1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/module.h> 33 #include <linux/fs.h> 34 #include <linux/time.h> 35 #include <linux/jbd2.h> 36 #include <linux/highuid.h> 37 #include <linux/pagemap.h> 38 #include <linux/quotaops.h> 39 #include <linux/string.h> 40 #include <linux/slab.h> 41 #include <linux/falloc.h> 42 #include <asm/uaccess.h> 43 #include <linux/fiemap.h> 44 #include "ext4_jbd2.h" 45 #include "ext4_extents.h" 46 47 #include <trace/events/ext4.h> 48 49 static int ext4_split_extent(handle_t *handle, 50 struct inode *inode, 51 struct ext4_ext_path *path, 52 struct ext4_map_blocks *map, 53 int split_flag, 54 int flags); 55 56 static int ext4_ext_truncate_extend_restart(handle_t *handle, 57 struct inode *inode, 58 int needed) 59 { 60 int err; 61 62 if (!ext4_handle_valid(handle)) 63 return 0; 64 if (handle->h_buffer_credits > needed) 65 return 0; 66 err = ext4_journal_extend(handle, needed); 67 if (err <= 0) 68 return err; 69 err = ext4_truncate_restart_trans(handle, inode, needed); 70 if (err == 0) 71 err = -EAGAIN; 72 73 return err; 74 } 75 76 /* 77 * could return: 78 * - EROFS 79 * - ENOMEM 80 */ 81 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 82 struct ext4_ext_path *path) 83 { 84 if (path->p_bh) { 85 /* path points to block */ 86 return ext4_journal_get_write_access(handle, path->p_bh); 87 } 88 /* path points to leaf/index in inode body */ 89 /* we use in-core data, no need to protect them */ 90 return 0; 91 } 92 93 /* 94 * could return: 95 * - EROFS 96 * - ENOMEM 97 * - EIO 98 */ 99 static int ext4_ext_dirty(handle_t *handle, struct inode *inode, 100 struct ext4_ext_path *path) 101 { 102 int err; 103 if (path->p_bh) { 104 /* path points to block */ 105 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh); 106 } else { 107 /* path points to leaf/index in inode body */ 108 err = ext4_mark_inode_dirty(handle, inode); 109 } 110 return err; 111 } 112 113 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 114 struct ext4_ext_path *path, 115 ext4_lblk_t block) 116 { 117 int depth; 118 119 if (path) { 120 struct ext4_extent *ex; 121 depth = path->p_depth; 122 123 /* 124 * Try to predict block placement assuming that we are 125 * filling in a file which will eventually be 126 * non-sparse --- i.e., in the case of libbfd writing 127 * an ELF object sections out-of-order but in a way 128 * the eventually results in a contiguous object or 129 * executable file, or some database extending a table 130 * space file. However, this is actually somewhat 131 * non-ideal if we are writing a sparse file such as 132 * qemu or KVM writing a raw image file that is going 133 * to stay fairly sparse, since it will end up 134 * fragmenting the file system's free space. Maybe we 135 * should have some hueristics or some way to allow 136 * userspace to pass a hint to file system, 137 * especially if the latter case turns out to be 138 * common. 139 */ 140 ex = path[depth].p_ext; 141 if (ex) { 142 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 143 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 144 145 if (block > ext_block) 146 return ext_pblk + (block - ext_block); 147 else 148 return ext_pblk - (ext_block - block); 149 } 150 151 /* it looks like index is empty; 152 * try to find starting block from index itself */ 153 if (path[depth].p_bh) 154 return path[depth].p_bh->b_blocknr; 155 } 156 157 /* OK. use inode's group */ 158 return ext4_inode_to_goal_block(inode); 159 } 160 161 /* 162 * Allocation for a meta data block 163 */ 164 static ext4_fsblk_t 165 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 166 struct ext4_ext_path *path, 167 struct ext4_extent *ex, int *err, unsigned int flags) 168 { 169 ext4_fsblk_t goal, newblock; 170 171 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 172 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 173 NULL, err); 174 return newblock; 175 } 176 177 static inline int ext4_ext_space_block(struct inode *inode, int check) 178 { 179 int size; 180 181 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 182 / sizeof(struct ext4_extent); 183 if (!check) { 184 #ifdef AGGRESSIVE_TEST 185 if (size > 6) 186 size = 6; 187 #endif 188 } 189 return size; 190 } 191 192 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 193 { 194 int size; 195 196 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 197 / sizeof(struct ext4_extent_idx); 198 if (!check) { 199 #ifdef AGGRESSIVE_TEST 200 if (size > 5) 201 size = 5; 202 #endif 203 } 204 return size; 205 } 206 207 static inline int ext4_ext_space_root(struct inode *inode, int check) 208 { 209 int size; 210 211 size = sizeof(EXT4_I(inode)->i_data); 212 size -= sizeof(struct ext4_extent_header); 213 size /= sizeof(struct ext4_extent); 214 if (!check) { 215 #ifdef AGGRESSIVE_TEST 216 if (size > 3) 217 size = 3; 218 #endif 219 } 220 return size; 221 } 222 223 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 224 { 225 int size; 226 227 size = sizeof(EXT4_I(inode)->i_data); 228 size -= sizeof(struct ext4_extent_header); 229 size /= sizeof(struct ext4_extent_idx); 230 if (!check) { 231 #ifdef AGGRESSIVE_TEST 232 if (size > 4) 233 size = 4; 234 #endif 235 } 236 return size; 237 } 238 239 /* 240 * Calculate the number of metadata blocks needed 241 * to allocate @blocks 242 * Worse case is one block per extent 243 */ 244 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 245 { 246 struct ext4_inode_info *ei = EXT4_I(inode); 247 int idxs, num = 0; 248 249 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 250 / sizeof(struct ext4_extent_idx)); 251 252 /* 253 * If the new delayed allocation block is contiguous with the 254 * previous da block, it can share index blocks with the 255 * previous block, so we only need to allocate a new index 256 * block every idxs leaf blocks. At ldxs**2 blocks, we need 257 * an additional index block, and at ldxs**3 blocks, yet 258 * another index blocks. 259 */ 260 if (ei->i_da_metadata_calc_len && 261 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 262 if ((ei->i_da_metadata_calc_len % idxs) == 0) 263 num++; 264 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 265 num++; 266 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 267 num++; 268 ei->i_da_metadata_calc_len = 0; 269 } else 270 ei->i_da_metadata_calc_len++; 271 ei->i_da_metadata_calc_last_lblock++; 272 return num; 273 } 274 275 /* 276 * In the worst case we need a new set of index blocks at 277 * every level of the inode's extent tree. 278 */ 279 ei->i_da_metadata_calc_len = 1; 280 ei->i_da_metadata_calc_last_lblock = lblock; 281 return ext_depth(inode) + 1; 282 } 283 284 static int 285 ext4_ext_max_entries(struct inode *inode, int depth) 286 { 287 int max; 288 289 if (depth == ext_depth(inode)) { 290 if (depth == 0) 291 max = ext4_ext_space_root(inode, 1); 292 else 293 max = ext4_ext_space_root_idx(inode, 1); 294 } else { 295 if (depth == 0) 296 max = ext4_ext_space_block(inode, 1); 297 else 298 max = ext4_ext_space_block_idx(inode, 1); 299 } 300 301 return max; 302 } 303 304 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 305 { 306 ext4_fsblk_t block = ext4_ext_pblock(ext); 307 int len = ext4_ext_get_actual_len(ext); 308 309 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 310 } 311 312 static int ext4_valid_extent_idx(struct inode *inode, 313 struct ext4_extent_idx *ext_idx) 314 { 315 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 316 317 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 318 } 319 320 static int ext4_valid_extent_entries(struct inode *inode, 321 struct ext4_extent_header *eh, 322 int depth) 323 { 324 struct ext4_extent *ext; 325 struct ext4_extent_idx *ext_idx; 326 unsigned short entries; 327 if (eh->eh_entries == 0) 328 return 1; 329 330 entries = le16_to_cpu(eh->eh_entries); 331 332 if (depth == 0) { 333 /* leaf entries */ 334 ext = EXT_FIRST_EXTENT(eh); 335 while (entries) { 336 if (!ext4_valid_extent(inode, ext)) 337 return 0; 338 ext++; 339 entries--; 340 } 341 } else { 342 ext_idx = EXT_FIRST_INDEX(eh); 343 while (entries) { 344 if (!ext4_valid_extent_idx(inode, ext_idx)) 345 return 0; 346 ext_idx++; 347 entries--; 348 } 349 } 350 return 1; 351 } 352 353 static int __ext4_ext_check(const char *function, unsigned int line, 354 struct inode *inode, struct ext4_extent_header *eh, 355 int depth) 356 { 357 const char *error_msg; 358 int max = 0; 359 360 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 361 error_msg = "invalid magic"; 362 goto corrupted; 363 } 364 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 365 error_msg = "unexpected eh_depth"; 366 goto corrupted; 367 } 368 if (unlikely(eh->eh_max == 0)) { 369 error_msg = "invalid eh_max"; 370 goto corrupted; 371 } 372 max = ext4_ext_max_entries(inode, depth); 373 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 374 error_msg = "too large eh_max"; 375 goto corrupted; 376 } 377 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 378 error_msg = "invalid eh_entries"; 379 goto corrupted; 380 } 381 if (!ext4_valid_extent_entries(inode, eh, depth)) { 382 error_msg = "invalid extent entries"; 383 goto corrupted; 384 } 385 return 0; 386 387 corrupted: 388 ext4_error_inode(inode, function, line, 0, 389 "bad header/extent: %s - magic %x, " 390 "entries %u, max %u(%u), depth %u(%u)", 391 error_msg, le16_to_cpu(eh->eh_magic), 392 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 393 max, le16_to_cpu(eh->eh_depth), depth); 394 395 return -EIO; 396 } 397 398 #define ext4_ext_check(inode, eh, depth) \ 399 __ext4_ext_check(__func__, __LINE__, inode, eh, depth) 400 401 int ext4_ext_check_inode(struct inode *inode) 402 { 403 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); 404 } 405 406 #ifdef EXT_DEBUG 407 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 408 { 409 int k, l = path->p_depth; 410 411 ext_debug("path:"); 412 for (k = 0; k <= l; k++, path++) { 413 if (path->p_idx) { 414 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 415 ext4_idx_pblock(path->p_idx)); 416 } else if (path->p_ext) { 417 ext_debug(" %d:[%d]%d:%llu ", 418 le32_to_cpu(path->p_ext->ee_block), 419 ext4_ext_is_uninitialized(path->p_ext), 420 ext4_ext_get_actual_len(path->p_ext), 421 ext4_ext_pblock(path->p_ext)); 422 } else 423 ext_debug(" []"); 424 } 425 ext_debug("\n"); 426 } 427 428 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 429 { 430 int depth = ext_depth(inode); 431 struct ext4_extent_header *eh; 432 struct ext4_extent *ex; 433 int i; 434 435 if (!path) 436 return; 437 438 eh = path[depth].p_hdr; 439 ex = EXT_FIRST_EXTENT(eh); 440 441 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 442 443 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 444 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 445 ext4_ext_is_uninitialized(ex), 446 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 447 } 448 ext_debug("\n"); 449 } 450 451 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 452 ext4_fsblk_t newblock, int level) 453 { 454 int depth = ext_depth(inode); 455 struct ext4_extent *ex; 456 457 if (depth != level) { 458 struct ext4_extent_idx *idx; 459 idx = path[level].p_idx; 460 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 461 ext_debug("%d: move %d:%llu in new index %llu\n", level, 462 le32_to_cpu(idx->ei_block), 463 ext4_idx_pblock(idx), 464 newblock); 465 idx++; 466 } 467 468 return; 469 } 470 471 ex = path[depth].p_ext; 472 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 473 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 474 le32_to_cpu(ex->ee_block), 475 ext4_ext_pblock(ex), 476 ext4_ext_is_uninitialized(ex), 477 ext4_ext_get_actual_len(ex), 478 newblock); 479 ex++; 480 } 481 } 482 483 #else 484 #define ext4_ext_show_path(inode, path) 485 #define ext4_ext_show_leaf(inode, path) 486 #define ext4_ext_show_move(inode, path, newblock, level) 487 #endif 488 489 void ext4_ext_drop_refs(struct ext4_ext_path *path) 490 { 491 int depth = path->p_depth; 492 int i; 493 494 for (i = 0; i <= depth; i++, path++) 495 if (path->p_bh) { 496 brelse(path->p_bh); 497 path->p_bh = NULL; 498 } 499 } 500 501 /* 502 * ext4_ext_binsearch_idx: 503 * binary search for the closest index of the given block 504 * the header must be checked before calling this 505 */ 506 static void 507 ext4_ext_binsearch_idx(struct inode *inode, 508 struct ext4_ext_path *path, ext4_lblk_t block) 509 { 510 struct ext4_extent_header *eh = path->p_hdr; 511 struct ext4_extent_idx *r, *l, *m; 512 513 514 ext_debug("binsearch for %u(idx): ", block); 515 516 l = EXT_FIRST_INDEX(eh) + 1; 517 r = EXT_LAST_INDEX(eh); 518 while (l <= r) { 519 m = l + (r - l) / 2; 520 if (block < le32_to_cpu(m->ei_block)) 521 r = m - 1; 522 else 523 l = m + 1; 524 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 525 m, le32_to_cpu(m->ei_block), 526 r, le32_to_cpu(r->ei_block)); 527 } 528 529 path->p_idx = l - 1; 530 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block), 531 ext4_idx_pblock(path->p_idx)); 532 533 #ifdef CHECK_BINSEARCH 534 { 535 struct ext4_extent_idx *chix, *ix; 536 int k; 537 538 chix = ix = EXT_FIRST_INDEX(eh); 539 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 540 if (k != 0 && 541 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 542 printk(KERN_DEBUG "k=%d, ix=0x%p, " 543 "first=0x%p\n", k, 544 ix, EXT_FIRST_INDEX(eh)); 545 printk(KERN_DEBUG "%u <= %u\n", 546 le32_to_cpu(ix->ei_block), 547 le32_to_cpu(ix[-1].ei_block)); 548 } 549 BUG_ON(k && le32_to_cpu(ix->ei_block) 550 <= le32_to_cpu(ix[-1].ei_block)); 551 if (block < le32_to_cpu(ix->ei_block)) 552 break; 553 chix = ix; 554 } 555 BUG_ON(chix != path->p_idx); 556 } 557 #endif 558 559 } 560 561 /* 562 * ext4_ext_binsearch: 563 * binary search for closest extent of the given block 564 * the header must be checked before calling this 565 */ 566 static void 567 ext4_ext_binsearch(struct inode *inode, 568 struct ext4_ext_path *path, ext4_lblk_t block) 569 { 570 struct ext4_extent_header *eh = path->p_hdr; 571 struct ext4_extent *r, *l, *m; 572 573 if (eh->eh_entries == 0) { 574 /* 575 * this leaf is empty: 576 * we get such a leaf in split/add case 577 */ 578 return; 579 } 580 581 ext_debug("binsearch for %u: ", block); 582 583 l = EXT_FIRST_EXTENT(eh) + 1; 584 r = EXT_LAST_EXTENT(eh); 585 586 while (l <= r) { 587 m = l + (r - l) / 2; 588 if (block < le32_to_cpu(m->ee_block)) 589 r = m - 1; 590 else 591 l = m + 1; 592 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 593 m, le32_to_cpu(m->ee_block), 594 r, le32_to_cpu(r->ee_block)); 595 } 596 597 path->p_ext = l - 1; 598 ext_debug(" -> %d:%llu:[%d]%d ", 599 le32_to_cpu(path->p_ext->ee_block), 600 ext4_ext_pblock(path->p_ext), 601 ext4_ext_is_uninitialized(path->p_ext), 602 ext4_ext_get_actual_len(path->p_ext)); 603 604 #ifdef CHECK_BINSEARCH 605 { 606 struct ext4_extent *chex, *ex; 607 int k; 608 609 chex = ex = EXT_FIRST_EXTENT(eh); 610 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 611 BUG_ON(k && le32_to_cpu(ex->ee_block) 612 <= le32_to_cpu(ex[-1].ee_block)); 613 if (block < le32_to_cpu(ex->ee_block)) 614 break; 615 chex = ex; 616 } 617 BUG_ON(chex != path->p_ext); 618 } 619 #endif 620 621 } 622 623 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 624 { 625 struct ext4_extent_header *eh; 626 627 eh = ext_inode_hdr(inode); 628 eh->eh_depth = 0; 629 eh->eh_entries = 0; 630 eh->eh_magic = EXT4_EXT_MAGIC; 631 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 632 ext4_mark_inode_dirty(handle, inode); 633 ext4_ext_invalidate_cache(inode); 634 return 0; 635 } 636 637 struct ext4_ext_path * 638 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 639 struct ext4_ext_path *path) 640 { 641 struct ext4_extent_header *eh; 642 struct buffer_head *bh; 643 short int depth, i, ppos = 0, alloc = 0; 644 645 eh = ext_inode_hdr(inode); 646 depth = ext_depth(inode); 647 648 /* account possible depth increase */ 649 if (!path) { 650 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 651 GFP_NOFS); 652 if (!path) 653 return ERR_PTR(-ENOMEM); 654 alloc = 1; 655 } 656 path[0].p_hdr = eh; 657 path[0].p_bh = NULL; 658 659 i = depth; 660 /* walk through the tree */ 661 while (i) { 662 int need_to_validate = 0; 663 664 ext_debug("depth %d: num %d, max %d\n", 665 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 666 667 ext4_ext_binsearch_idx(inode, path + ppos, block); 668 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 669 path[ppos].p_depth = i; 670 path[ppos].p_ext = NULL; 671 672 bh = sb_getblk(inode->i_sb, path[ppos].p_block); 673 if (unlikely(!bh)) 674 goto err; 675 if (!bh_uptodate_or_lock(bh)) { 676 trace_ext4_ext_load_extent(inode, block, 677 path[ppos].p_block); 678 if (bh_submit_read(bh) < 0) { 679 put_bh(bh); 680 goto err; 681 } 682 /* validate the extent entries */ 683 need_to_validate = 1; 684 } 685 eh = ext_block_hdr(bh); 686 ppos++; 687 if (unlikely(ppos > depth)) { 688 put_bh(bh); 689 EXT4_ERROR_INODE(inode, 690 "ppos %d > depth %d", ppos, depth); 691 goto err; 692 } 693 path[ppos].p_bh = bh; 694 path[ppos].p_hdr = eh; 695 i--; 696 697 if (need_to_validate && ext4_ext_check(inode, eh, i)) 698 goto err; 699 } 700 701 path[ppos].p_depth = i; 702 path[ppos].p_ext = NULL; 703 path[ppos].p_idx = NULL; 704 705 /* find extent */ 706 ext4_ext_binsearch(inode, path + ppos, block); 707 /* if not an empty leaf */ 708 if (path[ppos].p_ext) 709 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 710 711 ext4_ext_show_path(inode, path); 712 713 return path; 714 715 err: 716 ext4_ext_drop_refs(path); 717 if (alloc) 718 kfree(path); 719 return ERR_PTR(-EIO); 720 } 721 722 /* 723 * ext4_ext_insert_index: 724 * insert new index [@logical;@ptr] into the block at @curp; 725 * check where to insert: before @curp or after @curp 726 */ 727 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 728 struct ext4_ext_path *curp, 729 int logical, ext4_fsblk_t ptr) 730 { 731 struct ext4_extent_idx *ix; 732 int len, err; 733 734 err = ext4_ext_get_access(handle, inode, curp); 735 if (err) 736 return err; 737 738 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 739 EXT4_ERROR_INODE(inode, 740 "logical %d == ei_block %d!", 741 logical, le32_to_cpu(curp->p_idx->ei_block)); 742 return -EIO; 743 } 744 745 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 746 >= le16_to_cpu(curp->p_hdr->eh_max))) { 747 EXT4_ERROR_INODE(inode, 748 "eh_entries %d >= eh_max %d!", 749 le16_to_cpu(curp->p_hdr->eh_entries), 750 le16_to_cpu(curp->p_hdr->eh_max)); 751 return -EIO; 752 } 753 754 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx; 755 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 756 /* insert after */ 757 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) { 758 len = (len - 1) * sizeof(struct ext4_extent_idx); 759 len = len < 0 ? 0 : len; 760 ext_debug("insert new index %d after: %llu. " 761 "move %d from 0x%p to 0x%p\n", 762 logical, ptr, len, 763 (curp->p_idx + 1), (curp->p_idx + 2)); 764 memmove(curp->p_idx + 2, curp->p_idx + 1, len); 765 } 766 ix = curp->p_idx + 1; 767 } else { 768 /* insert before */ 769 len = len * sizeof(struct ext4_extent_idx); 770 len = len < 0 ? 0 : len; 771 ext_debug("insert new index %d before: %llu. " 772 "move %d from 0x%p to 0x%p\n", 773 logical, ptr, len, 774 curp->p_idx, (curp->p_idx + 1)); 775 memmove(curp->p_idx + 1, curp->p_idx, len); 776 ix = curp->p_idx; 777 } 778 779 ix->ei_block = cpu_to_le32(logical); 780 ext4_idx_store_pblock(ix, ptr); 781 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 782 783 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 784 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 785 return -EIO; 786 } 787 788 err = ext4_ext_dirty(handle, inode, curp); 789 ext4_std_error(inode->i_sb, err); 790 791 return err; 792 } 793 794 /* 795 * ext4_ext_split: 796 * inserts new subtree into the path, using free index entry 797 * at depth @at: 798 * - allocates all needed blocks (new leaf and all intermediate index blocks) 799 * - makes decision where to split 800 * - moves remaining extents and index entries (right to the split point) 801 * into the newly allocated blocks 802 * - initializes subtree 803 */ 804 static int ext4_ext_split(handle_t *handle, struct inode *inode, 805 unsigned int flags, 806 struct ext4_ext_path *path, 807 struct ext4_extent *newext, int at) 808 { 809 struct buffer_head *bh = NULL; 810 int depth = ext_depth(inode); 811 struct ext4_extent_header *neh; 812 struct ext4_extent_idx *fidx; 813 int i = at, k, m, a; 814 ext4_fsblk_t newblock, oldblock; 815 __le32 border; 816 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 817 int err = 0; 818 819 /* make decision: where to split? */ 820 /* FIXME: now decision is simplest: at current extent */ 821 822 /* if current leaf will be split, then we should use 823 * border from split point */ 824 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 825 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 826 return -EIO; 827 } 828 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 829 border = path[depth].p_ext[1].ee_block; 830 ext_debug("leaf will be split." 831 " next leaf starts at %d\n", 832 le32_to_cpu(border)); 833 } else { 834 border = newext->ee_block; 835 ext_debug("leaf will be added." 836 " next leaf starts at %d\n", 837 le32_to_cpu(border)); 838 } 839 840 /* 841 * If error occurs, then we break processing 842 * and mark filesystem read-only. index won't 843 * be inserted and tree will be in consistent 844 * state. Next mount will repair buffers too. 845 */ 846 847 /* 848 * Get array to track all allocated blocks. 849 * We need this to handle errors and free blocks 850 * upon them. 851 */ 852 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 853 if (!ablocks) 854 return -ENOMEM; 855 856 /* allocate all needed blocks */ 857 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 858 for (a = 0; a < depth - at; a++) { 859 newblock = ext4_ext_new_meta_block(handle, inode, path, 860 newext, &err, flags); 861 if (newblock == 0) 862 goto cleanup; 863 ablocks[a] = newblock; 864 } 865 866 /* initialize new leaf */ 867 newblock = ablocks[--a]; 868 if (unlikely(newblock == 0)) { 869 EXT4_ERROR_INODE(inode, "newblock == 0!"); 870 err = -EIO; 871 goto cleanup; 872 } 873 bh = sb_getblk(inode->i_sb, newblock); 874 if (!bh) { 875 err = -EIO; 876 goto cleanup; 877 } 878 lock_buffer(bh); 879 880 err = ext4_journal_get_create_access(handle, bh); 881 if (err) 882 goto cleanup; 883 884 neh = ext_block_hdr(bh); 885 neh->eh_entries = 0; 886 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 887 neh->eh_magic = EXT4_EXT_MAGIC; 888 neh->eh_depth = 0; 889 890 /* move remainder of path[depth] to the new leaf */ 891 if (unlikely(path[depth].p_hdr->eh_entries != 892 path[depth].p_hdr->eh_max)) { 893 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 894 path[depth].p_hdr->eh_entries, 895 path[depth].p_hdr->eh_max); 896 err = -EIO; 897 goto cleanup; 898 } 899 /* start copy from next extent */ 900 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 901 ext4_ext_show_move(inode, path, newblock, depth); 902 if (m) { 903 struct ext4_extent *ex; 904 ex = EXT_FIRST_EXTENT(neh); 905 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 906 le16_add_cpu(&neh->eh_entries, m); 907 } 908 909 set_buffer_uptodate(bh); 910 unlock_buffer(bh); 911 912 err = ext4_handle_dirty_metadata(handle, inode, bh); 913 if (err) 914 goto cleanup; 915 brelse(bh); 916 bh = NULL; 917 918 /* correct old leaf */ 919 if (m) { 920 err = ext4_ext_get_access(handle, inode, path + depth); 921 if (err) 922 goto cleanup; 923 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 924 err = ext4_ext_dirty(handle, inode, path + depth); 925 if (err) 926 goto cleanup; 927 928 } 929 930 /* create intermediate indexes */ 931 k = depth - at - 1; 932 if (unlikely(k < 0)) { 933 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 934 err = -EIO; 935 goto cleanup; 936 } 937 if (k) 938 ext_debug("create %d intermediate indices\n", k); 939 /* insert new index into current index block */ 940 /* current depth stored in i var */ 941 i = depth - 1; 942 while (k--) { 943 oldblock = newblock; 944 newblock = ablocks[--a]; 945 bh = sb_getblk(inode->i_sb, newblock); 946 if (!bh) { 947 err = -EIO; 948 goto cleanup; 949 } 950 lock_buffer(bh); 951 952 err = ext4_journal_get_create_access(handle, bh); 953 if (err) 954 goto cleanup; 955 956 neh = ext_block_hdr(bh); 957 neh->eh_entries = cpu_to_le16(1); 958 neh->eh_magic = EXT4_EXT_MAGIC; 959 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 960 neh->eh_depth = cpu_to_le16(depth - i); 961 fidx = EXT_FIRST_INDEX(neh); 962 fidx->ei_block = border; 963 ext4_idx_store_pblock(fidx, oldblock); 964 965 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 966 i, newblock, le32_to_cpu(border), oldblock); 967 968 /* move remainder of path[i] to the new index block */ 969 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 970 EXT_LAST_INDEX(path[i].p_hdr))) { 971 EXT4_ERROR_INODE(inode, 972 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 973 le32_to_cpu(path[i].p_ext->ee_block)); 974 err = -EIO; 975 goto cleanup; 976 } 977 /* start copy indexes */ 978 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 979 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 980 EXT_MAX_INDEX(path[i].p_hdr)); 981 ext4_ext_show_move(inode, path, newblock, i); 982 if (m) { 983 memmove(++fidx, path[i].p_idx, 984 sizeof(struct ext4_extent_idx) * m); 985 le16_add_cpu(&neh->eh_entries, m); 986 } 987 set_buffer_uptodate(bh); 988 unlock_buffer(bh); 989 990 err = ext4_handle_dirty_metadata(handle, inode, bh); 991 if (err) 992 goto cleanup; 993 brelse(bh); 994 bh = NULL; 995 996 /* correct old index */ 997 if (m) { 998 err = ext4_ext_get_access(handle, inode, path + i); 999 if (err) 1000 goto cleanup; 1001 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1002 err = ext4_ext_dirty(handle, inode, path + i); 1003 if (err) 1004 goto cleanup; 1005 } 1006 1007 i--; 1008 } 1009 1010 /* insert new index */ 1011 err = ext4_ext_insert_index(handle, inode, path + at, 1012 le32_to_cpu(border), newblock); 1013 1014 cleanup: 1015 if (bh) { 1016 if (buffer_locked(bh)) 1017 unlock_buffer(bh); 1018 brelse(bh); 1019 } 1020 1021 if (err) { 1022 /* free all allocated blocks in error case */ 1023 for (i = 0; i < depth; i++) { 1024 if (!ablocks[i]) 1025 continue; 1026 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1027 EXT4_FREE_BLOCKS_METADATA); 1028 } 1029 } 1030 kfree(ablocks); 1031 1032 return err; 1033 } 1034 1035 /* 1036 * ext4_ext_grow_indepth: 1037 * implements tree growing procedure: 1038 * - allocates new block 1039 * - moves top-level data (index block or leaf) into the new block 1040 * - initializes new top-level, creating index that points to the 1041 * just created block 1042 */ 1043 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1044 unsigned int flags, 1045 struct ext4_ext_path *path, 1046 struct ext4_extent *newext) 1047 { 1048 struct ext4_ext_path *curp = path; 1049 struct ext4_extent_header *neh; 1050 struct buffer_head *bh; 1051 ext4_fsblk_t newblock; 1052 int err = 0; 1053 1054 newblock = ext4_ext_new_meta_block(handle, inode, path, 1055 newext, &err, flags); 1056 if (newblock == 0) 1057 return err; 1058 1059 bh = sb_getblk(inode->i_sb, newblock); 1060 if (!bh) { 1061 err = -EIO; 1062 ext4_std_error(inode->i_sb, err); 1063 return err; 1064 } 1065 lock_buffer(bh); 1066 1067 err = ext4_journal_get_create_access(handle, bh); 1068 if (err) { 1069 unlock_buffer(bh); 1070 goto out; 1071 } 1072 1073 /* move top-level index/leaf into new block */ 1074 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data)); 1075 1076 /* set size of new block */ 1077 neh = ext_block_hdr(bh); 1078 /* old root could have indexes or leaves 1079 * so calculate e_max right way */ 1080 if (ext_depth(inode)) 1081 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1082 else 1083 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1084 neh->eh_magic = EXT4_EXT_MAGIC; 1085 set_buffer_uptodate(bh); 1086 unlock_buffer(bh); 1087 1088 err = ext4_handle_dirty_metadata(handle, inode, bh); 1089 if (err) 1090 goto out; 1091 1092 /* create index in new top-level index: num,max,pointer */ 1093 err = ext4_ext_get_access(handle, inode, curp); 1094 if (err) 1095 goto out; 1096 1097 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC; 1098 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1099 curp->p_hdr->eh_entries = cpu_to_le16(1); 1100 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr); 1101 1102 if (path[0].p_hdr->eh_depth) 1103 curp->p_idx->ei_block = 1104 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block; 1105 else 1106 curp->p_idx->ei_block = 1107 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block; 1108 ext4_idx_store_pblock(curp->p_idx, newblock); 1109 1110 neh = ext_inode_hdr(inode); 1111 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1112 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1113 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1114 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1115 1116 neh->eh_depth = cpu_to_le16(path->p_depth + 1); 1117 err = ext4_ext_dirty(handle, inode, curp); 1118 out: 1119 brelse(bh); 1120 1121 return err; 1122 } 1123 1124 /* 1125 * ext4_ext_create_new_leaf: 1126 * finds empty index and adds new leaf. 1127 * if no free index is found, then it requests in-depth growing. 1128 */ 1129 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1130 unsigned int flags, 1131 struct ext4_ext_path *path, 1132 struct ext4_extent *newext) 1133 { 1134 struct ext4_ext_path *curp; 1135 int depth, i, err = 0; 1136 1137 repeat: 1138 i = depth = ext_depth(inode); 1139 1140 /* walk up to the tree and look for free index entry */ 1141 curp = path + depth; 1142 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1143 i--; 1144 curp--; 1145 } 1146 1147 /* we use already allocated block for index block, 1148 * so subsequent data blocks should be contiguous */ 1149 if (EXT_HAS_FREE_INDEX(curp)) { 1150 /* if we found index with free entry, then use that 1151 * entry: create all needed subtree and add new leaf */ 1152 err = ext4_ext_split(handle, inode, flags, path, newext, i); 1153 if (err) 1154 goto out; 1155 1156 /* refill path */ 1157 ext4_ext_drop_refs(path); 1158 path = ext4_ext_find_extent(inode, 1159 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1160 path); 1161 if (IS_ERR(path)) 1162 err = PTR_ERR(path); 1163 } else { 1164 /* tree is full, time to grow in depth */ 1165 err = ext4_ext_grow_indepth(handle, inode, flags, 1166 path, newext); 1167 if (err) 1168 goto out; 1169 1170 /* refill path */ 1171 ext4_ext_drop_refs(path); 1172 path = ext4_ext_find_extent(inode, 1173 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1174 path); 1175 if (IS_ERR(path)) { 1176 err = PTR_ERR(path); 1177 goto out; 1178 } 1179 1180 /* 1181 * only first (depth 0 -> 1) produces free space; 1182 * in all other cases we have to split the grown tree 1183 */ 1184 depth = ext_depth(inode); 1185 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1186 /* now we need to split */ 1187 goto repeat; 1188 } 1189 } 1190 1191 out: 1192 return err; 1193 } 1194 1195 /* 1196 * search the closest allocated block to the left for *logical 1197 * and returns it at @logical + it's physical address at @phys 1198 * if *logical is the smallest allocated block, the function 1199 * returns 0 at @phys 1200 * return value contains 0 (success) or error code 1201 */ 1202 static int ext4_ext_search_left(struct inode *inode, 1203 struct ext4_ext_path *path, 1204 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1205 { 1206 struct ext4_extent_idx *ix; 1207 struct ext4_extent *ex; 1208 int depth, ee_len; 1209 1210 if (unlikely(path == NULL)) { 1211 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1212 return -EIO; 1213 } 1214 depth = path->p_depth; 1215 *phys = 0; 1216 1217 if (depth == 0 && path->p_ext == NULL) 1218 return 0; 1219 1220 /* usually extent in the path covers blocks smaller 1221 * then *logical, but it can be that extent is the 1222 * first one in the file */ 1223 1224 ex = path[depth].p_ext; 1225 ee_len = ext4_ext_get_actual_len(ex); 1226 if (*logical < le32_to_cpu(ex->ee_block)) { 1227 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1228 EXT4_ERROR_INODE(inode, 1229 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1230 *logical, le32_to_cpu(ex->ee_block)); 1231 return -EIO; 1232 } 1233 while (--depth >= 0) { 1234 ix = path[depth].p_idx; 1235 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1236 EXT4_ERROR_INODE(inode, 1237 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1238 ix != NULL ? ix->ei_block : 0, 1239 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1240 EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0, 1241 depth); 1242 return -EIO; 1243 } 1244 } 1245 return 0; 1246 } 1247 1248 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1249 EXT4_ERROR_INODE(inode, 1250 "logical %d < ee_block %d + ee_len %d!", 1251 *logical, le32_to_cpu(ex->ee_block), ee_len); 1252 return -EIO; 1253 } 1254 1255 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1256 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1257 return 0; 1258 } 1259 1260 /* 1261 * search the closest allocated block to the right for *logical 1262 * and returns it at @logical + it's physical address at @phys 1263 * if *logical is the smallest allocated block, the function 1264 * returns 0 at @phys 1265 * return value contains 0 (success) or error code 1266 */ 1267 static int ext4_ext_search_right(struct inode *inode, 1268 struct ext4_ext_path *path, 1269 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1270 { 1271 struct buffer_head *bh = NULL; 1272 struct ext4_extent_header *eh; 1273 struct ext4_extent_idx *ix; 1274 struct ext4_extent *ex; 1275 ext4_fsblk_t block; 1276 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1277 int ee_len; 1278 1279 if (unlikely(path == NULL)) { 1280 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1281 return -EIO; 1282 } 1283 depth = path->p_depth; 1284 *phys = 0; 1285 1286 if (depth == 0 && path->p_ext == NULL) 1287 return 0; 1288 1289 /* usually extent in the path covers blocks smaller 1290 * then *logical, but it can be that extent is the 1291 * first one in the file */ 1292 1293 ex = path[depth].p_ext; 1294 ee_len = ext4_ext_get_actual_len(ex); 1295 if (*logical < le32_to_cpu(ex->ee_block)) { 1296 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1297 EXT4_ERROR_INODE(inode, 1298 "first_extent(path[%d].p_hdr) != ex", 1299 depth); 1300 return -EIO; 1301 } 1302 while (--depth >= 0) { 1303 ix = path[depth].p_idx; 1304 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1305 EXT4_ERROR_INODE(inode, 1306 "ix != EXT_FIRST_INDEX *logical %d!", 1307 *logical); 1308 return -EIO; 1309 } 1310 } 1311 *logical = le32_to_cpu(ex->ee_block); 1312 *phys = ext4_ext_pblock(ex); 1313 return 0; 1314 } 1315 1316 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1317 EXT4_ERROR_INODE(inode, 1318 "logical %d < ee_block %d + ee_len %d!", 1319 *logical, le32_to_cpu(ex->ee_block), ee_len); 1320 return -EIO; 1321 } 1322 1323 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1324 /* next allocated block in this leaf */ 1325 ex++; 1326 *logical = le32_to_cpu(ex->ee_block); 1327 *phys = ext4_ext_pblock(ex); 1328 return 0; 1329 } 1330 1331 /* go up and search for index to the right */ 1332 while (--depth >= 0) { 1333 ix = path[depth].p_idx; 1334 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1335 goto got_index; 1336 } 1337 1338 /* we've gone up to the root and found no index to the right */ 1339 return 0; 1340 1341 got_index: 1342 /* we've found index to the right, let's 1343 * follow it and find the closest allocated 1344 * block to the right */ 1345 ix++; 1346 block = ext4_idx_pblock(ix); 1347 while (++depth < path->p_depth) { 1348 bh = sb_bread(inode->i_sb, block); 1349 if (bh == NULL) 1350 return -EIO; 1351 eh = ext_block_hdr(bh); 1352 /* subtract from p_depth to get proper eh_depth */ 1353 if (ext4_ext_check(inode, eh, path->p_depth - depth)) { 1354 put_bh(bh); 1355 return -EIO; 1356 } 1357 ix = EXT_FIRST_INDEX(eh); 1358 block = ext4_idx_pblock(ix); 1359 put_bh(bh); 1360 } 1361 1362 bh = sb_bread(inode->i_sb, block); 1363 if (bh == NULL) 1364 return -EIO; 1365 eh = ext_block_hdr(bh); 1366 if (ext4_ext_check(inode, eh, path->p_depth - depth)) { 1367 put_bh(bh); 1368 return -EIO; 1369 } 1370 ex = EXT_FIRST_EXTENT(eh); 1371 *logical = le32_to_cpu(ex->ee_block); 1372 *phys = ext4_ext_pblock(ex); 1373 put_bh(bh); 1374 return 0; 1375 } 1376 1377 /* 1378 * ext4_ext_next_allocated_block: 1379 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1380 * NOTE: it considers block number from index entry as 1381 * allocated block. Thus, index entries have to be consistent 1382 * with leaves. 1383 */ 1384 static ext4_lblk_t 1385 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1386 { 1387 int depth; 1388 1389 BUG_ON(path == NULL); 1390 depth = path->p_depth; 1391 1392 if (depth == 0 && path->p_ext == NULL) 1393 return EXT_MAX_BLOCKS; 1394 1395 while (depth >= 0) { 1396 if (depth == path->p_depth) { 1397 /* leaf */ 1398 if (path[depth].p_ext != 1399 EXT_LAST_EXTENT(path[depth].p_hdr)) 1400 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1401 } else { 1402 /* index */ 1403 if (path[depth].p_idx != 1404 EXT_LAST_INDEX(path[depth].p_hdr)) 1405 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1406 } 1407 depth--; 1408 } 1409 1410 return EXT_MAX_BLOCKS; 1411 } 1412 1413 /* 1414 * ext4_ext_next_leaf_block: 1415 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1416 */ 1417 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1418 { 1419 int depth; 1420 1421 BUG_ON(path == NULL); 1422 depth = path->p_depth; 1423 1424 /* zero-tree has no leaf blocks at all */ 1425 if (depth == 0) 1426 return EXT_MAX_BLOCKS; 1427 1428 /* go to index block */ 1429 depth--; 1430 1431 while (depth >= 0) { 1432 if (path[depth].p_idx != 1433 EXT_LAST_INDEX(path[depth].p_hdr)) 1434 return (ext4_lblk_t) 1435 le32_to_cpu(path[depth].p_idx[1].ei_block); 1436 depth--; 1437 } 1438 1439 return EXT_MAX_BLOCKS; 1440 } 1441 1442 /* 1443 * ext4_ext_correct_indexes: 1444 * if leaf gets modified and modified extent is first in the leaf, 1445 * then we have to correct all indexes above. 1446 * TODO: do we need to correct tree in all cases? 1447 */ 1448 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1449 struct ext4_ext_path *path) 1450 { 1451 struct ext4_extent_header *eh; 1452 int depth = ext_depth(inode); 1453 struct ext4_extent *ex; 1454 __le32 border; 1455 int k, err = 0; 1456 1457 eh = path[depth].p_hdr; 1458 ex = path[depth].p_ext; 1459 1460 if (unlikely(ex == NULL || eh == NULL)) { 1461 EXT4_ERROR_INODE(inode, 1462 "ex %p == NULL or eh %p == NULL", ex, eh); 1463 return -EIO; 1464 } 1465 1466 if (depth == 0) { 1467 /* there is no tree at all */ 1468 return 0; 1469 } 1470 1471 if (ex != EXT_FIRST_EXTENT(eh)) { 1472 /* we correct tree if first leaf got modified only */ 1473 return 0; 1474 } 1475 1476 /* 1477 * TODO: we need correction if border is smaller than current one 1478 */ 1479 k = depth - 1; 1480 border = path[depth].p_ext->ee_block; 1481 err = ext4_ext_get_access(handle, inode, path + k); 1482 if (err) 1483 return err; 1484 path[k].p_idx->ei_block = border; 1485 err = ext4_ext_dirty(handle, inode, path + k); 1486 if (err) 1487 return err; 1488 1489 while (k--) { 1490 /* change all left-side indexes */ 1491 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1492 break; 1493 err = ext4_ext_get_access(handle, inode, path + k); 1494 if (err) 1495 break; 1496 path[k].p_idx->ei_block = border; 1497 err = ext4_ext_dirty(handle, inode, path + k); 1498 if (err) 1499 break; 1500 } 1501 1502 return err; 1503 } 1504 1505 int 1506 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1507 struct ext4_extent *ex2) 1508 { 1509 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1510 1511 /* 1512 * Make sure that either both extents are uninitialized, or 1513 * both are _not_. 1514 */ 1515 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2)) 1516 return 0; 1517 1518 if (ext4_ext_is_uninitialized(ex1)) 1519 max_len = EXT_UNINIT_MAX_LEN; 1520 else 1521 max_len = EXT_INIT_MAX_LEN; 1522 1523 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1524 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1525 1526 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1527 le32_to_cpu(ex2->ee_block)) 1528 return 0; 1529 1530 /* 1531 * To allow future support for preallocated extents to be added 1532 * as an RO_COMPAT feature, refuse to merge to extents if 1533 * this can result in the top bit of ee_len being set. 1534 */ 1535 if (ext1_ee_len + ext2_ee_len > max_len) 1536 return 0; 1537 #ifdef AGGRESSIVE_TEST 1538 if (ext1_ee_len >= 4) 1539 return 0; 1540 #endif 1541 1542 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1543 return 1; 1544 return 0; 1545 } 1546 1547 /* 1548 * This function tries to merge the "ex" extent to the next extent in the tree. 1549 * It always tries to merge towards right. If you want to merge towards 1550 * left, pass "ex - 1" as argument instead of "ex". 1551 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1552 * 1 if they got merged. 1553 */ 1554 static int ext4_ext_try_to_merge_right(struct inode *inode, 1555 struct ext4_ext_path *path, 1556 struct ext4_extent *ex) 1557 { 1558 struct ext4_extent_header *eh; 1559 unsigned int depth, len; 1560 int merge_done = 0; 1561 int uninitialized = 0; 1562 1563 depth = ext_depth(inode); 1564 BUG_ON(path[depth].p_hdr == NULL); 1565 eh = path[depth].p_hdr; 1566 1567 while (ex < EXT_LAST_EXTENT(eh)) { 1568 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1569 break; 1570 /* merge with next extent! */ 1571 if (ext4_ext_is_uninitialized(ex)) 1572 uninitialized = 1; 1573 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1574 + ext4_ext_get_actual_len(ex + 1)); 1575 if (uninitialized) 1576 ext4_ext_mark_uninitialized(ex); 1577 1578 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1579 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1580 * sizeof(struct ext4_extent); 1581 memmove(ex + 1, ex + 2, len); 1582 } 1583 le16_add_cpu(&eh->eh_entries, -1); 1584 merge_done = 1; 1585 WARN_ON(eh->eh_entries == 0); 1586 if (!eh->eh_entries) 1587 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1588 } 1589 1590 return merge_done; 1591 } 1592 1593 /* 1594 * This function tries to merge the @ex extent to neighbours in the tree. 1595 * return 1 if merge left else 0. 1596 */ 1597 static int ext4_ext_try_to_merge(struct inode *inode, 1598 struct ext4_ext_path *path, 1599 struct ext4_extent *ex) { 1600 struct ext4_extent_header *eh; 1601 unsigned int depth; 1602 int merge_done = 0; 1603 int ret = 0; 1604 1605 depth = ext_depth(inode); 1606 BUG_ON(path[depth].p_hdr == NULL); 1607 eh = path[depth].p_hdr; 1608 1609 if (ex > EXT_FIRST_EXTENT(eh)) 1610 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1611 1612 if (!merge_done) 1613 ret = ext4_ext_try_to_merge_right(inode, path, ex); 1614 1615 return ret; 1616 } 1617 1618 /* 1619 * check if a portion of the "newext" extent overlaps with an 1620 * existing extent. 1621 * 1622 * If there is an overlap discovered, it updates the length of the newext 1623 * such that there will be no overlap, and then returns 1. 1624 * If there is no overlap found, it returns 0. 1625 */ 1626 static unsigned int ext4_ext_check_overlap(struct inode *inode, 1627 struct ext4_extent *newext, 1628 struct ext4_ext_path *path) 1629 { 1630 ext4_lblk_t b1, b2; 1631 unsigned int depth, len1; 1632 unsigned int ret = 0; 1633 1634 b1 = le32_to_cpu(newext->ee_block); 1635 len1 = ext4_ext_get_actual_len(newext); 1636 depth = ext_depth(inode); 1637 if (!path[depth].p_ext) 1638 goto out; 1639 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1640 1641 /* 1642 * get the next allocated block if the extent in the path 1643 * is before the requested block(s) 1644 */ 1645 if (b2 < b1) { 1646 b2 = ext4_ext_next_allocated_block(path); 1647 if (b2 == EXT_MAX_BLOCKS) 1648 goto out; 1649 } 1650 1651 /* check for wrap through zero on extent logical start block*/ 1652 if (b1 + len1 < b1) { 1653 len1 = EXT_MAX_BLOCKS - b1; 1654 newext->ee_len = cpu_to_le16(len1); 1655 ret = 1; 1656 } 1657 1658 /* check for overlap */ 1659 if (b1 + len1 > b2) { 1660 newext->ee_len = cpu_to_le16(b2 - b1); 1661 ret = 1; 1662 } 1663 out: 1664 return ret; 1665 } 1666 1667 /* 1668 * ext4_ext_insert_extent: 1669 * tries to merge requsted extent into the existing extent or 1670 * inserts requested extent as new one into the tree, 1671 * creating new leaf in the no-space case. 1672 */ 1673 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1674 struct ext4_ext_path *path, 1675 struct ext4_extent *newext, int flag) 1676 { 1677 struct ext4_extent_header *eh; 1678 struct ext4_extent *ex, *fex; 1679 struct ext4_extent *nearex; /* nearest extent */ 1680 struct ext4_ext_path *npath = NULL; 1681 int depth, len, err; 1682 ext4_lblk_t next; 1683 unsigned uninitialized = 0; 1684 int flags = 0; 1685 1686 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1687 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1688 return -EIO; 1689 } 1690 depth = ext_depth(inode); 1691 ex = path[depth].p_ext; 1692 if (unlikely(path[depth].p_hdr == NULL)) { 1693 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1694 return -EIO; 1695 } 1696 1697 /* try to insert block into found extent and return */ 1698 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO) 1699 && ext4_can_extents_be_merged(inode, ex, newext)) { 1700 ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n", 1701 ext4_ext_is_uninitialized(newext), 1702 ext4_ext_get_actual_len(newext), 1703 le32_to_cpu(ex->ee_block), 1704 ext4_ext_is_uninitialized(ex), 1705 ext4_ext_get_actual_len(ex), 1706 ext4_ext_pblock(ex)); 1707 err = ext4_ext_get_access(handle, inode, path + depth); 1708 if (err) 1709 return err; 1710 1711 /* 1712 * ext4_can_extents_be_merged should have checked that either 1713 * both extents are uninitialized, or both aren't. Thus we 1714 * need to check only one of them here. 1715 */ 1716 if (ext4_ext_is_uninitialized(ex)) 1717 uninitialized = 1; 1718 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1719 + ext4_ext_get_actual_len(newext)); 1720 if (uninitialized) 1721 ext4_ext_mark_uninitialized(ex); 1722 eh = path[depth].p_hdr; 1723 nearex = ex; 1724 goto merge; 1725 } 1726 1727 depth = ext_depth(inode); 1728 eh = path[depth].p_hdr; 1729 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1730 goto has_space; 1731 1732 /* probably next leaf has space for us? */ 1733 fex = EXT_LAST_EXTENT(eh); 1734 next = EXT_MAX_BLOCKS; 1735 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 1736 next = ext4_ext_next_leaf_block(path); 1737 if (next != EXT_MAX_BLOCKS) { 1738 ext_debug("next leaf block - %d\n", next); 1739 BUG_ON(npath != NULL); 1740 npath = ext4_ext_find_extent(inode, next, NULL); 1741 if (IS_ERR(npath)) 1742 return PTR_ERR(npath); 1743 BUG_ON(npath->p_depth != path->p_depth); 1744 eh = npath[depth].p_hdr; 1745 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1746 ext_debug("next leaf isn't full(%d)\n", 1747 le16_to_cpu(eh->eh_entries)); 1748 path = npath; 1749 goto has_space; 1750 } 1751 ext_debug("next leaf has no free space(%d,%d)\n", 1752 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1753 } 1754 1755 /* 1756 * There is no free space in the found leaf. 1757 * We're gonna add a new leaf in the tree. 1758 */ 1759 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) 1760 flags = EXT4_MB_USE_ROOT_BLOCKS; 1761 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext); 1762 if (err) 1763 goto cleanup; 1764 depth = ext_depth(inode); 1765 eh = path[depth].p_hdr; 1766 1767 has_space: 1768 nearex = path[depth].p_ext; 1769 1770 err = ext4_ext_get_access(handle, inode, path + depth); 1771 if (err) 1772 goto cleanup; 1773 1774 if (!nearex) { 1775 /* there is no extent in this leaf, create first one */ 1776 ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n", 1777 le32_to_cpu(newext->ee_block), 1778 ext4_ext_pblock(newext), 1779 ext4_ext_is_uninitialized(newext), 1780 ext4_ext_get_actual_len(newext)); 1781 path[depth].p_ext = EXT_FIRST_EXTENT(eh); 1782 } else if (le32_to_cpu(newext->ee_block) 1783 > le32_to_cpu(nearex->ee_block)) { 1784 /* BUG_ON(newext->ee_block == nearex->ee_block); */ 1785 if (nearex != EXT_LAST_EXTENT(eh)) { 1786 len = EXT_MAX_EXTENT(eh) - nearex; 1787 len = (len - 1) * sizeof(struct ext4_extent); 1788 len = len < 0 ? 0 : len; 1789 ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, " 1790 "move %d from 0x%p to 0x%p\n", 1791 le32_to_cpu(newext->ee_block), 1792 ext4_ext_pblock(newext), 1793 ext4_ext_is_uninitialized(newext), 1794 ext4_ext_get_actual_len(newext), 1795 nearex, len, nearex + 1, nearex + 2); 1796 memmove(nearex + 2, nearex + 1, len); 1797 } 1798 path[depth].p_ext = nearex + 1; 1799 } else { 1800 BUG_ON(newext->ee_block == nearex->ee_block); 1801 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent); 1802 len = len < 0 ? 0 : len; 1803 ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, " 1804 "move %d from 0x%p to 0x%p\n", 1805 le32_to_cpu(newext->ee_block), 1806 ext4_ext_pblock(newext), 1807 ext4_ext_is_uninitialized(newext), 1808 ext4_ext_get_actual_len(newext), 1809 nearex, len, nearex, nearex + 1); 1810 memmove(nearex + 1, nearex, len); 1811 path[depth].p_ext = nearex; 1812 } 1813 1814 le16_add_cpu(&eh->eh_entries, 1); 1815 nearex = path[depth].p_ext; 1816 nearex->ee_block = newext->ee_block; 1817 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 1818 nearex->ee_len = newext->ee_len; 1819 1820 merge: 1821 /* try to merge extents to the right */ 1822 if (!(flag & EXT4_GET_BLOCKS_PRE_IO)) 1823 ext4_ext_try_to_merge(inode, path, nearex); 1824 1825 /* try to merge extents to the left */ 1826 1827 /* time to correct all indexes above */ 1828 err = ext4_ext_correct_indexes(handle, inode, path); 1829 if (err) 1830 goto cleanup; 1831 1832 err = ext4_ext_dirty(handle, inode, path + depth); 1833 1834 cleanup: 1835 if (npath) { 1836 ext4_ext_drop_refs(npath); 1837 kfree(npath); 1838 } 1839 ext4_ext_invalidate_cache(inode); 1840 return err; 1841 } 1842 1843 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block, 1844 ext4_lblk_t num, ext_prepare_callback func, 1845 void *cbdata) 1846 { 1847 struct ext4_ext_path *path = NULL; 1848 struct ext4_ext_cache cbex; 1849 struct ext4_extent *ex; 1850 ext4_lblk_t next, start = 0, end = 0; 1851 ext4_lblk_t last = block + num; 1852 int depth, exists, err = 0; 1853 1854 BUG_ON(func == NULL); 1855 BUG_ON(inode == NULL); 1856 1857 while (block < last && block != EXT_MAX_BLOCKS) { 1858 num = last - block; 1859 /* find extent for this block */ 1860 down_read(&EXT4_I(inode)->i_data_sem); 1861 path = ext4_ext_find_extent(inode, block, path); 1862 up_read(&EXT4_I(inode)->i_data_sem); 1863 if (IS_ERR(path)) { 1864 err = PTR_ERR(path); 1865 path = NULL; 1866 break; 1867 } 1868 1869 depth = ext_depth(inode); 1870 if (unlikely(path[depth].p_hdr == NULL)) { 1871 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1872 err = -EIO; 1873 break; 1874 } 1875 ex = path[depth].p_ext; 1876 next = ext4_ext_next_allocated_block(path); 1877 1878 exists = 0; 1879 if (!ex) { 1880 /* there is no extent yet, so try to allocate 1881 * all requested space */ 1882 start = block; 1883 end = block + num; 1884 } else if (le32_to_cpu(ex->ee_block) > block) { 1885 /* need to allocate space before found extent */ 1886 start = block; 1887 end = le32_to_cpu(ex->ee_block); 1888 if (block + num < end) 1889 end = block + num; 1890 } else if (block >= le32_to_cpu(ex->ee_block) 1891 + ext4_ext_get_actual_len(ex)) { 1892 /* need to allocate space after found extent */ 1893 start = block; 1894 end = block + num; 1895 if (end >= next) 1896 end = next; 1897 } else if (block >= le32_to_cpu(ex->ee_block)) { 1898 /* 1899 * some part of requested space is covered 1900 * by found extent 1901 */ 1902 start = block; 1903 end = le32_to_cpu(ex->ee_block) 1904 + ext4_ext_get_actual_len(ex); 1905 if (block + num < end) 1906 end = block + num; 1907 exists = 1; 1908 } else { 1909 BUG(); 1910 } 1911 BUG_ON(end <= start); 1912 1913 if (!exists) { 1914 cbex.ec_block = start; 1915 cbex.ec_len = end - start; 1916 cbex.ec_start = 0; 1917 } else { 1918 cbex.ec_block = le32_to_cpu(ex->ee_block); 1919 cbex.ec_len = ext4_ext_get_actual_len(ex); 1920 cbex.ec_start = ext4_ext_pblock(ex); 1921 } 1922 1923 if (unlikely(cbex.ec_len == 0)) { 1924 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0"); 1925 err = -EIO; 1926 break; 1927 } 1928 err = func(inode, next, &cbex, ex, cbdata); 1929 ext4_ext_drop_refs(path); 1930 1931 if (err < 0) 1932 break; 1933 1934 if (err == EXT_REPEAT) 1935 continue; 1936 else if (err == EXT_BREAK) { 1937 err = 0; 1938 break; 1939 } 1940 1941 if (ext_depth(inode) != depth) { 1942 /* depth was changed. we have to realloc path */ 1943 kfree(path); 1944 path = NULL; 1945 } 1946 1947 block = cbex.ec_block + cbex.ec_len; 1948 } 1949 1950 if (path) { 1951 ext4_ext_drop_refs(path); 1952 kfree(path); 1953 } 1954 1955 return err; 1956 } 1957 1958 static void 1959 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block, 1960 __u32 len, ext4_fsblk_t start) 1961 { 1962 struct ext4_ext_cache *cex; 1963 BUG_ON(len == 0); 1964 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1965 cex = &EXT4_I(inode)->i_cached_extent; 1966 cex->ec_block = block; 1967 cex->ec_len = len; 1968 cex->ec_start = start; 1969 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1970 } 1971 1972 /* 1973 * ext4_ext_put_gap_in_cache: 1974 * calculate boundaries of the gap that the requested block fits into 1975 * and cache this gap 1976 */ 1977 static void 1978 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 1979 ext4_lblk_t block) 1980 { 1981 int depth = ext_depth(inode); 1982 unsigned long len; 1983 ext4_lblk_t lblock; 1984 struct ext4_extent *ex; 1985 1986 ex = path[depth].p_ext; 1987 if (ex == NULL) { 1988 /* there is no extent yet, so gap is [0;-] */ 1989 lblock = 0; 1990 len = EXT_MAX_BLOCKS; 1991 ext_debug("cache gap(whole file):"); 1992 } else if (block < le32_to_cpu(ex->ee_block)) { 1993 lblock = block; 1994 len = le32_to_cpu(ex->ee_block) - block; 1995 ext_debug("cache gap(before): %u [%u:%u]", 1996 block, 1997 le32_to_cpu(ex->ee_block), 1998 ext4_ext_get_actual_len(ex)); 1999 } else if (block >= le32_to_cpu(ex->ee_block) 2000 + ext4_ext_get_actual_len(ex)) { 2001 ext4_lblk_t next; 2002 lblock = le32_to_cpu(ex->ee_block) 2003 + ext4_ext_get_actual_len(ex); 2004 2005 next = ext4_ext_next_allocated_block(path); 2006 ext_debug("cache gap(after): [%u:%u] %u", 2007 le32_to_cpu(ex->ee_block), 2008 ext4_ext_get_actual_len(ex), 2009 block); 2010 BUG_ON(next == lblock); 2011 len = next - lblock; 2012 } else { 2013 lblock = len = 0; 2014 BUG(); 2015 } 2016 2017 ext_debug(" -> %u:%lu\n", lblock, len); 2018 ext4_ext_put_in_cache(inode, lblock, len, 0); 2019 } 2020 2021 /* 2022 * ext4_ext_check_cache() 2023 * Checks to see if the given block is in the cache. 2024 * If it is, the cached extent is stored in the given 2025 * cache extent pointer. If the cached extent is a hole, 2026 * this routine should be used instead of 2027 * ext4_ext_in_cache if the calling function needs to 2028 * know the size of the hole. 2029 * 2030 * @inode: The files inode 2031 * @block: The block to look for in the cache 2032 * @ex: Pointer where the cached extent will be stored 2033 * if it contains block 2034 * 2035 * Return 0 if cache is invalid; 1 if the cache is valid 2036 */ 2037 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block, 2038 struct ext4_ext_cache *ex){ 2039 struct ext4_ext_cache *cex; 2040 struct ext4_sb_info *sbi; 2041 int ret = 0; 2042 2043 /* 2044 * We borrow i_block_reservation_lock to protect i_cached_extent 2045 */ 2046 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 2047 cex = &EXT4_I(inode)->i_cached_extent; 2048 sbi = EXT4_SB(inode->i_sb); 2049 2050 /* has cache valid data? */ 2051 if (cex->ec_len == 0) 2052 goto errout; 2053 2054 if (in_range(block, cex->ec_block, cex->ec_len)) { 2055 memcpy(ex, cex, sizeof(struct ext4_ext_cache)); 2056 ext_debug("%u cached by %u:%u:%llu\n", 2057 block, 2058 cex->ec_block, cex->ec_len, cex->ec_start); 2059 ret = 1; 2060 } 2061 errout: 2062 if (!ret) 2063 sbi->extent_cache_misses++; 2064 else 2065 sbi->extent_cache_hits++; 2066 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 2067 return ret; 2068 } 2069 2070 /* 2071 * ext4_ext_in_cache() 2072 * Checks to see if the given block is in the cache. 2073 * If it is, the cached extent is stored in the given 2074 * extent pointer. 2075 * 2076 * @inode: The files inode 2077 * @block: The block to look for in the cache 2078 * @ex: Pointer where the cached extent will be stored 2079 * if it contains block 2080 * 2081 * Return 0 if cache is invalid; 1 if the cache is valid 2082 */ 2083 static int 2084 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block, 2085 struct ext4_extent *ex) 2086 { 2087 struct ext4_ext_cache cex; 2088 int ret = 0; 2089 2090 if (ext4_ext_check_cache(inode, block, &cex)) { 2091 ex->ee_block = cpu_to_le32(cex.ec_block); 2092 ext4_ext_store_pblock(ex, cex.ec_start); 2093 ex->ee_len = cpu_to_le16(cex.ec_len); 2094 ret = 1; 2095 } 2096 2097 return ret; 2098 } 2099 2100 2101 /* 2102 * ext4_ext_rm_idx: 2103 * removes index from the index block. 2104 */ 2105 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2106 struct ext4_ext_path *path) 2107 { 2108 int err; 2109 ext4_fsblk_t leaf; 2110 2111 /* free index block */ 2112 path--; 2113 leaf = ext4_idx_pblock(path->p_idx); 2114 if (unlikely(path->p_hdr->eh_entries == 0)) { 2115 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2116 return -EIO; 2117 } 2118 err = ext4_ext_get_access(handle, inode, path); 2119 if (err) 2120 return err; 2121 2122 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2123 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2124 len *= sizeof(struct ext4_extent_idx); 2125 memmove(path->p_idx, path->p_idx + 1, len); 2126 } 2127 2128 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2129 err = ext4_ext_dirty(handle, inode, path); 2130 if (err) 2131 return err; 2132 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2133 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2134 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2135 return err; 2136 } 2137 2138 /* 2139 * ext4_ext_calc_credits_for_single_extent: 2140 * This routine returns max. credits that needed to insert an extent 2141 * to the extent tree. 2142 * When pass the actual path, the caller should calculate credits 2143 * under i_data_sem. 2144 */ 2145 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2146 struct ext4_ext_path *path) 2147 { 2148 if (path) { 2149 int depth = ext_depth(inode); 2150 int ret = 0; 2151 2152 /* probably there is space in leaf? */ 2153 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2154 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2155 2156 /* 2157 * There are some space in the leaf tree, no 2158 * need to account for leaf block credit 2159 * 2160 * bitmaps and block group descriptor blocks 2161 * and other metadat blocks still need to be 2162 * accounted. 2163 */ 2164 /* 1 bitmap, 1 block group descriptor */ 2165 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2166 return ret; 2167 } 2168 } 2169 2170 return ext4_chunk_trans_blocks(inode, nrblocks); 2171 } 2172 2173 /* 2174 * How many index/leaf blocks need to change/allocate to modify nrblocks? 2175 * 2176 * if nrblocks are fit in a single extent (chunk flag is 1), then 2177 * in the worse case, each tree level index/leaf need to be changed 2178 * if the tree split due to insert a new extent, then the old tree 2179 * index/leaf need to be updated too 2180 * 2181 * If the nrblocks are discontiguous, they could cause 2182 * the whole tree split more than once, but this is really rare. 2183 */ 2184 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 2185 { 2186 int index; 2187 int depth = ext_depth(inode); 2188 2189 if (chunk) 2190 index = depth * 2; 2191 else 2192 index = depth * 3; 2193 2194 return index; 2195 } 2196 2197 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2198 struct ext4_extent *ex, 2199 ext4_lblk_t from, ext4_lblk_t to) 2200 { 2201 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2202 int flags = EXT4_FREE_BLOCKS_FORGET; 2203 2204 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2205 flags |= EXT4_FREE_BLOCKS_METADATA; 2206 #ifdef EXTENTS_STATS 2207 { 2208 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2209 spin_lock(&sbi->s_ext_stats_lock); 2210 sbi->s_ext_blocks += ee_len; 2211 sbi->s_ext_extents++; 2212 if (ee_len < sbi->s_ext_min) 2213 sbi->s_ext_min = ee_len; 2214 if (ee_len > sbi->s_ext_max) 2215 sbi->s_ext_max = ee_len; 2216 if (ext_depth(inode) > sbi->s_depth_max) 2217 sbi->s_depth_max = ext_depth(inode); 2218 spin_unlock(&sbi->s_ext_stats_lock); 2219 } 2220 #endif 2221 if (from >= le32_to_cpu(ex->ee_block) 2222 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2223 /* tail removal */ 2224 ext4_lblk_t num; 2225 ext4_fsblk_t start; 2226 2227 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2228 start = ext4_ext_pblock(ex) + ee_len - num; 2229 ext_debug("free last %u blocks starting %llu\n", num, start); 2230 ext4_free_blocks(handle, inode, NULL, start, num, flags); 2231 } else if (from == le32_to_cpu(ex->ee_block) 2232 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { 2233 /* head removal */ 2234 ext4_lblk_t num; 2235 ext4_fsblk_t start; 2236 2237 num = to - from; 2238 start = ext4_ext_pblock(ex); 2239 2240 ext_debug("free first %u blocks starting %llu\n", num, start); 2241 ext4_free_blocks(handle, inode, 0, start, num, flags); 2242 2243 } else { 2244 printk(KERN_INFO "strange request: removal(2) " 2245 "%u-%u from %u:%u\n", 2246 from, to, le32_to_cpu(ex->ee_block), ee_len); 2247 } 2248 return 0; 2249 } 2250 2251 2252 /* 2253 * ext4_ext_rm_leaf() Removes the extents associated with the 2254 * blocks appearing between "start" and "end", and splits the extents 2255 * if "start" and "end" appear in the same extent 2256 * 2257 * @handle: The journal handle 2258 * @inode: The files inode 2259 * @path: The path to the leaf 2260 * @start: The first block to remove 2261 * @end: The last block to remove 2262 */ 2263 static int 2264 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2265 struct ext4_ext_path *path, ext4_lblk_t start, 2266 ext4_lblk_t end) 2267 { 2268 int err = 0, correct_index = 0; 2269 int depth = ext_depth(inode), credits; 2270 struct ext4_extent_header *eh; 2271 ext4_lblk_t a, b, block; 2272 unsigned num; 2273 ext4_lblk_t ex_ee_block; 2274 unsigned short ex_ee_len; 2275 unsigned uninitialized = 0; 2276 struct ext4_extent *ex; 2277 struct ext4_map_blocks map; 2278 2279 /* the header must be checked already in ext4_ext_remove_space() */ 2280 ext_debug("truncate since %u in leaf\n", start); 2281 if (!path[depth].p_hdr) 2282 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2283 eh = path[depth].p_hdr; 2284 if (unlikely(path[depth].p_hdr == NULL)) { 2285 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2286 return -EIO; 2287 } 2288 /* find where to start removing */ 2289 ex = EXT_LAST_EXTENT(eh); 2290 2291 ex_ee_block = le32_to_cpu(ex->ee_block); 2292 ex_ee_len = ext4_ext_get_actual_len(ex); 2293 2294 while (ex >= EXT_FIRST_EXTENT(eh) && 2295 ex_ee_block + ex_ee_len > start) { 2296 2297 if (ext4_ext_is_uninitialized(ex)) 2298 uninitialized = 1; 2299 else 2300 uninitialized = 0; 2301 2302 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2303 uninitialized, ex_ee_len); 2304 path[depth].p_ext = ex; 2305 2306 a = ex_ee_block > start ? ex_ee_block : start; 2307 b = ex_ee_block+ex_ee_len - 1 < end ? 2308 ex_ee_block+ex_ee_len - 1 : end; 2309 2310 ext_debug(" border %u:%u\n", a, b); 2311 2312 /* If this extent is beyond the end of the hole, skip it */ 2313 if (end <= ex_ee_block) { 2314 ex--; 2315 ex_ee_block = le32_to_cpu(ex->ee_block); 2316 ex_ee_len = ext4_ext_get_actual_len(ex); 2317 continue; 2318 } else if (a != ex_ee_block && 2319 b != ex_ee_block + ex_ee_len - 1) { 2320 /* 2321 * If this is a truncate, then this condition should 2322 * never happen because at least one of the end points 2323 * needs to be on the edge of the extent. 2324 */ 2325 if (end == EXT_MAX_BLOCKS - 1) { 2326 ext_debug(" bad truncate %u:%u\n", 2327 start, end); 2328 block = 0; 2329 num = 0; 2330 err = -EIO; 2331 goto out; 2332 } 2333 /* 2334 * else this is a hole punch, so the extent needs to 2335 * be split since neither edge of the hole is on the 2336 * extent edge 2337 */ 2338 else{ 2339 map.m_pblk = ext4_ext_pblock(ex); 2340 map.m_lblk = ex_ee_block; 2341 map.m_len = b - ex_ee_block; 2342 2343 err = ext4_split_extent(handle, 2344 inode, path, &map, 0, 2345 EXT4_GET_BLOCKS_PUNCH_OUT_EXT | 2346 EXT4_GET_BLOCKS_PRE_IO); 2347 2348 if (err < 0) 2349 goto out; 2350 2351 ex_ee_len = ext4_ext_get_actual_len(ex); 2352 2353 b = ex_ee_block+ex_ee_len - 1 < end ? 2354 ex_ee_block+ex_ee_len - 1 : end; 2355 2356 /* Then remove tail of this extent */ 2357 block = ex_ee_block; 2358 num = a - block; 2359 } 2360 } else if (a != ex_ee_block) { 2361 /* remove tail of the extent */ 2362 block = ex_ee_block; 2363 num = a - block; 2364 } else if (b != ex_ee_block + ex_ee_len - 1) { 2365 /* remove head of the extent */ 2366 block = b; 2367 num = ex_ee_block + ex_ee_len - b; 2368 2369 /* 2370 * If this is a truncate, this condition 2371 * should never happen 2372 */ 2373 if (end == EXT_MAX_BLOCKS - 1) { 2374 ext_debug(" bad truncate %u:%u\n", 2375 start, end); 2376 err = -EIO; 2377 goto out; 2378 } 2379 } else { 2380 /* remove whole extent: excellent! */ 2381 block = ex_ee_block; 2382 num = 0; 2383 if (a != ex_ee_block) { 2384 ext_debug(" bad truncate %u:%u\n", 2385 start, end); 2386 err = -EIO; 2387 goto out; 2388 } 2389 2390 if (b != ex_ee_block + ex_ee_len - 1) { 2391 ext_debug(" bad truncate %u:%u\n", 2392 start, end); 2393 err = -EIO; 2394 goto out; 2395 } 2396 } 2397 2398 /* 2399 * 3 for leaf, sb, and inode plus 2 (bmap and group 2400 * descriptor) for each block group; assume two block 2401 * groups plus ex_ee_len/blocks_per_block_group for 2402 * the worst case 2403 */ 2404 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2405 if (ex == EXT_FIRST_EXTENT(eh)) { 2406 correct_index = 1; 2407 credits += (ext_depth(inode)) + 1; 2408 } 2409 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2410 2411 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2412 if (err) 2413 goto out; 2414 2415 err = ext4_ext_get_access(handle, inode, path + depth); 2416 if (err) 2417 goto out; 2418 2419 err = ext4_remove_blocks(handle, inode, ex, a, b); 2420 if (err) 2421 goto out; 2422 2423 if (num == 0) { 2424 /* this extent is removed; mark slot entirely unused */ 2425 ext4_ext_store_pblock(ex, 0); 2426 } else if (block != ex_ee_block) { 2427 /* 2428 * If this was a head removal, then we need to update 2429 * the physical block since it is now at a different 2430 * location 2431 */ 2432 ext4_ext_store_pblock(ex, ext4_ext_pblock(ex) + (b-a)); 2433 } 2434 2435 ex->ee_block = cpu_to_le32(block); 2436 ex->ee_len = cpu_to_le16(num); 2437 /* 2438 * Do not mark uninitialized if all the blocks in the 2439 * extent have been removed. 2440 */ 2441 if (uninitialized && num) 2442 ext4_ext_mark_uninitialized(ex); 2443 2444 err = ext4_ext_dirty(handle, inode, path + depth); 2445 if (err) 2446 goto out; 2447 2448 /* 2449 * If the extent was completely released, 2450 * we need to remove it from the leaf 2451 */ 2452 if (num == 0) { 2453 if (end != EXT_MAX_BLOCKS - 1) { 2454 /* 2455 * For hole punching, we need to scoot all the 2456 * extents up when an extent is removed so that 2457 * we dont have blank extents in the middle 2458 */ 2459 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2460 sizeof(struct ext4_extent)); 2461 2462 /* Now get rid of the one at the end */ 2463 memset(EXT_LAST_EXTENT(eh), 0, 2464 sizeof(struct ext4_extent)); 2465 } 2466 le16_add_cpu(&eh->eh_entries, -1); 2467 } 2468 2469 ext_debug("new extent: %u:%u:%llu\n", block, num, 2470 ext4_ext_pblock(ex)); 2471 ex--; 2472 ex_ee_block = le32_to_cpu(ex->ee_block); 2473 ex_ee_len = ext4_ext_get_actual_len(ex); 2474 } 2475 2476 if (correct_index && eh->eh_entries) 2477 err = ext4_ext_correct_indexes(handle, inode, path); 2478 2479 /* if this leaf is free, then we should 2480 * remove it from index block above */ 2481 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2482 err = ext4_ext_rm_idx(handle, inode, path + depth); 2483 2484 out: 2485 return err; 2486 } 2487 2488 /* 2489 * ext4_ext_more_to_rm: 2490 * returns 1 if current index has to be freed (even partial) 2491 */ 2492 static int 2493 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2494 { 2495 BUG_ON(path->p_idx == NULL); 2496 2497 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2498 return 0; 2499 2500 /* 2501 * if truncate on deeper level happened, it wasn't partial, 2502 * so we have to consider current index for truncation 2503 */ 2504 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2505 return 0; 2506 return 1; 2507 } 2508 2509 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start) 2510 { 2511 struct super_block *sb = inode->i_sb; 2512 int depth = ext_depth(inode); 2513 struct ext4_ext_path *path; 2514 handle_t *handle; 2515 int i, err; 2516 2517 ext_debug("truncate since %u\n", start); 2518 2519 /* probably first extent we're gonna free will be last in block */ 2520 handle = ext4_journal_start(inode, depth + 1); 2521 if (IS_ERR(handle)) 2522 return PTR_ERR(handle); 2523 2524 again: 2525 ext4_ext_invalidate_cache(inode); 2526 2527 /* 2528 * We start scanning from right side, freeing all the blocks 2529 * after i_size and walking into the tree depth-wise. 2530 */ 2531 depth = ext_depth(inode); 2532 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS); 2533 if (path == NULL) { 2534 ext4_journal_stop(handle); 2535 return -ENOMEM; 2536 } 2537 path[0].p_depth = depth; 2538 path[0].p_hdr = ext_inode_hdr(inode); 2539 if (ext4_ext_check(inode, path[0].p_hdr, depth)) { 2540 err = -EIO; 2541 goto out; 2542 } 2543 i = err = 0; 2544 2545 while (i >= 0 && err == 0) { 2546 if (i == depth) { 2547 /* this is leaf block */ 2548 err = ext4_ext_rm_leaf(handle, inode, path, 2549 start, EXT_MAX_BLOCKS - 1); 2550 /* root level has p_bh == NULL, brelse() eats this */ 2551 brelse(path[i].p_bh); 2552 path[i].p_bh = NULL; 2553 i--; 2554 continue; 2555 } 2556 2557 /* this is index block */ 2558 if (!path[i].p_hdr) { 2559 ext_debug("initialize header\n"); 2560 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2561 } 2562 2563 if (!path[i].p_idx) { 2564 /* this level hasn't been touched yet */ 2565 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2566 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2567 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2568 path[i].p_hdr, 2569 le16_to_cpu(path[i].p_hdr->eh_entries)); 2570 } else { 2571 /* we were already here, see at next index */ 2572 path[i].p_idx--; 2573 } 2574 2575 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2576 i, EXT_FIRST_INDEX(path[i].p_hdr), 2577 path[i].p_idx); 2578 if (ext4_ext_more_to_rm(path + i)) { 2579 struct buffer_head *bh; 2580 /* go to the next level */ 2581 ext_debug("move to level %d (block %llu)\n", 2582 i + 1, ext4_idx_pblock(path[i].p_idx)); 2583 memset(path + i + 1, 0, sizeof(*path)); 2584 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx)); 2585 if (!bh) { 2586 /* should we reset i_size? */ 2587 err = -EIO; 2588 break; 2589 } 2590 if (WARN_ON(i + 1 > depth)) { 2591 err = -EIO; 2592 break; 2593 } 2594 if (ext4_ext_check(inode, ext_block_hdr(bh), 2595 depth - i - 1)) { 2596 err = -EIO; 2597 break; 2598 } 2599 path[i + 1].p_bh = bh; 2600 2601 /* save actual number of indexes since this 2602 * number is changed at the next iteration */ 2603 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2604 i++; 2605 } else { 2606 /* we finished processing this index, go up */ 2607 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2608 /* index is empty, remove it; 2609 * handle must be already prepared by the 2610 * truncatei_leaf() */ 2611 err = ext4_ext_rm_idx(handle, inode, path + i); 2612 } 2613 /* root level has p_bh == NULL, brelse() eats this */ 2614 brelse(path[i].p_bh); 2615 path[i].p_bh = NULL; 2616 i--; 2617 ext_debug("return to level %d\n", i); 2618 } 2619 } 2620 2621 /* TODO: flexible tree reduction should be here */ 2622 if (path->p_hdr->eh_entries == 0) { 2623 /* 2624 * truncate to zero freed all the tree, 2625 * so we need to correct eh_depth 2626 */ 2627 err = ext4_ext_get_access(handle, inode, path); 2628 if (err == 0) { 2629 ext_inode_hdr(inode)->eh_depth = 0; 2630 ext_inode_hdr(inode)->eh_max = 2631 cpu_to_le16(ext4_ext_space_root(inode, 0)); 2632 err = ext4_ext_dirty(handle, inode, path); 2633 } 2634 } 2635 out: 2636 ext4_ext_drop_refs(path); 2637 kfree(path); 2638 if (err == -EAGAIN) 2639 goto again; 2640 ext4_journal_stop(handle); 2641 2642 return err; 2643 } 2644 2645 /* 2646 * called at mount time 2647 */ 2648 void ext4_ext_init(struct super_block *sb) 2649 { 2650 /* 2651 * possible initialization would be here 2652 */ 2653 2654 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2655 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 2656 printk(KERN_INFO "EXT4-fs: file extents enabled"); 2657 #ifdef AGGRESSIVE_TEST 2658 printk(", aggressive tests"); 2659 #endif 2660 #ifdef CHECK_BINSEARCH 2661 printk(", check binsearch"); 2662 #endif 2663 #ifdef EXTENTS_STATS 2664 printk(", stats"); 2665 #endif 2666 printk("\n"); 2667 #endif 2668 #ifdef EXTENTS_STATS 2669 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2670 EXT4_SB(sb)->s_ext_min = 1 << 30; 2671 EXT4_SB(sb)->s_ext_max = 0; 2672 #endif 2673 } 2674 } 2675 2676 /* 2677 * called at umount time 2678 */ 2679 void ext4_ext_release(struct super_block *sb) 2680 { 2681 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 2682 return; 2683 2684 #ifdef EXTENTS_STATS 2685 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2686 struct ext4_sb_info *sbi = EXT4_SB(sb); 2687 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2688 sbi->s_ext_blocks, sbi->s_ext_extents, 2689 sbi->s_ext_blocks / sbi->s_ext_extents); 2690 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2691 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2692 } 2693 #endif 2694 } 2695 2696 /* FIXME!! we need to try to merge to left or right after zero-out */ 2697 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 2698 { 2699 ext4_fsblk_t ee_pblock; 2700 unsigned int ee_len; 2701 int ret; 2702 2703 ee_len = ext4_ext_get_actual_len(ex); 2704 ee_pblock = ext4_ext_pblock(ex); 2705 2706 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 2707 if (ret > 0) 2708 ret = 0; 2709 2710 return ret; 2711 } 2712 2713 /* 2714 * used by extent splitting. 2715 */ 2716 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 2717 due to ENOSPC */ 2718 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */ 2719 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */ 2720 2721 /* 2722 * ext4_split_extent_at() splits an extent at given block. 2723 * 2724 * @handle: the journal handle 2725 * @inode: the file inode 2726 * @path: the path to the extent 2727 * @split: the logical block where the extent is splitted. 2728 * @split_flags: indicates if the extent could be zeroout if split fails, and 2729 * the states(init or uninit) of new extents. 2730 * @flags: flags used to insert new extent to extent tree. 2731 * 2732 * 2733 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 2734 * of which are deterimined by split_flag. 2735 * 2736 * There are two cases: 2737 * a> the extent are splitted into two extent. 2738 * b> split is not needed, and just mark the extent. 2739 * 2740 * return 0 on success. 2741 */ 2742 static int ext4_split_extent_at(handle_t *handle, 2743 struct inode *inode, 2744 struct ext4_ext_path *path, 2745 ext4_lblk_t split, 2746 int split_flag, 2747 int flags) 2748 { 2749 ext4_fsblk_t newblock; 2750 ext4_lblk_t ee_block; 2751 struct ext4_extent *ex, newex, orig_ex; 2752 struct ext4_extent *ex2 = NULL; 2753 unsigned int ee_len, depth; 2754 int err = 0; 2755 2756 ext_debug("ext4_split_extents_at: inode %lu, logical" 2757 "block %llu\n", inode->i_ino, (unsigned long long)split); 2758 2759 ext4_ext_show_leaf(inode, path); 2760 2761 depth = ext_depth(inode); 2762 ex = path[depth].p_ext; 2763 ee_block = le32_to_cpu(ex->ee_block); 2764 ee_len = ext4_ext_get_actual_len(ex); 2765 newblock = split - ee_block + ext4_ext_pblock(ex); 2766 2767 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 2768 2769 err = ext4_ext_get_access(handle, inode, path + depth); 2770 if (err) 2771 goto out; 2772 2773 if (split == ee_block) { 2774 /* 2775 * case b: block @split is the block that the extent begins with 2776 * then we just change the state of the extent, and splitting 2777 * is not needed. 2778 */ 2779 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2780 ext4_ext_mark_uninitialized(ex); 2781 else 2782 ext4_ext_mark_initialized(ex); 2783 2784 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 2785 ext4_ext_try_to_merge(inode, path, ex); 2786 2787 err = ext4_ext_dirty(handle, inode, path + depth); 2788 goto out; 2789 } 2790 2791 /* case a */ 2792 memcpy(&orig_ex, ex, sizeof(orig_ex)); 2793 ex->ee_len = cpu_to_le16(split - ee_block); 2794 if (split_flag & EXT4_EXT_MARK_UNINIT1) 2795 ext4_ext_mark_uninitialized(ex); 2796 2797 /* 2798 * path may lead to new leaf, not to original leaf any more 2799 * after ext4_ext_insert_extent() returns, 2800 */ 2801 err = ext4_ext_dirty(handle, inode, path + depth); 2802 if (err) 2803 goto fix_extent_len; 2804 2805 ex2 = &newex; 2806 ex2->ee_block = cpu_to_le32(split); 2807 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 2808 ext4_ext_store_pblock(ex2, newblock); 2809 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2810 ext4_ext_mark_uninitialized(ex2); 2811 2812 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 2813 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 2814 err = ext4_ext_zeroout(inode, &orig_ex); 2815 if (err) 2816 goto fix_extent_len; 2817 /* update the extent length and mark as initialized */ 2818 ex->ee_len = cpu_to_le32(ee_len); 2819 ext4_ext_try_to_merge(inode, path, ex); 2820 err = ext4_ext_dirty(handle, inode, path + depth); 2821 goto out; 2822 } else if (err) 2823 goto fix_extent_len; 2824 2825 out: 2826 ext4_ext_show_leaf(inode, path); 2827 return err; 2828 2829 fix_extent_len: 2830 ex->ee_len = orig_ex.ee_len; 2831 ext4_ext_dirty(handle, inode, path + depth); 2832 return err; 2833 } 2834 2835 /* 2836 * ext4_split_extents() splits an extent and mark extent which is covered 2837 * by @map as split_flags indicates 2838 * 2839 * It may result in splitting the extent into multiple extents (upto three) 2840 * There are three possibilities: 2841 * a> There is no split required 2842 * b> Splits in two extents: Split is happening at either end of the extent 2843 * c> Splits in three extents: Somone is splitting in middle of the extent 2844 * 2845 */ 2846 static int ext4_split_extent(handle_t *handle, 2847 struct inode *inode, 2848 struct ext4_ext_path *path, 2849 struct ext4_map_blocks *map, 2850 int split_flag, 2851 int flags) 2852 { 2853 ext4_lblk_t ee_block; 2854 struct ext4_extent *ex; 2855 unsigned int ee_len, depth; 2856 int err = 0; 2857 int uninitialized; 2858 int split_flag1, flags1; 2859 2860 depth = ext_depth(inode); 2861 ex = path[depth].p_ext; 2862 ee_block = le32_to_cpu(ex->ee_block); 2863 ee_len = ext4_ext_get_actual_len(ex); 2864 uninitialized = ext4_ext_is_uninitialized(ex); 2865 2866 if (map->m_lblk + map->m_len < ee_block + ee_len) { 2867 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ? 2868 EXT4_EXT_MAY_ZEROOUT : 0; 2869 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 2870 if (uninitialized) 2871 split_flag1 |= EXT4_EXT_MARK_UNINIT1 | 2872 EXT4_EXT_MARK_UNINIT2; 2873 err = ext4_split_extent_at(handle, inode, path, 2874 map->m_lblk + map->m_len, split_flag1, flags1); 2875 if (err) 2876 goto out; 2877 } 2878 2879 ext4_ext_drop_refs(path); 2880 path = ext4_ext_find_extent(inode, map->m_lblk, path); 2881 if (IS_ERR(path)) 2882 return PTR_ERR(path); 2883 2884 if (map->m_lblk >= ee_block) { 2885 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ? 2886 EXT4_EXT_MAY_ZEROOUT : 0; 2887 if (uninitialized) 2888 split_flag1 |= EXT4_EXT_MARK_UNINIT1; 2889 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2890 split_flag1 |= EXT4_EXT_MARK_UNINIT2; 2891 err = ext4_split_extent_at(handle, inode, path, 2892 map->m_lblk, split_flag1, flags); 2893 if (err) 2894 goto out; 2895 } 2896 2897 ext4_ext_show_leaf(inode, path); 2898 out: 2899 return err ? err : map->m_len; 2900 } 2901 2902 #define EXT4_EXT_ZERO_LEN 7 2903 /* 2904 * This function is called by ext4_ext_map_blocks() if someone tries to write 2905 * to an uninitialized extent. It may result in splitting the uninitialized 2906 * extent into multiple extents (up to three - one initialized and two 2907 * uninitialized). 2908 * There are three possibilities: 2909 * a> There is no split required: Entire extent should be initialized 2910 * b> Splits in two extents: Write is happening at either end of the extent 2911 * c> Splits in three extents: Somone is writing in middle of the extent 2912 */ 2913 static int ext4_ext_convert_to_initialized(handle_t *handle, 2914 struct inode *inode, 2915 struct ext4_map_blocks *map, 2916 struct ext4_ext_path *path) 2917 { 2918 struct ext4_map_blocks split_map; 2919 struct ext4_extent zero_ex; 2920 struct ext4_extent *ex; 2921 ext4_lblk_t ee_block, eof_block; 2922 unsigned int allocated, ee_len, depth; 2923 int err = 0; 2924 int split_flag = 0; 2925 2926 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 2927 "block %llu, max_blocks %u\n", inode->i_ino, 2928 (unsigned long long)map->m_lblk, map->m_len); 2929 2930 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 2931 inode->i_sb->s_blocksize_bits; 2932 if (eof_block < map->m_lblk + map->m_len) 2933 eof_block = map->m_lblk + map->m_len; 2934 2935 depth = ext_depth(inode); 2936 ex = path[depth].p_ext; 2937 ee_block = le32_to_cpu(ex->ee_block); 2938 ee_len = ext4_ext_get_actual_len(ex); 2939 allocated = ee_len - (map->m_lblk - ee_block); 2940 2941 WARN_ON(map->m_lblk < ee_block); 2942 /* 2943 * It is safe to convert extent to initialized via explicit 2944 * zeroout only if extent is fully insde i_size or new_size. 2945 */ 2946 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 2947 2948 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */ 2949 if (ee_len <= 2*EXT4_EXT_ZERO_LEN && 2950 (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 2951 err = ext4_ext_zeroout(inode, ex); 2952 if (err) 2953 goto out; 2954 2955 err = ext4_ext_get_access(handle, inode, path + depth); 2956 if (err) 2957 goto out; 2958 ext4_ext_mark_initialized(ex); 2959 ext4_ext_try_to_merge(inode, path, ex); 2960 err = ext4_ext_dirty(handle, inode, path + depth); 2961 goto out; 2962 } 2963 2964 /* 2965 * four cases: 2966 * 1. split the extent into three extents. 2967 * 2. split the extent into two extents, zeroout the first half. 2968 * 3. split the extent into two extents, zeroout the second half. 2969 * 4. split the extent into two extents with out zeroout. 2970 */ 2971 split_map.m_lblk = map->m_lblk; 2972 split_map.m_len = map->m_len; 2973 2974 if (allocated > map->m_len) { 2975 if (allocated <= EXT4_EXT_ZERO_LEN && 2976 (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 2977 /* case 3 */ 2978 zero_ex.ee_block = 2979 cpu_to_le32(map->m_lblk); 2980 zero_ex.ee_len = cpu_to_le16(allocated); 2981 ext4_ext_store_pblock(&zero_ex, 2982 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 2983 err = ext4_ext_zeroout(inode, &zero_ex); 2984 if (err) 2985 goto out; 2986 split_map.m_lblk = map->m_lblk; 2987 split_map.m_len = allocated; 2988 } else if ((map->m_lblk - ee_block + map->m_len < 2989 EXT4_EXT_ZERO_LEN) && 2990 (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 2991 /* case 2 */ 2992 if (map->m_lblk != ee_block) { 2993 zero_ex.ee_block = ex->ee_block; 2994 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 2995 ee_block); 2996 ext4_ext_store_pblock(&zero_ex, 2997 ext4_ext_pblock(ex)); 2998 err = ext4_ext_zeroout(inode, &zero_ex); 2999 if (err) 3000 goto out; 3001 } 3002 3003 split_map.m_lblk = ee_block; 3004 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3005 allocated = map->m_len; 3006 } 3007 } 3008 3009 allocated = ext4_split_extent(handle, inode, path, 3010 &split_map, split_flag, 0); 3011 if (allocated < 0) 3012 err = allocated; 3013 3014 out: 3015 return err ? err : allocated; 3016 } 3017 3018 /* 3019 * This function is called by ext4_ext_map_blocks() from 3020 * ext4_get_blocks_dio_write() when DIO to write 3021 * to an uninitialized extent. 3022 * 3023 * Writing to an uninitialized extent may result in splitting the uninitialized 3024 * extent into multiple /initialized uninitialized extents (up to three) 3025 * There are three possibilities: 3026 * a> There is no split required: Entire extent should be uninitialized 3027 * b> Splits in two extents: Write is happening at either end of the extent 3028 * c> Splits in three extents: Somone is writing in middle of the extent 3029 * 3030 * One of more index blocks maybe needed if the extent tree grow after 3031 * the uninitialized extent split. To prevent ENOSPC occur at the IO 3032 * complete, we need to split the uninitialized extent before DIO submit 3033 * the IO. The uninitialized extent called at this time will be split 3034 * into three uninitialized extent(at most). After IO complete, the part 3035 * being filled will be convert to initialized by the end_io callback function 3036 * via ext4_convert_unwritten_extents(). 3037 * 3038 * Returns the size of uninitialized extent to be written on success. 3039 */ 3040 static int ext4_split_unwritten_extents(handle_t *handle, 3041 struct inode *inode, 3042 struct ext4_map_blocks *map, 3043 struct ext4_ext_path *path, 3044 int flags) 3045 { 3046 ext4_lblk_t eof_block; 3047 ext4_lblk_t ee_block; 3048 struct ext4_extent *ex; 3049 unsigned int ee_len; 3050 int split_flag = 0, depth; 3051 3052 ext_debug("ext4_split_unwritten_extents: inode %lu, logical" 3053 "block %llu, max_blocks %u\n", inode->i_ino, 3054 (unsigned long long)map->m_lblk, map->m_len); 3055 3056 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3057 inode->i_sb->s_blocksize_bits; 3058 if (eof_block < map->m_lblk + map->m_len) 3059 eof_block = map->m_lblk + map->m_len; 3060 /* 3061 * It is safe to convert extent to initialized via explicit 3062 * zeroout only if extent is fully insde i_size or new_size. 3063 */ 3064 depth = ext_depth(inode); 3065 ex = path[depth].p_ext; 3066 ee_block = le32_to_cpu(ex->ee_block); 3067 ee_len = ext4_ext_get_actual_len(ex); 3068 3069 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3070 split_flag |= EXT4_EXT_MARK_UNINIT2; 3071 3072 flags |= EXT4_GET_BLOCKS_PRE_IO; 3073 return ext4_split_extent(handle, inode, path, map, split_flag, flags); 3074 } 3075 3076 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3077 struct inode *inode, 3078 struct ext4_ext_path *path) 3079 { 3080 struct ext4_extent *ex; 3081 int depth; 3082 int err = 0; 3083 3084 depth = ext_depth(inode); 3085 ex = path[depth].p_ext; 3086 3087 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3088 "block %llu, max_blocks %u\n", inode->i_ino, 3089 (unsigned long long)le32_to_cpu(ex->ee_block), 3090 ext4_ext_get_actual_len(ex)); 3091 3092 err = ext4_ext_get_access(handle, inode, path + depth); 3093 if (err) 3094 goto out; 3095 /* first mark the extent as initialized */ 3096 ext4_ext_mark_initialized(ex); 3097 3098 /* note: ext4_ext_correct_indexes() isn't needed here because 3099 * borders are not changed 3100 */ 3101 ext4_ext_try_to_merge(inode, path, ex); 3102 3103 /* Mark modified extent as dirty */ 3104 err = ext4_ext_dirty(handle, inode, path + depth); 3105 out: 3106 ext4_ext_show_leaf(inode, path); 3107 return err; 3108 } 3109 3110 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3111 sector_t block, int count) 3112 { 3113 int i; 3114 for (i = 0; i < count; i++) 3115 unmap_underlying_metadata(bdev, block + i); 3116 } 3117 3118 /* 3119 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3120 */ 3121 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3122 ext4_lblk_t lblk, 3123 struct ext4_ext_path *path, 3124 unsigned int len) 3125 { 3126 int i, depth; 3127 struct ext4_extent_header *eh; 3128 struct ext4_extent *last_ex; 3129 3130 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3131 return 0; 3132 3133 depth = ext_depth(inode); 3134 eh = path[depth].p_hdr; 3135 3136 if (unlikely(!eh->eh_entries)) { 3137 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and " 3138 "EOFBLOCKS_FL set"); 3139 return -EIO; 3140 } 3141 last_ex = EXT_LAST_EXTENT(eh); 3142 /* 3143 * We should clear the EOFBLOCKS_FL flag if we are writing the 3144 * last block in the last extent in the file. We test this by 3145 * first checking to see if the caller to 3146 * ext4_ext_get_blocks() was interested in the last block (or 3147 * a block beyond the last block) in the current extent. If 3148 * this turns out to be false, we can bail out from this 3149 * function immediately. 3150 */ 3151 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3152 ext4_ext_get_actual_len(last_ex)) 3153 return 0; 3154 /* 3155 * If the caller does appear to be planning to write at or 3156 * beyond the end of the current extent, we then test to see 3157 * if the current extent is the last extent in the file, by 3158 * checking to make sure it was reached via the rightmost node 3159 * at each level of the tree. 3160 */ 3161 for (i = depth-1; i >= 0; i--) 3162 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3163 return 0; 3164 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3165 return ext4_mark_inode_dirty(handle, inode); 3166 } 3167 3168 static int 3169 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, 3170 struct ext4_map_blocks *map, 3171 struct ext4_ext_path *path, int flags, 3172 unsigned int allocated, ext4_fsblk_t newblock) 3173 { 3174 int ret = 0; 3175 int err = 0; 3176 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio; 3177 3178 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical" 3179 "block %llu, max_blocks %u, flags %d, allocated %u", 3180 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3181 flags, allocated); 3182 ext4_ext_show_leaf(inode, path); 3183 3184 /* get_block() before submit the IO, split the extent */ 3185 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 3186 ret = ext4_split_unwritten_extents(handle, inode, map, 3187 path, flags); 3188 /* 3189 * Flag the inode(non aio case) or end_io struct (aio case) 3190 * that this IO needs to conversion to written when IO is 3191 * completed 3192 */ 3193 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) { 3194 io->flag = EXT4_IO_END_UNWRITTEN; 3195 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten); 3196 } else 3197 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3198 if (ext4_should_dioread_nolock(inode)) 3199 map->m_flags |= EXT4_MAP_UNINIT; 3200 goto out; 3201 } 3202 /* IO end_io complete, convert the filled extent to written */ 3203 if ((flags & EXT4_GET_BLOCKS_CONVERT)) { 3204 ret = ext4_convert_unwritten_extents_endio(handle, inode, 3205 path); 3206 if (ret >= 0) { 3207 ext4_update_inode_fsync_trans(handle, inode, 1); 3208 err = check_eofblocks_fl(handle, inode, map->m_lblk, 3209 path, map->m_len); 3210 } else 3211 err = ret; 3212 goto out2; 3213 } 3214 /* buffered IO case */ 3215 /* 3216 * repeat fallocate creation request 3217 * we already have an unwritten extent 3218 */ 3219 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) 3220 goto map_out; 3221 3222 /* buffered READ or buffered write_begin() lookup */ 3223 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3224 /* 3225 * We have blocks reserved already. We 3226 * return allocated blocks so that delalloc 3227 * won't do block reservation for us. But 3228 * the buffer head will be unmapped so that 3229 * a read from the block returns 0s. 3230 */ 3231 map->m_flags |= EXT4_MAP_UNWRITTEN; 3232 goto out1; 3233 } 3234 3235 /* buffered write, writepage time, convert*/ 3236 ret = ext4_ext_convert_to_initialized(handle, inode, map, path); 3237 if (ret >= 0) { 3238 ext4_update_inode_fsync_trans(handle, inode, 1); 3239 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 3240 map->m_len); 3241 if (err < 0) 3242 goto out2; 3243 } 3244 3245 out: 3246 if (ret <= 0) { 3247 err = ret; 3248 goto out2; 3249 } else 3250 allocated = ret; 3251 map->m_flags |= EXT4_MAP_NEW; 3252 /* 3253 * if we allocated more blocks than requested 3254 * we need to make sure we unmap the extra block 3255 * allocated. The actual needed block will get 3256 * unmapped later when we find the buffer_head marked 3257 * new. 3258 */ 3259 if (allocated > map->m_len) { 3260 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 3261 newblock + map->m_len, 3262 allocated - map->m_len); 3263 allocated = map->m_len; 3264 } 3265 3266 /* 3267 * If we have done fallocate with the offset that is already 3268 * delayed allocated, we would have block reservation 3269 * and quota reservation done in the delayed write path. 3270 * But fallocate would have already updated quota and block 3271 * count for this offset. So cancel these reservation 3272 */ 3273 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 3274 ext4_da_update_reserve_space(inode, allocated, 0); 3275 3276 map_out: 3277 map->m_flags |= EXT4_MAP_MAPPED; 3278 out1: 3279 if (allocated > map->m_len) 3280 allocated = map->m_len; 3281 ext4_ext_show_leaf(inode, path); 3282 map->m_pblk = newblock; 3283 map->m_len = allocated; 3284 out2: 3285 if (path) { 3286 ext4_ext_drop_refs(path); 3287 kfree(path); 3288 } 3289 return err ? err : allocated; 3290 } 3291 3292 /* 3293 * Block allocation/map/preallocation routine for extents based files 3294 * 3295 * 3296 * Need to be called with 3297 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 3298 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 3299 * 3300 * return > 0, number of of blocks already mapped/allocated 3301 * if create == 0 and these are pre-allocated blocks 3302 * buffer head is unmapped 3303 * otherwise blocks are mapped 3304 * 3305 * return = 0, if plain look up failed (blocks have not been allocated) 3306 * buffer head is unmapped 3307 * 3308 * return < 0, error case. 3309 */ 3310 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 3311 struct ext4_map_blocks *map, int flags) 3312 { 3313 struct ext4_ext_path *path = NULL; 3314 struct ext4_extent newex, *ex; 3315 ext4_fsblk_t newblock = 0; 3316 int err = 0, depth, ret; 3317 unsigned int allocated = 0; 3318 unsigned int punched_out = 0; 3319 unsigned int result = 0; 3320 struct ext4_allocation_request ar; 3321 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio; 3322 struct ext4_map_blocks punch_map; 3323 3324 ext_debug("blocks %u/%u requested for inode %lu\n", 3325 map->m_lblk, map->m_len, inode->i_ino); 3326 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 3327 3328 /* check in cache */ 3329 if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) && 3330 ext4_ext_in_cache(inode, map->m_lblk, &newex)) { 3331 if (!newex.ee_start_lo && !newex.ee_start_hi) { 3332 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3333 /* 3334 * block isn't allocated yet and 3335 * user doesn't want to allocate it 3336 */ 3337 goto out2; 3338 } 3339 /* we should allocate requested block */ 3340 } else { 3341 /* block is already allocated */ 3342 newblock = map->m_lblk 3343 - le32_to_cpu(newex.ee_block) 3344 + ext4_ext_pblock(&newex); 3345 /* number of remaining blocks in the extent */ 3346 allocated = ext4_ext_get_actual_len(&newex) - 3347 (map->m_lblk - le32_to_cpu(newex.ee_block)); 3348 goto out; 3349 } 3350 } 3351 3352 /* find extent for this block */ 3353 path = ext4_ext_find_extent(inode, map->m_lblk, NULL); 3354 if (IS_ERR(path)) { 3355 err = PTR_ERR(path); 3356 path = NULL; 3357 goto out2; 3358 } 3359 3360 depth = ext_depth(inode); 3361 3362 /* 3363 * consistent leaf must not be empty; 3364 * this situation is possible, though, _during_ tree modification; 3365 * this is why assert can't be put in ext4_ext_find_extent() 3366 */ 3367 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 3368 EXT4_ERROR_INODE(inode, "bad extent address " 3369 "lblock: %lu, depth: %d pblock %lld", 3370 (unsigned long) map->m_lblk, depth, 3371 path[depth].p_block); 3372 err = -EIO; 3373 goto out2; 3374 } 3375 3376 ex = path[depth].p_ext; 3377 if (ex) { 3378 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3379 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3380 unsigned short ee_len; 3381 3382 /* 3383 * Uninitialized extents are treated as holes, except that 3384 * we split out initialized portions during a write. 3385 */ 3386 ee_len = ext4_ext_get_actual_len(ex); 3387 /* if found extent covers block, simply return it */ 3388 if (in_range(map->m_lblk, ee_block, ee_len)) { 3389 newblock = map->m_lblk - ee_block + ee_start; 3390 /* number of remaining blocks in the extent */ 3391 allocated = ee_len - (map->m_lblk - ee_block); 3392 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 3393 ee_block, ee_len, newblock); 3394 3395 if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) { 3396 /* 3397 * Do not put uninitialized extent 3398 * in the cache 3399 */ 3400 if (!ext4_ext_is_uninitialized(ex)) { 3401 ext4_ext_put_in_cache(inode, ee_block, 3402 ee_len, ee_start); 3403 goto out; 3404 } 3405 ret = ext4_ext_handle_uninitialized_extents( 3406 handle, inode, map, path, flags, 3407 allocated, newblock); 3408 return ret; 3409 } 3410 3411 /* 3412 * Punch out the map length, but only to the 3413 * end of the extent 3414 */ 3415 punched_out = allocated < map->m_len ? 3416 allocated : map->m_len; 3417 3418 /* 3419 * Sense extents need to be converted to 3420 * uninitialized, they must fit in an 3421 * uninitialized extent 3422 */ 3423 if (punched_out > EXT_UNINIT_MAX_LEN) 3424 punched_out = EXT_UNINIT_MAX_LEN; 3425 3426 punch_map.m_lblk = map->m_lblk; 3427 punch_map.m_pblk = newblock; 3428 punch_map.m_len = punched_out; 3429 punch_map.m_flags = 0; 3430 3431 /* Check to see if the extent needs to be split */ 3432 if (punch_map.m_len != ee_len || 3433 punch_map.m_lblk != ee_block) { 3434 3435 ret = ext4_split_extent(handle, inode, 3436 path, &punch_map, 0, 3437 EXT4_GET_BLOCKS_PUNCH_OUT_EXT | 3438 EXT4_GET_BLOCKS_PRE_IO); 3439 3440 if (ret < 0) { 3441 err = ret; 3442 goto out2; 3443 } 3444 /* 3445 * find extent for the block at 3446 * the start of the hole 3447 */ 3448 ext4_ext_drop_refs(path); 3449 kfree(path); 3450 3451 path = ext4_ext_find_extent(inode, 3452 map->m_lblk, NULL); 3453 if (IS_ERR(path)) { 3454 err = PTR_ERR(path); 3455 path = NULL; 3456 goto out2; 3457 } 3458 3459 depth = ext_depth(inode); 3460 ex = path[depth].p_ext; 3461 ee_len = ext4_ext_get_actual_len(ex); 3462 ee_block = le32_to_cpu(ex->ee_block); 3463 ee_start = ext4_ext_pblock(ex); 3464 3465 } 3466 3467 ext4_ext_mark_uninitialized(ex); 3468 3469 ext4_ext_invalidate_cache(inode); 3470 3471 err = ext4_ext_rm_leaf(handle, inode, path, 3472 map->m_lblk, map->m_lblk + punched_out); 3473 3474 if (!err && path->p_hdr->eh_entries == 0) { 3475 /* 3476 * Punch hole freed all of this sub tree, 3477 * so we need to correct eh_depth 3478 */ 3479 err = ext4_ext_get_access(handle, inode, path); 3480 if (err == 0) { 3481 ext_inode_hdr(inode)->eh_depth = 0; 3482 ext_inode_hdr(inode)->eh_max = 3483 cpu_to_le16(ext4_ext_space_root( 3484 inode, 0)); 3485 3486 err = ext4_ext_dirty( 3487 handle, inode, path); 3488 } 3489 } 3490 3491 goto out2; 3492 } 3493 } 3494 3495 /* 3496 * requested block isn't allocated yet; 3497 * we couldn't try to create block if create flag is zero 3498 */ 3499 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3500 /* 3501 * put just found gap into cache to speed up 3502 * subsequent requests 3503 */ 3504 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 3505 goto out2; 3506 } 3507 /* 3508 * Okay, we need to do block allocation. 3509 */ 3510 3511 /* find neighbour allocated blocks */ 3512 ar.lleft = map->m_lblk; 3513 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 3514 if (err) 3515 goto out2; 3516 ar.lright = map->m_lblk; 3517 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright); 3518 if (err) 3519 goto out2; 3520 3521 /* 3522 * See if request is beyond maximum number of blocks we can have in 3523 * a single extent. For an initialized extent this limit is 3524 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 3525 * EXT_UNINIT_MAX_LEN. 3526 */ 3527 if (map->m_len > EXT_INIT_MAX_LEN && 3528 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 3529 map->m_len = EXT_INIT_MAX_LEN; 3530 else if (map->m_len > EXT_UNINIT_MAX_LEN && 3531 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 3532 map->m_len = EXT_UNINIT_MAX_LEN; 3533 3534 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 3535 newex.ee_block = cpu_to_le32(map->m_lblk); 3536 newex.ee_len = cpu_to_le16(map->m_len); 3537 err = ext4_ext_check_overlap(inode, &newex, path); 3538 if (err) 3539 allocated = ext4_ext_get_actual_len(&newex); 3540 else 3541 allocated = map->m_len; 3542 3543 /* allocate new block */ 3544 ar.inode = inode; 3545 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 3546 ar.logical = map->m_lblk; 3547 ar.len = allocated; 3548 if (S_ISREG(inode->i_mode)) 3549 ar.flags = EXT4_MB_HINT_DATA; 3550 else 3551 /* disable in-core preallocation for non-regular files */ 3552 ar.flags = 0; 3553 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 3554 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 3555 newblock = ext4_mb_new_blocks(handle, &ar, &err); 3556 if (!newblock) 3557 goto out2; 3558 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 3559 ar.goal, newblock, allocated); 3560 3561 /* try to insert new extent into found leaf and return */ 3562 ext4_ext_store_pblock(&newex, newblock); 3563 newex.ee_len = cpu_to_le16(ar.len); 3564 /* Mark uninitialized */ 3565 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ 3566 ext4_ext_mark_uninitialized(&newex); 3567 /* 3568 * io_end structure was created for every IO write to an 3569 * uninitialized extent. To avoid unnecessary conversion, 3570 * here we flag the IO that really needs the conversion. 3571 * For non asycn direct IO case, flag the inode state 3572 * that we need to perform conversion when IO is done. 3573 */ 3574 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 3575 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) { 3576 io->flag = EXT4_IO_END_UNWRITTEN; 3577 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten); 3578 } else 3579 ext4_set_inode_state(inode, 3580 EXT4_STATE_DIO_UNWRITTEN); 3581 } 3582 if (ext4_should_dioread_nolock(inode)) 3583 map->m_flags |= EXT4_MAP_UNINIT; 3584 } 3585 3586 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len); 3587 if (!err) 3588 err = ext4_ext_insert_extent(handle, inode, path, 3589 &newex, flags); 3590 if (err) { 3591 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 3592 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 3593 /* free data blocks we just allocated */ 3594 /* not a good idea to call discard here directly, 3595 * but otherwise we'd need to call it every free() */ 3596 ext4_discard_preallocations(inode); 3597 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex), 3598 ext4_ext_get_actual_len(&newex), fb_flags); 3599 goto out2; 3600 } 3601 3602 /* previous routine could use block we allocated */ 3603 newblock = ext4_ext_pblock(&newex); 3604 allocated = ext4_ext_get_actual_len(&newex); 3605 if (allocated > map->m_len) 3606 allocated = map->m_len; 3607 map->m_flags |= EXT4_MAP_NEW; 3608 3609 /* 3610 * Update reserved blocks/metadata blocks after successful 3611 * block allocation which had been deferred till now. 3612 */ 3613 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 3614 ext4_da_update_reserve_space(inode, allocated, 1); 3615 3616 /* 3617 * Cache the extent and update transaction to commit on fdatasync only 3618 * when it is _not_ an uninitialized extent. 3619 */ 3620 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) { 3621 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock); 3622 ext4_update_inode_fsync_trans(handle, inode, 1); 3623 } else 3624 ext4_update_inode_fsync_trans(handle, inode, 0); 3625 out: 3626 if (allocated > map->m_len) 3627 allocated = map->m_len; 3628 ext4_ext_show_leaf(inode, path); 3629 map->m_flags |= EXT4_MAP_MAPPED; 3630 map->m_pblk = newblock; 3631 map->m_len = allocated; 3632 out2: 3633 if (path) { 3634 ext4_ext_drop_refs(path); 3635 kfree(path); 3636 } 3637 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk, 3638 newblock, map->m_len, err ? err : allocated); 3639 3640 result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ? 3641 punched_out : allocated; 3642 3643 return err ? err : result; 3644 } 3645 3646 void ext4_ext_truncate(struct inode *inode) 3647 { 3648 struct address_space *mapping = inode->i_mapping; 3649 struct super_block *sb = inode->i_sb; 3650 ext4_lblk_t last_block; 3651 handle_t *handle; 3652 int err = 0; 3653 3654 /* 3655 * finish any pending end_io work so we won't run the risk of 3656 * converting any truncated blocks to initialized later 3657 */ 3658 ext4_flush_completed_IO(inode); 3659 3660 /* 3661 * probably first extent we're gonna free will be last in block 3662 */ 3663 err = ext4_writepage_trans_blocks(inode); 3664 handle = ext4_journal_start(inode, err); 3665 if (IS_ERR(handle)) 3666 return; 3667 3668 if (inode->i_size & (sb->s_blocksize - 1)) 3669 ext4_block_truncate_page(handle, mapping, inode->i_size); 3670 3671 if (ext4_orphan_add(handle, inode)) 3672 goto out_stop; 3673 3674 down_write(&EXT4_I(inode)->i_data_sem); 3675 ext4_ext_invalidate_cache(inode); 3676 3677 ext4_discard_preallocations(inode); 3678 3679 /* 3680 * TODO: optimization is possible here. 3681 * Probably we need not scan at all, 3682 * because page truncation is enough. 3683 */ 3684 3685 /* we have to know where to truncate from in crash case */ 3686 EXT4_I(inode)->i_disksize = inode->i_size; 3687 ext4_mark_inode_dirty(handle, inode); 3688 3689 last_block = (inode->i_size + sb->s_blocksize - 1) 3690 >> EXT4_BLOCK_SIZE_BITS(sb); 3691 err = ext4_ext_remove_space(inode, last_block); 3692 3693 /* In a multi-transaction truncate, we only make the final 3694 * transaction synchronous. 3695 */ 3696 if (IS_SYNC(inode)) 3697 ext4_handle_sync(handle); 3698 3699 up_write(&EXT4_I(inode)->i_data_sem); 3700 3701 out_stop: 3702 /* 3703 * If this was a simple ftruncate() and the file will remain alive, 3704 * then we need to clear up the orphan record which we created above. 3705 * However, if this was a real unlink then we were called by 3706 * ext4_delete_inode(), and we allow that function to clean up the 3707 * orphan info for us. 3708 */ 3709 if (inode->i_nlink) 3710 ext4_orphan_del(handle, inode); 3711 3712 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3713 ext4_mark_inode_dirty(handle, inode); 3714 ext4_journal_stop(handle); 3715 } 3716 3717 static void ext4_falloc_update_inode(struct inode *inode, 3718 int mode, loff_t new_size, int update_ctime) 3719 { 3720 struct timespec now; 3721 3722 if (update_ctime) { 3723 now = current_fs_time(inode->i_sb); 3724 if (!timespec_equal(&inode->i_ctime, &now)) 3725 inode->i_ctime = now; 3726 } 3727 /* 3728 * Update only when preallocation was requested beyond 3729 * the file size. 3730 */ 3731 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3732 if (new_size > i_size_read(inode)) 3733 i_size_write(inode, new_size); 3734 if (new_size > EXT4_I(inode)->i_disksize) 3735 ext4_update_i_disksize(inode, new_size); 3736 } else { 3737 /* 3738 * Mark that we allocate beyond EOF so the subsequent truncate 3739 * can proceed even if the new size is the same as i_size. 3740 */ 3741 if (new_size > i_size_read(inode)) 3742 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3743 } 3744 3745 } 3746 3747 /* 3748 * preallocate space for a file. This implements ext4's fallocate file 3749 * operation, which gets called from sys_fallocate system call. 3750 * For block-mapped files, posix_fallocate should fall back to the method 3751 * of writing zeroes to the required new blocks (the same behavior which is 3752 * expected for file systems which do not support fallocate() system call). 3753 */ 3754 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 3755 { 3756 struct inode *inode = file->f_path.dentry->d_inode; 3757 handle_t *handle; 3758 loff_t new_size; 3759 unsigned int max_blocks; 3760 int ret = 0; 3761 int ret2 = 0; 3762 int retries = 0; 3763 struct ext4_map_blocks map; 3764 unsigned int credits, blkbits = inode->i_blkbits; 3765 3766 /* 3767 * currently supporting (pre)allocate mode for extent-based 3768 * files _only_ 3769 */ 3770 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 3771 return -EOPNOTSUPP; 3772 3773 /* Return error if mode is not supported */ 3774 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3775 return -EOPNOTSUPP; 3776 3777 if (mode & FALLOC_FL_PUNCH_HOLE) 3778 return ext4_punch_hole(file, offset, len); 3779 3780 trace_ext4_fallocate_enter(inode, offset, len, mode); 3781 map.m_lblk = offset >> blkbits; 3782 /* 3783 * We can't just convert len to max_blocks because 3784 * If blocksize = 4096 offset = 3072 and len = 2048 3785 */ 3786 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 3787 - map.m_lblk; 3788 /* 3789 * credits to insert 1 extent into extent tree 3790 */ 3791 credits = ext4_chunk_trans_blocks(inode, max_blocks); 3792 mutex_lock(&inode->i_mutex); 3793 ret = inode_newsize_ok(inode, (len + offset)); 3794 if (ret) { 3795 mutex_unlock(&inode->i_mutex); 3796 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 3797 return ret; 3798 } 3799 retry: 3800 while (ret >= 0 && ret < max_blocks) { 3801 map.m_lblk = map.m_lblk + ret; 3802 map.m_len = max_blocks = max_blocks - ret; 3803 handle = ext4_journal_start(inode, credits); 3804 if (IS_ERR(handle)) { 3805 ret = PTR_ERR(handle); 3806 break; 3807 } 3808 ret = ext4_map_blocks(handle, inode, &map, 3809 EXT4_GET_BLOCKS_CREATE_UNINIT_EXT | 3810 EXT4_GET_BLOCKS_NO_NORMALIZE); 3811 if (ret <= 0) { 3812 #ifdef EXT4FS_DEBUG 3813 WARN_ON(ret <= 0); 3814 printk(KERN_ERR "%s: ext4_ext_map_blocks " 3815 "returned error inode#%lu, block=%u, " 3816 "max_blocks=%u", __func__, 3817 inode->i_ino, map.m_lblk, max_blocks); 3818 #endif 3819 ext4_mark_inode_dirty(handle, inode); 3820 ret2 = ext4_journal_stop(handle); 3821 break; 3822 } 3823 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 3824 blkbits) >> blkbits)) 3825 new_size = offset + len; 3826 else 3827 new_size = ((loff_t) map.m_lblk + ret) << blkbits; 3828 3829 ext4_falloc_update_inode(inode, mode, new_size, 3830 (map.m_flags & EXT4_MAP_NEW)); 3831 ext4_mark_inode_dirty(handle, inode); 3832 ret2 = ext4_journal_stop(handle); 3833 if (ret2) 3834 break; 3835 } 3836 if (ret == -ENOSPC && 3837 ext4_should_retry_alloc(inode->i_sb, &retries)) { 3838 ret = 0; 3839 goto retry; 3840 } 3841 mutex_unlock(&inode->i_mutex); 3842 trace_ext4_fallocate_exit(inode, offset, max_blocks, 3843 ret > 0 ? ret2 : ret); 3844 return ret > 0 ? ret2 : ret; 3845 } 3846 3847 /* 3848 * This function convert a range of blocks to written extents 3849 * The caller of this function will pass the start offset and the size. 3850 * all unwritten extents within this range will be converted to 3851 * written extents. 3852 * 3853 * This function is called from the direct IO end io call back 3854 * function, to convert the fallocated extents after IO is completed. 3855 * Returns 0 on success. 3856 */ 3857 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset, 3858 ssize_t len) 3859 { 3860 handle_t *handle; 3861 unsigned int max_blocks; 3862 int ret = 0; 3863 int ret2 = 0; 3864 struct ext4_map_blocks map; 3865 unsigned int credits, blkbits = inode->i_blkbits; 3866 3867 map.m_lblk = offset >> blkbits; 3868 /* 3869 * We can't just convert len to max_blocks because 3870 * If blocksize = 4096 offset = 3072 and len = 2048 3871 */ 3872 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 3873 map.m_lblk); 3874 /* 3875 * credits to insert 1 extent into extent tree 3876 */ 3877 credits = ext4_chunk_trans_blocks(inode, max_blocks); 3878 while (ret >= 0 && ret < max_blocks) { 3879 map.m_lblk += ret; 3880 map.m_len = (max_blocks -= ret); 3881 handle = ext4_journal_start(inode, credits); 3882 if (IS_ERR(handle)) { 3883 ret = PTR_ERR(handle); 3884 break; 3885 } 3886 ret = ext4_map_blocks(handle, inode, &map, 3887 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 3888 if (ret <= 0) { 3889 WARN_ON(ret <= 0); 3890 printk(KERN_ERR "%s: ext4_ext_map_blocks " 3891 "returned error inode#%lu, block=%u, " 3892 "max_blocks=%u", __func__, 3893 inode->i_ino, map.m_lblk, map.m_len); 3894 } 3895 ext4_mark_inode_dirty(handle, inode); 3896 ret2 = ext4_journal_stop(handle); 3897 if (ret <= 0 || ret2 ) 3898 break; 3899 } 3900 return ret > 0 ? ret2 : ret; 3901 } 3902 3903 /* 3904 * Callback function called for each extent to gather FIEMAP information. 3905 */ 3906 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next, 3907 struct ext4_ext_cache *newex, struct ext4_extent *ex, 3908 void *data) 3909 { 3910 __u64 logical; 3911 __u64 physical; 3912 __u64 length; 3913 __u32 flags = 0; 3914 int ret = 0; 3915 struct fiemap_extent_info *fieinfo = data; 3916 unsigned char blksize_bits; 3917 3918 blksize_bits = inode->i_sb->s_blocksize_bits; 3919 logical = (__u64)newex->ec_block << blksize_bits; 3920 3921 if (newex->ec_start == 0) { 3922 /* 3923 * No extent in extent-tree contains block @newex->ec_start, 3924 * then the block may stay in 1)a hole or 2)delayed-extent. 3925 * 3926 * Holes or delayed-extents are processed as follows. 3927 * 1. lookup dirty pages with specified range in pagecache. 3928 * If no page is got, then there is no delayed-extent and 3929 * return with EXT_CONTINUE. 3930 * 2. find the 1st mapped buffer, 3931 * 3. check if the mapped buffer is both in the request range 3932 * and a delayed buffer. If not, there is no delayed-extent, 3933 * then return. 3934 * 4. a delayed-extent is found, the extent will be collected. 3935 */ 3936 ext4_lblk_t end = 0; 3937 pgoff_t last_offset; 3938 pgoff_t offset; 3939 pgoff_t index; 3940 pgoff_t start_index = 0; 3941 struct page **pages = NULL; 3942 struct buffer_head *bh = NULL; 3943 struct buffer_head *head = NULL; 3944 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *); 3945 3946 pages = kmalloc(PAGE_SIZE, GFP_KERNEL); 3947 if (pages == NULL) 3948 return -ENOMEM; 3949 3950 offset = logical >> PAGE_SHIFT; 3951 repeat: 3952 last_offset = offset; 3953 head = NULL; 3954 ret = find_get_pages_tag(inode->i_mapping, &offset, 3955 PAGECACHE_TAG_DIRTY, nr_pages, pages); 3956 3957 if (!(flags & FIEMAP_EXTENT_DELALLOC)) { 3958 /* First time, try to find a mapped buffer. */ 3959 if (ret == 0) { 3960 out: 3961 for (index = 0; index < ret; index++) 3962 page_cache_release(pages[index]); 3963 /* just a hole. */ 3964 kfree(pages); 3965 return EXT_CONTINUE; 3966 } 3967 index = 0; 3968 3969 next_page: 3970 /* Try to find the 1st mapped buffer. */ 3971 end = ((__u64)pages[index]->index << PAGE_SHIFT) >> 3972 blksize_bits; 3973 if (!page_has_buffers(pages[index])) 3974 goto out; 3975 head = page_buffers(pages[index]); 3976 if (!head) 3977 goto out; 3978 3979 index++; 3980 bh = head; 3981 do { 3982 if (end >= newex->ec_block + 3983 newex->ec_len) 3984 /* The buffer is out of 3985 * the request range. 3986 */ 3987 goto out; 3988 3989 if (buffer_mapped(bh) && 3990 end >= newex->ec_block) { 3991 start_index = index - 1; 3992 /* get the 1st mapped buffer. */ 3993 goto found_mapped_buffer; 3994 } 3995 3996 bh = bh->b_this_page; 3997 end++; 3998 } while (bh != head); 3999 4000 /* No mapped buffer in the range found in this page, 4001 * We need to look up next page. 4002 */ 4003 if (index >= ret) { 4004 /* There is no page left, but we need to limit 4005 * newex->ec_len. 4006 */ 4007 newex->ec_len = end - newex->ec_block; 4008 goto out; 4009 } 4010 goto next_page; 4011 } else { 4012 /*Find contiguous delayed buffers. */ 4013 if (ret > 0 && pages[0]->index == last_offset) 4014 head = page_buffers(pages[0]); 4015 bh = head; 4016 index = 1; 4017 start_index = 0; 4018 } 4019 4020 found_mapped_buffer: 4021 if (bh != NULL && buffer_delay(bh)) { 4022 /* 1st or contiguous delayed buffer found. */ 4023 if (!(flags & FIEMAP_EXTENT_DELALLOC)) { 4024 /* 4025 * 1st delayed buffer found, record 4026 * the start of extent. 4027 */ 4028 flags |= FIEMAP_EXTENT_DELALLOC; 4029 newex->ec_block = end; 4030 logical = (__u64)end << blksize_bits; 4031 } 4032 /* Find contiguous delayed buffers. */ 4033 do { 4034 if (!buffer_delay(bh)) 4035 goto found_delayed_extent; 4036 bh = bh->b_this_page; 4037 end++; 4038 } while (bh != head); 4039 4040 for (; index < ret; index++) { 4041 if (!page_has_buffers(pages[index])) { 4042 bh = NULL; 4043 break; 4044 } 4045 head = page_buffers(pages[index]); 4046 if (!head) { 4047 bh = NULL; 4048 break; 4049 } 4050 4051 if (pages[index]->index != 4052 pages[start_index]->index + index 4053 - start_index) { 4054 /* Blocks are not contiguous. */ 4055 bh = NULL; 4056 break; 4057 } 4058 bh = head; 4059 do { 4060 if (!buffer_delay(bh)) 4061 /* Delayed-extent ends. */ 4062 goto found_delayed_extent; 4063 bh = bh->b_this_page; 4064 end++; 4065 } while (bh != head); 4066 } 4067 } else if (!(flags & FIEMAP_EXTENT_DELALLOC)) 4068 /* a hole found. */ 4069 goto out; 4070 4071 found_delayed_extent: 4072 newex->ec_len = min(end - newex->ec_block, 4073 (ext4_lblk_t)EXT_INIT_MAX_LEN); 4074 if (ret == nr_pages && bh != NULL && 4075 newex->ec_len < EXT_INIT_MAX_LEN && 4076 buffer_delay(bh)) { 4077 /* Have not collected an extent and continue. */ 4078 for (index = 0; index < ret; index++) 4079 page_cache_release(pages[index]); 4080 goto repeat; 4081 } 4082 4083 for (index = 0; index < ret; index++) 4084 page_cache_release(pages[index]); 4085 kfree(pages); 4086 } 4087 4088 physical = (__u64)newex->ec_start << blksize_bits; 4089 length = (__u64)newex->ec_len << blksize_bits; 4090 4091 if (ex && ext4_ext_is_uninitialized(ex)) 4092 flags |= FIEMAP_EXTENT_UNWRITTEN; 4093 4094 if (next == EXT_MAX_BLOCKS) 4095 flags |= FIEMAP_EXTENT_LAST; 4096 4097 ret = fiemap_fill_next_extent(fieinfo, logical, physical, 4098 length, flags); 4099 if (ret < 0) 4100 return ret; 4101 if (ret == 1) 4102 return EXT_BREAK; 4103 return EXT_CONTINUE; 4104 } 4105 4106 /* fiemap flags we can handle specified here */ 4107 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 4108 4109 static int ext4_xattr_fiemap(struct inode *inode, 4110 struct fiemap_extent_info *fieinfo) 4111 { 4112 __u64 physical = 0; 4113 __u64 length; 4114 __u32 flags = FIEMAP_EXTENT_LAST; 4115 int blockbits = inode->i_sb->s_blocksize_bits; 4116 int error = 0; 4117 4118 /* in-inode? */ 4119 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4120 struct ext4_iloc iloc; 4121 int offset; /* offset of xattr in inode */ 4122 4123 error = ext4_get_inode_loc(inode, &iloc); 4124 if (error) 4125 return error; 4126 physical = iloc.bh->b_blocknr << blockbits; 4127 offset = EXT4_GOOD_OLD_INODE_SIZE + 4128 EXT4_I(inode)->i_extra_isize; 4129 physical += offset; 4130 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4131 flags |= FIEMAP_EXTENT_DATA_INLINE; 4132 brelse(iloc.bh); 4133 } else { /* external block */ 4134 physical = EXT4_I(inode)->i_file_acl << blockbits; 4135 length = inode->i_sb->s_blocksize; 4136 } 4137 4138 if (physical) 4139 error = fiemap_fill_next_extent(fieinfo, 0, physical, 4140 length, flags); 4141 return (error < 0 ? error : 0); 4142 } 4143 4144 /* 4145 * ext4_ext_punch_hole 4146 * 4147 * Punches a hole of "length" bytes in a file starting 4148 * at byte "offset" 4149 * 4150 * @inode: The inode of the file to punch a hole in 4151 * @offset: The starting byte offset of the hole 4152 * @length: The length of the hole 4153 * 4154 * Returns the number of blocks removed or negative on err 4155 */ 4156 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length) 4157 { 4158 struct inode *inode = file->f_path.dentry->d_inode; 4159 struct super_block *sb = inode->i_sb; 4160 struct ext4_ext_cache cache_ex; 4161 ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks; 4162 struct address_space *mapping = inode->i_mapping; 4163 struct ext4_map_blocks map; 4164 handle_t *handle; 4165 loff_t first_block_offset, last_block_offset, block_len; 4166 loff_t first_page, last_page, first_page_offset, last_page_offset; 4167 int ret, credits, blocks_released, err = 0; 4168 4169 first_block = (offset + sb->s_blocksize - 1) >> 4170 EXT4_BLOCK_SIZE_BITS(sb); 4171 last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4172 4173 first_block_offset = first_block << EXT4_BLOCK_SIZE_BITS(sb); 4174 last_block_offset = last_block << EXT4_BLOCK_SIZE_BITS(sb); 4175 4176 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 4177 last_page = (offset + length) >> PAGE_CACHE_SHIFT; 4178 4179 first_page_offset = first_page << PAGE_CACHE_SHIFT; 4180 last_page_offset = last_page << PAGE_CACHE_SHIFT; 4181 4182 /* 4183 * Write out all dirty pages to avoid race conditions 4184 * Then release them. 4185 */ 4186 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4187 err = filemap_write_and_wait_range(mapping, 4188 first_page_offset == 0 ? 0 : first_page_offset-1, 4189 last_page_offset); 4190 4191 if (err) 4192 return err; 4193 } 4194 4195 /* Now release the pages */ 4196 if (last_page_offset > first_page_offset) { 4197 truncate_inode_pages_range(mapping, first_page_offset, 4198 last_page_offset-1); 4199 } 4200 4201 /* finish any pending end_io work */ 4202 ext4_flush_completed_IO(inode); 4203 4204 credits = ext4_writepage_trans_blocks(inode); 4205 handle = ext4_journal_start(inode, credits); 4206 if (IS_ERR(handle)) 4207 return PTR_ERR(handle); 4208 4209 err = ext4_orphan_add(handle, inode); 4210 if (err) 4211 goto out; 4212 4213 /* 4214 * Now we need to zero out the un block aligned data. 4215 * If the file is smaller than a block, just 4216 * zero out the middle 4217 */ 4218 if (first_block > last_block) 4219 ext4_block_zero_page_range(handle, mapping, offset, length); 4220 else { 4221 /* zero out the head of the hole before the first block */ 4222 block_len = first_block_offset - offset; 4223 if (block_len > 0) 4224 ext4_block_zero_page_range(handle, mapping, 4225 offset, block_len); 4226 4227 /* zero out the tail of the hole after the last block */ 4228 block_len = offset + length - last_block_offset; 4229 if (block_len > 0) { 4230 ext4_block_zero_page_range(handle, mapping, 4231 last_block_offset, block_len); 4232 } 4233 } 4234 4235 /* If there are no blocks to remove, return now */ 4236 if (first_block >= last_block) 4237 goto out; 4238 4239 down_write(&EXT4_I(inode)->i_data_sem); 4240 ext4_ext_invalidate_cache(inode); 4241 ext4_discard_preallocations(inode); 4242 4243 /* 4244 * Loop over all the blocks and identify blocks 4245 * that need to be punched out 4246 */ 4247 iblock = first_block; 4248 blocks_released = 0; 4249 while (iblock < last_block) { 4250 max_blocks = last_block - iblock; 4251 num_blocks = 1; 4252 memset(&map, 0, sizeof(map)); 4253 map.m_lblk = iblock; 4254 map.m_len = max_blocks; 4255 ret = ext4_ext_map_blocks(handle, inode, &map, 4256 EXT4_GET_BLOCKS_PUNCH_OUT_EXT); 4257 4258 if (ret > 0) { 4259 blocks_released += ret; 4260 num_blocks = ret; 4261 } else if (ret == 0) { 4262 /* 4263 * If map blocks could not find the block, 4264 * then it is in a hole. If the hole was 4265 * not already cached, then map blocks should 4266 * put it in the cache. So we can get the hole 4267 * out of the cache 4268 */ 4269 memset(&cache_ex, 0, sizeof(cache_ex)); 4270 if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) && 4271 !cache_ex.ec_start) { 4272 4273 /* The hole is cached */ 4274 num_blocks = cache_ex.ec_block + 4275 cache_ex.ec_len - iblock; 4276 4277 } else { 4278 /* The block could not be identified */ 4279 err = -EIO; 4280 break; 4281 } 4282 } else { 4283 /* Map blocks error */ 4284 err = ret; 4285 break; 4286 } 4287 4288 if (num_blocks == 0) { 4289 /* This condition should never happen */ 4290 ext_debug("Block lookup failed"); 4291 err = -EIO; 4292 break; 4293 } 4294 4295 iblock += num_blocks; 4296 } 4297 4298 if (blocks_released > 0) { 4299 ext4_ext_invalidate_cache(inode); 4300 ext4_discard_preallocations(inode); 4301 } 4302 4303 if (IS_SYNC(inode)) 4304 ext4_handle_sync(handle); 4305 4306 up_write(&EXT4_I(inode)->i_data_sem); 4307 4308 out: 4309 ext4_orphan_del(handle, inode); 4310 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4311 ext4_mark_inode_dirty(handle, inode); 4312 ext4_journal_stop(handle); 4313 return err; 4314 } 4315 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4316 __u64 start, __u64 len) 4317 { 4318 ext4_lblk_t start_blk; 4319 int error = 0; 4320 4321 /* fallback to generic here if not in extents fmt */ 4322 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4323 return generic_block_fiemap(inode, fieinfo, start, len, 4324 ext4_get_block); 4325 4326 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 4327 return -EBADR; 4328 4329 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 4330 error = ext4_xattr_fiemap(inode, fieinfo); 4331 } else { 4332 ext4_lblk_t len_blks; 4333 __u64 last_blk; 4334 4335 start_blk = start >> inode->i_sb->s_blocksize_bits; 4336 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 4337 if (last_blk >= EXT_MAX_BLOCKS) 4338 last_blk = EXT_MAX_BLOCKS-1; 4339 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 4340 4341 /* 4342 * Walk the extent tree gathering extent information. 4343 * ext4_ext_fiemap_cb will push extents back to user. 4344 */ 4345 error = ext4_ext_walk_space(inode, start_blk, len_blks, 4346 ext4_ext_fiemap_cb, fieinfo); 4347 } 4348 4349 return error; 4350 } 4351