster: The cluster which we'll have to free if all extents
2563  *                   has been released from it. It gets negative in case
2564  *                   that the cluster is still used.
2565  * @start:  The first block to remove
2566  * @end:   The last block to remove
2567  */
2568 static int
2569 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2570 		 struct ext4_ext_path *path,
2571 		 long long *partial_cluster,
2572 		 ext4_lblk_t start, ext4_lblk_t end)
2573 {
2574 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2575 	int err = 0, correct_index = 0;
2576 	int depth = ext_depth(inode), credits;
2577 	struct ext4_extent_header *eh;
2578 	ext4_lblk_t a, b;
2579 	unsigned num;
2580 	ext4_lblk_t ex_ee_block;
2581 	unsigned short ex_ee_len;
2582 	unsigned uninitialized = 0;
2583 	struct ext4_extent *ex;
2584 	ext4_fsblk_t pblk;
2585 
2586 	/* the header must be checked already in ext4_ext_remove_space() */
2587 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2588 	if (!path[depth].p_hdr)
2589 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2590 	eh = path[depth].p_hdr;
2591 	if (unlikely(path[depth].p_hdr == NULL)) {
2592 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2593 		return -EIO;
2594 	}
2595 	/* find where to start removing */
2596 	ex = path[depth].p_ext;
2597 	if (!ex)
2598 		ex = EXT_LAST_EXTENT(eh);
2599 
2600 	ex_ee_block = le32_to_cpu(ex->ee_block);
2601 	ex_ee_len = ext4_ext_get_actual_len(ex);
2602 
2603 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2604 
2605 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2606 			ex_ee_block + ex_ee_len > start) {
2607 
2608 		if (ext4_ext_is_uninitialized(ex))
2609 			uninitialized = 1;
2610 		else
2611 			uninitialized = 0;
2612 
2613 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2614 			 uninitialized, ex_ee_len);
2615 		path[depth].p_ext = ex;
2616 
2617 		a = ex_ee_block > start ? ex_ee_block : start;
2618 		b = ex_ee_block+ex_ee_len - 1 < end ?
2619 			ex_ee_block+ex_ee_len - 1 : end;
2620 
2621 		ext_debug("  border %u:%u\n", a, b);
2622 
2623 		/* If this extent is beyond the end of the hole, skip it */
2624 		if (end < ex_ee_block) {
2625 			/*
2626 			 * We're going to skip this extent and move to another,
2627 			 * so if this extent is not cluster aligned we have
2628 			 * to mark the current cluster as used to avoid
2629 			 * accidentally freeing it later on
2630 			 */
2631 			pblk = ext4_ext_pblock(ex);
2632 			if (pblk & (sbi->s_cluster_ratio - 1))
2633 				*partial_cluster =
2634 					-((long long)EXT4_B2C(sbi, pblk));
2635 			ex--;
2636 			ex_ee_block = le32_to_cpu(ex->ee_block);
2637 			ex_ee_len = ext4_ext_get_actual_len(ex);
2638 			continue;
2639 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2640 			EXT4_ERROR_INODE(inode,
2641 					 "can not handle truncate %u:%u "
2642 					 "on extent %u:%u",
2643 					 start, end, ex_ee_block,
2644 					 ex_ee_block + ex_ee_len - 1);
2645 			err = -EIO;
2646 			goto out;
2647 		} else if (a != ex_ee_block) {
2648 			/* remove tail of the extent */
2649 			num = a - ex_ee_block;
2650 		} else {
2651 			/* remove whole extent: excellent! */
2652 			num = 0;
2653 		}
2654 		/*
2655 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2656 		 * descriptor) for each block group; assume two block
2657 		 * groups plus ex_ee_len/blocks_per_block_group for
2658 		 * the worst case
2659 		 */
2660 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2661 		if (ex == EXT_FIRST_EXTENT(eh)) {
2662 			correct_index = 1;
2663 			credits += (ext_depth(inode)) + 1;
2664 		}
2665 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2666 
2667 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2668 		if (err)
2669 			goto out;
2670 
2671 		err = ext4_ext_get_access(handle, inode, path + depth);
2672 		if (err)
2673 			goto out;
2674 
2675 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2676 					 a, b);
2677 		if (err)
2678 			goto out;
2679 
2680 		if (num == 0)
2681 			/* this extent is removed; mark slot entirely unused */
2682 			ext4_ext_store_pblock(ex, 0);
2683 
2684 		ex->ee_len = cpu_to_le16(num);
2685 		/*
2686 		 * Do not mark uninitialized if all the blocks in the
2687 		 * extent have been removed.
2688 		 */
2689 		if (uninitialized && num)
2690 			ext4_ext_mark_uninitialized(ex);
2691 		/*
2692 		 * If the extent was completely released,
2693 		 * we need to remove it from the leaf
2694 		 */
2695 		if (num == 0) {
2696 			if (end != EXT_MAX_BLOCKS - 1) {
2697 				/*
2698 				 * For hole punching, we need to scoot all the
2699 				 * extents up when an extent is removed so that
2700 				 * we dont have blank extents in the middle
2701 				 */
2702 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2703 					sizeof(struct ext4_extent));
2704 
2705 				/* Now get rid of the one at the end */
2706 				memset(EXT_LAST_EXTENT(eh), 0,
2707 					sizeof(struct ext4_extent));
2708 			}
2709 			le16_add_cpu(&eh->eh_entries, -1);
2710 		} else if (*partial_cluster > 0)
2711 			*partial_cluster = 0;
2712 
2713 		err = ext4_ext_dirty(handle, inode, path + depth);
2714 		if (err)
2715 			goto out;
2716 
2717 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2718 				ext4_ext_pblock(ex));
2719 		ex--;
2720 		ex_ee_block = le32_to_cpu(ex->ee_block);
2721 		ex_ee_len = ext4_ext_get_actual_len(ex);
2722 	}
2723 
2724 	if (correct_index && eh->eh_entries)
2725 		err = ext4_ext_correct_indexes(handle, inode, path);
2726 
2727 	/*
2728 	 * Free the partial cluster only if the current extent does not
2729 	 * reference it. Otherwise we might free used cluster.
2730 	 */
2731 	if (*partial_cluster > 0 &&
2732 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2733 	     *partial_cluster)) {
2734 		int flags = get_default_free_blocks_flags(inode);
2735 
2736 		ext4_free_blocks(handle, inode, NULL,
2737 				 EXT4_C2B(sbi, *partial_cluster),
2738 				 sbi->s_cluster_ratio, flags);
2739 		*partial_cluster = 0;
2740 	}
2741 
2742 	/* if this leaf is free, then we should
2743 	 * remove it from index block above */
2744 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2745 		err = ext4_ext_rm_idx(handle, inode, path, depth);
2746 
2747 out:
2748 	return err;
2749 }
2750 
2751 /*
2752  * ext4_ext_more_to_rm:
2753  * returns 1 if current index has to be freed (even partial)
2754  */
2755 static int
2756 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2757 {
2758 	BUG_ON(path->p_idx == NULL);
2759 
2760 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2761 		return 0;
2762 
2763 	/*
2764 	 * if truncate on deeper level happened, it wasn't partial,
2765 	 * so we have to consider current index for truncation
2766 	 */
2767 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2768 		return 0;
2769 	return 1;
2770 }
2771 
2772 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2773 			  ext4_lblk_t end)
2774 {
2775 	struct super_block *sb = inode->i_sb;
2776 	int depth = ext_depth(inode);
2777 	struct ext4_ext_path *path = NULL;
2778 	long long partial_cluster = 0;
2779 	handle_t *handle;
2780 	int i = 0, err = 0;
2781 
2782 	ext_debug("truncate since %u to %u\n", start, end);
2783 
2784 	/* probably first extent we're gonna free will be last in block */
2785 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2786 	if (IS_ERR(handle))
2787 		return PTR_ERR(handle);
2788 
2789 again:
2790 	trace_ext4_ext_remove_space(inode, start, end, depth);
2791 
2792 	/*
2793 	 * Check if we are removing extents inside the extent tree. If that
2794 	 * is the case, we are going to punch a hole inside the extent tree
2795 	 * so we have to check whether we need to split the extent covering
2796 	 * the last block to remove so we can easily remove the part of it
2797 	 * in ext4_ext_rm_leaf().
2798 	 */
2799 	if (end < EXT_MAX_BLOCKS - 1) {
2800 		struct ext4_extent *ex;
2801 		ext4_lblk_t ee_block;
2802 
2803 		/* find extent for this block */
2804 		path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2805 		if (IS_ERR(path)) {
2806 			ext4_journal_stop(handle);
2807 			return PTR_ERR(path);
2808 		}
2809 		depth = ext_depth(inode);
2810 		/* Leaf not may not exist only if inode has no blocks at all */
2811 		ex = path[depth].p_ext;
2812 		if (!ex) {
2813 			if (depth) {
2814 				EXT4_ERROR_INODE(inode,
2815 						 "path[%d].p_hdr == NULL",
2816 						 depth);
2817 				err = -EIO;
2818 			}
2819 			goto out;
2820 		}
2821 
2822 		ee_block = le32_to_cpu(ex->ee_block);
2823 
2824 		/*
2825 		 * See if the last block is inside the extent, if so split
2826 		 * the extent at 'end' block so we can easily remove the
2827 		 * tail of the first part of the split extent in
2828 		 * ext4_ext_rm_leaf().
2829 		 */
2830 		if (end >= ee_block &&
2831 		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2832 			int split_flag = 0;
2833 
2834 			if (ext4_ext_is_uninitialized(ex))
2835 				split_flag = EXT4_EXT_MARK_UNINIT1 |
2836 					     EXT4_EXT_MARK_UNINIT2;
2837 
2838 			/*
2839 			 * Split the extent in two so that 'end' is the last
2840 			 * block in the first new extent. Also we should not
2841 			 * fail removing space due to ENOSPC so try to use
2842 			 * reserved block if that happens.
2843 			 */
2844 			err = ext4_split_extent_at(handle, inode, path,
2845 					end + 1, split_flag,
2846 					EXT4_EX_NOCACHE |
2847 					EXT4_GET_BLOCKS_PRE_IO |
2848 					EXT4_GET_BLOCKS_METADATA_NOFAIL);
2849 
2850 			if (err < 0)
2851 				goto out;
2852 		}
2853 	}
2854 	/*
2855 	 * We start scanning from right side, freeing all the blocks
2856 	 * after i_size and walking into the tree depth-wise.
2857 	 */
2858 	depth = ext_depth(inode);
2859 	if (path) {
2860 		int k = i = depth;
2861 		while (--k > 0)
2862 			path[k].p_block =
2863 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2864 	} else {
2865 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2866 			       GFP_NOFS);
2867 		if (path == NULL) {
2868 			ext4_journal_stop(handle);
2869 			return -ENOMEM;
2870 		}
2871 		path[0].p_depth = depth;
2872 		path[0].p_hdr = ext_inode_hdr(inode);
2873 		i = 0;
2874 
2875 		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2876 			err = -EIO;
2877 			goto out;
2878 		}
2879 	}
2880 	err = 0;
2881 
2882 	while (i >= 0 && err == 0) {
2883 		if (i == depth) {
2884 			/* this is leaf block */
2885 			err = ext4_ext_rm_leaf(handle, inode, path,
2886 					       &partial_cluster, start,
2887 					       end);
2888 			/* root level has p_bh == NULL, brelse() eats this */
2889 			brelse(path[i].p_bh);
2890 			path[i].p_bh = NULL;
2891 			i--;
2892 			continue;
2893 		}
2894 
2895 		/* this is index block */
2896 		if (!path[i].p_hdr) {
2897 			ext_debug("initialize header\n");
2898 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2899 		}
2900 
2901 		if (!path[i].p_idx) {
2902 			/* this level hasn't been touched yet */
2903 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2904 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2905 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2906 				  path[i].p_hdr,
2907 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2908 		} else {
2909 			/* we were already here, see at next index */
2910 			path[i].p_idx--;
2911 		}
2912 
2913 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2914 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2915 				path[i].p_idx);
2916 		if (ext4_ext_more_to_rm(path + i)) {
2917 			struct buffer_head *bh;
2918 			/* go to the next level */
2919 			ext_debug("move to level %d (block %llu)\n",
2920 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2921 			memset(path + i + 1, 0, sizeof(*path));
2922 			bh = read_extent_tree_block(inode,
2923 				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2924 				EXT4_EX_NOCACHE);
2925 			if (IS_ERR(bh)) {
2926 				/* should we reset i_size? */
2927 				err = PTR_ERR(bh);
2928 				break;
2929 			}
2930 			/* Yield here to deal with large extent trees.
2931 			 * Should be a no-op if we did IO above. */
2932 			cond_resched();
2933 			if (WARN_ON(i + 1 > depth)) {
2934 				err = -EIO;
2935 				break;
2936 			}
2937 			path[i + 1].p_bh = bh;
2938 
2939 			/* save actual number of indexes since this
2940 			 * number is changed at the next iteration */
2941 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2942 			i++;
2943 		} else {
2944 			/* we finished processing this index, go up */
2945 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2946 				/* index is empty, remove it;
2947 				 * handle must be already prepared by the
2948 				 * truncatei_leaf() */
2949 				err = ext4_ext_rm_idx(handle, inode, path, i);
2950 			}
2951 			/* root level has p_bh == NULL, brelse() eats this */
2952 			brelse(path[i].p_bh);
2953 			path[i].p_bh = NULL;
2954 			i--;
2955 			ext_debug("return to level %d\n", i);
2956 		}
2957 	}
2958 
2959 	trace_ext4_ext_remove_space_done(inode, start, end, depth,
2960 			partial_cluster, path->p_hdr->eh_entries);
2961 
2962 	/* If we still have something in the partial cluster and we have removed
2963 	 * even the first extent, then we should free the blocks in the partial
2964 	 * cluster as well. */
2965 	if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2966 		int flags = get_default_free_blocks_flags(inode);
2967 
2968 		ext4_free_blocks(handle, inode, NULL,
2969 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2970 				 EXT4_SB(sb)->s_cluster_ratio, flags);
2971 		partial_cluster = 0;
2972 	}
2973 
2974 	/* TODO: flexible tree reduction should be here */
2975 	if (path->p_hdr->eh_entries == 0) {
2976 		/*
2977 		 * truncate to zero freed all the tree,
2978 		 * so we need to correct eh_depth
2979 		 */
2980 		err = ext4_ext_get_access(handle, inode, path);
2981 		if (err == 0) {
2982 			ext_inode_hdr(inode)->eh_depth = 0;
2983 			ext_inode_hdr(inode)->eh_max =
2984 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2985 			err = ext4_ext_dirty(handle, inode, path);
2986 		}
2987 	}
2988 out:
2989 	ext4_ext_drop_refs(path);
2990 	kfree(path);
2991 	if (err == -EAGAIN) {
2992 		path = NULL;
2993 		goto again;
2994 	}
2995 	ext4_journal_stop(handle);
2996 
2997 	return err;
2998 }
2999 
3000 /*
3001  * called at mount time
3002  */
3003 void ext4_ext_init(struct super_block *sb)
3004 {
3005 	/*
3006 	 * possible initialization would be here
3007 	 */
3008 
3009 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
3010 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3011 		printk(KERN_INFO "EXT4-fs: file extents enabled"
3012 #ifdef AGGRESSIVE_TEST
3013 		       ", aggressive tests"
3014 #endif
3015 #ifdef CHECK_BINSEARCH
3016 		       ", check binsearch"
3017 #endif
3018 #ifdef EXTENTS_STATS
3019 		       ", stats"
3020 #endif
3021 		       "\n");
3022 #endif
3023 #ifdef EXTENTS_STATS
3024 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3025 		EXT4_SB(sb)->s_ext_min = 1 << 30;
3026 		EXT4_SB(sb)->s_ext_max = 0;
3027 #endif
3028 	}
3029 }
3030 
3031 /*
3032  * called at umount time
3033  */
3034 void ext4_ext_release(struct super_block *sb)
3035 {
3036 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3037 		return;
3038 
3039 #ifdef EXTENTS_STATS
3040 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3041 		struct ext4_sb_info *sbi = EXT4_SB(sb);
3042 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3043 			sbi->s_ext_blocks, sbi->s_ext_extents,
3044 			sbi->s_ext_blocks / sbi->s_ext_extents);
3045 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3046 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3047 	}
3048 #endif
3049 }
3050 
3051 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3052 {
3053 	ext4_lblk_t  ee_block;
3054 	ext4_fsblk_t ee_pblock;
3055 	unsigned int ee_len;
3056 
3057 	ee_block  = le32_to_cpu(ex->ee_block);
3058 	ee_len    = ext4_ext_get_actual_len(ex);
3059 	ee_pblock = ext4_ext_pblock(ex);
3060 
3061 	if (ee_len == 0)
3062 		return 0;
3063 
3064 	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3065 				     EXTENT_STATUS_WRITTEN);
3066 }
3067 
3068 /* FIXME!! we need to try to merge to left or right after zero-out  */
3069 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3070 {
3071 	ext4_fsblk_t ee_pblock;
3072 	unsigned int ee_len;
3073 	int ret;
3074 
3075 	ee_len    = ext4_ext_get_actual_len(ex);
3076 	ee_pblock = ext4_ext_pblock(ex);
3077 
3078 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3079 	if (ret > 0)
3080 		ret = 0;
3081 
3082 	return ret;
3083 }
3084 
3085 /*
3086  * ext4_split_extent_at() splits an extent at given block.
3087  *
3088  * @handle: the journal handle
3089  * @inode: the file inode
3090  * @path: the path to the extent
3091  * @split: the logical block where the extent is splitted.
3092  * @split_flags: indicates if the extent could be zeroout if split fails, and
3093  *		 the states(init or uninit) of new extents.
3094  * @flags: flags used to insert new extent to extent tree.
3095  *
3096  *
3097  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3098  * of which are deterimined by split_flag.
3099  *
3100  * There are two cases:
3101  *  a> the extent are splitted into two extent.
3102  *  b> split is not needed, and just mark the extent.
3103  *
3104  * return 0 on success.
3105  */
3106 static int ext4_split_extent_at(handle_t *handle,
3107 			     struct inode *inode,
3108 			     struct ext4_ext_path *path,
3109 			     ext4_lblk_t split,
3110 			     int split_flag,
3111 			     int flags)
3112 {
3113 	ext4_fsblk_t newblock;
3114 	ext4_lblk_t ee_block;
3115 	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3116 	struct ext4_extent *ex2 = NULL;
3117 	unsigned int ee_len, depth;
3118 	int err = 0;
3119 
3120 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3121 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3122 
3123 	ext_debug("ext4_split_extents_at: inode %lu, logical"
3124 		"block %llu\n", inode->i_ino, (unsigned long long)split);
3125 
3126 	ext4_ext_show_leaf(inode, path);
3127 
3128 	depth = ext_depth(inode);
3129 	ex = path[depth].p_ext;
3130 	ee_block = le32_to_cpu(ex->ee_block);
3131 	ee_len = ext4_ext_get_actual_len(ex);
3132 	newblock = split - ee_block + ext4_ext_pblock(ex);
3133 
3134 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3135 	BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3136 	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3137 			     EXT4_EXT_MARK_UNINIT1 |
3138 			     EXT4_EXT_MARK_UNINIT2));
3139 
3140 	err = ext4_ext_get_access(handle, inode, path + depth);
3141 	if (err)
3142 		goto out;
3143 
3144 	if (split == ee_block) {
3145 		/*
3146 		 * case b: block @split is the block that the extent begins with
3147 		 * then we just change the state of the extent, and splitting
3148 		 * is not needed.
3149 		 */
3150 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3151 			ext4_ext_mark_uninitialized(ex);
3152 		else
3153 			ext4_ext_mark_initialized(ex);
3154 
3155 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3156 			ext4_ext_try_to_merge(handle, inode, path, ex);
3157 
3158 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3159 		goto out;
3160 	}
3161 
3162 	/* case a */
3163 	memcpy(&orig_ex, ex, sizeof(orig_ex));
3164 	ex->ee_len = cpu_to_le16(split - ee_block);
3165 	if (split_flag & EXT4_EXT_MARK_UNINIT1)
3166 		ext4_ext_mark_uninitialized(ex);
3167 
3168 	/*
3169 	 * path may lead to new leaf, not to original leaf any more
3170 	 * after ext4_ext_insert_extent() returns,
3171 	 */
3172 	err = ext4_ext_dirty(handle, inode, path + depth);
3173 	if (err)
3174 		goto fix_extent_len;
3175 
3176 	ex2 = &newex;
3177 	ex2->ee_block = cpu_to_le32(split);
3178 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3179 	ext4_ext_store_pblock(ex2, newblock);
3180 	if (split_flag & EXT4_EXT_MARK_UNINIT2)
3181 		ext4_ext_mark_uninitialized(ex2);
3182 
3183 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3184 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3185 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3186 			if (split_flag & EXT4_EXT_DATA_VALID1) {
3187 				err = ext4_ext_zeroout(inode, ex2);
3188 				zero_ex.ee_block = ex2->ee_block;
3189 				zero_ex.ee_len = cpu_to_le16(
3190 						ext4_ext_get_actual_len(ex2));
3191 				ext4_ext_store_pblock(&zero_ex,
3192 						      ext4_ext_pblock(ex2));
3193 			} else {
3194 				err = ext4_ext_zeroout(inode, ex);
3195 				zero_ex.ee_block = ex->ee_block;
3196 				zero_ex.ee_len = cpu_to_le16(
3197 						ext4_ext_get_actual_len(ex));
3198 				ext4_ext_store_pblock(&zero_ex,
3199 						      ext4_ext_pblock(ex));
3200 			}
3201 		} else {
3202 			err = ext4_ext_zeroout(inode, &orig_ex);
3203 			zero_ex.ee_block = orig_ex.ee_block;
3204 			zero_ex.ee_len = cpu_to_le16(
3205 						ext4_ext_get_actual_len(&orig_ex));
3206 			ext4_ext_store_pblock(&zero_ex,
3207 					      ext4_ext_pblock(&orig_ex));
3208 		}
3209 
3210 		if (err)
3211 			goto fix_extent_len;
3212 		/* update the extent length and mark as initialized */
3213 		ex->ee_len = cpu_to_le16(ee_len);
3214 		ext4_ext_try_to_merge(handle, inode, path, ex);
3215 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3216 		if (err)
3217 			goto fix_extent_len;
3218 
3219 		/* update extent status tree */
3220 		err = ext4_zeroout_es(inode, &zero_ex);
3221 
3222 		goto out;
3223 	} else if (err)
3224 		goto fix_extent_len;
3225 
3226 out:
3227 	ext4_ext_show_leaf(inode, path);
3228 	return err;
3229 
3230 fix_extent_len:
3231 	ex->ee_len = orig_ex.ee_len;
3232 	ext4_ext_dirty(handle, inode, path + depth);
3233 	return err;
3234 }
3235 
3236 /*
3237  * ext4_split_extents() splits an extent and mark extent which is covered
3238  * by @map as split_flags indicates
3239  *
3240  * It may result in splitting the extent into multiple extents (up to three)
3241  * There are three possibilities:
3242  *   a> There is no split required
3243  *   b> Splits in two extents: Split is happening at either end of the extent
3244  *   c> Splits in three extents: Somone is splitting in middle of the extent
3245  *
3246  */
3247 static int ext4_split_extent(handle_t *handle,
3248 			      struct inode *inode,
3249 			      struct ext4_ext_path *path,
3250 			      struct ext4_map_blocks *map,
3251 			      int split_flag,
3252 			      int flags)
3253 {
3254 	ext4_lblk_t ee_block;
3255 	struct ext4_extent *ex;
3256 	unsigned int ee_len, depth;
3257 	int err = 0;
3258 	int uninitialized;
3259 	int split_flag1, flags1;
3260 	int allocated = map->m_len;
3261 
3262 	depth = ext_depth(inode);
3263 	ex = path[depth].p_ext;
3264 	ee_block = le32_to_cpu(ex->ee_block);
3265 	ee_len = ext4_ext_get_actual_len(ex);
3266 	uninitialized = ext4_ext_is_uninitialized(ex);
3267 
3268 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3269 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3270 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3271 		if (uninitialized)
3272 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3273 				       EXT4_EXT_MARK_UNINIT2;
3274 		if (split_flag & EXT4_EXT_DATA_VALID2)
3275 			split_flag1 |= EXT4_EXT_DATA_VALID1;
3276 		err = ext4_split_extent_at(handle, inode, path,
3277 				map->m_lblk + map->m_len, split_flag1, flags1);
3278 		if (err)
3279 			goto out;
3280 	} else {
3281 		allocated = ee_len - (map->m_lblk - ee_block);
3282 	}
3283 	/*
3284 	 * Update path is required because previous ext4_split_extent_at() may
3285 	 * result in split of original leaf or extent zeroout.
3286 	 */
3287 	ext4_ext_drop_refs(path);
3288 	path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3289 	if (IS_ERR(path))
3290 		return PTR_ERR(path);
3291 	depth = ext_depth(inode);
3292 	ex = path[depth].p_ext;
3293 	uninitialized = ext4_ext_is_uninitialized(ex);
3294 	split_flag1 = 0;
3295 
3296 	if (map->m_lblk >= ee_block) {
3297 		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3298 		if (uninitialized) {
3299 			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3300 			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3301 						     EXT4_EXT_MARK_UNINIT2);
3302 		}
3303 		err = ext4_split_extent_at(handle, inode, path,
3304 				map->m_lblk, split_flag1, flags);
3305 		if (err)
3306 			goto out;
3307 	}
3308 
3309 	ext4_ext_show_leaf(inode, path);
3310 out:
3311 	return err ? err : allocated;
3312 }
3313 
3314 /*
3315  * This function is called by ext4_ext_map_blocks() if someone tries to write
3316  * to an uninitialized extent. It may result in splitting the uninitialized
3317  * extent into multiple extents (up to three - one initialized and two
3318  * uninitialized).
3319  * There are three possibilities:
3320  *   a> There is no split required: Entire extent should be initialized
3321  *   b> Splits in two extents: Write is happening at either end of the extent
3322  *   c> Splits in three extents: Somone is writing in middle of the extent
3323  *
3324  * Pre-conditions:
3325  *  - The extent pointed to by 'path' is uninitialized.
3326  *  - The extent pointed to by 'path' contains a superset
3327  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3328  *
3329  * Post-conditions on success:
3330  *  - the returned value is the number of blocks beyond map->l_lblk
3331  *    that are allocated and initialized.
3332  *    It is guaranteed to be >= map->m_len.
3333  */
3334 static int ext4_ext_convert_to_initialized(handle_t *handle,
3335 					   struct inode *inode,
3336 					   struct ext4_map_blocks *map,
3337 					   struct ext4_ext_path *path,
3338 					   int flags)
3339 {
3340 	struct ext4_sb_info *sbi;
3341 	struct ext4_extent_header *eh;
3342 	struct ext4_map_blocks split_map;
3343 	struct ext4_extent zero_ex;
3344 	struct ext4_extent *ex, *abut_ex;
3345 	ext4_lblk_t ee_block, eof_block;
3346 	unsigned int ee_len, depth, map_len = map->m_len;
3347 	int allocated = 0, max_zeroout = 0;
3348 	int err = 0;
3349 	int split_flag = 0;
3350 
3351 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3352 		"block %llu, max_blocks %u\n", inode->i_ino,
3353 		(unsigned long long)map->m_lblk, map_len);
3354 
3355 	sbi = EXT4_SB(inode->i_sb);
3356 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3357 		inode->i_sb->s_blocksize_bits;
3358 	if (eof_block < map->m_lblk + map_len)
3359 		eof_block = map->m_lblk + map_len;
3360 
3361 	depth = ext_depth(inode);
3362 	eh = path[depth].p_hdr;
3363 	ex = path[depth].p_ext;
3364 	ee_block = le32_to_cpu(ex->ee_block);
3365 	ee_len = ext4_ext_get_actual_len(ex);
3366 	zero_ex.ee_len = 0;
3367 
3368 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3369 
3370 	/* Pre-conditions */
3371 	BUG_ON(!ext4_ext_is_uninitialized(ex));
3372 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3373 
3374 	/*
3375 	 * Attempt to transfer newly initialized blocks from the currently
3376 	 * uninitialized extent to its neighbor. This is much cheaper
3377 	 * than an insertion followed by a merge as those involve costly
3378 	 * memmove() calls. Transferring to the left is the common case in
3379 	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3380 	 * followed by append writes.
3381 	 *
3382 	 * Limitations of the current logic:
3383 	 *  - L1: we do not deal with writes covering the whole extent.
3384 	 *    This would require removing the extent if the transfer
3385 	 *    is possible.
3386 	 *  - L2: we only attempt to merge with an extent stored in the
3387 	 *    same extent tree node.
3388 	 */
3389 	if ((map->m_lblk == ee_block) &&
3390 		/* See if we can merge left */
3391 		(map_len < ee_len) &&		/*L1*/
3392 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3393 		ext4_lblk_t prev_lblk;
3394 		ext4_fsblk_t prev_pblk, ee_pblk;
3395 		unsigned int prev_len;
3396 
3397 		abut_ex = ex - 1;
3398 		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3399 		prev_len = ext4_ext_get_actual_len(abut_ex);
3400 		prev_pblk = ext4_ext_pblock(abut_ex);
3401 		ee_pblk = ext4_ext_pblock(ex);
3402 
3403 		/*
3404 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3405 		 * upon those conditions:
3406 		 * - C1: abut_ex is initialized,
3407 		 * - C2: abut_ex is logically abutting ex,
3408 		 * - C3: abut_ex is physically abutting ex,
3409 		 * - C4: abut_ex can receive the additional blocks without
3410 		 *   overflowing the (initialized) length limit.
3411 		 */
3412 		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3413 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3414 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3415 			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3416 			err = ext4_ext_get_access(handle, inode, path + depth);
3417 			if (err)
3418 				goto out;
3419 
3420 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3421 				map, ex, abut_ex);
3422 
3423 			/* Shift the start of ex by 'map_len' blocks */
3424 			ex->ee_block = cpu_to_le32(ee_block + map_len);
3425 			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3426 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3427 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3428 
3429 			/* Extend abut_ex by 'map_len' blocks */
3430 			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3431 
3432 			/* Result: number of initialized blocks past m_lblk */
3433 			allocated = map_len;
3434 		}
3435 	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3436 		   (map_len < ee_len) &&	/*L1*/
3437 		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3438 		/* See if we can merge right */
3439 		ext4_lblk_t next_lblk;
3440 		ext4_fsblk_t next_pblk, ee_pblk;
3441 		unsigned int next_len;
3442 
3443 		abut_ex = ex + 1;
3444 		next_lblk = le32_to_cpu(abut_ex->ee_block);
3445 		next_len = ext4_ext_get_actual_len(abut_ex);
3446 		next_pblk = ext4_ext_pblock(abut_ex);
3447 		ee_pblk = ext4_ext_pblock(ex);
3448 
3449 		/*
3450 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3451 		 * upon those conditions:
3452 		 * - C1: abut_ex is initialized,
3453 		 * - C2: abut_ex is logically abutting ex,
3454 		 * - C3: abut_ex is physically abutting ex,
3455 		 * - C4: abut_ex can receive the additional blocks without
3456 		 *   overflowing the (initialized) length limit.
3457 		 */
3458 		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3459 		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3460 		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3461 		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3462 			err = ext4_ext_get_access(handle, inode, path + depth);
3463 			if (err)
3464 				goto out;
3465 
3466 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3467 				map, ex, abut_ex);
3468 
3469 			/* Shift the start of abut_ex by 'map_len' blocks */
3470 			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3471 			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3472 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3473 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3474 
3475 			/* Extend abut_ex by 'map_len' blocks */
3476 			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3477 
3478 			/* Result: number of initialized blocks past m_lblk */
3479 			allocated = map_len;
3480 		}
3481 	}
3482 	if (allocated) {
3483 		/* Mark the block containing both extents as dirty */
3484 		ext4_ext_dirty(handle, inode, path + depth);
3485 
3486 		/* Update path to point to the right extent */
3487 		path[depth].p_ext = abut_ex;
3488 		goto out;
3489 	} else
3490 		allocated = ee_len - (map->m_lblk - ee_block);
3491 
3492 	WARN_ON(map->m_lblk < ee_block);
3493 	/*
3494 	 * It is safe to convert extent to initialized via explicit
3495 	 * zeroout only if extent is fully insde i_size or new_size.
3496 	 */
3497 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3498 
3499 	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3500 		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3501 			(inode->i_sb->s_blocksize_bits - 10);
3502 
3503 	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3504 	if (max_zeroout && (ee_len <= max_zeroout)) {
3505 		err = ext4_ext_zeroout(inode, ex);
3506 		if (err)
3507 			goto out;
3508 		zero_ex.ee_block = ex->ee_block;
3509 		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3510 		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3511 
3512 		err = ext4_ext_get_access(handle, inode, path + depth);
3513 		if (err)
3514 			goto out;
3515 		ext4_ext_mark_initialized(ex);
3516 		ext4_ext_try_to_merge(handle, inode, path, ex);
3517 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3518 		goto out;
3519 	}
3520 
3521 	/*
3522 	 * four cases:
3523 	 * 1. split the extent into three extents.
3524 	 * 2. split the extent into two extents, zeroout the first half.
3525 	 * 3. split the extent into two extents, zeroout the second half.
3526 	 * 4. split the extent into two extents with out zeroout.
3527 	 */
3528 	split_map.m_lblk = map->m_lblk;
3529 	split_map.m_len = map->m_len;
3530 
3531 	if (max_zeroout && (allocated > map->m_len)) {
3532 		if (allocated <= max_zeroout) {
3533 			/* case 3 */
3534 			zero_ex.ee_block =
3535 					 cpu_to_le32(map->m_lblk);
3536 			zero_ex.ee_len = cpu_to_le16(allocated);
3537 			ext4_ext_store_pblock(&zero_ex,
3538 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3539 			err = ext4_ext_zeroout(inode, &zero_ex);
3540 			if (err)
3541 				goto out;
3542 			split_map.m_lblk = map->m_lblk;
3543 			split_map.m_len = allocated;
3544 		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3545 			/* case 2 */
3546 			if (map->m_lblk != ee_block) {
3547 				zero_ex.ee_block = ex->ee_block;
3548 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3549 							ee_block);
3550 				ext4_ext_store_pblock(&zero_ex,
3551 						      ext4_ext_pblock(ex));
3552 				err = ext4_ext_zeroout(inode, &zero_ex);
3553 				if (err)
3554 					goto out;
3555 			}
3556 
3557 			split_map.m_lblk = ee_block;
3558 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3559 			allocated = map->m_len;
3560 		}
3561 	}
3562 
3563 	allocated = ext4_split_extent(handle, inode, path,
3564 				      &split_map, split_flag, flags);
3565 	if (allocated < 0)
3566 		err = allocated;
3567 
3568 out:
3569 	/* If we have gotten a failure, don't zero out status tree */
3570 	if (!err)
3571 		err = ext4_zeroout_es(inode, &zero_ex);
3572 	return err ? err : allocated;
3573 }
3574 
3575 /*
3576  * This function is called by ext4_ext_map_blocks() from
3577  * ext4_get_blocks_dio_write() when DIO to write
3578  * to an uninitialized extent.
3579  *
3580  * Writing to an uninitialized extent may result in splitting the uninitialized
3581  * extent into multiple initialized/uninitialized extents (up to three)
3582  * There are three possibilities:
3583  *   a> There is no split required: Entire extent should be uninitialized
3584  *   b> Splits in two extents: Write is happening at either end of the extent
3585  *   c> Splits in three extents: Somone is writing in middle of the extent
3586  *
3587  * One of more index blocks maybe needed if the extent tree grow after
3588  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3589  * complete, we need to split the uninitialized extent before DIO submit
3590  * the IO. The uninitialized extent called at this time will be split
3591  * into three uninitialized extent(at most). After IO complete, the part
3592  * being filled will be convert to initialized by the end_io callback function
3593  * via ext4_convert_unwritten_extents().
3594  *
3595  * Returns the size of uninitialized extent to be written on success.
3596  */
3597 static int ext4_split_unwritten_extents(handle_t *handle,
3598 					struct inode *inode,
3599 					struct ext4_map_blocks *map,
3600 					struct ext4_ext_path *path,
3601 					int flags)
3602 {
3603 	ext4_lblk_t eof_block;
3604 	ext4_lblk_t ee_block;
3605 	struct ext4_extent *ex;
3606 	unsigned int ee_len;
3607 	int split_flag = 0, depth;
3608 
3609 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3610 		"block %llu, max_blocks %u\n", inode->i_ino,
3611 		(unsigned long long)map->m_lblk, map->m_len);
3612 
3613 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3614 		inode->i_sb->s_blocksize_bits;
3615 	if (eof_block < map->m_lblk + map->m_len)
3616 		eof_block = map->m_lblk + map->m_len;
3617 	/*
3618 	 * It is safe to convert extent to initialized via explicit
3619 	 * zeroout only if extent is fully insde i_size or new_size.
3620 	 */
3621 	depth = ext_depth(inode);
3622 	ex = path[depth].p_ext;
3623 	ee_block = le32_to_cpu(ex->ee_block);
3624 	ee_len = ext4_ext_get_actual_len(ex);
3625 
3626 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3627 	split_flag |= EXT4_EXT_MARK_UNINIT2;
3628 	if (flags & EXT4_GET_BLOCKS_CONVERT)
3629 		split_flag |= EXT4_EXT_DATA_VALID2;
3630 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3631 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3632 }
3633 
3634 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3635 						struct inode *inode,
3636 						struct ext4_map_blocks *map,
3637 						struct ext4_ext_path *path)
3638 {
3639 	struct ext4_extent *ex;
3640 	ext4_lblk_t ee_block;
3641 	unsigned int ee_len;
3642 	int depth;
3643 	int err = 0;
3644 
3645 	depth = ext_depth(inode);
3646 	ex = path[depth].p_ext;
3647 	ee_block = le32_to_cpu(ex->ee_block);
3648 	ee_len = ext4_ext_get_actual_len(ex);
3649 
3650 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3651 		"block %llu, max_blocks %u\n", inode->i_ino,
3652 		  (unsigned long long)ee_block, ee_len);
3653 
3654 	/* If extent is larger than requested it is a clear sign that we still
3655 	 * have some extent state machine issues left. So extent_split is still
3656 	 * required.
3657 	 * TODO: Once all related issues will be fixed this situation should be
3658 	 * illegal.
3659 	 */
3660 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3661 #ifdef EXT4_DEBUG
3662 		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3663 			     " len %u; IO logical block %llu, len %u\n",
3664 			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3665 			     (unsigned long long)map->m_lblk, map->m_len);
3666 #endif
3667 		err = ext4_split_unwritten_extents(handle, inode, map, path,
3668 						   EXT4_GET_BLOCKS_CONVERT);
3669 		if (err < 0)
3670 			goto out;
3671 		ext4_ext_drop_refs(path);
3672 		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3673 		if (IS_ERR(path)) {
3674 			err = PTR_ERR(path);
3675 			goto out;
3676 		}
3677 		depth = ext_depth(inode);
3678 		ex = path[depth].p_ext;
3679 	}
3680 
3681 	err = ext4_ext_get_access(handle, inode, path + depth);
3682 	if (err)
3683 		goto out;
3684 	/* first mark the extent as initialized */
3685 	ext4_ext_mark_initialized(ex);
3686 
3687 	/* note: ext4_ext_correct_indexes() isn't needed here because
3688 	 * borders are not changed
3689 	 */
3690 	ext4_ext_try_to_merge(handle, inode, path, ex);
3691 
3692 	/* Mark modified extent as dirty */
3693 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3694 out:
3695 	ext4_ext_show_leaf(inode, path);
3696 	return err;
3697 }
3698 
3699 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3700 			sector_t block, int count)
3701 {
3702 	int i;
3703 	for (i = 0; i < count; i++)
3704                 unmap_underlying_metadata(bdev, block + i);
3705 }
3706 
3707 /*
3708  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3709  */
3710 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3711 			      ext4_lblk_t lblk,
3712 			      struct ext4_ext_path *path,
3713 			      unsigned int len)
3714 {
3715 	int i, depth;
3716 	struct ext4_extent_header *eh;
3717 	struct ext4_extent *last_ex;
3718 
3719 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3720 		return 0;
3721 
3722 	depth = ext_depth(inode);
3723 	eh = path[depth].p_hdr;
3724 
3725 	/*
3726 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3727 	 * do not care for this case anymore. Simply remove the flag
3728 	 * if there are no extents.
3729 	 */
3730 	if (unlikely(!eh->eh_entries))
3731 		goto out;
3732 	last_ex = EXT_LAST_EXTENT(eh);
3733 	/*
3734 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3735 	 * last block in the last extent in the file.  We test this by
3736 	 * first checking to see if the caller to
3737 	 * ext4_ext_get_blocks() was interested in the last block (or
3738 	 * a block beyond the last block) in the current extent.  If
3739 	 * this turns out to be false, we can bail out from this
3740 	 * function immediately.
3741 	 */
3742 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3743 	    ext4_ext_get_actual_len(last_ex))
3744 		return 0;
3745 	/*
3746 	 * If the caller does appear to be planning to write at or
3747 	 * beyond the end of the current extent, we then test to see
3748 	 * if the current extent is the last extent in the file, by
3749 	 * checking to make sure it was reached via the rightmost node
3750 	 * at each level of the tree.
3751 	 */
3752 	for (i = depth-1; i >= 0; i--)
3753 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3754 			return 0;
3755 out:
3756 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3757 	return ext4_mark_inode_dirty(handle, inode);
3758 }
3759 
3760 /**
3761  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3762  *
3763  * Return 1 if there is a delalloc block in the range, otherwise 0.
3764  */
3765 int ext4_find_delalloc_range(struct inode *inode,
3766 			     ext4_lblk_t lblk_start,
3767 			     ext4_lblk_t lblk_end)
3768 {
3769 	struct extent_status es;
3770 
3771 	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3772 	if (es.es_len == 0)
3773 		return 0; /* there is no delay extent in this tree */
3774 	else if (es.es_lblk <= lblk_start &&
3775 		 lblk_start < es.es_lblk + es.es_len)
3776 		return 1;
3777 	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3778 		return 1;
3779 	else
3780 		return 0;
3781 }
3782 
3783 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3784 {
3785 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3786 	ext4_lblk_t lblk_start, lblk_end;
3787 	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3788 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3789 
3790 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3791 }
3792 
3793 /**
3794  * Determines how many complete clusters (out of those specified by the 'map')
3795  * are under delalloc and were reserved quota for.
3796  * This function is called when we are writing out the blocks that were
3797  * originally written with their allocation delayed, but then the space was
3798  * allocated using fallocate() before the delayed allocation could be resolved.
3799  * The cases to look for are:
3800  * ('=' indicated delayed allocated blocks
3801  *  '-' indicates non-delayed allocated blocks)
3802  * (a) partial clusters towards beginning and/or end outside of allocated range
3803  *     are not delalloc'ed.
3804  *	Ex:
3805  *	|----c---=|====c====|====c====|===-c----|
3806  *	         |++++++ allocated ++++++|
3807  *	==> 4 complete clusters in above example
3808  *
3809  * (b) partial cluster (outside of allocated range) towards either end is
3810  *     marked for delayed allocation. In this case, we will exclude that
3811  *     cluster.
3812  *	Ex:
3813  *	|----====c========|========c========|
3814  *	     |++++++ allocated ++++++|
3815  *	==> 1 complete clusters in above example
3816  *
3817  *	Ex:
3818  *	|================c================|
3819  *            |++++++ allocated ++++++|
3820  *	==> 0 complete clusters in above example
3821  *
3822  * The ext4_da_update_reserve_space will be called only if we
3823  * determine here that there were some "entire" clusters that span
3824  * this 'allocated' range.
3825  * In the non-bigalloc case, this function will just end up returning num_blks
3826  * without ever calling ext4_find_delalloc_range.
3827  */
3828 static unsigned int
3829 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3830 			   unsigned int num_blks)
3831 {
3832 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3833 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3834 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3835 	unsigned int allocated_clusters = 0;
3836 
3837 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3838 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3839 
3840 	/* max possible clusters for this allocation */
3841 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3842 
3843 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3844 
3845 	/* Check towards left side */
3846 	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3847 	if (c_offset) {
3848 		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3849 		lblk_to = lblk_from + c_offset - 1;
3850 
3851 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3852 			allocated_clusters--;
3853 	}
3854 
3855 	/* Now check towards right. */
3856 	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3857 	if (allocated_clusters && c_offset) {
3858 		lblk_from = lblk_start + num_blks;
3859 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3860 
3861 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3862 			allocated_clusters--;
3863 	}
3864 
3865 	return allocated_clusters;
3866 }
3867 
3868 static int
3869 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3870 			struct ext4_map_blocks *map,
3871 			struct ext4_ext_path *path, int flags,
3872 			unsigned int allocated, ext4_fsblk_t newblock)
3873 {
3874 	int ret = 0;
3875 	int err = 0;
3876 	ext4_io_end_t *io = ext4_inode_aio(inode);
3877 
3878 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3879 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3880 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3881 		  flags, allocated);
3882 	ext4_ext_show_leaf(inode, path);
3883 
3884 	/*
3885 	 * When writing into uninitialized space, we should not fail to
3886 	 * allocate metadata blocks for the new extent block if needed.
3887 	 */
3888 	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3889 
3890 	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3891 						    allocated, newblock);
3892 
3893 	/* get_block() before submit the IO, split the extent */
3894 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3895 		ret = ext4_split_unwritten_extents(handle, inode, map,
3896 						   path, flags);
3897 		if (ret <= 0)
3898 			goto out;
3899 		/*
3900 		 * Flag the inode(non aio case) or end_io struct (aio case)
3901 		 * that this IO needs to conversion to written when IO is
3902 		 * completed
3903 		 */
3904 		if (io)
3905 			ext4_set_io_unwritten_flag(inode, io);
3906 		else
3907 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3908 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3909 		if (ext4_should_dioread_nolock(inode))
3910 			map->m_flags |= EXT4_MAP_UNINIT;
3911 		goto out;
3912 	}
3913 	/* IO end_io complete, convert the filled extent to written */
3914 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3915 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3916 							path);
3917 		if (ret >= 0) {
3918 			ext4_update_inode_fsync_trans(handle, inode, 1);
3919 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3920 						 path, map->m_len);
3921 		} else
3922 			err = ret;
3923 		map->m_flags |= EXT4_MAP_MAPPED;
3924 		if (allocated > map->m_len)
3925 			allocated = map->m_len;
3926 		map->m_len = allocated;
3927 		goto out2;
3928 	}
3929 	/* buffered IO case */
3930 	/*
3931 	 * repeat fallocate creation request
3932 	 * we already have an unwritten extent
3933 	 */
3934 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3935 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3936 		goto map_out;
3937 	}
3938 
3939 	/* buffered READ or buffered write_begin() lookup */
3940 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3941 		/*
3942 		 * We have blocks reserved already.  We
3943 		 * return allocated blocks so that delalloc
3944 		 * won't do block reservation for us.  But
3945 		 * the buffer head will be unmapped so that
3946 		 * a read from the block returns 0s.
3947 		 */
3948 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3949 		goto out1;
3950 	}
3951 
3952 	/* buffered write, writepage time, convert*/
3953 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
3954 	if (ret >= 0)
3955 		ext4_update_inode_fsync_trans(handle, inode, 1);
3956 out:
3957 	if (ret <= 0) {
3958 		err = ret;
3959 		goto out2;
3960 	} else
3961 		allocated = ret;
3962 	map->m_flags |= EXT4_MAP_NEW;
3963 	/*
3964 	 * if we allocated more blocks than requested
3965 	 * we need to make sure we unmap the extra block
3966 	 * allocated. The actual needed block will get
3967 	 * unmapped later when we find the buffer_head marked
3968 	 * new.
3969 	 */
3970 	if (allocated > map->m_len) {
3971 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3972 					newblock + map->m_len,
3973 					allocated - map->m_len);
3974 		allocated = map->m_len;
3975 	}
3976 	map->m_len = allocated;
3977 
3978 	/*
3979 	 * If we have done fallocate with the offset that is already
3980 	 * delayed allocated, we would have block reservation
3981 	 * and quota reservation done in the delayed write path.
3982 	 * But fallocate would have already updated quota and block
3983 	 * count for this offset. So cancel these reservation
3984 	 */
3985 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3986 		unsigned int reserved_clusters;
3987 		reserved_clusters = get_reserved_cluster_alloc(inode,
3988 				map->m_lblk, map->m_len);
3989 		if (reserved_clusters)
3990 			ext4_da_update_reserve_space(inode,
3991 						     reserved_clusters,
3992 						     0);
3993 	}
3994 
3995 map_out:
3996 	map->m_flags |= EXT4_MAP_MAPPED;
3997 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3998 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3999 					 map->m_len);
4000 		if (err < 0)
4001 			goto out2;
4002 	}
4003 out1:
4004 	if (allocated > map->m_len)
4005 		allocated = map->m_len;
4006 	ext4_ext_show_leaf(inode, path);
4007 	map->m_pblk = newblock;
4008 	map->m_len = allocated;
4009 out2:
4010 	if (path) {
4011 		ext4_ext_drop_refs(path);
4012 		kfree(path);
4013 	}
4014 	return err ? err : allocated;
4015 }
4016 
4017 /*
4018  * get_implied_cluster_alloc - check to see if the requested
4019  * allocation (in the map structure) overlaps with a cluster already
4020  * allocated in an extent.
4021  *	@sb	The filesystem superblock structure
4022  *	@map	The requested lblk->pblk mapping
4023  *	@ex	The extent structure which might contain an implied
4024  *			cluster allocation
4025  *
4026  * This function is called by ext4_ext_map_blocks() after we failed to
4027  * find blocks that were already in the inode's extent tree.  Hence,
4028  * we know that the beginning of the requested region cannot overlap
4029  * the extent from the inode's extent tree.  There are three cases we
4030  * want to catch.  The first is this case:
4031  *
4032  *		 |--- cluster # N--|
4033  *    |--- extent ---|	|---- requested region ---|
4034  *			|==========|
4035  *
4036  * The second case that we need to test for is this one:
4037  *
4038  *   |--------- cluster # N ----------------|
4039  *	   |--- requested region --|   |------- extent ----|
4040  *	   |=======================|
4041  *
4042  * The third case is when the requested region lies between two extents
4043  * within the same cluster:
4044  *          |------------- cluster # N-------------|
4045  * |----- ex -----|                  |---- ex_right ----|
4046  *                  |------ requested region ------|
4047  *                  |================|
4048  *
4049  * In each of the above cases, we need to set the map->m_pblk and
4050  * map->m_len so it corresponds to the return the extent labelled as
4051  * "|====|" from cluster #N, since it is already in use for data in
4052  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4053  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4054  * as a new "allocated" block region.  Otherwise, we will return 0 and
4055  * ext4_ext_map_blocks() will then allocate one or more new clusters
4056  * by calling ext4_mb_new_blocks().
4057  */
4058 static int get_implied_cluster_alloc(struct super_block *sb,
4059 				     struct ext4_map_blocks *map,
4060 				     struct ext4_extent *ex,
4061 				     struct ext4_ext_path *path)
4062 {
4063 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4064 	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4065 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4066 	ext4_lblk_t rr_cluster_start;
4067 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4068 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4069 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4070 
4071 	/* The extent passed in that we are trying to match */
4072 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4073 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4074 
4075 	/* The requested region passed into ext4_map_blocks() */
4076 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4077 
4078 	if ((rr_cluster_start == ex_cluster_end) ||
4079 	    (rr_cluster_start == ex_cluster_start)) {
4080 		if (rr_cluster_start == ex_cluster_end)
4081 			ee_start += ee_len - 1;
4082 		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
4083 			c_offset;
4084 		map->m_len = min(map->m_len,
4085 				 (unsigned) sbi->s_cluster_ratio - c_offset);
4086 		/*
4087 		 * Check for and handle this case:
4088 		 *
4089 		 *   |--------- cluster # N-------------|
4090 		 *		       |------- extent ----|
4091 		 *	   |--- requested region ---|
4092 		 *	   |===========|
4093 		 */
4094 
4095 		if (map->m_lblk < ee_block)
4096 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4097 
4098 		/*
4099 		 * Check for the case where there is already another allocated
4100 		 * block to the right of 'ex' but before the end of the cluster.
4101 		 *
4102 		 *          |------------- cluster # N-------------|
4103 		 * |----- ex -----|                  |---- ex_right ----|
4104 		 *                  |------ requested region ------|
4105 		 *                  |================|
4106 		 */
4107 		if (map->m_lblk > ee_block) {
4108 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4109 			map->m_len = min(map->m_len, next - map->m_lblk);
4110 		}
4111 
4112 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4113 		return 1;
4114 	}
4115 
4116 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4117 	return 0;
4118 }
4119 
4120 
4121 /*
4122  * Block allocation/map/preallocation routine for extents based files
4123  *
4124  *
4125  * Need to be called with
4126  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4127  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4128  *
4129  * return > 0, number of of blocks already mapped/allocated
4130  *          if create == 0 and these are pre-allocated blocks
4131  *          	buffer head is unmapped
4132  *          otherwise blocks are mapped
4133  *
4134  * return = 0, if plain look up failed (blocks have not been allocated)
4135  *          buffer head is unmapped
4136  *
4137  * return < 0, error case.
4138  */
4139 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4140 			struct ext4_map_blocks *map, int flags)
4141 {
4142 	struct ext4_ext_path *path = NULL;
4143 	struct ext4_extent newex, *ex, *ex2;
4144 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4145 	ext4_fsblk_t newblock = 0;
4146 	int free_on_err = 0, err = 0, depth;
4147 	unsigned int allocated = 0, offset = 0;
4148 	unsigned int allocated_clusters = 0;
4149 	struct ext4_allocation_request ar;
4150 	ext4_io_end_t *io = ext4_inode_aio(inode);
4151 	ext4_lblk_t cluster_offset;
4152 	int set_unwritten = 0;
4153 
4154 	ext_debug("blocks %u/%u requested for inode %lu\n",
4155 		  map->m_lblk, map->m_len, inode->i_ino);
4156 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4157 
4158 	/* find extent for this block */
4159 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4160 	if (IS_ERR(path)) {
4161 		err = PTR_ERR(path);
4162 		path = NULL;
4163 		goto out2;
4164 	}
4165 
4166 	depth = ext_depth(inode);
4167 
4168 	/*
4169 	 * consistent leaf must not be empty;
4170 	 * this situation is possible, though, _during_ tree modification;
4171 	 * this is why assert can't be put in ext4_ext_find_extent()
4172 	 */
4173 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4174 		EXT4_ERROR_INODE(inode, "bad extent address "
4175 				 "lblock: %lu, depth: %d pblock %lld",
4176 				 (unsigned long) map->m_lblk, depth,
4177 				 path[depth].p_block);
4178 		err = -EIO;
4179 		goto out2;
4180 	}
4181 
4182 	ex = path[depth].p_ext;
4183 	if (ex) {
4184 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4185 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4186 		unsigned short ee_len;
4187 
4188 		/*
4189 		 * Uninitialized extents are treated as holes, except that
4190 		 * we split out initialized portions during a write.
4191 		 */
4192 		ee_len = ext4_ext_get_actual_len(ex);
4193 
4194 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4195 
4196 		/* if found extent covers block, simply return it */
4197 		if (in_range(map->m_lblk, ee_block, ee_len)) {
4198 			newblock = map->m_lblk - ee_block + ee_start;
4199 			/* number of remaining blocks in the extent */
4200 			allocated = ee_len - (map->m_lblk - ee_block);
4201 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4202 				  ee_block, ee_len, newblock);
4203 
4204 			if (!ext4_ext_is_uninitialized(ex))
4205 				goto out;
4206 
4207 			allocated = ext4_ext_handle_uninitialized_extents(
4208 				handle, inode, map, path, flags,
4209 				allocated, newblock);
4210 			goto out3;
4211 		}
4212 	}
4213 
4214 	if ((sbi->s_cluster_ratio > 1) &&
4215 	    ext4_find_delalloc_cluster(inode, map->m_lblk))
4216 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4217 
4218 	/*
4219 	 * requested block isn't allocated yet;
4220 	 * we couldn't try to create block if create flag is zero
4221 	 */
4222 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4223 		/*
4224 		 * put just found gap into cache to speed up
4225 		 * subsequent requests
4226 		 */
4227 		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4228 			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4229 		goto out2;
4230 	}
4231 
4232 	/*
4233 	 * Okay, we need to do block allocation.
4234 	 */
4235 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4236 	newex.ee_block = cpu_to_le32(map->m_lblk);
4237 	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4238 
4239 	/*
4240 	 * If we are doing bigalloc, check to see if the extent returned
4241 	 * by ext4_ext_find_extent() implies a cluster we can use.
4242 	 */
4243 	if (cluster_offset && ex &&
4244 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4245 		ar.len = allocated = map->m_len;
4246 		newblock = map->m_pblk;
4247 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4248 		goto got_allocated_blocks;
4249 	}
4250 
4251 	/* find neighbour allocated blocks */
4252 	ar.lleft = map->m_lblk;
4253 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4254 	if (err)
4255 		goto out2;
4256 	ar.lright = map->m_lblk;
4257 	ex2 = NULL;
4258 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4259 	if (err)
4260 		goto out2;
4261 
4262 	/* Check if the extent after searching to the right implies a
4263 	 * cluster we can use. */
4264 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4265 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4266 		ar.len = allocated = map->m_len;
4267 		newblock = map->m_pblk;
4268 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4269 		goto got_allocated_blocks;
4270 	}
4271 
4272 	/*
4273 	 * See if request is beyond maximum number of blocks we can have in
4274 	 * a single extent. For an initialized extent this limit is
4275 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4276 	 * EXT_UNINIT_MAX_LEN.
4277 	 */
4278 	if (map->m_len > EXT_INIT_MAX_LEN &&
4279 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4280 		map->m_len = EXT_INIT_MAX_LEN;
4281 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4282 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4283 		map->m_len = EXT_UNINIT_MAX_LEN;
4284 
4285 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4286 	newex.ee_len = cpu_to_le16(map->m_len);
4287 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4288 	if (err)
4289 		allocated = ext4_ext_get_actual_len(&newex);
4290 	else
4291 		allocated = map->m_len;
4292 
4293 	/* allocate new block */
4294 	ar.inode = inode;
4295 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4296 	ar.logical = map->m_lblk;
4297 	/*
4298 	 * We calculate the offset from the beginning of the cluster
4299 	 * for the logical block number, since when we allocate a
4300 	 * physical cluster, the physical block should start at the
4301 	 * same offset from the beginning of the cluster.  This is
4302 	 * needed so that future calls to get_implied_cluster_alloc()
4303 	 * work correctly.
4304 	 */
4305 	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4306 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4307 	ar.goal -= offset;
4308 	ar.logical -= offset;
4309 	if (S_ISREG(inode->i_mode))
4310 		ar.flags = EXT4_MB_HINT_DATA;
4311 	else
4312 		/* disable in-core preallocation for non-regular files */
4313 		ar.flags = 0;
4314 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4315 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4316 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4317 	if (!newblock)
4318 		goto out2;
4319 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4320 		  ar.goal, newblock, allocated);
4321 	free_on_err = 1;
4322 	allocated_clusters = ar.len;
4323 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4324 	if (ar.len > allocated)
4325 		ar.len = allocated;
4326 
4327 got_allocated_blocks:
4328 	/* try to insert new extent into found leaf and return */
4329 	ext4_ext_store_pblock(&newex, newblock + offset);
4330 	newex.ee_len = cpu_to_le16(ar.len);
4331 	/* Mark uninitialized */
4332 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4333 		ext4_ext_mark_uninitialized(&newex);
4334 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4335 		/*
4336 		 * io_end structure was created for every IO write to an
4337 		 * uninitialized extent. To avoid unnecessary conversion,
4338 		 * here we flag the IO that really needs the conversion.
4339 		 * For non asycn direct IO case, flag the inode state
4340 		 * that we need to perform conversion when IO is done.
4341 		 */
4342 		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4343 			set_unwritten = 1;
4344 		if (ext4_should_dioread_nolock(inode))
4345 			map->m_flags |= EXT4_MAP_UNINIT;
4346 	}
4347 
4348 	err = 0;
4349 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4350 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4351 					 path, ar.len);
4352 	if (!err)
4353 		err = ext4_ext_insert_extent(handle, inode, path,
4354 					     &newex, flags);
4355 
4356 	if (!err && set_unwritten) {
4357 		if (io)
4358 			ext4_set_io_unwritten_flag(inode, io);
4359 		else
4360 			ext4_set_inode_state(inode,
4361 					     EXT4_STATE_DIO_UNWRITTEN);
4362 	}
4363 
4364 	if (err && free_on_err) {
4365 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4366 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4367 		/* free data blocks we just allocated */
4368 		/* not a good idea to call discard here directly,
4369 		 * but otherwise we'd need to call it every free() */
4370 		ext4_discard_preallocations(inode);
4371 		ext4_free_blocks(handle, inode, NULL, newblock,
4372 				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4373 		goto out2;
4374 	}
4375 
4376 	/* previous routine could use block we allocated */
4377 	newblock = ext4_ext_pblock(&newex);
4378 	allocated = ext4_ext_get_actual_len(&newex);
4379 	if (allocated > map->m_len)
4380 		allocated = map->m_len;
4381 	map->m_flags |= EXT4_MAP_NEW;
4382 
4383 	/*
4384 	 * Update reserved blocks/metadata blocks after successful
4385 	 * block allocation which had been deferred till now.
4386 	 */
4387 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4388 		unsigned int reserved_clusters;
4389 		/*
4390 		 * Check how many clusters we had reserved this allocated range
4391 		 */
4392 		reserved_clusters = get_reserved_cluster_alloc(inode,
4393 						map->m_lblk, allocated);
4394 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4395 			if (reserved_clusters) {
4396 				/*
4397 				 * We have clusters reserved for this range.
4398 				 * But since we are not doing actual allocation
4399 				 * and are simply using blocks from previously
4400 				 * allocated cluster, we should release the
4401 				 * reservation and not claim quota.
4402 				 */
4403 				ext4_da_update_reserve_space(inode,
4404 						reserved_clusters, 0);
4405 			}
4406 		} else {
4407 			BUG_ON(allocated_clusters < reserved_clusters);
4408 			if (reserved_clusters < allocated_clusters) {
4409 				struct ext4_inode_info *ei = EXT4_I(inode);
4410 				int reservation = allocated_clusters -
4411 						  reserved_clusters;
4412 				/*
4413 				 * It seems we claimed few clusters outside of
4414 				 * the range of this allocation. We should give
4415 				 * it back to the reservation pool. This can
4416 				 * happen in the following case:
4417 				 *
4418 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4419 				 *   cluster has 4 blocks. Thus, the clusters
4420 				 *   are [0-3],[4-7],[8-11]...
4421 				 * * First comes delayed allocation write for
4422 				 *   logical blocks 10 & 11. Since there were no
4423 				 *   previous delayed allocated blocks in the
4424 				 *   range [8-11], we would reserve 1 cluster
4425 				 *   for this write.
4426 				 * * Next comes write for logical blocks 3 to 8.
4427 				 *   In this case, we will reserve 2 clusters
4428 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4429 				 *   that range has a delayed allocated blocks.
4430 				 *   Thus total reserved clusters now becomes 3.
4431 				 * * Now, during the delayed allocation writeout
4432 				 *   time, we will first write blocks [3-8] and
4433 				 *   allocate 3 clusters for writing these
4434 				 *   blocks. Also, we would claim all these
4435 				 *   three clusters above.
4436 				 * * Now when we come here to writeout the
4437 				 *   blocks [10-11], we would expect to claim
4438 				 *   the reservation of 1 cluster we had made
4439 				 *   (and we would claim it since there are no
4440 				 *   more delayed allocated blocks in the range
4441 				 *   [8-11]. But our reserved cluster count had
4442 				 *   already gone to 0.
4443 				 *
4444 				 *   Thus, at the step 4 above when we determine
4445 				 *   that there are still some unwritten delayed
4446 				 *   allocated blocks outside of our current
4447 				 *   block range, we should increment the
4448 				 *   reserved clusters count so that when the
4449 				 *   remaining blocks finally gets written, we
4450 				 *   could claim them.
4451 				 */
4452 				dquot_reserve_block(inode,
4453 						EXT4_C2B(sbi, reservation));
4454 				spin_lock(&ei->i_block_reservation_lock);
4455 				ei->i_reserved_data_blocks += reservation;
4456 				spin_unlock(&ei->i_block_reservation_lock);
4457 			}
4458 			/*
4459 			 * We will claim quota for all newly allocated blocks.
4460 			 * We're updating the reserved space *after* the
4461 			 * correction above so we do not accidentally free
4462 			 * all the metadata reservation because we might
4463 			 * actually need it later on.
4464 			 */
4465 			ext4_da_update_reserve_space(inode, allocated_clusters,
4466 							1);
4467 		}
4468 	}
4469 
4470 	/*
4471 	 * Cache the extent and update transaction to commit on fdatasync only
4472 	 * when it is _not_ an uninitialized extent.
4473 	 */
4474 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4475 		ext4_update_inode_fsync_trans(handle, inode, 1);
4476 	else
4477 		ext4_update_inode_fsync_trans(handle, inode, 0);
4478 out:
4479 	if (allocated > map->m_len)
4480 		allocated = map->m_len;
4481 	ext4_ext_show_leaf(inode, path);
4482 	map->m_flags |= EXT4_MAP_MAPPED;
4483 	map->m_pblk = newblock;
4484 	map->m_len = allocated;
4485 out2:
4486 	if (path) {
4487 		ext4_ext_drop_refs(path);
4488 		kfree(path);
4489 	}
4490 
4491 out3:
4492 	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4493 				       err ? err : allocated);
4494 	ext4_es_lru_add(inode);
4495 	return err ? err : allocated;
4496 }
4497 
4498 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4499 {
4500 	struct super_block *sb = inode->i_sb;
4501 	ext4_lblk_t last_block;
4502 	int err = 0;
4503 
4504 	/*
4505 	 * TODO: optimization is possible here.
4506 	 * Probably we need not scan at all,
4507 	 * because page truncation is enough.
4508 	 */
4509 
4510 	/* we have to know where to truncate from in crash case */
4511 	EXT4_I(inode)->i_disksize = inode->i_size;
4512 	ext4_mark_inode_dirty(handle, inode);
4513 
4514 	last_block = (inode->i_size + sb->s_blocksize - 1)
4515 			>> EXT4_BLOCK_SIZE_BITS(sb);
4516 retry:
4517 	err = ext4_es_remove_extent(inode, last_block,
4518 				    EXT_MAX_BLOCKS - last_block);
4519 	if (err == -ENOMEM) {
4520 		cond_resched();
4521 		congestion_wait(BLK_RW_ASYNC, HZ/50);
4522 		goto retry;
4523 	}
4524 	if (err) {
4525 		ext4_std_error(inode->i_sb, err);
4526 		return;
4527 	}
4528 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4529 	ext4_std_error(inode->i_sb, err);
4530 }
4531 
4532 static void ext4_falloc_update_inode(struct inode *inode,
4533 				int mode, loff_t new_size, int update_ctime)
4534 {
4535 	struct timespec now;
4536 
4537 	if (update_ctime) {
4538 		now = current_fs_time(inode->i_sb);
4539 		if (!timespec_equal(&inode->i_ctime, &now))
4540 			inode->i_ctime = now;
4541 	}
4542 	/*
4543 	 * Update only when preallocation was requested beyond
4544 	 * the file size.
4545 	 */
4546 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4547 		if (new_size > i_size_read(inode))
4548 			i_size_write(inode, new_size);
4549 		if (new_size > EXT4_I(inode)->i_disksize)
4550 			ext4_update_i_disksize(inode, new_size);
4551 	} else {
4552 		/*
4553 		 * Mark that we allocate beyond EOF so the subsequent truncate
4554 		 * can proceed even if the new size is the same as i_size.
4555 		 */
4556 		if (new_size > i_size_read(inode))
4557 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4558 	}
4559 
4560 }
4561 
4562 /*
4563  * preallocate space for a file. This implements ext4's fallocate file
4564  * operation, which gets called from sys_fallocate system call.
4565  * For block-mapped files, posix_fallocate should fall back to the method
4566  * of writing zeroes to the required new blocks (the same behavior which is
4567  * expected for file systems which do not support fallocate() system call).
4568  */
4569 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4570 {
4571 	struct inode *inode = file_inode(file);
4572 	handle_t *handle;
4573 	loff_t new_size;
4574 	unsigned int max_blocks;
4575 	int ret = 0;
4576 	int ret2 = 0;
4577 	int retries = 0;
4578 	int flags;
4579 	struct ext4_map_blocks map;
4580 	unsigned int credits, blkbits = inode->i_blkbits;
4581 
4582 	/* Return error if mode is not supported */
4583 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4584 		return -EOPNOTSUPP;
4585 
4586 	if (mode & FALLOC_FL_PUNCH_HOLE)
4587 		return ext4_punch_hole(inode, offset, len);
4588 
4589 	ret = ext4_convert_inline_data(inode);
4590 	if (ret)
4591 		return ret;
4592 
4593 	/*
4594 	 * currently supporting (pre)allocate mode for extent-based
4595 	 * files _only_
4596 	 */
4597 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4598 		return -EOPNOTSUPP;
4599 
4600 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4601 	map.m_lblk = offset >> blkbits;
4602 	/*
4603 	 * We can't just convert len to max_blocks because
4604 	 * If blocksize = 4096 offset = 3072 and len = 2048
4605 	 */
4606 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4607 		- map.m_lblk;
4608 	/*
4609 	 * credits to insert 1 extent into extent tree
4610 	 */
4611 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4612 	mutex_lock(&inode->i_mutex);
4613 	ret = inode_newsize_ok(inode, (len + offset));
4614 	if (ret) {
4615 		mutex_unlock(&inode->i_mutex);
4616 		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4617 		return ret;
4618 	}
4619 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4620 	if (mode & FALLOC_FL_KEEP_SIZE)
4621 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4622 	/*
4623 	 * Don't normalize the request if it can fit in one extent so
4624 	 * that it doesn't get unnecessarily split into multiple
4625 	 * extents.
4626 	 */
4627 	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4628 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4629 
4630 retry:
4631 	while (ret >= 0 && ret < max_blocks) {
4632 		map.m_lblk = map.m_lblk + ret;
4633 		map.m_len = max_blocks = max_blocks - ret;
4634 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4635 					    credits);
4636 		if (IS_ERR(handle)) {
4637 			ret = PTR_ERR(handle);
4638 			break;
4639 		}
4640 		ret = ext4_map_blocks(handle, inode, &map, flags);
4641 		if (ret <= 0) {
4642 #ifdef EXT4FS_DEBUG
4643 			ext4_warning(inode->i_sb,
4644 				     "inode #%lu: block %u: len %u: "
4645 				     "ext4_ext_map_blocks returned %d",
4646 				     inode->i_ino, map.m_lblk,
4647 				     map.m_len, ret);
4648 #endif
4649 			ext4_mark_inode_dirty(handle, inode);
4650 			ret2 = ext4_journal_stop(handle);
4651 			break;
4652 		}
4653 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4654 						blkbits) >> blkbits))
4655 			new_size = offset + len;
4656 		else
4657 			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4658 
4659 		ext4_falloc_update_inode(inode, mode, new_size,
4660 					 (map.m_flags & EXT4_MAP_NEW));
4661 		ext4_mark_inode_dirty(handle, inode);
4662 		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4663 			ext4_handle_sync(handle);
4664 		ret2 = ext4_journal_stop(handle);
4665 		if (ret2)
4666 			break;
4667 	}
4668 	if (ret == -ENOSPC &&
4669 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4670 		ret = 0;
4671 		goto retry;
4672 	}
4673 	mutex_unlock(&inode->i_mutex);
4674 	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4675 				ret > 0 ? ret2 : ret);
4676 	return ret > 0 ? ret2 : ret;
4677 }
4678 
4679 /*
4680  * This function convert a range of blocks to written extents
4681  * The caller of this function will pass the start offset and the size.
4682  * all unwritten extents within this range will be converted to
4683  * written extents.
4684  *
4685  * This function is called from the direct IO end io call back
4686  * function, to convert the fallocated extents after IO is completed.
4687  * Returns 0 on success.
4688  */
4689 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4690 				   loff_t offset, ssize_t len)
4691 {
4692 	unsigned int max_blocks;
4693 	int ret = 0;
4694 	int ret2 = 0;
4695 	struct ext4_map_blocks map;
4696 	unsigned int credits, blkbits = inode->i_blkbits;
4697 
4698 	map.m_lblk = offset >> blkbits;
4699 	/*
4700 	 * We can't just convert len to max_blocks because
4701 	 * If blocksize = 4096 offset = 3072 and len = 2048
4702 	 */
4703 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4704 		      map.m_lblk);
4705 	/*
4706 	 * This is somewhat ugly but the idea is clear: When transaction is
4707 	 * reserved, everything goes into it. Otherwise we rather start several
4708 	 * smaller transactions for conversion of each extent separately.
4709 	 */
4710 	if (handle) {
4711 		handle = ext4_journal_start_reserved(handle,
4712 						     EXT4_HT_EXT_CONVERT);
4713 		if (IS_ERR(handle))
4714 			return PTR_ERR(handle);
4715 		credits = 0;
4716 	} else {
4717 		/*
4718 		 * credits to insert 1 extent into extent tree
4719 		 */
4720 		credits = ext4_chunk_trans_blocks(inode, max_blocks);
4721 	}
4722 	while (ret >= 0 && ret < max_blocks) {
4723 		map.m_lblk += ret;
4724 		map.m_len = (max_blocks -= ret);
4725 		if (credits) {
4726 			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4727 						    credits);
4728 			if (IS_ERR(handle)) {
4729 				ret = PTR_ERR(handle);
4730 				break;
4731 			}
4732 		}
4733 		ret = ext4_map_blocks(handle, inode, &map,
4734 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4735 		if (ret <= 0)
4736 			ext4_warning(inode->i_sb,
4737 				     "inode #%lu: block %u: len %u: "
4738 				     "ext4_ext_map_blocks returned %d",
4739 				     inode->i_ino, map.m_lblk,
4740 				     map.m_len, ret);
4741 		ext4_mark_inode_dirty(handle, inode);
4742 		if (credits)
4743 			ret2 = ext4_journal_stop(handle);
4744 		if (ret <= 0 || ret2)
4745 			break;
4746 	}
4747 	if (!credits)
4748 		ret2 = ext4_journal_stop(handle);
4749 	return ret > 0 ? ret2 : ret;
4750 }
4751 
4752 /*
4753  * If newes is not existing extent (newes->ec_pblk equals zero) find
4754  * delayed extent at start of newes and update newes accordingly and
4755  * return start of the next delayed extent.
4756  *
4757  * If newes is existing extent (newes->ec_pblk is not equal zero)
4758  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4759  * extent found. Leave newes unmodified.
4760  */
4761 static int ext4_find_delayed_extent(struct inode *inode,
4762 				    struct extent_status *newes)
4763 {
4764 	struct extent_status es;
4765 	ext4_lblk_t block, next_del;
4766 
4767 	if (newes->es_pblk == 0) {
4768 		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
4769 				newes->es_lblk + newes->es_len - 1, &es);
4770 
4771 		/*
4772 		 * No extent in extent-tree contains block @newes->es_pblk,
4773 		 * then the block may stay in 1)a hole or 2)delayed-extent.
4774 		 */
4775 		if (es.es_len == 0)
4776 			/* A hole found. */
4777 			return 0;
4778 
4779 		if (es.es_lblk > newes->es_lblk) {
4780 			/* A hole found. */
4781 			newes->es_len = min(es.es_lblk - newes->es_lblk,
4782 					    newes->es_len);
4783 			return 0;
4784 		}
4785 
4786 		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4787 	}
4788 
4789 	block = newes->es_lblk + newes->es_len;
4790 	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
4791 	if (es.es_len == 0)
4792 		next_del = EXT_MAX_BLOCKS;
4793 	else
4794 		next_del = es.es_lblk;
4795 
4796 	return next_del;
4797 }
4798 /* fiemap flags we can handle specified here */
4799 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4800 
4801 static int ext4_xattr_fiemap(struct inode *inode,
4802 				struct fiemap_extent_info *fieinfo)
4803 {
4804 	__u64 physical = 0;
4805 	__u64 length;
4806 	__u32 flags = FIEMAP_EXTENT_LAST;
4807 	int blockbits = inode->i_sb->s_blocksize_bits;
4808 	int error = 0;
4809 
4810 	/* in-inode? */
4811 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4812 		struct ext4_iloc iloc;
4813 		int offset;	/* offset of xattr in inode */
4814 
4815 		error = ext4_get_inode_loc(inode, &iloc);
4816 		if (error)
4817 			return error;
4818 		physical = (__u64)iloc.bh->b_blocknr << blockbits;
4819 		offset = EXT4_GOOD_OLD_INODE_SIZE +
4820 				EXT4_I(inode)->i_extra_isize;
4821 		physical += offset;
4822 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4823 		flags |= FIEMAP_EXTENT_DATA_INLINE;
4824 		brelse(iloc.bh);
4825 	} else { /* external block */
4826 		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4827 		length = inode->i_sb->s_blocksize;
4828 	}
4829 
4830 	if (physical)
4831 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4832 						length, flags);
4833 	return (error < 0 ? error : 0);
4834 }
4835 
4836 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4837 		__u64 start, __u64 len)
4838 {
4839 	ext4_lblk_t start_blk;
4840 	int error = 0;
4841 
4842 	if (ext4_has_inline_data(inode)) {
4843 		int has_inline = 1;
4844 
4845 		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4846 
4847 		if (has_inline)
4848 			return error;
4849 	}
4850 
4851 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
4852 		error = ext4_ext_precache(inode);
4853 		if (error)
4854 			return error;
4855 	}
4856 
4857 	/* fallback to generic here if not in extents fmt */
4858 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4859 		return generic_block_fiemap(inode, fieinfo, start, len,
4860 			ext4_get_block);
4861 
4862 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4863 		return -EBADR;
4864 
4865 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4866 		error = ext4_xattr_fiemap(inode, fieinfo);
4867 	} else {
4868 		ext4_lblk_t len_blks;
4869 		__u64 last_blk;
4870 
4871 		start_blk = start >> inode->i_sb->s_blocksize_bits;
4872 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4873 		if (last_blk >= EXT_MAX_BLOCKS)
4874 			last_blk = EXT_MAX_BLOCKS-1;
4875 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4876 
4877 		/*
4878 		 * Walk the extent tree gathering extent information
4879 		 * and pushing extents back to the user.
4880 		 */
4881 		error = ext4_fill_fiemap_extents(inode, start_blk,
4882 						 len_blks, fieinfo);
4883 	}
4884 	ext4_es_lru_add(inode);
4885 	return error;
4886 }
4887