1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <asm/uaccess.h> 41 #include <linux/fiemap.h> 42 #include <linux/backing-dev.h> 43 #include "ext4_jbd2.h" 44 #include "ext4_extents.h" 45 #include "xattr.h" 46 47 #include <trace/events/ext4.h> 48 49 /* 50 * used by extent splitting. 51 */ 52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 53 due to ENOSPC */ 54 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 55 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 56 57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 59 60 static __le32 ext4_extent_block_csum(struct inode *inode, 61 struct ext4_extent_header *eh) 62 { 63 struct ext4_inode_info *ei = EXT4_I(inode); 64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 65 __u32 csum; 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 68 EXT4_EXTENT_TAIL_OFFSET(eh)); 69 return cpu_to_le32(csum); 70 } 71 72 static int ext4_extent_block_csum_verify(struct inode *inode, 73 struct ext4_extent_header *eh) 74 { 75 struct ext4_extent_tail *et; 76 77 if (!ext4_has_metadata_csum(inode->i_sb)) 78 return 1; 79 80 et = find_ext4_extent_tail(eh); 81 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 82 return 0; 83 return 1; 84 } 85 86 static void ext4_extent_block_csum_set(struct inode *inode, 87 struct ext4_extent_header *eh) 88 { 89 struct ext4_extent_tail *et; 90 91 if (!ext4_has_metadata_csum(inode->i_sb)) 92 return; 93 94 et = find_ext4_extent_tail(eh); 95 et->et_checksum = ext4_extent_block_csum(inode, eh); 96 } 97 98 static int ext4_split_extent(handle_t *handle, 99 struct inode *inode, 100 struct ext4_ext_path **ppath, 101 struct ext4_map_blocks *map, 102 int split_flag, 103 int flags); 104 105 static int ext4_split_extent_at(handle_t *handle, 106 struct inode *inode, 107 struct ext4_ext_path **ppath, 108 ext4_lblk_t split, 109 int split_flag, 110 int flags); 111 112 static int ext4_find_delayed_extent(struct inode *inode, 113 struct extent_status *newes); 114 115 static int ext4_ext_truncate_extend_restart(handle_t *handle, 116 struct inode *inode, 117 int needed) 118 { 119 int err; 120 121 if (!ext4_handle_valid(handle)) 122 return 0; 123 if (handle->h_buffer_credits > needed) 124 return 0; 125 err = ext4_journal_extend(handle, needed); 126 if (err <= 0) 127 return err; 128 err = ext4_truncate_restart_trans(handle, inode, needed); 129 if (err == 0) 130 err = -EAGAIN; 131 132 return err; 133 } 134 135 /* 136 * could return: 137 * - EROFS 138 * - ENOMEM 139 */ 140 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 141 struct ext4_ext_path *path) 142 { 143 if (path->p_bh) { 144 /* path points to block */ 145 BUFFER_TRACE(path->p_bh, "get_write_access"); 146 return ext4_journal_get_write_access(handle, path->p_bh); 147 } 148 /* path points to leaf/index in inode body */ 149 /* we use in-core data, no need to protect them */ 150 return 0; 151 } 152 153 /* 154 * could return: 155 * - EROFS 156 * - ENOMEM 157 * - EIO 158 */ 159 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 160 struct inode *inode, struct ext4_ext_path *path) 161 { 162 int err; 163 164 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 165 if (path->p_bh) { 166 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 167 /* path points to block */ 168 err = __ext4_handle_dirty_metadata(where, line, handle, 169 inode, path->p_bh); 170 } else { 171 /* path points to leaf/index in inode body */ 172 err = ext4_mark_inode_dirty(handle, inode); 173 } 174 return err; 175 } 176 177 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 178 struct ext4_ext_path *path, 179 ext4_lblk_t block) 180 { 181 if (path) { 182 int depth = path->p_depth; 183 struct ext4_extent *ex; 184 185 /* 186 * Try to predict block placement assuming that we are 187 * filling in a file which will eventually be 188 * non-sparse --- i.e., in the case of libbfd writing 189 * an ELF object sections out-of-order but in a way 190 * the eventually results in a contiguous object or 191 * executable file, or some database extending a table 192 * space file. However, this is actually somewhat 193 * non-ideal if we are writing a sparse file such as 194 * qemu or KVM writing a raw image file that is going 195 * to stay fairly sparse, since it will end up 196 * fragmenting the file system's free space. Maybe we 197 * should have some hueristics or some way to allow 198 * userspace to pass a hint to file system, 199 * especially if the latter case turns out to be 200 * common. 201 */ 202 ex = path[depth].p_ext; 203 if (ex) { 204 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 205 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 206 207 if (block > ext_block) 208 return ext_pblk + (block - ext_block); 209 else 210 return ext_pblk - (ext_block - block); 211 } 212 213 /* it looks like index is empty; 214 * try to find starting block from index itself */ 215 if (path[depth].p_bh) 216 return path[depth].p_bh->b_blocknr; 217 } 218 219 /* OK. use inode's group */ 220 return ext4_inode_to_goal_block(inode); 221 } 222 223 /* 224 * Allocation for a meta data block 225 */ 226 static ext4_fsblk_t 227 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 228 struct ext4_ext_path *path, 229 struct ext4_extent *ex, int *err, unsigned int flags) 230 { 231 ext4_fsblk_t goal, newblock; 232 233 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 234 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 235 NULL, err); 236 return newblock; 237 } 238 239 static inline int ext4_ext_space_block(struct inode *inode, int check) 240 { 241 int size; 242 243 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 244 / sizeof(struct ext4_extent); 245 #ifdef AGGRESSIVE_TEST 246 if (!check && size > 6) 247 size = 6; 248 #endif 249 return size; 250 } 251 252 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 253 { 254 int size; 255 256 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 257 / sizeof(struct ext4_extent_idx); 258 #ifdef AGGRESSIVE_TEST 259 if (!check && size > 5) 260 size = 5; 261 #endif 262 return size; 263 } 264 265 static inline int ext4_ext_space_root(struct inode *inode, int check) 266 { 267 int size; 268 269 size = sizeof(EXT4_I(inode)->i_data); 270 size -= sizeof(struct ext4_extent_header); 271 size /= sizeof(struct ext4_extent); 272 #ifdef AGGRESSIVE_TEST 273 if (!check && size > 3) 274 size = 3; 275 #endif 276 return size; 277 } 278 279 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 280 { 281 int size; 282 283 size = sizeof(EXT4_I(inode)->i_data); 284 size -= sizeof(struct ext4_extent_header); 285 size /= sizeof(struct ext4_extent_idx); 286 #ifdef AGGRESSIVE_TEST 287 if (!check && size > 4) 288 size = 4; 289 #endif 290 return size; 291 } 292 293 static inline int 294 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 295 struct ext4_ext_path **ppath, ext4_lblk_t lblk, 296 int nofail) 297 { 298 struct ext4_ext_path *path = *ppath; 299 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 300 301 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ? 302 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 303 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO | 304 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0)); 305 } 306 307 /* 308 * Calculate the number of metadata blocks needed 309 * to allocate @blocks 310 * Worse case is one block per extent 311 */ 312 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 313 { 314 struct ext4_inode_info *ei = EXT4_I(inode); 315 int idxs; 316 317 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 318 / sizeof(struct ext4_extent_idx)); 319 320 /* 321 * If the new delayed allocation block is contiguous with the 322 * previous da block, it can share index blocks with the 323 * previous block, so we only need to allocate a new index 324 * block every idxs leaf blocks. At ldxs**2 blocks, we need 325 * an additional index block, and at ldxs**3 blocks, yet 326 * another index blocks. 327 */ 328 if (ei->i_da_metadata_calc_len && 329 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 330 int num = 0; 331 332 if ((ei->i_da_metadata_calc_len % idxs) == 0) 333 num++; 334 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 335 num++; 336 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 337 num++; 338 ei->i_da_metadata_calc_len = 0; 339 } else 340 ei->i_da_metadata_calc_len++; 341 ei->i_da_metadata_calc_last_lblock++; 342 return num; 343 } 344 345 /* 346 * In the worst case we need a new set of index blocks at 347 * every level of the inode's extent tree. 348 */ 349 ei->i_da_metadata_calc_len = 1; 350 ei->i_da_metadata_calc_last_lblock = lblock; 351 return ext_depth(inode) + 1; 352 } 353 354 static int 355 ext4_ext_max_entries(struct inode *inode, int depth) 356 { 357 int max; 358 359 if (depth == ext_depth(inode)) { 360 if (depth == 0) 361 max = ext4_ext_space_root(inode, 1); 362 else 363 max = ext4_ext_space_root_idx(inode, 1); 364 } else { 365 if (depth == 0) 366 max = ext4_ext_space_block(inode, 1); 367 else 368 max = ext4_ext_space_block_idx(inode, 1); 369 } 370 371 return max; 372 } 373 374 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 375 { 376 ext4_fsblk_t block = ext4_ext_pblock(ext); 377 int len = ext4_ext_get_actual_len(ext); 378 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 379 ext4_lblk_t last = lblock + len - 1; 380 381 if (len == 0 || lblock > last) 382 return 0; 383 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 384 } 385 386 static int ext4_valid_extent_idx(struct inode *inode, 387 struct ext4_extent_idx *ext_idx) 388 { 389 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 390 391 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 392 } 393 394 static int ext4_valid_extent_entries(struct inode *inode, 395 struct ext4_extent_header *eh, 396 int depth) 397 { 398 unsigned short entries; 399 if (eh->eh_entries == 0) 400 return 1; 401 402 entries = le16_to_cpu(eh->eh_entries); 403 404 if (depth == 0) { 405 /* leaf entries */ 406 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 407 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 408 ext4_fsblk_t pblock = 0; 409 ext4_lblk_t lblock = 0; 410 ext4_lblk_t prev = 0; 411 int len = 0; 412 while (entries) { 413 if (!ext4_valid_extent(inode, ext)) 414 return 0; 415 416 /* Check for overlapping extents */ 417 lblock = le32_to_cpu(ext->ee_block); 418 len = ext4_ext_get_actual_len(ext); 419 if ((lblock <= prev) && prev) { 420 pblock = ext4_ext_pblock(ext); 421 es->s_last_error_block = cpu_to_le64(pblock); 422 return 0; 423 } 424 ext++; 425 entries--; 426 prev = lblock + len - 1; 427 } 428 } else { 429 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 430 while (entries) { 431 if (!ext4_valid_extent_idx(inode, ext_idx)) 432 return 0; 433 ext_idx++; 434 entries--; 435 } 436 } 437 return 1; 438 } 439 440 static int __ext4_ext_check(const char *function, unsigned int line, 441 struct inode *inode, struct ext4_extent_header *eh, 442 int depth, ext4_fsblk_t pblk) 443 { 444 const char *error_msg; 445 int max = 0; 446 447 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 448 error_msg = "invalid magic"; 449 goto corrupted; 450 } 451 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 452 error_msg = "unexpected eh_depth"; 453 goto corrupted; 454 } 455 if (unlikely(eh->eh_max == 0)) { 456 error_msg = "invalid eh_max"; 457 goto corrupted; 458 } 459 max = ext4_ext_max_entries(inode, depth); 460 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 461 error_msg = "too large eh_max"; 462 goto corrupted; 463 } 464 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 465 error_msg = "invalid eh_entries"; 466 goto corrupted; 467 } 468 if (!ext4_valid_extent_entries(inode, eh, depth)) { 469 error_msg = "invalid extent entries"; 470 goto corrupted; 471 } 472 /* Verify checksum on non-root extent tree nodes */ 473 if (ext_depth(inode) != depth && 474 !ext4_extent_block_csum_verify(inode, eh)) { 475 error_msg = "extent tree corrupted"; 476 goto corrupted; 477 } 478 return 0; 479 480 corrupted: 481 ext4_error_inode(inode, function, line, 0, 482 "pblk %llu bad header/extent: %s - magic %x, " 483 "entries %u, max %u(%u), depth %u(%u)", 484 (unsigned long long) pblk, error_msg, 485 le16_to_cpu(eh->eh_magic), 486 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 487 max, le16_to_cpu(eh->eh_depth), depth); 488 return -EIO; 489 } 490 491 #define ext4_ext_check(inode, eh, depth, pblk) \ 492 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 493 494 int ext4_ext_check_inode(struct inode *inode) 495 { 496 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 497 } 498 499 static struct buffer_head * 500 __read_extent_tree_block(const char *function, unsigned int line, 501 struct inode *inode, ext4_fsblk_t pblk, int depth, 502 int flags) 503 { 504 struct buffer_head *bh; 505 int err; 506 507 bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS); 508 if (unlikely(!bh)) 509 return ERR_PTR(-ENOMEM); 510 511 if (!bh_uptodate_or_lock(bh)) { 512 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 513 err = bh_submit_read(bh); 514 if (err < 0) 515 goto errout; 516 } 517 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 518 return bh; 519 err = __ext4_ext_check(function, line, inode, 520 ext_block_hdr(bh), depth, pblk); 521 if (err) 522 goto errout; 523 set_buffer_verified(bh); 524 /* 525 * If this is a leaf block, cache all of its entries 526 */ 527 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 528 struct ext4_extent_header *eh = ext_block_hdr(bh); 529 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 530 ext4_lblk_t prev = 0; 531 int i; 532 533 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 534 unsigned int status = EXTENT_STATUS_WRITTEN; 535 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 536 int len = ext4_ext_get_actual_len(ex); 537 538 if (prev && (prev != lblk)) 539 ext4_es_cache_extent(inode, prev, 540 lblk - prev, ~0, 541 EXTENT_STATUS_HOLE); 542 543 if (ext4_ext_is_unwritten(ex)) 544 status = EXTENT_STATUS_UNWRITTEN; 545 ext4_es_cache_extent(inode, lblk, len, 546 ext4_ext_pblock(ex), status); 547 prev = lblk + len; 548 } 549 } 550 return bh; 551 errout: 552 put_bh(bh); 553 return ERR_PTR(err); 554 555 } 556 557 #define read_extent_tree_block(inode, pblk, depth, flags) \ 558 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 559 (depth), (flags)) 560 561 /* 562 * This function is called to cache a file's extent information in the 563 * extent status tree 564 */ 565 int ext4_ext_precache(struct inode *inode) 566 { 567 struct ext4_inode_info *ei = EXT4_I(inode); 568 struct ext4_ext_path *path = NULL; 569 struct buffer_head *bh; 570 int i = 0, depth, ret = 0; 571 572 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 573 return 0; /* not an extent-mapped inode */ 574 575 down_read(&ei->i_data_sem); 576 depth = ext_depth(inode); 577 578 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 579 GFP_NOFS); 580 if (path == NULL) { 581 up_read(&ei->i_data_sem); 582 return -ENOMEM; 583 } 584 585 /* Don't cache anything if there are no external extent blocks */ 586 if (depth == 0) 587 goto out; 588 path[0].p_hdr = ext_inode_hdr(inode); 589 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 590 if (ret) 591 goto out; 592 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 593 while (i >= 0) { 594 /* 595 * If this is a leaf block or we've reached the end of 596 * the index block, go up 597 */ 598 if ((i == depth) || 599 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 600 brelse(path[i].p_bh); 601 path[i].p_bh = NULL; 602 i--; 603 continue; 604 } 605 bh = read_extent_tree_block(inode, 606 ext4_idx_pblock(path[i].p_idx++), 607 depth - i - 1, 608 EXT4_EX_FORCE_CACHE); 609 if (IS_ERR(bh)) { 610 ret = PTR_ERR(bh); 611 break; 612 } 613 i++; 614 path[i].p_bh = bh; 615 path[i].p_hdr = ext_block_hdr(bh); 616 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 617 } 618 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 619 out: 620 up_read(&ei->i_data_sem); 621 ext4_ext_drop_refs(path); 622 kfree(path); 623 return ret; 624 } 625 626 #ifdef EXT_DEBUG 627 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 628 { 629 int k, l = path->p_depth; 630 631 ext_debug("path:"); 632 for (k = 0; k <= l; k++, path++) { 633 if (path->p_idx) { 634 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 635 ext4_idx_pblock(path->p_idx)); 636 } else if (path->p_ext) { 637 ext_debug(" %d:[%d]%d:%llu ", 638 le32_to_cpu(path->p_ext->ee_block), 639 ext4_ext_is_unwritten(path->p_ext), 640 ext4_ext_get_actual_len(path->p_ext), 641 ext4_ext_pblock(path->p_ext)); 642 } else 643 ext_debug(" []"); 644 } 645 ext_debug("\n"); 646 } 647 648 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 649 { 650 int depth = ext_depth(inode); 651 struct ext4_extent_header *eh; 652 struct ext4_extent *ex; 653 int i; 654 655 if (!path) 656 return; 657 658 eh = path[depth].p_hdr; 659 ex = EXT_FIRST_EXTENT(eh); 660 661 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 662 663 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 664 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 665 ext4_ext_is_unwritten(ex), 666 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 667 } 668 ext_debug("\n"); 669 } 670 671 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 672 ext4_fsblk_t newblock, int level) 673 { 674 int depth = ext_depth(inode); 675 struct ext4_extent *ex; 676 677 if (depth != level) { 678 struct ext4_extent_idx *idx; 679 idx = path[level].p_idx; 680 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 681 ext_debug("%d: move %d:%llu in new index %llu\n", level, 682 le32_to_cpu(idx->ei_block), 683 ext4_idx_pblock(idx), 684 newblock); 685 idx++; 686 } 687 688 return; 689 } 690 691 ex = path[depth].p_ext; 692 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 693 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 694 le32_to_cpu(ex->ee_block), 695 ext4_ext_pblock(ex), 696 ext4_ext_is_unwritten(ex), 697 ext4_ext_get_actual_len(ex), 698 newblock); 699 ex++; 700 } 701 } 702 703 #else 704 #define ext4_ext_show_path(inode, path) 705 #define ext4_ext_show_leaf(inode, path) 706 #define ext4_ext_show_move(inode, path, newblock, level) 707 #endif 708 709 void ext4_ext_drop_refs(struct ext4_ext_path *path) 710 { 711 int depth, i; 712 713 if (!path) 714 return; 715 depth = path->p_depth; 716 for (i = 0; i <= depth; i++, path++) 717 if (path->p_bh) { 718 brelse(path->p_bh); 719 path->p_bh = NULL; 720 } 721 } 722 723 /* 724 * ext4_ext_binsearch_idx: 725 * binary search for the closest index of the given block 726 * the header must be checked before calling this 727 */ 728 static void 729 ext4_ext_binsearch_idx(struct inode *inode, 730 struct ext4_ext_path *path, ext4_lblk_t block) 731 { 732 struct ext4_extent_header *eh = path->p_hdr; 733 struct ext4_extent_idx *r, *l, *m; 734 735 736 ext_debug("binsearch for %u(idx): ", block); 737 738 l = EXT_FIRST_INDEX(eh) + 1; 739 r = EXT_LAST_INDEX(eh); 740 while (l <= r) { 741 m = l + (r - l) / 2; 742 if (block < le32_to_cpu(m->ei_block)) 743 r = m - 1; 744 else 745 l = m + 1; 746 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 747 m, le32_to_cpu(m->ei_block), 748 r, le32_to_cpu(r->ei_block)); 749 } 750 751 path->p_idx = l - 1; 752 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 753 ext4_idx_pblock(path->p_idx)); 754 755 #ifdef CHECK_BINSEARCH 756 { 757 struct ext4_extent_idx *chix, *ix; 758 int k; 759 760 chix = ix = EXT_FIRST_INDEX(eh); 761 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 762 if (k != 0 && 763 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 764 printk(KERN_DEBUG "k=%d, ix=0x%p, " 765 "first=0x%p\n", k, 766 ix, EXT_FIRST_INDEX(eh)); 767 printk(KERN_DEBUG "%u <= %u\n", 768 le32_to_cpu(ix->ei_block), 769 le32_to_cpu(ix[-1].ei_block)); 770 } 771 BUG_ON(k && le32_to_cpu(ix->ei_block) 772 <= le32_to_cpu(ix[-1].ei_block)); 773 if (block < le32_to_cpu(ix->ei_block)) 774 break; 775 chix = ix; 776 } 777 BUG_ON(chix != path->p_idx); 778 } 779 #endif 780 781 } 782 783 /* 784 * ext4_ext_binsearch: 785 * binary search for closest extent of the given block 786 * the header must be checked before calling this 787 */ 788 static void 789 ext4_ext_binsearch(struct inode *inode, 790 struct ext4_ext_path *path, ext4_lblk_t block) 791 { 792 struct ext4_extent_header *eh = path->p_hdr; 793 struct ext4_extent *r, *l, *m; 794 795 if (eh->eh_entries == 0) { 796 /* 797 * this leaf is empty: 798 * we get such a leaf in split/add case 799 */ 800 return; 801 } 802 803 ext_debug("binsearch for %u: ", block); 804 805 l = EXT_FIRST_EXTENT(eh) + 1; 806 r = EXT_LAST_EXTENT(eh); 807 808 while (l <= r) { 809 m = l + (r - l) / 2; 810 if (block < le32_to_cpu(m->ee_block)) 811 r = m - 1; 812 else 813 l = m + 1; 814 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 815 m, le32_to_cpu(m->ee_block), 816 r, le32_to_cpu(r->ee_block)); 817 } 818 819 path->p_ext = l - 1; 820 ext_debug(" -> %d:%llu:[%d]%d ", 821 le32_to_cpu(path->p_ext->ee_block), 822 ext4_ext_pblock(path->p_ext), 823 ext4_ext_is_unwritten(path->p_ext), 824 ext4_ext_get_actual_len(path->p_ext)); 825 826 #ifdef CHECK_BINSEARCH 827 { 828 struct ext4_extent *chex, *ex; 829 int k; 830 831 chex = ex = EXT_FIRST_EXTENT(eh); 832 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 833 BUG_ON(k && le32_to_cpu(ex->ee_block) 834 <= le32_to_cpu(ex[-1].ee_block)); 835 if (block < le32_to_cpu(ex->ee_block)) 836 break; 837 chex = ex; 838 } 839 BUG_ON(chex != path->p_ext); 840 } 841 #endif 842 843 } 844 845 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 846 { 847 struct ext4_extent_header *eh; 848 849 eh = ext_inode_hdr(inode); 850 eh->eh_depth = 0; 851 eh->eh_entries = 0; 852 eh->eh_magic = EXT4_EXT_MAGIC; 853 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 854 ext4_mark_inode_dirty(handle, inode); 855 return 0; 856 } 857 858 struct ext4_ext_path * 859 ext4_find_extent(struct inode *inode, ext4_lblk_t block, 860 struct ext4_ext_path **orig_path, int flags) 861 { 862 struct ext4_extent_header *eh; 863 struct buffer_head *bh; 864 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 865 short int depth, i, ppos = 0; 866 int ret; 867 868 eh = ext_inode_hdr(inode); 869 depth = ext_depth(inode); 870 871 if (path) { 872 ext4_ext_drop_refs(path); 873 if (depth > path[0].p_maxdepth) { 874 kfree(path); 875 *orig_path = path = NULL; 876 } 877 } 878 if (!path) { 879 /* account possible depth increase */ 880 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 881 GFP_NOFS); 882 if (unlikely(!path)) 883 return ERR_PTR(-ENOMEM); 884 path[0].p_maxdepth = depth + 1; 885 } 886 path[0].p_hdr = eh; 887 path[0].p_bh = NULL; 888 889 i = depth; 890 /* walk through the tree */ 891 while (i) { 892 ext_debug("depth %d: num %d, max %d\n", 893 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 894 895 ext4_ext_binsearch_idx(inode, path + ppos, block); 896 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 897 path[ppos].p_depth = i; 898 path[ppos].p_ext = NULL; 899 900 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 901 flags); 902 if (unlikely(IS_ERR(bh))) { 903 ret = PTR_ERR(bh); 904 goto err; 905 } 906 907 eh = ext_block_hdr(bh); 908 ppos++; 909 if (unlikely(ppos > depth)) { 910 put_bh(bh); 911 EXT4_ERROR_INODE(inode, 912 "ppos %d > depth %d", ppos, depth); 913 ret = -EIO; 914 goto err; 915 } 916 path[ppos].p_bh = bh; 917 path[ppos].p_hdr = eh; 918 } 919 920 path[ppos].p_depth = i; 921 path[ppos].p_ext = NULL; 922 path[ppos].p_idx = NULL; 923 924 /* find extent */ 925 ext4_ext_binsearch(inode, path + ppos, block); 926 /* if not an empty leaf */ 927 if (path[ppos].p_ext) 928 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 929 930 ext4_ext_show_path(inode, path); 931 932 return path; 933 934 err: 935 ext4_ext_drop_refs(path); 936 kfree(path); 937 if (orig_path) 938 *orig_path = NULL; 939 return ERR_PTR(ret); 940 } 941 942 /* 943 * ext4_ext_insert_index: 944 * insert new index [@logical;@ptr] into the block at @curp; 945 * check where to insert: before @curp or after @curp 946 */ 947 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 948 struct ext4_ext_path *curp, 949 int logical, ext4_fsblk_t ptr) 950 { 951 struct ext4_extent_idx *ix; 952 int len, err; 953 954 err = ext4_ext_get_access(handle, inode, curp); 955 if (err) 956 return err; 957 958 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 959 EXT4_ERROR_INODE(inode, 960 "logical %d == ei_block %d!", 961 logical, le32_to_cpu(curp->p_idx->ei_block)); 962 return -EIO; 963 } 964 965 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 966 >= le16_to_cpu(curp->p_hdr->eh_max))) { 967 EXT4_ERROR_INODE(inode, 968 "eh_entries %d >= eh_max %d!", 969 le16_to_cpu(curp->p_hdr->eh_entries), 970 le16_to_cpu(curp->p_hdr->eh_max)); 971 return -EIO; 972 } 973 974 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 975 /* insert after */ 976 ext_debug("insert new index %d after: %llu\n", logical, ptr); 977 ix = curp->p_idx + 1; 978 } else { 979 /* insert before */ 980 ext_debug("insert new index %d before: %llu\n", logical, ptr); 981 ix = curp->p_idx; 982 } 983 984 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 985 BUG_ON(len < 0); 986 if (len > 0) { 987 ext_debug("insert new index %d: " 988 "move %d indices from 0x%p to 0x%p\n", 989 logical, len, ix, ix + 1); 990 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 991 } 992 993 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 994 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 995 return -EIO; 996 } 997 998 ix->ei_block = cpu_to_le32(logical); 999 ext4_idx_store_pblock(ix, ptr); 1000 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 1001 1002 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 1003 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 1004 return -EIO; 1005 } 1006 1007 err = ext4_ext_dirty(handle, inode, curp); 1008 ext4_std_error(inode->i_sb, err); 1009 1010 return err; 1011 } 1012 1013 /* 1014 * ext4_ext_split: 1015 * inserts new subtree into the path, using free index entry 1016 * at depth @at: 1017 * - allocates all needed blocks (new leaf and all intermediate index blocks) 1018 * - makes decision where to split 1019 * - moves remaining extents and index entries (right to the split point) 1020 * into the newly allocated blocks 1021 * - initializes subtree 1022 */ 1023 static int ext4_ext_split(handle_t *handle, struct inode *inode, 1024 unsigned int flags, 1025 struct ext4_ext_path *path, 1026 struct ext4_extent *newext, int at) 1027 { 1028 struct buffer_head *bh = NULL; 1029 int depth = ext_depth(inode); 1030 struct ext4_extent_header *neh; 1031 struct ext4_extent_idx *fidx; 1032 int i = at, k, m, a; 1033 ext4_fsblk_t newblock, oldblock; 1034 __le32 border; 1035 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1036 int err = 0; 1037 1038 /* make decision: where to split? */ 1039 /* FIXME: now decision is simplest: at current extent */ 1040 1041 /* if current leaf will be split, then we should use 1042 * border from split point */ 1043 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1044 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1045 return -EIO; 1046 } 1047 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1048 border = path[depth].p_ext[1].ee_block; 1049 ext_debug("leaf will be split." 1050 " next leaf starts at %d\n", 1051 le32_to_cpu(border)); 1052 } else { 1053 border = newext->ee_block; 1054 ext_debug("leaf will be added." 1055 " next leaf starts at %d\n", 1056 le32_to_cpu(border)); 1057 } 1058 1059 /* 1060 * If error occurs, then we break processing 1061 * and mark filesystem read-only. index won't 1062 * be inserted and tree will be in consistent 1063 * state. Next mount will repair buffers too. 1064 */ 1065 1066 /* 1067 * Get array to track all allocated blocks. 1068 * We need this to handle errors and free blocks 1069 * upon them. 1070 */ 1071 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 1072 if (!ablocks) 1073 return -ENOMEM; 1074 1075 /* allocate all needed blocks */ 1076 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1077 for (a = 0; a < depth - at; a++) { 1078 newblock = ext4_ext_new_meta_block(handle, inode, path, 1079 newext, &err, flags); 1080 if (newblock == 0) 1081 goto cleanup; 1082 ablocks[a] = newblock; 1083 } 1084 1085 /* initialize new leaf */ 1086 newblock = ablocks[--a]; 1087 if (unlikely(newblock == 0)) { 1088 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1089 err = -EIO; 1090 goto cleanup; 1091 } 1092 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1093 if (unlikely(!bh)) { 1094 err = -ENOMEM; 1095 goto cleanup; 1096 } 1097 lock_buffer(bh); 1098 1099 err = ext4_journal_get_create_access(handle, bh); 1100 if (err) 1101 goto cleanup; 1102 1103 neh = ext_block_hdr(bh); 1104 neh->eh_entries = 0; 1105 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1106 neh->eh_magic = EXT4_EXT_MAGIC; 1107 neh->eh_depth = 0; 1108 1109 /* move remainder of path[depth] to the new leaf */ 1110 if (unlikely(path[depth].p_hdr->eh_entries != 1111 path[depth].p_hdr->eh_max)) { 1112 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1113 path[depth].p_hdr->eh_entries, 1114 path[depth].p_hdr->eh_max); 1115 err = -EIO; 1116 goto cleanup; 1117 } 1118 /* start copy from next extent */ 1119 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1120 ext4_ext_show_move(inode, path, newblock, depth); 1121 if (m) { 1122 struct ext4_extent *ex; 1123 ex = EXT_FIRST_EXTENT(neh); 1124 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1125 le16_add_cpu(&neh->eh_entries, m); 1126 } 1127 1128 ext4_extent_block_csum_set(inode, neh); 1129 set_buffer_uptodate(bh); 1130 unlock_buffer(bh); 1131 1132 err = ext4_handle_dirty_metadata(handle, inode, bh); 1133 if (err) 1134 goto cleanup; 1135 brelse(bh); 1136 bh = NULL; 1137 1138 /* correct old leaf */ 1139 if (m) { 1140 err = ext4_ext_get_access(handle, inode, path + depth); 1141 if (err) 1142 goto cleanup; 1143 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1144 err = ext4_ext_dirty(handle, inode, path + depth); 1145 if (err) 1146 goto cleanup; 1147 1148 } 1149 1150 /* create intermediate indexes */ 1151 k = depth - at - 1; 1152 if (unlikely(k < 0)) { 1153 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1154 err = -EIO; 1155 goto cleanup; 1156 } 1157 if (k) 1158 ext_debug("create %d intermediate indices\n", k); 1159 /* insert new index into current index block */ 1160 /* current depth stored in i var */ 1161 i = depth - 1; 1162 while (k--) { 1163 oldblock = newblock; 1164 newblock = ablocks[--a]; 1165 bh = sb_getblk(inode->i_sb, newblock); 1166 if (unlikely(!bh)) { 1167 err = -ENOMEM; 1168 goto cleanup; 1169 } 1170 lock_buffer(bh); 1171 1172 err = ext4_journal_get_create_access(handle, bh); 1173 if (err) 1174 goto cleanup; 1175 1176 neh = ext_block_hdr(bh); 1177 neh->eh_entries = cpu_to_le16(1); 1178 neh->eh_magic = EXT4_EXT_MAGIC; 1179 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1180 neh->eh_depth = cpu_to_le16(depth - i); 1181 fidx = EXT_FIRST_INDEX(neh); 1182 fidx->ei_block = border; 1183 ext4_idx_store_pblock(fidx, oldblock); 1184 1185 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1186 i, newblock, le32_to_cpu(border), oldblock); 1187 1188 /* move remainder of path[i] to the new index block */ 1189 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1190 EXT_LAST_INDEX(path[i].p_hdr))) { 1191 EXT4_ERROR_INODE(inode, 1192 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1193 le32_to_cpu(path[i].p_ext->ee_block)); 1194 err = -EIO; 1195 goto cleanup; 1196 } 1197 /* start copy indexes */ 1198 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1199 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1200 EXT_MAX_INDEX(path[i].p_hdr)); 1201 ext4_ext_show_move(inode, path, newblock, i); 1202 if (m) { 1203 memmove(++fidx, path[i].p_idx, 1204 sizeof(struct ext4_extent_idx) * m); 1205 le16_add_cpu(&neh->eh_entries, m); 1206 } 1207 ext4_extent_block_csum_set(inode, neh); 1208 set_buffer_uptodate(bh); 1209 unlock_buffer(bh); 1210 1211 err = ext4_handle_dirty_metadata(handle, inode, bh); 1212 if (err) 1213 goto cleanup; 1214 brelse(bh); 1215 bh = NULL; 1216 1217 /* correct old index */ 1218 if (m) { 1219 err = ext4_ext_get_access(handle, inode, path + i); 1220 if (err) 1221 goto cleanup; 1222 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1223 err = ext4_ext_dirty(handle, inode, path + i); 1224 if (err) 1225 goto cleanup; 1226 } 1227 1228 i--; 1229 } 1230 1231 /* insert new index */ 1232 err = ext4_ext_insert_index(handle, inode, path + at, 1233 le32_to_cpu(border), newblock); 1234 1235 cleanup: 1236 if (bh) { 1237 if (buffer_locked(bh)) 1238 unlock_buffer(bh); 1239 brelse(bh); 1240 } 1241 1242 if (err) { 1243 /* free all allocated blocks in error case */ 1244 for (i = 0; i < depth; i++) { 1245 if (!ablocks[i]) 1246 continue; 1247 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1248 EXT4_FREE_BLOCKS_METADATA); 1249 } 1250 } 1251 kfree(ablocks); 1252 1253 return err; 1254 } 1255 1256 /* 1257 * ext4_ext_grow_indepth: 1258 * implements tree growing procedure: 1259 * - allocates new block 1260 * - moves top-level data (index block or leaf) into the new block 1261 * - initializes new top-level, creating index that points to the 1262 * just created block 1263 */ 1264 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1265 unsigned int flags) 1266 { 1267 struct ext4_extent_header *neh; 1268 struct buffer_head *bh; 1269 ext4_fsblk_t newblock, goal = 0; 1270 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 1271 int err = 0; 1272 1273 /* Try to prepend new index to old one */ 1274 if (ext_depth(inode)) 1275 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); 1276 if (goal > le32_to_cpu(es->s_first_data_block)) { 1277 flags |= EXT4_MB_HINT_TRY_GOAL; 1278 goal--; 1279 } else 1280 goal = ext4_inode_to_goal_block(inode); 1281 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 1282 NULL, &err); 1283 if (newblock == 0) 1284 return err; 1285 1286 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1287 if (unlikely(!bh)) 1288 return -ENOMEM; 1289 lock_buffer(bh); 1290 1291 err = ext4_journal_get_create_access(handle, bh); 1292 if (err) { 1293 unlock_buffer(bh); 1294 goto out; 1295 } 1296 1297 /* move top-level index/leaf into new block */ 1298 memmove(bh->b_data, EXT4_I(inode)->i_data, 1299 sizeof(EXT4_I(inode)->i_data)); 1300 1301 /* set size of new block */ 1302 neh = ext_block_hdr(bh); 1303 /* old root could have indexes or leaves 1304 * so calculate e_max right way */ 1305 if (ext_depth(inode)) 1306 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1307 else 1308 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1309 neh->eh_magic = EXT4_EXT_MAGIC; 1310 ext4_extent_block_csum_set(inode, neh); 1311 set_buffer_uptodate(bh); 1312 unlock_buffer(bh); 1313 1314 err = ext4_handle_dirty_metadata(handle, inode, bh); 1315 if (err) 1316 goto out; 1317 1318 /* Update top-level index: num,max,pointer */ 1319 neh = ext_inode_hdr(inode); 1320 neh->eh_entries = cpu_to_le16(1); 1321 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1322 if (neh->eh_depth == 0) { 1323 /* Root extent block becomes index block */ 1324 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1325 EXT_FIRST_INDEX(neh)->ei_block = 1326 EXT_FIRST_EXTENT(neh)->ee_block; 1327 } 1328 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1329 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1330 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1331 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1332 1333 le16_add_cpu(&neh->eh_depth, 1); 1334 ext4_mark_inode_dirty(handle, inode); 1335 out: 1336 brelse(bh); 1337 1338 return err; 1339 } 1340 1341 /* 1342 * ext4_ext_create_new_leaf: 1343 * finds empty index and adds new leaf. 1344 * if no free index is found, then it requests in-depth growing. 1345 */ 1346 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1347 unsigned int mb_flags, 1348 unsigned int gb_flags, 1349 struct ext4_ext_path **ppath, 1350 struct ext4_extent *newext) 1351 { 1352 struct ext4_ext_path *path = *ppath; 1353 struct ext4_ext_path *curp; 1354 int depth, i, err = 0; 1355 1356 repeat: 1357 i = depth = ext_depth(inode); 1358 1359 /* walk up to the tree and look for free index entry */ 1360 curp = path + depth; 1361 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1362 i--; 1363 curp--; 1364 } 1365 1366 /* we use already allocated block for index block, 1367 * so subsequent data blocks should be contiguous */ 1368 if (EXT_HAS_FREE_INDEX(curp)) { 1369 /* if we found index with free entry, then use that 1370 * entry: create all needed subtree and add new leaf */ 1371 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1372 if (err) 1373 goto out; 1374 1375 /* refill path */ 1376 path = ext4_find_extent(inode, 1377 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1378 ppath, gb_flags); 1379 if (IS_ERR(path)) 1380 err = PTR_ERR(path); 1381 } else { 1382 /* tree is full, time to grow in depth */ 1383 err = ext4_ext_grow_indepth(handle, inode, mb_flags); 1384 if (err) 1385 goto out; 1386 1387 /* refill path */ 1388 path = ext4_find_extent(inode, 1389 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1390 ppath, gb_flags); 1391 if (IS_ERR(path)) { 1392 err = PTR_ERR(path); 1393 goto out; 1394 } 1395 1396 /* 1397 * only first (depth 0 -> 1) produces free space; 1398 * in all other cases we have to split the grown tree 1399 */ 1400 depth = ext_depth(inode); 1401 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1402 /* now we need to split */ 1403 goto repeat; 1404 } 1405 } 1406 1407 out: 1408 return err; 1409 } 1410 1411 /* 1412 * search the closest allocated block to the left for *logical 1413 * and returns it at @logical + it's physical address at @phys 1414 * if *logical is the smallest allocated block, the function 1415 * returns 0 at @phys 1416 * return value contains 0 (success) or error code 1417 */ 1418 static int ext4_ext_search_left(struct inode *inode, 1419 struct ext4_ext_path *path, 1420 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1421 { 1422 struct ext4_extent_idx *ix; 1423 struct ext4_extent *ex; 1424 int depth, ee_len; 1425 1426 if (unlikely(path == NULL)) { 1427 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1428 return -EIO; 1429 } 1430 depth = path->p_depth; 1431 *phys = 0; 1432 1433 if (depth == 0 && path->p_ext == NULL) 1434 return 0; 1435 1436 /* usually extent in the path covers blocks smaller 1437 * then *logical, but it can be that extent is the 1438 * first one in the file */ 1439 1440 ex = path[depth].p_ext; 1441 ee_len = ext4_ext_get_actual_len(ex); 1442 if (*logical < le32_to_cpu(ex->ee_block)) { 1443 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1444 EXT4_ERROR_INODE(inode, 1445 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1446 *logical, le32_to_cpu(ex->ee_block)); 1447 return -EIO; 1448 } 1449 while (--depth >= 0) { 1450 ix = path[depth].p_idx; 1451 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1452 EXT4_ERROR_INODE(inode, 1453 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1454 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1455 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1456 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1457 depth); 1458 return -EIO; 1459 } 1460 } 1461 return 0; 1462 } 1463 1464 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1465 EXT4_ERROR_INODE(inode, 1466 "logical %d < ee_block %d + ee_len %d!", 1467 *logical, le32_to_cpu(ex->ee_block), ee_len); 1468 return -EIO; 1469 } 1470 1471 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1472 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1473 return 0; 1474 } 1475 1476 /* 1477 * search the closest allocated block to the right for *logical 1478 * and returns it at @logical + it's physical address at @phys 1479 * if *logical is the largest allocated block, the function 1480 * returns 0 at @phys 1481 * return value contains 0 (success) or error code 1482 */ 1483 static int ext4_ext_search_right(struct inode *inode, 1484 struct ext4_ext_path *path, 1485 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1486 struct ext4_extent **ret_ex) 1487 { 1488 struct buffer_head *bh = NULL; 1489 struct ext4_extent_header *eh; 1490 struct ext4_extent_idx *ix; 1491 struct ext4_extent *ex; 1492 ext4_fsblk_t block; 1493 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1494 int ee_len; 1495 1496 if (unlikely(path == NULL)) { 1497 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1498 return -EIO; 1499 } 1500 depth = path->p_depth; 1501 *phys = 0; 1502 1503 if (depth == 0 && path->p_ext == NULL) 1504 return 0; 1505 1506 /* usually extent in the path covers blocks smaller 1507 * then *logical, but it can be that extent is the 1508 * first one in the file */ 1509 1510 ex = path[depth].p_ext; 1511 ee_len = ext4_ext_get_actual_len(ex); 1512 if (*logical < le32_to_cpu(ex->ee_block)) { 1513 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1514 EXT4_ERROR_INODE(inode, 1515 "first_extent(path[%d].p_hdr) != ex", 1516 depth); 1517 return -EIO; 1518 } 1519 while (--depth >= 0) { 1520 ix = path[depth].p_idx; 1521 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1522 EXT4_ERROR_INODE(inode, 1523 "ix != EXT_FIRST_INDEX *logical %d!", 1524 *logical); 1525 return -EIO; 1526 } 1527 } 1528 goto found_extent; 1529 } 1530 1531 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1532 EXT4_ERROR_INODE(inode, 1533 "logical %d < ee_block %d + ee_len %d!", 1534 *logical, le32_to_cpu(ex->ee_block), ee_len); 1535 return -EIO; 1536 } 1537 1538 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1539 /* next allocated block in this leaf */ 1540 ex++; 1541 goto found_extent; 1542 } 1543 1544 /* go up and search for index to the right */ 1545 while (--depth >= 0) { 1546 ix = path[depth].p_idx; 1547 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1548 goto got_index; 1549 } 1550 1551 /* we've gone up to the root and found no index to the right */ 1552 return 0; 1553 1554 got_index: 1555 /* we've found index to the right, let's 1556 * follow it and find the closest allocated 1557 * block to the right */ 1558 ix++; 1559 block = ext4_idx_pblock(ix); 1560 while (++depth < path->p_depth) { 1561 /* subtract from p_depth to get proper eh_depth */ 1562 bh = read_extent_tree_block(inode, block, 1563 path->p_depth - depth, 0); 1564 if (IS_ERR(bh)) 1565 return PTR_ERR(bh); 1566 eh = ext_block_hdr(bh); 1567 ix = EXT_FIRST_INDEX(eh); 1568 block = ext4_idx_pblock(ix); 1569 put_bh(bh); 1570 } 1571 1572 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1573 if (IS_ERR(bh)) 1574 return PTR_ERR(bh); 1575 eh = ext_block_hdr(bh); 1576 ex = EXT_FIRST_EXTENT(eh); 1577 found_extent: 1578 *logical = le32_to_cpu(ex->ee_block); 1579 *phys = ext4_ext_pblock(ex); 1580 *ret_ex = ex; 1581 if (bh) 1582 put_bh(bh); 1583 return 0; 1584 } 1585 1586 /* 1587 * ext4_ext_next_allocated_block: 1588 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1589 * NOTE: it considers block number from index entry as 1590 * allocated block. Thus, index entries have to be consistent 1591 * with leaves. 1592 */ 1593 ext4_lblk_t 1594 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1595 { 1596 int depth; 1597 1598 BUG_ON(path == NULL); 1599 depth = path->p_depth; 1600 1601 if (depth == 0 && path->p_ext == NULL) 1602 return EXT_MAX_BLOCKS; 1603 1604 while (depth >= 0) { 1605 if (depth == path->p_depth) { 1606 /* leaf */ 1607 if (path[depth].p_ext && 1608 path[depth].p_ext != 1609 EXT_LAST_EXTENT(path[depth].p_hdr)) 1610 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1611 } else { 1612 /* index */ 1613 if (path[depth].p_idx != 1614 EXT_LAST_INDEX(path[depth].p_hdr)) 1615 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1616 } 1617 depth--; 1618 } 1619 1620 return EXT_MAX_BLOCKS; 1621 } 1622 1623 /* 1624 * ext4_ext_next_leaf_block: 1625 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1626 */ 1627 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1628 { 1629 int depth; 1630 1631 BUG_ON(path == NULL); 1632 depth = path->p_depth; 1633 1634 /* zero-tree has no leaf blocks at all */ 1635 if (depth == 0) 1636 return EXT_MAX_BLOCKS; 1637 1638 /* go to index block */ 1639 depth--; 1640 1641 while (depth >= 0) { 1642 if (path[depth].p_idx != 1643 EXT_LAST_INDEX(path[depth].p_hdr)) 1644 return (ext4_lblk_t) 1645 le32_to_cpu(path[depth].p_idx[1].ei_block); 1646 depth--; 1647 } 1648 1649 return EXT_MAX_BLOCKS; 1650 } 1651 1652 /* 1653 * ext4_ext_correct_indexes: 1654 * if leaf gets modified and modified extent is first in the leaf, 1655 * then we have to correct all indexes above. 1656 * TODO: do we need to correct tree in all cases? 1657 */ 1658 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1659 struct ext4_ext_path *path) 1660 { 1661 struct ext4_extent_header *eh; 1662 int depth = ext_depth(inode); 1663 struct ext4_extent *ex; 1664 __le32 border; 1665 int k, err = 0; 1666 1667 eh = path[depth].p_hdr; 1668 ex = path[depth].p_ext; 1669 1670 if (unlikely(ex == NULL || eh == NULL)) { 1671 EXT4_ERROR_INODE(inode, 1672 "ex %p == NULL or eh %p == NULL", ex, eh); 1673 return -EIO; 1674 } 1675 1676 if (depth == 0) { 1677 /* there is no tree at all */ 1678 return 0; 1679 } 1680 1681 if (ex != EXT_FIRST_EXTENT(eh)) { 1682 /* we correct tree if first leaf got modified only */ 1683 return 0; 1684 } 1685 1686 /* 1687 * TODO: we need correction if border is smaller than current one 1688 */ 1689 k = depth - 1; 1690 border = path[depth].p_ext->ee_block; 1691 err = ext4_ext_get_access(handle, inode, path + k); 1692 if (err) 1693 return err; 1694 path[k].p_idx->ei_block = border; 1695 err = ext4_ext_dirty(handle, inode, path + k); 1696 if (err) 1697 return err; 1698 1699 while (k--) { 1700 /* change all left-side indexes */ 1701 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1702 break; 1703 err = ext4_ext_get_access(handle, inode, path + k); 1704 if (err) 1705 break; 1706 path[k].p_idx->ei_block = border; 1707 err = ext4_ext_dirty(handle, inode, path + k); 1708 if (err) 1709 break; 1710 } 1711 1712 return err; 1713 } 1714 1715 int 1716 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1717 struct ext4_extent *ex2) 1718 { 1719 unsigned short ext1_ee_len, ext2_ee_len; 1720 1721 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1722 return 0; 1723 1724 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1725 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1726 1727 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1728 le32_to_cpu(ex2->ee_block)) 1729 return 0; 1730 1731 /* 1732 * To allow future support for preallocated extents to be added 1733 * as an RO_COMPAT feature, refuse to merge to extents if 1734 * this can result in the top bit of ee_len being set. 1735 */ 1736 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1737 return 0; 1738 if (ext4_ext_is_unwritten(ex1) && 1739 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) || 1740 atomic_read(&EXT4_I(inode)->i_unwritten) || 1741 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN))) 1742 return 0; 1743 #ifdef AGGRESSIVE_TEST 1744 if (ext1_ee_len >= 4) 1745 return 0; 1746 #endif 1747 1748 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1749 return 1; 1750 return 0; 1751 } 1752 1753 /* 1754 * This function tries to merge the "ex" extent to the next extent in the tree. 1755 * It always tries to merge towards right. If you want to merge towards 1756 * left, pass "ex - 1" as argument instead of "ex". 1757 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1758 * 1 if they got merged. 1759 */ 1760 static int ext4_ext_try_to_merge_right(struct inode *inode, 1761 struct ext4_ext_path *path, 1762 struct ext4_extent *ex) 1763 { 1764 struct ext4_extent_header *eh; 1765 unsigned int depth, len; 1766 int merge_done = 0, unwritten; 1767 1768 depth = ext_depth(inode); 1769 BUG_ON(path[depth].p_hdr == NULL); 1770 eh = path[depth].p_hdr; 1771 1772 while (ex < EXT_LAST_EXTENT(eh)) { 1773 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1774 break; 1775 /* merge with next extent! */ 1776 unwritten = ext4_ext_is_unwritten(ex); 1777 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1778 + ext4_ext_get_actual_len(ex + 1)); 1779 if (unwritten) 1780 ext4_ext_mark_unwritten(ex); 1781 1782 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1783 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1784 * sizeof(struct ext4_extent); 1785 memmove(ex + 1, ex + 2, len); 1786 } 1787 le16_add_cpu(&eh->eh_entries, -1); 1788 merge_done = 1; 1789 WARN_ON(eh->eh_entries == 0); 1790 if (!eh->eh_entries) 1791 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1792 } 1793 1794 return merge_done; 1795 } 1796 1797 /* 1798 * This function does a very simple check to see if we can collapse 1799 * an extent tree with a single extent tree leaf block into the inode. 1800 */ 1801 static void ext4_ext_try_to_merge_up(handle_t *handle, 1802 struct inode *inode, 1803 struct ext4_ext_path *path) 1804 { 1805 size_t s; 1806 unsigned max_root = ext4_ext_space_root(inode, 0); 1807 ext4_fsblk_t blk; 1808 1809 if ((path[0].p_depth != 1) || 1810 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1811 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1812 return; 1813 1814 /* 1815 * We need to modify the block allocation bitmap and the block 1816 * group descriptor to release the extent tree block. If we 1817 * can't get the journal credits, give up. 1818 */ 1819 if (ext4_journal_extend(handle, 2)) 1820 return; 1821 1822 /* 1823 * Copy the extent data up to the inode 1824 */ 1825 blk = ext4_idx_pblock(path[0].p_idx); 1826 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1827 sizeof(struct ext4_extent_idx); 1828 s += sizeof(struct ext4_extent_header); 1829 1830 path[1].p_maxdepth = path[0].p_maxdepth; 1831 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1832 path[0].p_depth = 0; 1833 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1834 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1835 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1836 1837 brelse(path[1].p_bh); 1838 ext4_free_blocks(handle, inode, NULL, blk, 1, 1839 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1840 } 1841 1842 /* 1843 * This function tries to merge the @ex extent to neighbours in the tree. 1844 * return 1 if merge left else 0. 1845 */ 1846 static void ext4_ext_try_to_merge(handle_t *handle, 1847 struct inode *inode, 1848 struct ext4_ext_path *path, 1849 struct ext4_extent *ex) { 1850 struct ext4_extent_header *eh; 1851 unsigned int depth; 1852 int merge_done = 0; 1853 1854 depth = ext_depth(inode); 1855 BUG_ON(path[depth].p_hdr == NULL); 1856 eh = path[depth].p_hdr; 1857 1858 if (ex > EXT_FIRST_EXTENT(eh)) 1859 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1860 1861 if (!merge_done) 1862 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1863 1864 ext4_ext_try_to_merge_up(handle, inode, path); 1865 } 1866 1867 /* 1868 * check if a portion of the "newext" extent overlaps with an 1869 * existing extent. 1870 * 1871 * If there is an overlap discovered, it updates the length of the newext 1872 * such that there will be no overlap, and then returns 1. 1873 * If there is no overlap found, it returns 0. 1874 */ 1875 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1876 struct inode *inode, 1877 struct ext4_extent *newext, 1878 struct ext4_ext_path *path) 1879 { 1880 ext4_lblk_t b1, b2; 1881 unsigned int depth, len1; 1882 unsigned int ret = 0; 1883 1884 b1 = le32_to_cpu(newext->ee_block); 1885 len1 = ext4_ext_get_actual_len(newext); 1886 depth = ext_depth(inode); 1887 if (!path[depth].p_ext) 1888 goto out; 1889 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1890 1891 /* 1892 * get the next allocated block if the extent in the path 1893 * is before the requested block(s) 1894 */ 1895 if (b2 < b1) { 1896 b2 = ext4_ext_next_allocated_block(path); 1897 if (b2 == EXT_MAX_BLOCKS) 1898 goto out; 1899 b2 = EXT4_LBLK_CMASK(sbi, b2); 1900 } 1901 1902 /* check for wrap through zero on extent logical start block*/ 1903 if (b1 + len1 < b1) { 1904 len1 = EXT_MAX_BLOCKS - b1; 1905 newext->ee_len = cpu_to_le16(len1); 1906 ret = 1; 1907 } 1908 1909 /* check for overlap */ 1910 if (b1 + len1 > b2) { 1911 newext->ee_len = cpu_to_le16(b2 - b1); 1912 ret = 1; 1913 } 1914 out: 1915 return ret; 1916 } 1917 1918 /* 1919 * ext4_ext_insert_extent: 1920 * tries to merge requsted extent into the existing extent or 1921 * inserts requested extent as new one into the tree, 1922 * creating new leaf in the no-space case. 1923 */ 1924 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1925 struct ext4_ext_path **ppath, 1926 struct ext4_extent *newext, int gb_flags) 1927 { 1928 struct ext4_ext_path *path = *ppath; 1929 struct ext4_extent_header *eh; 1930 struct ext4_extent *ex, *fex; 1931 struct ext4_extent *nearex; /* nearest extent */ 1932 struct ext4_ext_path *npath = NULL; 1933 int depth, len, err; 1934 ext4_lblk_t next; 1935 int mb_flags = 0, unwritten; 1936 1937 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1938 mb_flags |= EXT4_MB_DELALLOC_RESERVED; 1939 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1940 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1941 return -EIO; 1942 } 1943 depth = ext_depth(inode); 1944 ex = path[depth].p_ext; 1945 eh = path[depth].p_hdr; 1946 if (unlikely(path[depth].p_hdr == NULL)) { 1947 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1948 return -EIO; 1949 } 1950 1951 /* try to insert block into found extent and return */ 1952 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1953 1954 /* 1955 * Try to see whether we should rather test the extent on 1956 * right from ex, or from the left of ex. This is because 1957 * ext4_find_extent() can return either extent on the 1958 * left, or on the right from the searched position. This 1959 * will make merging more effective. 1960 */ 1961 if (ex < EXT_LAST_EXTENT(eh) && 1962 (le32_to_cpu(ex->ee_block) + 1963 ext4_ext_get_actual_len(ex) < 1964 le32_to_cpu(newext->ee_block))) { 1965 ex += 1; 1966 goto prepend; 1967 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1968 (le32_to_cpu(newext->ee_block) + 1969 ext4_ext_get_actual_len(newext) < 1970 le32_to_cpu(ex->ee_block))) 1971 ex -= 1; 1972 1973 /* Try to append newex to the ex */ 1974 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1975 ext_debug("append [%d]%d block to %u:[%d]%d" 1976 "(from %llu)\n", 1977 ext4_ext_is_unwritten(newext), 1978 ext4_ext_get_actual_len(newext), 1979 le32_to_cpu(ex->ee_block), 1980 ext4_ext_is_unwritten(ex), 1981 ext4_ext_get_actual_len(ex), 1982 ext4_ext_pblock(ex)); 1983 err = ext4_ext_get_access(handle, inode, 1984 path + depth); 1985 if (err) 1986 return err; 1987 unwritten = ext4_ext_is_unwritten(ex); 1988 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1989 + ext4_ext_get_actual_len(newext)); 1990 if (unwritten) 1991 ext4_ext_mark_unwritten(ex); 1992 eh = path[depth].p_hdr; 1993 nearex = ex; 1994 goto merge; 1995 } 1996 1997 prepend: 1998 /* Try to prepend newex to the ex */ 1999 if (ext4_can_extents_be_merged(inode, newext, ex)) { 2000 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 2001 "(from %llu)\n", 2002 le32_to_cpu(newext->ee_block), 2003 ext4_ext_is_unwritten(newext), 2004 ext4_ext_get_actual_len(newext), 2005 le32_to_cpu(ex->ee_block), 2006 ext4_ext_is_unwritten(ex), 2007 ext4_ext_get_actual_len(ex), 2008 ext4_ext_pblock(ex)); 2009 err = ext4_ext_get_access(handle, inode, 2010 path + depth); 2011 if (err) 2012 return err; 2013 2014 unwritten = ext4_ext_is_unwritten(ex); 2015 ex->ee_block = newext->ee_block; 2016 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 2017 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2018 + ext4_ext_get_actual_len(newext)); 2019 if (unwritten) 2020 ext4_ext_mark_unwritten(ex); 2021 eh = path[depth].p_hdr; 2022 nearex = ex; 2023 goto merge; 2024 } 2025 } 2026 2027 depth = ext_depth(inode); 2028 eh = path[depth].p_hdr; 2029 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2030 goto has_space; 2031 2032 /* probably next leaf has space for us? */ 2033 fex = EXT_LAST_EXTENT(eh); 2034 next = EXT_MAX_BLOCKS; 2035 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2036 next = ext4_ext_next_leaf_block(path); 2037 if (next != EXT_MAX_BLOCKS) { 2038 ext_debug("next leaf block - %u\n", next); 2039 BUG_ON(npath != NULL); 2040 npath = ext4_find_extent(inode, next, NULL, 0); 2041 if (IS_ERR(npath)) 2042 return PTR_ERR(npath); 2043 BUG_ON(npath->p_depth != path->p_depth); 2044 eh = npath[depth].p_hdr; 2045 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2046 ext_debug("next leaf isn't full(%d)\n", 2047 le16_to_cpu(eh->eh_entries)); 2048 path = npath; 2049 goto has_space; 2050 } 2051 ext_debug("next leaf has no free space(%d,%d)\n", 2052 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2053 } 2054 2055 /* 2056 * There is no free space in the found leaf. 2057 * We're gonna add a new leaf in the tree. 2058 */ 2059 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2060 mb_flags |= EXT4_MB_USE_RESERVED; 2061 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2062 ppath, newext); 2063 if (err) 2064 goto cleanup; 2065 depth = ext_depth(inode); 2066 eh = path[depth].p_hdr; 2067 2068 has_space: 2069 nearex = path[depth].p_ext; 2070 2071 err = ext4_ext_get_access(handle, inode, path + depth); 2072 if (err) 2073 goto cleanup; 2074 2075 if (!nearex) { 2076 /* there is no extent in this leaf, create first one */ 2077 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2078 le32_to_cpu(newext->ee_block), 2079 ext4_ext_pblock(newext), 2080 ext4_ext_is_unwritten(newext), 2081 ext4_ext_get_actual_len(newext)); 2082 nearex = EXT_FIRST_EXTENT(eh); 2083 } else { 2084 if (le32_to_cpu(newext->ee_block) 2085 > le32_to_cpu(nearex->ee_block)) { 2086 /* Insert after */ 2087 ext_debug("insert %u:%llu:[%d]%d before: " 2088 "nearest %p\n", 2089 le32_to_cpu(newext->ee_block), 2090 ext4_ext_pblock(newext), 2091 ext4_ext_is_unwritten(newext), 2092 ext4_ext_get_actual_len(newext), 2093 nearex); 2094 nearex++; 2095 } else { 2096 /* Insert before */ 2097 BUG_ON(newext->ee_block == nearex->ee_block); 2098 ext_debug("insert %u:%llu:[%d]%d after: " 2099 "nearest %p\n", 2100 le32_to_cpu(newext->ee_block), 2101 ext4_ext_pblock(newext), 2102 ext4_ext_is_unwritten(newext), 2103 ext4_ext_get_actual_len(newext), 2104 nearex); 2105 } 2106 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2107 if (len > 0) { 2108 ext_debug("insert %u:%llu:[%d]%d: " 2109 "move %d extents from 0x%p to 0x%p\n", 2110 le32_to_cpu(newext->ee_block), 2111 ext4_ext_pblock(newext), 2112 ext4_ext_is_unwritten(newext), 2113 ext4_ext_get_actual_len(newext), 2114 len, nearex, nearex + 1); 2115 memmove(nearex + 1, nearex, 2116 len * sizeof(struct ext4_extent)); 2117 } 2118 } 2119 2120 le16_add_cpu(&eh->eh_entries, 1); 2121 path[depth].p_ext = nearex; 2122 nearex->ee_block = newext->ee_block; 2123 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2124 nearex->ee_len = newext->ee_len; 2125 2126 merge: 2127 /* try to merge extents */ 2128 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2129 ext4_ext_try_to_merge(handle, inode, path, nearex); 2130 2131 2132 /* time to correct all indexes above */ 2133 err = ext4_ext_correct_indexes(handle, inode, path); 2134 if (err) 2135 goto cleanup; 2136 2137 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2138 2139 cleanup: 2140 ext4_ext_drop_refs(npath); 2141 kfree(npath); 2142 return err; 2143 } 2144 2145 static int ext4_fill_fiemap_extents(struct inode *inode, 2146 ext4_lblk_t block, ext4_lblk_t num, 2147 struct fiemap_extent_info *fieinfo) 2148 { 2149 struct ext4_ext_path *path = NULL; 2150 struct ext4_extent *ex; 2151 struct extent_status es; 2152 ext4_lblk_t next, next_del, start = 0, end = 0; 2153 ext4_lblk_t last = block + num; 2154 int exists, depth = 0, err = 0; 2155 unsigned int flags = 0; 2156 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2157 2158 while (block < last && block != EXT_MAX_BLOCKS) { 2159 num = last - block; 2160 /* find extent for this block */ 2161 down_read(&EXT4_I(inode)->i_data_sem); 2162 2163 path = ext4_find_extent(inode, block, &path, 0); 2164 if (IS_ERR(path)) { 2165 up_read(&EXT4_I(inode)->i_data_sem); 2166 err = PTR_ERR(path); 2167 path = NULL; 2168 break; 2169 } 2170 2171 depth = ext_depth(inode); 2172 if (unlikely(path[depth].p_hdr == NULL)) { 2173 up_read(&EXT4_I(inode)->i_data_sem); 2174 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2175 err = -EIO; 2176 break; 2177 } 2178 ex = path[depth].p_ext; 2179 next = ext4_ext_next_allocated_block(path); 2180 2181 flags = 0; 2182 exists = 0; 2183 if (!ex) { 2184 /* there is no extent yet, so try to allocate 2185 * all requested space */ 2186 start = block; 2187 end = block + num; 2188 } else if (le32_to_cpu(ex->ee_block) > block) { 2189 /* need to allocate space before found extent */ 2190 start = block; 2191 end = le32_to_cpu(ex->ee_block); 2192 if (block + num < end) 2193 end = block + num; 2194 } else if (block >= le32_to_cpu(ex->ee_block) 2195 + ext4_ext_get_actual_len(ex)) { 2196 /* need to allocate space after found extent */ 2197 start = block; 2198 end = block + num; 2199 if (end >= next) 2200 end = next; 2201 } else if (block >= le32_to_cpu(ex->ee_block)) { 2202 /* 2203 * some part of requested space is covered 2204 * by found extent 2205 */ 2206 start = block; 2207 end = le32_to_cpu(ex->ee_block) 2208 + ext4_ext_get_actual_len(ex); 2209 if (block + num < end) 2210 end = block + num; 2211 exists = 1; 2212 } else { 2213 BUG(); 2214 } 2215 BUG_ON(end <= start); 2216 2217 if (!exists) { 2218 es.es_lblk = start; 2219 es.es_len = end - start; 2220 es.es_pblk = 0; 2221 } else { 2222 es.es_lblk = le32_to_cpu(ex->ee_block); 2223 es.es_len = ext4_ext_get_actual_len(ex); 2224 es.es_pblk = ext4_ext_pblock(ex); 2225 if (ext4_ext_is_unwritten(ex)) 2226 flags |= FIEMAP_EXTENT_UNWRITTEN; 2227 } 2228 2229 /* 2230 * Find delayed extent and update es accordingly. We call 2231 * it even in !exists case to find out whether es is the 2232 * last existing extent or not. 2233 */ 2234 next_del = ext4_find_delayed_extent(inode, &es); 2235 if (!exists && next_del) { 2236 exists = 1; 2237 flags |= (FIEMAP_EXTENT_DELALLOC | 2238 FIEMAP_EXTENT_UNKNOWN); 2239 } 2240 up_read(&EXT4_I(inode)->i_data_sem); 2241 2242 if (unlikely(es.es_len == 0)) { 2243 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2244 err = -EIO; 2245 break; 2246 } 2247 2248 /* 2249 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2250 * we need to check next == EXT_MAX_BLOCKS because it is 2251 * possible that an extent is with unwritten and delayed 2252 * status due to when an extent is delayed allocated and 2253 * is allocated by fallocate status tree will track both of 2254 * them in a extent. 2255 * 2256 * So we could return a unwritten and delayed extent, and 2257 * its block is equal to 'next'. 2258 */ 2259 if (next == next_del && next == EXT_MAX_BLOCKS) { 2260 flags |= FIEMAP_EXTENT_LAST; 2261 if (unlikely(next_del != EXT_MAX_BLOCKS || 2262 next != EXT_MAX_BLOCKS)) { 2263 EXT4_ERROR_INODE(inode, 2264 "next extent == %u, next " 2265 "delalloc extent = %u", 2266 next, next_del); 2267 err = -EIO; 2268 break; 2269 } 2270 } 2271 2272 if (exists) { 2273 err = fiemap_fill_next_extent(fieinfo, 2274 (__u64)es.es_lblk << blksize_bits, 2275 (__u64)es.es_pblk << blksize_bits, 2276 (__u64)es.es_len << blksize_bits, 2277 flags); 2278 if (err < 0) 2279 break; 2280 if (err == 1) { 2281 err = 0; 2282 break; 2283 } 2284 } 2285 2286 block = es.es_lblk + es.es_len; 2287 } 2288 2289 ext4_ext_drop_refs(path); 2290 kfree(path); 2291 return err; 2292 } 2293 2294 /* 2295 * ext4_ext_put_gap_in_cache: 2296 * calculate boundaries of the gap that the requested block fits into 2297 * and cache this gap 2298 */ 2299 static void 2300 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2301 ext4_lblk_t block) 2302 { 2303 int depth = ext_depth(inode); 2304 ext4_lblk_t len; 2305 ext4_lblk_t lblock; 2306 struct ext4_extent *ex; 2307 struct extent_status es; 2308 2309 ex = path[depth].p_ext; 2310 if (ex == NULL) { 2311 /* there is no extent yet, so gap is [0;-] */ 2312 lblock = 0; 2313 len = EXT_MAX_BLOCKS; 2314 ext_debug("cache gap(whole file):"); 2315 } else if (block < le32_to_cpu(ex->ee_block)) { 2316 lblock = block; 2317 len = le32_to_cpu(ex->ee_block) - block; 2318 ext_debug("cache gap(before): %u [%u:%u]", 2319 block, 2320 le32_to_cpu(ex->ee_block), 2321 ext4_ext_get_actual_len(ex)); 2322 } else if (block >= le32_to_cpu(ex->ee_block) 2323 + ext4_ext_get_actual_len(ex)) { 2324 ext4_lblk_t next; 2325 lblock = le32_to_cpu(ex->ee_block) 2326 + ext4_ext_get_actual_len(ex); 2327 2328 next = ext4_ext_next_allocated_block(path); 2329 ext_debug("cache gap(after): [%u:%u] %u", 2330 le32_to_cpu(ex->ee_block), 2331 ext4_ext_get_actual_len(ex), 2332 block); 2333 BUG_ON(next == lblock); 2334 len = next - lblock; 2335 } else { 2336 BUG(); 2337 } 2338 2339 ext4_es_find_delayed_extent_range(inode, lblock, lblock + len - 1, &es); 2340 if (es.es_len) { 2341 /* There's delayed extent containing lblock? */ 2342 if (es.es_lblk <= lblock) 2343 return; 2344 len = min(es.es_lblk - lblock, len); 2345 } 2346 ext_debug(" -> %u:%u\n", lblock, len); 2347 ext4_es_insert_extent(inode, lblock, len, ~0, EXTENT_STATUS_HOLE); 2348 } 2349 2350 /* 2351 * ext4_ext_rm_idx: 2352 * removes index from the index block. 2353 */ 2354 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2355 struct ext4_ext_path *path, int depth) 2356 { 2357 int err; 2358 ext4_fsblk_t leaf; 2359 2360 /* free index block */ 2361 depth--; 2362 path = path + depth; 2363 leaf = ext4_idx_pblock(path->p_idx); 2364 if (unlikely(path->p_hdr->eh_entries == 0)) { 2365 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2366 return -EIO; 2367 } 2368 err = ext4_ext_get_access(handle, inode, path); 2369 if (err) 2370 return err; 2371 2372 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2373 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2374 len *= sizeof(struct ext4_extent_idx); 2375 memmove(path->p_idx, path->p_idx + 1, len); 2376 } 2377 2378 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2379 err = ext4_ext_dirty(handle, inode, path); 2380 if (err) 2381 return err; 2382 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2383 trace_ext4_ext_rm_idx(inode, leaf); 2384 2385 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2386 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2387 2388 while (--depth >= 0) { 2389 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2390 break; 2391 path--; 2392 err = ext4_ext_get_access(handle, inode, path); 2393 if (err) 2394 break; 2395 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2396 err = ext4_ext_dirty(handle, inode, path); 2397 if (err) 2398 break; 2399 } 2400 return err; 2401 } 2402 2403 /* 2404 * ext4_ext_calc_credits_for_single_extent: 2405 * This routine returns max. credits that needed to insert an extent 2406 * to the extent tree. 2407 * When pass the actual path, the caller should calculate credits 2408 * under i_data_sem. 2409 */ 2410 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2411 struct ext4_ext_path *path) 2412 { 2413 if (path) { 2414 int depth = ext_depth(inode); 2415 int ret = 0; 2416 2417 /* probably there is space in leaf? */ 2418 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2419 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2420 2421 /* 2422 * There are some space in the leaf tree, no 2423 * need to account for leaf block credit 2424 * 2425 * bitmaps and block group descriptor blocks 2426 * and other metadata blocks still need to be 2427 * accounted. 2428 */ 2429 /* 1 bitmap, 1 block group descriptor */ 2430 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2431 return ret; 2432 } 2433 } 2434 2435 return ext4_chunk_trans_blocks(inode, nrblocks); 2436 } 2437 2438 /* 2439 * How many index/leaf blocks need to change/allocate to add @extents extents? 2440 * 2441 * If we add a single extent, then in the worse case, each tree level 2442 * index/leaf need to be changed in case of the tree split. 2443 * 2444 * If more extents are inserted, they could cause the whole tree split more 2445 * than once, but this is really rare. 2446 */ 2447 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2448 { 2449 int index; 2450 int depth; 2451 2452 /* If we are converting the inline data, only one is needed here. */ 2453 if (ext4_has_inline_data(inode)) 2454 return 1; 2455 2456 depth = ext_depth(inode); 2457 2458 if (extents <= 1) 2459 index = depth * 2; 2460 else 2461 index = depth * 3; 2462 2463 return index; 2464 } 2465 2466 static inline int get_default_free_blocks_flags(struct inode *inode) 2467 { 2468 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2469 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2470 else if (ext4_should_journal_data(inode)) 2471 return EXT4_FREE_BLOCKS_FORGET; 2472 return 0; 2473 } 2474 2475 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2476 struct ext4_extent *ex, 2477 long long *partial_cluster, 2478 ext4_lblk_t from, ext4_lblk_t to) 2479 { 2480 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2481 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2482 ext4_fsblk_t pblk; 2483 int flags = get_default_free_blocks_flags(inode); 2484 2485 /* 2486 * For bigalloc file systems, we never free a partial cluster 2487 * at the beginning of the extent. Instead, we make a note 2488 * that we tried freeing the cluster, and check to see if we 2489 * need to free it on a subsequent call to ext4_remove_blocks, 2490 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. 2491 */ 2492 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2493 2494 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2495 /* 2496 * If we have a partial cluster, and it's different from the 2497 * cluster of the last block, we need to explicitly free the 2498 * partial cluster here. 2499 */ 2500 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2501 if (*partial_cluster > 0 && 2502 *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { 2503 ext4_free_blocks(handle, inode, NULL, 2504 EXT4_C2B(sbi, *partial_cluster), 2505 sbi->s_cluster_ratio, flags); 2506 *partial_cluster = 0; 2507 } 2508 2509 #ifdef EXTENTS_STATS 2510 { 2511 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2512 spin_lock(&sbi->s_ext_stats_lock); 2513 sbi->s_ext_blocks += ee_len; 2514 sbi->s_ext_extents++; 2515 if (ee_len < sbi->s_ext_min) 2516 sbi->s_ext_min = ee_len; 2517 if (ee_len > sbi->s_ext_max) 2518 sbi->s_ext_max = ee_len; 2519 if (ext_depth(inode) > sbi->s_depth_max) 2520 sbi->s_depth_max = ext_depth(inode); 2521 spin_unlock(&sbi->s_ext_stats_lock); 2522 } 2523 #endif 2524 if (from >= le32_to_cpu(ex->ee_block) 2525 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2526 /* tail removal */ 2527 ext4_lblk_t num; 2528 long long first_cluster; 2529 2530 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2531 pblk = ext4_ext_pblock(ex) + ee_len - num; 2532 /* 2533 * Usually we want to free partial cluster at the end of the 2534 * extent, except for the situation when the cluster is still 2535 * used by any other extent (partial_cluster is negative). 2536 */ 2537 if (*partial_cluster < 0 && 2538 *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1)) 2539 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2540 2541 ext_debug("free last %u blocks starting %llu partial %lld\n", 2542 num, pblk, *partial_cluster); 2543 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2544 /* 2545 * If the block range to be freed didn't start at the 2546 * beginning of a cluster, and we removed the entire 2547 * extent and the cluster is not used by any other extent, 2548 * save the partial cluster here, since we might need to 2549 * delete if we determine that the truncate or punch hole 2550 * operation has removed all of the blocks in the cluster. 2551 * If that cluster is used by another extent, preserve its 2552 * negative value so it isn't freed later on. 2553 * 2554 * If the whole extent wasn't freed, we've reached the 2555 * start of the truncated/punched region and have finished 2556 * removing blocks. If there's a partial cluster here it's 2557 * shared with the remainder of the extent and is no longer 2558 * a candidate for removal. 2559 */ 2560 if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) { 2561 first_cluster = (long long) EXT4_B2C(sbi, pblk); 2562 if (first_cluster != -*partial_cluster) 2563 *partial_cluster = first_cluster; 2564 } else { 2565 *partial_cluster = 0; 2566 } 2567 } else 2568 ext4_error(sbi->s_sb, "strange request: removal(2) " 2569 "%u-%u from %u:%u\n", 2570 from, to, le32_to_cpu(ex->ee_block), ee_len); 2571 return 0; 2572 } 2573 2574 2575 /* 2576 * ext4_ext_rm_leaf() Removes the extents associated with the 2577 * blocks appearing between "start" and "end". Both "start" 2578 * and "end" must appear in the same extent or EIO is returned. 2579 * 2580 * @handle: The journal handle 2581 * @inode: The files inode 2582 * @path: The path to the leaf 2583 * @partial_cluster: The cluster which we'll have to free if all extents 2584 * has been released from it. However, if this value is 2585 * negative, it's a cluster just to the right of the 2586 * punched region and it must not be freed. 2587 * @start: The first block to remove 2588 * @end: The last block to remove 2589 */ 2590 static int 2591 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2592 struct ext4_ext_path *path, 2593 long long *partial_cluster, 2594 ext4_lblk_t start, ext4_lblk_t end) 2595 { 2596 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2597 int err = 0, correct_index = 0; 2598 int depth = ext_depth(inode), credits; 2599 struct ext4_extent_header *eh; 2600 ext4_lblk_t a, b; 2601 unsigned num; 2602 ext4_lblk_t ex_ee_block; 2603 unsigned short ex_ee_len; 2604 unsigned unwritten = 0; 2605 struct ext4_extent *ex; 2606 ext4_fsblk_t pblk; 2607 2608 /* the header must be checked already in ext4_ext_remove_space() */ 2609 ext_debug("truncate since %u in leaf to %u\n", start, end); 2610 if (!path[depth].p_hdr) 2611 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2612 eh = path[depth].p_hdr; 2613 if (unlikely(path[depth].p_hdr == NULL)) { 2614 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2615 return -EIO; 2616 } 2617 /* find where to start removing */ 2618 ex = path[depth].p_ext; 2619 if (!ex) 2620 ex = EXT_LAST_EXTENT(eh); 2621 2622 ex_ee_block = le32_to_cpu(ex->ee_block); 2623 ex_ee_len = ext4_ext_get_actual_len(ex); 2624 2625 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2626 2627 while (ex >= EXT_FIRST_EXTENT(eh) && 2628 ex_ee_block + ex_ee_len > start) { 2629 2630 if (ext4_ext_is_unwritten(ex)) 2631 unwritten = 1; 2632 else 2633 unwritten = 0; 2634 2635 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2636 unwritten, ex_ee_len); 2637 path[depth].p_ext = ex; 2638 2639 a = ex_ee_block > start ? ex_ee_block : start; 2640 b = ex_ee_block+ex_ee_len - 1 < end ? 2641 ex_ee_block+ex_ee_len - 1 : end; 2642 2643 ext_debug(" border %u:%u\n", a, b); 2644 2645 /* If this extent is beyond the end of the hole, skip it */ 2646 if (end < ex_ee_block) { 2647 /* 2648 * We're going to skip this extent and move to another, 2649 * so note that its first cluster is in use to avoid 2650 * freeing it when removing blocks. Eventually, the 2651 * right edge of the truncated/punched region will 2652 * be just to the left. 2653 */ 2654 if (sbi->s_cluster_ratio > 1) { 2655 pblk = ext4_ext_pblock(ex); 2656 *partial_cluster = 2657 -(long long) EXT4_B2C(sbi, pblk); 2658 } 2659 ex--; 2660 ex_ee_block = le32_to_cpu(ex->ee_block); 2661 ex_ee_len = ext4_ext_get_actual_len(ex); 2662 continue; 2663 } else if (b != ex_ee_block + ex_ee_len - 1) { 2664 EXT4_ERROR_INODE(inode, 2665 "can not handle truncate %u:%u " 2666 "on extent %u:%u", 2667 start, end, ex_ee_block, 2668 ex_ee_block + ex_ee_len - 1); 2669 err = -EIO; 2670 goto out; 2671 } else if (a != ex_ee_block) { 2672 /* remove tail of the extent */ 2673 num = a - ex_ee_block; 2674 } else { 2675 /* remove whole extent: excellent! */ 2676 num = 0; 2677 } 2678 /* 2679 * 3 for leaf, sb, and inode plus 2 (bmap and group 2680 * descriptor) for each block group; assume two block 2681 * groups plus ex_ee_len/blocks_per_block_group for 2682 * the worst case 2683 */ 2684 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2685 if (ex == EXT_FIRST_EXTENT(eh)) { 2686 correct_index = 1; 2687 credits += (ext_depth(inode)) + 1; 2688 } 2689 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2690 2691 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2692 if (err) 2693 goto out; 2694 2695 err = ext4_ext_get_access(handle, inode, path + depth); 2696 if (err) 2697 goto out; 2698 2699 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2700 a, b); 2701 if (err) 2702 goto out; 2703 2704 if (num == 0) 2705 /* this extent is removed; mark slot entirely unused */ 2706 ext4_ext_store_pblock(ex, 0); 2707 2708 ex->ee_len = cpu_to_le16(num); 2709 /* 2710 * Do not mark unwritten if all the blocks in the 2711 * extent have been removed. 2712 */ 2713 if (unwritten && num) 2714 ext4_ext_mark_unwritten(ex); 2715 /* 2716 * If the extent was completely released, 2717 * we need to remove it from the leaf 2718 */ 2719 if (num == 0) { 2720 if (end != EXT_MAX_BLOCKS - 1) { 2721 /* 2722 * For hole punching, we need to scoot all the 2723 * extents up when an extent is removed so that 2724 * we dont have blank extents in the middle 2725 */ 2726 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2727 sizeof(struct ext4_extent)); 2728 2729 /* Now get rid of the one at the end */ 2730 memset(EXT_LAST_EXTENT(eh), 0, 2731 sizeof(struct ext4_extent)); 2732 } 2733 le16_add_cpu(&eh->eh_entries, -1); 2734 } 2735 2736 err = ext4_ext_dirty(handle, inode, path + depth); 2737 if (err) 2738 goto out; 2739 2740 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2741 ext4_ext_pblock(ex)); 2742 ex--; 2743 ex_ee_block = le32_to_cpu(ex->ee_block); 2744 ex_ee_len = ext4_ext_get_actual_len(ex); 2745 } 2746 2747 if (correct_index && eh->eh_entries) 2748 err = ext4_ext_correct_indexes(handle, inode, path); 2749 2750 /* 2751 * If there's a partial cluster and at least one extent remains in 2752 * the leaf, free the partial cluster if it isn't shared with the 2753 * current extent. If it is shared with the current extent 2754 * we zero partial_cluster because we've reached the start of the 2755 * truncated/punched region and we're done removing blocks. 2756 */ 2757 if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) { 2758 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2759 if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { 2760 ext4_free_blocks(handle, inode, NULL, 2761 EXT4_C2B(sbi, *partial_cluster), 2762 sbi->s_cluster_ratio, 2763 get_default_free_blocks_flags(inode)); 2764 } 2765 *partial_cluster = 0; 2766 } 2767 2768 /* if this leaf is free, then we should 2769 * remove it from index block above */ 2770 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2771 err = ext4_ext_rm_idx(handle, inode, path, depth); 2772 2773 out: 2774 return err; 2775 } 2776 2777 /* 2778 * ext4_ext_more_to_rm: 2779 * returns 1 if current index has to be freed (even partial) 2780 */ 2781 static int 2782 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2783 { 2784 BUG_ON(path->p_idx == NULL); 2785 2786 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2787 return 0; 2788 2789 /* 2790 * if truncate on deeper level happened, it wasn't partial, 2791 * so we have to consider current index for truncation 2792 */ 2793 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2794 return 0; 2795 return 1; 2796 } 2797 2798 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2799 ext4_lblk_t end) 2800 { 2801 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2802 int depth = ext_depth(inode); 2803 struct ext4_ext_path *path = NULL; 2804 long long partial_cluster = 0; 2805 handle_t *handle; 2806 int i = 0, err = 0; 2807 2808 ext_debug("truncate since %u to %u\n", start, end); 2809 2810 /* probably first extent we're gonna free will be last in block */ 2811 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2812 if (IS_ERR(handle)) 2813 return PTR_ERR(handle); 2814 2815 again: 2816 trace_ext4_ext_remove_space(inode, start, end, depth); 2817 2818 /* 2819 * Check if we are removing extents inside the extent tree. If that 2820 * is the case, we are going to punch a hole inside the extent tree 2821 * so we have to check whether we need to split the extent covering 2822 * the last block to remove so we can easily remove the part of it 2823 * in ext4_ext_rm_leaf(). 2824 */ 2825 if (end < EXT_MAX_BLOCKS - 1) { 2826 struct ext4_extent *ex; 2827 ext4_lblk_t ee_block, ex_end, lblk; 2828 ext4_fsblk_t pblk; 2829 2830 /* find extent for or closest extent to this block */ 2831 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2832 if (IS_ERR(path)) { 2833 ext4_journal_stop(handle); 2834 return PTR_ERR(path); 2835 } 2836 depth = ext_depth(inode); 2837 /* Leaf not may not exist only if inode has no blocks at all */ 2838 ex = path[depth].p_ext; 2839 if (!ex) { 2840 if (depth) { 2841 EXT4_ERROR_INODE(inode, 2842 "path[%d].p_hdr == NULL", 2843 depth); 2844 err = -EIO; 2845 } 2846 goto out; 2847 } 2848 2849 ee_block = le32_to_cpu(ex->ee_block); 2850 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1; 2851 2852 /* 2853 * See if the last block is inside the extent, if so split 2854 * the extent at 'end' block so we can easily remove the 2855 * tail of the first part of the split extent in 2856 * ext4_ext_rm_leaf(). 2857 */ 2858 if (end >= ee_block && end < ex_end) { 2859 2860 /* 2861 * If we're going to split the extent, note that 2862 * the cluster containing the block after 'end' is 2863 * in use to avoid freeing it when removing blocks. 2864 */ 2865 if (sbi->s_cluster_ratio > 1) { 2866 pblk = ext4_ext_pblock(ex) + end - ee_block + 2; 2867 partial_cluster = 2868 -(long long) EXT4_B2C(sbi, pblk); 2869 } 2870 2871 /* 2872 * Split the extent in two so that 'end' is the last 2873 * block in the first new extent. Also we should not 2874 * fail removing space due to ENOSPC so try to use 2875 * reserved block if that happens. 2876 */ 2877 err = ext4_force_split_extent_at(handle, inode, &path, 2878 end + 1, 1); 2879 if (err < 0) 2880 goto out; 2881 2882 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end) { 2883 /* 2884 * If there's an extent to the right its first cluster 2885 * contains the immediate right boundary of the 2886 * truncated/punched region. Set partial_cluster to 2887 * its negative value so it won't be freed if shared 2888 * with the current extent. The end < ee_block case 2889 * is handled in ext4_ext_rm_leaf(). 2890 */ 2891 lblk = ex_end + 1; 2892 err = ext4_ext_search_right(inode, path, &lblk, &pblk, 2893 &ex); 2894 if (err) 2895 goto out; 2896 if (pblk) 2897 partial_cluster = 2898 -(long long) EXT4_B2C(sbi, pblk); 2899 } 2900 } 2901 /* 2902 * We start scanning from right side, freeing all the blocks 2903 * after i_size and walking into the tree depth-wise. 2904 */ 2905 depth = ext_depth(inode); 2906 if (path) { 2907 int k = i = depth; 2908 while (--k > 0) 2909 path[k].p_block = 2910 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2911 } else { 2912 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2913 GFP_NOFS); 2914 if (path == NULL) { 2915 ext4_journal_stop(handle); 2916 return -ENOMEM; 2917 } 2918 path[0].p_maxdepth = path[0].p_depth = depth; 2919 path[0].p_hdr = ext_inode_hdr(inode); 2920 i = 0; 2921 2922 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2923 err = -EIO; 2924 goto out; 2925 } 2926 } 2927 err = 0; 2928 2929 while (i >= 0 && err == 0) { 2930 if (i == depth) { 2931 /* this is leaf block */ 2932 err = ext4_ext_rm_leaf(handle, inode, path, 2933 &partial_cluster, start, 2934 end); 2935 /* root level has p_bh == NULL, brelse() eats this */ 2936 brelse(path[i].p_bh); 2937 path[i].p_bh = NULL; 2938 i--; 2939 continue; 2940 } 2941 2942 /* this is index block */ 2943 if (!path[i].p_hdr) { 2944 ext_debug("initialize header\n"); 2945 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2946 } 2947 2948 if (!path[i].p_idx) { 2949 /* this level hasn't been touched yet */ 2950 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2951 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2952 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2953 path[i].p_hdr, 2954 le16_to_cpu(path[i].p_hdr->eh_entries)); 2955 } else { 2956 /* we were already here, see at next index */ 2957 path[i].p_idx--; 2958 } 2959 2960 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2961 i, EXT_FIRST_INDEX(path[i].p_hdr), 2962 path[i].p_idx); 2963 if (ext4_ext_more_to_rm(path + i)) { 2964 struct buffer_head *bh; 2965 /* go to the next level */ 2966 ext_debug("move to level %d (block %llu)\n", 2967 i + 1, ext4_idx_pblock(path[i].p_idx)); 2968 memset(path + i + 1, 0, sizeof(*path)); 2969 bh = read_extent_tree_block(inode, 2970 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 2971 EXT4_EX_NOCACHE); 2972 if (IS_ERR(bh)) { 2973 /* should we reset i_size? */ 2974 err = PTR_ERR(bh); 2975 break; 2976 } 2977 /* Yield here to deal with large extent trees. 2978 * Should be a no-op if we did IO above. */ 2979 cond_resched(); 2980 if (WARN_ON(i + 1 > depth)) { 2981 err = -EIO; 2982 break; 2983 } 2984 path[i + 1].p_bh = bh; 2985 2986 /* save actual number of indexes since this 2987 * number is changed at the next iteration */ 2988 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2989 i++; 2990 } else { 2991 /* we finished processing this index, go up */ 2992 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2993 /* index is empty, remove it; 2994 * handle must be already prepared by the 2995 * truncatei_leaf() */ 2996 err = ext4_ext_rm_idx(handle, inode, path, i); 2997 } 2998 /* root level has p_bh == NULL, brelse() eats this */ 2999 brelse(path[i].p_bh); 3000 path[i].p_bh = NULL; 3001 i--; 3002 ext_debug("return to level %d\n", i); 3003 } 3004 } 3005 3006 trace_ext4_ext_remove_space_done(inode, start, end, depth, 3007 partial_cluster, path->p_hdr->eh_entries); 3008 3009 /* 3010 * If we still have something in the partial cluster and we have removed 3011 * even the first extent, then we should free the blocks in the partial 3012 * cluster as well. (This code will only run when there are no leaves 3013 * to the immediate left of the truncated/punched region.) 3014 */ 3015 if (partial_cluster > 0 && err == 0) { 3016 /* don't zero partial_cluster since it's not used afterwards */ 3017 ext4_free_blocks(handle, inode, NULL, 3018 EXT4_C2B(sbi, partial_cluster), 3019 sbi->s_cluster_ratio, 3020 get_default_free_blocks_flags(inode)); 3021 } 3022 3023 /* TODO: flexible tree reduction should be here */ 3024 if (path->p_hdr->eh_entries == 0) { 3025 /* 3026 * truncate to zero freed all the tree, 3027 * so we need to correct eh_depth 3028 */ 3029 err = ext4_ext_get_access(handle, inode, path); 3030 if (err == 0) { 3031 ext_inode_hdr(inode)->eh_depth = 0; 3032 ext_inode_hdr(inode)->eh_max = 3033 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3034 err = ext4_ext_dirty(handle, inode, path); 3035 } 3036 } 3037 out: 3038 ext4_ext_drop_refs(path); 3039 kfree(path); 3040 path = NULL; 3041 if (err == -EAGAIN) 3042 goto again; 3043 ext4_journal_stop(handle); 3044 3045 return err; 3046 } 3047 3048 /* 3049 * called at mount time 3050 */ 3051 void ext4_ext_init(struct super_block *sb) 3052 { 3053 /* 3054 * possible initialization would be here 3055 */ 3056 3057 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 3058 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3059 printk(KERN_INFO "EXT4-fs: file extents enabled" 3060 #ifdef AGGRESSIVE_TEST 3061 ", aggressive tests" 3062 #endif 3063 #ifdef CHECK_BINSEARCH 3064 ", check binsearch" 3065 #endif 3066 #ifdef EXTENTS_STATS 3067 ", stats" 3068 #endif 3069 "\n"); 3070 #endif 3071 #ifdef EXTENTS_STATS 3072 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3073 EXT4_SB(sb)->s_ext_min = 1 << 30; 3074 EXT4_SB(sb)->s_ext_max = 0; 3075 #endif 3076 } 3077 } 3078 3079 /* 3080 * called at umount time 3081 */ 3082 void ext4_ext_release(struct super_block *sb) 3083 { 3084 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3085 return; 3086 3087 #ifdef EXTENTS_STATS 3088 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3089 struct ext4_sb_info *sbi = EXT4_SB(sb); 3090 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3091 sbi->s_ext_blocks, sbi->s_ext_extents, 3092 sbi->s_ext_blocks / sbi->s_ext_extents); 3093 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3094 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3095 } 3096 #endif 3097 } 3098 3099 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3100 { 3101 ext4_lblk_t ee_block; 3102 ext4_fsblk_t ee_pblock; 3103 unsigned int ee_len; 3104 3105 ee_block = le32_to_cpu(ex->ee_block); 3106 ee_len = ext4_ext_get_actual_len(ex); 3107 ee_pblock = ext4_ext_pblock(ex); 3108 3109 if (ee_len == 0) 3110 return 0; 3111 3112 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3113 EXTENT_STATUS_WRITTEN); 3114 } 3115 3116 /* FIXME!! we need to try to merge to left or right after zero-out */ 3117 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3118 { 3119 ext4_fsblk_t ee_pblock; 3120 unsigned int ee_len; 3121 int ret; 3122 3123 ee_len = ext4_ext_get_actual_len(ex); 3124 ee_pblock = ext4_ext_pblock(ex); 3125 3126 if (ext4_encrypted_inode(inode)) 3127 return ext4_encrypted_zeroout(inode, ex); 3128 3129 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 3130 if (ret > 0) 3131 ret = 0; 3132 3133 return ret; 3134 } 3135 3136 /* 3137 * ext4_split_extent_at() splits an extent at given block. 3138 * 3139 * @handle: the journal handle 3140 * @inode: the file inode 3141 * @path: the path to the extent 3142 * @split: the logical block where the extent is splitted. 3143 * @split_flags: indicates if the extent could be zeroout if split fails, and 3144 * the states(init or unwritten) of new extents. 3145 * @flags: flags used to insert new extent to extent tree. 3146 * 3147 * 3148 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3149 * of which are deterimined by split_flag. 3150 * 3151 * There are two cases: 3152 * a> the extent are splitted into two extent. 3153 * b> split is not needed, and just mark the extent. 3154 * 3155 * return 0 on success. 3156 */ 3157 static int ext4_split_extent_at(handle_t *handle, 3158 struct inode *inode, 3159 struct ext4_ext_path **ppath, 3160 ext4_lblk_t split, 3161 int split_flag, 3162 int flags) 3163 { 3164 struct ext4_ext_path *path = *ppath; 3165 ext4_fsblk_t newblock; 3166 ext4_lblk_t ee_block; 3167 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3168 struct ext4_extent *ex2 = NULL; 3169 unsigned int ee_len, depth; 3170 int err = 0; 3171 3172 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3173 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3174 3175 ext_debug("ext4_split_extents_at: inode %lu, logical" 3176 "block %llu\n", inode->i_ino, (unsigned long long)split); 3177 3178 ext4_ext_show_leaf(inode, path); 3179 3180 depth = ext_depth(inode); 3181 ex = path[depth].p_ext; 3182 ee_block = le32_to_cpu(ex->ee_block); 3183 ee_len = ext4_ext_get_actual_len(ex); 3184 newblock = split - ee_block + ext4_ext_pblock(ex); 3185 3186 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3187 BUG_ON(!ext4_ext_is_unwritten(ex) && 3188 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3189 EXT4_EXT_MARK_UNWRIT1 | 3190 EXT4_EXT_MARK_UNWRIT2)); 3191 3192 err = ext4_ext_get_access(handle, inode, path + depth); 3193 if (err) 3194 goto out; 3195 3196 if (split == ee_block) { 3197 /* 3198 * case b: block @split is the block that the extent begins with 3199 * then we just change the state of the extent, and splitting 3200 * is not needed. 3201 */ 3202 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3203 ext4_ext_mark_unwritten(ex); 3204 else 3205 ext4_ext_mark_initialized(ex); 3206 3207 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3208 ext4_ext_try_to_merge(handle, inode, path, ex); 3209 3210 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3211 goto out; 3212 } 3213 3214 /* case a */ 3215 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3216 ex->ee_len = cpu_to_le16(split - ee_block); 3217 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3218 ext4_ext_mark_unwritten(ex); 3219 3220 /* 3221 * path may lead to new leaf, not to original leaf any more 3222 * after ext4_ext_insert_extent() returns, 3223 */ 3224 err = ext4_ext_dirty(handle, inode, path + depth); 3225 if (err) 3226 goto fix_extent_len; 3227 3228 ex2 = &newex; 3229 ex2->ee_block = cpu_to_le32(split); 3230 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3231 ext4_ext_store_pblock(ex2, newblock); 3232 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3233 ext4_ext_mark_unwritten(ex2); 3234 3235 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags); 3236 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3237 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3238 if (split_flag & EXT4_EXT_DATA_VALID1) { 3239 err = ext4_ext_zeroout(inode, ex2); 3240 zero_ex.ee_block = ex2->ee_block; 3241 zero_ex.ee_len = cpu_to_le16( 3242 ext4_ext_get_actual_len(ex2)); 3243 ext4_ext_store_pblock(&zero_ex, 3244 ext4_ext_pblock(ex2)); 3245 } else { 3246 err = ext4_ext_zeroout(inode, ex); 3247 zero_ex.ee_block = ex->ee_block; 3248 zero_ex.ee_len = cpu_to_le16( 3249 ext4_ext_get_actual_len(ex)); 3250 ext4_ext_store_pblock(&zero_ex, 3251 ext4_ext_pblock(ex)); 3252 } 3253 } else { 3254 err = ext4_ext_zeroout(inode, &orig_ex); 3255 zero_ex.ee_block = orig_ex.ee_block; 3256 zero_ex.ee_len = cpu_to_le16( 3257 ext4_ext_get_actual_len(&orig_ex)); 3258 ext4_ext_store_pblock(&zero_ex, 3259 ext4_ext_pblock(&orig_ex)); 3260 } 3261 3262 if (err) 3263 goto fix_extent_len; 3264 /* update the extent length and mark as initialized */ 3265 ex->ee_len = cpu_to_le16(ee_len); 3266 ext4_ext_try_to_merge(handle, inode, path, ex); 3267 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3268 if (err) 3269 goto fix_extent_len; 3270 3271 /* update extent status tree */ 3272 err = ext4_zeroout_es(inode, &zero_ex); 3273 3274 goto out; 3275 } else if (err) 3276 goto fix_extent_len; 3277 3278 out: 3279 ext4_ext_show_leaf(inode, path); 3280 return err; 3281 3282 fix_extent_len: 3283 ex->ee_len = orig_ex.ee_len; 3284 ext4_ext_dirty(handle, inode, path + path->p_depth); 3285 return err; 3286 } 3287 3288 /* 3289 * ext4_split_extents() splits an extent and mark extent which is covered 3290 * by @map as split_flags indicates 3291 * 3292 * It may result in splitting the extent into multiple extents (up to three) 3293 * There are three possibilities: 3294 * a> There is no split required 3295 * b> Splits in two extents: Split is happening at either end of the extent 3296 * c> Splits in three extents: Somone is splitting in middle of the extent 3297 * 3298 */ 3299 static int ext4_split_extent(handle_t *handle, 3300 struct inode *inode, 3301 struct ext4_ext_path **ppath, 3302 struct ext4_map_blocks *map, 3303 int split_flag, 3304 int flags) 3305 { 3306 struct ext4_ext_path *path = *ppath; 3307 ext4_lblk_t ee_block; 3308 struct ext4_extent *ex; 3309 unsigned int ee_len, depth; 3310 int err = 0; 3311 int unwritten; 3312 int split_flag1, flags1; 3313 int allocated = map->m_len; 3314 3315 depth = ext_depth(inode); 3316 ex = path[depth].p_ext; 3317 ee_block = le32_to_cpu(ex->ee_block); 3318 ee_len = ext4_ext_get_actual_len(ex); 3319 unwritten = ext4_ext_is_unwritten(ex); 3320 3321 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3322 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3323 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3324 if (unwritten) 3325 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3326 EXT4_EXT_MARK_UNWRIT2; 3327 if (split_flag & EXT4_EXT_DATA_VALID2) 3328 split_flag1 |= EXT4_EXT_DATA_VALID1; 3329 err = ext4_split_extent_at(handle, inode, ppath, 3330 map->m_lblk + map->m_len, split_flag1, flags1); 3331 if (err) 3332 goto out; 3333 } else { 3334 allocated = ee_len - (map->m_lblk - ee_block); 3335 } 3336 /* 3337 * Update path is required because previous ext4_split_extent_at() may 3338 * result in split of original leaf or extent zeroout. 3339 */ 3340 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3341 if (IS_ERR(path)) 3342 return PTR_ERR(path); 3343 depth = ext_depth(inode); 3344 ex = path[depth].p_ext; 3345 if (!ex) { 3346 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3347 (unsigned long) map->m_lblk); 3348 return -EIO; 3349 } 3350 unwritten = ext4_ext_is_unwritten(ex); 3351 split_flag1 = 0; 3352 3353 if (map->m_lblk >= ee_block) { 3354 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3355 if (unwritten) { 3356 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3357 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3358 EXT4_EXT_MARK_UNWRIT2); 3359 } 3360 err = ext4_split_extent_at(handle, inode, ppath, 3361 map->m_lblk, split_flag1, flags); 3362 if (err) 3363 goto out; 3364 } 3365 3366 ext4_ext_show_leaf(inode, path); 3367 out: 3368 return err ? err : allocated; 3369 } 3370 3371 /* 3372 * This function is called by ext4_ext_map_blocks() if someone tries to write 3373 * to an unwritten extent. It may result in splitting the unwritten 3374 * extent into multiple extents (up to three - one initialized and two 3375 * unwritten). 3376 * There are three possibilities: 3377 * a> There is no split required: Entire extent should be initialized 3378 * b> Splits in two extents: Write is happening at either end of the extent 3379 * c> Splits in three extents: Somone is writing in middle of the extent 3380 * 3381 * Pre-conditions: 3382 * - The extent pointed to by 'path' is unwritten. 3383 * - The extent pointed to by 'path' contains a superset 3384 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3385 * 3386 * Post-conditions on success: 3387 * - the returned value is the number of blocks beyond map->l_lblk 3388 * that are allocated and initialized. 3389 * It is guaranteed to be >= map->m_len. 3390 */ 3391 static int ext4_ext_convert_to_initialized(handle_t *handle, 3392 struct inode *inode, 3393 struct ext4_map_blocks *map, 3394 struct ext4_ext_path **ppath, 3395 int flags) 3396 { 3397 struct ext4_ext_path *path = *ppath; 3398 struct ext4_sb_info *sbi; 3399 struct ext4_extent_header *eh; 3400 struct ext4_map_blocks split_map; 3401 struct ext4_extent zero_ex; 3402 struct ext4_extent *ex, *abut_ex; 3403 ext4_lblk_t ee_block, eof_block; 3404 unsigned int ee_len, depth, map_len = map->m_len; 3405 int allocated = 0, max_zeroout = 0; 3406 int err = 0; 3407 int split_flag = 0; 3408 3409 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3410 "block %llu, max_blocks %u\n", inode->i_ino, 3411 (unsigned long long)map->m_lblk, map_len); 3412 3413 sbi = EXT4_SB(inode->i_sb); 3414 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3415 inode->i_sb->s_blocksize_bits; 3416 if (eof_block < map->m_lblk + map_len) 3417 eof_block = map->m_lblk + map_len; 3418 3419 depth = ext_depth(inode); 3420 eh = path[depth].p_hdr; 3421 ex = path[depth].p_ext; 3422 ee_block = le32_to_cpu(ex->ee_block); 3423 ee_len = ext4_ext_get_actual_len(ex); 3424 zero_ex.ee_len = 0; 3425 3426 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3427 3428 /* Pre-conditions */ 3429 BUG_ON(!ext4_ext_is_unwritten(ex)); 3430 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3431 3432 /* 3433 * Attempt to transfer newly initialized blocks from the currently 3434 * unwritten extent to its neighbor. This is much cheaper 3435 * than an insertion followed by a merge as those involve costly 3436 * memmove() calls. Transferring to the left is the common case in 3437 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3438 * followed by append writes. 3439 * 3440 * Limitations of the current logic: 3441 * - L1: we do not deal with writes covering the whole extent. 3442 * This would require removing the extent if the transfer 3443 * is possible. 3444 * - L2: we only attempt to merge with an extent stored in the 3445 * same extent tree node. 3446 */ 3447 if ((map->m_lblk == ee_block) && 3448 /* See if we can merge left */ 3449 (map_len < ee_len) && /*L1*/ 3450 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3451 ext4_lblk_t prev_lblk; 3452 ext4_fsblk_t prev_pblk, ee_pblk; 3453 unsigned int prev_len; 3454 3455 abut_ex = ex - 1; 3456 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3457 prev_len = ext4_ext_get_actual_len(abut_ex); 3458 prev_pblk = ext4_ext_pblock(abut_ex); 3459 ee_pblk = ext4_ext_pblock(ex); 3460 3461 /* 3462 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3463 * upon those conditions: 3464 * - C1: abut_ex is initialized, 3465 * - C2: abut_ex is logically abutting ex, 3466 * - C3: abut_ex is physically abutting ex, 3467 * - C4: abut_ex can receive the additional blocks without 3468 * overflowing the (initialized) length limit. 3469 */ 3470 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3471 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3472 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3473 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3474 err = ext4_ext_get_access(handle, inode, path + depth); 3475 if (err) 3476 goto out; 3477 3478 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3479 map, ex, abut_ex); 3480 3481 /* Shift the start of ex by 'map_len' blocks */ 3482 ex->ee_block = cpu_to_le32(ee_block + map_len); 3483 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3484 ex->ee_len = cpu_to_le16(ee_len - map_len); 3485 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3486 3487 /* Extend abut_ex by 'map_len' blocks */ 3488 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3489 3490 /* Result: number of initialized blocks past m_lblk */ 3491 allocated = map_len; 3492 } 3493 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3494 (map_len < ee_len) && /*L1*/ 3495 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3496 /* See if we can merge right */ 3497 ext4_lblk_t next_lblk; 3498 ext4_fsblk_t next_pblk, ee_pblk; 3499 unsigned int next_len; 3500 3501 abut_ex = ex + 1; 3502 next_lblk = le32_to_cpu(abut_ex->ee_block); 3503 next_len = ext4_ext_get_actual_len(abut_ex); 3504 next_pblk = ext4_ext_pblock(abut_ex); 3505 ee_pblk = ext4_ext_pblock(ex); 3506 3507 /* 3508 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3509 * upon those conditions: 3510 * - C1: abut_ex is initialized, 3511 * - C2: abut_ex is logically abutting ex, 3512 * - C3: abut_ex is physically abutting ex, 3513 * - C4: abut_ex can receive the additional blocks without 3514 * overflowing the (initialized) length limit. 3515 */ 3516 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3517 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3518 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3519 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3520 err = ext4_ext_get_access(handle, inode, path + depth); 3521 if (err) 3522 goto out; 3523 3524 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3525 map, ex, abut_ex); 3526 3527 /* Shift the start of abut_ex by 'map_len' blocks */ 3528 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3529 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3530 ex->ee_len = cpu_to_le16(ee_len - map_len); 3531 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3532 3533 /* Extend abut_ex by 'map_len' blocks */ 3534 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3535 3536 /* Result: number of initialized blocks past m_lblk */ 3537 allocated = map_len; 3538 } 3539 } 3540 if (allocated) { 3541 /* Mark the block containing both extents as dirty */ 3542 ext4_ext_dirty(handle, inode, path + depth); 3543 3544 /* Update path to point to the right extent */ 3545 path[depth].p_ext = abut_ex; 3546 goto out; 3547 } else 3548 allocated = ee_len - (map->m_lblk - ee_block); 3549 3550 WARN_ON(map->m_lblk < ee_block); 3551 /* 3552 * It is safe to convert extent to initialized via explicit 3553 * zeroout only if extent is fully inside i_size or new_size. 3554 */ 3555 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3556 3557 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3558 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3559 (inode->i_sb->s_blocksize_bits - 10); 3560 3561 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3562 if (max_zeroout && (ee_len <= max_zeroout)) { 3563 err = ext4_ext_zeroout(inode, ex); 3564 if (err) 3565 goto out; 3566 zero_ex.ee_block = ex->ee_block; 3567 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)); 3568 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex)); 3569 3570 err = ext4_ext_get_access(handle, inode, path + depth); 3571 if (err) 3572 goto out; 3573 ext4_ext_mark_initialized(ex); 3574 ext4_ext_try_to_merge(handle, inode, path, ex); 3575 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3576 goto out; 3577 } 3578 3579 /* 3580 * four cases: 3581 * 1. split the extent into three extents. 3582 * 2. split the extent into two extents, zeroout the first half. 3583 * 3. split the extent into two extents, zeroout the second half. 3584 * 4. split the extent into two extents with out zeroout. 3585 */ 3586 split_map.m_lblk = map->m_lblk; 3587 split_map.m_len = map->m_len; 3588 3589 if (max_zeroout && (allocated > map->m_len)) { 3590 if (allocated <= max_zeroout) { 3591 /* case 3 */ 3592 zero_ex.ee_block = 3593 cpu_to_le32(map->m_lblk); 3594 zero_ex.ee_len = cpu_to_le16(allocated); 3595 ext4_ext_store_pblock(&zero_ex, 3596 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3597 err = ext4_ext_zeroout(inode, &zero_ex); 3598 if (err) 3599 goto out; 3600 split_map.m_lblk = map->m_lblk; 3601 split_map.m_len = allocated; 3602 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3603 /* case 2 */ 3604 if (map->m_lblk != ee_block) { 3605 zero_ex.ee_block = ex->ee_block; 3606 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3607 ee_block); 3608 ext4_ext_store_pblock(&zero_ex, 3609 ext4_ext_pblock(ex)); 3610 err = ext4_ext_zeroout(inode, &zero_ex); 3611 if (err) 3612 goto out; 3613 } 3614 3615 split_map.m_lblk = ee_block; 3616 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3617 allocated = map->m_len; 3618 } 3619 } 3620 3621 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag, 3622 flags); 3623 if (err > 0) 3624 err = 0; 3625 out: 3626 /* If we have gotten a failure, don't zero out status tree */ 3627 if (!err) 3628 err = ext4_zeroout_es(inode, &zero_ex); 3629 return err ? err : allocated; 3630 } 3631 3632 /* 3633 * This function is called by ext4_ext_map_blocks() from 3634 * ext4_get_blocks_dio_write() when DIO to write 3635 * to an unwritten extent. 3636 * 3637 * Writing to an unwritten extent may result in splitting the unwritten 3638 * extent into multiple initialized/unwritten extents (up to three) 3639 * There are three possibilities: 3640 * a> There is no split required: Entire extent should be unwritten 3641 * b> Splits in two extents: Write is happening at either end of the extent 3642 * c> Splits in three extents: Somone is writing in middle of the extent 3643 * 3644 * This works the same way in the case of initialized -> unwritten conversion. 3645 * 3646 * One of more index blocks maybe needed if the extent tree grow after 3647 * the unwritten extent split. To prevent ENOSPC occur at the IO 3648 * complete, we need to split the unwritten extent before DIO submit 3649 * the IO. The unwritten extent called at this time will be split 3650 * into three unwritten extent(at most). After IO complete, the part 3651 * being filled will be convert to initialized by the end_io callback function 3652 * via ext4_convert_unwritten_extents(). 3653 * 3654 * Returns the size of unwritten extent to be written on success. 3655 */ 3656 static int ext4_split_convert_extents(handle_t *handle, 3657 struct inode *inode, 3658 struct ext4_map_blocks *map, 3659 struct ext4_ext_path **ppath, 3660 int flags) 3661 { 3662 struct ext4_ext_path *path = *ppath; 3663 ext4_lblk_t eof_block; 3664 ext4_lblk_t ee_block; 3665 struct ext4_extent *ex; 3666 unsigned int ee_len; 3667 int split_flag = 0, depth; 3668 3669 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3670 __func__, inode->i_ino, 3671 (unsigned long long)map->m_lblk, map->m_len); 3672 3673 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3674 inode->i_sb->s_blocksize_bits; 3675 if (eof_block < map->m_lblk + map->m_len) 3676 eof_block = map->m_lblk + map->m_len; 3677 /* 3678 * It is safe to convert extent to initialized via explicit 3679 * zeroout only if extent is fully insde i_size or new_size. 3680 */ 3681 depth = ext_depth(inode); 3682 ex = path[depth].p_ext; 3683 ee_block = le32_to_cpu(ex->ee_block); 3684 ee_len = ext4_ext_get_actual_len(ex); 3685 3686 /* Convert to unwritten */ 3687 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3688 split_flag |= EXT4_EXT_DATA_VALID1; 3689 /* Convert to initialized */ 3690 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3691 split_flag |= ee_block + ee_len <= eof_block ? 3692 EXT4_EXT_MAY_ZEROOUT : 0; 3693 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3694 } 3695 flags |= EXT4_GET_BLOCKS_PRE_IO; 3696 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags); 3697 } 3698 3699 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3700 struct inode *inode, 3701 struct ext4_map_blocks *map, 3702 struct ext4_ext_path **ppath) 3703 { 3704 struct ext4_ext_path *path = *ppath; 3705 struct ext4_extent *ex; 3706 ext4_lblk_t ee_block; 3707 unsigned int ee_len; 3708 int depth; 3709 int err = 0; 3710 3711 depth = ext_depth(inode); 3712 ex = path[depth].p_ext; 3713 ee_block = le32_to_cpu(ex->ee_block); 3714 ee_len = ext4_ext_get_actual_len(ex); 3715 3716 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3717 "block %llu, max_blocks %u\n", inode->i_ino, 3718 (unsigned long long)ee_block, ee_len); 3719 3720 /* If extent is larger than requested it is a clear sign that we still 3721 * have some extent state machine issues left. So extent_split is still 3722 * required. 3723 * TODO: Once all related issues will be fixed this situation should be 3724 * illegal. 3725 */ 3726 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3727 #ifdef EXT4_DEBUG 3728 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3729 " len %u; IO logical block %llu, len %u\n", 3730 inode->i_ino, (unsigned long long)ee_block, ee_len, 3731 (unsigned long long)map->m_lblk, map->m_len); 3732 #endif 3733 err = ext4_split_convert_extents(handle, inode, map, ppath, 3734 EXT4_GET_BLOCKS_CONVERT); 3735 if (err < 0) 3736 return err; 3737 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3738 if (IS_ERR(path)) 3739 return PTR_ERR(path); 3740 depth = ext_depth(inode); 3741 ex = path[depth].p_ext; 3742 } 3743 3744 err = ext4_ext_get_access(handle, inode, path + depth); 3745 if (err) 3746 goto out; 3747 /* first mark the extent as initialized */ 3748 ext4_ext_mark_initialized(ex); 3749 3750 /* note: ext4_ext_correct_indexes() isn't needed here because 3751 * borders are not changed 3752 */ 3753 ext4_ext_try_to_merge(handle, inode, path, ex); 3754 3755 /* Mark modified extent as dirty */ 3756 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3757 out: 3758 ext4_ext_show_leaf(inode, path); 3759 return err; 3760 } 3761 3762 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3763 sector_t block, int count) 3764 { 3765 int i; 3766 for (i = 0; i < count; i++) 3767 unmap_underlying_metadata(bdev, block + i); 3768 } 3769 3770 /* 3771 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3772 */ 3773 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3774 ext4_lblk_t lblk, 3775 struct ext4_ext_path *path, 3776 unsigned int len) 3777 { 3778 int i, depth; 3779 struct ext4_extent_header *eh; 3780 struct ext4_extent *last_ex; 3781 3782 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3783 return 0; 3784 3785 depth = ext_depth(inode); 3786 eh = path[depth].p_hdr; 3787 3788 /* 3789 * We're going to remove EOFBLOCKS_FL entirely in future so we 3790 * do not care for this case anymore. Simply remove the flag 3791 * if there are no extents. 3792 */ 3793 if (unlikely(!eh->eh_entries)) 3794 goto out; 3795 last_ex = EXT_LAST_EXTENT(eh); 3796 /* 3797 * We should clear the EOFBLOCKS_FL flag if we are writing the 3798 * last block in the last extent in the file. We test this by 3799 * first checking to see if the caller to 3800 * ext4_ext_get_blocks() was interested in the last block (or 3801 * a block beyond the last block) in the current extent. If 3802 * this turns out to be false, we can bail out from this 3803 * function immediately. 3804 */ 3805 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3806 ext4_ext_get_actual_len(last_ex)) 3807 return 0; 3808 /* 3809 * If the caller does appear to be planning to write at or 3810 * beyond the end of the current extent, we then test to see 3811 * if the current extent is the last extent in the file, by 3812 * checking to make sure it was reached via the rightmost node 3813 * at each level of the tree. 3814 */ 3815 for (i = depth-1; i >= 0; i--) 3816 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3817 return 0; 3818 out: 3819 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3820 return ext4_mark_inode_dirty(handle, inode); 3821 } 3822 3823 /** 3824 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3825 * 3826 * Return 1 if there is a delalloc block in the range, otherwise 0. 3827 */ 3828 int ext4_find_delalloc_range(struct inode *inode, 3829 ext4_lblk_t lblk_start, 3830 ext4_lblk_t lblk_end) 3831 { 3832 struct extent_status es; 3833 3834 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es); 3835 if (es.es_len == 0) 3836 return 0; /* there is no delay extent in this tree */ 3837 else if (es.es_lblk <= lblk_start && 3838 lblk_start < es.es_lblk + es.es_len) 3839 return 1; 3840 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3841 return 1; 3842 else 3843 return 0; 3844 } 3845 3846 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3847 { 3848 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3849 ext4_lblk_t lblk_start, lblk_end; 3850 lblk_start = EXT4_LBLK_CMASK(sbi, lblk); 3851 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3852 3853 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3854 } 3855 3856 /** 3857 * Determines how many complete clusters (out of those specified by the 'map') 3858 * are under delalloc and were reserved quota for. 3859 * This function is called when we are writing out the blocks that were 3860 * originally written with their allocation delayed, but then the space was 3861 * allocated using fallocate() before the delayed allocation could be resolved. 3862 * The cases to look for are: 3863 * ('=' indicated delayed allocated blocks 3864 * '-' indicates non-delayed allocated blocks) 3865 * (a) partial clusters towards beginning and/or end outside of allocated range 3866 * are not delalloc'ed. 3867 * Ex: 3868 * |----c---=|====c====|====c====|===-c----| 3869 * |++++++ allocated ++++++| 3870 * ==> 4 complete clusters in above example 3871 * 3872 * (b) partial cluster (outside of allocated range) towards either end is 3873 * marked for delayed allocation. In this case, we will exclude that 3874 * cluster. 3875 * Ex: 3876 * |----====c========|========c========| 3877 * |++++++ allocated ++++++| 3878 * ==> 1 complete clusters in above example 3879 * 3880 * Ex: 3881 * |================c================| 3882 * |++++++ allocated ++++++| 3883 * ==> 0 complete clusters in above example 3884 * 3885 * The ext4_da_update_reserve_space will be called only if we 3886 * determine here that there were some "entire" clusters that span 3887 * this 'allocated' range. 3888 * In the non-bigalloc case, this function will just end up returning num_blks 3889 * without ever calling ext4_find_delalloc_range. 3890 */ 3891 static unsigned int 3892 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3893 unsigned int num_blks) 3894 { 3895 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3896 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3897 ext4_lblk_t lblk_from, lblk_to, c_offset; 3898 unsigned int allocated_clusters = 0; 3899 3900 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3901 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3902 3903 /* max possible clusters for this allocation */ 3904 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3905 3906 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3907 3908 /* Check towards left side */ 3909 c_offset = EXT4_LBLK_COFF(sbi, lblk_start); 3910 if (c_offset) { 3911 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start); 3912 lblk_to = lblk_from + c_offset - 1; 3913 3914 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3915 allocated_clusters--; 3916 } 3917 3918 /* Now check towards right. */ 3919 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks); 3920 if (allocated_clusters && c_offset) { 3921 lblk_from = lblk_start + num_blks; 3922 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3923 3924 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3925 allocated_clusters--; 3926 } 3927 3928 return allocated_clusters; 3929 } 3930 3931 static int 3932 convert_initialized_extent(handle_t *handle, struct inode *inode, 3933 struct ext4_map_blocks *map, 3934 struct ext4_ext_path **ppath, int flags, 3935 unsigned int allocated, ext4_fsblk_t newblock) 3936 { 3937 struct ext4_ext_path *path = *ppath; 3938 struct ext4_extent *ex; 3939 ext4_lblk_t ee_block; 3940 unsigned int ee_len; 3941 int depth; 3942 int err = 0; 3943 3944 /* 3945 * Make sure that the extent is no bigger than we support with 3946 * unwritten extent 3947 */ 3948 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3949 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3950 3951 depth = ext_depth(inode); 3952 ex = path[depth].p_ext; 3953 ee_block = le32_to_cpu(ex->ee_block); 3954 ee_len = ext4_ext_get_actual_len(ex); 3955 3956 ext_debug("%s: inode %lu, logical" 3957 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3958 (unsigned long long)ee_block, ee_len); 3959 3960 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3961 err = ext4_split_convert_extents(handle, inode, map, ppath, 3962 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3963 if (err < 0) 3964 return err; 3965 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3966 if (IS_ERR(path)) 3967 return PTR_ERR(path); 3968 depth = ext_depth(inode); 3969 ex = path[depth].p_ext; 3970 if (!ex) { 3971 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3972 (unsigned long) map->m_lblk); 3973 return -EIO; 3974 } 3975 } 3976 3977 err = ext4_ext_get_access(handle, inode, path + depth); 3978 if (err) 3979 return err; 3980 /* first mark the extent as unwritten */ 3981 ext4_ext_mark_unwritten(ex); 3982 3983 /* note: ext4_ext_correct_indexes() isn't needed here because 3984 * borders are not changed 3985 */ 3986 ext4_ext_try_to_merge(handle, inode, path, ex); 3987 3988 /* Mark modified extent as dirty */ 3989 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3990 if (err) 3991 return err; 3992 ext4_ext_show_leaf(inode, path); 3993 3994 ext4_update_inode_fsync_trans(handle, inode, 1); 3995 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len); 3996 if (err) 3997 return err; 3998 map->m_flags |= EXT4_MAP_UNWRITTEN; 3999 if (allocated > map->m_len) 4000 allocated = map->m_len; 4001 map->m_len = allocated; 4002 return allocated; 4003 } 4004 4005 static int 4006 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 4007 struct ext4_map_blocks *map, 4008 struct ext4_ext_path **ppath, int flags, 4009 unsigned int allocated, ext4_fsblk_t newblock) 4010 { 4011 struct ext4_ext_path *path = *ppath; 4012 int ret = 0; 4013 int err = 0; 4014 ext4_io_end_t *io = ext4_inode_aio(inode); 4015 4016 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 4017 "block %llu, max_blocks %u, flags %x, allocated %u\n", 4018 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 4019 flags, allocated); 4020 ext4_ext_show_leaf(inode, path); 4021 4022 /* 4023 * When writing into unwritten space, we should not fail to 4024 * allocate metadata blocks for the new extent block if needed. 4025 */ 4026 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 4027 4028 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 4029 allocated, newblock); 4030 4031 /* get_block() before submit the IO, split the extent */ 4032 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 4033 ret = ext4_split_convert_extents(handle, inode, map, ppath, 4034 flags | EXT4_GET_BLOCKS_CONVERT); 4035 if (ret <= 0) 4036 goto out; 4037 /* 4038 * Flag the inode(non aio case) or end_io struct (aio case) 4039 * that this IO needs to conversion to written when IO is 4040 * completed 4041 */ 4042 if (io) 4043 ext4_set_io_unwritten_flag(inode, io); 4044 else 4045 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 4046 map->m_flags |= EXT4_MAP_UNWRITTEN; 4047 goto out; 4048 } 4049 /* IO end_io complete, convert the filled extent to written */ 4050 if (flags & EXT4_GET_BLOCKS_CONVERT) { 4051 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 4052 ppath); 4053 if (ret >= 0) { 4054 ext4_update_inode_fsync_trans(handle, inode, 1); 4055 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4056 path, map->m_len); 4057 } else 4058 err = ret; 4059 map->m_flags |= EXT4_MAP_MAPPED; 4060 map->m_pblk = newblock; 4061 if (allocated > map->m_len) 4062 allocated = map->m_len; 4063 map->m_len = allocated; 4064 goto out2; 4065 } 4066 /* buffered IO case */ 4067 /* 4068 * repeat fallocate creation request 4069 * we already have an unwritten extent 4070 */ 4071 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4072 map->m_flags |= EXT4_MAP_UNWRITTEN; 4073 goto map_out; 4074 } 4075 4076 /* buffered READ or buffered write_begin() lookup */ 4077 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4078 /* 4079 * We have blocks reserved already. We 4080 * return allocated blocks so that delalloc 4081 * won't do block reservation for us. But 4082 * the buffer head will be unmapped so that 4083 * a read from the block returns 0s. 4084 */ 4085 map->m_flags |= EXT4_MAP_UNWRITTEN; 4086 goto out1; 4087 } 4088 4089 /* buffered write, writepage time, convert*/ 4090 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags); 4091 if (ret >= 0) 4092 ext4_update_inode_fsync_trans(handle, inode, 1); 4093 out: 4094 if (ret <= 0) { 4095 err = ret; 4096 goto out2; 4097 } else 4098 allocated = ret; 4099 map->m_flags |= EXT4_MAP_NEW; 4100 /* 4101 * if we allocated more blocks than requested 4102 * we need to make sure we unmap the extra block 4103 * allocated. The actual needed block will get 4104 * unmapped later when we find the buffer_head marked 4105 * new. 4106 */ 4107 if (allocated > map->m_len) { 4108 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 4109 newblock + map->m_len, 4110 allocated - map->m_len); 4111 allocated = map->m_len; 4112 } 4113 map->m_len = allocated; 4114 4115 /* 4116 * If we have done fallocate with the offset that is already 4117 * delayed allocated, we would have block reservation 4118 * and quota reservation done in the delayed write path. 4119 * But fallocate would have already updated quota and block 4120 * count for this offset. So cancel these reservation 4121 */ 4122 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4123 unsigned int reserved_clusters; 4124 reserved_clusters = get_reserved_cluster_alloc(inode, 4125 map->m_lblk, map->m_len); 4126 if (reserved_clusters) 4127 ext4_da_update_reserve_space(inode, 4128 reserved_clusters, 4129 0); 4130 } 4131 4132 map_out: 4133 map->m_flags |= EXT4_MAP_MAPPED; 4134 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 4135 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 4136 map->m_len); 4137 if (err < 0) 4138 goto out2; 4139 } 4140 out1: 4141 if (allocated > map->m_len) 4142 allocated = map->m_len; 4143 ext4_ext_show_leaf(inode, path); 4144 map->m_pblk = newblock; 4145 map->m_len = allocated; 4146 out2: 4147 return err ? err : allocated; 4148 } 4149 4150 /* 4151 * get_implied_cluster_alloc - check to see if the requested 4152 * allocation (in the map structure) overlaps with a cluster already 4153 * allocated in an extent. 4154 * @sb The filesystem superblock structure 4155 * @map The requested lblk->pblk mapping 4156 * @ex The extent structure which might contain an implied 4157 * cluster allocation 4158 * 4159 * This function is called by ext4_ext_map_blocks() after we failed to 4160 * find blocks that were already in the inode's extent tree. Hence, 4161 * we know that the beginning of the requested region cannot overlap 4162 * the extent from the inode's extent tree. There are three cases we 4163 * want to catch. The first is this case: 4164 * 4165 * |--- cluster # N--| 4166 * |--- extent ---| |---- requested region ---| 4167 * |==========| 4168 * 4169 * The second case that we need to test for is this one: 4170 * 4171 * |--------- cluster # N ----------------| 4172 * |--- requested region --| |------- extent ----| 4173 * |=======================| 4174 * 4175 * The third case is when the requested region lies between two extents 4176 * within the same cluster: 4177 * |------------- cluster # N-------------| 4178 * |----- ex -----| |---- ex_right ----| 4179 * |------ requested region ------| 4180 * |================| 4181 * 4182 * In each of the above cases, we need to set the map->m_pblk and 4183 * map->m_len so it corresponds to the return the extent labelled as 4184 * "|====|" from cluster #N, since it is already in use for data in 4185 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 4186 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 4187 * as a new "allocated" block region. Otherwise, we will return 0 and 4188 * ext4_ext_map_blocks() will then allocate one or more new clusters 4189 * by calling ext4_mb_new_blocks(). 4190 */ 4191 static int get_implied_cluster_alloc(struct super_block *sb, 4192 struct ext4_map_blocks *map, 4193 struct ext4_extent *ex, 4194 struct ext4_ext_path *path) 4195 { 4196 struct ext4_sb_info *sbi = EXT4_SB(sb); 4197 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4198 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4199 ext4_lblk_t rr_cluster_start; 4200 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4201 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4202 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4203 4204 /* The extent passed in that we are trying to match */ 4205 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4206 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4207 4208 /* The requested region passed into ext4_map_blocks() */ 4209 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4210 4211 if ((rr_cluster_start == ex_cluster_end) || 4212 (rr_cluster_start == ex_cluster_start)) { 4213 if (rr_cluster_start == ex_cluster_end) 4214 ee_start += ee_len - 1; 4215 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 4216 map->m_len = min(map->m_len, 4217 (unsigned) sbi->s_cluster_ratio - c_offset); 4218 /* 4219 * Check for and handle this case: 4220 * 4221 * |--------- cluster # N-------------| 4222 * |------- extent ----| 4223 * |--- requested region ---| 4224 * |===========| 4225 */ 4226 4227 if (map->m_lblk < ee_block) 4228 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4229 4230 /* 4231 * Check for the case where there is already another allocated 4232 * block to the right of 'ex' but before the end of the cluster. 4233 * 4234 * |------------- cluster # N-------------| 4235 * |----- ex -----| |---- ex_right ----| 4236 * |------ requested region ------| 4237 * |================| 4238 */ 4239 if (map->m_lblk > ee_block) { 4240 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4241 map->m_len = min(map->m_len, next - map->m_lblk); 4242 } 4243 4244 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4245 return 1; 4246 } 4247 4248 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4249 return 0; 4250 } 4251 4252 4253 /* 4254 * Block allocation/map/preallocation routine for extents based files 4255 * 4256 * 4257 * Need to be called with 4258 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4259 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4260 * 4261 * return > 0, number of of blocks already mapped/allocated 4262 * if create == 0 and these are pre-allocated blocks 4263 * buffer head is unmapped 4264 * otherwise blocks are mapped 4265 * 4266 * return = 0, if plain look up failed (blocks have not been allocated) 4267 * buffer head is unmapped 4268 * 4269 * return < 0, error case. 4270 */ 4271 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4272 struct ext4_map_blocks *map, int flags) 4273 { 4274 struct ext4_ext_path *path = NULL; 4275 struct ext4_extent newex, *ex, *ex2; 4276 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4277 ext4_fsblk_t newblock = 0; 4278 int free_on_err = 0, err = 0, depth, ret; 4279 unsigned int allocated = 0, offset = 0; 4280 unsigned int allocated_clusters = 0; 4281 struct ext4_allocation_request ar; 4282 ext4_io_end_t *io = ext4_inode_aio(inode); 4283 ext4_lblk_t cluster_offset; 4284 int set_unwritten = 0; 4285 bool map_from_cluster = false; 4286 4287 ext_debug("blocks %u/%u requested for inode %lu\n", 4288 map->m_lblk, map->m_len, inode->i_ino); 4289 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4290 4291 /* find extent for this block */ 4292 path = ext4_find_extent(inode, map->m_lblk, NULL, 0); 4293 if (IS_ERR(path)) { 4294 err = PTR_ERR(path); 4295 path = NULL; 4296 goto out2; 4297 } 4298 4299 depth = ext_depth(inode); 4300 4301 /* 4302 * consistent leaf must not be empty; 4303 * this situation is possible, though, _during_ tree modification; 4304 * this is why assert can't be put in ext4_find_extent() 4305 */ 4306 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4307 EXT4_ERROR_INODE(inode, "bad extent address " 4308 "lblock: %lu, depth: %d pblock %lld", 4309 (unsigned long) map->m_lblk, depth, 4310 path[depth].p_block); 4311 err = -EIO; 4312 goto out2; 4313 } 4314 4315 ex = path[depth].p_ext; 4316 if (ex) { 4317 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4318 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4319 unsigned short ee_len; 4320 4321 4322 /* 4323 * unwritten extents are treated as holes, except that 4324 * we split out initialized portions during a write. 4325 */ 4326 ee_len = ext4_ext_get_actual_len(ex); 4327 4328 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4329 4330 /* if found extent covers block, simply return it */ 4331 if (in_range(map->m_lblk, ee_block, ee_len)) { 4332 newblock = map->m_lblk - ee_block + ee_start; 4333 /* number of remaining blocks in the extent */ 4334 allocated = ee_len - (map->m_lblk - ee_block); 4335 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4336 ee_block, ee_len, newblock); 4337 4338 /* 4339 * If the extent is initialized check whether the 4340 * caller wants to convert it to unwritten. 4341 */ 4342 if ((!ext4_ext_is_unwritten(ex)) && 4343 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4344 allocated = convert_initialized_extent( 4345 handle, inode, map, &path, 4346 flags, allocated, newblock); 4347 goto out2; 4348 } else if (!ext4_ext_is_unwritten(ex)) 4349 goto out; 4350 4351 ret = ext4_ext_handle_unwritten_extents( 4352 handle, inode, map, &path, flags, 4353 allocated, newblock); 4354 if (ret < 0) 4355 err = ret; 4356 else 4357 allocated = ret; 4358 goto out2; 4359 } 4360 } 4361 4362 /* 4363 * requested block isn't allocated yet; 4364 * we couldn't try to create block if create flag is zero 4365 */ 4366 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4367 /* 4368 * put just found gap into cache to speed up 4369 * subsequent requests 4370 */ 4371 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 4372 goto out2; 4373 } 4374 4375 /* 4376 * Okay, we need to do block allocation. 4377 */ 4378 newex.ee_block = cpu_to_le32(map->m_lblk); 4379 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4380 4381 /* 4382 * If we are doing bigalloc, check to see if the extent returned 4383 * by ext4_find_extent() implies a cluster we can use. 4384 */ 4385 if (cluster_offset && ex && 4386 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4387 ar.len = allocated = map->m_len; 4388 newblock = map->m_pblk; 4389 map_from_cluster = true; 4390 goto got_allocated_blocks; 4391 } 4392 4393 /* find neighbour allocated blocks */ 4394 ar.lleft = map->m_lblk; 4395 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4396 if (err) 4397 goto out2; 4398 ar.lright = map->m_lblk; 4399 ex2 = NULL; 4400 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4401 if (err) 4402 goto out2; 4403 4404 /* Check if the extent after searching to the right implies a 4405 * cluster we can use. */ 4406 if ((sbi->s_cluster_ratio > 1) && ex2 && 4407 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4408 ar.len = allocated = map->m_len; 4409 newblock = map->m_pblk; 4410 map_from_cluster = true; 4411 goto got_allocated_blocks; 4412 } 4413 4414 /* 4415 * See if request is beyond maximum number of blocks we can have in 4416 * a single extent. For an initialized extent this limit is 4417 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4418 * EXT_UNWRITTEN_MAX_LEN. 4419 */ 4420 if (map->m_len > EXT_INIT_MAX_LEN && 4421 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4422 map->m_len = EXT_INIT_MAX_LEN; 4423 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4424 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4425 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4426 4427 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4428 newex.ee_len = cpu_to_le16(map->m_len); 4429 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4430 if (err) 4431 allocated = ext4_ext_get_actual_len(&newex); 4432 else 4433 allocated = map->m_len; 4434 4435 /* allocate new block */ 4436 ar.inode = inode; 4437 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4438 ar.logical = map->m_lblk; 4439 /* 4440 * We calculate the offset from the beginning of the cluster 4441 * for the logical block number, since when we allocate a 4442 * physical cluster, the physical block should start at the 4443 * same offset from the beginning of the cluster. This is 4444 * needed so that future calls to get_implied_cluster_alloc() 4445 * work correctly. 4446 */ 4447 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4448 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4449 ar.goal -= offset; 4450 ar.logical -= offset; 4451 if (S_ISREG(inode->i_mode)) 4452 ar.flags = EXT4_MB_HINT_DATA; 4453 else 4454 /* disable in-core preallocation for non-regular files */ 4455 ar.flags = 0; 4456 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4457 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4458 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4459 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 4460 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 4461 ar.flags |= EXT4_MB_USE_RESERVED; 4462 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4463 if (!newblock) 4464 goto out2; 4465 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4466 ar.goal, newblock, allocated); 4467 free_on_err = 1; 4468 allocated_clusters = ar.len; 4469 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4470 if (ar.len > allocated) 4471 ar.len = allocated; 4472 4473 got_allocated_blocks: 4474 /* try to insert new extent into found leaf and return */ 4475 ext4_ext_store_pblock(&newex, newblock + offset); 4476 newex.ee_len = cpu_to_le16(ar.len); 4477 /* Mark unwritten */ 4478 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){ 4479 ext4_ext_mark_unwritten(&newex); 4480 map->m_flags |= EXT4_MAP_UNWRITTEN; 4481 /* 4482 * io_end structure was created for every IO write to an 4483 * unwritten extent. To avoid unnecessary conversion, 4484 * here we flag the IO that really needs the conversion. 4485 * For non asycn direct IO case, flag the inode state 4486 * that we need to perform conversion when IO is done. 4487 */ 4488 if (flags & EXT4_GET_BLOCKS_PRE_IO) 4489 set_unwritten = 1; 4490 } 4491 4492 err = 0; 4493 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4494 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4495 path, ar.len); 4496 if (!err) 4497 err = ext4_ext_insert_extent(handle, inode, &path, 4498 &newex, flags); 4499 4500 if (!err && set_unwritten) { 4501 if (io) 4502 ext4_set_io_unwritten_flag(inode, io); 4503 else 4504 ext4_set_inode_state(inode, 4505 EXT4_STATE_DIO_UNWRITTEN); 4506 } 4507 4508 if (err && free_on_err) { 4509 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4510 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4511 /* free data blocks we just allocated */ 4512 /* not a good idea to call discard here directly, 4513 * but otherwise we'd need to call it every free() */ 4514 ext4_discard_preallocations(inode); 4515 ext4_free_blocks(handle, inode, NULL, newblock, 4516 EXT4_C2B(sbi, allocated_clusters), fb_flags); 4517 goto out2; 4518 } 4519 4520 /* previous routine could use block we allocated */ 4521 newblock = ext4_ext_pblock(&newex); 4522 allocated = ext4_ext_get_actual_len(&newex); 4523 if (allocated > map->m_len) 4524 allocated = map->m_len; 4525 map->m_flags |= EXT4_MAP_NEW; 4526 4527 /* 4528 * Update reserved blocks/metadata blocks after successful 4529 * block allocation which had been deferred till now. 4530 */ 4531 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4532 unsigned int reserved_clusters; 4533 /* 4534 * Check how many clusters we had reserved this allocated range 4535 */ 4536 reserved_clusters = get_reserved_cluster_alloc(inode, 4537 map->m_lblk, allocated); 4538 if (!map_from_cluster) { 4539 BUG_ON(allocated_clusters < reserved_clusters); 4540 if (reserved_clusters < allocated_clusters) { 4541 struct ext4_inode_info *ei = EXT4_I(inode); 4542 int reservation = allocated_clusters - 4543 reserved_clusters; 4544 /* 4545 * It seems we claimed few clusters outside of 4546 * the range of this allocation. We should give 4547 * it back to the reservation pool. This can 4548 * happen in the following case: 4549 * 4550 * * Suppose s_cluster_ratio is 4 (i.e., each 4551 * cluster has 4 blocks. Thus, the clusters 4552 * are [0-3],[4-7],[8-11]... 4553 * * First comes delayed allocation write for 4554 * logical blocks 10 & 11. Since there were no 4555 * previous delayed allocated blocks in the 4556 * range [8-11], we would reserve 1 cluster 4557 * for this write. 4558 * * Next comes write for logical blocks 3 to 8. 4559 * In this case, we will reserve 2 clusters 4560 * (for [0-3] and [4-7]; and not for [8-11] as 4561 * that range has a delayed allocated blocks. 4562 * Thus total reserved clusters now becomes 3. 4563 * * Now, during the delayed allocation writeout 4564 * time, we will first write blocks [3-8] and 4565 * allocate 3 clusters for writing these 4566 * blocks. Also, we would claim all these 4567 * three clusters above. 4568 * * Now when we come here to writeout the 4569 * blocks [10-11], we would expect to claim 4570 * the reservation of 1 cluster we had made 4571 * (and we would claim it since there are no 4572 * more delayed allocated blocks in the range 4573 * [8-11]. But our reserved cluster count had 4574 * already gone to 0. 4575 * 4576 * Thus, at the step 4 above when we determine 4577 * that there are still some unwritten delayed 4578 * allocated blocks outside of our current 4579 * block range, we should increment the 4580 * reserved clusters count so that when the 4581 * remaining blocks finally gets written, we 4582 * could claim them. 4583 */ 4584 dquot_reserve_block(inode, 4585 EXT4_C2B(sbi, reservation)); 4586 spin_lock(&ei->i_block_reservation_lock); 4587 ei->i_reserved_data_blocks += reservation; 4588 spin_unlock(&ei->i_block_reservation_lock); 4589 } 4590 /* 4591 * We will claim quota for all newly allocated blocks. 4592 * We're updating the reserved space *after* the 4593 * correction above so we do not accidentally free 4594 * all the metadata reservation because we might 4595 * actually need it later on. 4596 */ 4597 ext4_da_update_reserve_space(inode, allocated_clusters, 4598 1); 4599 } 4600 } 4601 4602 /* 4603 * Cache the extent and update transaction to commit on fdatasync only 4604 * when it is _not_ an unwritten extent. 4605 */ 4606 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4607 ext4_update_inode_fsync_trans(handle, inode, 1); 4608 else 4609 ext4_update_inode_fsync_trans(handle, inode, 0); 4610 out: 4611 if (allocated > map->m_len) 4612 allocated = map->m_len; 4613 ext4_ext_show_leaf(inode, path); 4614 map->m_flags |= EXT4_MAP_MAPPED; 4615 map->m_pblk = newblock; 4616 map->m_len = allocated; 4617 out2: 4618 ext4_ext_drop_refs(path); 4619 kfree(path); 4620 4621 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4622 err ? err : allocated); 4623 return err ? err : allocated; 4624 } 4625 4626 void ext4_ext_truncate(handle_t *handle, struct inode *inode) 4627 { 4628 struct super_block *sb = inode->i_sb; 4629 ext4_lblk_t last_block; 4630 int err = 0; 4631 4632 /* 4633 * TODO: optimization is possible here. 4634 * Probably we need not scan at all, 4635 * because page truncation is enough. 4636 */ 4637 4638 /* we have to know where to truncate from in crash case */ 4639 EXT4_I(inode)->i_disksize = inode->i_size; 4640 ext4_mark_inode_dirty(handle, inode); 4641 4642 last_block = (inode->i_size + sb->s_blocksize - 1) 4643 >> EXT4_BLOCK_SIZE_BITS(sb); 4644 retry: 4645 err = ext4_es_remove_extent(inode, last_block, 4646 EXT_MAX_BLOCKS - last_block); 4647 if (err == -ENOMEM) { 4648 cond_resched(); 4649 congestion_wait(BLK_RW_ASYNC, HZ/50); 4650 goto retry; 4651 } 4652 if (err) { 4653 ext4_std_error(inode->i_sb, err); 4654 return; 4655 } 4656 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4657 ext4_std_error(inode->i_sb, err); 4658 } 4659 4660 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4661 ext4_lblk_t len, loff_t new_size, 4662 int flags, int mode) 4663 { 4664 struct inode *inode = file_inode(file); 4665 handle_t *handle; 4666 int ret = 0; 4667 int ret2 = 0; 4668 int retries = 0; 4669 int depth = 0; 4670 struct ext4_map_blocks map; 4671 unsigned int credits; 4672 loff_t epos; 4673 4674 map.m_lblk = offset; 4675 map.m_len = len; 4676 /* 4677 * Don't normalize the request if it can fit in one extent so 4678 * that it doesn't get unnecessarily split into multiple 4679 * extents. 4680 */ 4681 if (len <= EXT_UNWRITTEN_MAX_LEN) 4682 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4683 4684 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4685 ext4_inode_block_unlocked_dio(inode); 4686 inode_dio_wait(inode); 4687 4688 /* 4689 * credits to insert 1 extent into extent tree 4690 */ 4691 credits = ext4_chunk_trans_blocks(inode, len); 4692 /* 4693 * We can only call ext_depth() on extent based inodes 4694 */ 4695 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4696 depth = ext_depth(inode); 4697 else 4698 depth = -1; 4699 4700 retry: 4701 while (ret >= 0 && len) { 4702 /* 4703 * Recalculate credits when extent tree depth changes. 4704 */ 4705 if (depth >= 0 && depth != ext_depth(inode)) { 4706 credits = ext4_chunk_trans_blocks(inode, len); 4707 depth = ext_depth(inode); 4708 } 4709 4710 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4711 credits); 4712 if (IS_ERR(handle)) { 4713 ret = PTR_ERR(handle); 4714 break; 4715 } 4716 ret = ext4_map_blocks(handle, inode, &map, flags); 4717 if (ret <= 0) { 4718 ext4_debug("inode #%lu: block %u: len %u: " 4719 "ext4_ext_map_blocks returned %d", 4720 inode->i_ino, map.m_lblk, 4721 map.m_len, ret); 4722 ext4_mark_inode_dirty(handle, inode); 4723 ret2 = ext4_journal_stop(handle); 4724 break; 4725 } 4726 map.m_lblk += ret; 4727 map.m_len = len = len - ret; 4728 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4729 inode->i_ctime = ext4_current_time(inode); 4730 if (new_size) { 4731 if (epos > new_size) 4732 epos = new_size; 4733 if (ext4_update_inode_size(inode, epos) & 0x1) 4734 inode->i_mtime = inode->i_ctime; 4735 } else { 4736 if (epos > inode->i_size) 4737 ext4_set_inode_flag(inode, 4738 EXT4_INODE_EOFBLOCKS); 4739 } 4740 ext4_mark_inode_dirty(handle, inode); 4741 ret2 = ext4_journal_stop(handle); 4742 if (ret2) 4743 break; 4744 } 4745 if (ret == -ENOSPC && 4746 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4747 ret = 0; 4748 goto retry; 4749 } 4750 4751 ext4_inode_resume_unlocked_dio(inode); 4752 4753 return ret > 0 ? ret2 : ret; 4754 } 4755 4756 static long ext4_zero_range(struct file *file, loff_t offset, 4757 loff_t len, int mode) 4758 { 4759 struct inode *inode = file_inode(file); 4760 handle_t *handle = NULL; 4761 unsigned int max_blocks; 4762 loff_t new_size = 0; 4763 int ret = 0; 4764 int flags; 4765 int credits; 4766 int partial_begin, partial_end; 4767 loff_t start, end; 4768 ext4_lblk_t lblk; 4769 struct address_space *mapping = inode->i_mapping; 4770 unsigned int blkbits = inode->i_blkbits; 4771 4772 trace_ext4_zero_range(inode, offset, len, mode); 4773 4774 if (!S_ISREG(inode->i_mode)) 4775 return -EINVAL; 4776 4777 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4778 if (ext4_should_journal_data(inode)) { 4779 ret = ext4_force_commit(inode->i_sb); 4780 if (ret) 4781 return ret; 4782 } 4783 4784 /* 4785 * Write out all dirty pages to avoid race conditions 4786 * Then release them. 4787 */ 4788 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4789 ret = filemap_write_and_wait_range(mapping, offset, 4790 offset + len - 1); 4791 if (ret) 4792 return ret; 4793 } 4794 4795 /* 4796 * Round up offset. This is not fallocate, we neet to zero out 4797 * blocks, so convert interior block aligned part of the range to 4798 * unwritten and possibly manually zero out unaligned parts of the 4799 * range. 4800 */ 4801 start = round_up(offset, 1 << blkbits); 4802 end = round_down((offset + len), 1 << blkbits); 4803 4804 if (start < offset || end > offset + len) 4805 return -EINVAL; 4806 partial_begin = offset & ((1 << blkbits) - 1); 4807 partial_end = (offset + len) & ((1 << blkbits) - 1); 4808 4809 lblk = start >> blkbits; 4810 max_blocks = (end >> blkbits); 4811 if (max_blocks < lblk) 4812 max_blocks = 0; 4813 else 4814 max_blocks -= lblk; 4815 4816 mutex_lock(&inode->i_mutex); 4817 4818 /* 4819 * Indirect files do not support unwritten extnets 4820 */ 4821 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4822 ret = -EOPNOTSUPP; 4823 goto out_mutex; 4824 } 4825 4826 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4827 offset + len > i_size_read(inode)) { 4828 new_size = offset + len; 4829 ret = inode_newsize_ok(inode, new_size); 4830 if (ret) 4831 goto out_mutex; 4832 } 4833 4834 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4835 if (mode & FALLOC_FL_KEEP_SIZE) 4836 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4837 4838 /* Preallocate the range including the unaligned edges */ 4839 if (partial_begin || partial_end) { 4840 ret = ext4_alloc_file_blocks(file, 4841 round_down(offset, 1 << blkbits) >> blkbits, 4842 (round_up((offset + len), 1 << blkbits) - 4843 round_down(offset, 1 << blkbits)) >> blkbits, 4844 new_size, flags, mode); 4845 if (ret) 4846 goto out_mutex; 4847 4848 } 4849 4850 /* Zero range excluding the unaligned edges */ 4851 if (max_blocks > 0) { 4852 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4853 EXT4_EX_NOCACHE); 4854 4855 /* Now release the pages and zero block aligned part of pages*/ 4856 truncate_pagecache_range(inode, start, end - 1); 4857 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4858 4859 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4860 ext4_inode_block_unlocked_dio(inode); 4861 inode_dio_wait(inode); 4862 4863 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4864 flags, mode); 4865 if (ret) 4866 goto out_dio; 4867 } 4868 if (!partial_begin && !partial_end) 4869 goto out_dio; 4870 4871 /* 4872 * In worst case we have to writeout two nonadjacent unwritten 4873 * blocks and update the inode 4874 */ 4875 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4876 if (ext4_should_journal_data(inode)) 4877 credits += 2; 4878 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4879 if (IS_ERR(handle)) { 4880 ret = PTR_ERR(handle); 4881 ext4_std_error(inode->i_sb, ret); 4882 goto out_dio; 4883 } 4884 4885 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4886 if (new_size) { 4887 ext4_update_inode_size(inode, new_size); 4888 } else { 4889 /* 4890 * Mark that we allocate beyond EOF so the subsequent truncate 4891 * can proceed even if the new size is the same as i_size. 4892 */ 4893 if ((offset + len) > i_size_read(inode)) 4894 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4895 } 4896 ext4_mark_inode_dirty(handle, inode); 4897 4898 /* Zero out partial block at the edges of the range */ 4899 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4900 4901 if (file->f_flags & O_SYNC) 4902 ext4_handle_sync(handle); 4903 4904 ext4_journal_stop(handle); 4905 out_dio: 4906 ext4_inode_resume_unlocked_dio(inode); 4907 out_mutex: 4908 mutex_unlock(&inode->i_mutex); 4909 return ret; 4910 } 4911 4912 /* 4913 * preallocate space for a file. This implements ext4's fallocate file 4914 * operation, which gets called from sys_fallocate system call. 4915 * For block-mapped files, posix_fallocate should fall back to the method 4916 * of writing zeroes to the required new blocks (the same behavior which is 4917 * expected for file systems which do not support fallocate() system call). 4918 */ 4919 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4920 { 4921 struct inode *inode = file_inode(file); 4922 loff_t new_size = 0; 4923 unsigned int max_blocks; 4924 int ret = 0; 4925 int flags; 4926 ext4_lblk_t lblk; 4927 unsigned int blkbits = inode->i_blkbits; 4928 4929 /* 4930 * Encrypted inodes can't handle collapse range or insert 4931 * range since we would need to re-encrypt blocks with a 4932 * different IV or XTS tweak (which are based on the logical 4933 * block number). 4934 * 4935 * XXX It's not clear why zero range isn't working, but we'll 4936 * leave it disabled for encrypted inodes for now. This is a 4937 * bug we should fix.... 4938 */ 4939 if (ext4_encrypted_inode(inode) && 4940 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE | 4941 FALLOC_FL_ZERO_RANGE))) 4942 return -EOPNOTSUPP; 4943 4944 /* Return error if mode is not supported */ 4945 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4946 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 4947 FALLOC_FL_INSERT_RANGE)) 4948 return -EOPNOTSUPP; 4949 4950 if (mode & FALLOC_FL_PUNCH_HOLE) 4951 return ext4_punch_hole(inode, offset, len); 4952 4953 ret = ext4_convert_inline_data(inode); 4954 if (ret) 4955 return ret; 4956 4957 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4958 return ext4_collapse_range(inode, offset, len); 4959 4960 if (mode & FALLOC_FL_INSERT_RANGE) 4961 return ext4_insert_range(inode, offset, len); 4962 4963 if (mode & FALLOC_FL_ZERO_RANGE) 4964 return ext4_zero_range(file, offset, len, mode); 4965 4966 trace_ext4_fallocate_enter(inode, offset, len, mode); 4967 lblk = offset >> blkbits; 4968 /* 4969 * We can't just convert len to max_blocks because 4970 * If blocksize = 4096 offset = 3072 and len = 2048 4971 */ 4972 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4973 - lblk; 4974 4975 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4976 if (mode & FALLOC_FL_KEEP_SIZE) 4977 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4978 4979 mutex_lock(&inode->i_mutex); 4980 4981 /* 4982 * We only support preallocation for extent-based files only 4983 */ 4984 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4985 ret = -EOPNOTSUPP; 4986 goto out; 4987 } 4988 4989 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4990 offset + len > i_size_read(inode)) { 4991 new_size = offset + len; 4992 ret = inode_newsize_ok(inode, new_size); 4993 if (ret) 4994 goto out; 4995 } 4996 4997 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4998 flags, mode); 4999 if (ret) 5000 goto out; 5001 5002 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 5003 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 5004 EXT4_I(inode)->i_sync_tid); 5005 } 5006 out: 5007 mutex_unlock(&inode->i_mutex); 5008 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 5009 return ret; 5010 } 5011 5012 /* 5013 * This function convert a range of blocks to written extents 5014 * The caller of this function will pass the start offset and the size. 5015 * all unwritten extents within this range will be converted to 5016 * written extents. 5017 * 5018 * This function is called from the direct IO end io call back 5019 * function, to convert the fallocated extents after IO is completed. 5020 * Returns 0 on success. 5021 */ 5022 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 5023 loff_t offset, ssize_t len) 5024 { 5025 unsigned int max_blocks; 5026 int ret = 0; 5027 int ret2 = 0; 5028 struct ext4_map_blocks map; 5029 unsigned int credits, blkbits = inode->i_blkbits; 5030 5031 map.m_lblk = offset >> blkbits; 5032 /* 5033 * We can't just convert len to max_blocks because 5034 * If blocksize = 4096 offset = 3072 and len = 2048 5035 */ 5036 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 5037 map.m_lblk); 5038 /* 5039 * This is somewhat ugly but the idea is clear: When transaction is 5040 * reserved, everything goes into it. Otherwise we rather start several 5041 * smaller transactions for conversion of each extent separately. 5042 */ 5043 if (handle) { 5044 handle = ext4_journal_start_reserved(handle, 5045 EXT4_HT_EXT_CONVERT); 5046 if (IS_ERR(handle)) 5047 return PTR_ERR(handle); 5048 credits = 0; 5049 } else { 5050 /* 5051 * credits to insert 1 extent into extent tree 5052 */ 5053 credits = ext4_chunk_trans_blocks(inode, max_blocks); 5054 } 5055 while (ret >= 0 && ret < max_blocks) { 5056 map.m_lblk += ret; 5057 map.m_len = (max_blocks -= ret); 5058 if (credits) { 5059 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 5060 credits); 5061 if (IS_ERR(handle)) { 5062 ret = PTR_ERR(handle); 5063 break; 5064 } 5065 } 5066 ret = ext4_map_blocks(handle, inode, &map, 5067 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 5068 if (ret <= 0) 5069 ext4_warning(inode->i_sb, 5070 "inode #%lu: block %u: len %u: " 5071 "ext4_ext_map_blocks returned %d", 5072 inode->i_ino, map.m_lblk, 5073 map.m_len, ret); 5074 ext4_mark_inode_dirty(handle, inode); 5075 if (credits) 5076 ret2 = ext4_journal_stop(handle); 5077 if (ret <= 0 || ret2) 5078 break; 5079 } 5080 if (!credits) 5081 ret2 = ext4_journal_stop(handle); 5082 return ret > 0 ? ret2 : ret; 5083 } 5084 5085 /* 5086 * If newes is not existing extent (newes->ec_pblk equals zero) find 5087 * delayed extent at start of newes and update newes accordingly and 5088 * return start of the next delayed extent. 5089 * 5090 * If newes is existing extent (newes->ec_pblk is not equal zero) 5091 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 5092 * extent found. Leave newes unmodified. 5093 */ 5094 static int ext4_find_delayed_extent(struct inode *inode, 5095 struct extent_status *newes) 5096 { 5097 struct extent_status es; 5098 ext4_lblk_t block, next_del; 5099 5100 if (newes->es_pblk == 0) { 5101 ext4_es_find_delayed_extent_range(inode, newes->es_lblk, 5102 newes->es_lblk + newes->es_len - 1, &es); 5103 5104 /* 5105 * No extent in extent-tree contains block @newes->es_pblk, 5106 * then the block may stay in 1)a hole or 2)delayed-extent. 5107 */ 5108 if (es.es_len == 0) 5109 /* A hole found. */ 5110 return 0; 5111 5112 if (es.es_lblk > newes->es_lblk) { 5113 /* A hole found. */ 5114 newes->es_len = min(es.es_lblk - newes->es_lblk, 5115 newes->es_len); 5116 return 0; 5117 } 5118 5119 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 5120 } 5121 5122 block = newes->es_lblk + newes->es_len; 5123 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es); 5124 if (es.es_len == 0) 5125 next_del = EXT_MAX_BLOCKS; 5126 else 5127 next_del = es.es_lblk; 5128 5129 return next_del; 5130 } 5131 /* fiemap flags we can handle specified here */ 5132 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 5133 5134 static int ext4_xattr_fiemap(struct inode *inode, 5135 struct fiemap_extent_info *fieinfo) 5136 { 5137 __u64 physical = 0; 5138 __u64 length; 5139 __u32 flags = FIEMAP_EXTENT_LAST; 5140 int blockbits = inode->i_sb->s_blocksize_bits; 5141 int error = 0; 5142 5143 /* in-inode? */ 5144 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 5145 struct ext4_iloc iloc; 5146 int offset; /* offset of xattr in inode */ 5147 5148 error = ext4_get_inode_loc(inode, &iloc); 5149 if (error) 5150 return error; 5151 physical = (__u64)iloc.bh->b_blocknr << blockbits; 5152 offset = EXT4_GOOD_OLD_INODE_SIZE + 5153 EXT4_I(inode)->i_extra_isize; 5154 physical += offset; 5155 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 5156 flags |= FIEMAP_EXTENT_DATA_INLINE; 5157 brelse(iloc.bh); 5158 } else { /* external block */ 5159 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 5160 length = inode->i_sb->s_blocksize; 5161 } 5162 5163 if (physical) 5164 error = fiemap_fill_next_extent(fieinfo, 0, physical, 5165 length, flags); 5166 return (error < 0 ? error : 0); 5167 } 5168 5169 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5170 __u64 start, __u64 len) 5171 { 5172 ext4_lblk_t start_blk; 5173 int error = 0; 5174 5175 if (ext4_has_inline_data(inode)) { 5176 int has_inline = 1; 5177 5178 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline, 5179 start, len); 5180 5181 if (has_inline) 5182 return error; 5183 } 5184 5185 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 5186 error = ext4_ext_precache(inode); 5187 if (error) 5188 return error; 5189 } 5190 5191 /* fallback to generic here if not in extents fmt */ 5192 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5193 return generic_block_fiemap(inode, fieinfo, start, len, 5194 ext4_get_block); 5195 5196 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 5197 return -EBADR; 5198 5199 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 5200 error = ext4_xattr_fiemap(inode, fieinfo); 5201 } else { 5202 ext4_lblk_t len_blks; 5203 __u64 last_blk; 5204 5205 start_blk = start >> inode->i_sb->s_blocksize_bits; 5206 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5207 if (last_blk >= EXT_MAX_BLOCKS) 5208 last_blk = EXT_MAX_BLOCKS-1; 5209 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5210 5211 /* 5212 * Walk the extent tree gathering extent information 5213 * and pushing extents back to the user. 5214 */ 5215 error = ext4_fill_fiemap_extents(inode, start_blk, 5216 len_blks, fieinfo); 5217 } 5218 return error; 5219 } 5220 5221 /* 5222 * ext4_access_path: 5223 * Function to access the path buffer for marking it dirty. 5224 * It also checks if there are sufficient credits left in the journal handle 5225 * to update path. 5226 */ 5227 static int 5228 ext4_access_path(handle_t *handle, struct inode *inode, 5229 struct ext4_ext_path *path) 5230 { 5231 int credits, err; 5232 5233 if (!ext4_handle_valid(handle)) 5234 return 0; 5235 5236 /* 5237 * Check if need to extend journal credits 5238 * 3 for leaf, sb, and inode plus 2 (bmap and group 5239 * descriptor) for each block group; assume two block 5240 * groups 5241 */ 5242 if (handle->h_buffer_credits < 7) { 5243 credits = ext4_writepage_trans_blocks(inode); 5244 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 5245 /* EAGAIN is success */ 5246 if (err && err != -EAGAIN) 5247 return err; 5248 } 5249 5250 err = ext4_ext_get_access(handle, inode, path); 5251 return err; 5252 } 5253 5254 /* 5255 * ext4_ext_shift_path_extents: 5256 * Shift the extents of a path structure lying between path[depth].p_ext 5257 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells 5258 * if it is right shift or left shift operation. 5259 */ 5260 static int 5261 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5262 struct inode *inode, handle_t *handle, 5263 enum SHIFT_DIRECTION SHIFT) 5264 { 5265 int depth, err = 0; 5266 struct ext4_extent *ex_start, *ex_last; 5267 bool update = 0; 5268 depth = path->p_depth; 5269 5270 while (depth >= 0) { 5271 if (depth == path->p_depth) { 5272 ex_start = path[depth].p_ext; 5273 if (!ex_start) 5274 return -EIO; 5275 5276 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5277 5278 err = ext4_access_path(handle, inode, path + depth); 5279 if (err) 5280 goto out; 5281 5282 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 5283 update = 1; 5284 5285 while (ex_start <= ex_last) { 5286 if (SHIFT == SHIFT_LEFT) { 5287 le32_add_cpu(&ex_start->ee_block, 5288 -shift); 5289 /* Try to merge to the left. */ 5290 if ((ex_start > 5291 EXT_FIRST_EXTENT(path[depth].p_hdr)) 5292 && 5293 ext4_ext_try_to_merge_right(inode, 5294 path, ex_start - 1)) 5295 ex_last--; 5296 else 5297 ex_start++; 5298 } else { 5299 le32_add_cpu(&ex_last->ee_block, shift); 5300 ext4_ext_try_to_merge_right(inode, path, 5301 ex_last); 5302 ex_last--; 5303 } 5304 } 5305 err = ext4_ext_dirty(handle, inode, path + depth); 5306 if (err) 5307 goto out; 5308 5309 if (--depth < 0 || !update) 5310 break; 5311 } 5312 5313 /* Update index too */ 5314 err = ext4_access_path(handle, inode, path + depth); 5315 if (err) 5316 goto out; 5317 5318 if (SHIFT == SHIFT_LEFT) 5319 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5320 else 5321 le32_add_cpu(&path[depth].p_idx->ei_block, shift); 5322 err = ext4_ext_dirty(handle, inode, path + depth); 5323 if (err) 5324 goto out; 5325 5326 /* we are done if current index is not a starting index */ 5327 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5328 break; 5329 5330 depth--; 5331 } 5332 5333 out: 5334 return err; 5335 } 5336 5337 /* 5338 * ext4_ext_shift_extents: 5339 * All the extents which lies in the range from @start to the last allocated 5340 * block for the @inode are shifted either towards left or right (depending 5341 * upon @SHIFT) by @shift blocks. 5342 * On success, 0 is returned, error otherwise. 5343 */ 5344 static int 5345 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5346 ext4_lblk_t start, ext4_lblk_t shift, 5347 enum SHIFT_DIRECTION SHIFT) 5348 { 5349 struct ext4_ext_path *path; 5350 int ret = 0, depth; 5351 struct ext4_extent *extent; 5352 ext4_lblk_t stop, *iterator, ex_start, ex_end; 5353 5354 /* Let path point to the last extent */ 5355 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0); 5356 if (IS_ERR(path)) 5357 return PTR_ERR(path); 5358 5359 depth = path->p_depth; 5360 extent = path[depth].p_ext; 5361 if (!extent) 5362 goto out; 5363 5364 stop = le32_to_cpu(extent->ee_block) + 5365 ext4_ext_get_actual_len(extent); 5366 5367 /* 5368 * In case of left shift, Don't start shifting extents until we make 5369 * sure the hole is big enough to accommodate the shift. 5370 */ 5371 if (SHIFT == SHIFT_LEFT) { 5372 path = ext4_find_extent(inode, start - 1, &path, 0); 5373 if (IS_ERR(path)) 5374 return PTR_ERR(path); 5375 depth = path->p_depth; 5376 extent = path[depth].p_ext; 5377 if (extent) { 5378 ex_start = le32_to_cpu(extent->ee_block); 5379 ex_end = le32_to_cpu(extent->ee_block) + 5380 ext4_ext_get_actual_len(extent); 5381 } else { 5382 ex_start = 0; 5383 ex_end = 0; 5384 } 5385 5386 if ((start == ex_start && shift > ex_start) || 5387 (shift > start - ex_end)) { 5388 ext4_ext_drop_refs(path); 5389 kfree(path); 5390 return -EINVAL; 5391 } 5392 } 5393 5394 /* 5395 * In case of left shift, iterator points to start and it is increased 5396 * till we reach stop. In case of right shift, iterator points to stop 5397 * and it is decreased till we reach start. 5398 */ 5399 if (SHIFT == SHIFT_LEFT) 5400 iterator = &start; 5401 else 5402 iterator = &stop; 5403 5404 /* Its safe to start updating extents */ 5405 while (start < stop) { 5406 path = ext4_find_extent(inode, *iterator, &path, 0); 5407 if (IS_ERR(path)) 5408 return PTR_ERR(path); 5409 depth = path->p_depth; 5410 extent = path[depth].p_ext; 5411 if (!extent) { 5412 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5413 (unsigned long) *iterator); 5414 return -EIO; 5415 } 5416 if (SHIFT == SHIFT_LEFT && *iterator > 5417 le32_to_cpu(extent->ee_block)) { 5418 /* Hole, move to the next extent */ 5419 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5420 path[depth].p_ext++; 5421 } else { 5422 *iterator = ext4_ext_next_allocated_block(path); 5423 continue; 5424 } 5425 } 5426 5427 if (SHIFT == SHIFT_LEFT) { 5428 extent = EXT_LAST_EXTENT(path[depth].p_hdr); 5429 *iterator = le32_to_cpu(extent->ee_block) + 5430 ext4_ext_get_actual_len(extent); 5431 } else { 5432 extent = EXT_FIRST_EXTENT(path[depth].p_hdr); 5433 *iterator = le32_to_cpu(extent->ee_block) > 0 ? 5434 le32_to_cpu(extent->ee_block) - 1 : 0; 5435 /* Update path extent in case we need to stop */ 5436 while (le32_to_cpu(extent->ee_block) < start) 5437 extent++; 5438 path[depth].p_ext = extent; 5439 } 5440 ret = ext4_ext_shift_path_extents(path, shift, inode, 5441 handle, SHIFT); 5442 if (ret) 5443 break; 5444 } 5445 out: 5446 ext4_ext_drop_refs(path); 5447 kfree(path); 5448 return ret; 5449 } 5450 5451 /* 5452 * ext4_collapse_range: 5453 * This implements the fallocate's collapse range functionality for ext4 5454 * Returns: 0 and non-zero on error. 5455 */ 5456 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5457 { 5458 struct super_block *sb = inode->i_sb; 5459 ext4_lblk_t punch_start, punch_stop; 5460 handle_t *handle; 5461 unsigned int credits; 5462 loff_t new_size, ioffset; 5463 int ret; 5464 5465 /* 5466 * We need to test this early because xfstests assumes that a 5467 * collapse range of (0, 1) will return EOPNOTSUPP if the file 5468 * system does not support collapse range. 5469 */ 5470 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5471 return -EOPNOTSUPP; 5472 5473 /* Collapse range works only on fs block size aligned offsets. */ 5474 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5475 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5476 return -EINVAL; 5477 5478 if (!S_ISREG(inode->i_mode)) 5479 return -EINVAL; 5480 5481 trace_ext4_collapse_range(inode, offset, len); 5482 5483 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5484 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5485 5486 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5487 if (ext4_should_journal_data(inode)) { 5488 ret = ext4_force_commit(inode->i_sb); 5489 if (ret) 5490 return ret; 5491 } 5492 5493 /* 5494 * Need to round down offset to be aligned with page size boundary 5495 * for page size > block size. 5496 */ 5497 ioffset = round_down(offset, PAGE_SIZE); 5498 5499 /* Write out all dirty pages */ 5500 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5501 LLONG_MAX); 5502 if (ret) 5503 return ret; 5504 5505 /* Take mutex lock */ 5506 mutex_lock(&inode->i_mutex); 5507 5508 /* 5509 * There is no need to overlap collapse range with EOF, in which case 5510 * it is effectively a truncate operation 5511 */ 5512 if (offset + len >= i_size_read(inode)) { 5513 ret = -EINVAL; 5514 goto out_mutex; 5515 } 5516 5517 /* Currently just for extent based files */ 5518 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5519 ret = -EOPNOTSUPP; 5520 goto out_mutex; 5521 } 5522 5523 truncate_pagecache(inode, ioffset); 5524 5525 /* Wait for existing dio to complete */ 5526 ext4_inode_block_unlocked_dio(inode); 5527 inode_dio_wait(inode); 5528 5529 credits = ext4_writepage_trans_blocks(inode); 5530 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5531 if (IS_ERR(handle)) { 5532 ret = PTR_ERR(handle); 5533 goto out_dio; 5534 } 5535 5536 down_write(&EXT4_I(inode)->i_data_sem); 5537 ext4_discard_preallocations(inode); 5538 5539 ret = ext4_es_remove_extent(inode, punch_start, 5540 EXT_MAX_BLOCKS - punch_start); 5541 if (ret) { 5542 up_write(&EXT4_I(inode)->i_data_sem); 5543 goto out_stop; 5544 } 5545 5546 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5547 if (ret) { 5548 up_write(&EXT4_I(inode)->i_data_sem); 5549 goto out_stop; 5550 } 5551 ext4_discard_preallocations(inode); 5552 5553 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5554 punch_stop - punch_start, SHIFT_LEFT); 5555 if (ret) { 5556 up_write(&EXT4_I(inode)->i_data_sem); 5557 goto out_stop; 5558 } 5559 5560 new_size = i_size_read(inode) - len; 5561 i_size_write(inode, new_size); 5562 EXT4_I(inode)->i_disksize = new_size; 5563 5564 up_write(&EXT4_I(inode)->i_data_sem); 5565 if (IS_SYNC(inode)) 5566 ext4_handle_sync(handle); 5567 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 5568 ext4_mark_inode_dirty(handle, inode); 5569 5570 out_stop: 5571 ext4_journal_stop(handle); 5572 out_dio: 5573 ext4_inode_resume_unlocked_dio(inode); 5574 out_mutex: 5575 mutex_unlock(&inode->i_mutex); 5576 return ret; 5577 } 5578 5579 /* 5580 * ext4_insert_range: 5581 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate. 5582 * The data blocks starting from @offset to the EOF are shifted by @len 5583 * towards right to create a hole in the @inode. Inode size is increased 5584 * by len bytes. 5585 * Returns 0 on success, error otherwise. 5586 */ 5587 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len) 5588 { 5589 struct super_block *sb = inode->i_sb; 5590 handle_t *handle; 5591 struct ext4_ext_path *path; 5592 struct ext4_extent *extent; 5593 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0; 5594 unsigned int credits, ee_len; 5595 int ret = 0, depth, split_flag = 0; 5596 loff_t ioffset; 5597 5598 /* 5599 * We need to test this early because xfstests assumes that an 5600 * insert range of (0, 1) will return EOPNOTSUPP if the file 5601 * system does not support insert range. 5602 */ 5603 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5604 return -EOPNOTSUPP; 5605 5606 /* Insert range works only on fs block size aligned offsets. */ 5607 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5608 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5609 return -EINVAL; 5610 5611 if (!S_ISREG(inode->i_mode)) 5612 return -EOPNOTSUPP; 5613 5614 trace_ext4_insert_range(inode, offset, len); 5615 5616 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5617 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb); 5618 5619 /* Call ext4_force_commit to flush all data in case of data=journal */ 5620 if (ext4_should_journal_data(inode)) { 5621 ret = ext4_force_commit(inode->i_sb); 5622 if (ret) 5623 return ret; 5624 } 5625 5626 /* 5627 * Need to round down to align start offset to page size boundary 5628 * for page size > block size. 5629 */ 5630 ioffset = round_down(offset, PAGE_SIZE); 5631 5632 /* Write out all dirty pages */ 5633 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5634 LLONG_MAX); 5635 if (ret) 5636 return ret; 5637 5638 /* Take mutex lock */ 5639 mutex_lock(&inode->i_mutex); 5640 5641 /* Currently just for extent based files */ 5642 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5643 ret = -EOPNOTSUPP; 5644 goto out_mutex; 5645 } 5646 5647 /* Check for wrap through zero */ 5648 if (inode->i_size + len > inode->i_sb->s_maxbytes) { 5649 ret = -EFBIG; 5650 goto out_mutex; 5651 } 5652 5653 /* Offset should be less than i_size */ 5654 if (offset >= i_size_read(inode)) { 5655 ret = -EINVAL; 5656 goto out_mutex; 5657 } 5658 5659 truncate_pagecache(inode, ioffset); 5660 5661 /* Wait for existing dio to complete */ 5662 ext4_inode_block_unlocked_dio(inode); 5663 inode_dio_wait(inode); 5664 5665 credits = ext4_writepage_trans_blocks(inode); 5666 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5667 if (IS_ERR(handle)) { 5668 ret = PTR_ERR(handle); 5669 goto out_dio; 5670 } 5671 5672 /* Expand file to avoid data loss if there is error while shifting */ 5673 inode->i_size += len; 5674 EXT4_I(inode)->i_disksize += len; 5675 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 5676 ret = ext4_mark_inode_dirty(handle, inode); 5677 if (ret) 5678 goto out_stop; 5679 5680 down_write(&EXT4_I(inode)->i_data_sem); 5681 ext4_discard_preallocations(inode); 5682 5683 path = ext4_find_extent(inode, offset_lblk, NULL, 0); 5684 if (IS_ERR(path)) { 5685 up_write(&EXT4_I(inode)->i_data_sem); 5686 goto out_stop; 5687 } 5688 5689 depth = ext_depth(inode); 5690 extent = path[depth].p_ext; 5691 if (extent) { 5692 ee_start_lblk = le32_to_cpu(extent->ee_block); 5693 ee_len = ext4_ext_get_actual_len(extent); 5694 5695 /* 5696 * If offset_lblk is not the starting block of extent, split 5697 * the extent @offset_lblk 5698 */ 5699 if ((offset_lblk > ee_start_lblk) && 5700 (offset_lblk < (ee_start_lblk + ee_len))) { 5701 if (ext4_ext_is_unwritten(extent)) 5702 split_flag = EXT4_EXT_MARK_UNWRIT1 | 5703 EXT4_EXT_MARK_UNWRIT2; 5704 ret = ext4_split_extent_at(handle, inode, &path, 5705 offset_lblk, split_flag, 5706 EXT4_EX_NOCACHE | 5707 EXT4_GET_BLOCKS_PRE_IO | 5708 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5709 } 5710 5711 ext4_ext_drop_refs(path); 5712 kfree(path); 5713 if (ret < 0) { 5714 up_write(&EXT4_I(inode)->i_data_sem); 5715 goto out_stop; 5716 } 5717 } 5718 5719 ret = ext4_es_remove_extent(inode, offset_lblk, 5720 EXT_MAX_BLOCKS - offset_lblk); 5721 if (ret) { 5722 up_write(&EXT4_I(inode)->i_data_sem); 5723 goto out_stop; 5724 } 5725 5726 /* 5727 * if offset_lblk lies in a hole which is at start of file, use 5728 * ee_start_lblk to shift extents 5729 */ 5730 ret = ext4_ext_shift_extents(inode, handle, 5731 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk, 5732 len_lblk, SHIFT_RIGHT); 5733 5734 up_write(&EXT4_I(inode)->i_data_sem); 5735 if (IS_SYNC(inode)) 5736 ext4_handle_sync(handle); 5737 5738 out_stop: 5739 ext4_journal_stop(handle); 5740 out_dio: 5741 ext4_inode_resume_unlocked_dio(inode); 5742 out_mutex: 5743 mutex_unlock(&inode->i_mutex); 5744 return ret; 5745 } 5746 5747 /** 5748 * ext4_swap_extents - Swap extents between two inodes 5749 * 5750 * @inode1: First inode 5751 * @inode2: Second inode 5752 * @lblk1: Start block for first inode 5753 * @lblk2: Start block for second inode 5754 * @count: Number of blocks to swap 5755 * @mark_unwritten: Mark second inode's extents as unwritten after swap 5756 * @erp: Pointer to save error value 5757 * 5758 * This helper routine does exactly what is promise "swap extents". All other 5759 * stuff such as page-cache locking consistency, bh mapping consistency or 5760 * extent's data copying must be performed by caller. 5761 * Locking: 5762 * i_mutex is held for both inodes 5763 * i_data_sem is locked for write for both inodes 5764 * Assumptions: 5765 * All pages from requested range are locked for both inodes 5766 */ 5767 int 5768 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5769 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5770 ext4_lblk_t count, int unwritten, int *erp) 5771 { 5772 struct ext4_ext_path *path1 = NULL; 5773 struct ext4_ext_path *path2 = NULL; 5774 int replaced_count = 0; 5775 5776 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5777 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5778 BUG_ON(!mutex_is_locked(&inode1->i_mutex)); 5779 BUG_ON(!mutex_is_locked(&inode2->i_mutex)); 5780 5781 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5782 if (unlikely(*erp)) 5783 return 0; 5784 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5785 if (unlikely(*erp)) 5786 return 0; 5787 5788 while (count) { 5789 struct ext4_extent *ex1, *ex2, tmp_ex; 5790 ext4_lblk_t e1_blk, e2_blk; 5791 int e1_len, e2_len, len; 5792 int split = 0; 5793 5794 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5795 if (unlikely(IS_ERR(path1))) { 5796 *erp = PTR_ERR(path1); 5797 path1 = NULL; 5798 finish: 5799 count = 0; 5800 goto repeat; 5801 } 5802 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5803 if (unlikely(IS_ERR(path2))) { 5804 *erp = PTR_ERR(path2); 5805 path2 = NULL; 5806 goto finish; 5807 } 5808 ex1 = path1[path1->p_depth].p_ext; 5809 ex2 = path2[path2->p_depth].p_ext; 5810 /* Do we have somthing to swap ? */ 5811 if (unlikely(!ex2 || !ex1)) 5812 goto finish; 5813 5814 e1_blk = le32_to_cpu(ex1->ee_block); 5815 e2_blk = le32_to_cpu(ex2->ee_block); 5816 e1_len = ext4_ext_get_actual_len(ex1); 5817 e2_len = ext4_ext_get_actual_len(ex2); 5818 5819 /* Hole handling */ 5820 if (!in_range(lblk1, e1_blk, e1_len) || 5821 !in_range(lblk2, e2_blk, e2_len)) { 5822 ext4_lblk_t next1, next2; 5823 5824 /* if hole after extent, then go to next extent */ 5825 next1 = ext4_ext_next_allocated_block(path1); 5826 next2 = ext4_ext_next_allocated_block(path2); 5827 /* If hole before extent, then shift to that extent */ 5828 if (e1_blk > lblk1) 5829 next1 = e1_blk; 5830 if (e2_blk > lblk2) 5831 next2 = e1_blk; 5832 /* Do we have something to swap */ 5833 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5834 goto finish; 5835 /* Move to the rightest boundary */ 5836 len = next1 - lblk1; 5837 if (len < next2 - lblk2) 5838 len = next2 - lblk2; 5839 if (len > count) 5840 len = count; 5841 lblk1 += len; 5842 lblk2 += len; 5843 count -= len; 5844 goto repeat; 5845 } 5846 5847 /* Prepare left boundary */ 5848 if (e1_blk < lblk1) { 5849 split = 1; 5850 *erp = ext4_force_split_extent_at(handle, inode1, 5851 &path1, lblk1, 0); 5852 if (unlikely(*erp)) 5853 goto finish; 5854 } 5855 if (e2_blk < lblk2) { 5856 split = 1; 5857 *erp = ext4_force_split_extent_at(handle, inode2, 5858 &path2, lblk2, 0); 5859 if (unlikely(*erp)) 5860 goto finish; 5861 } 5862 /* ext4_split_extent_at() may result in leaf extent split, 5863 * path must to be revalidated. */ 5864 if (split) 5865 goto repeat; 5866 5867 /* Prepare right boundary */ 5868 len = count; 5869 if (len > e1_blk + e1_len - lblk1) 5870 len = e1_blk + e1_len - lblk1; 5871 if (len > e2_blk + e2_len - lblk2) 5872 len = e2_blk + e2_len - lblk2; 5873 5874 if (len != e1_len) { 5875 split = 1; 5876 *erp = ext4_force_split_extent_at(handle, inode1, 5877 &path1, lblk1 + len, 0); 5878 if (unlikely(*erp)) 5879 goto finish; 5880 } 5881 if (len != e2_len) { 5882 split = 1; 5883 *erp = ext4_force_split_extent_at(handle, inode2, 5884 &path2, lblk2 + len, 0); 5885 if (*erp) 5886 goto finish; 5887 } 5888 /* ext4_split_extent_at() may result in leaf extent split, 5889 * path must to be revalidated. */ 5890 if (split) 5891 goto repeat; 5892 5893 BUG_ON(e2_len != e1_len); 5894 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5895 if (unlikely(*erp)) 5896 goto finish; 5897 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5898 if (unlikely(*erp)) 5899 goto finish; 5900 5901 /* Both extents are fully inside boundaries. Swap it now */ 5902 tmp_ex = *ex1; 5903 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5904 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5905 ex1->ee_len = cpu_to_le16(e2_len); 5906 ex2->ee_len = cpu_to_le16(e1_len); 5907 if (unwritten) 5908 ext4_ext_mark_unwritten(ex2); 5909 if (ext4_ext_is_unwritten(&tmp_ex)) 5910 ext4_ext_mark_unwritten(ex1); 5911 5912 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5913 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5914 *erp = ext4_ext_dirty(handle, inode2, path2 + 5915 path2->p_depth); 5916 if (unlikely(*erp)) 5917 goto finish; 5918 *erp = ext4_ext_dirty(handle, inode1, path1 + 5919 path1->p_depth); 5920 /* 5921 * Looks scarry ah..? second inode already points to new blocks, 5922 * and it was successfully dirtied. But luckily error may happen 5923 * only due to journal error, so full transaction will be 5924 * aborted anyway. 5925 */ 5926 if (unlikely(*erp)) 5927 goto finish; 5928 lblk1 += len; 5929 lblk2 += len; 5930 replaced_count += len; 5931 count -= len; 5932 5933 repeat: 5934 ext4_ext_drop_refs(path1); 5935 kfree(path1); 5936 ext4_ext_drop_refs(path2); 5937 kfree(path2); 5938 path1 = path2 = NULL; 5939 } 5940 return replaced_count; 5941 } 5942