xref: /openbmc/linux/fs/ext4/extents.c (revision cff4fa84)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46 
47 #include <trace/events/ext4.h>
48 
49 static int ext4_split_extent(handle_t *handle,
50 				struct inode *inode,
51 				struct ext4_ext_path *path,
52 				struct ext4_map_blocks *map,
53 				int split_flag,
54 				int flags);
55 
56 static int ext4_ext_truncate_extend_restart(handle_t *handle,
57 					    struct inode *inode,
58 					    int needed)
59 {
60 	int err;
61 
62 	if (!ext4_handle_valid(handle))
63 		return 0;
64 	if (handle->h_buffer_credits > needed)
65 		return 0;
66 	err = ext4_journal_extend(handle, needed);
67 	if (err <= 0)
68 		return err;
69 	err = ext4_truncate_restart_trans(handle, inode, needed);
70 	if (err == 0)
71 		err = -EAGAIN;
72 
73 	return err;
74 }
75 
76 /*
77  * could return:
78  *  - EROFS
79  *  - ENOMEM
80  */
81 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
82 				struct ext4_ext_path *path)
83 {
84 	if (path->p_bh) {
85 		/* path points to block */
86 		return ext4_journal_get_write_access(handle, path->p_bh);
87 	}
88 	/* path points to leaf/index in inode body */
89 	/* we use in-core data, no need to protect them */
90 	return 0;
91 }
92 
93 /*
94  * could return:
95  *  - EROFS
96  *  - ENOMEM
97  *  - EIO
98  */
99 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
100 				struct ext4_ext_path *path)
101 {
102 	int err;
103 	if (path->p_bh) {
104 		/* path points to block */
105 		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
106 	} else {
107 		/* path points to leaf/index in inode body */
108 		err = ext4_mark_inode_dirty(handle, inode);
109 	}
110 	return err;
111 }
112 
113 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
114 			      struct ext4_ext_path *path,
115 			      ext4_lblk_t block)
116 {
117 	int depth;
118 
119 	if (path) {
120 		struct ext4_extent *ex;
121 		depth = path->p_depth;
122 
123 		/*
124 		 * Try to predict block placement assuming that we are
125 		 * filling in a file which will eventually be
126 		 * non-sparse --- i.e., in the case of libbfd writing
127 		 * an ELF object sections out-of-order but in a way
128 		 * the eventually results in a contiguous object or
129 		 * executable file, or some database extending a table
130 		 * space file.  However, this is actually somewhat
131 		 * non-ideal if we are writing a sparse file such as
132 		 * qemu or KVM writing a raw image file that is going
133 		 * to stay fairly sparse, since it will end up
134 		 * fragmenting the file system's free space.  Maybe we
135 		 * should have some hueristics or some way to allow
136 		 * userspace to pass a hint to file system,
137 		 * especially if the latter case turns out to be
138 		 * common.
139 		 */
140 		ex = path[depth].p_ext;
141 		if (ex) {
142 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
143 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
144 
145 			if (block > ext_block)
146 				return ext_pblk + (block - ext_block);
147 			else
148 				return ext_pblk - (ext_block - block);
149 		}
150 
151 		/* it looks like index is empty;
152 		 * try to find starting block from index itself */
153 		if (path[depth].p_bh)
154 			return path[depth].p_bh->b_blocknr;
155 	}
156 
157 	/* OK. use inode's group */
158 	return ext4_inode_to_goal_block(inode);
159 }
160 
161 /*
162  * Allocation for a meta data block
163  */
164 static ext4_fsblk_t
165 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
166 			struct ext4_ext_path *path,
167 			struct ext4_extent *ex, int *err, unsigned int flags)
168 {
169 	ext4_fsblk_t goal, newblock;
170 
171 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
172 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
173 					NULL, err);
174 	return newblock;
175 }
176 
177 static inline int ext4_ext_space_block(struct inode *inode, int check)
178 {
179 	int size;
180 
181 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
182 			/ sizeof(struct ext4_extent);
183 	if (!check) {
184 #ifdef AGGRESSIVE_TEST
185 		if (size > 6)
186 			size = 6;
187 #endif
188 	}
189 	return size;
190 }
191 
192 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
193 {
194 	int size;
195 
196 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
197 			/ sizeof(struct ext4_extent_idx);
198 	if (!check) {
199 #ifdef AGGRESSIVE_TEST
200 		if (size > 5)
201 			size = 5;
202 #endif
203 	}
204 	return size;
205 }
206 
207 static inline int ext4_ext_space_root(struct inode *inode, int check)
208 {
209 	int size;
210 
211 	size = sizeof(EXT4_I(inode)->i_data);
212 	size -= sizeof(struct ext4_extent_header);
213 	size /= sizeof(struct ext4_extent);
214 	if (!check) {
215 #ifdef AGGRESSIVE_TEST
216 		if (size > 3)
217 			size = 3;
218 #endif
219 	}
220 	return size;
221 }
222 
223 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
224 {
225 	int size;
226 
227 	size = sizeof(EXT4_I(inode)->i_data);
228 	size -= sizeof(struct ext4_extent_header);
229 	size /= sizeof(struct ext4_extent_idx);
230 	if (!check) {
231 #ifdef AGGRESSIVE_TEST
232 		if (size > 4)
233 			size = 4;
234 #endif
235 	}
236 	return size;
237 }
238 
239 /*
240  * Calculate the number of metadata blocks needed
241  * to allocate @blocks
242  * Worse case is one block per extent
243  */
244 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
245 {
246 	struct ext4_inode_info *ei = EXT4_I(inode);
247 	int idxs, num = 0;
248 
249 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
250 		/ sizeof(struct ext4_extent_idx));
251 
252 	/*
253 	 * If the new delayed allocation block is contiguous with the
254 	 * previous da block, it can share index blocks with the
255 	 * previous block, so we only need to allocate a new index
256 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
257 	 * an additional index block, and at ldxs**3 blocks, yet
258 	 * another index blocks.
259 	 */
260 	if (ei->i_da_metadata_calc_len &&
261 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
262 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
263 			num++;
264 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
265 			num++;
266 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
267 			num++;
268 			ei->i_da_metadata_calc_len = 0;
269 		} else
270 			ei->i_da_metadata_calc_len++;
271 		ei->i_da_metadata_calc_last_lblock++;
272 		return num;
273 	}
274 
275 	/*
276 	 * In the worst case we need a new set of index blocks at
277 	 * every level of the inode's extent tree.
278 	 */
279 	ei->i_da_metadata_calc_len = 1;
280 	ei->i_da_metadata_calc_last_lblock = lblock;
281 	return ext_depth(inode) + 1;
282 }
283 
284 static int
285 ext4_ext_max_entries(struct inode *inode, int depth)
286 {
287 	int max;
288 
289 	if (depth == ext_depth(inode)) {
290 		if (depth == 0)
291 			max = ext4_ext_space_root(inode, 1);
292 		else
293 			max = ext4_ext_space_root_idx(inode, 1);
294 	} else {
295 		if (depth == 0)
296 			max = ext4_ext_space_block(inode, 1);
297 		else
298 			max = ext4_ext_space_block_idx(inode, 1);
299 	}
300 
301 	return max;
302 }
303 
304 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
305 {
306 	ext4_fsblk_t block = ext4_ext_pblock(ext);
307 	int len = ext4_ext_get_actual_len(ext);
308 
309 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
310 }
311 
312 static int ext4_valid_extent_idx(struct inode *inode,
313 				struct ext4_extent_idx *ext_idx)
314 {
315 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
316 
317 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
318 }
319 
320 static int ext4_valid_extent_entries(struct inode *inode,
321 				struct ext4_extent_header *eh,
322 				int depth)
323 {
324 	struct ext4_extent *ext;
325 	struct ext4_extent_idx *ext_idx;
326 	unsigned short entries;
327 	if (eh->eh_entries == 0)
328 		return 1;
329 
330 	entries = le16_to_cpu(eh->eh_entries);
331 
332 	if (depth == 0) {
333 		/* leaf entries */
334 		ext = EXT_FIRST_EXTENT(eh);
335 		while (entries) {
336 			if (!ext4_valid_extent(inode, ext))
337 				return 0;
338 			ext++;
339 			entries--;
340 		}
341 	} else {
342 		ext_idx = EXT_FIRST_INDEX(eh);
343 		while (entries) {
344 			if (!ext4_valid_extent_idx(inode, ext_idx))
345 				return 0;
346 			ext_idx++;
347 			entries--;
348 		}
349 	}
350 	return 1;
351 }
352 
353 static int __ext4_ext_check(const char *function, unsigned int line,
354 			    struct inode *inode, struct ext4_extent_header *eh,
355 			    int depth)
356 {
357 	const char *error_msg;
358 	int max = 0;
359 
360 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
361 		error_msg = "invalid magic";
362 		goto corrupted;
363 	}
364 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
365 		error_msg = "unexpected eh_depth";
366 		goto corrupted;
367 	}
368 	if (unlikely(eh->eh_max == 0)) {
369 		error_msg = "invalid eh_max";
370 		goto corrupted;
371 	}
372 	max = ext4_ext_max_entries(inode, depth);
373 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
374 		error_msg = "too large eh_max";
375 		goto corrupted;
376 	}
377 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
378 		error_msg = "invalid eh_entries";
379 		goto corrupted;
380 	}
381 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
382 		error_msg = "invalid extent entries";
383 		goto corrupted;
384 	}
385 	return 0;
386 
387 corrupted:
388 	ext4_error_inode(inode, function, line, 0,
389 			"bad header/extent: %s - magic %x, "
390 			"entries %u, max %u(%u), depth %u(%u)",
391 			error_msg, le16_to_cpu(eh->eh_magic),
392 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
393 			max, le16_to_cpu(eh->eh_depth), depth);
394 
395 	return -EIO;
396 }
397 
398 #define ext4_ext_check(inode, eh, depth)	\
399 	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
400 
401 int ext4_ext_check_inode(struct inode *inode)
402 {
403 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
404 }
405 
406 #ifdef EXT_DEBUG
407 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
408 {
409 	int k, l = path->p_depth;
410 
411 	ext_debug("path:");
412 	for (k = 0; k <= l; k++, path++) {
413 		if (path->p_idx) {
414 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
415 			    ext4_idx_pblock(path->p_idx));
416 		} else if (path->p_ext) {
417 			ext_debug("  %d:[%d]%d:%llu ",
418 				  le32_to_cpu(path->p_ext->ee_block),
419 				  ext4_ext_is_uninitialized(path->p_ext),
420 				  ext4_ext_get_actual_len(path->p_ext),
421 				  ext4_ext_pblock(path->p_ext));
422 		} else
423 			ext_debug("  []");
424 	}
425 	ext_debug("\n");
426 }
427 
428 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
429 {
430 	int depth = ext_depth(inode);
431 	struct ext4_extent_header *eh;
432 	struct ext4_extent *ex;
433 	int i;
434 
435 	if (!path)
436 		return;
437 
438 	eh = path[depth].p_hdr;
439 	ex = EXT_FIRST_EXTENT(eh);
440 
441 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
442 
443 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
444 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
445 			  ext4_ext_is_uninitialized(ex),
446 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
447 	}
448 	ext_debug("\n");
449 }
450 
451 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
452 			ext4_fsblk_t newblock, int level)
453 {
454 	int depth = ext_depth(inode);
455 	struct ext4_extent *ex;
456 
457 	if (depth != level) {
458 		struct ext4_extent_idx *idx;
459 		idx = path[level].p_idx;
460 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
461 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
462 					le32_to_cpu(idx->ei_block),
463 					ext4_idx_pblock(idx),
464 					newblock);
465 			idx++;
466 		}
467 
468 		return;
469 	}
470 
471 	ex = path[depth].p_ext;
472 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
473 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
474 				le32_to_cpu(ex->ee_block),
475 				ext4_ext_pblock(ex),
476 				ext4_ext_is_uninitialized(ex),
477 				ext4_ext_get_actual_len(ex),
478 				newblock);
479 		ex++;
480 	}
481 }
482 
483 #else
484 #define ext4_ext_show_path(inode, path)
485 #define ext4_ext_show_leaf(inode, path)
486 #define ext4_ext_show_move(inode, path, newblock, level)
487 #endif
488 
489 void ext4_ext_drop_refs(struct ext4_ext_path *path)
490 {
491 	int depth = path->p_depth;
492 	int i;
493 
494 	for (i = 0; i <= depth; i++, path++)
495 		if (path->p_bh) {
496 			brelse(path->p_bh);
497 			path->p_bh = NULL;
498 		}
499 }
500 
501 /*
502  * ext4_ext_binsearch_idx:
503  * binary search for the closest index of the given block
504  * the header must be checked before calling this
505  */
506 static void
507 ext4_ext_binsearch_idx(struct inode *inode,
508 			struct ext4_ext_path *path, ext4_lblk_t block)
509 {
510 	struct ext4_extent_header *eh = path->p_hdr;
511 	struct ext4_extent_idx *r, *l, *m;
512 
513 
514 	ext_debug("binsearch for %u(idx):  ", block);
515 
516 	l = EXT_FIRST_INDEX(eh) + 1;
517 	r = EXT_LAST_INDEX(eh);
518 	while (l <= r) {
519 		m = l + (r - l) / 2;
520 		if (block < le32_to_cpu(m->ei_block))
521 			r = m - 1;
522 		else
523 			l = m + 1;
524 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
525 				m, le32_to_cpu(m->ei_block),
526 				r, le32_to_cpu(r->ei_block));
527 	}
528 
529 	path->p_idx = l - 1;
530 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
531 		  ext4_idx_pblock(path->p_idx));
532 
533 #ifdef CHECK_BINSEARCH
534 	{
535 		struct ext4_extent_idx *chix, *ix;
536 		int k;
537 
538 		chix = ix = EXT_FIRST_INDEX(eh);
539 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
540 		  if (k != 0 &&
541 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
542 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
543 				       "first=0x%p\n", k,
544 				       ix, EXT_FIRST_INDEX(eh));
545 				printk(KERN_DEBUG "%u <= %u\n",
546 				       le32_to_cpu(ix->ei_block),
547 				       le32_to_cpu(ix[-1].ei_block));
548 			}
549 			BUG_ON(k && le32_to_cpu(ix->ei_block)
550 					   <= le32_to_cpu(ix[-1].ei_block));
551 			if (block < le32_to_cpu(ix->ei_block))
552 				break;
553 			chix = ix;
554 		}
555 		BUG_ON(chix != path->p_idx);
556 	}
557 #endif
558 
559 }
560 
561 /*
562  * ext4_ext_binsearch:
563  * binary search for closest extent of the given block
564  * the header must be checked before calling this
565  */
566 static void
567 ext4_ext_binsearch(struct inode *inode,
568 		struct ext4_ext_path *path, ext4_lblk_t block)
569 {
570 	struct ext4_extent_header *eh = path->p_hdr;
571 	struct ext4_extent *r, *l, *m;
572 
573 	if (eh->eh_entries == 0) {
574 		/*
575 		 * this leaf is empty:
576 		 * we get such a leaf in split/add case
577 		 */
578 		return;
579 	}
580 
581 	ext_debug("binsearch for %u:  ", block);
582 
583 	l = EXT_FIRST_EXTENT(eh) + 1;
584 	r = EXT_LAST_EXTENT(eh);
585 
586 	while (l <= r) {
587 		m = l + (r - l) / 2;
588 		if (block < le32_to_cpu(m->ee_block))
589 			r = m - 1;
590 		else
591 			l = m + 1;
592 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
593 				m, le32_to_cpu(m->ee_block),
594 				r, le32_to_cpu(r->ee_block));
595 	}
596 
597 	path->p_ext = l - 1;
598 	ext_debug("  -> %d:%llu:[%d]%d ",
599 			le32_to_cpu(path->p_ext->ee_block),
600 			ext4_ext_pblock(path->p_ext),
601 			ext4_ext_is_uninitialized(path->p_ext),
602 			ext4_ext_get_actual_len(path->p_ext));
603 
604 #ifdef CHECK_BINSEARCH
605 	{
606 		struct ext4_extent *chex, *ex;
607 		int k;
608 
609 		chex = ex = EXT_FIRST_EXTENT(eh);
610 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
611 			BUG_ON(k && le32_to_cpu(ex->ee_block)
612 					  <= le32_to_cpu(ex[-1].ee_block));
613 			if (block < le32_to_cpu(ex->ee_block))
614 				break;
615 			chex = ex;
616 		}
617 		BUG_ON(chex != path->p_ext);
618 	}
619 #endif
620 
621 }
622 
623 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
624 {
625 	struct ext4_extent_header *eh;
626 
627 	eh = ext_inode_hdr(inode);
628 	eh->eh_depth = 0;
629 	eh->eh_entries = 0;
630 	eh->eh_magic = EXT4_EXT_MAGIC;
631 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
632 	ext4_mark_inode_dirty(handle, inode);
633 	ext4_ext_invalidate_cache(inode);
634 	return 0;
635 }
636 
637 struct ext4_ext_path *
638 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
639 					struct ext4_ext_path *path)
640 {
641 	struct ext4_extent_header *eh;
642 	struct buffer_head *bh;
643 	short int depth, i, ppos = 0, alloc = 0;
644 
645 	eh = ext_inode_hdr(inode);
646 	depth = ext_depth(inode);
647 
648 	/* account possible depth increase */
649 	if (!path) {
650 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
651 				GFP_NOFS);
652 		if (!path)
653 			return ERR_PTR(-ENOMEM);
654 		alloc = 1;
655 	}
656 	path[0].p_hdr = eh;
657 	path[0].p_bh = NULL;
658 
659 	i = depth;
660 	/* walk through the tree */
661 	while (i) {
662 		int need_to_validate = 0;
663 
664 		ext_debug("depth %d: num %d, max %d\n",
665 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
666 
667 		ext4_ext_binsearch_idx(inode, path + ppos, block);
668 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
669 		path[ppos].p_depth = i;
670 		path[ppos].p_ext = NULL;
671 
672 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
673 		if (unlikely(!bh))
674 			goto err;
675 		if (!bh_uptodate_or_lock(bh)) {
676 			trace_ext4_ext_load_extent(inode, block,
677 						path[ppos].p_block);
678 			if (bh_submit_read(bh) < 0) {
679 				put_bh(bh);
680 				goto err;
681 			}
682 			/* validate the extent entries */
683 			need_to_validate = 1;
684 		}
685 		eh = ext_block_hdr(bh);
686 		ppos++;
687 		if (unlikely(ppos > depth)) {
688 			put_bh(bh);
689 			EXT4_ERROR_INODE(inode,
690 					 "ppos %d > depth %d", ppos, depth);
691 			goto err;
692 		}
693 		path[ppos].p_bh = bh;
694 		path[ppos].p_hdr = eh;
695 		i--;
696 
697 		if (need_to_validate && ext4_ext_check(inode, eh, i))
698 			goto err;
699 	}
700 
701 	path[ppos].p_depth = i;
702 	path[ppos].p_ext = NULL;
703 	path[ppos].p_idx = NULL;
704 
705 	/* find extent */
706 	ext4_ext_binsearch(inode, path + ppos, block);
707 	/* if not an empty leaf */
708 	if (path[ppos].p_ext)
709 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
710 
711 	ext4_ext_show_path(inode, path);
712 
713 	return path;
714 
715 err:
716 	ext4_ext_drop_refs(path);
717 	if (alloc)
718 		kfree(path);
719 	return ERR_PTR(-EIO);
720 }
721 
722 /*
723  * ext4_ext_insert_index:
724  * insert new index [@logical;@ptr] into the block at @curp;
725  * check where to insert: before @curp or after @curp
726  */
727 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
728 				 struct ext4_ext_path *curp,
729 				 int logical, ext4_fsblk_t ptr)
730 {
731 	struct ext4_extent_idx *ix;
732 	int len, err;
733 
734 	err = ext4_ext_get_access(handle, inode, curp);
735 	if (err)
736 		return err;
737 
738 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
739 		EXT4_ERROR_INODE(inode,
740 				 "logical %d == ei_block %d!",
741 				 logical, le32_to_cpu(curp->p_idx->ei_block));
742 		return -EIO;
743 	}
744 
745 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
746 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
747 		EXT4_ERROR_INODE(inode,
748 				 "eh_entries %d >= eh_max %d!",
749 				 le16_to_cpu(curp->p_hdr->eh_entries),
750 				 le16_to_cpu(curp->p_hdr->eh_max));
751 		return -EIO;
752 	}
753 
754 	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
755 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
756 		/* insert after */
757 		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
758 			len = (len - 1) * sizeof(struct ext4_extent_idx);
759 			len = len < 0 ? 0 : len;
760 			ext_debug("insert new index %d after: %llu. "
761 					"move %d from 0x%p to 0x%p\n",
762 					logical, ptr, len,
763 					(curp->p_idx + 1), (curp->p_idx + 2));
764 			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
765 		}
766 		ix = curp->p_idx + 1;
767 	} else {
768 		/* insert before */
769 		len = len * sizeof(struct ext4_extent_idx);
770 		len = len < 0 ? 0 : len;
771 		ext_debug("insert new index %d before: %llu. "
772 				"move %d from 0x%p to 0x%p\n",
773 				logical, ptr, len,
774 				curp->p_idx, (curp->p_idx + 1));
775 		memmove(curp->p_idx + 1, curp->p_idx, len);
776 		ix = curp->p_idx;
777 	}
778 
779 	ix->ei_block = cpu_to_le32(logical);
780 	ext4_idx_store_pblock(ix, ptr);
781 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
782 
783 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
784 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
785 		return -EIO;
786 	}
787 
788 	err = ext4_ext_dirty(handle, inode, curp);
789 	ext4_std_error(inode->i_sb, err);
790 
791 	return err;
792 }
793 
794 /*
795  * ext4_ext_split:
796  * inserts new subtree into the path, using free index entry
797  * at depth @at:
798  * - allocates all needed blocks (new leaf and all intermediate index blocks)
799  * - makes decision where to split
800  * - moves remaining extents and index entries (right to the split point)
801  *   into the newly allocated blocks
802  * - initializes subtree
803  */
804 static int ext4_ext_split(handle_t *handle, struct inode *inode,
805 			  unsigned int flags,
806 			  struct ext4_ext_path *path,
807 			  struct ext4_extent *newext, int at)
808 {
809 	struct buffer_head *bh = NULL;
810 	int depth = ext_depth(inode);
811 	struct ext4_extent_header *neh;
812 	struct ext4_extent_idx *fidx;
813 	int i = at, k, m, a;
814 	ext4_fsblk_t newblock, oldblock;
815 	__le32 border;
816 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
817 	int err = 0;
818 
819 	/* make decision: where to split? */
820 	/* FIXME: now decision is simplest: at current extent */
821 
822 	/* if current leaf will be split, then we should use
823 	 * border from split point */
824 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
825 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
826 		return -EIO;
827 	}
828 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
829 		border = path[depth].p_ext[1].ee_block;
830 		ext_debug("leaf will be split."
831 				" next leaf starts at %d\n",
832 				  le32_to_cpu(border));
833 	} else {
834 		border = newext->ee_block;
835 		ext_debug("leaf will be added."
836 				" next leaf starts at %d\n",
837 				le32_to_cpu(border));
838 	}
839 
840 	/*
841 	 * If error occurs, then we break processing
842 	 * and mark filesystem read-only. index won't
843 	 * be inserted and tree will be in consistent
844 	 * state. Next mount will repair buffers too.
845 	 */
846 
847 	/*
848 	 * Get array to track all allocated blocks.
849 	 * We need this to handle errors and free blocks
850 	 * upon them.
851 	 */
852 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
853 	if (!ablocks)
854 		return -ENOMEM;
855 
856 	/* allocate all needed blocks */
857 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
858 	for (a = 0; a < depth - at; a++) {
859 		newblock = ext4_ext_new_meta_block(handle, inode, path,
860 						   newext, &err, flags);
861 		if (newblock == 0)
862 			goto cleanup;
863 		ablocks[a] = newblock;
864 	}
865 
866 	/* initialize new leaf */
867 	newblock = ablocks[--a];
868 	if (unlikely(newblock == 0)) {
869 		EXT4_ERROR_INODE(inode, "newblock == 0!");
870 		err = -EIO;
871 		goto cleanup;
872 	}
873 	bh = sb_getblk(inode->i_sb, newblock);
874 	if (!bh) {
875 		err = -EIO;
876 		goto cleanup;
877 	}
878 	lock_buffer(bh);
879 
880 	err = ext4_journal_get_create_access(handle, bh);
881 	if (err)
882 		goto cleanup;
883 
884 	neh = ext_block_hdr(bh);
885 	neh->eh_entries = 0;
886 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
887 	neh->eh_magic = EXT4_EXT_MAGIC;
888 	neh->eh_depth = 0;
889 
890 	/* move remainder of path[depth] to the new leaf */
891 	if (unlikely(path[depth].p_hdr->eh_entries !=
892 		     path[depth].p_hdr->eh_max)) {
893 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
894 				 path[depth].p_hdr->eh_entries,
895 				 path[depth].p_hdr->eh_max);
896 		err = -EIO;
897 		goto cleanup;
898 	}
899 	/* start copy from next extent */
900 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
901 	ext4_ext_show_move(inode, path, newblock, depth);
902 	if (m) {
903 		struct ext4_extent *ex;
904 		ex = EXT_FIRST_EXTENT(neh);
905 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
906 		le16_add_cpu(&neh->eh_entries, m);
907 	}
908 
909 	set_buffer_uptodate(bh);
910 	unlock_buffer(bh);
911 
912 	err = ext4_handle_dirty_metadata(handle, inode, bh);
913 	if (err)
914 		goto cleanup;
915 	brelse(bh);
916 	bh = NULL;
917 
918 	/* correct old leaf */
919 	if (m) {
920 		err = ext4_ext_get_access(handle, inode, path + depth);
921 		if (err)
922 			goto cleanup;
923 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
924 		err = ext4_ext_dirty(handle, inode, path + depth);
925 		if (err)
926 			goto cleanup;
927 
928 	}
929 
930 	/* create intermediate indexes */
931 	k = depth - at - 1;
932 	if (unlikely(k < 0)) {
933 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
934 		err = -EIO;
935 		goto cleanup;
936 	}
937 	if (k)
938 		ext_debug("create %d intermediate indices\n", k);
939 	/* insert new index into current index block */
940 	/* current depth stored in i var */
941 	i = depth - 1;
942 	while (k--) {
943 		oldblock = newblock;
944 		newblock = ablocks[--a];
945 		bh = sb_getblk(inode->i_sb, newblock);
946 		if (!bh) {
947 			err = -EIO;
948 			goto cleanup;
949 		}
950 		lock_buffer(bh);
951 
952 		err = ext4_journal_get_create_access(handle, bh);
953 		if (err)
954 			goto cleanup;
955 
956 		neh = ext_block_hdr(bh);
957 		neh->eh_entries = cpu_to_le16(1);
958 		neh->eh_magic = EXT4_EXT_MAGIC;
959 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
960 		neh->eh_depth = cpu_to_le16(depth - i);
961 		fidx = EXT_FIRST_INDEX(neh);
962 		fidx->ei_block = border;
963 		ext4_idx_store_pblock(fidx, oldblock);
964 
965 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
966 				i, newblock, le32_to_cpu(border), oldblock);
967 
968 		/* move remainder of path[i] to the new index block */
969 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
970 					EXT_LAST_INDEX(path[i].p_hdr))) {
971 			EXT4_ERROR_INODE(inode,
972 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
973 					 le32_to_cpu(path[i].p_ext->ee_block));
974 			err = -EIO;
975 			goto cleanup;
976 		}
977 		/* start copy indexes */
978 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
979 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
980 				EXT_MAX_INDEX(path[i].p_hdr));
981 		ext4_ext_show_move(inode, path, newblock, i);
982 		if (m) {
983 			memmove(++fidx, path[i].p_idx,
984 				sizeof(struct ext4_extent_idx) * m);
985 			le16_add_cpu(&neh->eh_entries, m);
986 		}
987 		set_buffer_uptodate(bh);
988 		unlock_buffer(bh);
989 
990 		err = ext4_handle_dirty_metadata(handle, inode, bh);
991 		if (err)
992 			goto cleanup;
993 		brelse(bh);
994 		bh = NULL;
995 
996 		/* correct old index */
997 		if (m) {
998 			err = ext4_ext_get_access(handle, inode, path + i);
999 			if (err)
1000 				goto cleanup;
1001 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1002 			err = ext4_ext_dirty(handle, inode, path + i);
1003 			if (err)
1004 				goto cleanup;
1005 		}
1006 
1007 		i--;
1008 	}
1009 
1010 	/* insert new index */
1011 	err = ext4_ext_insert_index(handle, inode, path + at,
1012 				    le32_to_cpu(border), newblock);
1013 
1014 cleanup:
1015 	if (bh) {
1016 		if (buffer_locked(bh))
1017 			unlock_buffer(bh);
1018 		brelse(bh);
1019 	}
1020 
1021 	if (err) {
1022 		/* free all allocated blocks in error case */
1023 		for (i = 0; i < depth; i++) {
1024 			if (!ablocks[i])
1025 				continue;
1026 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1027 					 EXT4_FREE_BLOCKS_METADATA);
1028 		}
1029 	}
1030 	kfree(ablocks);
1031 
1032 	return err;
1033 }
1034 
1035 /*
1036  * ext4_ext_grow_indepth:
1037  * implements tree growing procedure:
1038  * - allocates new block
1039  * - moves top-level data (index block or leaf) into the new block
1040  * - initializes new top-level, creating index that points to the
1041  *   just created block
1042  */
1043 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1044 				 unsigned int flags,
1045 				 struct ext4_ext_path *path,
1046 				 struct ext4_extent *newext)
1047 {
1048 	struct ext4_ext_path *curp = path;
1049 	struct ext4_extent_header *neh;
1050 	struct buffer_head *bh;
1051 	ext4_fsblk_t newblock;
1052 	int err = 0;
1053 
1054 	newblock = ext4_ext_new_meta_block(handle, inode, path,
1055 		newext, &err, flags);
1056 	if (newblock == 0)
1057 		return err;
1058 
1059 	bh = sb_getblk(inode->i_sb, newblock);
1060 	if (!bh) {
1061 		err = -EIO;
1062 		ext4_std_error(inode->i_sb, err);
1063 		return err;
1064 	}
1065 	lock_buffer(bh);
1066 
1067 	err = ext4_journal_get_create_access(handle, bh);
1068 	if (err) {
1069 		unlock_buffer(bh);
1070 		goto out;
1071 	}
1072 
1073 	/* move top-level index/leaf into new block */
1074 	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1075 
1076 	/* set size of new block */
1077 	neh = ext_block_hdr(bh);
1078 	/* old root could have indexes or leaves
1079 	 * so calculate e_max right way */
1080 	if (ext_depth(inode))
1081 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1082 	else
1083 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1084 	neh->eh_magic = EXT4_EXT_MAGIC;
1085 	set_buffer_uptodate(bh);
1086 	unlock_buffer(bh);
1087 
1088 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1089 	if (err)
1090 		goto out;
1091 
1092 	/* create index in new top-level index: num,max,pointer */
1093 	err = ext4_ext_get_access(handle, inode, curp);
1094 	if (err)
1095 		goto out;
1096 
1097 	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1098 	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1099 	curp->p_hdr->eh_entries = cpu_to_le16(1);
1100 	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1101 
1102 	if (path[0].p_hdr->eh_depth)
1103 		curp->p_idx->ei_block =
1104 			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1105 	else
1106 		curp->p_idx->ei_block =
1107 			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1108 	ext4_idx_store_pblock(curp->p_idx, newblock);
1109 
1110 	neh = ext_inode_hdr(inode);
1111 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1112 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1113 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1114 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1115 
1116 	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1117 	err = ext4_ext_dirty(handle, inode, curp);
1118 out:
1119 	brelse(bh);
1120 
1121 	return err;
1122 }
1123 
1124 /*
1125  * ext4_ext_create_new_leaf:
1126  * finds empty index and adds new leaf.
1127  * if no free index is found, then it requests in-depth growing.
1128  */
1129 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1130 				    unsigned int flags,
1131 				    struct ext4_ext_path *path,
1132 				    struct ext4_extent *newext)
1133 {
1134 	struct ext4_ext_path *curp;
1135 	int depth, i, err = 0;
1136 
1137 repeat:
1138 	i = depth = ext_depth(inode);
1139 
1140 	/* walk up to the tree and look for free index entry */
1141 	curp = path + depth;
1142 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1143 		i--;
1144 		curp--;
1145 	}
1146 
1147 	/* we use already allocated block for index block,
1148 	 * so subsequent data blocks should be contiguous */
1149 	if (EXT_HAS_FREE_INDEX(curp)) {
1150 		/* if we found index with free entry, then use that
1151 		 * entry: create all needed subtree and add new leaf */
1152 		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1153 		if (err)
1154 			goto out;
1155 
1156 		/* refill path */
1157 		ext4_ext_drop_refs(path);
1158 		path = ext4_ext_find_extent(inode,
1159 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1160 				    path);
1161 		if (IS_ERR(path))
1162 			err = PTR_ERR(path);
1163 	} else {
1164 		/* tree is full, time to grow in depth */
1165 		err = ext4_ext_grow_indepth(handle, inode, flags,
1166 					    path, newext);
1167 		if (err)
1168 			goto out;
1169 
1170 		/* refill path */
1171 		ext4_ext_drop_refs(path);
1172 		path = ext4_ext_find_extent(inode,
1173 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1174 				    path);
1175 		if (IS_ERR(path)) {
1176 			err = PTR_ERR(path);
1177 			goto out;
1178 		}
1179 
1180 		/*
1181 		 * only first (depth 0 -> 1) produces free space;
1182 		 * in all other cases we have to split the grown tree
1183 		 */
1184 		depth = ext_depth(inode);
1185 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1186 			/* now we need to split */
1187 			goto repeat;
1188 		}
1189 	}
1190 
1191 out:
1192 	return err;
1193 }
1194 
1195 /*
1196  * search the closest allocated block to the left for *logical
1197  * and returns it at @logical + it's physical address at @phys
1198  * if *logical is the smallest allocated block, the function
1199  * returns 0 at @phys
1200  * return value contains 0 (success) or error code
1201  */
1202 static int ext4_ext_search_left(struct inode *inode,
1203 				struct ext4_ext_path *path,
1204 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1205 {
1206 	struct ext4_extent_idx *ix;
1207 	struct ext4_extent *ex;
1208 	int depth, ee_len;
1209 
1210 	if (unlikely(path == NULL)) {
1211 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1212 		return -EIO;
1213 	}
1214 	depth = path->p_depth;
1215 	*phys = 0;
1216 
1217 	if (depth == 0 && path->p_ext == NULL)
1218 		return 0;
1219 
1220 	/* usually extent in the path covers blocks smaller
1221 	 * then *logical, but it can be that extent is the
1222 	 * first one in the file */
1223 
1224 	ex = path[depth].p_ext;
1225 	ee_len = ext4_ext_get_actual_len(ex);
1226 	if (*logical < le32_to_cpu(ex->ee_block)) {
1227 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1228 			EXT4_ERROR_INODE(inode,
1229 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1230 					 *logical, le32_to_cpu(ex->ee_block));
1231 			return -EIO;
1232 		}
1233 		while (--depth >= 0) {
1234 			ix = path[depth].p_idx;
1235 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1236 				EXT4_ERROR_INODE(inode,
1237 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1238 				  ix != NULL ? ix->ei_block : 0,
1239 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1240 				    EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1241 				  depth);
1242 				return -EIO;
1243 			}
1244 		}
1245 		return 0;
1246 	}
1247 
1248 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1249 		EXT4_ERROR_INODE(inode,
1250 				 "logical %d < ee_block %d + ee_len %d!",
1251 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1252 		return -EIO;
1253 	}
1254 
1255 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1256 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1257 	return 0;
1258 }
1259 
1260 /*
1261  * search the closest allocated block to the right for *logical
1262  * and returns it at @logical + it's physical address at @phys
1263  * if *logical is the smallest allocated block, the function
1264  * returns 0 at @phys
1265  * return value contains 0 (success) or error code
1266  */
1267 static int ext4_ext_search_right(struct inode *inode,
1268 				 struct ext4_ext_path *path,
1269 				 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1270 {
1271 	struct buffer_head *bh = NULL;
1272 	struct ext4_extent_header *eh;
1273 	struct ext4_extent_idx *ix;
1274 	struct ext4_extent *ex;
1275 	ext4_fsblk_t block;
1276 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1277 	int ee_len;
1278 
1279 	if (unlikely(path == NULL)) {
1280 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1281 		return -EIO;
1282 	}
1283 	depth = path->p_depth;
1284 	*phys = 0;
1285 
1286 	if (depth == 0 && path->p_ext == NULL)
1287 		return 0;
1288 
1289 	/* usually extent in the path covers blocks smaller
1290 	 * then *logical, but it can be that extent is the
1291 	 * first one in the file */
1292 
1293 	ex = path[depth].p_ext;
1294 	ee_len = ext4_ext_get_actual_len(ex);
1295 	if (*logical < le32_to_cpu(ex->ee_block)) {
1296 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1297 			EXT4_ERROR_INODE(inode,
1298 					 "first_extent(path[%d].p_hdr) != ex",
1299 					 depth);
1300 			return -EIO;
1301 		}
1302 		while (--depth >= 0) {
1303 			ix = path[depth].p_idx;
1304 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1305 				EXT4_ERROR_INODE(inode,
1306 						 "ix != EXT_FIRST_INDEX *logical %d!",
1307 						 *logical);
1308 				return -EIO;
1309 			}
1310 		}
1311 		*logical = le32_to_cpu(ex->ee_block);
1312 		*phys = ext4_ext_pblock(ex);
1313 		return 0;
1314 	}
1315 
1316 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1317 		EXT4_ERROR_INODE(inode,
1318 				 "logical %d < ee_block %d + ee_len %d!",
1319 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1320 		return -EIO;
1321 	}
1322 
1323 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1324 		/* next allocated block in this leaf */
1325 		ex++;
1326 		*logical = le32_to_cpu(ex->ee_block);
1327 		*phys = ext4_ext_pblock(ex);
1328 		return 0;
1329 	}
1330 
1331 	/* go up and search for index to the right */
1332 	while (--depth >= 0) {
1333 		ix = path[depth].p_idx;
1334 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1335 			goto got_index;
1336 	}
1337 
1338 	/* we've gone up to the root and found no index to the right */
1339 	return 0;
1340 
1341 got_index:
1342 	/* we've found index to the right, let's
1343 	 * follow it and find the closest allocated
1344 	 * block to the right */
1345 	ix++;
1346 	block = ext4_idx_pblock(ix);
1347 	while (++depth < path->p_depth) {
1348 		bh = sb_bread(inode->i_sb, block);
1349 		if (bh == NULL)
1350 			return -EIO;
1351 		eh = ext_block_hdr(bh);
1352 		/* subtract from p_depth to get proper eh_depth */
1353 		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1354 			put_bh(bh);
1355 			return -EIO;
1356 		}
1357 		ix = EXT_FIRST_INDEX(eh);
1358 		block = ext4_idx_pblock(ix);
1359 		put_bh(bh);
1360 	}
1361 
1362 	bh = sb_bread(inode->i_sb, block);
1363 	if (bh == NULL)
1364 		return -EIO;
1365 	eh = ext_block_hdr(bh);
1366 	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1367 		put_bh(bh);
1368 		return -EIO;
1369 	}
1370 	ex = EXT_FIRST_EXTENT(eh);
1371 	*logical = le32_to_cpu(ex->ee_block);
1372 	*phys = ext4_ext_pblock(ex);
1373 	put_bh(bh);
1374 	return 0;
1375 }
1376 
1377 /*
1378  * ext4_ext_next_allocated_block:
1379  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1380  * NOTE: it considers block number from index entry as
1381  * allocated block. Thus, index entries have to be consistent
1382  * with leaves.
1383  */
1384 static ext4_lblk_t
1385 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1386 {
1387 	int depth;
1388 
1389 	BUG_ON(path == NULL);
1390 	depth = path->p_depth;
1391 
1392 	if (depth == 0 && path->p_ext == NULL)
1393 		return EXT_MAX_BLOCKS;
1394 
1395 	while (depth >= 0) {
1396 		if (depth == path->p_depth) {
1397 			/* leaf */
1398 			if (path[depth].p_ext !=
1399 					EXT_LAST_EXTENT(path[depth].p_hdr))
1400 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1401 		} else {
1402 			/* index */
1403 			if (path[depth].p_idx !=
1404 					EXT_LAST_INDEX(path[depth].p_hdr))
1405 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1406 		}
1407 		depth--;
1408 	}
1409 
1410 	return EXT_MAX_BLOCKS;
1411 }
1412 
1413 /*
1414  * ext4_ext_next_leaf_block:
1415  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1416  */
1417 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1418 {
1419 	int depth;
1420 
1421 	BUG_ON(path == NULL);
1422 	depth = path->p_depth;
1423 
1424 	/* zero-tree has no leaf blocks at all */
1425 	if (depth == 0)
1426 		return EXT_MAX_BLOCKS;
1427 
1428 	/* go to index block */
1429 	depth--;
1430 
1431 	while (depth >= 0) {
1432 		if (path[depth].p_idx !=
1433 				EXT_LAST_INDEX(path[depth].p_hdr))
1434 			return (ext4_lblk_t)
1435 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1436 		depth--;
1437 	}
1438 
1439 	return EXT_MAX_BLOCKS;
1440 }
1441 
1442 /*
1443  * ext4_ext_correct_indexes:
1444  * if leaf gets modified and modified extent is first in the leaf,
1445  * then we have to correct all indexes above.
1446  * TODO: do we need to correct tree in all cases?
1447  */
1448 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1449 				struct ext4_ext_path *path)
1450 {
1451 	struct ext4_extent_header *eh;
1452 	int depth = ext_depth(inode);
1453 	struct ext4_extent *ex;
1454 	__le32 border;
1455 	int k, err = 0;
1456 
1457 	eh = path[depth].p_hdr;
1458 	ex = path[depth].p_ext;
1459 
1460 	if (unlikely(ex == NULL || eh == NULL)) {
1461 		EXT4_ERROR_INODE(inode,
1462 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1463 		return -EIO;
1464 	}
1465 
1466 	if (depth == 0) {
1467 		/* there is no tree at all */
1468 		return 0;
1469 	}
1470 
1471 	if (ex != EXT_FIRST_EXTENT(eh)) {
1472 		/* we correct tree if first leaf got modified only */
1473 		return 0;
1474 	}
1475 
1476 	/*
1477 	 * TODO: we need correction if border is smaller than current one
1478 	 */
1479 	k = depth - 1;
1480 	border = path[depth].p_ext->ee_block;
1481 	err = ext4_ext_get_access(handle, inode, path + k);
1482 	if (err)
1483 		return err;
1484 	path[k].p_idx->ei_block = border;
1485 	err = ext4_ext_dirty(handle, inode, path + k);
1486 	if (err)
1487 		return err;
1488 
1489 	while (k--) {
1490 		/* change all left-side indexes */
1491 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1492 			break;
1493 		err = ext4_ext_get_access(handle, inode, path + k);
1494 		if (err)
1495 			break;
1496 		path[k].p_idx->ei_block = border;
1497 		err = ext4_ext_dirty(handle, inode, path + k);
1498 		if (err)
1499 			break;
1500 	}
1501 
1502 	return err;
1503 }
1504 
1505 int
1506 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1507 				struct ext4_extent *ex2)
1508 {
1509 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1510 
1511 	/*
1512 	 * Make sure that either both extents are uninitialized, or
1513 	 * both are _not_.
1514 	 */
1515 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1516 		return 0;
1517 
1518 	if (ext4_ext_is_uninitialized(ex1))
1519 		max_len = EXT_UNINIT_MAX_LEN;
1520 	else
1521 		max_len = EXT_INIT_MAX_LEN;
1522 
1523 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1524 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1525 
1526 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1527 			le32_to_cpu(ex2->ee_block))
1528 		return 0;
1529 
1530 	/*
1531 	 * To allow future support for preallocated extents to be added
1532 	 * as an RO_COMPAT feature, refuse to merge to extents if
1533 	 * this can result in the top bit of ee_len being set.
1534 	 */
1535 	if (ext1_ee_len + ext2_ee_len > max_len)
1536 		return 0;
1537 #ifdef AGGRESSIVE_TEST
1538 	if (ext1_ee_len >= 4)
1539 		return 0;
1540 #endif
1541 
1542 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1543 		return 1;
1544 	return 0;
1545 }
1546 
1547 /*
1548  * This function tries to merge the "ex" extent to the next extent in the tree.
1549  * It always tries to merge towards right. If you want to merge towards
1550  * left, pass "ex - 1" as argument instead of "ex".
1551  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1552  * 1 if they got merged.
1553  */
1554 static int ext4_ext_try_to_merge_right(struct inode *inode,
1555 				 struct ext4_ext_path *path,
1556 				 struct ext4_extent *ex)
1557 {
1558 	struct ext4_extent_header *eh;
1559 	unsigned int depth, len;
1560 	int merge_done = 0;
1561 	int uninitialized = 0;
1562 
1563 	depth = ext_depth(inode);
1564 	BUG_ON(path[depth].p_hdr == NULL);
1565 	eh = path[depth].p_hdr;
1566 
1567 	while (ex < EXT_LAST_EXTENT(eh)) {
1568 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1569 			break;
1570 		/* merge with next extent! */
1571 		if (ext4_ext_is_uninitialized(ex))
1572 			uninitialized = 1;
1573 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1574 				+ ext4_ext_get_actual_len(ex + 1));
1575 		if (uninitialized)
1576 			ext4_ext_mark_uninitialized(ex);
1577 
1578 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1579 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1580 				* sizeof(struct ext4_extent);
1581 			memmove(ex + 1, ex + 2, len);
1582 		}
1583 		le16_add_cpu(&eh->eh_entries, -1);
1584 		merge_done = 1;
1585 		WARN_ON(eh->eh_entries == 0);
1586 		if (!eh->eh_entries)
1587 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1588 	}
1589 
1590 	return merge_done;
1591 }
1592 
1593 /*
1594  * This function tries to merge the @ex extent to neighbours in the tree.
1595  * return 1 if merge left else 0.
1596  */
1597 static int ext4_ext_try_to_merge(struct inode *inode,
1598 				  struct ext4_ext_path *path,
1599 				  struct ext4_extent *ex) {
1600 	struct ext4_extent_header *eh;
1601 	unsigned int depth;
1602 	int merge_done = 0;
1603 	int ret = 0;
1604 
1605 	depth = ext_depth(inode);
1606 	BUG_ON(path[depth].p_hdr == NULL);
1607 	eh = path[depth].p_hdr;
1608 
1609 	if (ex > EXT_FIRST_EXTENT(eh))
1610 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1611 
1612 	if (!merge_done)
1613 		ret = ext4_ext_try_to_merge_right(inode, path, ex);
1614 
1615 	return ret;
1616 }
1617 
1618 /*
1619  * check if a portion of the "newext" extent overlaps with an
1620  * existing extent.
1621  *
1622  * If there is an overlap discovered, it updates the length of the newext
1623  * such that there will be no overlap, and then returns 1.
1624  * If there is no overlap found, it returns 0.
1625  */
1626 static unsigned int ext4_ext_check_overlap(struct inode *inode,
1627 					   struct ext4_extent *newext,
1628 					   struct ext4_ext_path *path)
1629 {
1630 	ext4_lblk_t b1, b2;
1631 	unsigned int depth, len1;
1632 	unsigned int ret = 0;
1633 
1634 	b1 = le32_to_cpu(newext->ee_block);
1635 	len1 = ext4_ext_get_actual_len(newext);
1636 	depth = ext_depth(inode);
1637 	if (!path[depth].p_ext)
1638 		goto out;
1639 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1640 
1641 	/*
1642 	 * get the next allocated block if the extent in the path
1643 	 * is before the requested block(s)
1644 	 */
1645 	if (b2 < b1) {
1646 		b2 = ext4_ext_next_allocated_block(path);
1647 		if (b2 == EXT_MAX_BLOCKS)
1648 			goto out;
1649 	}
1650 
1651 	/* check for wrap through zero on extent logical start block*/
1652 	if (b1 + len1 < b1) {
1653 		len1 = EXT_MAX_BLOCKS - b1;
1654 		newext->ee_len = cpu_to_le16(len1);
1655 		ret = 1;
1656 	}
1657 
1658 	/* check for overlap */
1659 	if (b1 + len1 > b2) {
1660 		newext->ee_len = cpu_to_le16(b2 - b1);
1661 		ret = 1;
1662 	}
1663 out:
1664 	return ret;
1665 }
1666 
1667 /*
1668  * ext4_ext_insert_extent:
1669  * tries to merge requsted extent into the existing extent or
1670  * inserts requested extent as new one into the tree,
1671  * creating new leaf in the no-space case.
1672  */
1673 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1674 				struct ext4_ext_path *path,
1675 				struct ext4_extent *newext, int flag)
1676 {
1677 	struct ext4_extent_header *eh;
1678 	struct ext4_extent *ex, *fex;
1679 	struct ext4_extent *nearex; /* nearest extent */
1680 	struct ext4_ext_path *npath = NULL;
1681 	int depth, len, err;
1682 	ext4_lblk_t next;
1683 	unsigned uninitialized = 0;
1684 	int flags = 0;
1685 
1686 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1687 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1688 		return -EIO;
1689 	}
1690 	depth = ext_depth(inode);
1691 	ex = path[depth].p_ext;
1692 	if (unlikely(path[depth].p_hdr == NULL)) {
1693 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1694 		return -EIO;
1695 	}
1696 
1697 	/* try to insert block into found extent and return */
1698 	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1699 		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1700 		ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1701 			  ext4_ext_is_uninitialized(newext),
1702 			  ext4_ext_get_actual_len(newext),
1703 			  le32_to_cpu(ex->ee_block),
1704 			  ext4_ext_is_uninitialized(ex),
1705 			  ext4_ext_get_actual_len(ex),
1706 			  ext4_ext_pblock(ex));
1707 		err = ext4_ext_get_access(handle, inode, path + depth);
1708 		if (err)
1709 			return err;
1710 
1711 		/*
1712 		 * ext4_can_extents_be_merged should have checked that either
1713 		 * both extents are uninitialized, or both aren't. Thus we
1714 		 * need to check only one of them here.
1715 		 */
1716 		if (ext4_ext_is_uninitialized(ex))
1717 			uninitialized = 1;
1718 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1719 					+ ext4_ext_get_actual_len(newext));
1720 		if (uninitialized)
1721 			ext4_ext_mark_uninitialized(ex);
1722 		eh = path[depth].p_hdr;
1723 		nearex = ex;
1724 		goto merge;
1725 	}
1726 
1727 	depth = ext_depth(inode);
1728 	eh = path[depth].p_hdr;
1729 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1730 		goto has_space;
1731 
1732 	/* probably next leaf has space for us? */
1733 	fex = EXT_LAST_EXTENT(eh);
1734 	next = EXT_MAX_BLOCKS;
1735 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1736 		next = ext4_ext_next_leaf_block(path);
1737 	if (next != EXT_MAX_BLOCKS) {
1738 		ext_debug("next leaf block - %d\n", next);
1739 		BUG_ON(npath != NULL);
1740 		npath = ext4_ext_find_extent(inode, next, NULL);
1741 		if (IS_ERR(npath))
1742 			return PTR_ERR(npath);
1743 		BUG_ON(npath->p_depth != path->p_depth);
1744 		eh = npath[depth].p_hdr;
1745 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1746 			ext_debug("next leaf isn't full(%d)\n",
1747 				  le16_to_cpu(eh->eh_entries));
1748 			path = npath;
1749 			goto has_space;
1750 		}
1751 		ext_debug("next leaf has no free space(%d,%d)\n",
1752 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1753 	}
1754 
1755 	/*
1756 	 * There is no free space in the found leaf.
1757 	 * We're gonna add a new leaf in the tree.
1758 	 */
1759 	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1760 		flags = EXT4_MB_USE_ROOT_BLOCKS;
1761 	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1762 	if (err)
1763 		goto cleanup;
1764 	depth = ext_depth(inode);
1765 	eh = path[depth].p_hdr;
1766 
1767 has_space:
1768 	nearex = path[depth].p_ext;
1769 
1770 	err = ext4_ext_get_access(handle, inode, path + depth);
1771 	if (err)
1772 		goto cleanup;
1773 
1774 	if (!nearex) {
1775 		/* there is no extent in this leaf, create first one */
1776 		ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1777 				le32_to_cpu(newext->ee_block),
1778 				ext4_ext_pblock(newext),
1779 				ext4_ext_is_uninitialized(newext),
1780 				ext4_ext_get_actual_len(newext));
1781 		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1782 	} else if (le32_to_cpu(newext->ee_block)
1783 			   > le32_to_cpu(nearex->ee_block)) {
1784 /*		BUG_ON(newext->ee_block == nearex->ee_block); */
1785 		if (nearex != EXT_LAST_EXTENT(eh)) {
1786 			len = EXT_MAX_EXTENT(eh) - nearex;
1787 			len = (len - 1) * sizeof(struct ext4_extent);
1788 			len = len < 0 ? 0 : len;
1789 			ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1790 					"move %d from 0x%p to 0x%p\n",
1791 					le32_to_cpu(newext->ee_block),
1792 					ext4_ext_pblock(newext),
1793 					ext4_ext_is_uninitialized(newext),
1794 					ext4_ext_get_actual_len(newext),
1795 					nearex, len, nearex + 1, nearex + 2);
1796 			memmove(nearex + 2, nearex + 1, len);
1797 		}
1798 		path[depth].p_ext = nearex + 1;
1799 	} else {
1800 		BUG_ON(newext->ee_block == nearex->ee_block);
1801 		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1802 		len = len < 0 ? 0 : len;
1803 		ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1804 				"move %d from 0x%p to 0x%p\n",
1805 				le32_to_cpu(newext->ee_block),
1806 				ext4_ext_pblock(newext),
1807 				ext4_ext_is_uninitialized(newext),
1808 				ext4_ext_get_actual_len(newext),
1809 				nearex, len, nearex, nearex + 1);
1810 		memmove(nearex + 1, nearex, len);
1811 		path[depth].p_ext = nearex;
1812 	}
1813 
1814 	le16_add_cpu(&eh->eh_entries, 1);
1815 	nearex = path[depth].p_ext;
1816 	nearex->ee_block = newext->ee_block;
1817 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1818 	nearex->ee_len = newext->ee_len;
1819 
1820 merge:
1821 	/* try to merge extents to the right */
1822 	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1823 		ext4_ext_try_to_merge(inode, path, nearex);
1824 
1825 	/* try to merge extents to the left */
1826 
1827 	/* time to correct all indexes above */
1828 	err = ext4_ext_correct_indexes(handle, inode, path);
1829 	if (err)
1830 		goto cleanup;
1831 
1832 	err = ext4_ext_dirty(handle, inode, path + depth);
1833 
1834 cleanup:
1835 	if (npath) {
1836 		ext4_ext_drop_refs(npath);
1837 		kfree(npath);
1838 	}
1839 	ext4_ext_invalidate_cache(inode);
1840 	return err;
1841 }
1842 
1843 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1844 			       ext4_lblk_t num, ext_prepare_callback func,
1845 			       void *cbdata)
1846 {
1847 	struct ext4_ext_path *path = NULL;
1848 	struct ext4_ext_cache cbex;
1849 	struct ext4_extent *ex;
1850 	ext4_lblk_t next, start = 0, end = 0;
1851 	ext4_lblk_t last = block + num;
1852 	int depth, exists, err = 0;
1853 
1854 	BUG_ON(func == NULL);
1855 	BUG_ON(inode == NULL);
1856 
1857 	while (block < last && block != EXT_MAX_BLOCKS) {
1858 		num = last - block;
1859 		/* find extent for this block */
1860 		down_read(&EXT4_I(inode)->i_data_sem);
1861 		path = ext4_ext_find_extent(inode, block, path);
1862 		up_read(&EXT4_I(inode)->i_data_sem);
1863 		if (IS_ERR(path)) {
1864 			err = PTR_ERR(path);
1865 			path = NULL;
1866 			break;
1867 		}
1868 
1869 		depth = ext_depth(inode);
1870 		if (unlikely(path[depth].p_hdr == NULL)) {
1871 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1872 			err = -EIO;
1873 			break;
1874 		}
1875 		ex = path[depth].p_ext;
1876 		next = ext4_ext_next_allocated_block(path);
1877 
1878 		exists = 0;
1879 		if (!ex) {
1880 			/* there is no extent yet, so try to allocate
1881 			 * all requested space */
1882 			start = block;
1883 			end = block + num;
1884 		} else if (le32_to_cpu(ex->ee_block) > block) {
1885 			/* need to allocate space before found extent */
1886 			start = block;
1887 			end = le32_to_cpu(ex->ee_block);
1888 			if (block + num < end)
1889 				end = block + num;
1890 		} else if (block >= le32_to_cpu(ex->ee_block)
1891 					+ ext4_ext_get_actual_len(ex)) {
1892 			/* need to allocate space after found extent */
1893 			start = block;
1894 			end = block + num;
1895 			if (end >= next)
1896 				end = next;
1897 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1898 			/*
1899 			 * some part of requested space is covered
1900 			 * by found extent
1901 			 */
1902 			start = block;
1903 			end = le32_to_cpu(ex->ee_block)
1904 				+ ext4_ext_get_actual_len(ex);
1905 			if (block + num < end)
1906 				end = block + num;
1907 			exists = 1;
1908 		} else {
1909 			BUG();
1910 		}
1911 		BUG_ON(end <= start);
1912 
1913 		if (!exists) {
1914 			cbex.ec_block = start;
1915 			cbex.ec_len = end - start;
1916 			cbex.ec_start = 0;
1917 		} else {
1918 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1919 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1920 			cbex.ec_start = ext4_ext_pblock(ex);
1921 		}
1922 
1923 		if (unlikely(cbex.ec_len == 0)) {
1924 			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1925 			err = -EIO;
1926 			break;
1927 		}
1928 		err = func(inode, next, &cbex, ex, cbdata);
1929 		ext4_ext_drop_refs(path);
1930 
1931 		if (err < 0)
1932 			break;
1933 
1934 		if (err == EXT_REPEAT)
1935 			continue;
1936 		else if (err == EXT_BREAK) {
1937 			err = 0;
1938 			break;
1939 		}
1940 
1941 		if (ext_depth(inode) != depth) {
1942 			/* depth was changed. we have to realloc path */
1943 			kfree(path);
1944 			path = NULL;
1945 		}
1946 
1947 		block = cbex.ec_block + cbex.ec_len;
1948 	}
1949 
1950 	if (path) {
1951 		ext4_ext_drop_refs(path);
1952 		kfree(path);
1953 	}
1954 
1955 	return err;
1956 }
1957 
1958 static void
1959 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1960 			__u32 len, ext4_fsblk_t start)
1961 {
1962 	struct ext4_ext_cache *cex;
1963 	BUG_ON(len == 0);
1964 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1965 	cex = &EXT4_I(inode)->i_cached_extent;
1966 	cex->ec_block = block;
1967 	cex->ec_len = len;
1968 	cex->ec_start = start;
1969 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1970 }
1971 
1972 /*
1973  * ext4_ext_put_gap_in_cache:
1974  * calculate boundaries of the gap that the requested block fits into
1975  * and cache this gap
1976  */
1977 static void
1978 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1979 				ext4_lblk_t block)
1980 {
1981 	int depth = ext_depth(inode);
1982 	unsigned long len;
1983 	ext4_lblk_t lblock;
1984 	struct ext4_extent *ex;
1985 
1986 	ex = path[depth].p_ext;
1987 	if (ex == NULL) {
1988 		/* there is no extent yet, so gap is [0;-] */
1989 		lblock = 0;
1990 		len = EXT_MAX_BLOCKS;
1991 		ext_debug("cache gap(whole file):");
1992 	} else if (block < le32_to_cpu(ex->ee_block)) {
1993 		lblock = block;
1994 		len = le32_to_cpu(ex->ee_block) - block;
1995 		ext_debug("cache gap(before): %u [%u:%u]",
1996 				block,
1997 				le32_to_cpu(ex->ee_block),
1998 				 ext4_ext_get_actual_len(ex));
1999 	} else if (block >= le32_to_cpu(ex->ee_block)
2000 			+ ext4_ext_get_actual_len(ex)) {
2001 		ext4_lblk_t next;
2002 		lblock = le32_to_cpu(ex->ee_block)
2003 			+ ext4_ext_get_actual_len(ex);
2004 
2005 		next = ext4_ext_next_allocated_block(path);
2006 		ext_debug("cache gap(after): [%u:%u] %u",
2007 				le32_to_cpu(ex->ee_block),
2008 				ext4_ext_get_actual_len(ex),
2009 				block);
2010 		BUG_ON(next == lblock);
2011 		len = next - lblock;
2012 	} else {
2013 		lblock = len = 0;
2014 		BUG();
2015 	}
2016 
2017 	ext_debug(" -> %u:%lu\n", lblock, len);
2018 	ext4_ext_put_in_cache(inode, lblock, len, 0);
2019 }
2020 
2021 /*
2022  * ext4_ext_check_cache()
2023  * Checks to see if the given block is in the cache.
2024  * If it is, the cached extent is stored in the given
2025  * cache extent pointer.  If the cached extent is a hole,
2026  * this routine should be used instead of
2027  * ext4_ext_in_cache if the calling function needs to
2028  * know the size of the hole.
2029  *
2030  * @inode: The files inode
2031  * @block: The block to look for in the cache
2032  * @ex:    Pointer where the cached extent will be stored
2033  *         if it contains block
2034  *
2035  * Return 0 if cache is invalid; 1 if the cache is valid
2036  */
2037 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2038 	struct ext4_ext_cache *ex){
2039 	struct ext4_ext_cache *cex;
2040 	struct ext4_sb_info *sbi;
2041 	int ret = 0;
2042 
2043 	/*
2044 	 * We borrow i_block_reservation_lock to protect i_cached_extent
2045 	 */
2046 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2047 	cex = &EXT4_I(inode)->i_cached_extent;
2048 	sbi = EXT4_SB(inode->i_sb);
2049 
2050 	/* has cache valid data? */
2051 	if (cex->ec_len == 0)
2052 		goto errout;
2053 
2054 	if (in_range(block, cex->ec_block, cex->ec_len)) {
2055 		memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2056 		ext_debug("%u cached by %u:%u:%llu\n",
2057 				block,
2058 				cex->ec_block, cex->ec_len, cex->ec_start);
2059 		ret = 1;
2060 	}
2061 errout:
2062 	if (!ret)
2063 		sbi->extent_cache_misses++;
2064 	else
2065 		sbi->extent_cache_hits++;
2066 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2067 	return ret;
2068 }
2069 
2070 /*
2071  * ext4_ext_in_cache()
2072  * Checks to see if the given block is in the cache.
2073  * If it is, the cached extent is stored in the given
2074  * extent pointer.
2075  *
2076  * @inode: The files inode
2077  * @block: The block to look for in the cache
2078  * @ex:    Pointer where the cached extent will be stored
2079  *         if it contains block
2080  *
2081  * Return 0 if cache is invalid; 1 if the cache is valid
2082  */
2083 static int
2084 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2085 			struct ext4_extent *ex)
2086 {
2087 	struct ext4_ext_cache cex;
2088 	int ret = 0;
2089 
2090 	if (ext4_ext_check_cache(inode, block, &cex)) {
2091 		ex->ee_block = cpu_to_le32(cex.ec_block);
2092 		ext4_ext_store_pblock(ex, cex.ec_start);
2093 		ex->ee_len = cpu_to_le16(cex.ec_len);
2094 		ret = 1;
2095 	}
2096 
2097 	return ret;
2098 }
2099 
2100 
2101 /*
2102  * ext4_ext_rm_idx:
2103  * removes index from the index block.
2104  */
2105 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2106 			struct ext4_ext_path *path)
2107 {
2108 	int err;
2109 	ext4_fsblk_t leaf;
2110 
2111 	/* free index block */
2112 	path--;
2113 	leaf = ext4_idx_pblock(path->p_idx);
2114 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2115 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2116 		return -EIO;
2117 	}
2118 	err = ext4_ext_get_access(handle, inode, path);
2119 	if (err)
2120 		return err;
2121 
2122 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2123 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2124 		len *= sizeof(struct ext4_extent_idx);
2125 		memmove(path->p_idx, path->p_idx + 1, len);
2126 	}
2127 
2128 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2129 	err = ext4_ext_dirty(handle, inode, path);
2130 	if (err)
2131 		return err;
2132 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2133 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2134 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2135 	return err;
2136 }
2137 
2138 /*
2139  * ext4_ext_calc_credits_for_single_extent:
2140  * This routine returns max. credits that needed to insert an extent
2141  * to the extent tree.
2142  * When pass the actual path, the caller should calculate credits
2143  * under i_data_sem.
2144  */
2145 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2146 						struct ext4_ext_path *path)
2147 {
2148 	if (path) {
2149 		int depth = ext_depth(inode);
2150 		int ret = 0;
2151 
2152 		/* probably there is space in leaf? */
2153 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2154 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2155 
2156 			/*
2157 			 *  There are some space in the leaf tree, no
2158 			 *  need to account for leaf block credit
2159 			 *
2160 			 *  bitmaps and block group descriptor blocks
2161 			 *  and other metadat blocks still need to be
2162 			 *  accounted.
2163 			 */
2164 			/* 1 bitmap, 1 block group descriptor */
2165 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2166 			return ret;
2167 		}
2168 	}
2169 
2170 	return ext4_chunk_trans_blocks(inode, nrblocks);
2171 }
2172 
2173 /*
2174  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2175  *
2176  * if nrblocks are fit in a single extent (chunk flag is 1), then
2177  * in the worse case, each tree level index/leaf need to be changed
2178  * if the tree split due to insert a new extent, then the old tree
2179  * index/leaf need to be updated too
2180  *
2181  * If the nrblocks are discontiguous, they could cause
2182  * the whole tree split more than once, but this is really rare.
2183  */
2184 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2185 {
2186 	int index;
2187 	int depth = ext_depth(inode);
2188 
2189 	if (chunk)
2190 		index = depth * 2;
2191 	else
2192 		index = depth * 3;
2193 
2194 	return index;
2195 }
2196 
2197 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2198 				struct ext4_extent *ex,
2199 				ext4_lblk_t from, ext4_lblk_t to)
2200 {
2201 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2202 	int flags = EXT4_FREE_BLOCKS_FORGET;
2203 
2204 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2205 		flags |= EXT4_FREE_BLOCKS_METADATA;
2206 #ifdef EXTENTS_STATS
2207 	{
2208 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2209 		spin_lock(&sbi->s_ext_stats_lock);
2210 		sbi->s_ext_blocks += ee_len;
2211 		sbi->s_ext_extents++;
2212 		if (ee_len < sbi->s_ext_min)
2213 			sbi->s_ext_min = ee_len;
2214 		if (ee_len > sbi->s_ext_max)
2215 			sbi->s_ext_max = ee_len;
2216 		if (ext_depth(inode) > sbi->s_depth_max)
2217 			sbi->s_depth_max = ext_depth(inode);
2218 		spin_unlock(&sbi->s_ext_stats_lock);
2219 	}
2220 #endif
2221 	if (from >= le32_to_cpu(ex->ee_block)
2222 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2223 		/* tail removal */
2224 		ext4_lblk_t num;
2225 		ext4_fsblk_t start;
2226 
2227 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2228 		start = ext4_ext_pblock(ex) + ee_len - num;
2229 		ext_debug("free last %u blocks starting %llu\n", num, start);
2230 		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2231 	} else if (from == le32_to_cpu(ex->ee_block)
2232 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2233 		/* head removal */
2234 		ext4_lblk_t num;
2235 		ext4_fsblk_t start;
2236 
2237 		num = to - from;
2238 		start = ext4_ext_pblock(ex);
2239 
2240 		ext_debug("free first %u blocks starting %llu\n", num, start);
2241 		ext4_free_blocks(handle, inode, 0, start, num, flags);
2242 
2243 	} else {
2244 		printk(KERN_INFO "strange request: removal(2) "
2245 				"%u-%u from %u:%u\n",
2246 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2247 	}
2248 	return 0;
2249 }
2250 
2251 
2252 /*
2253  * ext4_ext_rm_leaf() Removes the extents associated with the
2254  * blocks appearing between "start" and "end", and splits the extents
2255  * if "start" and "end" appear in the same extent
2256  *
2257  * @handle: The journal handle
2258  * @inode:  The files inode
2259  * @path:   The path to the leaf
2260  * @start:  The first block to remove
2261  * @end:   The last block to remove
2262  */
2263 static int
2264 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2265 		struct ext4_ext_path *path, ext4_lblk_t start,
2266 		ext4_lblk_t end)
2267 {
2268 	int err = 0, correct_index = 0;
2269 	int depth = ext_depth(inode), credits;
2270 	struct ext4_extent_header *eh;
2271 	ext4_lblk_t a, b, block;
2272 	unsigned num;
2273 	ext4_lblk_t ex_ee_block;
2274 	unsigned short ex_ee_len;
2275 	unsigned uninitialized = 0;
2276 	struct ext4_extent *ex;
2277 	struct ext4_map_blocks map;
2278 
2279 	/* the header must be checked already in ext4_ext_remove_space() */
2280 	ext_debug("truncate since %u in leaf\n", start);
2281 	if (!path[depth].p_hdr)
2282 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2283 	eh = path[depth].p_hdr;
2284 	if (unlikely(path[depth].p_hdr == NULL)) {
2285 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2286 		return -EIO;
2287 	}
2288 	/* find where to start removing */
2289 	ex = EXT_LAST_EXTENT(eh);
2290 
2291 	ex_ee_block = le32_to_cpu(ex->ee_block);
2292 	ex_ee_len = ext4_ext_get_actual_len(ex);
2293 
2294 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2295 			ex_ee_block + ex_ee_len > start) {
2296 
2297 		if (ext4_ext_is_uninitialized(ex))
2298 			uninitialized = 1;
2299 		else
2300 			uninitialized = 0;
2301 
2302 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2303 			 uninitialized, ex_ee_len);
2304 		path[depth].p_ext = ex;
2305 
2306 		a = ex_ee_block > start ? ex_ee_block : start;
2307 		b = ex_ee_block+ex_ee_len - 1 < end ?
2308 			ex_ee_block+ex_ee_len - 1 : end;
2309 
2310 		ext_debug("  border %u:%u\n", a, b);
2311 
2312 		/* If this extent is beyond the end of the hole, skip it */
2313 		if (end <= ex_ee_block) {
2314 			ex--;
2315 			ex_ee_block = le32_to_cpu(ex->ee_block);
2316 			ex_ee_len = ext4_ext_get_actual_len(ex);
2317 			continue;
2318 		} else if (a != ex_ee_block &&
2319 			b != ex_ee_block + ex_ee_len - 1) {
2320 			/*
2321 			 * If this is a truncate, then this condition should
2322 			 * never happen because at least one of the end points
2323 			 * needs to be on the edge of the extent.
2324 			 */
2325 			if (end == EXT_MAX_BLOCKS - 1) {
2326 				ext_debug("  bad truncate %u:%u\n",
2327 						start, end);
2328 				block = 0;
2329 				num = 0;
2330 				err = -EIO;
2331 				goto out;
2332 			}
2333 			/*
2334 			 * else this is a hole punch, so the extent needs to
2335 			 * be split since neither edge of the hole is on the
2336 			 * extent edge
2337 			 */
2338 			else{
2339 				map.m_pblk = ext4_ext_pblock(ex);
2340 				map.m_lblk = ex_ee_block;
2341 				map.m_len = b - ex_ee_block;
2342 
2343 				err = ext4_split_extent(handle,
2344 					inode, path, &map, 0,
2345 					EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
2346 					EXT4_GET_BLOCKS_PRE_IO);
2347 
2348 				if (err < 0)
2349 					goto out;
2350 
2351 				ex_ee_len = ext4_ext_get_actual_len(ex);
2352 
2353 				b = ex_ee_block+ex_ee_len - 1 < end ?
2354 					ex_ee_block+ex_ee_len - 1 : end;
2355 
2356 				/* Then remove tail of this extent */
2357 				block = ex_ee_block;
2358 				num = a - block;
2359 			}
2360 		} else if (a != ex_ee_block) {
2361 			/* remove tail of the extent */
2362 			block = ex_ee_block;
2363 			num = a - block;
2364 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2365 			/* remove head of the extent */
2366 			block = b;
2367 			num =  ex_ee_block + ex_ee_len - b;
2368 
2369 			/*
2370 			 * If this is a truncate, this condition
2371 			 * should never happen
2372 			 */
2373 			if (end == EXT_MAX_BLOCKS - 1) {
2374 				ext_debug("  bad truncate %u:%u\n",
2375 					start, end);
2376 				err = -EIO;
2377 				goto out;
2378 			}
2379 		} else {
2380 			/* remove whole extent: excellent! */
2381 			block = ex_ee_block;
2382 			num = 0;
2383 			if (a != ex_ee_block) {
2384 				ext_debug("  bad truncate %u:%u\n",
2385 					start, end);
2386 				err = -EIO;
2387 				goto out;
2388 			}
2389 
2390 			if (b != ex_ee_block + ex_ee_len - 1) {
2391 				ext_debug("  bad truncate %u:%u\n",
2392 					start, end);
2393 				err = -EIO;
2394 				goto out;
2395 			}
2396 		}
2397 
2398 		/*
2399 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2400 		 * descriptor) for each block group; assume two block
2401 		 * groups plus ex_ee_len/blocks_per_block_group for
2402 		 * the worst case
2403 		 */
2404 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2405 		if (ex == EXT_FIRST_EXTENT(eh)) {
2406 			correct_index = 1;
2407 			credits += (ext_depth(inode)) + 1;
2408 		}
2409 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2410 
2411 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2412 		if (err)
2413 			goto out;
2414 
2415 		err = ext4_ext_get_access(handle, inode, path + depth);
2416 		if (err)
2417 			goto out;
2418 
2419 		err = ext4_remove_blocks(handle, inode, ex, a, b);
2420 		if (err)
2421 			goto out;
2422 
2423 		if (num == 0) {
2424 			/* this extent is removed; mark slot entirely unused */
2425 			ext4_ext_store_pblock(ex, 0);
2426 		} else if (block != ex_ee_block) {
2427 			/*
2428 			 * If this was a head removal, then we need to update
2429 			 * the physical block since it is now at a different
2430 			 * location
2431 			 */
2432 			ext4_ext_store_pblock(ex, ext4_ext_pblock(ex) + (b-a));
2433 		}
2434 
2435 		ex->ee_block = cpu_to_le32(block);
2436 		ex->ee_len = cpu_to_le16(num);
2437 		/*
2438 		 * Do not mark uninitialized if all the blocks in the
2439 		 * extent have been removed.
2440 		 */
2441 		if (uninitialized && num)
2442 			ext4_ext_mark_uninitialized(ex);
2443 
2444 		err = ext4_ext_dirty(handle, inode, path + depth);
2445 		if (err)
2446 			goto out;
2447 
2448 		/*
2449 		 * If the extent was completely released,
2450 		 * we need to remove it from the leaf
2451 		 */
2452 		if (num == 0) {
2453 			if (end != EXT_MAX_BLOCKS - 1) {
2454 				/*
2455 				 * For hole punching, we need to scoot all the
2456 				 * extents up when an extent is removed so that
2457 				 * we dont have blank extents in the middle
2458 				 */
2459 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2460 					sizeof(struct ext4_extent));
2461 
2462 				/* Now get rid of the one at the end */
2463 				memset(EXT_LAST_EXTENT(eh), 0,
2464 					sizeof(struct ext4_extent));
2465 			}
2466 			le16_add_cpu(&eh->eh_entries, -1);
2467 		}
2468 
2469 		ext_debug("new extent: %u:%u:%llu\n", block, num,
2470 				ext4_ext_pblock(ex));
2471 		ex--;
2472 		ex_ee_block = le32_to_cpu(ex->ee_block);
2473 		ex_ee_len = ext4_ext_get_actual_len(ex);
2474 	}
2475 
2476 	if (correct_index && eh->eh_entries)
2477 		err = ext4_ext_correct_indexes(handle, inode, path);
2478 
2479 	/* if this leaf is free, then we should
2480 	 * remove it from index block above */
2481 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2482 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2483 
2484 out:
2485 	return err;
2486 }
2487 
2488 /*
2489  * ext4_ext_more_to_rm:
2490  * returns 1 if current index has to be freed (even partial)
2491  */
2492 static int
2493 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2494 {
2495 	BUG_ON(path->p_idx == NULL);
2496 
2497 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2498 		return 0;
2499 
2500 	/*
2501 	 * if truncate on deeper level happened, it wasn't partial,
2502 	 * so we have to consider current index for truncation
2503 	 */
2504 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2505 		return 0;
2506 	return 1;
2507 }
2508 
2509 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2510 {
2511 	struct super_block *sb = inode->i_sb;
2512 	int depth = ext_depth(inode);
2513 	struct ext4_ext_path *path;
2514 	handle_t *handle;
2515 	int i, err;
2516 
2517 	ext_debug("truncate since %u\n", start);
2518 
2519 	/* probably first extent we're gonna free will be last in block */
2520 	handle = ext4_journal_start(inode, depth + 1);
2521 	if (IS_ERR(handle))
2522 		return PTR_ERR(handle);
2523 
2524 again:
2525 	ext4_ext_invalidate_cache(inode);
2526 
2527 	/*
2528 	 * We start scanning from right side, freeing all the blocks
2529 	 * after i_size and walking into the tree depth-wise.
2530 	 */
2531 	depth = ext_depth(inode);
2532 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2533 	if (path == NULL) {
2534 		ext4_journal_stop(handle);
2535 		return -ENOMEM;
2536 	}
2537 	path[0].p_depth = depth;
2538 	path[0].p_hdr = ext_inode_hdr(inode);
2539 	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2540 		err = -EIO;
2541 		goto out;
2542 	}
2543 	i = err = 0;
2544 
2545 	while (i >= 0 && err == 0) {
2546 		if (i == depth) {
2547 			/* this is leaf block */
2548 			err = ext4_ext_rm_leaf(handle, inode, path,
2549 					start, EXT_MAX_BLOCKS - 1);
2550 			/* root level has p_bh == NULL, brelse() eats this */
2551 			brelse(path[i].p_bh);
2552 			path[i].p_bh = NULL;
2553 			i--;
2554 			continue;
2555 		}
2556 
2557 		/* this is index block */
2558 		if (!path[i].p_hdr) {
2559 			ext_debug("initialize header\n");
2560 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2561 		}
2562 
2563 		if (!path[i].p_idx) {
2564 			/* this level hasn't been touched yet */
2565 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2566 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2567 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2568 				  path[i].p_hdr,
2569 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2570 		} else {
2571 			/* we were already here, see at next index */
2572 			path[i].p_idx--;
2573 		}
2574 
2575 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2576 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2577 				path[i].p_idx);
2578 		if (ext4_ext_more_to_rm(path + i)) {
2579 			struct buffer_head *bh;
2580 			/* go to the next level */
2581 			ext_debug("move to level %d (block %llu)\n",
2582 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2583 			memset(path + i + 1, 0, sizeof(*path));
2584 			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2585 			if (!bh) {
2586 				/* should we reset i_size? */
2587 				err = -EIO;
2588 				break;
2589 			}
2590 			if (WARN_ON(i + 1 > depth)) {
2591 				err = -EIO;
2592 				break;
2593 			}
2594 			if (ext4_ext_check(inode, ext_block_hdr(bh),
2595 							depth - i - 1)) {
2596 				err = -EIO;
2597 				break;
2598 			}
2599 			path[i + 1].p_bh = bh;
2600 
2601 			/* save actual number of indexes since this
2602 			 * number is changed at the next iteration */
2603 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2604 			i++;
2605 		} else {
2606 			/* we finished processing this index, go up */
2607 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2608 				/* index is empty, remove it;
2609 				 * handle must be already prepared by the
2610 				 * truncatei_leaf() */
2611 				err = ext4_ext_rm_idx(handle, inode, path + i);
2612 			}
2613 			/* root level has p_bh == NULL, brelse() eats this */
2614 			brelse(path[i].p_bh);
2615 			path[i].p_bh = NULL;
2616 			i--;
2617 			ext_debug("return to level %d\n", i);
2618 		}
2619 	}
2620 
2621 	/* TODO: flexible tree reduction should be here */
2622 	if (path->p_hdr->eh_entries == 0) {
2623 		/*
2624 		 * truncate to zero freed all the tree,
2625 		 * so we need to correct eh_depth
2626 		 */
2627 		err = ext4_ext_get_access(handle, inode, path);
2628 		if (err == 0) {
2629 			ext_inode_hdr(inode)->eh_depth = 0;
2630 			ext_inode_hdr(inode)->eh_max =
2631 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2632 			err = ext4_ext_dirty(handle, inode, path);
2633 		}
2634 	}
2635 out:
2636 	ext4_ext_drop_refs(path);
2637 	kfree(path);
2638 	if (err == -EAGAIN)
2639 		goto again;
2640 	ext4_journal_stop(handle);
2641 
2642 	return err;
2643 }
2644 
2645 /*
2646  * called at mount time
2647  */
2648 void ext4_ext_init(struct super_block *sb)
2649 {
2650 	/*
2651 	 * possible initialization would be here
2652 	 */
2653 
2654 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2655 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2656 		printk(KERN_INFO "EXT4-fs: file extents enabled");
2657 #ifdef AGGRESSIVE_TEST
2658 		printk(", aggressive tests");
2659 #endif
2660 #ifdef CHECK_BINSEARCH
2661 		printk(", check binsearch");
2662 #endif
2663 #ifdef EXTENTS_STATS
2664 		printk(", stats");
2665 #endif
2666 		printk("\n");
2667 #endif
2668 #ifdef EXTENTS_STATS
2669 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2670 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2671 		EXT4_SB(sb)->s_ext_max = 0;
2672 #endif
2673 	}
2674 }
2675 
2676 /*
2677  * called at umount time
2678  */
2679 void ext4_ext_release(struct super_block *sb)
2680 {
2681 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2682 		return;
2683 
2684 #ifdef EXTENTS_STATS
2685 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2686 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2687 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2688 			sbi->s_ext_blocks, sbi->s_ext_extents,
2689 			sbi->s_ext_blocks / sbi->s_ext_extents);
2690 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2691 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2692 	}
2693 #endif
2694 }
2695 
2696 /* FIXME!! we need to try to merge to left or right after zero-out  */
2697 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2698 {
2699 	ext4_fsblk_t ee_pblock;
2700 	unsigned int ee_len;
2701 	int ret;
2702 
2703 	ee_len    = ext4_ext_get_actual_len(ex);
2704 	ee_pblock = ext4_ext_pblock(ex);
2705 
2706 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2707 	if (ret > 0)
2708 		ret = 0;
2709 
2710 	return ret;
2711 }
2712 
2713 /*
2714  * used by extent splitting.
2715  */
2716 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
2717 					due to ENOSPC */
2718 #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
2719 #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
2720 
2721 /*
2722  * ext4_split_extent_at() splits an extent at given block.
2723  *
2724  * @handle: the journal handle
2725  * @inode: the file inode
2726  * @path: the path to the extent
2727  * @split: the logical block where the extent is splitted.
2728  * @split_flags: indicates if the extent could be zeroout if split fails, and
2729  *		 the states(init or uninit) of new extents.
2730  * @flags: flags used to insert new extent to extent tree.
2731  *
2732  *
2733  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2734  * of which are deterimined by split_flag.
2735  *
2736  * There are two cases:
2737  *  a> the extent are splitted into two extent.
2738  *  b> split is not needed, and just mark the extent.
2739  *
2740  * return 0 on success.
2741  */
2742 static int ext4_split_extent_at(handle_t *handle,
2743 			     struct inode *inode,
2744 			     struct ext4_ext_path *path,
2745 			     ext4_lblk_t split,
2746 			     int split_flag,
2747 			     int flags)
2748 {
2749 	ext4_fsblk_t newblock;
2750 	ext4_lblk_t ee_block;
2751 	struct ext4_extent *ex, newex, orig_ex;
2752 	struct ext4_extent *ex2 = NULL;
2753 	unsigned int ee_len, depth;
2754 	int err = 0;
2755 
2756 	ext_debug("ext4_split_extents_at: inode %lu, logical"
2757 		"block %llu\n", inode->i_ino, (unsigned long long)split);
2758 
2759 	ext4_ext_show_leaf(inode, path);
2760 
2761 	depth = ext_depth(inode);
2762 	ex = path[depth].p_ext;
2763 	ee_block = le32_to_cpu(ex->ee_block);
2764 	ee_len = ext4_ext_get_actual_len(ex);
2765 	newblock = split - ee_block + ext4_ext_pblock(ex);
2766 
2767 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2768 
2769 	err = ext4_ext_get_access(handle, inode, path + depth);
2770 	if (err)
2771 		goto out;
2772 
2773 	if (split == ee_block) {
2774 		/*
2775 		 * case b: block @split is the block that the extent begins with
2776 		 * then we just change the state of the extent, and splitting
2777 		 * is not needed.
2778 		 */
2779 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2780 			ext4_ext_mark_uninitialized(ex);
2781 		else
2782 			ext4_ext_mark_initialized(ex);
2783 
2784 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2785 			ext4_ext_try_to_merge(inode, path, ex);
2786 
2787 		err = ext4_ext_dirty(handle, inode, path + depth);
2788 		goto out;
2789 	}
2790 
2791 	/* case a */
2792 	memcpy(&orig_ex, ex, sizeof(orig_ex));
2793 	ex->ee_len = cpu_to_le16(split - ee_block);
2794 	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2795 		ext4_ext_mark_uninitialized(ex);
2796 
2797 	/*
2798 	 * path may lead to new leaf, not to original leaf any more
2799 	 * after ext4_ext_insert_extent() returns,
2800 	 */
2801 	err = ext4_ext_dirty(handle, inode, path + depth);
2802 	if (err)
2803 		goto fix_extent_len;
2804 
2805 	ex2 = &newex;
2806 	ex2->ee_block = cpu_to_le32(split);
2807 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2808 	ext4_ext_store_pblock(ex2, newblock);
2809 	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2810 		ext4_ext_mark_uninitialized(ex2);
2811 
2812 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2813 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2814 		err = ext4_ext_zeroout(inode, &orig_ex);
2815 		if (err)
2816 			goto fix_extent_len;
2817 		/* update the extent length and mark as initialized */
2818 		ex->ee_len = cpu_to_le32(ee_len);
2819 		ext4_ext_try_to_merge(inode, path, ex);
2820 		err = ext4_ext_dirty(handle, inode, path + depth);
2821 		goto out;
2822 	} else if (err)
2823 		goto fix_extent_len;
2824 
2825 out:
2826 	ext4_ext_show_leaf(inode, path);
2827 	return err;
2828 
2829 fix_extent_len:
2830 	ex->ee_len = orig_ex.ee_len;
2831 	ext4_ext_dirty(handle, inode, path + depth);
2832 	return err;
2833 }
2834 
2835 /*
2836  * ext4_split_extents() splits an extent and mark extent which is covered
2837  * by @map as split_flags indicates
2838  *
2839  * It may result in splitting the extent into multiple extents (upto three)
2840  * There are three possibilities:
2841  *   a> There is no split required
2842  *   b> Splits in two extents: Split is happening at either end of the extent
2843  *   c> Splits in three extents: Somone is splitting in middle of the extent
2844  *
2845  */
2846 static int ext4_split_extent(handle_t *handle,
2847 			      struct inode *inode,
2848 			      struct ext4_ext_path *path,
2849 			      struct ext4_map_blocks *map,
2850 			      int split_flag,
2851 			      int flags)
2852 {
2853 	ext4_lblk_t ee_block;
2854 	struct ext4_extent *ex;
2855 	unsigned int ee_len, depth;
2856 	int err = 0;
2857 	int uninitialized;
2858 	int split_flag1, flags1;
2859 
2860 	depth = ext_depth(inode);
2861 	ex = path[depth].p_ext;
2862 	ee_block = le32_to_cpu(ex->ee_block);
2863 	ee_len = ext4_ext_get_actual_len(ex);
2864 	uninitialized = ext4_ext_is_uninitialized(ex);
2865 
2866 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
2867 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2868 			      EXT4_EXT_MAY_ZEROOUT : 0;
2869 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2870 		if (uninitialized)
2871 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2872 				       EXT4_EXT_MARK_UNINIT2;
2873 		err = ext4_split_extent_at(handle, inode, path,
2874 				map->m_lblk + map->m_len, split_flag1, flags1);
2875 		if (err)
2876 			goto out;
2877 	}
2878 
2879 	ext4_ext_drop_refs(path);
2880 	path = ext4_ext_find_extent(inode, map->m_lblk, path);
2881 	if (IS_ERR(path))
2882 		return PTR_ERR(path);
2883 
2884 	if (map->m_lblk >= ee_block) {
2885 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2886 			      EXT4_EXT_MAY_ZEROOUT : 0;
2887 		if (uninitialized)
2888 			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2889 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2890 			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2891 		err = ext4_split_extent_at(handle, inode, path,
2892 				map->m_lblk, split_flag1, flags);
2893 		if (err)
2894 			goto out;
2895 	}
2896 
2897 	ext4_ext_show_leaf(inode, path);
2898 out:
2899 	return err ? err : map->m_len;
2900 }
2901 
2902 #define EXT4_EXT_ZERO_LEN 7
2903 /*
2904  * This function is called by ext4_ext_map_blocks() if someone tries to write
2905  * to an uninitialized extent. It may result in splitting the uninitialized
2906  * extent into multiple extents (up to three - one initialized and two
2907  * uninitialized).
2908  * There are three possibilities:
2909  *   a> There is no split required: Entire extent should be initialized
2910  *   b> Splits in two extents: Write is happening at either end of the extent
2911  *   c> Splits in three extents: Somone is writing in middle of the extent
2912  */
2913 static int ext4_ext_convert_to_initialized(handle_t *handle,
2914 					   struct inode *inode,
2915 					   struct ext4_map_blocks *map,
2916 					   struct ext4_ext_path *path)
2917 {
2918 	struct ext4_map_blocks split_map;
2919 	struct ext4_extent zero_ex;
2920 	struct ext4_extent *ex;
2921 	ext4_lblk_t ee_block, eof_block;
2922 	unsigned int allocated, ee_len, depth;
2923 	int err = 0;
2924 	int split_flag = 0;
2925 
2926 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2927 		"block %llu, max_blocks %u\n", inode->i_ino,
2928 		(unsigned long long)map->m_lblk, map->m_len);
2929 
2930 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2931 		inode->i_sb->s_blocksize_bits;
2932 	if (eof_block < map->m_lblk + map->m_len)
2933 		eof_block = map->m_lblk + map->m_len;
2934 
2935 	depth = ext_depth(inode);
2936 	ex = path[depth].p_ext;
2937 	ee_block = le32_to_cpu(ex->ee_block);
2938 	ee_len = ext4_ext_get_actual_len(ex);
2939 	allocated = ee_len - (map->m_lblk - ee_block);
2940 
2941 	WARN_ON(map->m_lblk < ee_block);
2942 	/*
2943 	 * It is safe to convert extent to initialized via explicit
2944 	 * zeroout only if extent is fully insde i_size or new_size.
2945 	 */
2946 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
2947 
2948 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2949 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
2950 	    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2951 		err = ext4_ext_zeroout(inode, ex);
2952 		if (err)
2953 			goto out;
2954 
2955 		err = ext4_ext_get_access(handle, inode, path + depth);
2956 		if (err)
2957 			goto out;
2958 		ext4_ext_mark_initialized(ex);
2959 		ext4_ext_try_to_merge(inode, path, ex);
2960 		err = ext4_ext_dirty(handle, inode, path + depth);
2961 		goto out;
2962 	}
2963 
2964 	/*
2965 	 * four cases:
2966 	 * 1. split the extent into three extents.
2967 	 * 2. split the extent into two extents, zeroout the first half.
2968 	 * 3. split the extent into two extents, zeroout the second half.
2969 	 * 4. split the extent into two extents with out zeroout.
2970 	 */
2971 	split_map.m_lblk = map->m_lblk;
2972 	split_map.m_len = map->m_len;
2973 
2974 	if (allocated > map->m_len) {
2975 		if (allocated <= EXT4_EXT_ZERO_LEN &&
2976 		    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2977 			/* case 3 */
2978 			zero_ex.ee_block =
2979 					 cpu_to_le32(map->m_lblk);
2980 			zero_ex.ee_len = cpu_to_le16(allocated);
2981 			ext4_ext_store_pblock(&zero_ex,
2982 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
2983 			err = ext4_ext_zeroout(inode, &zero_ex);
2984 			if (err)
2985 				goto out;
2986 			split_map.m_lblk = map->m_lblk;
2987 			split_map.m_len = allocated;
2988 		} else if ((map->m_lblk - ee_block + map->m_len <
2989 			   EXT4_EXT_ZERO_LEN) &&
2990 			   (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2991 			/* case 2 */
2992 			if (map->m_lblk != ee_block) {
2993 				zero_ex.ee_block = ex->ee_block;
2994 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
2995 							ee_block);
2996 				ext4_ext_store_pblock(&zero_ex,
2997 						      ext4_ext_pblock(ex));
2998 				err = ext4_ext_zeroout(inode, &zero_ex);
2999 				if (err)
3000 					goto out;
3001 			}
3002 
3003 			split_map.m_lblk = ee_block;
3004 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3005 			allocated = map->m_len;
3006 		}
3007 	}
3008 
3009 	allocated = ext4_split_extent(handle, inode, path,
3010 				       &split_map, split_flag, 0);
3011 	if (allocated < 0)
3012 		err = allocated;
3013 
3014 out:
3015 	return err ? err : allocated;
3016 }
3017 
3018 /*
3019  * This function is called by ext4_ext_map_blocks() from
3020  * ext4_get_blocks_dio_write() when DIO to write
3021  * to an uninitialized extent.
3022  *
3023  * Writing to an uninitialized extent may result in splitting the uninitialized
3024  * extent into multiple /initialized uninitialized extents (up to three)
3025  * There are three possibilities:
3026  *   a> There is no split required: Entire extent should be uninitialized
3027  *   b> Splits in two extents: Write is happening at either end of the extent
3028  *   c> Splits in three extents: Somone is writing in middle of the extent
3029  *
3030  * One of more index blocks maybe needed if the extent tree grow after
3031  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3032  * complete, we need to split the uninitialized extent before DIO submit
3033  * the IO. The uninitialized extent called at this time will be split
3034  * into three uninitialized extent(at most). After IO complete, the part
3035  * being filled will be convert to initialized by the end_io callback function
3036  * via ext4_convert_unwritten_extents().
3037  *
3038  * Returns the size of uninitialized extent to be written on success.
3039  */
3040 static int ext4_split_unwritten_extents(handle_t *handle,
3041 					struct inode *inode,
3042 					struct ext4_map_blocks *map,
3043 					struct ext4_ext_path *path,
3044 					int flags)
3045 {
3046 	ext4_lblk_t eof_block;
3047 	ext4_lblk_t ee_block;
3048 	struct ext4_extent *ex;
3049 	unsigned int ee_len;
3050 	int split_flag = 0, depth;
3051 
3052 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3053 		"block %llu, max_blocks %u\n", inode->i_ino,
3054 		(unsigned long long)map->m_lblk, map->m_len);
3055 
3056 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3057 		inode->i_sb->s_blocksize_bits;
3058 	if (eof_block < map->m_lblk + map->m_len)
3059 		eof_block = map->m_lblk + map->m_len;
3060 	/*
3061 	 * It is safe to convert extent to initialized via explicit
3062 	 * zeroout only if extent is fully insde i_size or new_size.
3063 	 */
3064 	depth = ext_depth(inode);
3065 	ex = path[depth].p_ext;
3066 	ee_block = le32_to_cpu(ex->ee_block);
3067 	ee_len = ext4_ext_get_actual_len(ex);
3068 
3069 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3070 	split_flag |= EXT4_EXT_MARK_UNINIT2;
3071 
3072 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3073 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3074 }
3075 
3076 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3077 					      struct inode *inode,
3078 					      struct ext4_ext_path *path)
3079 {
3080 	struct ext4_extent *ex;
3081 	int depth;
3082 	int err = 0;
3083 
3084 	depth = ext_depth(inode);
3085 	ex = path[depth].p_ext;
3086 
3087 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3088 		"block %llu, max_blocks %u\n", inode->i_ino,
3089 		(unsigned long long)le32_to_cpu(ex->ee_block),
3090 		ext4_ext_get_actual_len(ex));
3091 
3092 	err = ext4_ext_get_access(handle, inode, path + depth);
3093 	if (err)
3094 		goto out;
3095 	/* first mark the extent as initialized */
3096 	ext4_ext_mark_initialized(ex);
3097 
3098 	/* note: ext4_ext_correct_indexes() isn't needed here because
3099 	 * borders are not changed
3100 	 */
3101 	ext4_ext_try_to_merge(inode, path, ex);
3102 
3103 	/* Mark modified extent as dirty */
3104 	err = ext4_ext_dirty(handle, inode, path + depth);
3105 out:
3106 	ext4_ext_show_leaf(inode, path);
3107 	return err;
3108 }
3109 
3110 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3111 			sector_t block, int count)
3112 {
3113 	int i;
3114 	for (i = 0; i < count; i++)
3115                 unmap_underlying_metadata(bdev, block + i);
3116 }
3117 
3118 /*
3119  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3120  */
3121 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3122 			      ext4_lblk_t lblk,
3123 			      struct ext4_ext_path *path,
3124 			      unsigned int len)
3125 {
3126 	int i, depth;
3127 	struct ext4_extent_header *eh;
3128 	struct ext4_extent *last_ex;
3129 
3130 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3131 		return 0;
3132 
3133 	depth = ext_depth(inode);
3134 	eh = path[depth].p_hdr;
3135 
3136 	if (unlikely(!eh->eh_entries)) {
3137 		EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3138 				 "EOFBLOCKS_FL set");
3139 		return -EIO;
3140 	}
3141 	last_ex = EXT_LAST_EXTENT(eh);
3142 	/*
3143 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3144 	 * last block in the last extent in the file.  We test this by
3145 	 * first checking to see if the caller to
3146 	 * ext4_ext_get_blocks() was interested in the last block (or
3147 	 * a block beyond the last block) in the current extent.  If
3148 	 * this turns out to be false, we can bail out from this
3149 	 * function immediately.
3150 	 */
3151 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3152 	    ext4_ext_get_actual_len(last_ex))
3153 		return 0;
3154 	/*
3155 	 * If the caller does appear to be planning to write at or
3156 	 * beyond the end of the current extent, we then test to see
3157 	 * if the current extent is the last extent in the file, by
3158 	 * checking to make sure it was reached via the rightmost node
3159 	 * at each level of the tree.
3160 	 */
3161 	for (i = depth-1; i >= 0; i--)
3162 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3163 			return 0;
3164 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3165 	return ext4_mark_inode_dirty(handle, inode);
3166 }
3167 
3168 static int
3169 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3170 			struct ext4_map_blocks *map,
3171 			struct ext4_ext_path *path, int flags,
3172 			unsigned int allocated, ext4_fsblk_t newblock)
3173 {
3174 	int ret = 0;
3175 	int err = 0;
3176 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3177 
3178 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3179 		  "block %llu, max_blocks %u, flags %d, allocated %u",
3180 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3181 		  flags, allocated);
3182 	ext4_ext_show_leaf(inode, path);
3183 
3184 	/* get_block() before submit the IO, split the extent */
3185 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3186 		ret = ext4_split_unwritten_extents(handle, inode, map,
3187 						   path, flags);
3188 		/*
3189 		 * Flag the inode(non aio case) or end_io struct (aio case)
3190 		 * that this IO needs to conversion to written when IO is
3191 		 * completed
3192 		 */
3193 		if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3194 			io->flag = EXT4_IO_END_UNWRITTEN;
3195 			atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3196 		} else
3197 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3198 		if (ext4_should_dioread_nolock(inode))
3199 			map->m_flags |= EXT4_MAP_UNINIT;
3200 		goto out;
3201 	}
3202 	/* IO end_io complete, convert the filled extent to written */
3203 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3204 		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3205 							path);
3206 		if (ret >= 0) {
3207 			ext4_update_inode_fsync_trans(handle, inode, 1);
3208 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3209 						 path, map->m_len);
3210 		} else
3211 			err = ret;
3212 		goto out2;
3213 	}
3214 	/* buffered IO case */
3215 	/*
3216 	 * repeat fallocate creation request
3217 	 * we already have an unwritten extent
3218 	 */
3219 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3220 		goto map_out;
3221 
3222 	/* buffered READ or buffered write_begin() lookup */
3223 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3224 		/*
3225 		 * We have blocks reserved already.  We
3226 		 * return allocated blocks so that delalloc
3227 		 * won't do block reservation for us.  But
3228 		 * the buffer head will be unmapped so that
3229 		 * a read from the block returns 0s.
3230 		 */
3231 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3232 		goto out1;
3233 	}
3234 
3235 	/* buffered write, writepage time, convert*/
3236 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3237 	if (ret >= 0) {
3238 		ext4_update_inode_fsync_trans(handle, inode, 1);
3239 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3240 					 map->m_len);
3241 		if (err < 0)
3242 			goto out2;
3243 	}
3244 
3245 out:
3246 	if (ret <= 0) {
3247 		err = ret;
3248 		goto out2;
3249 	} else
3250 		allocated = ret;
3251 	map->m_flags |= EXT4_MAP_NEW;
3252 	/*
3253 	 * if we allocated more blocks than requested
3254 	 * we need to make sure we unmap the extra block
3255 	 * allocated. The actual needed block will get
3256 	 * unmapped later when we find the buffer_head marked
3257 	 * new.
3258 	 */
3259 	if (allocated > map->m_len) {
3260 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3261 					newblock + map->m_len,
3262 					allocated - map->m_len);
3263 		allocated = map->m_len;
3264 	}
3265 
3266 	/*
3267 	 * If we have done fallocate with the offset that is already
3268 	 * delayed allocated, we would have block reservation
3269 	 * and quota reservation done in the delayed write path.
3270 	 * But fallocate would have already updated quota and block
3271 	 * count for this offset. So cancel these reservation
3272 	 */
3273 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3274 		ext4_da_update_reserve_space(inode, allocated, 0);
3275 
3276 map_out:
3277 	map->m_flags |= EXT4_MAP_MAPPED;
3278 out1:
3279 	if (allocated > map->m_len)
3280 		allocated = map->m_len;
3281 	ext4_ext_show_leaf(inode, path);
3282 	map->m_pblk = newblock;
3283 	map->m_len = allocated;
3284 out2:
3285 	if (path) {
3286 		ext4_ext_drop_refs(path);
3287 		kfree(path);
3288 	}
3289 	return err ? err : allocated;
3290 }
3291 
3292 /*
3293  * Block allocation/map/preallocation routine for extents based files
3294  *
3295  *
3296  * Need to be called with
3297  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3298  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3299  *
3300  * return > 0, number of of blocks already mapped/allocated
3301  *          if create == 0 and these are pre-allocated blocks
3302  *          	buffer head is unmapped
3303  *          otherwise blocks are mapped
3304  *
3305  * return = 0, if plain look up failed (blocks have not been allocated)
3306  *          buffer head is unmapped
3307  *
3308  * return < 0, error case.
3309  */
3310 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3311 			struct ext4_map_blocks *map, int flags)
3312 {
3313 	struct ext4_ext_path *path = NULL;
3314 	struct ext4_extent newex, *ex;
3315 	ext4_fsblk_t newblock = 0;
3316 	int err = 0, depth, ret;
3317 	unsigned int allocated = 0;
3318 	unsigned int punched_out = 0;
3319 	unsigned int result = 0;
3320 	struct ext4_allocation_request ar;
3321 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3322 	struct ext4_map_blocks punch_map;
3323 
3324 	ext_debug("blocks %u/%u requested for inode %lu\n",
3325 		  map->m_lblk, map->m_len, inode->i_ino);
3326 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3327 
3328 	/* check in cache */
3329 	if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3330 		ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3331 		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3332 			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3333 				/*
3334 				 * block isn't allocated yet and
3335 				 * user doesn't want to allocate it
3336 				 */
3337 				goto out2;
3338 			}
3339 			/* we should allocate requested block */
3340 		} else {
3341 			/* block is already allocated */
3342 			newblock = map->m_lblk
3343 				   - le32_to_cpu(newex.ee_block)
3344 				   + ext4_ext_pblock(&newex);
3345 			/* number of remaining blocks in the extent */
3346 			allocated = ext4_ext_get_actual_len(&newex) -
3347 				(map->m_lblk - le32_to_cpu(newex.ee_block));
3348 			goto out;
3349 		}
3350 	}
3351 
3352 	/* find extent for this block */
3353 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3354 	if (IS_ERR(path)) {
3355 		err = PTR_ERR(path);
3356 		path = NULL;
3357 		goto out2;
3358 	}
3359 
3360 	depth = ext_depth(inode);
3361 
3362 	/*
3363 	 * consistent leaf must not be empty;
3364 	 * this situation is possible, though, _during_ tree modification;
3365 	 * this is why assert can't be put in ext4_ext_find_extent()
3366 	 */
3367 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3368 		EXT4_ERROR_INODE(inode, "bad extent address "
3369 				 "lblock: %lu, depth: %d pblock %lld",
3370 				 (unsigned long) map->m_lblk, depth,
3371 				 path[depth].p_block);
3372 		err = -EIO;
3373 		goto out2;
3374 	}
3375 
3376 	ex = path[depth].p_ext;
3377 	if (ex) {
3378 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3379 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3380 		unsigned short ee_len;
3381 
3382 		/*
3383 		 * Uninitialized extents are treated as holes, except that
3384 		 * we split out initialized portions during a write.
3385 		 */
3386 		ee_len = ext4_ext_get_actual_len(ex);
3387 		/* if found extent covers block, simply return it */
3388 		if (in_range(map->m_lblk, ee_block, ee_len)) {
3389 			newblock = map->m_lblk - ee_block + ee_start;
3390 			/* number of remaining blocks in the extent */
3391 			allocated = ee_len - (map->m_lblk - ee_block);
3392 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3393 				  ee_block, ee_len, newblock);
3394 
3395 			if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3396 				/*
3397 				 * Do not put uninitialized extent
3398 				 * in the cache
3399 				 */
3400 				if (!ext4_ext_is_uninitialized(ex)) {
3401 					ext4_ext_put_in_cache(inode, ee_block,
3402 						ee_len, ee_start);
3403 					goto out;
3404 				}
3405 				ret = ext4_ext_handle_uninitialized_extents(
3406 					handle, inode, map, path, flags,
3407 					allocated, newblock);
3408 				return ret;
3409 			}
3410 
3411 			/*
3412 			 * Punch out the map length, but only to the
3413 			 * end of the extent
3414 			 */
3415 			punched_out = allocated < map->m_len ?
3416 				allocated : map->m_len;
3417 
3418 			/*
3419 			 * Sense extents need to be converted to
3420 			 * uninitialized, they must fit in an
3421 			 * uninitialized extent
3422 			 */
3423 			if (punched_out > EXT_UNINIT_MAX_LEN)
3424 				punched_out = EXT_UNINIT_MAX_LEN;
3425 
3426 			punch_map.m_lblk = map->m_lblk;
3427 			punch_map.m_pblk = newblock;
3428 			punch_map.m_len = punched_out;
3429 			punch_map.m_flags = 0;
3430 
3431 			/* Check to see if the extent needs to be split */
3432 			if (punch_map.m_len != ee_len ||
3433 				punch_map.m_lblk != ee_block) {
3434 
3435 				ret = ext4_split_extent(handle, inode,
3436 				path, &punch_map, 0,
3437 				EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3438 				EXT4_GET_BLOCKS_PRE_IO);
3439 
3440 				if (ret < 0) {
3441 					err = ret;
3442 					goto out2;
3443 				}
3444 				/*
3445 				 * find extent for the block at
3446 				 * the start of the hole
3447 				 */
3448 				ext4_ext_drop_refs(path);
3449 				kfree(path);
3450 
3451 				path = ext4_ext_find_extent(inode,
3452 				map->m_lblk, NULL);
3453 				if (IS_ERR(path)) {
3454 					err = PTR_ERR(path);
3455 					path = NULL;
3456 					goto out2;
3457 				}
3458 
3459 				depth = ext_depth(inode);
3460 				ex = path[depth].p_ext;
3461 				ee_len = ext4_ext_get_actual_len(ex);
3462 				ee_block = le32_to_cpu(ex->ee_block);
3463 				ee_start = ext4_ext_pblock(ex);
3464 
3465 			}
3466 
3467 			ext4_ext_mark_uninitialized(ex);
3468 
3469 			ext4_ext_invalidate_cache(inode);
3470 
3471 			err = ext4_ext_rm_leaf(handle, inode, path,
3472 				map->m_lblk, map->m_lblk + punched_out);
3473 
3474 			if (!err && path->p_hdr->eh_entries == 0) {
3475 				/*
3476 				 * Punch hole freed all of this sub tree,
3477 				 * so we need to correct eh_depth
3478 				 */
3479 				err = ext4_ext_get_access(handle, inode, path);
3480 				if (err == 0) {
3481 					ext_inode_hdr(inode)->eh_depth = 0;
3482 					ext_inode_hdr(inode)->eh_max =
3483 					cpu_to_le16(ext4_ext_space_root(
3484 						inode, 0));
3485 
3486 					err = ext4_ext_dirty(
3487 						handle, inode, path);
3488 				}
3489 			}
3490 
3491 			goto out2;
3492 		}
3493 	}
3494 
3495 	/*
3496 	 * requested block isn't allocated yet;
3497 	 * we couldn't try to create block if create flag is zero
3498 	 */
3499 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3500 		/*
3501 		 * put just found gap into cache to speed up
3502 		 * subsequent requests
3503 		 */
3504 		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3505 		goto out2;
3506 	}
3507 	/*
3508 	 * Okay, we need to do block allocation.
3509 	 */
3510 
3511 	/* find neighbour allocated blocks */
3512 	ar.lleft = map->m_lblk;
3513 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3514 	if (err)
3515 		goto out2;
3516 	ar.lright = map->m_lblk;
3517 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3518 	if (err)
3519 		goto out2;
3520 
3521 	/*
3522 	 * See if request is beyond maximum number of blocks we can have in
3523 	 * a single extent. For an initialized extent this limit is
3524 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3525 	 * EXT_UNINIT_MAX_LEN.
3526 	 */
3527 	if (map->m_len > EXT_INIT_MAX_LEN &&
3528 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3529 		map->m_len = EXT_INIT_MAX_LEN;
3530 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3531 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3532 		map->m_len = EXT_UNINIT_MAX_LEN;
3533 
3534 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3535 	newex.ee_block = cpu_to_le32(map->m_lblk);
3536 	newex.ee_len = cpu_to_le16(map->m_len);
3537 	err = ext4_ext_check_overlap(inode, &newex, path);
3538 	if (err)
3539 		allocated = ext4_ext_get_actual_len(&newex);
3540 	else
3541 		allocated = map->m_len;
3542 
3543 	/* allocate new block */
3544 	ar.inode = inode;
3545 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3546 	ar.logical = map->m_lblk;
3547 	ar.len = allocated;
3548 	if (S_ISREG(inode->i_mode))
3549 		ar.flags = EXT4_MB_HINT_DATA;
3550 	else
3551 		/* disable in-core preallocation for non-regular files */
3552 		ar.flags = 0;
3553 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
3554 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
3555 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
3556 	if (!newblock)
3557 		goto out2;
3558 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3559 		  ar.goal, newblock, allocated);
3560 
3561 	/* try to insert new extent into found leaf and return */
3562 	ext4_ext_store_pblock(&newex, newblock);
3563 	newex.ee_len = cpu_to_le16(ar.len);
3564 	/* Mark uninitialized */
3565 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3566 		ext4_ext_mark_uninitialized(&newex);
3567 		/*
3568 		 * io_end structure was created for every IO write to an
3569 		 * uninitialized extent. To avoid unnecessary conversion,
3570 		 * here we flag the IO that really needs the conversion.
3571 		 * For non asycn direct IO case, flag the inode state
3572 		 * that we need to perform conversion when IO is done.
3573 		 */
3574 		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3575 			if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3576 				io->flag = EXT4_IO_END_UNWRITTEN;
3577 				atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3578 			} else
3579 				ext4_set_inode_state(inode,
3580 						     EXT4_STATE_DIO_UNWRITTEN);
3581 		}
3582 		if (ext4_should_dioread_nolock(inode))
3583 			map->m_flags |= EXT4_MAP_UNINIT;
3584 	}
3585 
3586 	err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
3587 	if (!err)
3588 		err = ext4_ext_insert_extent(handle, inode, path,
3589 					     &newex, flags);
3590 	if (err) {
3591 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
3592 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
3593 		/* free data blocks we just allocated */
3594 		/* not a good idea to call discard here directly,
3595 		 * but otherwise we'd need to call it every free() */
3596 		ext4_discard_preallocations(inode);
3597 		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
3598 				 ext4_ext_get_actual_len(&newex), fb_flags);
3599 		goto out2;
3600 	}
3601 
3602 	/* previous routine could use block we allocated */
3603 	newblock = ext4_ext_pblock(&newex);
3604 	allocated = ext4_ext_get_actual_len(&newex);
3605 	if (allocated > map->m_len)
3606 		allocated = map->m_len;
3607 	map->m_flags |= EXT4_MAP_NEW;
3608 
3609 	/*
3610 	 * Update reserved blocks/metadata blocks after successful
3611 	 * block allocation which had been deferred till now.
3612 	 */
3613 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3614 		ext4_da_update_reserve_space(inode, allocated, 1);
3615 
3616 	/*
3617 	 * Cache the extent and update transaction to commit on fdatasync only
3618 	 * when it is _not_ an uninitialized extent.
3619 	 */
3620 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3621 		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3622 		ext4_update_inode_fsync_trans(handle, inode, 1);
3623 	} else
3624 		ext4_update_inode_fsync_trans(handle, inode, 0);
3625 out:
3626 	if (allocated > map->m_len)
3627 		allocated = map->m_len;
3628 	ext4_ext_show_leaf(inode, path);
3629 	map->m_flags |= EXT4_MAP_MAPPED;
3630 	map->m_pblk = newblock;
3631 	map->m_len = allocated;
3632 out2:
3633 	if (path) {
3634 		ext4_ext_drop_refs(path);
3635 		kfree(path);
3636 	}
3637 	trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
3638 		newblock, map->m_len, err ? err : allocated);
3639 
3640 	result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
3641 			punched_out : allocated;
3642 
3643 	return err ? err : result;
3644 }
3645 
3646 void ext4_ext_truncate(struct inode *inode)
3647 {
3648 	struct address_space *mapping = inode->i_mapping;
3649 	struct super_block *sb = inode->i_sb;
3650 	ext4_lblk_t last_block;
3651 	handle_t *handle;
3652 	int err = 0;
3653 
3654 	/*
3655 	 * finish any pending end_io work so we won't run the risk of
3656 	 * converting any truncated blocks to initialized later
3657 	 */
3658 	ext4_flush_completed_IO(inode);
3659 
3660 	/*
3661 	 * probably first extent we're gonna free will be last in block
3662 	 */
3663 	err = ext4_writepage_trans_blocks(inode);
3664 	handle = ext4_journal_start(inode, err);
3665 	if (IS_ERR(handle))
3666 		return;
3667 
3668 	if (inode->i_size & (sb->s_blocksize - 1))
3669 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3670 
3671 	if (ext4_orphan_add(handle, inode))
3672 		goto out_stop;
3673 
3674 	down_write(&EXT4_I(inode)->i_data_sem);
3675 	ext4_ext_invalidate_cache(inode);
3676 
3677 	ext4_discard_preallocations(inode);
3678 
3679 	/*
3680 	 * TODO: optimization is possible here.
3681 	 * Probably we need not scan at all,
3682 	 * because page truncation is enough.
3683 	 */
3684 
3685 	/* we have to know where to truncate from in crash case */
3686 	EXT4_I(inode)->i_disksize = inode->i_size;
3687 	ext4_mark_inode_dirty(handle, inode);
3688 
3689 	last_block = (inode->i_size + sb->s_blocksize - 1)
3690 			>> EXT4_BLOCK_SIZE_BITS(sb);
3691 	err = ext4_ext_remove_space(inode, last_block);
3692 
3693 	/* In a multi-transaction truncate, we only make the final
3694 	 * transaction synchronous.
3695 	 */
3696 	if (IS_SYNC(inode))
3697 		ext4_handle_sync(handle);
3698 
3699 	up_write(&EXT4_I(inode)->i_data_sem);
3700 
3701 out_stop:
3702 	/*
3703 	 * If this was a simple ftruncate() and the file will remain alive,
3704 	 * then we need to clear up the orphan record which we created above.
3705 	 * However, if this was a real unlink then we were called by
3706 	 * ext4_delete_inode(), and we allow that function to clean up the
3707 	 * orphan info for us.
3708 	 */
3709 	if (inode->i_nlink)
3710 		ext4_orphan_del(handle, inode);
3711 
3712 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3713 	ext4_mark_inode_dirty(handle, inode);
3714 	ext4_journal_stop(handle);
3715 }
3716 
3717 static void ext4_falloc_update_inode(struct inode *inode,
3718 				int mode, loff_t new_size, int update_ctime)
3719 {
3720 	struct timespec now;
3721 
3722 	if (update_ctime) {
3723 		now = current_fs_time(inode->i_sb);
3724 		if (!timespec_equal(&inode->i_ctime, &now))
3725 			inode->i_ctime = now;
3726 	}
3727 	/*
3728 	 * Update only when preallocation was requested beyond
3729 	 * the file size.
3730 	 */
3731 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3732 		if (new_size > i_size_read(inode))
3733 			i_size_write(inode, new_size);
3734 		if (new_size > EXT4_I(inode)->i_disksize)
3735 			ext4_update_i_disksize(inode, new_size);
3736 	} else {
3737 		/*
3738 		 * Mark that we allocate beyond EOF so the subsequent truncate
3739 		 * can proceed even if the new size is the same as i_size.
3740 		 */
3741 		if (new_size > i_size_read(inode))
3742 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3743 	}
3744 
3745 }
3746 
3747 /*
3748  * preallocate space for a file. This implements ext4's fallocate file
3749  * operation, which gets called from sys_fallocate system call.
3750  * For block-mapped files, posix_fallocate should fall back to the method
3751  * of writing zeroes to the required new blocks (the same behavior which is
3752  * expected for file systems which do not support fallocate() system call).
3753  */
3754 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
3755 {
3756 	struct inode *inode = file->f_path.dentry->d_inode;
3757 	handle_t *handle;
3758 	loff_t new_size;
3759 	unsigned int max_blocks;
3760 	int ret = 0;
3761 	int ret2 = 0;
3762 	int retries = 0;
3763 	struct ext4_map_blocks map;
3764 	unsigned int credits, blkbits = inode->i_blkbits;
3765 
3766 	/*
3767 	 * currently supporting (pre)allocate mode for extent-based
3768 	 * files _only_
3769 	 */
3770 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3771 		return -EOPNOTSUPP;
3772 
3773 	/* Return error if mode is not supported */
3774 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3775 		return -EOPNOTSUPP;
3776 
3777 	if (mode & FALLOC_FL_PUNCH_HOLE)
3778 		return ext4_punch_hole(file, offset, len);
3779 
3780 	trace_ext4_fallocate_enter(inode, offset, len, mode);
3781 	map.m_lblk = offset >> blkbits;
3782 	/*
3783 	 * We can't just convert len to max_blocks because
3784 	 * If blocksize = 4096 offset = 3072 and len = 2048
3785 	 */
3786 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3787 		- map.m_lblk;
3788 	/*
3789 	 * credits to insert 1 extent into extent tree
3790 	 */
3791 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3792 	mutex_lock(&inode->i_mutex);
3793 	ret = inode_newsize_ok(inode, (len + offset));
3794 	if (ret) {
3795 		mutex_unlock(&inode->i_mutex);
3796 		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
3797 		return ret;
3798 	}
3799 retry:
3800 	while (ret >= 0 && ret < max_blocks) {
3801 		map.m_lblk = map.m_lblk + ret;
3802 		map.m_len = max_blocks = max_blocks - ret;
3803 		handle = ext4_journal_start(inode, credits);
3804 		if (IS_ERR(handle)) {
3805 			ret = PTR_ERR(handle);
3806 			break;
3807 		}
3808 		ret = ext4_map_blocks(handle, inode, &map,
3809 				      EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
3810 				      EXT4_GET_BLOCKS_NO_NORMALIZE);
3811 		if (ret <= 0) {
3812 #ifdef EXT4FS_DEBUG
3813 			WARN_ON(ret <= 0);
3814 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3815 				    "returned error inode#%lu, block=%u, "
3816 				    "max_blocks=%u", __func__,
3817 				    inode->i_ino, map.m_lblk, max_blocks);
3818 #endif
3819 			ext4_mark_inode_dirty(handle, inode);
3820 			ret2 = ext4_journal_stop(handle);
3821 			break;
3822 		}
3823 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3824 						blkbits) >> blkbits))
3825 			new_size = offset + len;
3826 		else
3827 			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
3828 
3829 		ext4_falloc_update_inode(inode, mode, new_size,
3830 					 (map.m_flags & EXT4_MAP_NEW));
3831 		ext4_mark_inode_dirty(handle, inode);
3832 		ret2 = ext4_journal_stop(handle);
3833 		if (ret2)
3834 			break;
3835 	}
3836 	if (ret == -ENOSPC &&
3837 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3838 		ret = 0;
3839 		goto retry;
3840 	}
3841 	mutex_unlock(&inode->i_mutex);
3842 	trace_ext4_fallocate_exit(inode, offset, max_blocks,
3843 				ret > 0 ? ret2 : ret);
3844 	return ret > 0 ? ret2 : ret;
3845 }
3846 
3847 /*
3848  * This function convert a range of blocks to written extents
3849  * The caller of this function will pass the start offset and the size.
3850  * all unwritten extents within this range will be converted to
3851  * written extents.
3852  *
3853  * This function is called from the direct IO end io call back
3854  * function, to convert the fallocated extents after IO is completed.
3855  * Returns 0 on success.
3856  */
3857 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3858 				    ssize_t len)
3859 {
3860 	handle_t *handle;
3861 	unsigned int max_blocks;
3862 	int ret = 0;
3863 	int ret2 = 0;
3864 	struct ext4_map_blocks map;
3865 	unsigned int credits, blkbits = inode->i_blkbits;
3866 
3867 	map.m_lblk = offset >> blkbits;
3868 	/*
3869 	 * We can't just convert len to max_blocks because
3870 	 * If blocksize = 4096 offset = 3072 and len = 2048
3871 	 */
3872 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3873 		      map.m_lblk);
3874 	/*
3875 	 * credits to insert 1 extent into extent tree
3876 	 */
3877 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3878 	while (ret >= 0 && ret < max_blocks) {
3879 		map.m_lblk += ret;
3880 		map.m_len = (max_blocks -= ret);
3881 		handle = ext4_journal_start(inode, credits);
3882 		if (IS_ERR(handle)) {
3883 			ret = PTR_ERR(handle);
3884 			break;
3885 		}
3886 		ret = ext4_map_blocks(handle, inode, &map,
3887 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3888 		if (ret <= 0) {
3889 			WARN_ON(ret <= 0);
3890 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3891 				    "returned error inode#%lu, block=%u, "
3892 				    "max_blocks=%u", __func__,
3893 				    inode->i_ino, map.m_lblk, map.m_len);
3894 		}
3895 		ext4_mark_inode_dirty(handle, inode);
3896 		ret2 = ext4_journal_stop(handle);
3897 		if (ret <= 0 || ret2 )
3898 			break;
3899 	}
3900 	return ret > 0 ? ret2 : ret;
3901 }
3902 
3903 /*
3904  * Callback function called for each extent to gather FIEMAP information.
3905  */
3906 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
3907 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3908 		       void *data)
3909 {
3910 	__u64	logical;
3911 	__u64	physical;
3912 	__u64	length;
3913 	__u32	flags = 0;
3914 	int		ret = 0;
3915 	struct fiemap_extent_info *fieinfo = data;
3916 	unsigned char blksize_bits;
3917 
3918 	blksize_bits = inode->i_sb->s_blocksize_bits;
3919 	logical = (__u64)newex->ec_block << blksize_bits;
3920 
3921 	if (newex->ec_start == 0) {
3922 		/*
3923 		 * No extent in extent-tree contains block @newex->ec_start,
3924 		 * then the block may stay in 1)a hole or 2)delayed-extent.
3925 		 *
3926 		 * Holes or delayed-extents are processed as follows.
3927 		 * 1. lookup dirty pages with specified range in pagecache.
3928 		 *    If no page is got, then there is no delayed-extent and
3929 		 *    return with EXT_CONTINUE.
3930 		 * 2. find the 1st mapped buffer,
3931 		 * 3. check if the mapped buffer is both in the request range
3932 		 *    and a delayed buffer. If not, there is no delayed-extent,
3933 		 *    then return.
3934 		 * 4. a delayed-extent is found, the extent will be collected.
3935 		 */
3936 		ext4_lblk_t	end = 0;
3937 		pgoff_t		last_offset;
3938 		pgoff_t		offset;
3939 		pgoff_t		index;
3940 		pgoff_t		start_index = 0;
3941 		struct page	**pages = NULL;
3942 		struct buffer_head *bh = NULL;
3943 		struct buffer_head *head = NULL;
3944 		unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
3945 
3946 		pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
3947 		if (pages == NULL)
3948 			return -ENOMEM;
3949 
3950 		offset = logical >> PAGE_SHIFT;
3951 repeat:
3952 		last_offset = offset;
3953 		head = NULL;
3954 		ret = find_get_pages_tag(inode->i_mapping, &offset,
3955 					PAGECACHE_TAG_DIRTY, nr_pages, pages);
3956 
3957 		if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
3958 			/* First time, try to find a mapped buffer. */
3959 			if (ret == 0) {
3960 out:
3961 				for (index = 0; index < ret; index++)
3962 					page_cache_release(pages[index]);
3963 				/* just a hole. */
3964 				kfree(pages);
3965 				return EXT_CONTINUE;
3966 			}
3967 			index = 0;
3968 
3969 next_page:
3970 			/* Try to find the 1st mapped buffer. */
3971 			end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
3972 				  blksize_bits;
3973 			if (!page_has_buffers(pages[index]))
3974 				goto out;
3975 			head = page_buffers(pages[index]);
3976 			if (!head)
3977 				goto out;
3978 
3979 			index++;
3980 			bh = head;
3981 			do {
3982 				if (end >= newex->ec_block +
3983 					newex->ec_len)
3984 					/* The buffer is out of
3985 					 * the request range.
3986 					 */
3987 					goto out;
3988 
3989 				if (buffer_mapped(bh) &&
3990 				    end >= newex->ec_block) {
3991 					start_index = index - 1;
3992 					/* get the 1st mapped buffer. */
3993 					goto found_mapped_buffer;
3994 				}
3995 
3996 				bh = bh->b_this_page;
3997 				end++;
3998 			} while (bh != head);
3999 
4000 			/* No mapped buffer in the range found in this page,
4001 			 * We need to look up next page.
4002 			 */
4003 			if (index >= ret) {
4004 				/* There is no page left, but we need to limit
4005 				 * newex->ec_len.
4006 				 */
4007 				newex->ec_len = end - newex->ec_block;
4008 				goto out;
4009 			}
4010 			goto next_page;
4011 		} else {
4012 			/*Find contiguous delayed buffers. */
4013 			if (ret > 0 && pages[0]->index == last_offset)
4014 				head = page_buffers(pages[0]);
4015 			bh = head;
4016 			index = 1;
4017 			start_index = 0;
4018 		}
4019 
4020 found_mapped_buffer:
4021 		if (bh != NULL && buffer_delay(bh)) {
4022 			/* 1st or contiguous delayed buffer found. */
4023 			if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4024 				/*
4025 				 * 1st delayed buffer found, record
4026 				 * the start of extent.
4027 				 */
4028 				flags |= FIEMAP_EXTENT_DELALLOC;
4029 				newex->ec_block = end;
4030 				logical = (__u64)end << blksize_bits;
4031 			}
4032 			/* Find contiguous delayed buffers. */
4033 			do {
4034 				if (!buffer_delay(bh))
4035 					goto found_delayed_extent;
4036 				bh = bh->b_this_page;
4037 				end++;
4038 			} while (bh != head);
4039 
4040 			for (; index < ret; index++) {
4041 				if (!page_has_buffers(pages[index])) {
4042 					bh = NULL;
4043 					break;
4044 				}
4045 				head = page_buffers(pages[index]);
4046 				if (!head) {
4047 					bh = NULL;
4048 					break;
4049 				}
4050 
4051 				if (pages[index]->index !=
4052 				    pages[start_index]->index + index
4053 				    - start_index) {
4054 					/* Blocks are not contiguous. */
4055 					bh = NULL;
4056 					break;
4057 				}
4058 				bh = head;
4059 				do {
4060 					if (!buffer_delay(bh))
4061 						/* Delayed-extent ends. */
4062 						goto found_delayed_extent;
4063 					bh = bh->b_this_page;
4064 					end++;
4065 				} while (bh != head);
4066 			}
4067 		} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4068 			/* a hole found. */
4069 			goto out;
4070 
4071 found_delayed_extent:
4072 		newex->ec_len = min(end - newex->ec_block,
4073 						(ext4_lblk_t)EXT_INIT_MAX_LEN);
4074 		if (ret == nr_pages && bh != NULL &&
4075 			newex->ec_len < EXT_INIT_MAX_LEN &&
4076 			buffer_delay(bh)) {
4077 			/* Have not collected an extent and continue. */
4078 			for (index = 0; index < ret; index++)
4079 				page_cache_release(pages[index]);
4080 			goto repeat;
4081 		}
4082 
4083 		for (index = 0; index < ret; index++)
4084 			page_cache_release(pages[index]);
4085 		kfree(pages);
4086 	}
4087 
4088 	physical = (__u64)newex->ec_start << blksize_bits;
4089 	length =   (__u64)newex->ec_len << blksize_bits;
4090 
4091 	if (ex && ext4_ext_is_uninitialized(ex))
4092 		flags |= FIEMAP_EXTENT_UNWRITTEN;
4093 
4094 	if (next == EXT_MAX_BLOCKS)
4095 		flags |= FIEMAP_EXTENT_LAST;
4096 
4097 	ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4098 					length, flags);
4099 	if (ret < 0)
4100 		return ret;
4101 	if (ret == 1)
4102 		return EXT_BREAK;
4103 	return EXT_CONTINUE;
4104 }
4105 
4106 /* fiemap flags we can handle specified here */
4107 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4108 
4109 static int ext4_xattr_fiemap(struct inode *inode,
4110 				struct fiemap_extent_info *fieinfo)
4111 {
4112 	__u64 physical = 0;
4113 	__u64 length;
4114 	__u32 flags = FIEMAP_EXTENT_LAST;
4115 	int blockbits = inode->i_sb->s_blocksize_bits;
4116 	int error = 0;
4117 
4118 	/* in-inode? */
4119 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4120 		struct ext4_iloc iloc;
4121 		int offset;	/* offset of xattr in inode */
4122 
4123 		error = ext4_get_inode_loc(inode, &iloc);
4124 		if (error)
4125 			return error;
4126 		physical = iloc.bh->b_blocknr << blockbits;
4127 		offset = EXT4_GOOD_OLD_INODE_SIZE +
4128 				EXT4_I(inode)->i_extra_isize;
4129 		physical += offset;
4130 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4131 		flags |= FIEMAP_EXTENT_DATA_INLINE;
4132 		brelse(iloc.bh);
4133 	} else { /* external block */
4134 		physical = EXT4_I(inode)->i_file_acl << blockbits;
4135 		length = inode->i_sb->s_blocksize;
4136 	}
4137 
4138 	if (physical)
4139 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4140 						length, flags);
4141 	return (error < 0 ? error : 0);
4142 }
4143 
4144 /*
4145  * ext4_ext_punch_hole
4146  *
4147  * Punches a hole of "length" bytes in a file starting
4148  * at byte "offset"
4149  *
4150  * @inode:  The inode of the file to punch a hole in
4151  * @offset: The starting byte offset of the hole
4152  * @length: The length of the hole
4153  *
4154  * Returns the number of blocks removed or negative on err
4155  */
4156 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4157 {
4158 	struct inode *inode = file->f_path.dentry->d_inode;
4159 	struct super_block *sb = inode->i_sb;
4160 	struct ext4_ext_cache cache_ex;
4161 	ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4162 	struct address_space *mapping = inode->i_mapping;
4163 	struct ext4_map_blocks map;
4164 	handle_t *handle;
4165 	loff_t first_block_offset, last_block_offset, block_len;
4166 	loff_t first_page, last_page, first_page_offset, last_page_offset;
4167 	int ret, credits, blocks_released, err = 0;
4168 
4169 	first_block = (offset + sb->s_blocksize - 1) >>
4170 		EXT4_BLOCK_SIZE_BITS(sb);
4171 	last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4172 
4173 	first_block_offset = first_block << EXT4_BLOCK_SIZE_BITS(sb);
4174 	last_block_offset = last_block << EXT4_BLOCK_SIZE_BITS(sb);
4175 
4176 	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4177 	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4178 
4179 	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4180 	last_page_offset = last_page << PAGE_CACHE_SHIFT;
4181 
4182 	/*
4183 	 * Write out all dirty pages to avoid race conditions
4184 	 * Then release them.
4185 	 */
4186 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4187 		err = filemap_write_and_wait_range(mapping,
4188 			first_page_offset == 0 ? 0 : first_page_offset-1,
4189 			last_page_offset);
4190 
4191 			if (err)
4192 				return err;
4193 	}
4194 
4195 	/* Now release the pages */
4196 	if (last_page_offset > first_page_offset) {
4197 		truncate_inode_pages_range(mapping, first_page_offset,
4198 					   last_page_offset-1);
4199 	}
4200 
4201 	/* finish any pending end_io work */
4202 	ext4_flush_completed_IO(inode);
4203 
4204 	credits = ext4_writepage_trans_blocks(inode);
4205 	handle = ext4_journal_start(inode, credits);
4206 	if (IS_ERR(handle))
4207 		return PTR_ERR(handle);
4208 
4209 	err = ext4_orphan_add(handle, inode);
4210 	if (err)
4211 		goto out;
4212 
4213 	/*
4214 	 * Now we need to zero out the un block aligned data.
4215 	 * If the file is smaller than a block, just
4216 	 * zero out the middle
4217 	 */
4218 	if (first_block > last_block)
4219 		ext4_block_zero_page_range(handle, mapping, offset, length);
4220 	else {
4221 		/* zero out the head of the hole before the first block */
4222 		block_len  = first_block_offset - offset;
4223 		if (block_len > 0)
4224 			ext4_block_zero_page_range(handle, mapping,
4225 						   offset, block_len);
4226 
4227 		/* zero out the tail of the hole after the last block */
4228 		block_len = offset + length - last_block_offset;
4229 		if (block_len > 0) {
4230 			ext4_block_zero_page_range(handle, mapping,
4231 					last_block_offset, block_len);
4232 		}
4233 	}
4234 
4235 	/* If there are no blocks to remove, return now */
4236 	if (first_block >= last_block)
4237 		goto out;
4238 
4239 	down_write(&EXT4_I(inode)->i_data_sem);
4240 	ext4_ext_invalidate_cache(inode);
4241 	ext4_discard_preallocations(inode);
4242 
4243 	/*
4244 	 * Loop over all the blocks and identify blocks
4245 	 * that need to be punched out
4246 	 */
4247 	iblock = first_block;
4248 	blocks_released = 0;
4249 	while (iblock < last_block) {
4250 		max_blocks = last_block - iblock;
4251 		num_blocks = 1;
4252 		memset(&map, 0, sizeof(map));
4253 		map.m_lblk = iblock;
4254 		map.m_len = max_blocks;
4255 		ret = ext4_ext_map_blocks(handle, inode, &map,
4256 			EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4257 
4258 		if (ret > 0) {
4259 			blocks_released += ret;
4260 			num_blocks = ret;
4261 		} else if (ret == 0) {
4262 			/*
4263 			 * If map blocks could not find the block,
4264 			 * then it is in a hole.  If the hole was
4265 			 * not already cached, then map blocks should
4266 			 * put it in the cache.  So we can get the hole
4267 			 * out of the cache
4268 			 */
4269 			memset(&cache_ex, 0, sizeof(cache_ex));
4270 			if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4271 				!cache_ex.ec_start) {
4272 
4273 				/* The hole is cached */
4274 				num_blocks = cache_ex.ec_block +
4275 				cache_ex.ec_len - iblock;
4276 
4277 			} else {
4278 				/* The block could not be identified */
4279 				err = -EIO;
4280 				break;
4281 			}
4282 		} else {
4283 			/* Map blocks error */
4284 			err = ret;
4285 			break;
4286 		}
4287 
4288 		if (num_blocks == 0) {
4289 			/* This condition should never happen */
4290 			ext_debug("Block lookup failed");
4291 			err = -EIO;
4292 			break;
4293 		}
4294 
4295 		iblock += num_blocks;
4296 	}
4297 
4298 	if (blocks_released > 0) {
4299 		ext4_ext_invalidate_cache(inode);
4300 		ext4_discard_preallocations(inode);
4301 	}
4302 
4303 	if (IS_SYNC(inode))
4304 		ext4_handle_sync(handle);
4305 
4306 	up_write(&EXT4_I(inode)->i_data_sem);
4307 
4308 out:
4309 	ext4_orphan_del(handle, inode);
4310 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4311 	ext4_mark_inode_dirty(handle, inode);
4312 	ext4_journal_stop(handle);
4313 	return err;
4314 }
4315 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4316 		__u64 start, __u64 len)
4317 {
4318 	ext4_lblk_t start_blk;
4319 	int error = 0;
4320 
4321 	/* fallback to generic here if not in extents fmt */
4322 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4323 		return generic_block_fiemap(inode, fieinfo, start, len,
4324 			ext4_get_block);
4325 
4326 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4327 		return -EBADR;
4328 
4329 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4330 		error = ext4_xattr_fiemap(inode, fieinfo);
4331 	} else {
4332 		ext4_lblk_t len_blks;
4333 		__u64 last_blk;
4334 
4335 		start_blk = start >> inode->i_sb->s_blocksize_bits;
4336 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4337 		if (last_blk >= EXT_MAX_BLOCKS)
4338 			last_blk = EXT_MAX_BLOCKS-1;
4339 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4340 
4341 		/*
4342 		 * Walk the extent tree gathering extent information.
4343 		 * ext4_ext_fiemap_cb will push extents back to user.
4344 		 */
4345 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
4346 					  ext4_ext_fiemap_cb, fieinfo);
4347 	}
4348 
4349 	return error;
4350 }
4351