xref: /openbmc/linux/fs/ext4/extents.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46 
47 
48 /*
49  * ext_pblock:
50  * combine low and high parts of physical block number into ext4_fsblk_t
51  */
52 static ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
53 {
54 	ext4_fsblk_t block;
55 
56 	block = le32_to_cpu(ex->ee_start_lo);
57 	block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58 	return block;
59 }
60 
61 /*
62  * idx_pblock:
63  * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64  */
65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
66 {
67 	ext4_fsblk_t block;
68 
69 	block = le32_to_cpu(ix->ei_leaf_lo);
70 	block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71 	return block;
72 }
73 
74 /*
75  * ext4_ext_store_pblock:
76  * stores a large physical block number into an extent struct,
77  * breaking it into parts
78  */
79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80 {
81 	ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82 	ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
83 }
84 
85 /*
86  * ext4_idx_store_pblock:
87  * stores a large physical block number into an index struct,
88  * breaking it into parts
89  */
90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91 {
92 	ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93 	ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
94 }
95 
96 static int ext4_ext_journal_restart(handle_t *handle, int needed)
97 {
98 	int err;
99 
100 	if (!ext4_handle_valid(handle))
101 		return 0;
102 	if (handle->h_buffer_credits > needed)
103 		return 0;
104 	err = ext4_journal_extend(handle, needed);
105 	if (err <= 0)
106 		return err;
107 	return ext4_journal_restart(handle, needed);
108 }
109 
110 /*
111  * could return:
112  *  - EROFS
113  *  - ENOMEM
114  */
115 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
116 				struct ext4_ext_path *path)
117 {
118 	if (path->p_bh) {
119 		/* path points to block */
120 		return ext4_journal_get_write_access(handle, path->p_bh);
121 	}
122 	/* path points to leaf/index in inode body */
123 	/* we use in-core data, no need to protect them */
124 	return 0;
125 }
126 
127 /*
128  * could return:
129  *  - EROFS
130  *  - ENOMEM
131  *  - EIO
132  */
133 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
134 				struct ext4_ext_path *path)
135 {
136 	int err;
137 	if (path->p_bh) {
138 		/* path points to block */
139 		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
140 	} else {
141 		/* path points to leaf/index in inode body */
142 		err = ext4_mark_inode_dirty(handle, inode);
143 	}
144 	return err;
145 }
146 
147 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
148 			      struct ext4_ext_path *path,
149 			      ext4_lblk_t block)
150 {
151 	struct ext4_inode_info *ei = EXT4_I(inode);
152 	ext4_fsblk_t bg_start;
153 	ext4_fsblk_t last_block;
154 	ext4_grpblk_t colour;
155 	ext4_group_t block_group;
156 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
157 	int depth;
158 
159 	if (path) {
160 		struct ext4_extent *ex;
161 		depth = path->p_depth;
162 
163 		/* try to predict block placement */
164 		ex = path[depth].p_ext;
165 		if (ex)
166 			return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
167 
168 		/* it looks like index is empty;
169 		 * try to find starting block from index itself */
170 		if (path[depth].p_bh)
171 			return path[depth].p_bh->b_blocknr;
172 	}
173 
174 	/* OK. use inode's group */
175 	block_group = ei->i_block_group;
176 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
177 		/*
178 		 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
179 		 * block groups per flexgroup, reserve the first block
180 		 * group for directories and special files.  Regular
181 		 * files will start at the second block group.  This
182 		 * tends to speed up directory access and improves
183 		 * fsck times.
184 		 */
185 		block_group &= ~(flex_size-1);
186 		if (S_ISREG(inode->i_mode))
187 			block_group++;
188 	}
189 	bg_start = (block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
190 		le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
191 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
192 
193 	/*
194 	 * If we are doing delayed allocation, we don't need take
195 	 * colour into account.
196 	 */
197 	if (test_opt(inode->i_sb, DELALLOC))
198 		return bg_start;
199 
200 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
201 		colour = (current->pid % 16) *
202 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
203 	else
204 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
205 	return bg_start + colour + block;
206 }
207 
208 /*
209  * Allocation for a meta data block
210  */
211 static ext4_fsblk_t
212 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
213 			struct ext4_ext_path *path,
214 			struct ext4_extent *ex, int *err)
215 {
216 	ext4_fsblk_t goal, newblock;
217 
218 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
219 	newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
220 	return newblock;
221 }
222 
223 static int ext4_ext_space_block(struct inode *inode)
224 {
225 	int size;
226 
227 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
228 			/ sizeof(struct ext4_extent);
229 #ifdef AGGRESSIVE_TEST
230 	if (size > 6)
231 		size = 6;
232 #endif
233 	return size;
234 }
235 
236 static int ext4_ext_space_block_idx(struct inode *inode)
237 {
238 	int size;
239 
240 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
241 			/ sizeof(struct ext4_extent_idx);
242 #ifdef AGGRESSIVE_TEST
243 	if (size > 5)
244 		size = 5;
245 #endif
246 	return size;
247 }
248 
249 static int ext4_ext_space_root(struct inode *inode)
250 {
251 	int size;
252 
253 	size = sizeof(EXT4_I(inode)->i_data);
254 	size -= sizeof(struct ext4_extent_header);
255 	size /= sizeof(struct ext4_extent);
256 #ifdef AGGRESSIVE_TEST
257 	if (size > 3)
258 		size = 3;
259 #endif
260 	return size;
261 }
262 
263 static int ext4_ext_space_root_idx(struct inode *inode)
264 {
265 	int size;
266 
267 	size = sizeof(EXT4_I(inode)->i_data);
268 	size -= sizeof(struct ext4_extent_header);
269 	size /= sizeof(struct ext4_extent_idx);
270 #ifdef AGGRESSIVE_TEST
271 	if (size > 4)
272 		size = 4;
273 #endif
274 	return size;
275 }
276 
277 /*
278  * Calculate the number of metadata blocks needed
279  * to allocate @blocks
280  * Worse case is one block per extent
281  */
282 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks)
283 {
284 	int lcap, icap, rcap, leafs, idxs, num;
285 	int newextents = blocks;
286 
287 	rcap = ext4_ext_space_root_idx(inode);
288 	lcap = ext4_ext_space_block(inode);
289 	icap = ext4_ext_space_block_idx(inode);
290 
291 	/* number of new leaf blocks needed */
292 	num = leafs = (newextents + lcap - 1) / lcap;
293 
294 	/*
295 	 * Worse case, we need separate index block(s)
296 	 * to link all new leaf blocks
297 	 */
298 	idxs = (leafs + icap - 1) / icap;
299 	do {
300 		num += idxs;
301 		idxs = (idxs + icap - 1) / icap;
302 	} while (idxs > rcap);
303 
304 	return num;
305 }
306 
307 static int
308 ext4_ext_max_entries(struct inode *inode, int depth)
309 {
310 	int max;
311 
312 	if (depth == ext_depth(inode)) {
313 		if (depth == 0)
314 			max = ext4_ext_space_root(inode);
315 		else
316 			max = ext4_ext_space_root_idx(inode);
317 	} else {
318 		if (depth == 0)
319 			max = ext4_ext_space_block(inode);
320 		else
321 			max = ext4_ext_space_block_idx(inode);
322 	}
323 
324 	return max;
325 }
326 
327 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
328 {
329 	ext4_fsblk_t block = ext_pblock(ext);
330 	int len = ext4_ext_get_actual_len(ext);
331 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
332 	if (unlikely(block < le32_to_cpu(es->s_first_data_block) ||
333 			((block + len) > ext4_blocks_count(es))))
334 		return 0;
335 	else
336 		return 1;
337 }
338 
339 static int ext4_valid_extent_idx(struct inode *inode,
340 				struct ext4_extent_idx *ext_idx)
341 {
342 	ext4_fsblk_t block = idx_pblock(ext_idx);
343 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
344 	if (unlikely(block < le32_to_cpu(es->s_first_data_block) ||
345 			(block > ext4_blocks_count(es))))
346 		return 0;
347 	else
348 		return 1;
349 }
350 
351 static int ext4_valid_extent_entries(struct inode *inode,
352 				struct ext4_extent_header *eh,
353 				int depth)
354 {
355 	struct ext4_extent *ext;
356 	struct ext4_extent_idx *ext_idx;
357 	unsigned short entries;
358 	if (eh->eh_entries == 0)
359 		return 1;
360 
361 	entries = le16_to_cpu(eh->eh_entries);
362 
363 	if (depth == 0) {
364 		/* leaf entries */
365 		ext = EXT_FIRST_EXTENT(eh);
366 		while (entries) {
367 			if (!ext4_valid_extent(inode, ext))
368 				return 0;
369 			ext++;
370 			entries--;
371 		}
372 	} else {
373 		ext_idx = EXT_FIRST_INDEX(eh);
374 		while (entries) {
375 			if (!ext4_valid_extent_idx(inode, ext_idx))
376 				return 0;
377 			ext_idx++;
378 			entries--;
379 		}
380 	}
381 	return 1;
382 }
383 
384 static int __ext4_ext_check(const char *function, struct inode *inode,
385 					struct ext4_extent_header *eh,
386 					int depth)
387 {
388 	const char *error_msg;
389 	int max = 0;
390 
391 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
392 		error_msg = "invalid magic";
393 		goto corrupted;
394 	}
395 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
396 		error_msg = "unexpected eh_depth";
397 		goto corrupted;
398 	}
399 	if (unlikely(eh->eh_max == 0)) {
400 		error_msg = "invalid eh_max";
401 		goto corrupted;
402 	}
403 	max = ext4_ext_max_entries(inode, depth);
404 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
405 		error_msg = "too large eh_max";
406 		goto corrupted;
407 	}
408 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
409 		error_msg = "invalid eh_entries";
410 		goto corrupted;
411 	}
412 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
413 		error_msg = "invalid extent entries";
414 		goto corrupted;
415 	}
416 	return 0;
417 
418 corrupted:
419 	ext4_error(inode->i_sb, function,
420 			"bad header/extent in inode #%lu: %s - magic %x, "
421 			"entries %u, max %u(%u), depth %u(%u)",
422 			inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
423 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
424 			max, le16_to_cpu(eh->eh_depth), depth);
425 
426 	return -EIO;
427 }
428 
429 #define ext4_ext_check(inode, eh, depth)	\
430 	__ext4_ext_check(__func__, inode, eh, depth)
431 
432 int ext4_ext_check_inode(struct inode *inode)
433 {
434 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
435 }
436 
437 #ifdef EXT_DEBUG
438 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
439 {
440 	int k, l = path->p_depth;
441 
442 	ext_debug("path:");
443 	for (k = 0; k <= l; k++, path++) {
444 		if (path->p_idx) {
445 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
446 			    idx_pblock(path->p_idx));
447 		} else if (path->p_ext) {
448 			ext_debug("  %d:%d:%llu ",
449 				  le32_to_cpu(path->p_ext->ee_block),
450 				  ext4_ext_get_actual_len(path->p_ext),
451 				  ext_pblock(path->p_ext));
452 		} else
453 			ext_debug("  []");
454 	}
455 	ext_debug("\n");
456 }
457 
458 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
459 {
460 	int depth = ext_depth(inode);
461 	struct ext4_extent_header *eh;
462 	struct ext4_extent *ex;
463 	int i;
464 
465 	if (!path)
466 		return;
467 
468 	eh = path[depth].p_hdr;
469 	ex = EXT_FIRST_EXTENT(eh);
470 
471 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
472 		ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
473 			  ext4_ext_get_actual_len(ex), ext_pblock(ex));
474 	}
475 	ext_debug("\n");
476 }
477 #else
478 #define ext4_ext_show_path(inode, path)
479 #define ext4_ext_show_leaf(inode, path)
480 #endif
481 
482 void ext4_ext_drop_refs(struct ext4_ext_path *path)
483 {
484 	int depth = path->p_depth;
485 	int i;
486 
487 	for (i = 0; i <= depth; i++, path++)
488 		if (path->p_bh) {
489 			brelse(path->p_bh);
490 			path->p_bh = NULL;
491 		}
492 }
493 
494 /*
495  * ext4_ext_binsearch_idx:
496  * binary search for the closest index of the given block
497  * the header must be checked before calling this
498  */
499 static void
500 ext4_ext_binsearch_idx(struct inode *inode,
501 			struct ext4_ext_path *path, ext4_lblk_t block)
502 {
503 	struct ext4_extent_header *eh = path->p_hdr;
504 	struct ext4_extent_idx *r, *l, *m;
505 
506 
507 	ext_debug("binsearch for %u(idx):  ", block);
508 
509 	l = EXT_FIRST_INDEX(eh) + 1;
510 	r = EXT_LAST_INDEX(eh);
511 	while (l <= r) {
512 		m = l + (r - l) / 2;
513 		if (block < le32_to_cpu(m->ei_block))
514 			r = m - 1;
515 		else
516 			l = m + 1;
517 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
518 				m, le32_to_cpu(m->ei_block),
519 				r, le32_to_cpu(r->ei_block));
520 	}
521 
522 	path->p_idx = l - 1;
523 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
524 		  idx_pblock(path->p_idx));
525 
526 #ifdef CHECK_BINSEARCH
527 	{
528 		struct ext4_extent_idx *chix, *ix;
529 		int k;
530 
531 		chix = ix = EXT_FIRST_INDEX(eh);
532 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
533 		  if (k != 0 &&
534 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
535 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
536 				       "first=0x%p\n", k,
537 				       ix, EXT_FIRST_INDEX(eh));
538 				printk(KERN_DEBUG "%u <= %u\n",
539 				       le32_to_cpu(ix->ei_block),
540 				       le32_to_cpu(ix[-1].ei_block));
541 			}
542 			BUG_ON(k && le32_to_cpu(ix->ei_block)
543 					   <= le32_to_cpu(ix[-1].ei_block));
544 			if (block < le32_to_cpu(ix->ei_block))
545 				break;
546 			chix = ix;
547 		}
548 		BUG_ON(chix != path->p_idx);
549 	}
550 #endif
551 
552 }
553 
554 /*
555  * ext4_ext_binsearch:
556  * binary search for closest extent of the given block
557  * the header must be checked before calling this
558  */
559 static void
560 ext4_ext_binsearch(struct inode *inode,
561 		struct ext4_ext_path *path, ext4_lblk_t block)
562 {
563 	struct ext4_extent_header *eh = path->p_hdr;
564 	struct ext4_extent *r, *l, *m;
565 
566 	if (eh->eh_entries == 0) {
567 		/*
568 		 * this leaf is empty:
569 		 * we get such a leaf in split/add case
570 		 */
571 		return;
572 	}
573 
574 	ext_debug("binsearch for %u:  ", block);
575 
576 	l = EXT_FIRST_EXTENT(eh) + 1;
577 	r = EXT_LAST_EXTENT(eh);
578 
579 	while (l <= r) {
580 		m = l + (r - l) / 2;
581 		if (block < le32_to_cpu(m->ee_block))
582 			r = m - 1;
583 		else
584 			l = m + 1;
585 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
586 				m, le32_to_cpu(m->ee_block),
587 				r, le32_to_cpu(r->ee_block));
588 	}
589 
590 	path->p_ext = l - 1;
591 	ext_debug("  -> %d:%llu:%d ",
592 			le32_to_cpu(path->p_ext->ee_block),
593 			ext_pblock(path->p_ext),
594 			ext4_ext_get_actual_len(path->p_ext));
595 
596 #ifdef CHECK_BINSEARCH
597 	{
598 		struct ext4_extent *chex, *ex;
599 		int k;
600 
601 		chex = ex = EXT_FIRST_EXTENT(eh);
602 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
603 			BUG_ON(k && le32_to_cpu(ex->ee_block)
604 					  <= le32_to_cpu(ex[-1].ee_block));
605 			if (block < le32_to_cpu(ex->ee_block))
606 				break;
607 			chex = ex;
608 		}
609 		BUG_ON(chex != path->p_ext);
610 	}
611 #endif
612 
613 }
614 
615 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
616 {
617 	struct ext4_extent_header *eh;
618 
619 	eh = ext_inode_hdr(inode);
620 	eh->eh_depth = 0;
621 	eh->eh_entries = 0;
622 	eh->eh_magic = EXT4_EXT_MAGIC;
623 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
624 	ext4_mark_inode_dirty(handle, inode);
625 	ext4_ext_invalidate_cache(inode);
626 	return 0;
627 }
628 
629 struct ext4_ext_path *
630 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
631 					struct ext4_ext_path *path)
632 {
633 	struct ext4_extent_header *eh;
634 	struct buffer_head *bh;
635 	short int depth, i, ppos = 0, alloc = 0;
636 
637 	eh = ext_inode_hdr(inode);
638 	depth = ext_depth(inode);
639 
640 	/* account possible depth increase */
641 	if (!path) {
642 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
643 				GFP_NOFS);
644 		if (!path)
645 			return ERR_PTR(-ENOMEM);
646 		alloc = 1;
647 	}
648 	path[0].p_hdr = eh;
649 	path[0].p_bh = NULL;
650 
651 	i = depth;
652 	/* walk through the tree */
653 	while (i) {
654 		int need_to_validate = 0;
655 
656 		ext_debug("depth %d: num %d, max %d\n",
657 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
658 
659 		ext4_ext_binsearch_idx(inode, path + ppos, block);
660 		path[ppos].p_block = idx_pblock(path[ppos].p_idx);
661 		path[ppos].p_depth = i;
662 		path[ppos].p_ext = NULL;
663 
664 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
665 		if (unlikely(!bh))
666 			goto err;
667 		if (!bh_uptodate_or_lock(bh)) {
668 			if (bh_submit_read(bh) < 0) {
669 				put_bh(bh);
670 				goto err;
671 			}
672 			/* validate the extent entries */
673 			need_to_validate = 1;
674 		}
675 		eh = ext_block_hdr(bh);
676 		ppos++;
677 		BUG_ON(ppos > depth);
678 		path[ppos].p_bh = bh;
679 		path[ppos].p_hdr = eh;
680 		i--;
681 
682 		if (need_to_validate && ext4_ext_check(inode, eh, i))
683 			goto err;
684 	}
685 
686 	path[ppos].p_depth = i;
687 	path[ppos].p_ext = NULL;
688 	path[ppos].p_idx = NULL;
689 
690 	/* find extent */
691 	ext4_ext_binsearch(inode, path + ppos, block);
692 	/* if not an empty leaf */
693 	if (path[ppos].p_ext)
694 		path[ppos].p_block = ext_pblock(path[ppos].p_ext);
695 
696 	ext4_ext_show_path(inode, path);
697 
698 	return path;
699 
700 err:
701 	ext4_ext_drop_refs(path);
702 	if (alloc)
703 		kfree(path);
704 	return ERR_PTR(-EIO);
705 }
706 
707 /*
708  * ext4_ext_insert_index:
709  * insert new index [@logical;@ptr] into the block at @curp;
710  * check where to insert: before @curp or after @curp
711  */
712 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
713 				struct ext4_ext_path *curp,
714 				int logical, ext4_fsblk_t ptr)
715 {
716 	struct ext4_extent_idx *ix;
717 	int len, err;
718 
719 	err = ext4_ext_get_access(handle, inode, curp);
720 	if (err)
721 		return err;
722 
723 	BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
724 	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
725 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
726 		/* insert after */
727 		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
728 			len = (len - 1) * sizeof(struct ext4_extent_idx);
729 			len = len < 0 ? 0 : len;
730 			ext_debug("insert new index %d after: %llu. "
731 					"move %d from 0x%p to 0x%p\n",
732 					logical, ptr, len,
733 					(curp->p_idx + 1), (curp->p_idx + 2));
734 			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
735 		}
736 		ix = curp->p_idx + 1;
737 	} else {
738 		/* insert before */
739 		len = len * sizeof(struct ext4_extent_idx);
740 		len = len < 0 ? 0 : len;
741 		ext_debug("insert new index %d before: %llu. "
742 				"move %d from 0x%p to 0x%p\n",
743 				logical, ptr, len,
744 				curp->p_idx, (curp->p_idx + 1));
745 		memmove(curp->p_idx + 1, curp->p_idx, len);
746 		ix = curp->p_idx;
747 	}
748 
749 	ix->ei_block = cpu_to_le32(logical);
750 	ext4_idx_store_pblock(ix, ptr);
751 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
752 
753 	BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
754 			     > le16_to_cpu(curp->p_hdr->eh_max));
755 	BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
756 
757 	err = ext4_ext_dirty(handle, inode, curp);
758 	ext4_std_error(inode->i_sb, err);
759 
760 	return err;
761 }
762 
763 /*
764  * ext4_ext_split:
765  * inserts new subtree into the path, using free index entry
766  * at depth @at:
767  * - allocates all needed blocks (new leaf and all intermediate index blocks)
768  * - makes decision where to split
769  * - moves remaining extents and index entries (right to the split point)
770  *   into the newly allocated blocks
771  * - initializes subtree
772  */
773 static int ext4_ext_split(handle_t *handle, struct inode *inode,
774 				struct ext4_ext_path *path,
775 				struct ext4_extent *newext, int at)
776 {
777 	struct buffer_head *bh = NULL;
778 	int depth = ext_depth(inode);
779 	struct ext4_extent_header *neh;
780 	struct ext4_extent_idx *fidx;
781 	struct ext4_extent *ex;
782 	int i = at, k, m, a;
783 	ext4_fsblk_t newblock, oldblock;
784 	__le32 border;
785 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
786 	int err = 0;
787 
788 	/* make decision: where to split? */
789 	/* FIXME: now decision is simplest: at current extent */
790 
791 	/* if current leaf will be split, then we should use
792 	 * border from split point */
793 	BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
794 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
795 		border = path[depth].p_ext[1].ee_block;
796 		ext_debug("leaf will be split."
797 				" next leaf starts at %d\n",
798 				  le32_to_cpu(border));
799 	} else {
800 		border = newext->ee_block;
801 		ext_debug("leaf will be added."
802 				" next leaf starts at %d\n",
803 				le32_to_cpu(border));
804 	}
805 
806 	/*
807 	 * If error occurs, then we break processing
808 	 * and mark filesystem read-only. index won't
809 	 * be inserted and tree will be in consistent
810 	 * state. Next mount will repair buffers too.
811 	 */
812 
813 	/*
814 	 * Get array to track all allocated blocks.
815 	 * We need this to handle errors and free blocks
816 	 * upon them.
817 	 */
818 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
819 	if (!ablocks)
820 		return -ENOMEM;
821 
822 	/* allocate all needed blocks */
823 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
824 	for (a = 0; a < depth - at; a++) {
825 		newblock = ext4_ext_new_meta_block(handle, inode, path,
826 						   newext, &err);
827 		if (newblock == 0)
828 			goto cleanup;
829 		ablocks[a] = newblock;
830 	}
831 
832 	/* initialize new leaf */
833 	newblock = ablocks[--a];
834 	BUG_ON(newblock == 0);
835 	bh = sb_getblk(inode->i_sb, newblock);
836 	if (!bh) {
837 		err = -EIO;
838 		goto cleanup;
839 	}
840 	lock_buffer(bh);
841 
842 	err = ext4_journal_get_create_access(handle, bh);
843 	if (err)
844 		goto cleanup;
845 
846 	neh = ext_block_hdr(bh);
847 	neh->eh_entries = 0;
848 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
849 	neh->eh_magic = EXT4_EXT_MAGIC;
850 	neh->eh_depth = 0;
851 	ex = EXT_FIRST_EXTENT(neh);
852 
853 	/* move remainder of path[depth] to the new leaf */
854 	BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
855 	/* start copy from next extent */
856 	/* TODO: we could do it by single memmove */
857 	m = 0;
858 	path[depth].p_ext++;
859 	while (path[depth].p_ext <=
860 			EXT_MAX_EXTENT(path[depth].p_hdr)) {
861 		ext_debug("move %d:%llu:%d in new leaf %llu\n",
862 				le32_to_cpu(path[depth].p_ext->ee_block),
863 				ext_pblock(path[depth].p_ext),
864 				ext4_ext_get_actual_len(path[depth].p_ext),
865 				newblock);
866 		/*memmove(ex++, path[depth].p_ext++,
867 				sizeof(struct ext4_extent));
868 		neh->eh_entries++;*/
869 		path[depth].p_ext++;
870 		m++;
871 	}
872 	if (m) {
873 		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
874 		le16_add_cpu(&neh->eh_entries, m);
875 	}
876 
877 	set_buffer_uptodate(bh);
878 	unlock_buffer(bh);
879 
880 	err = ext4_handle_dirty_metadata(handle, inode, bh);
881 	if (err)
882 		goto cleanup;
883 	brelse(bh);
884 	bh = NULL;
885 
886 	/* correct old leaf */
887 	if (m) {
888 		err = ext4_ext_get_access(handle, inode, path + depth);
889 		if (err)
890 			goto cleanup;
891 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
892 		err = ext4_ext_dirty(handle, inode, path + depth);
893 		if (err)
894 			goto cleanup;
895 
896 	}
897 
898 	/* create intermediate indexes */
899 	k = depth - at - 1;
900 	BUG_ON(k < 0);
901 	if (k)
902 		ext_debug("create %d intermediate indices\n", k);
903 	/* insert new index into current index block */
904 	/* current depth stored in i var */
905 	i = depth - 1;
906 	while (k--) {
907 		oldblock = newblock;
908 		newblock = ablocks[--a];
909 		bh = sb_getblk(inode->i_sb, newblock);
910 		if (!bh) {
911 			err = -EIO;
912 			goto cleanup;
913 		}
914 		lock_buffer(bh);
915 
916 		err = ext4_journal_get_create_access(handle, bh);
917 		if (err)
918 			goto cleanup;
919 
920 		neh = ext_block_hdr(bh);
921 		neh->eh_entries = cpu_to_le16(1);
922 		neh->eh_magic = EXT4_EXT_MAGIC;
923 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
924 		neh->eh_depth = cpu_to_le16(depth - i);
925 		fidx = EXT_FIRST_INDEX(neh);
926 		fidx->ei_block = border;
927 		ext4_idx_store_pblock(fidx, oldblock);
928 
929 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
930 				i, newblock, le32_to_cpu(border), oldblock);
931 		/* copy indexes */
932 		m = 0;
933 		path[i].p_idx++;
934 
935 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
936 				EXT_MAX_INDEX(path[i].p_hdr));
937 		BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
938 				EXT_LAST_INDEX(path[i].p_hdr));
939 		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
940 			ext_debug("%d: move %d:%llu in new index %llu\n", i,
941 					le32_to_cpu(path[i].p_idx->ei_block),
942 					idx_pblock(path[i].p_idx),
943 					newblock);
944 			/*memmove(++fidx, path[i].p_idx++,
945 					sizeof(struct ext4_extent_idx));
946 			neh->eh_entries++;
947 			BUG_ON(neh->eh_entries > neh->eh_max);*/
948 			path[i].p_idx++;
949 			m++;
950 		}
951 		if (m) {
952 			memmove(++fidx, path[i].p_idx - m,
953 				sizeof(struct ext4_extent_idx) * m);
954 			le16_add_cpu(&neh->eh_entries, m);
955 		}
956 		set_buffer_uptodate(bh);
957 		unlock_buffer(bh);
958 
959 		err = ext4_handle_dirty_metadata(handle, inode, bh);
960 		if (err)
961 			goto cleanup;
962 		brelse(bh);
963 		bh = NULL;
964 
965 		/* correct old index */
966 		if (m) {
967 			err = ext4_ext_get_access(handle, inode, path + i);
968 			if (err)
969 				goto cleanup;
970 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
971 			err = ext4_ext_dirty(handle, inode, path + i);
972 			if (err)
973 				goto cleanup;
974 		}
975 
976 		i--;
977 	}
978 
979 	/* insert new index */
980 	err = ext4_ext_insert_index(handle, inode, path + at,
981 				    le32_to_cpu(border), newblock);
982 
983 cleanup:
984 	if (bh) {
985 		if (buffer_locked(bh))
986 			unlock_buffer(bh);
987 		brelse(bh);
988 	}
989 
990 	if (err) {
991 		/* free all allocated blocks in error case */
992 		for (i = 0; i < depth; i++) {
993 			if (!ablocks[i])
994 				continue;
995 			ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
996 		}
997 	}
998 	kfree(ablocks);
999 
1000 	return err;
1001 }
1002 
1003 /*
1004  * ext4_ext_grow_indepth:
1005  * implements tree growing procedure:
1006  * - allocates new block
1007  * - moves top-level data (index block or leaf) into the new block
1008  * - initializes new top-level, creating index that points to the
1009  *   just created block
1010  */
1011 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1012 					struct ext4_ext_path *path,
1013 					struct ext4_extent *newext)
1014 {
1015 	struct ext4_ext_path *curp = path;
1016 	struct ext4_extent_header *neh;
1017 	struct ext4_extent_idx *fidx;
1018 	struct buffer_head *bh;
1019 	ext4_fsblk_t newblock;
1020 	int err = 0;
1021 
1022 	newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1023 	if (newblock == 0)
1024 		return err;
1025 
1026 	bh = sb_getblk(inode->i_sb, newblock);
1027 	if (!bh) {
1028 		err = -EIO;
1029 		ext4_std_error(inode->i_sb, err);
1030 		return err;
1031 	}
1032 	lock_buffer(bh);
1033 
1034 	err = ext4_journal_get_create_access(handle, bh);
1035 	if (err) {
1036 		unlock_buffer(bh);
1037 		goto out;
1038 	}
1039 
1040 	/* move top-level index/leaf into new block */
1041 	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1042 
1043 	/* set size of new block */
1044 	neh = ext_block_hdr(bh);
1045 	/* old root could have indexes or leaves
1046 	 * so calculate e_max right way */
1047 	if (ext_depth(inode))
1048 	  neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
1049 	else
1050 	  neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
1051 	neh->eh_magic = EXT4_EXT_MAGIC;
1052 	set_buffer_uptodate(bh);
1053 	unlock_buffer(bh);
1054 
1055 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1056 	if (err)
1057 		goto out;
1058 
1059 	/* create index in new top-level index: num,max,pointer */
1060 	err = ext4_ext_get_access(handle, inode, curp);
1061 	if (err)
1062 		goto out;
1063 
1064 	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1065 	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
1066 	curp->p_hdr->eh_entries = cpu_to_le16(1);
1067 	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1068 
1069 	if (path[0].p_hdr->eh_depth)
1070 		curp->p_idx->ei_block =
1071 			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1072 	else
1073 		curp->p_idx->ei_block =
1074 			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1075 	ext4_idx_store_pblock(curp->p_idx, newblock);
1076 
1077 	neh = ext_inode_hdr(inode);
1078 	fidx = EXT_FIRST_INDEX(neh);
1079 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1080 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1081 		  le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
1082 
1083 	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1084 	err = ext4_ext_dirty(handle, inode, curp);
1085 out:
1086 	brelse(bh);
1087 
1088 	return err;
1089 }
1090 
1091 /*
1092  * ext4_ext_create_new_leaf:
1093  * finds empty index and adds new leaf.
1094  * if no free index is found, then it requests in-depth growing.
1095  */
1096 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1097 					struct ext4_ext_path *path,
1098 					struct ext4_extent *newext)
1099 {
1100 	struct ext4_ext_path *curp;
1101 	int depth, i, err = 0;
1102 
1103 repeat:
1104 	i = depth = ext_depth(inode);
1105 
1106 	/* walk up to the tree and look for free index entry */
1107 	curp = path + depth;
1108 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1109 		i--;
1110 		curp--;
1111 	}
1112 
1113 	/* we use already allocated block for index block,
1114 	 * so subsequent data blocks should be contiguous */
1115 	if (EXT_HAS_FREE_INDEX(curp)) {
1116 		/* if we found index with free entry, then use that
1117 		 * entry: create all needed subtree and add new leaf */
1118 		err = ext4_ext_split(handle, inode, path, newext, i);
1119 		if (err)
1120 			goto out;
1121 
1122 		/* refill path */
1123 		ext4_ext_drop_refs(path);
1124 		path = ext4_ext_find_extent(inode,
1125 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1126 				    path);
1127 		if (IS_ERR(path))
1128 			err = PTR_ERR(path);
1129 	} else {
1130 		/* tree is full, time to grow in depth */
1131 		err = ext4_ext_grow_indepth(handle, inode, path, newext);
1132 		if (err)
1133 			goto out;
1134 
1135 		/* refill path */
1136 		ext4_ext_drop_refs(path);
1137 		path = ext4_ext_find_extent(inode,
1138 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1139 				    path);
1140 		if (IS_ERR(path)) {
1141 			err = PTR_ERR(path);
1142 			goto out;
1143 		}
1144 
1145 		/*
1146 		 * only first (depth 0 -> 1) produces free space;
1147 		 * in all other cases we have to split the grown tree
1148 		 */
1149 		depth = ext_depth(inode);
1150 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1151 			/* now we need to split */
1152 			goto repeat;
1153 		}
1154 	}
1155 
1156 out:
1157 	return err;
1158 }
1159 
1160 /*
1161  * search the closest allocated block to the left for *logical
1162  * and returns it at @logical + it's physical address at @phys
1163  * if *logical is the smallest allocated block, the function
1164  * returns 0 at @phys
1165  * return value contains 0 (success) or error code
1166  */
1167 int
1168 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1169 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1170 {
1171 	struct ext4_extent_idx *ix;
1172 	struct ext4_extent *ex;
1173 	int depth, ee_len;
1174 
1175 	BUG_ON(path == NULL);
1176 	depth = path->p_depth;
1177 	*phys = 0;
1178 
1179 	if (depth == 0 && path->p_ext == NULL)
1180 		return 0;
1181 
1182 	/* usually extent in the path covers blocks smaller
1183 	 * then *logical, but it can be that extent is the
1184 	 * first one in the file */
1185 
1186 	ex = path[depth].p_ext;
1187 	ee_len = ext4_ext_get_actual_len(ex);
1188 	if (*logical < le32_to_cpu(ex->ee_block)) {
1189 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1190 		while (--depth >= 0) {
1191 			ix = path[depth].p_idx;
1192 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1193 		}
1194 		return 0;
1195 	}
1196 
1197 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1198 
1199 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1200 	*phys = ext_pblock(ex) + ee_len - 1;
1201 	return 0;
1202 }
1203 
1204 /*
1205  * search the closest allocated block to the right for *logical
1206  * and returns it at @logical + it's physical address at @phys
1207  * if *logical is the smallest allocated block, the function
1208  * returns 0 at @phys
1209  * return value contains 0 (success) or error code
1210  */
1211 int
1212 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1213 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1214 {
1215 	struct buffer_head *bh = NULL;
1216 	struct ext4_extent_header *eh;
1217 	struct ext4_extent_idx *ix;
1218 	struct ext4_extent *ex;
1219 	ext4_fsblk_t block;
1220 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1221 	int ee_len;
1222 
1223 	BUG_ON(path == NULL);
1224 	depth = path->p_depth;
1225 	*phys = 0;
1226 
1227 	if (depth == 0 && path->p_ext == NULL)
1228 		return 0;
1229 
1230 	/* usually extent in the path covers blocks smaller
1231 	 * then *logical, but it can be that extent is the
1232 	 * first one in the file */
1233 
1234 	ex = path[depth].p_ext;
1235 	ee_len = ext4_ext_get_actual_len(ex);
1236 	if (*logical < le32_to_cpu(ex->ee_block)) {
1237 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1238 		while (--depth >= 0) {
1239 			ix = path[depth].p_idx;
1240 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1241 		}
1242 		*logical = le32_to_cpu(ex->ee_block);
1243 		*phys = ext_pblock(ex);
1244 		return 0;
1245 	}
1246 
1247 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1248 
1249 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1250 		/* next allocated block in this leaf */
1251 		ex++;
1252 		*logical = le32_to_cpu(ex->ee_block);
1253 		*phys = ext_pblock(ex);
1254 		return 0;
1255 	}
1256 
1257 	/* go up and search for index to the right */
1258 	while (--depth >= 0) {
1259 		ix = path[depth].p_idx;
1260 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1261 			goto got_index;
1262 	}
1263 
1264 	/* we've gone up to the root and found no index to the right */
1265 	return 0;
1266 
1267 got_index:
1268 	/* we've found index to the right, let's
1269 	 * follow it and find the closest allocated
1270 	 * block to the right */
1271 	ix++;
1272 	block = idx_pblock(ix);
1273 	while (++depth < path->p_depth) {
1274 		bh = sb_bread(inode->i_sb, block);
1275 		if (bh == NULL)
1276 			return -EIO;
1277 		eh = ext_block_hdr(bh);
1278 		/* subtract from p_depth to get proper eh_depth */
1279 		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1280 			put_bh(bh);
1281 			return -EIO;
1282 		}
1283 		ix = EXT_FIRST_INDEX(eh);
1284 		block = idx_pblock(ix);
1285 		put_bh(bh);
1286 	}
1287 
1288 	bh = sb_bread(inode->i_sb, block);
1289 	if (bh == NULL)
1290 		return -EIO;
1291 	eh = ext_block_hdr(bh);
1292 	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1293 		put_bh(bh);
1294 		return -EIO;
1295 	}
1296 	ex = EXT_FIRST_EXTENT(eh);
1297 	*logical = le32_to_cpu(ex->ee_block);
1298 	*phys = ext_pblock(ex);
1299 	put_bh(bh);
1300 	return 0;
1301 }
1302 
1303 /*
1304  * ext4_ext_next_allocated_block:
1305  * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1306  * NOTE: it considers block number from index entry as
1307  * allocated block. Thus, index entries have to be consistent
1308  * with leaves.
1309  */
1310 static ext4_lblk_t
1311 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1312 {
1313 	int depth;
1314 
1315 	BUG_ON(path == NULL);
1316 	depth = path->p_depth;
1317 
1318 	if (depth == 0 && path->p_ext == NULL)
1319 		return EXT_MAX_BLOCK;
1320 
1321 	while (depth >= 0) {
1322 		if (depth == path->p_depth) {
1323 			/* leaf */
1324 			if (path[depth].p_ext !=
1325 					EXT_LAST_EXTENT(path[depth].p_hdr))
1326 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1327 		} else {
1328 			/* index */
1329 			if (path[depth].p_idx !=
1330 					EXT_LAST_INDEX(path[depth].p_hdr))
1331 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1332 		}
1333 		depth--;
1334 	}
1335 
1336 	return EXT_MAX_BLOCK;
1337 }
1338 
1339 /*
1340  * ext4_ext_next_leaf_block:
1341  * returns first allocated block from next leaf or EXT_MAX_BLOCK
1342  */
1343 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1344 					struct ext4_ext_path *path)
1345 {
1346 	int depth;
1347 
1348 	BUG_ON(path == NULL);
1349 	depth = path->p_depth;
1350 
1351 	/* zero-tree has no leaf blocks at all */
1352 	if (depth == 0)
1353 		return EXT_MAX_BLOCK;
1354 
1355 	/* go to index block */
1356 	depth--;
1357 
1358 	while (depth >= 0) {
1359 		if (path[depth].p_idx !=
1360 				EXT_LAST_INDEX(path[depth].p_hdr))
1361 			return (ext4_lblk_t)
1362 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1363 		depth--;
1364 	}
1365 
1366 	return EXT_MAX_BLOCK;
1367 }
1368 
1369 /*
1370  * ext4_ext_correct_indexes:
1371  * if leaf gets modified and modified extent is first in the leaf,
1372  * then we have to correct all indexes above.
1373  * TODO: do we need to correct tree in all cases?
1374  */
1375 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1376 				struct ext4_ext_path *path)
1377 {
1378 	struct ext4_extent_header *eh;
1379 	int depth = ext_depth(inode);
1380 	struct ext4_extent *ex;
1381 	__le32 border;
1382 	int k, err = 0;
1383 
1384 	eh = path[depth].p_hdr;
1385 	ex = path[depth].p_ext;
1386 	BUG_ON(ex == NULL);
1387 	BUG_ON(eh == NULL);
1388 
1389 	if (depth == 0) {
1390 		/* there is no tree at all */
1391 		return 0;
1392 	}
1393 
1394 	if (ex != EXT_FIRST_EXTENT(eh)) {
1395 		/* we correct tree if first leaf got modified only */
1396 		return 0;
1397 	}
1398 
1399 	/*
1400 	 * TODO: we need correction if border is smaller than current one
1401 	 */
1402 	k = depth - 1;
1403 	border = path[depth].p_ext->ee_block;
1404 	err = ext4_ext_get_access(handle, inode, path + k);
1405 	if (err)
1406 		return err;
1407 	path[k].p_idx->ei_block = border;
1408 	err = ext4_ext_dirty(handle, inode, path + k);
1409 	if (err)
1410 		return err;
1411 
1412 	while (k--) {
1413 		/* change all left-side indexes */
1414 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1415 			break;
1416 		err = ext4_ext_get_access(handle, inode, path + k);
1417 		if (err)
1418 			break;
1419 		path[k].p_idx->ei_block = border;
1420 		err = ext4_ext_dirty(handle, inode, path + k);
1421 		if (err)
1422 			break;
1423 	}
1424 
1425 	return err;
1426 }
1427 
1428 static int
1429 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1430 				struct ext4_extent *ex2)
1431 {
1432 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1433 
1434 	/*
1435 	 * Make sure that either both extents are uninitialized, or
1436 	 * both are _not_.
1437 	 */
1438 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1439 		return 0;
1440 
1441 	if (ext4_ext_is_uninitialized(ex1))
1442 		max_len = EXT_UNINIT_MAX_LEN;
1443 	else
1444 		max_len = EXT_INIT_MAX_LEN;
1445 
1446 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1447 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1448 
1449 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1450 			le32_to_cpu(ex2->ee_block))
1451 		return 0;
1452 
1453 	/*
1454 	 * To allow future support for preallocated extents to be added
1455 	 * as an RO_COMPAT feature, refuse to merge to extents if
1456 	 * this can result in the top bit of ee_len being set.
1457 	 */
1458 	if (ext1_ee_len + ext2_ee_len > max_len)
1459 		return 0;
1460 #ifdef AGGRESSIVE_TEST
1461 	if (ext1_ee_len >= 4)
1462 		return 0;
1463 #endif
1464 
1465 	if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1466 		return 1;
1467 	return 0;
1468 }
1469 
1470 /*
1471  * This function tries to merge the "ex" extent to the next extent in the tree.
1472  * It always tries to merge towards right. If you want to merge towards
1473  * left, pass "ex - 1" as argument instead of "ex".
1474  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1475  * 1 if they got merged.
1476  */
1477 int ext4_ext_try_to_merge(struct inode *inode,
1478 			  struct ext4_ext_path *path,
1479 			  struct ext4_extent *ex)
1480 {
1481 	struct ext4_extent_header *eh;
1482 	unsigned int depth, len;
1483 	int merge_done = 0;
1484 	int uninitialized = 0;
1485 
1486 	depth = ext_depth(inode);
1487 	BUG_ON(path[depth].p_hdr == NULL);
1488 	eh = path[depth].p_hdr;
1489 
1490 	while (ex < EXT_LAST_EXTENT(eh)) {
1491 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1492 			break;
1493 		/* merge with next extent! */
1494 		if (ext4_ext_is_uninitialized(ex))
1495 			uninitialized = 1;
1496 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1497 				+ ext4_ext_get_actual_len(ex + 1));
1498 		if (uninitialized)
1499 			ext4_ext_mark_uninitialized(ex);
1500 
1501 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1502 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1503 				* sizeof(struct ext4_extent);
1504 			memmove(ex + 1, ex + 2, len);
1505 		}
1506 		le16_add_cpu(&eh->eh_entries, -1);
1507 		merge_done = 1;
1508 		WARN_ON(eh->eh_entries == 0);
1509 		if (!eh->eh_entries)
1510 			ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1511 			   "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1512 	}
1513 
1514 	return merge_done;
1515 }
1516 
1517 /*
1518  * check if a portion of the "newext" extent overlaps with an
1519  * existing extent.
1520  *
1521  * If there is an overlap discovered, it updates the length of the newext
1522  * such that there will be no overlap, and then returns 1.
1523  * If there is no overlap found, it returns 0.
1524  */
1525 unsigned int ext4_ext_check_overlap(struct inode *inode,
1526 				    struct ext4_extent *newext,
1527 				    struct ext4_ext_path *path)
1528 {
1529 	ext4_lblk_t b1, b2;
1530 	unsigned int depth, len1;
1531 	unsigned int ret = 0;
1532 
1533 	b1 = le32_to_cpu(newext->ee_block);
1534 	len1 = ext4_ext_get_actual_len(newext);
1535 	depth = ext_depth(inode);
1536 	if (!path[depth].p_ext)
1537 		goto out;
1538 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1539 
1540 	/*
1541 	 * get the next allocated block if the extent in the path
1542 	 * is before the requested block(s)
1543 	 */
1544 	if (b2 < b1) {
1545 		b2 = ext4_ext_next_allocated_block(path);
1546 		if (b2 == EXT_MAX_BLOCK)
1547 			goto out;
1548 	}
1549 
1550 	/* check for wrap through zero on extent logical start block*/
1551 	if (b1 + len1 < b1) {
1552 		len1 = EXT_MAX_BLOCK - b1;
1553 		newext->ee_len = cpu_to_le16(len1);
1554 		ret = 1;
1555 	}
1556 
1557 	/* check for overlap */
1558 	if (b1 + len1 > b2) {
1559 		newext->ee_len = cpu_to_le16(b2 - b1);
1560 		ret = 1;
1561 	}
1562 out:
1563 	return ret;
1564 }
1565 
1566 /*
1567  * ext4_ext_insert_extent:
1568  * tries to merge requsted extent into the existing extent or
1569  * inserts requested extent as new one into the tree,
1570  * creating new leaf in the no-space case.
1571  */
1572 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1573 				struct ext4_ext_path *path,
1574 				struct ext4_extent *newext)
1575 {
1576 	struct ext4_extent_header *eh;
1577 	struct ext4_extent *ex, *fex;
1578 	struct ext4_extent *nearex; /* nearest extent */
1579 	struct ext4_ext_path *npath = NULL;
1580 	int depth, len, err;
1581 	ext4_lblk_t next;
1582 	unsigned uninitialized = 0;
1583 
1584 	BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1585 	depth = ext_depth(inode);
1586 	ex = path[depth].p_ext;
1587 	BUG_ON(path[depth].p_hdr == NULL);
1588 
1589 	/* try to insert block into found extent and return */
1590 	if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1591 		ext_debug("append %d block to %d:%d (from %llu)\n",
1592 				ext4_ext_get_actual_len(newext),
1593 				le32_to_cpu(ex->ee_block),
1594 				ext4_ext_get_actual_len(ex), ext_pblock(ex));
1595 		err = ext4_ext_get_access(handle, inode, path + depth);
1596 		if (err)
1597 			return err;
1598 
1599 		/*
1600 		 * ext4_can_extents_be_merged should have checked that either
1601 		 * both extents are uninitialized, or both aren't. Thus we
1602 		 * need to check only one of them here.
1603 		 */
1604 		if (ext4_ext_is_uninitialized(ex))
1605 			uninitialized = 1;
1606 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1607 					+ ext4_ext_get_actual_len(newext));
1608 		if (uninitialized)
1609 			ext4_ext_mark_uninitialized(ex);
1610 		eh = path[depth].p_hdr;
1611 		nearex = ex;
1612 		goto merge;
1613 	}
1614 
1615 repeat:
1616 	depth = ext_depth(inode);
1617 	eh = path[depth].p_hdr;
1618 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1619 		goto has_space;
1620 
1621 	/* probably next leaf has space for us? */
1622 	fex = EXT_LAST_EXTENT(eh);
1623 	next = ext4_ext_next_leaf_block(inode, path);
1624 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1625 	    && next != EXT_MAX_BLOCK) {
1626 		ext_debug("next leaf block - %d\n", next);
1627 		BUG_ON(npath != NULL);
1628 		npath = ext4_ext_find_extent(inode, next, NULL);
1629 		if (IS_ERR(npath))
1630 			return PTR_ERR(npath);
1631 		BUG_ON(npath->p_depth != path->p_depth);
1632 		eh = npath[depth].p_hdr;
1633 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1634 			ext_debug("next leaf isnt full(%d)\n",
1635 				  le16_to_cpu(eh->eh_entries));
1636 			path = npath;
1637 			goto repeat;
1638 		}
1639 		ext_debug("next leaf has no free space(%d,%d)\n",
1640 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1641 	}
1642 
1643 	/*
1644 	 * There is no free space in the found leaf.
1645 	 * We're gonna add a new leaf in the tree.
1646 	 */
1647 	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1648 	if (err)
1649 		goto cleanup;
1650 	depth = ext_depth(inode);
1651 	eh = path[depth].p_hdr;
1652 
1653 has_space:
1654 	nearex = path[depth].p_ext;
1655 
1656 	err = ext4_ext_get_access(handle, inode, path + depth);
1657 	if (err)
1658 		goto cleanup;
1659 
1660 	if (!nearex) {
1661 		/* there is no extent in this leaf, create first one */
1662 		ext_debug("first extent in the leaf: %d:%llu:%d\n",
1663 				le32_to_cpu(newext->ee_block),
1664 				ext_pblock(newext),
1665 				ext4_ext_get_actual_len(newext));
1666 		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1667 	} else if (le32_to_cpu(newext->ee_block)
1668 			   > le32_to_cpu(nearex->ee_block)) {
1669 /*		BUG_ON(newext->ee_block == nearex->ee_block); */
1670 		if (nearex != EXT_LAST_EXTENT(eh)) {
1671 			len = EXT_MAX_EXTENT(eh) - nearex;
1672 			len = (len - 1) * sizeof(struct ext4_extent);
1673 			len = len < 0 ? 0 : len;
1674 			ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1675 					"move %d from 0x%p to 0x%p\n",
1676 					le32_to_cpu(newext->ee_block),
1677 					ext_pblock(newext),
1678 					ext4_ext_get_actual_len(newext),
1679 					nearex, len, nearex + 1, nearex + 2);
1680 			memmove(nearex + 2, nearex + 1, len);
1681 		}
1682 		path[depth].p_ext = nearex + 1;
1683 	} else {
1684 		BUG_ON(newext->ee_block == nearex->ee_block);
1685 		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1686 		len = len < 0 ? 0 : len;
1687 		ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1688 				"move %d from 0x%p to 0x%p\n",
1689 				le32_to_cpu(newext->ee_block),
1690 				ext_pblock(newext),
1691 				ext4_ext_get_actual_len(newext),
1692 				nearex, len, nearex + 1, nearex + 2);
1693 		memmove(nearex + 1, nearex, len);
1694 		path[depth].p_ext = nearex;
1695 	}
1696 
1697 	le16_add_cpu(&eh->eh_entries, 1);
1698 	nearex = path[depth].p_ext;
1699 	nearex->ee_block = newext->ee_block;
1700 	ext4_ext_store_pblock(nearex, ext_pblock(newext));
1701 	nearex->ee_len = newext->ee_len;
1702 
1703 merge:
1704 	/* try to merge extents to the right */
1705 	ext4_ext_try_to_merge(inode, path, nearex);
1706 
1707 	/* try to merge extents to the left */
1708 
1709 	/* time to correct all indexes above */
1710 	err = ext4_ext_correct_indexes(handle, inode, path);
1711 	if (err)
1712 		goto cleanup;
1713 
1714 	err = ext4_ext_dirty(handle, inode, path + depth);
1715 
1716 cleanup:
1717 	if (npath) {
1718 		ext4_ext_drop_refs(npath);
1719 		kfree(npath);
1720 	}
1721 	ext4_ext_invalidate_cache(inode);
1722 	return err;
1723 }
1724 
1725 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1726 			ext4_lblk_t num, ext_prepare_callback func,
1727 			void *cbdata)
1728 {
1729 	struct ext4_ext_path *path = NULL;
1730 	struct ext4_ext_cache cbex;
1731 	struct ext4_extent *ex;
1732 	ext4_lblk_t next, start = 0, end = 0;
1733 	ext4_lblk_t last = block + num;
1734 	int depth, exists, err = 0;
1735 
1736 	BUG_ON(func == NULL);
1737 	BUG_ON(inode == NULL);
1738 
1739 	while (block < last && block != EXT_MAX_BLOCK) {
1740 		num = last - block;
1741 		/* find extent for this block */
1742 		path = ext4_ext_find_extent(inode, block, path);
1743 		if (IS_ERR(path)) {
1744 			err = PTR_ERR(path);
1745 			path = NULL;
1746 			break;
1747 		}
1748 
1749 		depth = ext_depth(inode);
1750 		BUG_ON(path[depth].p_hdr == NULL);
1751 		ex = path[depth].p_ext;
1752 		next = ext4_ext_next_allocated_block(path);
1753 
1754 		exists = 0;
1755 		if (!ex) {
1756 			/* there is no extent yet, so try to allocate
1757 			 * all requested space */
1758 			start = block;
1759 			end = block + num;
1760 		} else if (le32_to_cpu(ex->ee_block) > block) {
1761 			/* need to allocate space before found extent */
1762 			start = block;
1763 			end = le32_to_cpu(ex->ee_block);
1764 			if (block + num < end)
1765 				end = block + num;
1766 		} else if (block >= le32_to_cpu(ex->ee_block)
1767 					+ ext4_ext_get_actual_len(ex)) {
1768 			/* need to allocate space after found extent */
1769 			start = block;
1770 			end = block + num;
1771 			if (end >= next)
1772 				end = next;
1773 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1774 			/*
1775 			 * some part of requested space is covered
1776 			 * by found extent
1777 			 */
1778 			start = block;
1779 			end = le32_to_cpu(ex->ee_block)
1780 				+ ext4_ext_get_actual_len(ex);
1781 			if (block + num < end)
1782 				end = block + num;
1783 			exists = 1;
1784 		} else {
1785 			BUG();
1786 		}
1787 		BUG_ON(end <= start);
1788 
1789 		if (!exists) {
1790 			cbex.ec_block = start;
1791 			cbex.ec_len = end - start;
1792 			cbex.ec_start = 0;
1793 			cbex.ec_type = EXT4_EXT_CACHE_GAP;
1794 		} else {
1795 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1796 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1797 			cbex.ec_start = ext_pblock(ex);
1798 			cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1799 		}
1800 
1801 		BUG_ON(cbex.ec_len == 0);
1802 		err = func(inode, path, &cbex, ex, cbdata);
1803 		ext4_ext_drop_refs(path);
1804 
1805 		if (err < 0)
1806 			break;
1807 
1808 		if (err == EXT_REPEAT)
1809 			continue;
1810 		else if (err == EXT_BREAK) {
1811 			err = 0;
1812 			break;
1813 		}
1814 
1815 		if (ext_depth(inode) != depth) {
1816 			/* depth was changed. we have to realloc path */
1817 			kfree(path);
1818 			path = NULL;
1819 		}
1820 
1821 		block = cbex.ec_block + cbex.ec_len;
1822 	}
1823 
1824 	if (path) {
1825 		ext4_ext_drop_refs(path);
1826 		kfree(path);
1827 	}
1828 
1829 	return err;
1830 }
1831 
1832 static void
1833 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1834 			__u32 len, ext4_fsblk_t start, int type)
1835 {
1836 	struct ext4_ext_cache *cex;
1837 	BUG_ON(len == 0);
1838 	cex = &EXT4_I(inode)->i_cached_extent;
1839 	cex->ec_type = type;
1840 	cex->ec_block = block;
1841 	cex->ec_len = len;
1842 	cex->ec_start = start;
1843 }
1844 
1845 /*
1846  * ext4_ext_put_gap_in_cache:
1847  * calculate boundaries of the gap that the requested block fits into
1848  * and cache this gap
1849  */
1850 static void
1851 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1852 				ext4_lblk_t block)
1853 {
1854 	int depth = ext_depth(inode);
1855 	unsigned long len;
1856 	ext4_lblk_t lblock;
1857 	struct ext4_extent *ex;
1858 
1859 	ex = path[depth].p_ext;
1860 	if (ex == NULL) {
1861 		/* there is no extent yet, so gap is [0;-] */
1862 		lblock = 0;
1863 		len = EXT_MAX_BLOCK;
1864 		ext_debug("cache gap(whole file):");
1865 	} else if (block < le32_to_cpu(ex->ee_block)) {
1866 		lblock = block;
1867 		len = le32_to_cpu(ex->ee_block) - block;
1868 		ext_debug("cache gap(before): %u [%u:%u]",
1869 				block,
1870 				le32_to_cpu(ex->ee_block),
1871 				 ext4_ext_get_actual_len(ex));
1872 	} else if (block >= le32_to_cpu(ex->ee_block)
1873 			+ ext4_ext_get_actual_len(ex)) {
1874 		ext4_lblk_t next;
1875 		lblock = le32_to_cpu(ex->ee_block)
1876 			+ ext4_ext_get_actual_len(ex);
1877 
1878 		next = ext4_ext_next_allocated_block(path);
1879 		ext_debug("cache gap(after): [%u:%u] %u",
1880 				le32_to_cpu(ex->ee_block),
1881 				ext4_ext_get_actual_len(ex),
1882 				block);
1883 		BUG_ON(next == lblock);
1884 		len = next - lblock;
1885 	} else {
1886 		lblock = len = 0;
1887 		BUG();
1888 	}
1889 
1890 	ext_debug(" -> %u:%lu\n", lblock, len);
1891 	ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1892 }
1893 
1894 static int
1895 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1896 			struct ext4_extent *ex)
1897 {
1898 	struct ext4_ext_cache *cex;
1899 
1900 	cex = &EXT4_I(inode)->i_cached_extent;
1901 
1902 	/* has cache valid data? */
1903 	if (cex->ec_type == EXT4_EXT_CACHE_NO)
1904 		return EXT4_EXT_CACHE_NO;
1905 
1906 	BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1907 			cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1908 	if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1909 		ex->ee_block = cpu_to_le32(cex->ec_block);
1910 		ext4_ext_store_pblock(ex, cex->ec_start);
1911 		ex->ee_len = cpu_to_le16(cex->ec_len);
1912 		ext_debug("%u cached by %u:%u:%llu\n",
1913 				block,
1914 				cex->ec_block, cex->ec_len, cex->ec_start);
1915 		return cex->ec_type;
1916 	}
1917 
1918 	/* not in cache */
1919 	return EXT4_EXT_CACHE_NO;
1920 }
1921 
1922 /*
1923  * ext4_ext_rm_idx:
1924  * removes index from the index block.
1925  * It's used in truncate case only, thus all requests are for
1926  * last index in the block only.
1927  */
1928 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1929 			struct ext4_ext_path *path)
1930 {
1931 	struct buffer_head *bh;
1932 	int err;
1933 	ext4_fsblk_t leaf;
1934 
1935 	/* free index block */
1936 	path--;
1937 	leaf = idx_pblock(path->p_idx);
1938 	BUG_ON(path->p_hdr->eh_entries == 0);
1939 	err = ext4_ext_get_access(handle, inode, path);
1940 	if (err)
1941 		return err;
1942 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
1943 	err = ext4_ext_dirty(handle, inode, path);
1944 	if (err)
1945 		return err;
1946 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
1947 	bh = sb_find_get_block(inode->i_sb, leaf);
1948 	ext4_forget(handle, 1, inode, bh, leaf);
1949 	ext4_free_blocks(handle, inode, leaf, 1, 1);
1950 	return err;
1951 }
1952 
1953 /*
1954  * ext4_ext_calc_credits_for_single_extent:
1955  * This routine returns max. credits that needed to insert an extent
1956  * to the extent tree.
1957  * When pass the actual path, the caller should calculate credits
1958  * under i_data_sem.
1959  */
1960 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
1961 						struct ext4_ext_path *path)
1962 {
1963 	if (path) {
1964 		int depth = ext_depth(inode);
1965 		int ret = 0;
1966 
1967 		/* probably there is space in leaf? */
1968 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1969 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
1970 
1971 			/*
1972 			 *  There are some space in the leaf tree, no
1973 			 *  need to account for leaf block credit
1974 			 *
1975 			 *  bitmaps and block group descriptor blocks
1976 			 *  and other metadat blocks still need to be
1977 			 *  accounted.
1978 			 */
1979 			/* 1 bitmap, 1 block group descriptor */
1980 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
1981 		}
1982 	}
1983 
1984 	return ext4_chunk_trans_blocks(inode, nrblocks);
1985 }
1986 
1987 /*
1988  * How many index/leaf blocks need to change/allocate to modify nrblocks?
1989  *
1990  * if nrblocks are fit in a single extent (chunk flag is 1), then
1991  * in the worse case, each tree level index/leaf need to be changed
1992  * if the tree split due to insert a new extent, then the old tree
1993  * index/leaf need to be updated too
1994  *
1995  * If the nrblocks are discontiguous, they could cause
1996  * the whole tree split more than once, but this is really rare.
1997  */
1998 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
1999 {
2000 	int index;
2001 	int depth = ext_depth(inode);
2002 
2003 	if (chunk)
2004 		index = depth * 2;
2005 	else
2006 		index = depth * 3;
2007 
2008 	return index;
2009 }
2010 
2011 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2012 				struct ext4_extent *ex,
2013 				ext4_lblk_t from, ext4_lblk_t to)
2014 {
2015 	struct buffer_head *bh;
2016 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2017 	int i, metadata = 0;
2018 
2019 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2020 		metadata = 1;
2021 #ifdef EXTENTS_STATS
2022 	{
2023 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2024 		spin_lock(&sbi->s_ext_stats_lock);
2025 		sbi->s_ext_blocks += ee_len;
2026 		sbi->s_ext_extents++;
2027 		if (ee_len < sbi->s_ext_min)
2028 			sbi->s_ext_min = ee_len;
2029 		if (ee_len > sbi->s_ext_max)
2030 			sbi->s_ext_max = ee_len;
2031 		if (ext_depth(inode) > sbi->s_depth_max)
2032 			sbi->s_depth_max = ext_depth(inode);
2033 		spin_unlock(&sbi->s_ext_stats_lock);
2034 	}
2035 #endif
2036 	if (from >= le32_to_cpu(ex->ee_block)
2037 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2038 		/* tail removal */
2039 		ext4_lblk_t num;
2040 		ext4_fsblk_t start;
2041 
2042 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2043 		start = ext_pblock(ex) + ee_len - num;
2044 		ext_debug("free last %u blocks starting %llu\n", num, start);
2045 		for (i = 0; i < num; i++) {
2046 			bh = sb_find_get_block(inode->i_sb, start + i);
2047 			ext4_forget(handle, 0, inode, bh, start + i);
2048 		}
2049 		ext4_free_blocks(handle, inode, start, num, metadata);
2050 	} else if (from == le32_to_cpu(ex->ee_block)
2051 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2052 		printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2053 			from, to, le32_to_cpu(ex->ee_block), ee_len);
2054 	} else {
2055 		printk(KERN_INFO "strange request: removal(2) "
2056 				"%u-%u from %u:%u\n",
2057 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2058 	}
2059 	return 0;
2060 }
2061 
2062 static int
2063 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2064 		struct ext4_ext_path *path, ext4_lblk_t start)
2065 {
2066 	int err = 0, correct_index = 0;
2067 	int depth = ext_depth(inode), credits;
2068 	struct ext4_extent_header *eh;
2069 	ext4_lblk_t a, b, block;
2070 	unsigned num;
2071 	ext4_lblk_t ex_ee_block;
2072 	unsigned short ex_ee_len;
2073 	unsigned uninitialized = 0;
2074 	struct ext4_extent *ex;
2075 
2076 	/* the header must be checked already in ext4_ext_remove_space() */
2077 	ext_debug("truncate since %u in leaf\n", start);
2078 	if (!path[depth].p_hdr)
2079 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2080 	eh = path[depth].p_hdr;
2081 	BUG_ON(eh == NULL);
2082 
2083 	/* find where to start removing */
2084 	ex = EXT_LAST_EXTENT(eh);
2085 
2086 	ex_ee_block = le32_to_cpu(ex->ee_block);
2087 	if (ext4_ext_is_uninitialized(ex))
2088 		uninitialized = 1;
2089 	ex_ee_len = ext4_ext_get_actual_len(ex);
2090 
2091 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2092 			ex_ee_block + ex_ee_len > start) {
2093 		ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
2094 		path[depth].p_ext = ex;
2095 
2096 		a = ex_ee_block > start ? ex_ee_block : start;
2097 		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2098 			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2099 
2100 		ext_debug("  border %u:%u\n", a, b);
2101 
2102 		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2103 			block = 0;
2104 			num = 0;
2105 			BUG();
2106 		} else if (a != ex_ee_block) {
2107 			/* remove tail of the extent */
2108 			block = ex_ee_block;
2109 			num = a - block;
2110 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2111 			/* remove head of the extent */
2112 			block = a;
2113 			num = b - a;
2114 			/* there is no "make a hole" API yet */
2115 			BUG();
2116 		} else {
2117 			/* remove whole extent: excellent! */
2118 			block = ex_ee_block;
2119 			num = 0;
2120 			BUG_ON(a != ex_ee_block);
2121 			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2122 		}
2123 
2124 		/*
2125 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2126 		 * descriptor) for each block group; assume two block
2127 		 * groups plus ex_ee_len/blocks_per_block_group for
2128 		 * the worst case
2129 		 */
2130 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2131 		if (ex == EXT_FIRST_EXTENT(eh)) {
2132 			correct_index = 1;
2133 			credits += (ext_depth(inode)) + 1;
2134 		}
2135 		credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2136 
2137 		err = ext4_ext_journal_restart(handle, credits);
2138 		if (err)
2139 			goto out;
2140 
2141 		err = ext4_ext_get_access(handle, inode, path + depth);
2142 		if (err)
2143 			goto out;
2144 
2145 		err = ext4_remove_blocks(handle, inode, ex, a, b);
2146 		if (err)
2147 			goto out;
2148 
2149 		if (num == 0) {
2150 			/* this extent is removed; mark slot entirely unused */
2151 			ext4_ext_store_pblock(ex, 0);
2152 			le16_add_cpu(&eh->eh_entries, -1);
2153 		}
2154 
2155 		ex->ee_block = cpu_to_le32(block);
2156 		ex->ee_len = cpu_to_le16(num);
2157 		/*
2158 		 * Do not mark uninitialized if all the blocks in the
2159 		 * extent have been removed.
2160 		 */
2161 		if (uninitialized && num)
2162 			ext4_ext_mark_uninitialized(ex);
2163 
2164 		err = ext4_ext_dirty(handle, inode, path + depth);
2165 		if (err)
2166 			goto out;
2167 
2168 		ext_debug("new extent: %u:%u:%llu\n", block, num,
2169 				ext_pblock(ex));
2170 		ex--;
2171 		ex_ee_block = le32_to_cpu(ex->ee_block);
2172 		ex_ee_len = ext4_ext_get_actual_len(ex);
2173 	}
2174 
2175 	if (correct_index && eh->eh_entries)
2176 		err = ext4_ext_correct_indexes(handle, inode, path);
2177 
2178 	/* if this leaf is free, then we should
2179 	 * remove it from index block above */
2180 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2181 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2182 
2183 out:
2184 	return err;
2185 }
2186 
2187 /*
2188  * ext4_ext_more_to_rm:
2189  * returns 1 if current index has to be freed (even partial)
2190  */
2191 static int
2192 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2193 {
2194 	BUG_ON(path->p_idx == NULL);
2195 
2196 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2197 		return 0;
2198 
2199 	/*
2200 	 * if truncate on deeper level happened, it wasn't partial,
2201 	 * so we have to consider current index for truncation
2202 	 */
2203 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2204 		return 0;
2205 	return 1;
2206 }
2207 
2208 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2209 {
2210 	struct super_block *sb = inode->i_sb;
2211 	int depth = ext_depth(inode);
2212 	struct ext4_ext_path *path;
2213 	handle_t *handle;
2214 	int i = 0, err = 0;
2215 
2216 	ext_debug("truncate since %u\n", start);
2217 
2218 	/* probably first extent we're gonna free will be last in block */
2219 	handle = ext4_journal_start(inode, depth + 1);
2220 	if (IS_ERR(handle))
2221 		return PTR_ERR(handle);
2222 
2223 	ext4_ext_invalidate_cache(inode);
2224 
2225 	/*
2226 	 * We start scanning from right side, freeing all the blocks
2227 	 * after i_size and walking into the tree depth-wise.
2228 	 */
2229 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2230 	if (path == NULL) {
2231 		ext4_journal_stop(handle);
2232 		return -ENOMEM;
2233 	}
2234 	path[0].p_hdr = ext_inode_hdr(inode);
2235 	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2236 		err = -EIO;
2237 		goto out;
2238 	}
2239 	path[0].p_depth = depth;
2240 
2241 	while (i >= 0 && err == 0) {
2242 		if (i == depth) {
2243 			/* this is leaf block */
2244 			err = ext4_ext_rm_leaf(handle, inode, path, start);
2245 			/* root level has p_bh == NULL, brelse() eats this */
2246 			brelse(path[i].p_bh);
2247 			path[i].p_bh = NULL;
2248 			i--;
2249 			continue;
2250 		}
2251 
2252 		/* this is index block */
2253 		if (!path[i].p_hdr) {
2254 			ext_debug("initialize header\n");
2255 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2256 		}
2257 
2258 		if (!path[i].p_idx) {
2259 			/* this level hasn't been touched yet */
2260 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2261 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2262 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2263 				  path[i].p_hdr,
2264 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2265 		} else {
2266 			/* we were already here, see at next index */
2267 			path[i].p_idx--;
2268 		}
2269 
2270 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2271 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2272 				path[i].p_idx);
2273 		if (ext4_ext_more_to_rm(path + i)) {
2274 			struct buffer_head *bh;
2275 			/* go to the next level */
2276 			ext_debug("move to level %d (block %llu)\n",
2277 				  i + 1, idx_pblock(path[i].p_idx));
2278 			memset(path + i + 1, 0, sizeof(*path));
2279 			bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2280 			if (!bh) {
2281 				/* should we reset i_size? */
2282 				err = -EIO;
2283 				break;
2284 			}
2285 			if (WARN_ON(i + 1 > depth)) {
2286 				err = -EIO;
2287 				break;
2288 			}
2289 			if (ext4_ext_check(inode, ext_block_hdr(bh),
2290 							depth - i - 1)) {
2291 				err = -EIO;
2292 				break;
2293 			}
2294 			path[i + 1].p_bh = bh;
2295 
2296 			/* save actual number of indexes since this
2297 			 * number is changed at the next iteration */
2298 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2299 			i++;
2300 		} else {
2301 			/* we finished processing this index, go up */
2302 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2303 				/* index is empty, remove it;
2304 				 * handle must be already prepared by the
2305 				 * truncatei_leaf() */
2306 				err = ext4_ext_rm_idx(handle, inode, path + i);
2307 			}
2308 			/* root level has p_bh == NULL, brelse() eats this */
2309 			brelse(path[i].p_bh);
2310 			path[i].p_bh = NULL;
2311 			i--;
2312 			ext_debug("return to level %d\n", i);
2313 		}
2314 	}
2315 
2316 	/* TODO: flexible tree reduction should be here */
2317 	if (path->p_hdr->eh_entries == 0) {
2318 		/*
2319 		 * truncate to zero freed all the tree,
2320 		 * so we need to correct eh_depth
2321 		 */
2322 		err = ext4_ext_get_access(handle, inode, path);
2323 		if (err == 0) {
2324 			ext_inode_hdr(inode)->eh_depth = 0;
2325 			ext_inode_hdr(inode)->eh_max =
2326 				cpu_to_le16(ext4_ext_space_root(inode));
2327 			err = ext4_ext_dirty(handle, inode, path);
2328 		}
2329 	}
2330 out:
2331 	ext4_ext_drop_refs(path);
2332 	kfree(path);
2333 	ext4_journal_stop(handle);
2334 
2335 	return err;
2336 }
2337 
2338 /*
2339  * called at mount time
2340  */
2341 void ext4_ext_init(struct super_block *sb)
2342 {
2343 	/*
2344 	 * possible initialization would be here
2345 	 */
2346 
2347 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2348 		printk(KERN_INFO "EXT4-fs: file extents enabled");
2349 #ifdef AGGRESSIVE_TEST
2350 		printk(", aggressive tests");
2351 #endif
2352 #ifdef CHECK_BINSEARCH
2353 		printk(", check binsearch");
2354 #endif
2355 #ifdef EXTENTS_STATS
2356 		printk(", stats");
2357 #endif
2358 		printk("\n");
2359 #ifdef EXTENTS_STATS
2360 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2361 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2362 		EXT4_SB(sb)->s_ext_max = 0;
2363 #endif
2364 	}
2365 }
2366 
2367 /*
2368  * called at umount time
2369  */
2370 void ext4_ext_release(struct super_block *sb)
2371 {
2372 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2373 		return;
2374 
2375 #ifdef EXTENTS_STATS
2376 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2377 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2378 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2379 			sbi->s_ext_blocks, sbi->s_ext_extents,
2380 			sbi->s_ext_blocks / sbi->s_ext_extents);
2381 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2382 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2383 	}
2384 #endif
2385 }
2386 
2387 static void bi_complete(struct bio *bio, int error)
2388 {
2389 	complete((struct completion *)bio->bi_private);
2390 }
2391 
2392 /* FIXME!! we need to try to merge to left or right after zero-out  */
2393 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2394 {
2395 	int ret = -EIO;
2396 	struct bio *bio;
2397 	int blkbits, blocksize;
2398 	sector_t ee_pblock;
2399 	struct completion event;
2400 	unsigned int ee_len, len, done, offset;
2401 
2402 
2403 	blkbits   = inode->i_blkbits;
2404 	blocksize = inode->i_sb->s_blocksize;
2405 	ee_len    = ext4_ext_get_actual_len(ex);
2406 	ee_pblock = ext_pblock(ex);
2407 
2408 	/* convert ee_pblock to 512 byte sectors */
2409 	ee_pblock = ee_pblock << (blkbits - 9);
2410 
2411 	while (ee_len > 0) {
2412 
2413 		if (ee_len > BIO_MAX_PAGES)
2414 			len = BIO_MAX_PAGES;
2415 		else
2416 			len = ee_len;
2417 
2418 		bio = bio_alloc(GFP_NOIO, len);
2419 		if (!bio)
2420 			return -ENOMEM;
2421 		bio->bi_sector = ee_pblock;
2422 		bio->bi_bdev   = inode->i_sb->s_bdev;
2423 
2424 		done = 0;
2425 		offset = 0;
2426 		while (done < len) {
2427 			ret = bio_add_page(bio, ZERO_PAGE(0),
2428 							blocksize, offset);
2429 			if (ret != blocksize) {
2430 				/*
2431 				 * We can't add any more pages because of
2432 				 * hardware limitations.  Start a new bio.
2433 				 */
2434 				break;
2435 			}
2436 			done++;
2437 			offset += blocksize;
2438 			if (offset >= PAGE_CACHE_SIZE)
2439 				offset = 0;
2440 		}
2441 
2442 		init_completion(&event);
2443 		bio->bi_private = &event;
2444 		bio->bi_end_io = bi_complete;
2445 		submit_bio(WRITE, bio);
2446 		wait_for_completion(&event);
2447 
2448 		if (test_bit(BIO_UPTODATE, &bio->bi_flags))
2449 			ret = 0;
2450 		else {
2451 			ret = -EIO;
2452 			break;
2453 		}
2454 		bio_put(bio);
2455 		ee_len    -= done;
2456 		ee_pblock += done  << (blkbits - 9);
2457 	}
2458 	return ret;
2459 }
2460 
2461 #define EXT4_EXT_ZERO_LEN 7
2462 
2463 /*
2464  * This function is called by ext4_ext_get_blocks() if someone tries to write
2465  * to an uninitialized extent. It may result in splitting the uninitialized
2466  * extent into multiple extents (upto three - one initialized and two
2467  * uninitialized).
2468  * There are three possibilities:
2469  *   a> There is no split required: Entire extent should be initialized
2470  *   b> Splits in two extents: Write is happening at either end of the extent
2471  *   c> Splits in three extents: Somone is writing in middle of the extent
2472  */
2473 static int ext4_ext_convert_to_initialized(handle_t *handle,
2474 						struct inode *inode,
2475 						struct ext4_ext_path *path,
2476 						ext4_lblk_t iblock,
2477 						unsigned int max_blocks)
2478 {
2479 	struct ext4_extent *ex, newex, orig_ex;
2480 	struct ext4_extent *ex1 = NULL;
2481 	struct ext4_extent *ex2 = NULL;
2482 	struct ext4_extent *ex3 = NULL;
2483 	struct ext4_extent_header *eh;
2484 	ext4_lblk_t ee_block;
2485 	unsigned int allocated, ee_len, depth;
2486 	ext4_fsblk_t newblock;
2487 	int err = 0;
2488 	int ret = 0;
2489 
2490 	depth = ext_depth(inode);
2491 	eh = path[depth].p_hdr;
2492 	ex = path[depth].p_ext;
2493 	ee_block = le32_to_cpu(ex->ee_block);
2494 	ee_len = ext4_ext_get_actual_len(ex);
2495 	allocated = ee_len - (iblock - ee_block);
2496 	newblock = iblock - ee_block + ext_pblock(ex);
2497 	ex2 = ex;
2498 	orig_ex.ee_block = ex->ee_block;
2499 	orig_ex.ee_len   = cpu_to_le16(ee_len);
2500 	ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2501 
2502 	err = ext4_ext_get_access(handle, inode, path + depth);
2503 	if (err)
2504 		goto out;
2505 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2506 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
2507 		err =  ext4_ext_zeroout(inode, &orig_ex);
2508 		if (err)
2509 			goto fix_extent_len;
2510 		/* update the extent length and mark as initialized */
2511 		ex->ee_block = orig_ex.ee_block;
2512 		ex->ee_len   = orig_ex.ee_len;
2513 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2514 		ext4_ext_dirty(handle, inode, path + depth);
2515 		/* zeroed the full extent */
2516 		return allocated;
2517 	}
2518 
2519 	/* ex1: ee_block to iblock - 1 : uninitialized */
2520 	if (iblock > ee_block) {
2521 		ex1 = ex;
2522 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2523 		ext4_ext_mark_uninitialized(ex1);
2524 		ex2 = &newex;
2525 	}
2526 	/*
2527 	 * for sanity, update the length of the ex2 extent before
2528 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2529 	 * overlap of blocks.
2530 	 */
2531 	if (!ex1 && allocated > max_blocks)
2532 		ex2->ee_len = cpu_to_le16(max_blocks);
2533 	/* ex3: to ee_block + ee_len : uninitialised */
2534 	if (allocated > max_blocks) {
2535 		unsigned int newdepth;
2536 		/* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2537 		if (allocated <= EXT4_EXT_ZERO_LEN) {
2538 			/*
2539 			 * iblock == ee_block is handled by the zerouout
2540 			 * at the beginning.
2541 			 * Mark first half uninitialized.
2542 			 * Mark second half initialized and zero out the
2543 			 * initialized extent
2544 			 */
2545 			ex->ee_block = orig_ex.ee_block;
2546 			ex->ee_len   = cpu_to_le16(ee_len - allocated);
2547 			ext4_ext_mark_uninitialized(ex);
2548 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2549 			ext4_ext_dirty(handle, inode, path + depth);
2550 
2551 			ex3 = &newex;
2552 			ex3->ee_block = cpu_to_le32(iblock);
2553 			ext4_ext_store_pblock(ex3, newblock);
2554 			ex3->ee_len = cpu_to_le16(allocated);
2555 			err = ext4_ext_insert_extent(handle, inode, path, ex3);
2556 			if (err == -ENOSPC) {
2557 				err =  ext4_ext_zeroout(inode, &orig_ex);
2558 				if (err)
2559 					goto fix_extent_len;
2560 				ex->ee_block = orig_ex.ee_block;
2561 				ex->ee_len   = orig_ex.ee_len;
2562 				ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2563 				ext4_ext_dirty(handle, inode, path + depth);
2564 				/* blocks available from iblock */
2565 				return allocated;
2566 
2567 			} else if (err)
2568 				goto fix_extent_len;
2569 
2570 			/*
2571 			 * We need to zero out the second half because
2572 			 * an fallocate request can update file size and
2573 			 * converting the second half to initialized extent
2574 			 * implies that we can leak some junk data to user
2575 			 * space.
2576 			 */
2577 			err =  ext4_ext_zeroout(inode, ex3);
2578 			if (err) {
2579 				/*
2580 				 * We should actually mark the
2581 				 * second half as uninit and return error
2582 				 * Insert would have changed the extent
2583 				 */
2584 				depth = ext_depth(inode);
2585 				ext4_ext_drop_refs(path);
2586 				path = ext4_ext_find_extent(inode,
2587 								iblock, path);
2588 				if (IS_ERR(path)) {
2589 					err = PTR_ERR(path);
2590 					return err;
2591 				}
2592 				/* get the second half extent details */
2593 				ex = path[depth].p_ext;
2594 				err = ext4_ext_get_access(handle, inode,
2595 								path + depth);
2596 				if (err)
2597 					return err;
2598 				ext4_ext_mark_uninitialized(ex);
2599 				ext4_ext_dirty(handle, inode, path + depth);
2600 				return err;
2601 			}
2602 
2603 			/* zeroed the second half */
2604 			return allocated;
2605 		}
2606 		ex3 = &newex;
2607 		ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2608 		ext4_ext_store_pblock(ex3, newblock + max_blocks);
2609 		ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2610 		ext4_ext_mark_uninitialized(ex3);
2611 		err = ext4_ext_insert_extent(handle, inode, path, ex3);
2612 		if (err == -ENOSPC) {
2613 			err =  ext4_ext_zeroout(inode, &orig_ex);
2614 			if (err)
2615 				goto fix_extent_len;
2616 			/* update the extent length and mark as initialized */
2617 			ex->ee_block = orig_ex.ee_block;
2618 			ex->ee_len   = orig_ex.ee_len;
2619 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2620 			ext4_ext_dirty(handle, inode, path + depth);
2621 			/* zeroed the full extent */
2622 			/* blocks available from iblock */
2623 			return allocated;
2624 
2625 		} else if (err)
2626 			goto fix_extent_len;
2627 		/*
2628 		 * The depth, and hence eh & ex might change
2629 		 * as part of the insert above.
2630 		 */
2631 		newdepth = ext_depth(inode);
2632 		/*
2633 		 * update the extent length after successful insert of the
2634 		 * split extent
2635 		 */
2636 		orig_ex.ee_len = cpu_to_le16(ee_len -
2637 						ext4_ext_get_actual_len(ex3));
2638 		depth = newdepth;
2639 		ext4_ext_drop_refs(path);
2640 		path = ext4_ext_find_extent(inode, iblock, path);
2641 		if (IS_ERR(path)) {
2642 			err = PTR_ERR(path);
2643 			goto out;
2644 		}
2645 		eh = path[depth].p_hdr;
2646 		ex = path[depth].p_ext;
2647 		if (ex2 != &newex)
2648 			ex2 = ex;
2649 
2650 		err = ext4_ext_get_access(handle, inode, path + depth);
2651 		if (err)
2652 			goto out;
2653 
2654 		allocated = max_blocks;
2655 
2656 		/* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2657 		 * to insert a extent in the middle zerout directly
2658 		 * otherwise give the extent a chance to merge to left
2659 		 */
2660 		if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2661 							iblock != ee_block) {
2662 			err =  ext4_ext_zeroout(inode, &orig_ex);
2663 			if (err)
2664 				goto fix_extent_len;
2665 			/* update the extent length and mark as initialized */
2666 			ex->ee_block = orig_ex.ee_block;
2667 			ex->ee_len   = orig_ex.ee_len;
2668 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2669 			ext4_ext_dirty(handle, inode, path + depth);
2670 			/* zero out the first half */
2671 			/* blocks available from iblock */
2672 			return allocated;
2673 		}
2674 	}
2675 	/*
2676 	 * If there was a change of depth as part of the
2677 	 * insertion of ex3 above, we need to update the length
2678 	 * of the ex1 extent again here
2679 	 */
2680 	if (ex1 && ex1 != ex) {
2681 		ex1 = ex;
2682 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2683 		ext4_ext_mark_uninitialized(ex1);
2684 		ex2 = &newex;
2685 	}
2686 	/* ex2: iblock to iblock + maxblocks-1 : initialised */
2687 	ex2->ee_block = cpu_to_le32(iblock);
2688 	ext4_ext_store_pblock(ex2, newblock);
2689 	ex2->ee_len = cpu_to_le16(allocated);
2690 	if (ex2 != ex)
2691 		goto insert;
2692 	/*
2693 	 * New (initialized) extent starts from the first block
2694 	 * in the current extent. i.e., ex2 == ex
2695 	 * We have to see if it can be merged with the extent
2696 	 * on the left.
2697 	 */
2698 	if (ex2 > EXT_FIRST_EXTENT(eh)) {
2699 		/*
2700 		 * To merge left, pass "ex2 - 1" to try_to_merge(),
2701 		 * since it merges towards right _only_.
2702 		 */
2703 		ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2704 		if (ret) {
2705 			err = ext4_ext_correct_indexes(handle, inode, path);
2706 			if (err)
2707 				goto out;
2708 			depth = ext_depth(inode);
2709 			ex2--;
2710 		}
2711 	}
2712 	/*
2713 	 * Try to Merge towards right. This might be required
2714 	 * only when the whole extent is being written to.
2715 	 * i.e. ex2 == ex and ex3 == NULL.
2716 	 */
2717 	if (!ex3) {
2718 		ret = ext4_ext_try_to_merge(inode, path, ex2);
2719 		if (ret) {
2720 			err = ext4_ext_correct_indexes(handle, inode, path);
2721 			if (err)
2722 				goto out;
2723 		}
2724 	}
2725 	/* Mark modified extent as dirty */
2726 	err = ext4_ext_dirty(handle, inode, path + depth);
2727 	goto out;
2728 insert:
2729 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2730 	if (err == -ENOSPC) {
2731 		err =  ext4_ext_zeroout(inode, &orig_ex);
2732 		if (err)
2733 			goto fix_extent_len;
2734 		/* update the extent length and mark as initialized */
2735 		ex->ee_block = orig_ex.ee_block;
2736 		ex->ee_len   = orig_ex.ee_len;
2737 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2738 		ext4_ext_dirty(handle, inode, path + depth);
2739 		/* zero out the first half */
2740 		return allocated;
2741 	} else if (err)
2742 		goto fix_extent_len;
2743 out:
2744 	return err ? err : allocated;
2745 
2746 fix_extent_len:
2747 	ex->ee_block = orig_ex.ee_block;
2748 	ex->ee_len   = orig_ex.ee_len;
2749 	ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2750 	ext4_ext_mark_uninitialized(ex);
2751 	ext4_ext_dirty(handle, inode, path + depth);
2752 	return err;
2753 }
2754 
2755 /*
2756  * Block allocation/map/preallocation routine for extents based files
2757  *
2758  *
2759  * Need to be called with
2760  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
2761  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
2762  *
2763  * return > 0, number of of blocks already mapped/allocated
2764  *          if create == 0 and these are pre-allocated blocks
2765  *          	buffer head is unmapped
2766  *          otherwise blocks are mapped
2767  *
2768  * return = 0, if plain look up failed (blocks have not been allocated)
2769  *          buffer head is unmapped
2770  *
2771  * return < 0, error case.
2772  */
2773 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
2774 			ext4_lblk_t iblock,
2775 			unsigned int max_blocks, struct buffer_head *bh_result,
2776 			int create, int extend_disksize)
2777 {
2778 	struct ext4_ext_path *path = NULL;
2779 	struct ext4_extent_header *eh;
2780 	struct ext4_extent newex, *ex;
2781 	ext4_fsblk_t newblock;
2782 	int err = 0, depth, ret, cache_type;
2783 	unsigned int allocated = 0;
2784 	struct ext4_allocation_request ar;
2785 	loff_t disksize;
2786 
2787 	__clear_bit(BH_New, &bh_result->b_state);
2788 	ext_debug("blocks %u/%u requested for inode %u\n",
2789 			iblock, max_blocks, inode->i_ino);
2790 
2791 	/* check in cache */
2792 	cache_type = ext4_ext_in_cache(inode, iblock, &newex);
2793 	if (cache_type) {
2794 		if (cache_type == EXT4_EXT_CACHE_GAP) {
2795 			if (!create) {
2796 				/*
2797 				 * block isn't allocated yet and
2798 				 * user doesn't want to allocate it
2799 				 */
2800 				goto out2;
2801 			}
2802 			/* we should allocate requested block */
2803 		} else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
2804 			/* block is already allocated */
2805 			newblock = iblock
2806 				   - le32_to_cpu(newex.ee_block)
2807 				   + ext_pblock(&newex);
2808 			/* number of remaining blocks in the extent */
2809 			allocated = ext4_ext_get_actual_len(&newex) -
2810 					(iblock - le32_to_cpu(newex.ee_block));
2811 			goto out;
2812 		} else {
2813 			BUG();
2814 		}
2815 	}
2816 
2817 	/* find extent for this block */
2818 	path = ext4_ext_find_extent(inode, iblock, NULL);
2819 	if (IS_ERR(path)) {
2820 		err = PTR_ERR(path);
2821 		path = NULL;
2822 		goto out2;
2823 	}
2824 
2825 	depth = ext_depth(inode);
2826 
2827 	/*
2828 	 * consistent leaf must not be empty;
2829 	 * this situation is possible, though, _during_ tree modification;
2830 	 * this is why assert can't be put in ext4_ext_find_extent()
2831 	 */
2832 	BUG_ON(path[depth].p_ext == NULL && depth != 0);
2833 	eh = path[depth].p_hdr;
2834 
2835 	ex = path[depth].p_ext;
2836 	if (ex) {
2837 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
2838 		ext4_fsblk_t ee_start = ext_pblock(ex);
2839 		unsigned short ee_len;
2840 
2841 		/*
2842 		 * Uninitialized extents are treated as holes, except that
2843 		 * we split out initialized portions during a write.
2844 		 */
2845 		ee_len = ext4_ext_get_actual_len(ex);
2846 		/* if found extent covers block, simply return it */
2847 		if (iblock >= ee_block && iblock < ee_block + ee_len) {
2848 			newblock = iblock - ee_block + ee_start;
2849 			/* number of remaining blocks in the extent */
2850 			allocated = ee_len - (iblock - ee_block);
2851 			ext_debug("%u fit into %lu:%d -> %llu\n", iblock,
2852 					ee_block, ee_len, newblock);
2853 
2854 			/* Do not put uninitialized extent in the cache */
2855 			if (!ext4_ext_is_uninitialized(ex)) {
2856 				ext4_ext_put_in_cache(inode, ee_block,
2857 							ee_len, ee_start,
2858 							EXT4_EXT_CACHE_EXTENT);
2859 				goto out;
2860 			}
2861 			if (create == EXT4_CREATE_UNINITIALIZED_EXT)
2862 				goto out;
2863 			if (!create) {
2864 				/*
2865 				 * We have blocks reserved already.  We
2866 				 * return allocated blocks so that delalloc
2867 				 * won't do block reservation for us.  But
2868 				 * the buffer head will be unmapped so that
2869 				 * a read from the block returns 0s.
2870 				 */
2871 				if (allocated > max_blocks)
2872 					allocated = max_blocks;
2873 				set_buffer_unwritten(bh_result);
2874 				goto out2;
2875 			}
2876 
2877 			ret = ext4_ext_convert_to_initialized(handle, inode,
2878 								path, iblock,
2879 								max_blocks);
2880 			if (ret <= 0) {
2881 				err = ret;
2882 				goto out2;
2883 			} else
2884 				allocated = ret;
2885 			goto outnew;
2886 		}
2887 	}
2888 
2889 	/*
2890 	 * requested block isn't allocated yet;
2891 	 * we couldn't try to create block if create flag is zero
2892 	 */
2893 	if (!create) {
2894 		/*
2895 		 * put just found gap into cache to speed up
2896 		 * subsequent requests
2897 		 */
2898 		ext4_ext_put_gap_in_cache(inode, path, iblock);
2899 		goto out2;
2900 	}
2901 	/*
2902 	 * Okay, we need to do block allocation.
2903 	 */
2904 
2905 	/* find neighbour allocated blocks */
2906 	ar.lleft = iblock;
2907 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
2908 	if (err)
2909 		goto out2;
2910 	ar.lright = iblock;
2911 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
2912 	if (err)
2913 		goto out2;
2914 
2915 	/*
2916 	 * See if request is beyond maximum number of blocks we can have in
2917 	 * a single extent. For an initialized extent this limit is
2918 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2919 	 * EXT_UNINIT_MAX_LEN.
2920 	 */
2921 	if (max_blocks > EXT_INIT_MAX_LEN &&
2922 	    create != EXT4_CREATE_UNINITIALIZED_EXT)
2923 		max_blocks = EXT_INIT_MAX_LEN;
2924 	else if (max_blocks > EXT_UNINIT_MAX_LEN &&
2925 		 create == EXT4_CREATE_UNINITIALIZED_EXT)
2926 		max_blocks = EXT_UNINIT_MAX_LEN;
2927 
2928 	/* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2929 	newex.ee_block = cpu_to_le32(iblock);
2930 	newex.ee_len = cpu_to_le16(max_blocks);
2931 	err = ext4_ext_check_overlap(inode, &newex, path);
2932 	if (err)
2933 		allocated = ext4_ext_get_actual_len(&newex);
2934 	else
2935 		allocated = max_blocks;
2936 
2937 	/* allocate new block */
2938 	ar.inode = inode;
2939 	ar.goal = ext4_ext_find_goal(inode, path, iblock);
2940 	ar.logical = iblock;
2941 	ar.len = allocated;
2942 	if (S_ISREG(inode->i_mode))
2943 		ar.flags = EXT4_MB_HINT_DATA;
2944 	else
2945 		/* disable in-core preallocation for non-regular files */
2946 		ar.flags = 0;
2947 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
2948 	if (!newblock)
2949 		goto out2;
2950 	ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2951 		  ar.goal, newblock, allocated);
2952 
2953 	/* try to insert new extent into found leaf and return */
2954 	ext4_ext_store_pblock(&newex, newblock);
2955 	newex.ee_len = cpu_to_le16(ar.len);
2956 	if (create == EXT4_CREATE_UNINITIALIZED_EXT)  /* Mark uninitialized */
2957 		ext4_ext_mark_uninitialized(&newex);
2958 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2959 	if (err) {
2960 		/* free data blocks we just allocated */
2961 		/* not a good idea to call discard here directly,
2962 		 * but otherwise we'd need to call it every free() */
2963 		ext4_discard_preallocations(inode);
2964 		ext4_free_blocks(handle, inode, ext_pblock(&newex),
2965 					ext4_ext_get_actual_len(&newex), 0);
2966 		goto out2;
2967 	}
2968 
2969 	/* previous routine could use block we allocated */
2970 	newblock = ext_pblock(&newex);
2971 	allocated = ext4_ext_get_actual_len(&newex);
2972 outnew:
2973 	if (extend_disksize) {
2974 		disksize = ((loff_t) iblock + ar.len) << inode->i_blkbits;
2975 		if (disksize > i_size_read(inode))
2976 			disksize = i_size_read(inode);
2977 		if (disksize > EXT4_I(inode)->i_disksize)
2978 			EXT4_I(inode)->i_disksize = disksize;
2979 	}
2980 
2981 	set_buffer_new(bh_result);
2982 
2983 	/* Cache only when it is _not_ an uninitialized extent */
2984 	if (create != EXT4_CREATE_UNINITIALIZED_EXT)
2985 		ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2986 						EXT4_EXT_CACHE_EXTENT);
2987 out:
2988 	if (allocated > max_blocks)
2989 		allocated = max_blocks;
2990 	ext4_ext_show_leaf(inode, path);
2991 	set_buffer_mapped(bh_result);
2992 	bh_result->b_bdev = inode->i_sb->s_bdev;
2993 	bh_result->b_blocknr = newblock;
2994 out2:
2995 	if (path) {
2996 		ext4_ext_drop_refs(path);
2997 		kfree(path);
2998 	}
2999 	return err ? err : allocated;
3000 }
3001 
3002 void ext4_ext_truncate(struct inode *inode)
3003 {
3004 	struct address_space *mapping = inode->i_mapping;
3005 	struct super_block *sb = inode->i_sb;
3006 	ext4_lblk_t last_block;
3007 	handle_t *handle;
3008 	int err = 0;
3009 
3010 	/*
3011 	 * probably first extent we're gonna free will be last in block
3012 	 */
3013 	err = ext4_writepage_trans_blocks(inode);
3014 	handle = ext4_journal_start(inode, err);
3015 	if (IS_ERR(handle))
3016 		return;
3017 
3018 	if (inode->i_size & (sb->s_blocksize - 1))
3019 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3020 
3021 	if (ext4_orphan_add(handle, inode))
3022 		goto out_stop;
3023 
3024 	down_write(&EXT4_I(inode)->i_data_sem);
3025 	ext4_ext_invalidate_cache(inode);
3026 
3027 	ext4_discard_preallocations(inode);
3028 
3029 	/*
3030 	 * TODO: optimization is possible here.
3031 	 * Probably we need not scan at all,
3032 	 * because page truncation is enough.
3033 	 */
3034 
3035 	/* we have to know where to truncate from in crash case */
3036 	EXT4_I(inode)->i_disksize = inode->i_size;
3037 	ext4_mark_inode_dirty(handle, inode);
3038 
3039 	last_block = (inode->i_size + sb->s_blocksize - 1)
3040 			>> EXT4_BLOCK_SIZE_BITS(sb);
3041 	err = ext4_ext_remove_space(inode, last_block);
3042 
3043 	/* In a multi-transaction truncate, we only make the final
3044 	 * transaction synchronous.
3045 	 */
3046 	if (IS_SYNC(inode))
3047 		ext4_handle_sync(handle);
3048 
3049 out_stop:
3050 	up_write(&EXT4_I(inode)->i_data_sem);
3051 	/*
3052 	 * If this was a simple ftruncate() and the file will remain alive,
3053 	 * then we need to clear up the orphan record which we created above.
3054 	 * However, if this was a real unlink then we were called by
3055 	 * ext4_delete_inode(), and we allow that function to clean up the
3056 	 * orphan info for us.
3057 	 */
3058 	if (inode->i_nlink)
3059 		ext4_orphan_del(handle, inode);
3060 
3061 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3062 	ext4_mark_inode_dirty(handle, inode);
3063 	ext4_journal_stop(handle);
3064 }
3065 
3066 static void ext4_falloc_update_inode(struct inode *inode,
3067 				int mode, loff_t new_size, int update_ctime)
3068 {
3069 	struct timespec now;
3070 
3071 	if (update_ctime) {
3072 		now = current_fs_time(inode->i_sb);
3073 		if (!timespec_equal(&inode->i_ctime, &now))
3074 			inode->i_ctime = now;
3075 	}
3076 	/*
3077 	 * Update only when preallocation was requested beyond
3078 	 * the file size.
3079 	 */
3080 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3081 		if (new_size > i_size_read(inode))
3082 			i_size_write(inode, new_size);
3083 		if (new_size > EXT4_I(inode)->i_disksize)
3084 			ext4_update_i_disksize(inode, new_size);
3085 	}
3086 
3087 }
3088 
3089 /*
3090  * preallocate space for a file. This implements ext4's fallocate inode
3091  * operation, which gets called from sys_fallocate system call.
3092  * For block-mapped files, posix_fallocate should fall back to the method
3093  * of writing zeroes to the required new blocks (the same behavior which is
3094  * expected for file systems which do not support fallocate() system call).
3095  */
3096 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3097 {
3098 	handle_t *handle;
3099 	ext4_lblk_t block;
3100 	loff_t new_size;
3101 	unsigned int max_blocks;
3102 	int ret = 0;
3103 	int ret2 = 0;
3104 	int retries = 0;
3105 	struct buffer_head map_bh;
3106 	unsigned int credits, blkbits = inode->i_blkbits;
3107 
3108 	/*
3109 	 * currently supporting (pre)allocate mode for extent-based
3110 	 * files _only_
3111 	 */
3112 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3113 		return -EOPNOTSUPP;
3114 
3115 	/* preallocation to directories is currently not supported */
3116 	if (S_ISDIR(inode->i_mode))
3117 		return -ENODEV;
3118 
3119 	block = offset >> blkbits;
3120 	/*
3121 	 * We can't just convert len to max_blocks because
3122 	 * If blocksize = 4096 offset = 3072 and len = 2048
3123 	 */
3124 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3125 							- block;
3126 	/*
3127 	 * credits to insert 1 extent into extent tree
3128 	 */
3129 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3130 	mutex_lock(&inode->i_mutex);
3131 retry:
3132 	while (ret >= 0 && ret < max_blocks) {
3133 		block = block + ret;
3134 		max_blocks = max_blocks - ret;
3135 		handle = ext4_journal_start(inode, credits);
3136 		if (IS_ERR(handle)) {
3137 			ret = PTR_ERR(handle);
3138 			break;
3139 		}
3140 		ret = ext4_get_blocks_wrap(handle, inode, block,
3141 					  max_blocks, &map_bh,
3142 					  EXT4_CREATE_UNINITIALIZED_EXT, 0, 0);
3143 		if (ret <= 0) {
3144 #ifdef EXT4FS_DEBUG
3145 			WARN_ON(ret <= 0);
3146 			printk(KERN_ERR "%s: ext4_ext_get_blocks "
3147 				    "returned error inode#%lu, block=%u, "
3148 				    "max_blocks=%u", __func__,
3149 				    inode->i_ino, block, max_blocks);
3150 #endif
3151 			ext4_mark_inode_dirty(handle, inode);
3152 			ret2 = ext4_journal_stop(handle);
3153 			break;
3154 		}
3155 		if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3156 						blkbits) >> blkbits))
3157 			new_size = offset + len;
3158 		else
3159 			new_size = (block + ret) << blkbits;
3160 
3161 		ext4_falloc_update_inode(inode, mode, new_size,
3162 						buffer_new(&map_bh));
3163 		ext4_mark_inode_dirty(handle, inode);
3164 		ret2 = ext4_journal_stop(handle);
3165 		if (ret2)
3166 			break;
3167 	}
3168 	if (ret == -ENOSPC &&
3169 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3170 		ret = 0;
3171 		goto retry;
3172 	}
3173 	mutex_unlock(&inode->i_mutex);
3174 	return ret > 0 ? ret2 : ret;
3175 }
3176 
3177 /*
3178  * Callback function called for each extent to gather FIEMAP information.
3179  */
3180 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3181 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3182 		       void *data)
3183 {
3184 	struct fiemap_extent_info *fieinfo = data;
3185 	unsigned long blksize_bits = inode->i_sb->s_blocksize_bits;
3186 	__u64	logical;
3187 	__u64	physical;
3188 	__u64	length;
3189 	__u32	flags = 0;
3190 	int	error;
3191 
3192 	logical =  (__u64)newex->ec_block << blksize_bits;
3193 
3194 	if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3195 		pgoff_t offset;
3196 		struct page *page;
3197 		struct buffer_head *bh = NULL;
3198 
3199 		offset = logical >> PAGE_SHIFT;
3200 		page = find_get_page(inode->i_mapping, offset);
3201 		if (!page || !page_has_buffers(page))
3202 			return EXT_CONTINUE;
3203 
3204 		bh = page_buffers(page);
3205 
3206 		if (!bh)
3207 			return EXT_CONTINUE;
3208 
3209 		if (buffer_delay(bh)) {
3210 			flags |= FIEMAP_EXTENT_DELALLOC;
3211 			page_cache_release(page);
3212 		} else {
3213 			page_cache_release(page);
3214 			return EXT_CONTINUE;
3215 		}
3216 	}
3217 
3218 	physical = (__u64)newex->ec_start << blksize_bits;
3219 	length =   (__u64)newex->ec_len << blksize_bits;
3220 
3221 	if (ex && ext4_ext_is_uninitialized(ex))
3222 		flags |= FIEMAP_EXTENT_UNWRITTEN;
3223 
3224 	/*
3225 	 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3226 	 *
3227 	 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3228 	 * this also indicates no more allocated blocks.
3229 	 *
3230 	 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3231 	 */
3232 	if (logical + length - 1 == EXT_MAX_BLOCK ||
3233 	    ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK)
3234 		flags |= FIEMAP_EXTENT_LAST;
3235 
3236 	error = fiemap_fill_next_extent(fieinfo, logical, physical,
3237 					length, flags);
3238 	if (error < 0)
3239 		return error;
3240 	if (error == 1)
3241 		return EXT_BREAK;
3242 
3243 	return EXT_CONTINUE;
3244 }
3245 
3246 /* fiemap flags we can handle specified here */
3247 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3248 
3249 static int ext4_xattr_fiemap(struct inode *inode,
3250 				struct fiemap_extent_info *fieinfo)
3251 {
3252 	__u64 physical = 0;
3253 	__u64 length;
3254 	__u32 flags = FIEMAP_EXTENT_LAST;
3255 	int blockbits = inode->i_sb->s_blocksize_bits;
3256 	int error = 0;
3257 
3258 	/* in-inode? */
3259 	if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) {
3260 		struct ext4_iloc iloc;
3261 		int offset;	/* offset of xattr in inode */
3262 
3263 		error = ext4_get_inode_loc(inode, &iloc);
3264 		if (error)
3265 			return error;
3266 		physical = iloc.bh->b_blocknr << blockbits;
3267 		offset = EXT4_GOOD_OLD_INODE_SIZE +
3268 				EXT4_I(inode)->i_extra_isize;
3269 		physical += offset;
3270 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3271 		flags |= FIEMAP_EXTENT_DATA_INLINE;
3272 	} else { /* external block */
3273 		physical = EXT4_I(inode)->i_file_acl << blockbits;
3274 		length = inode->i_sb->s_blocksize;
3275 	}
3276 
3277 	if (physical)
3278 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
3279 						length, flags);
3280 	return (error < 0 ? error : 0);
3281 }
3282 
3283 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3284 		__u64 start, __u64 len)
3285 {
3286 	ext4_lblk_t start_blk;
3287 	ext4_lblk_t len_blks;
3288 	int error = 0;
3289 
3290 	/* fallback to generic here if not in extents fmt */
3291 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3292 		return generic_block_fiemap(inode, fieinfo, start, len,
3293 			ext4_get_block);
3294 
3295 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3296 		return -EBADR;
3297 
3298 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3299 		error = ext4_xattr_fiemap(inode, fieinfo);
3300 	} else {
3301 		start_blk = start >> inode->i_sb->s_blocksize_bits;
3302 		len_blks = len >> inode->i_sb->s_blocksize_bits;
3303 
3304 		/*
3305 		 * Walk the extent tree gathering extent information.
3306 		 * ext4_ext_fiemap_cb will push extents back to user.
3307 		 */
3308 		down_write(&EXT4_I(inode)->i_data_sem);
3309 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
3310 					  ext4_ext_fiemap_cb, fieinfo);
3311 		up_write(&EXT4_I(inode)->i_data_sem);
3312 	}
3313 
3314 	return error;
3315 }
3316 
3317