1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/module.h> 33 #include <linux/fs.h> 34 #include <linux/time.h> 35 #include <linux/jbd2.h> 36 #include <linux/highuid.h> 37 #include <linux/pagemap.h> 38 #include <linux/quotaops.h> 39 #include <linux/string.h> 40 #include <linux/slab.h> 41 #include <linux/falloc.h> 42 #include <asm/uaccess.h> 43 #include <linux/fiemap.h> 44 #include "ext4_jbd2.h" 45 #include "ext4_extents.h" 46 47 48 /* 49 * ext_pblock: 50 * combine low and high parts of physical block number into ext4_fsblk_t 51 */ 52 ext4_fsblk_t ext_pblock(struct ext4_extent *ex) 53 { 54 ext4_fsblk_t block; 55 56 block = le32_to_cpu(ex->ee_start_lo); 57 block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1; 58 return block; 59 } 60 61 /* 62 * idx_pblock: 63 * combine low and high parts of a leaf physical block number into ext4_fsblk_t 64 */ 65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix) 66 { 67 ext4_fsblk_t block; 68 69 block = le32_to_cpu(ix->ei_leaf_lo); 70 block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1; 71 return block; 72 } 73 74 /* 75 * ext4_ext_store_pblock: 76 * stores a large physical block number into an extent struct, 77 * breaking it into parts 78 */ 79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb) 80 { 81 ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); 82 ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); 83 } 84 85 /* 86 * ext4_idx_store_pblock: 87 * stores a large physical block number into an index struct, 88 * breaking it into parts 89 */ 90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb) 91 { 92 ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); 93 ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); 94 } 95 96 static int ext4_ext_truncate_extend_restart(handle_t *handle, 97 struct inode *inode, 98 int needed) 99 { 100 int err; 101 102 if (!ext4_handle_valid(handle)) 103 return 0; 104 if (handle->h_buffer_credits > needed) 105 return 0; 106 err = ext4_journal_extend(handle, needed); 107 if (err <= 0) 108 return err; 109 err = ext4_truncate_restart_trans(handle, inode, needed); 110 /* 111 * We have dropped i_data_sem so someone might have cached again 112 * an extent we are going to truncate. 113 */ 114 ext4_ext_invalidate_cache(inode); 115 116 return err; 117 } 118 119 /* 120 * could return: 121 * - EROFS 122 * - ENOMEM 123 */ 124 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 125 struct ext4_ext_path *path) 126 { 127 if (path->p_bh) { 128 /* path points to block */ 129 return ext4_journal_get_write_access(handle, path->p_bh); 130 } 131 /* path points to leaf/index in inode body */ 132 /* we use in-core data, no need to protect them */ 133 return 0; 134 } 135 136 /* 137 * could return: 138 * - EROFS 139 * - ENOMEM 140 * - EIO 141 */ 142 static int ext4_ext_dirty(handle_t *handle, struct inode *inode, 143 struct ext4_ext_path *path) 144 { 145 int err; 146 if (path->p_bh) { 147 /* path points to block */ 148 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh); 149 } else { 150 /* path points to leaf/index in inode body */ 151 err = ext4_mark_inode_dirty(handle, inode); 152 } 153 return err; 154 } 155 156 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 157 struct ext4_ext_path *path, 158 ext4_lblk_t block) 159 { 160 struct ext4_inode_info *ei = EXT4_I(inode); 161 ext4_fsblk_t bg_start; 162 ext4_fsblk_t last_block; 163 ext4_grpblk_t colour; 164 ext4_group_t block_group; 165 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 166 int depth; 167 168 if (path) { 169 struct ext4_extent *ex; 170 depth = path->p_depth; 171 172 /* try to predict block placement */ 173 ex = path[depth].p_ext; 174 if (ex) 175 return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block)); 176 177 /* it looks like index is empty; 178 * try to find starting block from index itself */ 179 if (path[depth].p_bh) 180 return path[depth].p_bh->b_blocknr; 181 } 182 183 /* OK. use inode's group */ 184 block_group = ei->i_block_group; 185 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 186 /* 187 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME 188 * block groups per flexgroup, reserve the first block 189 * group for directories and special files. Regular 190 * files will start at the second block group. This 191 * tends to speed up directory access and improves 192 * fsck times. 193 */ 194 block_group &= ~(flex_size-1); 195 if (S_ISREG(inode->i_mode)) 196 block_group++; 197 } 198 bg_start = (block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) + 199 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block); 200 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 201 202 /* 203 * If we are doing delayed allocation, we don't need take 204 * colour into account. 205 */ 206 if (test_opt(inode->i_sb, DELALLOC)) 207 return bg_start; 208 209 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 210 colour = (current->pid % 16) * 211 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 212 else 213 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 214 return bg_start + colour + block; 215 } 216 217 /* 218 * Allocation for a meta data block 219 */ 220 static ext4_fsblk_t 221 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 222 struct ext4_ext_path *path, 223 struct ext4_extent *ex, int *err) 224 { 225 ext4_fsblk_t goal, newblock; 226 227 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 228 newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err); 229 return newblock; 230 } 231 232 static inline int ext4_ext_space_block(struct inode *inode, int check) 233 { 234 int size; 235 236 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 237 / sizeof(struct ext4_extent); 238 if (!check) { 239 #ifdef AGGRESSIVE_TEST 240 if (size > 6) 241 size = 6; 242 #endif 243 } 244 return size; 245 } 246 247 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 248 { 249 int size; 250 251 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 252 / sizeof(struct ext4_extent_idx); 253 if (!check) { 254 #ifdef AGGRESSIVE_TEST 255 if (size > 5) 256 size = 5; 257 #endif 258 } 259 return size; 260 } 261 262 static inline int ext4_ext_space_root(struct inode *inode, int check) 263 { 264 int size; 265 266 size = sizeof(EXT4_I(inode)->i_data); 267 size -= sizeof(struct ext4_extent_header); 268 size /= sizeof(struct ext4_extent); 269 if (!check) { 270 #ifdef AGGRESSIVE_TEST 271 if (size > 3) 272 size = 3; 273 #endif 274 } 275 return size; 276 } 277 278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 279 { 280 int size; 281 282 size = sizeof(EXT4_I(inode)->i_data); 283 size -= sizeof(struct ext4_extent_header); 284 size /= sizeof(struct ext4_extent_idx); 285 if (!check) { 286 #ifdef AGGRESSIVE_TEST 287 if (size > 4) 288 size = 4; 289 #endif 290 } 291 return size; 292 } 293 294 /* 295 * Calculate the number of metadata blocks needed 296 * to allocate @blocks 297 * Worse case is one block per extent 298 */ 299 int ext4_ext_calc_metadata_amount(struct inode *inode, sector_t lblock) 300 { 301 struct ext4_inode_info *ei = EXT4_I(inode); 302 int idxs, num = 0; 303 304 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 305 / sizeof(struct ext4_extent_idx)); 306 307 /* 308 * If the new delayed allocation block is contiguous with the 309 * previous da block, it can share index blocks with the 310 * previous block, so we only need to allocate a new index 311 * block every idxs leaf blocks. At ldxs**2 blocks, we need 312 * an additional index block, and at ldxs**3 blocks, yet 313 * another index blocks. 314 */ 315 if (ei->i_da_metadata_calc_len && 316 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 317 if ((ei->i_da_metadata_calc_len % idxs) == 0) 318 num++; 319 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 320 num++; 321 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 322 num++; 323 ei->i_da_metadata_calc_len = 0; 324 } else 325 ei->i_da_metadata_calc_len++; 326 ei->i_da_metadata_calc_last_lblock++; 327 return num; 328 } 329 330 /* 331 * In the worst case we need a new set of index blocks at 332 * every level of the inode's extent tree. 333 */ 334 ei->i_da_metadata_calc_len = 1; 335 ei->i_da_metadata_calc_last_lblock = lblock; 336 return ext_depth(inode) + 1; 337 } 338 339 static int 340 ext4_ext_max_entries(struct inode *inode, int depth) 341 { 342 int max; 343 344 if (depth == ext_depth(inode)) { 345 if (depth == 0) 346 max = ext4_ext_space_root(inode, 1); 347 else 348 max = ext4_ext_space_root_idx(inode, 1); 349 } else { 350 if (depth == 0) 351 max = ext4_ext_space_block(inode, 1); 352 else 353 max = ext4_ext_space_block_idx(inode, 1); 354 } 355 356 return max; 357 } 358 359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 360 { 361 ext4_fsblk_t block = ext_pblock(ext); 362 int len = ext4_ext_get_actual_len(ext); 363 364 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 365 } 366 367 static int ext4_valid_extent_idx(struct inode *inode, 368 struct ext4_extent_idx *ext_idx) 369 { 370 ext4_fsblk_t block = idx_pblock(ext_idx); 371 372 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 373 } 374 375 static int ext4_valid_extent_entries(struct inode *inode, 376 struct ext4_extent_header *eh, 377 int depth) 378 { 379 struct ext4_extent *ext; 380 struct ext4_extent_idx *ext_idx; 381 unsigned short entries; 382 if (eh->eh_entries == 0) 383 return 1; 384 385 entries = le16_to_cpu(eh->eh_entries); 386 387 if (depth == 0) { 388 /* leaf entries */ 389 ext = EXT_FIRST_EXTENT(eh); 390 while (entries) { 391 if (!ext4_valid_extent(inode, ext)) 392 return 0; 393 ext++; 394 entries--; 395 } 396 } else { 397 ext_idx = EXT_FIRST_INDEX(eh); 398 while (entries) { 399 if (!ext4_valid_extent_idx(inode, ext_idx)) 400 return 0; 401 ext_idx++; 402 entries--; 403 } 404 } 405 return 1; 406 } 407 408 static int __ext4_ext_check(const char *function, struct inode *inode, 409 struct ext4_extent_header *eh, 410 int depth) 411 { 412 const char *error_msg; 413 int max = 0; 414 415 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 416 error_msg = "invalid magic"; 417 goto corrupted; 418 } 419 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 420 error_msg = "unexpected eh_depth"; 421 goto corrupted; 422 } 423 if (unlikely(eh->eh_max == 0)) { 424 error_msg = "invalid eh_max"; 425 goto corrupted; 426 } 427 max = ext4_ext_max_entries(inode, depth); 428 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 429 error_msg = "too large eh_max"; 430 goto corrupted; 431 } 432 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 433 error_msg = "invalid eh_entries"; 434 goto corrupted; 435 } 436 if (!ext4_valid_extent_entries(inode, eh, depth)) { 437 error_msg = "invalid extent entries"; 438 goto corrupted; 439 } 440 return 0; 441 442 corrupted: 443 ext4_error(inode->i_sb, function, 444 "bad header/extent in inode #%lu: %s - magic %x, " 445 "entries %u, max %u(%u), depth %u(%u)", 446 inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic), 447 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 448 max, le16_to_cpu(eh->eh_depth), depth); 449 450 return -EIO; 451 } 452 453 #define ext4_ext_check(inode, eh, depth) \ 454 __ext4_ext_check(__func__, inode, eh, depth) 455 456 int ext4_ext_check_inode(struct inode *inode) 457 { 458 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); 459 } 460 461 #ifdef EXT_DEBUG 462 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 463 { 464 int k, l = path->p_depth; 465 466 ext_debug("path:"); 467 for (k = 0; k <= l; k++, path++) { 468 if (path->p_idx) { 469 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 470 idx_pblock(path->p_idx)); 471 } else if (path->p_ext) { 472 ext_debug(" %d:[%d]%d:%llu ", 473 le32_to_cpu(path->p_ext->ee_block), 474 ext4_ext_is_uninitialized(path->p_ext), 475 ext4_ext_get_actual_len(path->p_ext), 476 ext_pblock(path->p_ext)); 477 } else 478 ext_debug(" []"); 479 } 480 ext_debug("\n"); 481 } 482 483 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 484 { 485 int depth = ext_depth(inode); 486 struct ext4_extent_header *eh; 487 struct ext4_extent *ex; 488 int i; 489 490 if (!path) 491 return; 492 493 eh = path[depth].p_hdr; 494 ex = EXT_FIRST_EXTENT(eh); 495 496 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 497 498 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 499 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 500 ext4_ext_is_uninitialized(ex), 501 ext4_ext_get_actual_len(ex), ext_pblock(ex)); 502 } 503 ext_debug("\n"); 504 } 505 #else 506 #define ext4_ext_show_path(inode, path) 507 #define ext4_ext_show_leaf(inode, path) 508 #endif 509 510 void ext4_ext_drop_refs(struct ext4_ext_path *path) 511 { 512 int depth = path->p_depth; 513 int i; 514 515 for (i = 0; i <= depth; i++, path++) 516 if (path->p_bh) { 517 brelse(path->p_bh); 518 path->p_bh = NULL; 519 } 520 } 521 522 /* 523 * ext4_ext_binsearch_idx: 524 * binary search for the closest index of the given block 525 * the header must be checked before calling this 526 */ 527 static void 528 ext4_ext_binsearch_idx(struct inode *inode, 529 struct ext4_ext_path *path, ext4_lblk_t block) 530 { 531 struct ext4_extent_header *eh = path->p_hdr; 532 struct ext4_extent_idx *r, *l, *m; 533 534 535 ext_debug("binsearch for %u(idx): ", block); 536 537 l = EXT_FIRST_INDEX(eh) + 1; 538 r = EXT_LAST_INDEX(eh); 539 while (l <= r) { 540 m = l + (r - l) / 2; 541 if (block < le32_to_cpu(m->ei_block)) 542 r = m - 1; 543 else 544 l = m + 1; 545 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 546 m, le32_to_cpu(m->ei_block), 547 r, le32_to_cpu(r->ei_block)); 548 } 549 550 path->p_idx = l - 1; 551 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block), 552 idx_pblock(path->p_idx)); 553 554 #ifdef CHECK_BINSEARCH 555 { 556 struct ext4_extent_idx *chix, *ix; 557 int k; 558 559 chix = ix = EXT_FIRST_INDEX(eh); 560 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 561 if (k != 0 && 562 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 563 printk(KERN_DEBUG "k=%d, ix=0x%p, " 564 "first=0x%p\n", k, 565 ix, EXT_FIRST_INDEX(eh)); 566 printk(KERN_DEBUG "%u <= %u\n", 567 le32_to_cpu(ix->ei_block), 568 le32_to_cpu(ix[-1].ei_block)); 569 } 570 BUG_ON(k && le32_to_cpu(ix->ei_block) 571 <= le32_to_cpu(ix[-1].ei_block)); 572 if (block < le32_to_cpu(ix->ei_block)) 573 break; 574 chix = ix; 575 } 576 BUG_ON(chix != path->p_idx); 577 } 578 #endif 579 580 } 581 582 /* 583 * ext4_ext_binsearch: 584 * binary search for closest extent of the given block 585 * the header must be checked before calling this 586 */ 587 static void 588 ext4_ext_binsearch(struct inode *inode, 589 struct ext4_ext_path *path, ext4_lblk_t block) 590 { 591 struct ext4_extent_header *eh = path->p_hdr; 592 struct ext4_extent *r, *l, *m; 593 594 if (eh->eh_entries == 0) { 595 /* 596 * this leaf is empty: 597 * we get such a leaf in split/add case 598 */ 599 return; 600 } 601 602 ext_debug("binsearch for %u: ", block); 603 604 l = EXT_FIRST_EXTENT(eh) + 1; 605 r = EXT_LAST_EXTENT(eh); 606 607 while (l <= r) { 608 m = l + (r - l) / 2; 609 if (block < le32_to_cpu(m->ee_block)) 610 r = m - 1; 611 else 612 l = m + 1; 613 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 614 m, le32_to_cpu(m->ee_block), 615 r, le32_to_cpu(r->ee_block)); 616 } 617 618 path->p_ext = l - 1; 619 ext_debug(" -> %d:%llu:[%d]%d ", 620 le32_to_cpu(path->p_ext->ee_block), 621 ext_pblock(path->p_ext), 622 ext4_ext_is_uninitialized(path->p_ext), 623 ext4_ext_get_actual_len(path->p_ext)); 624 625 #ifdef CHECK_BINSEARCH 626 { 627 struct ext4_extent *chex, *ex; 628 int k; 629 630 chex = ex = EXT_FIRST_EXTENT(eh); 631 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 632 BUG_ON(k && le32_to_cpu(ex->ee_block) 633 <= le32_to_cpu(ex[-1].ee_block)); 634 if (block < le32_to_cpu(ex->ee_block)) 635 break; 636 chex = ex; 637 } 638 BUG_ON(chex != path->p_ext); 639 } 640 #endif 641 642 } 643 644 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 645 { 646 struct ext4_extent_header *eh; 647 648 eh = ext_inode_hdr(inode); 649 eh->eh_depth = 0; 650 eh->eh_entries = 0; 651 eh->eh_magic = EXT4_EXT_MAGIC; 652 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 653 ext4_mark_inode_dirty(handle, inode); 654 ext4_ext_invalidate_cache(inode); 655 return 0; 656 } 657 658 struct ext4_ext_path * 659 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 660 struct ext4_ext_path *path) 661 { 662 struct ext4_extent_header *eh; 663 struct buffer_head *bh; 664 short int depth, i, ppos = 0, alloc = 0; 665 666 eh = ext_inode_hdr(inode); 667 depth = ext_depth(inode); 668 669 /* account possible depth increase */ 670 if (!path) { 671 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 672 GFP_NOFS); 673 if (!path) 674 return ERR_PTR(-ENOMEM); 675 alloc = 1; 676 } 677 path[0].p_hdr = eh; 678 path[0].p_bh = NULL; 679 680 i = depth; 681 /* walk through the tree */ 682 while (i) { 683 int need_to_validate = 0; 684 685 ext_debug("depth %d: num %d, max %d\n", 686 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 687 688 ext4_ext_binsearch_idx(inode, path + ppos, block); 689 path[ppos].p_block = idx_pblock(path[ppos].p_idx); 690 path[ppos].p_depth = i; 691 path[ppos].p_ext = NULL; 692 693 bh = sb_getblk(inode->i_sb, path[ppos].p_block); 694 if (unlikely(!bh)) 695 goto err; 696 if (!bh_uptodate_or_lock(bh)) { 697 if (bh_submit_read(bh) < 0) { 698 put_bh(bh); 699 goto err; 700 } 701 /* validate the extent entries */ 702 need_to_validate = 1; 703 } 704 eh = ext_block_hdr(bh); 705 ppos++; 706 BUG_ON(ppos > depth); 707 path[ppos].p_bh = bh; 708 path[ppos].p_hdr = eh; 709 i--; 710 711 if (need_to_validate && ext4_ext_check(inode, eh, i)) 712 goto err; 713 } 714 715 path[ppos].p_depth = i; 716 path[ppos].p_ext = NULL; 717 path[ppos].p_idx = NULL; 718 719 /* find extent */ 720 ext4_ext_binsearch(inode, path + ppos, block); 721 /* if not an empty leaf */ 722 if (path[ppos].p_ext) 723 path[ppos].p_block = ext_pblock(path[ppos].p_ext); 724 725 ext4_ext_show_path(inode, path); 726 727 return path; 728 729 err: 730 ext4_ext_drop_refs(path); 731 if (alloc) 732 kfree(path); 733 return ERR_PTR(-EIO); 734 } 735 736 /* 737 * ext4_ext_insert_index: 738 * insert new index [@logical;@ptr] into the block at @curp; 739 * check where to insert: before @curp or after @curp 740 */ 741 int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 742 struct ext4_ext_path *curp, 743 int logical, ext4_fsblk_t ptr) 744 { 745 struct ext4_extent_idx *ix; 746 int len, err; 747 748 err = ext4_ext_get_access(handle, inode, curp); 749 if (err) 750 return err; 751 752 BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block)); 753 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx; 754 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 755 /* insert after */ 756 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) { 757 len = (len - 1) * sizeof(struct ext4_extent_idx); 758 len = len < 0 ? 0 : len; 759 ext_debug("insert new index %d after: %llu. " 760 "move %d from 0x%p to 0x%p\n", 761 logical, ptr, len, 762 (curp->p_idx + 1), (curp->p_idx + 2)); 763 memmove(curp->p_idx + 2, curp->p_idx + 1, len); 764 } 765 ix = curp->p_idx + 1; 766 } else { 767 /* insert before */ 768 len = len * sizeof(struct ext4_extent_idx); 769 len = len < 0 ? 0 : len; 770 ext_debug("insert new index %d before: %llu. " 771 "move %d from 0x%p to 0x%p\n", 772 logical, ptr, len, 773 curp->p_idx, (curp->p_idx + 1)); 774 memmove(curp->p_idx + 1, curp->p_idx, len); 775 ix = curp->p_idx; 776 } 777 778 ix->ei_block = cpu_to_le32(logical); 779 ext4_idx_store_pblock(ix, ptr); 780 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 781 782 BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries) 783 > le16_to_cpu(curp->p_hdr->eh_max)); 784 BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr)); 785 786 err = ext4_ext_dirty(handle, inode, curp); 787 ext4_std_error(inode->i_sb, err); 788 789 return err; 790 } 791 792 /* 793 * ext4_ext_split: 794 * inserts new subtree into the path, using free index entry 795 * at depth @at: 796 * - allocates all needed blocks (new leaf and all intermediate index blocks) 797 * - makes decision where to split 798 * - moves remaining extents and index entries (right to the split point) 799 * into the newly allocated blocks 800 * - initializes subtree 801 */ 802 static int ext4_ext_split(handle_t *handle, struct inode *inode, 803 struct ext4_ext_path *path, 804 struct ext4_extent *newext, int at) 805 { 806 struct buffer_head *bh = NULL; 807 int depth = ext_depth(inode); 808 struct ext4_extent_header *neh; 809 struct ext4_extent_idx *fidx; 810 struct ext4_extent *ex; 811 int i = at, k, m, a; 812 ext4_fsblk_t newblock, oldblock; 813 __le32 border; 814 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 815 int err = 0; 816 817 /* make decision: where to split? */ 818 /* FIXME: now decision is simplest: at current extent */ 819 820 /* if current leaf will be split, then we should use 821 * border from split point */ 822 BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr)); 823 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 824 border = path[depth].p_ext[1].ee_block; 825 ext_debug("leaf will be split." 826 " next leaf starts at %d\n", 827 le32_to_cpu(border)); 828 } else { 829 border = newext->ee_block; 830 ext_debug("leaf will be added." 831 " next leaf starts at %d\n", 832 le32_to_cpu(border)); 833 } 834 835 /* 836 * If error occurs, then we break processing 837 * and mark filesystem read-only. index won't 838 * be inserted and tree will be in consistent 839 * state. Next mount will repair buffers too. 840 */ 841 842 /* 843 * Get array to track all allocated blocks. 844 * We need this to handle errors and free blocks 845 * upon them. 846 */ 847 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 848 if (!ablocks) 849 return -ENOMEM; 850 851 /* allocate all needed blocks */ 852 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 853 for (a = 0; a < depth - at; a++) { 854 newblock = ext4_ext_new_meta_block(handle, inode, path, 855 newext, &err); 856 if (newblock == 0) 857 goto cleanup; 858 ablocks[a] = newblock; 859 } 860 861 /* initialize new leaf */ 862 newblock = ablocks[--a]; 863 BUG_ON(newblock == 0); 864 bh = sb_getblk(inode->i_sb, newblock); 865 if (!bh) { 866 err = -EIO; 867 goto cleanup; 868 } 869 lock_buffer(bh); 870 871 err = ext4_journal_get_create_access(handle, bh); 872 if (err) 873 goto cleanup; 874 875 neh = ext_block_hdr(bh); 876 neh->eh_entries = 0; 877 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 878 neh->eh_magic = EXT4_EXT_MAGIC; 879 neh->eh_depth = 0; 880 ex = EXT_FIRST_EXTENT(neh); 881 882 /* move remainder of path[depth] to the new leaf */ 883 BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max); 884 /* start copy from next extent */ 885 /* TODO: we could do it by single memmove */ 886 m = 0; 887 path[depth].p_ext++; 888 while (path[depth].p_ext <= 889 EXT_MAX_EXTENT(path[depth].p_hdr)) { 890 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 891 le32_to_cpu(path[depth].p_ext->ee_block), 892 ext_pblock(path[depth].p_ext), 893 ext4_ext_is_uninitialized(path[depth].p_ext), 894 ext4_ext_get_actual_len(path[depth].p_ext), 895 newblock); 896 /*memmove(ex++, path[depth].p_ext++, 897 sizeof(struct ext4_extent)); 898 neh->eh_entries++;*/ 899 path[depth].p_ext++; 900 m++; 901 } 902 if (m) { 903 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m); 904 le16_add_cpu(&neh->eh_entries, m); 905 } 906 907 set_buffer_uptodate(bh); 908 unlock_buffer(bh); 909 910 err = ext4_handle_dirty_metadata(handle, inode, bh); 911 if (err) 912 goto cleanup; 913 brelse(bh); 914 bh = NULL; 915 916 /* correct old leaf */ 917 if (m) { 918 err = ext4_ext_get_access(handle, inode, path + depth); 919 if (err) 920 goto cleanup; 921 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 922 err = ext4_ext_dirty(handle, inode, path + depth); 923 if (err) 924 goto cleanup; 925 926 } 927 928 /* create intermediate indexes */ 929 k = depth - at - 1; 930 BUG_ON(k < 0); 931 if (k) 932 ext_debug("create %d intermediate indices\n", k); 933 /* insert new index into current index block */ 934 /* current depth stored in i var */ 935 i = depth - 1; 936 while (k--) { 937 oldblock = newblock; 938 newblock = ablocks[--a]; 939 bh = sb_getblk(inode->i_sb, newblock); 940 if (!bh) { 941 err = -EIO; 942 goto cleanup; 943 } 944 lock_buffer(bh); 945 946 err = ext4_journal_get_create_access(handle, bh); 947 if (err) 948 goto cleanup; 949 950 neh = ext_block_hdr(bh); 951 neh->eh_entries = cpu_to_le16(1); 952 neh->eh_magic = EXT4_EXT_MAGIC; 953 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 954 neh->eh_depth = cpu_to_le16(depth - i); 955 fidx = EXT_FIRST_INDEX(neh); 956 fidx->ei_block = border; 957 ext4_idx_store_pblock(fidx, oldblock); 958 959 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 960 i, newblock, le32_to_cpu(border), oldblock); 961 /* copy indexes */ 962 m = 0; 963 path[i].p_idx++; 964 965 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 966 EXT_MAX_INDEX(path[i].p_hdr)); 967 BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) != 968 EXT_LAST_INDEX(path[i].p_hdr)); 969 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) { 970 ext_debug("%d: move %d:%llu in new index %llu\n", i, 971 le32_to_cpu(path[i].p_idx->ei_block), 972 idx_pblock(path[i].p_idx), 973 newblock); 974 /*memmove(++fidx, path[i].p_idx++, 975 sizeof(struct ext4_extent_idx)); 976 neh->eh_entries++; 977 BUG_ON(neh->eh_entries > neh->eh_max);*/ 978 path[i].p_idx++; 979 m++; 980 } 981 if (m) { 982 memmove(++fidx, path[i].p_idx - m, 983 sizeof(struct ext4_extent_idx) * m); 984 le16_add_cpu(&neh->eh_entries, m); 985 } 986 set_buffer_uptodate(bh); 987 unlock_buffer(bh); 988 989 err = ext4_handle_dirty_metadata(handle, inode, bh); 990 if (err) 991 goto cleanup; 992 brelse(bh); 993 bh = NULL; 994 995 /* correct old index */ 996 if (m) { 997 err = ext4_ext_get_access(handle, inode, path + i); 998 if (err) 999 goto cleanup; 1000 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1001 err = ext4_ext_dirty(handle, inode, path + i); 1002 if (err) 1003 goto cleanup; 1004 } 1005 1006 i--; 1007 } 1008 1009 /* insert new index */ 1010 err = ext4_ext_insert_index(handle, inode, path + at, 1011 le32_to_cpu(border), newblock); 1012 1013 cleanup: 1014 if (bh) { 1015 if (buffer_locked(bh)) 1016 unlock_buffer(bh); 1017 brelse(bh); 1018 } 1019 1020 if (err) { 1021 /* free all allocated blocks in error case */ 1022 for (i = 0; i < depth; i++) { 1023 if (!ablocks[i]) 1024 continue; 1025 ext4_free_blocks(handle, inode, 0, ablocks[i], 1, 1026 EXT4_FREE_BLOCKS_METADATA); 1027 } 1028 } 1029 kfree(ablocks); 1030 1031 return err; 1032 } 1033 1034 /* 1035 * ext4_ext_grow_indepth: 1036 * implements tree growing procedure: 1037 * - allocates new block 1038 * - moves top-level data (index block or leaf) into the new block 1039 * - initializes new top-level, creating index that points to the 1040 * just created block 1041 */ 1042 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1043 struct ext4_ext_path *path, 1044 struct ext4_extent *newext) 1045 { 1046 struct ext4_ext_path *curp = path; 1047 struct ext4_extent_header *neh; 1048 struct ext4_extent_idx *fidx; 1049 struct buffer_head *bh; 1050 ext4_fsblk_t newblock; 1051 int err = 0; 1052 1053 newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err); 1054 if (newblock == 0) 1055 return err; 1056 1057 bh = sb_getblk(inode->i_sb, newblock); 1058 if (!bh) { 1059 err = -EIO; 1060 ext4_std_error(inode->i_sb, err); 1061 return err; 1062 } 1063 lock_buffer(bh); 1064 1065 err = ext4_journal_get_create_access(handle, bh); 1066 if (err) { 1067 unlock_buffer(bh); 1068 goto out; 1069 } 1070 1071 /* move top-level index/leaf into new block */ 1072 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data)); 1073 1074 /* set size of new block */ 1075 neh = ext_block_hdr(bh); 1076 /* old root could have indexes or leaves 1077 * so calculate e_max right way */ 1078 if (ext_depth(inode)) 1079 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1080 else 1081 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1082 neh->eh_magic = EXT4_EXT_MAGIC; 1083 set_buffer_uptodate(bh); 1084 unlock_buffer(bh); 1085 1086 err = ext4_handle_dirty_metadata(handle, inode, bh); 1087 if (err) 1088 goto out; 1089 1090 /* create index in new top-level index: num,max,pointer */ 1091 err = ext4_ext_get_access(handle, inode, curp); 1092 if (err) 1093 goto out; 1094 1095 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC; 1096 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1097 curp->p_hdr->eh_entries = cpu_to_le16(1); 1098 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr); 1099 1100 if (path[0].p_hdr->eh_depth) 1101 curp->p_idx->ei_block = 1102 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block; 1103 else 1104 curp->p_idx->ei_block = 1105 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block; 1106 ext4_idx_store_pblock(curp->p_idx, newblock); 1107 1108 neh = ext_inode_hdr(inode); 1109 fidx = EXT_FIRST_INDEX(neh); 1110 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1111 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1112 le32_to_cpu(fidx->ei_block), idx_pblock(fidx)); 1113 1114 neh->eh_depth = cpu_to_le16(path->p_depth + 1); 1115 err = ext4_ext_dirty(handle, inode, curp); 1116 out: 1117 brelse(bh); 1118 1119 return err; 1120 } 1121 1122 /* 1123 * ext4_ext_create_new_leaf: 1124 * finds empty index and adds new leaf. 1125 * if no free index is found, then it requests in-depth growing. 1126 */ 1127 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1128 struct ext4_ext_path *path, 1129 struct ext4_extent *newext) 1130 { 1131 struct ext4_ext_path *curp; 1132 int depth, i, err = 0; 1133 1134 repeat: 1135 i = depth = ext_depth(inode); 1136 1137 /* walk up to the tree and look for free index entry */ 1138 curp = path + depth; 1139 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1140 i--; 1141 curp--; 1142 } 1143 1144 /* we use already allocated block for index block, 1145 * so subsequent data blocks should be contiguous */ 1146 if (EXT_HAS_FREE_INDEX(curp)) { 1147 /* if we found index with free entry, then use that 1148 * entry: create all needed subtree and add new leaf */ 1149 err = ext4_ext_split(handle, inode, path, newext, i); 1150 if (err) 1151 goto out; 1152 1153 /* refill path */ 1154 ext4_ext_drop_refs(path); 1155 path = ext4_ext_find_extent(inode, 1156 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1157 path); 1158 if (IS_ERR(path)) 1159 err = PTR_ERR(path); 1160 } else { 1161 /* tree is full, time to grow in depth */ 1162 err = ext4_ext_grow_indepth(handle, inode, path, newext); 1163 if (err) 1164 goto out; 1165 1166 /* refill path */ 1167 ext4_ext_drop_refs(path); 1168 path = ext4_ext_find_extent(inode, 1169 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1170 path); 1171 if (IS_ERR(path)) { 1172 err = PTR_ERR(path); 1173 goto out; 1174 } 1175 1176 /* 1177 * only first (depth 0 -> 1) produces free space; 1178 * in all other cases we have to split the grown tree 1179 */ 1180 depth = ext_depth(inode); 1181 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1182 /* now we need to split */ 1183 goto repeat; 1184 } 1185 } 1186 1187 out: 1188 return err; 1189 } 1190 1191 /* 1192 * search the closest allocated block to the left for *logical 1193 * and returns it at @logical + it's physical address at @phys 1194 * if *logical is the smallest allocated block, the function 1195 * returns 0 at @phys 1196 * return value contains 0 (success) or error code 1197 */ 1198 int 1199 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path, 1200 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1201 { 1202 struct ext4_extent_idx *ix; 1203 struct ext4_extent *ex; 1204 int depth, ee_len; 1205 1206 BUG_ON(path == NULL); 1207 depth = path->p_depth; 1208 *phys = 0; 1209 1210 if (depth == 0 && path->p_ext == NULL) 1211 return 0; 1212 1213 /* usually extent in the path covers blocks smaller 1214 * then *logical, but it can be that extent is the 1215 * first one in the file */ 1216 1217 ex = path[depth].p_ext; 1218 ee_len = ext4_ext_get_actual_len(ex); 1219 if (*logical < le32_to_cpu(ex->ee_block)) { 1220 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex); 1221 while (--depth >= 0) { 1222 ix = path[depth].p_idx; 1223 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr)); 1224 } 1225 return 0; 1226 } 1227 1228 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len)); 1229 1230 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1231 *phys = ext_pblock(ex) + ee_len - 1; 1232 return 0; 1233 } 1234 1235 /* 1236 * search the closest allocated block to the right for *logical 1237 * and returns it at @logical + it's physical address at @phys 1238 * if *logical is the smallest allocated block, the function 1239 * returns 0 at @phys 1240 * return value contains 0 (success) or error code 1241 */ 1242 int 1243 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path, 1244 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1245 { 1246 struct buffer_head *bh = NULL; 1247 struct ext4_extent_header *eh; 1248 struct ext4_extent_idx *ix; 1249 struct ext4_extent *ex; 1250 ext4_fsblk_t block; 1251 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1252 int ee_len; 1253 1254 BUG_ON(path == NULL); 1255 depth = path->p_depth; 1256 *phys = 0; 1257 1258 if (depth == 0 && path->p_ext == NULL) 1259 return 0; 1260 1261 /* usually extent in the path covers blocks smaller 1262 * then *logical, but it can be that extent is the 1263 * first one in the file */ 1264 1265 ex = path[depth].p_ext; 1266 ee_len = ext4_ext_get_actual_len(ex); 1267 if (*logical < le32_to_cpu(ex->ee_block)) { 1268 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex); 1269 while (--depth >= 0) { 1270 ix = path[depth].p_idx; 1271 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr)); 1272 } 1273 *logical = le32_to_cpu(ex->ee_block); 1274 *phys = ext_pblock(ex); 1275 return 0; 1276 } 1277 1278 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len)); 1279 1280 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1281 /* next allocated block in this leaf */ 1282 ex++; 1283 *logical = le32_to_cpu(ex->ee_block); 1284 *phys = ext_pblock(ex); 1285 return 0; 1286 } 1287 1288 /* go up and search for index to the right */ 1289 while (--depth >= 0) { 1290 ix = path[depth].p_idx; 1291 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1292 goto got_index; 1293 } 1294 1295 /* we've gone up to the root and found no index to the right */ 1296 return 0; 1297 1298 got_index: 1299 /* we've found index to the right, let's 1300 * follow it and find the closest allocated 1301 * block to the right */ 1302 ix++; 1303 block = idx_pblock(ix); 1304 while (++depth < path->p_depth) { 1305 bh = sb_bread(inode->i_sb, block); 1306 if (bh == NULL) 1307 return -EIO; 1308 eh = ext_block_hdr(bh); 1309 /* subtract from p_depth to get proper eh_depth */ 1310 if (ext4_ext_check(inode, eh, path->p_depth - depth)) { 1311 put_bh(bh); 1312 return -EIO; 1313 } 1314 ix = EXT_FIRST_INDEX(eh); 1315 block = idx_pblock(ix); 1316 put_bh(bh); 1317 } 1318 1319 bh = sb_bread(inode->i_sb, block); 1320 if (bh == NULL) 1321 return -EIO; 1322 eh = ext_block_hdr(bh); 1323 if (ext4_ext_check(inode, eh, path->p_depth - depth)) { 1324 put_bh(bh); 1325 return -EIO; 1326 } 1327 ex = EXT_FIRST_EXTENT(eh); 1328 *logical = le32_to_cpu(ex->ee_block); 1329 *phys = ext_pblock(ex); 1330 put_bh(bh); 1331 return 0; 1332 } 1333 1334 /* 1335 * ext4_ext_next_allocated_block: 1336 * returns allocated block in subsequent extent or EXT_MAX_BLOCK. 1337 * NOTE: it considers block number from index entry as 1338 * allocated block. Thus, index entries have to be consistent 1339 * with leaves. 1340 */ 1341 static ext4_lblk_t 1342 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1343 { 1344 int depth; 1345 1346 BUG_ON(path == NULL); 1347 depth = path->p_depth; 1348 1349 if (depth == 0 && path->p_ext == NULL) 1350 return EXT_MAX_BLOCK; 1351 1352 while (depth >= 0) { 1353 if (depth == path->p_depth) { 1354 /* leaf */ 1355 if (path[depth].p_ext != 1356 EXT_LAST_EXTENT(path[depth].p_hdr)) 1357 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1358 } else { 1359 /* index */ 1360 if (path[depth].p_idx != 1361 EXT_LAST_INDEX(path[depth].p_hdr)) 1362 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1363 } 1364 depth--; 1365 } 1366 1367 return EXT_MAX_BLOCK; 1368 } 1369 1370 /* 1371 * ext4_ext_next_leaf_block: 1372 * returns first allocated block from next leaf or EXT_MAX_BLOCK 1373 */ 1374 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode, 1375 struct ext4_ext_path *path) 1376 { 1377 int depth; 1378 1379 BUG_ON(path == NULL); 1380 depth = path->p_depth; 1381 1382 /* zero-tree has no leaf blocks at all */ 1383 if (depth == 0) 1384 return EXT_MAX_BLOCK; 1385 1386 /* go to index block */ 1387 depth--; 1388 1389 while (depth >= 0) { 1390 if (path[depth].p_idx != 1391 EXT_LAST_INDEX(path[depth].p_hdr)) 1392 return (ext4_lblk_t) 1393 le32_to_cpu(path[depth].p_idx[1].ei_block); 1394 depth--; 1395 } 1396 1397 return EXT_MAX_BLOCK; 1398 } 1399 1400 /* 1401 * ext4_ext_correct_indexes: 1402 * if leaf gets modified and modified extent is first in the leaf, 1403 * then we have to correct all indexes above. 1404 * TODO: do we need to correct tree in all cases? 1405 */ 1406 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1407 struct ext4_ext_path *path) 1408 { 1409 struct ext4_extent_header *eh; 1410 int depth = ext_depth(inode); 1411 struct ext4_extent *ex; 1412 __le32 border; 1413 int k, err = 0; 1414 1415 eh = path[depth].p_hdr; 1416 ex = path[depth].p_ext; 1417 BUG_ON(ex == NULL); 1418 BUG_ON(eh == NULL); 1419 1420 if (depth == 0) { 1421 /* there is no tree at all */ 1422 return 0; 1423 } 1424 1425 if (ex != EXT_FIRST_EXTENT(eh)) { 1426 /* we correct tree if first leaf got modified only */ 1427 return 0; 1428 } 1429 1430 /* 1431 * TODO: we need correction if border is smaller than current one 1432 */ 1433 k = depth - 1; 1434 border = path[depth].p_ext->ee_block; 1435 err = ext4_ext_get_access(handle, inode, path + k); 1436 if (err) 1437 return err; 1438 path[k].p_idx->ei_block = border; 1439 err = ext4_ext_dirty(handle, inode, path + k); 1440 if (err) 1441 return err; 1442 1443 while (k--) { 1444 /* change all left-side indexes */ 1445 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1446 break; 1447 err = ext4_ext_get_access(handle, inode, path + k); 1448 if (err) 1449 break; 1450 path[k].p_idx->ei_block = border; 1451 err = ext4_ext_dirty(handle, inode, path + k); 1452 if (err) 1453 break; 1454 } 1455 1456 return err; 1457 } 1458 1459 int 1460 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1461 struct ext4_extent *ex2) 1462 { 1463 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1464 1465 /* 1466 * Make sure that either both extents are uninitialized, or 1467 * both are _not_. 1468 */ 1469 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2)) 1470 return 0; 1471 1472 if (ext4_ext_is_uninitialized(ex1)) 1473 max_len = EXT_UNINIT_MAX_LEN; 1474 else 1475 max_len = EXT_INIT_MAX_LEN; 1476 1477 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1478 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1479 1480 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1481 le32_to_cpu(ex2->ee_block)) 1482 return 0; 1483 1484 /* 1485 * To allow future support for preallocated extents to be added 1486 * as an RO_COMPAT feature, refuse to merge to extents if 1487 * this can result in the top bit of ee_len being set. 1488 */ 1489 if (ext1_ee_len + ext2_ee_len > max_len) 1490 return 0; 1491 #ifdef AGGRESSIVE_TEST 1492 if (ext1_ee_len >= 4) 1493 return 0; 1494 #endif 1495 1496 if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2)) 1497 return 1; 1498 return 0; 1499 } 1500 1501 /* 1502 * This function tries to merge the "ex" extent to the next extent in the tree. 1503 * It always tries to merge towards right. If you want to merge towards 1504 * left, pass "ex - 1" as argument instead of "ex". 1505 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1506 * 1 if they got merged. 1507 */ 1508 int ext4_ext_try_to_merge(struct inode *inode, 1509 struct ext4_ext_path *path, 1510 struct ext4_extent *ex) 1511 { 1512 struct ext4_extent_header *eh; 1513 unsigned int depth, len; 1514 int merge_done = 0; 1515 int uninitialized = 0; 1516 1517 depth = ext_depth(inode); 1518 BUG_ON(path[depth].p_hdr == NULL); 1519 eh = path[depth].p_hdr; 1520 1521 while (ex < EXT_LAST_EXTENT(eh)) { 1522 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1523 break; 1524 /* merge with next extent! */ 1525 if (ext4_ext_is_uninitialized(ex)) 1526 uninitialized = 1; 1527 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1528 + ext4_ext_get_actual_len(ex + 1)); 1529 if (uninitialized) 1530 ext4_ext_mark_uninitialized(ex); 1531 1532 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1533 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1534 * sizeof(struct ext4_extent); 1535 memmove(ex + 1, ex + 2, len); 1536 } 1537 le16_add_cpu(&eh->eh_entries, -1); 1538 merge_done = 1; 1539 WARN_ON(eh->eh_entries == 0); 1540 if (!eh->eh_entries) 1541 ext4_error(inode->i_sb, "ext4_ext_try_to_merge", 1542 "inode#%lu, eh->eh_entries = 0!", inode->i_ino); 1543 } 1544 1545 return merge_done; 1546 } 1547 1548 /* 1549 * check if a portion of the "newext" extent overlaps with an 1550 * existing extent. 1551 * 1552 * If there is an overlap discovered, it updates the length of the newext 1553 * such that there will be no overlap, and then returns 1. 1554 * If there is no overlap found, it returns 0. 1555 */ 1556 unsigned int ext4_ext_check_overlap(struct inode *inode, 1557 struct ext4_extent *newext, 1558 struct ext4_ext_path *path) 1559 { 1560 ext4_lblk_t b1, b2; 1561 unsigned int depth, len1; 1562 unsigned int ret = 0; 1563 1564 b1 = le32_to_cpu(newext->ee_block); 1565 len1 = ext4_ext_get_actual_len(newext); 1566 depth = ext_depth(inode); 1567 if (!path[depth].p_ext) 1568 goto out; 1569 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1570 1571 /* 1572 * get the next allocated block if the extent in the path 1573 * is before the requested block(s) 1574 */ 1575 if (b2 < b1) { 1576 b2 = ext4_ext_next_allocated_block(path); 1577 if (b2 == EXT_MAX_BLOCK) 1578 goto out; 1579 } 1580 1581 /* check for wrap through zero on extent logical start block*/ 1582 if (b1 + len1 < b1) { 1583 len1 = EXT_MAX_BLOCK - b1; 1584 newext->ee_len = cpu_to_le16(len1); 1585 ret = 1; 1586 } 1587 1588 /* check for overlap */ 1589 if (b1 + len1 > b2) { 1590 newext->ee_len = cpu_to_le16(b2 - b1); 1591 ret = 1; 1592 } 1593 out: 1594 return ret; 1595 } 1596 1597 /* 1598 * ext4_ext_insert_extent: 1599 * tries to merge requsted extent into the existing extent or 1600 * inserts requested extent as new one into the tree, 1601 * creating new leaf in the no-space case. 1602 */ 1603 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1604 struct ext4_ext_path *path, 1605 struct ext4_extent *newext, int flag) 1606 { 1607 struct ext4_extent_header *eh; 1608 struct ext4_extent *ex, *fex; 1609 struct ext4_extent *nearex; /* nearest extent */ 1610 struct ext4_ext_path *npath = NULL; 1611 int depth, len, err; 1612 ext4_lblk_t next; 1613 unsigned uninitialized = 0; 1614 1615 BUG_ON(ext4_ext_get_actual_len(newext) == 0); 1616 depth = ext_depth(inode); 1617 ex = path[depth].p_ext; 1618 BUG_ON(path[depth].p_hdr == NULL); 1619 1620 /* try to insert block into found extent and return */ 1621 if (ex && (flag != EXT4_GET_BLOCKS_DIO_CREATE_EXT) 1622 && ext4_can_extents_be_merged(inode, ex, newext)) { 1623 ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n", 1624 ext4_ext_is_uninitialized(newext), 1625 ext4_ext_get_actual_len(newext), 1626 le32_to_cpu(ex->ee_block), 1627 ext4_ext_is_uninitialized(ex), 1628 ext4_ext_get_actual_len(ex), ext_pblock(ex)); 1629 err = ext4_ext_get_access(handle, inode, path + depth); 1630 if (err) 1631 return err; 1632 1633 /* 1634 * ext4_can_extents_be_merged should have checked that either 1635 * both extents are uninitialized, or both aren't. Thus we 1636 * need to check only one of them here. 1637 */ 1638 if (ext4_ext_is_uninitialized(ex)) 1639 uninitialized = 1; 1640 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1641 + ext4_ext_get_actual_len(newext)); 1642 if (uninitialized) 1643 ext4_ext_mark_uninitialized(ex); 1644 eh = path[depth].p_hdr; 1645 nearex = ex; 1646 goto merge; 1647 } 1648 1649 repeat: 1650 depth = ext_depth(inode); 1651 eh = path[depth].p_hdr; 1652 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1653 goto has_space; 1654 1655 /* probably next leaf has space for us? */ 1656 fex = EXT_LAST_EXTENT(eh); 1657 next = ext4_ext_next_leaf_block(inode, path); 1658 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block) 1659 && next != EXT_MAX_BLOCK) { 1660 ext_debug("next leaf block - %d\n", next); 1661 BUG_ON(npath != NULL); 1662 npath = ext4_ext_find_extent(inode, next, NULL); 1663 if (IS_ERR(npath)) 1664 return PTR_ERR(npath); 1665 BUG_ON(npath->p_depth != path->p_depth); 1666 eh = npath[depth].p_hdr; 1667 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1668 ext_debug("next leaf isnt full(%d)\n", 1669 le16_to_cpu(eh->eh_entries)); 1670 path = npath; 1671 goto repeat; 1672 } 1673 ext_debug("next leaf has no free space(%d,%d)\n", 1674 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1675 } 1676 1677 /* 1678 * There is no free space in the found leaf. 1679 * We're gonna add a new leaf in the tree. 1680 */ 1681 err = ext4_ext_create_new_leaf(handle, inode, path, newext); 1682 if (err) 1683 goto cleanup; 1684 depth = ext_depth(inode); 1685 eh = path[depth].p_hdr; 1686 1687 has_space: 1688 nearex = path[depth].p_ext; 1689 1690 err = ext4_ext_get_access(handle, inode, path + depth); 1691 if (err) 1692 goto cleanup; 1693 1694 if (!nearex) { 1695 /* there is no extent in this leaf, create first one */ 1696 ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n", 1697 le32_to_cpu(newext->ee_block), 1698 ext_pblock(newext), 1699 ext4_ext_is_uninitialized(newext), 1700 ext4_ext_get_actual_len(newext)); 1701 path[depth].p_ext = EXT_FIRST_EXTENT(eh); 1702 } else if (le32_to_cpu(newext->ee_block) 1703 > le32_to_cpu(nearex->ee_block)) { 1704 /* BUG_ON(newext->ee_block == nearex->ee_block); */ 1705 if (nearex != EXT_LAST_EXTENT(eh)) { 1706 len = EXT_MAX_EXTENT(eh) - nearex; 1707 len = (len - 1) * sizeof(struct ext4_extent); 1708 len = len < 0 ? 0 : len; 1709 ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, " 1710 "move %d from 0x%p to 0x%p\n", 1711 le32_to_cpu(newext->ee_block), 1712 ext_pblock(newext), 1713 ext4_ext_is_uninitialized(newext), 1714 ext4_ext_get_actual_len(newext), 1715 nearex, len, nearex + 1, nearex + 2); 1716 memmove(nearex + 2, nearex + 1, len); 1717 } 1718 path[depth].p_ext = nearex + 1; 1719 } else { 1720 BUG_ON(newext->ee_block == nearex->ee_block); 1721 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent); 1722 len = len < 0 ? 0 : len; 1723 ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, " 1724 "move %d from 0x%p to 0x%p\n", 1725 le32_to_cpu(newext->ee_block), 1726 ext_pblock(newext), 1727 ext4_ext_is_uninitialized(newext), 1728 ext4_ext_get_actual_len(newext), 1729 nearex, len, nearex + 1, nearex + 2); 1730 memmove(nearex + 1, nearex, len); 1731 path[depth].p_ext = nearex; 1732 } 1733 1734 le16_add_cpu(&eh->eh_entries, 1); 1735 nearex = path[depth].p_ext; 1736 nearex->ee_block = newext->ee_block; 1737 ext4_ext_store_pblock(nearex, ext_pblock(newext)); 1738 nearex->ee_len = newext->ee_len; 1739 1740 merge: 1741 /* try to merge extents to the right */ 1742 if (flag != EXT4_GET_BLOCKS_DIO_CREATE_EXT) 1743 ext4_ext_try_to_merge(inode, path, nearex); 1744 1745 /* try to merge extents to the left */ 1746 1747 /* time to correct all indexes above */ 1748 err = ext4_ext_correct_indexes(handle, inode, path); 1749 if (err) 1750 goto cleanup; 1751 1752 err = ext4_ext_dirty(handle, inode, path + depth); 1753 1754 cleanup: 1755 if (npath) { 1756 ext4_ext_drop_refs(npath); 1757 kfree(npath); 1758 } 1759 ext4_ext_invalidate_cache(inode); 1760 return err; 1761 } 1762 1763 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block, 1764 ext4_lblk_t num, ext_prepare_callback func, 1765 void *cbdata) 1766 { 1767 struct ext4_ext_path *path = NULL; 1768 struct ext4_ext_cache cbex; 1769 struct ext4_extent *ex; 1770 ext4_lblk_t next, start = 0, end = 0; 1771 ext4_lblk_t last = block + num; 1772 int depth, exists, err = 0; 1773 1774 BUG_ON(func == NULL); 1775 BUG_ON(inode == NULL); 1776 1777 while (block < last && block != EXT_MAX_BLOCK) { 1778 num = last - block; 1779 /* find extent for this block */ 1780 down_read(&EXT4_I(inode)->i_data_sem); 1781 path = ext4_ext_find_extent(inode, block, path); 1782 up_read(&EXT4_I(inode)->i_data_sem); 1783 if (IS_ERR(path)) { 1784 err = PTR_ERR(path); 1785 path = NULL; 1786 break; 1787 } 1788 1789 depth = ext_depth(inode); 1790 BUG_ON(path[depth].p_hdr == NULL); 1791 ex = path[depth].p_ext; 1792 next = ext4_ext_next_allocated_block(path); 1793 1794 exists = 0; 1795 if (!ex) { 1796 /* there is no extent yet, so try to allocate 1797 * all requested space */ 1798 start = block; 1799 end = block + num; 1800 } else if (le32_to_cpu(ex->ee_block) > block) { 1801 /* need to allocate space before found extent */ 1802 start = block; 1803 end = le32_to_cpu(ex->ee_block); 1804 if (block + num < end) 1805 end = block + num; 1806 } else if (block >= le32_to_cpu(ex->ee_block) 1807 + ext4_ext_get_actual_len(ex)) { 1808 /* need to allocate space after found extent */ 1809 start = block; 1810 end = block + num; 1811 if (end >= next) 1812 end = next; 1813 } else if (block >= le32_to_cpu(ex->ee_block)) { 1814 /* 1815 * some part of requested space is covered 1816 * by found extent 1817 */ 1818 start = block; 1819 end = le32_to_cpu(ex->ee_block) 1820 + ext4_ext_get_actual_len(ex); 1821 if (block + num < end) 1822 end = block + num; 1823 exists = 1; 1824 } else { 1825 BUG(); 1826 } 1827 BUG_ON(end <= start); 1828 1829 if (!exists) { 1830 cbex.ec_block = start; 1831 cbex.ec_len = end - start; 1832 cbex.ec_start = 0; 1833 cbex.ec_type = EXT4_EXT_CACHE_GAP; 1834 } else { 1835 cbex.ec_block = le32_to_cpu(ex->ee_block); 1836 cbex.ec_len = ext4_ext_get_actual_len(ex); 1837 cbex.ec_start = ext_pblock(ex); 1838 cbex.ec_type = EXT4_EXT_CACHE_EXTENT; 1839 } 1840 1841 BUG_ON(cbex.ec_len == 0); 1842 err = func(inode, path, &cbex, ex, cbdata); 1843 ext4_ext_drop_refs(path); 1844 1845 if (err < 0) 1846 break; 1847 1848 if (err == EXT_REPEAT) 1849 continue; 1850 else if (err == EXT_BREAK) { 1851 err = 0; 1852 break; 1853 } 1854 1855 if (ext_depth(inode) != depth) { 1856 /* depth was changed. we have to realloc path */ 1857 kfree(path); 1858 path = NULL; 1859 } 1860 1861 block = cbex.ec_block + cbex.ec_len; 1862 } 1863 1864 if (path) { 1865 ext4_ext_drop_refs(path); 1866 kfree(path); 1867 } 1868 1869 return err; 1870 } 1871 1872 static void 1873 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block, 1874 __u32 len, ext4_fsblk_t start, int type) 1875 { 1876 struct ext4_ext_cache *cex; 1877 BUG_ON(len == 0); 1878 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1879 cex = &EXT4_I(inode)->i_cached_extent; 1880 cex->ec_type = type; 1881 cex->ec_block = block; 1882 cex->ec_len = len; 1883 cex->ec_start = start; 1884 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1885 } 1886 1887 /* 1888 * ext4_ext_put_gap_in_cache: 1889 * calculate boundaries of the gap that the requested block fits into 1890 * and cache this gap 1891 */ 1892 static void 1893 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 1894 ext4_lblk_t block) 1895 { 1896 int depth = ext_depth(inode); 1897 unsigned long len; 1898 ext4_lblk_t lblock; 1899 struct ext4_extent *ex; 1900 1901 ex = path[depth].p_ext; 1902 if (ex == NULL) { 1903 /* there is no extent yet, so gap is [0;-] */ 1904 lblock = 0; 1905 len = EXT_MAX_BLOCK; 1906 ext_debug("cache gap(whole file):"); 1907 } else if (block < le32_to_cpu(ex->ee_block)) { 1908 lblock = block; 1909 len = le32_to_cpu(ex->ee_block) - block; 1910 ext_debug("cache gap(before): %u [%u:%u]", 1911 block, 1912 le32_to_cpu(ex->ee_block), 1913 ext4_ext_get_actual_len(ex)); 1914 } else if (block >= le32_to_cpu(ex->ee_block) 1915 + ext4_ext_get_actual_len(ex)) { 1916 ext4_lblk_t next; 1917 lblock = le32_to_cpu(ex->ee_block) 1918 + ext4_ext_get_actual_len(ex); 1919 1920 next = ext4_ext_next_allocated_block(path); 1921 ext_debug("cache gap(after): [%u:%u] %u", 1922 le32_to_cpu(ex->ee_block), 1923 ext4_ext_get_actual_len(ex), 1924 block); 1925 BUG_ON(next == lblock); 1926 len = next - lblock; 1927 } else { 1928 lblock = len = 0; 1929 BUG(); 1930 } 1931 1932 ext_debug(" -> %u:%lu\n", lblock, len); 1933 ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP); 1934 } 1935 1936 static int 1937 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block, 1938 struct ext4_extent *ex) 1939 { 1940 struct ext4_ext_cache *cex; 1941 int ret = EXT4_EXT_CACHE_NO; 1942 1943 /* 1944 * We borrow i_block_reservation_lock to protect i_cached_extent 1945 */ 1946 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1947 cex = &EXT4_I(inode)->i_cached_extent; 1948 1949 /* has cache valid data? */ 1950 if (cex->ec_type == EXT4_EXT_CACHE_NO) 1951 goto errout; 1952 1953 BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP && 1954 cex->ec_type != EXT4_EXT_CACHE_EXTENT); 1955 if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) { 1956 ex->ee_block = cpu_to_le32(cex->ec_block); 1957 ext4_ext_store_pblock(ex, cex->ec_start); 1958 ex->ee_len = cpu_to_le16(cex->ec_len); 1959 ext_debug("%u cached by %u:%u:%llu\n", 1960 block, 1961 cex->ec_block, cex->ec_len, cex->ec_start); 1962 ret = cex->ec_type; 1963 } 1964 errout: 1965 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1966 return ret; 1967 } 1968 1969 /* 1970 * ext4_ext_rm_idx: 1971 * removes index from the index block. 1972 * It's used in truncate case only, thus all requests are for 1973 * last index in the block only. 1974 */ 1975 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 1976 struct ext4_ext_path *path) 1977 { 1978 int err; 1979 ext4_fsblk_t leaf; 1980 1981 /* free index block */ 1982 path--; 1983 leaf = idx_pblock(path->p_idx); 1984 BUG_ON(path->p_hdr->eh_entries == 0); 1985 err = ext4_ext_get_access(handle, inode, path); 1986 if (err) 1987 return err; 1988 le16_add_cpu(&path->p_hdr->eh_entries, -1); 1989 err = ext4_ext_dirty(handle, inode, path); 1990 if (err) 1991 return err; 1992 ext_debug("index is empty, remove it, free block %llu\n", leaf); 1993 ext4_free_blocks(handle, inode, 0, leaf, 1, 1994 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1995 return err; 1996 } 1997 1998 /* 1999 * ext4_ext_calc_credits_for_single_extent: 2000 * This routine returns max. credits that needed to insert an extent 2001 * to the extent tree. 2002 * When pass the actual path, the caller should calculate credits 2003 * under i_data_sem. 2004 */ 2005 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2006 struct ext4_ext_path *path) 2007 { 2008 if (path) { 2009 int depth = ext_depth(inode); 2010 int ret = 0; 2011 2012 /* probably there is space in leaf? */ 2013 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2014 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2015 2016 /* 2017 * There are some space in the leaf tree, no 2018 * need to account for leaf block credit 2019 * 2020 * bitmaps and block group descriptor blocks 2021 * and other metadat blocks still need to be 2022 * accounted. 2023 */ 2024 /* 1 bitmap, 1 block group descriptor */ 2025 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2026 return ret; 2027 } 2028 } 2029 2030 return ext4_chunk_trans_blocks(inode, nrblocks); 2031 } 2032 2033 /* 2034 * How many index/leaf blocks need to change/allocate to modify nrblocks? 2035 * 2036 * if nrblocks are fit in a single extent (chunk flag is 1), then 2037 * in the worse case, each tree level index/leaf need to be changed 2038 * if the tree split due to insert a new extent, then the old tree 2039 * index/leaf need to be updated too 2040 * 2041 * If the nrblocks are discontiguous, they could cause 2042 * the whole tree split more than once, but this is really rare. 2043 */ 2044 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 2045 { 2046 int index; 2047 int depth = ext_depth(inode); 2048 2049 if (chunk) 2050 index = depth * 2; 2051 else 2052 index = depth * 3; 2053 2054 return index; 2055 } 2056 2057 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2058 struct ext4_extent *ex, 2059 ext4_lblk_t from, ext4_lblk_t to) 2060 { 2061 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2062 int flags = EXT4_FREE_BLOCKS_FORGET; 2063 2064 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2065 flags |= EXT4_FREE_BLOCKS_METADATA; 2066 #ifdef EXTENTS_STATS 2067 { 2068 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2069 spin_lock(&sbi->s_ext_stats_lock); 2070 sbi->s_ext_blocks += ee_len; 2071 sbi->s_ext_extents++; 2072 if (ee_len < sbi->s_ext_min) 2073 sbi->s_ext_min = ee_len; 2074 if (ee_len > sbi->s_ext_max) 2075 sbi->s_ext_max = ee_len; 2076 if (ext_depth(inode) > sbi->s_depth_max) 2077 sbi->s_depth_max = ext_depth(inode); 2078 spin_unlock(&sbi->s_ext_stats_lock); 2079 } 2080 #endif 2081 if (from >= le32_to_cpu(ex->ee_block) 2082 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2083 /* tail removal */ 2084 ext4_lblk_t num; 2085 ext4_fsblk_t start; 2086 2087 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2088 start = ext_pblock(ex) + ee_len - num; 2089 ext_debug("free last %u blocks starting %llu\n", num, start); 2090 ext4_free_blocks(handle, inode, 0, start, num, flags); 2091 } else if (from == le32_to_cpu(ex->ee_block) 2092 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { 2093 printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n", 2094 from, to, le32_to_cpu(ex->ee_block), ee_len); 2095 } else { 2096 printk(KERN_INFO "strange request: removal(2) " 2097 "%u-%u from %u:%u\n", 2098 from, to, le32_to_cpu(ex->ee_block), ee_len); 2099 } 2100 return 0; 2101 } 2102 2103 static int 2104 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2105 struct ext4_ext_path *path, ext4_lblk_t start) 2106 { 2107 int err = 0, correct_index = 0; 2108 int depth = ext_depth(inode), credits; 2109 struct ext4_extent_header *eh; 2110 ext4_lblk_t a, b, block; 2111 unsigned num; 2112 ext4_lblk_t ex_ee_block; 2113 unsigned short ex_ee_len; 2114 unsigned uninitialized = 0; 2115 struct ext4_extent *ex; 2116 2117 /* the header must be checked already in ext4_ext_remove_space() */ 2118 ext_debug("truncate since %u in leaf\n", start); 2119 if (!path[depth].p_hdr) 2120 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2121 eh = path[depth].p_hdr; 2122 BUG_ON(eh == NULL); 2123 2124 /* find where to start removing */ 2125 ex = EXT_LAST_EXTENT(eh); 2126 2127 ex_ee_block = le32_to_cpu(ex->ee_block); 2128 ex_ee_len = ext4_ext_get_actual_len(ex); 2129 2130 while (ex >= EXT_FIRST_EXTENT(eh) && 2131 ex_ee_block + ex_ee_len > start) { 2132 2133 if (ext4_ext_is_uninitialized(ex)) 2134 uninitialized = 1; 2135 else 2136 uninitialized = 0; 2137 2138 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2139 uninitialized, ex_ee_len); 2140 path[depth].p_ext = ex; 2141 2142 a = ex_ee_block > start ? ex_ee_block : start; 2143 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ? 2144 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK; 2145 2146 ext_debug(" border %u:%u\n", a, b); 2147 2148 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) { 2149 block = 0; 2150 num = 0; 2151 BUG(); 2152 } else if (a != ex_ee_block) { 2153 /* remove tail of the extent */ 2154 block = ex_ee_block; 2155 num = a - block; 2156 } else if (b != ex_ee_block + ex_ee_len - 1) { 2157 /* remove head of the extent */ 2158 block = a; 2159 num = b - a; 2160 /* there is no "make a hole" API yet */ 2161 BUG(); 2162 } else { 2163 /* remove whole extent: excellent! */ 2164 block = ex_ee_block; 2165 num = 0; 2166 BUG_ON(a != ex_ee_block); 2167 BUG_ON(b != ex_ee_block + ex_ee_len - 1); 2168 } 2169 2170 /* 2171 * 3 for leaf, sb, and inode plus 2 (bmap and group 2172 * descriptor) for each block group; assume two block 2173 * groups plus ex_ee_len/blocks_per_block_group for 2174 * the worst case 2175 */ 2176 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2177 if (ex == EXT_FIRST_EXTENT(eh)) { 2178 correct_index = 1; 2179 credits += (ext_depth(inode)) + 1; 2180 } 2181 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2182 2183 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2184 if (err) 2185 goto out; 2186 2187 err = ext4_ext_get_access(handle, inode, path + depth); 2188 if (err) 2189 goto out; 2190 2191 err = ext4_remove_blocks(handle, inode, ex, a, b); 2192 if (err) 2193 goto out; 2194 2195 if (num == 0) { 2196 /* this extent is removed; mark slot entirely unused */ 2197 ext4_ext_store_pblock(ex, 0); 2198 le16_add_cpu(&eh->eh_entries, -1); 2199 } 2200 2201 ex->ee_block = cpu_to_le32(block); 2202 ex->ee_len = cpu_to_le16(num); 2203 /* 2204 * Do not mark uninitialized if all the blocks in the 2205 * extent have been removed. 2206 */ 2207 if (uninitialized && num) 2208 ext4_ext_mark_uninitialized(ex); 2209 2210 err = ext4_ext_dirty(handle, inode, path + depth); 2211 if (err) 2212 goto out; 2213 2214 ext_debug("new extent: %u:%u:%llu\n", block, num, 2215 ext_pblock(ex)); 2216 ex--; 2217 ex_ee_block = le32_to_cpu(ex->ee_block); 2218 ex_ee_len = ext4_ext_get_actual_len(ex); 2219 } 2220 2221 if (correct_index && eh->eh_entries) 2222 err = ext4_ext_correct_indexes(handle, inode, path); 2223 2224 /* if this leaf is free, then we should 2225 * remove it from index block above */ 2226 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2227 err = ext4_ext_rm_idx(handle, inode, path + depth); 2228 2229 out: 2230 return err; 2231 } 2232 2233 /* 2234 * ext4_ext_more_to_rm: 2235 * returns 1 if current index has to be freed (even partial) 2236 */ 2237 static int 2238 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2239 { 2240 BUG_ON(path->p_idx == NULL); 2241 2242 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2243 return 0; 2244 2245 /* 2246 * if truncate on deeper level happened, it wasn't partial, 2247 * so we have to consider current index for truncation 2248 */ 2249 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2250 return 0; 2251 return 1; 2252 } 2253 2254 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start) 2255 { 2256 struct super_block *sb = inode->i_sb; 2257 int depth = ext_depth(inode); 2258 struct ext4_ext_path *path; 2259 handle_t *handle; 2260 int i = 0, err = 0; 2261 2262 ext_debug("truncate since %u\n", start); 2263 2264 /* probably first extent we're gonna free will be last in block */ 2265 handle = ext4_journal_start(inode, depth + 1); 2266 if (IS_ERR(handle)) 2267 return PTR_ERR(handle); 2268 2269 ext4_ext_invalidate_cache(inode); 2270 2271 /* 2272 * We start scanning from right side, freeing all the blocks 2273 * after i_size and walking into the tree depth-wise. 2274 */ 2275 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS); 2276 if (path == NULL) { 2277 ext4_journal_stop(handle); 2278 return -ENOMEM; 2279 } 2280 path[0].p_hdr = ext_inode_hdr(inode); 2281 if (ext4_ext_check(inode, path[0].p_hdr, depth)) { 2282 err = -EIO; 2283 goto out; 2284 } 2285 path[0].p_depth = depth; 2286 2287 while (i >= 0 && err == 0) { 2288 if (i == depth) { 2289 /* this is leaf block */ 2290 err = ext4_ext_rm_leaf(handle, inode, path, start); 2291 /* root level has p_bh == NULL, brelse() eats this */ 2292 brelse(path[i].p_bh); 2293 path[i].p_bh = NULL; 2294 i--; 2295 continue; 2296 } 2297 2298 /* this is index block */ 2299 if (!path[i].p_hdr) { 2300 ext_debug("initialize header\n"); 2301 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2302 } 2303 2304 if (!path[i].p_idx) { 2305 /* this level hasn't been touched yet */ 2306 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2307 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2308 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2309 path[i].p_hdr, 2310 le16_to_cpu(path[i].p_hdr->eh_entries)); 2311 } else { 2312 /* we were already here, see at next index */ 2313 path[i].p_idx--; 2314 } 2315 2316 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2317 i, EXT_FIRST_INDEX(path[i].p_hdr), 2318 path[i].p_idx); 2319 if (ext4_ext_more_to_rm(path + i)) { 2320 struct buffer_head *bh; 2321 /* go to the next level */ 2322 ext_debug("move to level %d (block %llu)\n", 2323 i + 1, idx_pblock(path[i].p_idx)); 2324 memset(path + i + 1, 0, sizeof(*path)); 2325 bh = sb_bread(sb, idx_pblock(path[i].p_idx)); 2326 if (!bh) { 2327 /* should we reset i_size? */ 2328 err = -EIO; 2329 break; 2330 } 2331 if (WARN_ON(i + 1 > depth)) { 2332 err = -EIO; 2333 break; 2334 } 2335 if (ext4_ext_check(inode, ext_block_hdr(bh), 2336 depth - i - 1)) { 2337 err = -EIO; 2338 break; 2339 } 2340 path[i + 1].p_bh = bh; 2341 2342 /* save actual number of indexes since this 2343 * number is changed at the next iteration */ 2344 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2345 i++; 2346 } else { 2347 /* we finished processing this index, go up */ 2348 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2349 /* index is empty, remove it; 2350 * handle must be already prepared by the 2351 * truncatei_leaf() */ 2352 err = ext4_ext_rm_idx(handle, inode, path + i); 2353 } 2354 /* root level has p_bh == NULL, brelse() eats this */ 2355 brelse(path[i].p_bh); 2356 path[i].p_bh = NULL; 2357 i--; 2358 ext_debug("return to level %d\n", i); 2359 } 2360 } 2361 2362 /* TODO: flexible tree reduction should be here */ 2363 if (path->p_hdr->eh_entries == 0) { 2364 /* 2365 * truncate to zero freed all the tree, 2366 * so we need to correct eh_depth 2367 */ 2368 err = ext4_ext_get_access(handle, inode, path); 2369 if (err == 0) { 2370 ext_inode_hdr(inode)->eh_depth = 0; 2371 ext_inode_hdr(inode)->eh_max = 2372 cpu_to_le16(ext4_ext_space_root(inode, 0)); 2373 err = ext4_ext_dirty(handle, inode, path); 2374 } 2375 } 2376 out: 2377 ext4_ext_drop_refs(path); 2378 kfree(path); 2379 ext4_journal_stop(handle); 2380 2381 return err; 2382 } 2383 2384 /* 2385 * called at mount time 2386 */ 2387 void ext4_ext_init(struct super_block *sb) 2388 { 2389 /* 2390 * possible initialization would be here 2391 */ 2392 2393 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2394 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 2395 printk(KERN_INFO "EXT4-fs: file extents enabled"); 2396 #ifdef AGGRESSIVE_TEST 2397 printk(", aggressive tests"); 2398 #endif 2399 #ifdef CHECK_BINSEARCH 2400 printk(", check binsearch"); 2401 #endif 2402 #ifdef EXTENTS_STATS 2403 printk(", stats"); 2404 #endif 2405 printk("\n"); 2406 #endif 2407 #ifdef EXTENTS_STATS 2408 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2409 EXT4_SB(sb)->s_ext_min = 1 << 30; 2410 EXT4_SB(sb)->s_ext_max = 0; 2411 #endif 2412 } 2413 } 2414 2415 /* 2416 * called at umount time 2417 */ 2418 void ext4_ext_release(struct super_block *sb) 2419 { 2420 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 2421 return; 2422 2423 #ifdef EXTENTS_STATS 2424 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2425 struct ext4_sb_info *sbi = EXT4_SB(sb); 2426 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2427 sbi->s_ext_blocks, sbi->s_ext_extents, 2428 sbi->s_ext_blocks / sbi->s_ext_extents); 2429 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2430 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2431 } 2432 #endif 2433 } 2434 2435 static void bi_complete(struct bio *bio, int error) 2436 { 2437 complete((struct completion *)bio->bi_private); 2438 } 2439 2440 /* FIXME!! we need to try to merge to left or right after zero-out */ 2441 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 2442 { 2443 int ret = -EIO; 2444 struct bio *bio; 2445 int blkbits, blocksize; 2446 sector_t ee_pblock; 2447 struct completion event; 2448 unsigned int ee_len, len, done, offset; 2449 2450 2451 blkbits = inode->i_blkbits; 2452 blocksize = inode->i_sb->s_blocksize; 2453 ee_len = ext4_ext_get_actual_len(ex); 2454 ee_pblock = ext_pblock(ex); 2455 2456 /* convert ee_pblock to 512 byte sectors */ 2457 ee_pblock = ee_pblock << (blkbits - 9); 2458 2459 while (ee_len > 0) { 2460 2461 if (ee_len > BIO_MAX_PAGES) 2462 len = BIO_MAX_PAGES; 2463 else 2464 len = ee_len; 2465 2466 bio = bio_alloc(GFP_NOIO, len); 2467 bio->bi_sector = ee_pblock; 2468 bio->bi_bdev = inode->i_sb->s_bdev; 2469 2470 done = 0; 2471 offset = 0; 2472 while (done < len) { 2473 ret = bio_add_page(bio, ZERO_PAGE(0), 2474 blocksize, offset); 2475 if (ret != blocksize) { 2476 /* 2477 * We can't add any more pages because of 2478 * hardware limitations. Start a new bio. 2479 */ 2480 break; 2481 } 2482 done++; 2483 offset += blocksize; 2484 if (offset >= PAGE_CACHE_SIZE) 2485 offset = 0; 2486 } 2487 2488 init_completion(&event); 2489 bio->bi_private = &event; 2490 bio->bi_end_io = bi_complete; 2491 submit_bio(WRITE, bio); 2492 wait_for_completion(&event); 2493 2494 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 2495 ret = 0; 2496 else { 2497 ret = -EIO; 2498 break; 2499 } 2500 bio_put(bio); 2501 ee_len -= done; 2502 ee_pblock += done << (blkbits - 9); 2503 } 2504 return ret; 2505 } 2506 2507 #define EXT4_EXT_ZERO_LEN 7 2508 /* 2509 * This function is called by ext4_ext_get_blocks() if someone tries to write 2510 * to an uninitialized extent. It may result in splitting the uninitialized 2511 * extent into multiple extents (upto three - one initialized and two 2512 * uninitialized). 2513 * There are three possibilities: 2514 * a> There is no split required: Entire extent should be initialized 2515 * b> Splits in two extents: Write is happening at either end of the extent 2516 * c> Splits in three extents: Somone is writing in middle of the extent 2517 */ 2518 static int ext4_ext_convert_to_initialized(handle_t *handle, 2519 struct inode *inode, 2520 struct ext4_ext_path *path, 2521 ext4_lblk_t iblock, 2522 unsigned int max_blocks) 2523 { 2524 struct ext4_extent *ex, newex, orig_ex; 2525 struct ext4_extent *ex1 = NULL; 2526 struct ext4_extent *ex2 = NULL; 2527 struct ext4_extent *ex3 = NULL; 2528 struct ext4_extent_header *eh; 2529 ext4_lblk_t ee_block; 2530 unsigned int allocated, ee_len, depth; 2531 ext4_fsblk_t newblock; 2532 int err = 0; 2533 int ret = 0; 2534 2535 depth = ext_depth(inode); 2536 eh = path[depth].p_hdr; 2537 ex = path[depth].p_ext; 2538 ee_block = le32_to_cpu(ex->ee_block); 2539 ee_len = ext4_ext_get_actual_len(ex); 2540 allocated = ee_len - (iblock - ee_block); 2541 newblock = iblock - ee_block + ext_pblock(ex); 2542 ex2 = ex; 2543 orig_ex.ee_block = ex->ee_block; 2544 orig_ex.ee_len = cpu_to_le16(ee_len); 2545 ext4_ext_store_pblock(&orig_ex, ext_pblock(ex)); 2546 2547 err = ext4_ext_get_access(handle, inode, path + depth); 2548 if (err) 2549 goto out; 2550 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */ 2551 if (ee_len <= 2*EXT4_EXT_ZERO_LEN) { 2552 err = ext4_ext_zeroout(inode, &orig_ex); 2553 if (err) 2554 goto fix_extent_len; 2555 /* update the extent length and mark as initialized */ 2556 ex->ee_block = orig_ex.ee_block; 2557 ex->ee_len = orig_ex.ee_len; 2558 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2559 ext4_ext_dirty(handle, inode, path + depth); 2560 /* zeroed the full extent */ 2561 return allocated; 2562 } 2563 2564 /* ex1: ee_block to iblock - 1 : uninitialized */ 2565 if (iblock > ee_block) { 2566 ex1 = ex; 2567 ex1->ee_len = cpu_to_le16(iblock - ee_block); 2568 ext4_ext_mark_uninitialized(ex1); 2569 ex2 = &newex; 2570 } 2571 /* 2572 * for sanity, update the length of the ex2 extent before 2573 * we insert ex3, if ex1 is NULL. This is to avoid temporary 2574 * overlap of blocks. 2575 */ 2576 if (!ex1 && allocated > max_blocks) 2577 ex2->ee_len = cpu_to_le16(max_blocks); 2578 /* ex3: to ee_block + ee_len : uninitialised */ 2579 if (allocated > max_blocks) { 2580 unsigned int newdepth; 2581 /* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */ 2582 if (allocated <= EXT4_EXT_ZERO_LEN) { 2583 /* 2584 * iblock == ee_block is handled by the zerouout 2585 * at the beginning. 2586 * Mark first half uninitialized. 2587 * Mark second half initialized and zero out the 2588 * initialized extent 2589 */ 2590 ex->ee_block = orig_ex.ee_block; 2591 ex->ee_len = cpu_to_le16(ee_len - allocated); 2592 ext4_ext_mark_uninitialized(ex); 2593 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2594 ext4_ext_dirty(handle, inode, path + depth); 2595 2596 ex3 = &newex; 2597 ex3->ee_block = cpu_to_le32(iblock); 2598 ext4_ext_store_pblock(ex3, newblock); 2599 ex3->ee_len = cpu_to_le16(allocated); 2600 err = ext4_ext_insert_extent(handle, inode, path, 2601 ex3, 0); 2602 if (err == -ENOSPC) { 2603 err = ext4_ext_zeroout(inode, &orig_ex); 2604 if (err) 2605 goto fix_extent_len; 2606 ex->ee_block = orig_ex.ee_block; 2607 ex->ee_len = orig_ex.ee_len; 2608 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2609 ext4_ext_dirty(handle, inode, path + depth); 2610 /* blocks available from iblock */ 2611 return allocated; 2612 2613 } else if (err) 2614 goto fix_extent_len; 2615 2616 /* 2617 * We need to zero out the second half because 2618 * an fallocate request can update file size and 2619 * converting the second half to initialized extent 2620 * implies that we can leak some junk data to user 2621 * space. 2622 */ 2623 err = ext4_ext_zeroout(inode, ex3); 2624 if (err) { 2625 /* 2626 * We should actually mark the 2627 * second half as uninit and return error 2628 * Insert would have changed the extent 2629 */ 2630 depth = ext_depth(inode); 2631 ext4_ext_drop_refs(path); 2632 path = ext4_ext_find_extent(inode, 2633 iblock, path); 2634 if (IS_ERR(path)) { 2635 err = PTR_ERR(path); 2636 return err; 2637 } 2638 /* get the second half extent details */ 2639 ex = path[depth].p_ext; 2640 err = ext4_ext_get_access(handle, inode, 2641 path + depth); 2642 if (err) 2643 return err; 2644 ext4_ext_mark_uninitialized(ex); 2645 ext4_ext_dirty(handle, inode, path + depth); 2646 return err; 2647 } 2648 2649 /* zeroed the second half */ 2650 return allocated; 2651 } 2652 ex3 = &newex; 2653 ex3->ee_block = cpu_to_le32(iblock + max_blocks); 2654 ext4_ext_store_pblock(ex3, newblock + max_blocks); 2655 ex3->ee_len = cpu_to_le16(allocated - max_blocks); 2656 ext4_ext_mark_uninitialized(ex3); 2657 err = ext4_ext_insert_extent(handle, inode, path, ex3, 0); 2658 if (err == -ENOSPC) { 2659 err = ext4_ext_zeroout(inode, &orig_ex); 2660 if (err) 2661 goto fix_extent_len; 2662 /* update the extent length and mark as initialized */ 2663 ex->ee_block = orig_ex.ee_block; 2664 ex->ee_len = orig_ex.ee_len; 2665 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2666 ext4_ext_dirty(handle, inode, path + depth); 2667 /* zeroed the full extent */ 2668 /* blocks available from iblock */ 2669 return allocated; 2670 2671 } else if (err) 2672 goto fix_extent_len; 2673 /* 2674 * The depth, and hence eh & ex might change 2675 * as part of the insert above. 2676 */ 2677 newdepth = ext_depth(inode); 2678 /* 2679 * update the extent length after successful insert of the 2680 * split extent 2681 */ 2682 orig_ex.ee_len = cpu_to_le16(ee_len - 2683 ext4_ext_get_actual_len(ex3)); 2684 depth = newdepth; 2685 ext4_ext_drop_refs(path); 2686 path = ext4_ext_find_extent(inode, iblock, path); 2687 if (IS_ERR(path)) { 2688 err = PTR_ERR(path); 2689 goto out; 2690 } 2691 eh = path[depth].p_hdr; 2692 ex = path[depth].p_ext; 2693 if (ex2 != &newex) 2694 ex2 = ex; 2695 2696 err = ext4_ext_get_access(handle, inode, path + depth); 2697 if (err) 2698 goto out; 2699 2700 allocated = max_blocks; 2701 2702 /* If extent has less than EXT4_EXT_ZERO_LEN and we are trying 2703 * to insert a extent in the middle zerout directly 2704 * otherwise give the extent a chance to merge to left 2705 */ 2706 if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN && 2707 iblock != ee_block) { 2708 err = ext4_ext_zeroout(inode, &orig_ex); 2709 if (err) 2710 goto fix_extent_len; 2711 /* update the extent length and mark as initialized */ 2712 ex->ee_block = orig_ex.ee_block; 2713 ex->ee_len = orig_ex.ee_len; 2714 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2715 ext4_ext_dirty(handle, inode, path + depth); 2716 /* zero out the first half */ 2717 /* blocks available from iblock */ 2718 return allocated; 2719 } 2720 } 2721 /* 2722 * If there was a change of depth as part of the 2723 * insertion of ex3 above, we need to update the length 2724 * of the ex1 extent again here 2725 */ 2726 if (ex1 && ex1 != ex) { 2727 ex1 = ex; 2728 ex1->ee_len = cpu_to_le16(iblock - ee_block); 2729 ext4_ext_mark_uninitialized(ex1); 2730 ex2 = &newex; 2731 } 2732 /* ex2: iblock to iblock + maxblocks-1 : initialised */ 2733 ex2->ee_block = cpu_to_le32(iblock); 2734 ext4_ext_store_pblock(ex2, newblock); 2735 ex2->ee_len = cpu_to_le16(allocated); 2736 if (ex2 != ex) 2737 goto insert; 2738 /* 2739 * New (initialized) extent starts from the first block 2740 * in the current extent. i.e., ex2 == ex 2741 * We have to see if it can be merged with the extent 2742 * on the left. 2743 */ 2744 if (ex2 > EXT_FIRST_EXTENT(eh)) { 2745 /* 2746 * To merge left, pass "ex2 - 1" to try_to_merge(), 2747 * since it merges towards right _only_. 2748 */ 2749 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1); 2750 if (ret) { 2751 err = ext4_ext_correct_indexes(handle, inode, path); 2752 if (err) 2753 goto out; 2754 depth = ext_depth(inode); 2755 ex2--; 2756 } 2757 } 2758 /* 2759 * Try to Merge towards right. This might be required 2760 * only when the whole extent is being written to. 2761 * i.e. ex2 == ex and ex3 == NULL. 2762 */ 2763 if (!ex3) { 2764 ret = ext4_ext_try_to_merge(inode, path, ex2); 2765 if (ret) { 2766 err = ext4_ext_correct_indexes(handle, inode, path); 2767 if (err) 2768 goto out; 2769 } 2770 } 2771 /* Mark modified extent as dirty */ 2772 err = ext4_ext_dirty(handle, inode, path + depth); 2773 goto out; 2774 insert: 2775 err = ext4_ext_insert_extent(handle, inode, path, &newex, 0); 2776 if (err == -ENOSPC) { 2777 err = ext4_ext_zeroout(inode, &orig_ex); 2778 if (err) 2779 goto fix_extent_len; 2780 /* update the extent length and mark as initialized */ 2781 ex->ee_block = orig_ex.ee_block; 2782 ex->ee_len = orig_ex.ee_len; 2783 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2784 ext4_ext_dirty(handle, inode, path + depth); 2785 /* zero out the first half */ 2786 return allocated; 2787 } else if (err) 2788 goto fix_extent_len; 2789 out: 2790 ext4_ext_show_leaf(inode, path); 2791 return err ? err : allocated; 2792 2793 fix_extent_len: 2794 ex->ee_block = orig_ex.ee_block; 2795 ex->ee_len = orig_ex.ee_len; 2796 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2797 ext4_ext_mark_uninitialized(ex); 2798 ext4_ext_dirty(handle, inode, path + depth); 2799 return err; 2800 } 2801 2802 /* 2803 * This function is called by ext4_ext_get_blocks() from 2804 * ext4_get_blocks_dio_write() when DIO to write 2805 * to an uninitialized extent. 2806 * 2807 * Writing to an uninitized extent may result in splitting the uninitialized 2808 * extent into multiple /intialized unintialized extents (up to three) 2809 * There are three possibilities: 2810 * a> There is no split required: Entire extent should be uninitialized 2811 * b> Splits in two extents: Write is happening at either end of the extent 2812 * c> Splits in three extents: Somone is writing in middle of the extent 2813 * 2814 * One of more index blocks maybe needed if the extent tree grow after 2815 * the unintialized extent split. To prevent ENOSPC occur at the IO 2816 * complete, we need to split the uninitialized extent before DIO submit 2817 * the IO. The uninitilized extent called at this time will be split 2818 * into three uninitialized extent(at most). After IO complete, the part 2819 * being filled will be convert to initialized by the end_io callback function 2820 * via ext4_convert_unwritten_extents(). 2821 * 2822 * Returns the size of uninitialized extent to be written on success. 2823 */ 2824 static int ext4_split_unwritten_extents(handle_t *handle, 2825 struct inode *inode, 2826 struct ext4_ext_path *path, 2827 ext4_lblk_t iblock, 2828 unsigned int max_blocks, 2829 int flags) 2830 { 2831 struct ext4_extent *ex, newex, orig_ex; 2832 struct ext4_extent *ex1 = NULL; 2833 struct ext4_extent *ex2 = NULL; 2834 struct ext4_extent *ex3 = NULL; 2835 struct ext4_extent_header *eh; 2836 ext4_lblk_t ee_block; 2837 unsigned int allocated, ee_len, depth; 2838 ext4_fsblk_t newblock; 2839 int err = 0; 2840 2841 ext_debug("ext4_split_unwritten_extents: inode %lu," 2842 "iblock %llu, max_blocks %u\n", inode->i_ino, 2843 (unsigned long long)iblock, max_blocks); 2844 depth = ext_depth(inode); 2845 eh = path[depth].p_hdr; 2846 ex = path[depth].p_ext; 2847 ee_block = le32_to_cpu(ex->ee_block); 2848 ee_len = ext4_ext_get_actual_len(ex); 2849 allocated = ee_len - (iblock - ee_block); 2850 newblock = iblock - ee_block + ext_pblock(ex); 2851 ex2 = ex; 2852 orig_ex.ee_block = ex->ee_block; 2853 orig_ex.ee_len = cpu_to_le16(ee_len); 2854 ext4_ext_store_pblock(&orig_ex, ext_pblock(ex)); 2855 2856 /* 2857 * If the uninitialized extent begins at the same logical 2858 * block where the write begins, and the write completely 2859 * covers the extent, then we don't need to split it. 2860 */ 2861 if ((iblock == ee_block) && (allocated <= max_blocks)) 2862 return allocated; 2863 2864 err = ext4_ext_get_access(handle, inode, path + depth); 2865 if (err) 2866 goto out; 2867 /* ex1: ee_block to iblock - 1 : uninitialized */ 2868 if (iblock > ee_block) { 2869 ex1 = ex; 2870 ex1->ee_len = cpu_to_le16(iblock - ee_block); 2871 ext4_ext_mark_uninitialized(ex1); 2872 ex2 = &newex; 2873 } 2874 /* 2875 * for sanity, update the length of the ex2 extent before 2876 * we insert ex3, if ex1 is NULL. This is to avoid temporary 2877 * overlap of blocks. 2878 */ 2879 if (!ex1 && allocated > max_blocks) 2880 ex2->ee_len = cpu_to_le16(max_blocks); 2881 /* ex3: to ee_block + ee_len : uninitialised */ 2882 if (allocated > max_blocks) { 2883 unsigned int newdepth; 2884 ex3 = &newex; 2885 ex3->ee_block = cpu_to_le32(iblock + max_blocks); 2886 ext4_ext_store_pblock(ex3, newblock + max_blocks); 2887 ex3->ee_len = cpu_to_le16(allocated - max_blocks); 2888 ext4_ext_mark_uninitialized(ex3); 2889 err = ext4_ext_insert_extent(handle, inode, path, ex3, flags); 2890 if (err == -ENOSPC) { 2891 err = ext4_ext_zeroout(inode, &orig_ex); 2892 if (err) 2893 goto fix_extent_len; 2894 /* update the extent length and mark as initialized */ 2895 ex->ee_block = orig_ex.ee_block; 2896 ex->ee_len = orig_ex.ee_len; 2897 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2898 ext4_ext_dirty(handle, inode, path + depth); 2899 /* zeroed the full extent */ 2900 /* blocks available from iblock */ 2901 return allocated; 2902 2903 } else if (err) 2904 goto fix_extent_len; 2905 /* 2906 * The depth, and hence eh & ex might change 2907 * as part of the insert above. 2908 */ 2909 newdepth = ext_depth(inode); 2910 /* 2911 * update the extent length after successful insert of the 2912 * split extent 2913 */ 2914 orig_ex.ee_len = cpu_to_le16(ee_len - 2915 ext4_ext_get_actual_len(ex3)); 2916 depth = newdepth; 2917 ext4_ext_drop_refs(path); 2918 path = ext4_ext_find_extent(inode, iblock, path); 2919 if (IS_ERR(path)) { 2920 err = PTR_ERR(path); 2921 goto out; 2922 } 2923 eh = path[depth].p_hdr; 2924 ex = path[depth].p_ext; 2925 if (ex2 != &newex) 2926 ex2 = ex; 2927 2928 err = ext4_ext_get_access(handle, inode, path + depth); 2929 if (err) 2930 goto out; 2931 2932 allocated = max_blocks; 2933 } 2934 /* 2935 * If there was a change of depth as part of the 2936 * insertion of ex3 above, we need to update the length 2937 * of the ex1 extent again here 2938 */ 2939 if (ex1 && ex1 != ex) { 2940 ex1 = ex; 2941 ex1->ee_len = cpu_to_le16(iblock - ee_block); 2942 ext4_ext_mark_uninitialized(ex1); 2943 ex2 = &newex; 2944 } 2945 /* 2946 * ex2: iblock to iblock + maxblocks-1 : to be direct IO written, 2947 * uninitialised still. 2948 */ 2949 ex2->ee_block = cpu_to_le32(iblock); 2950 ext4_ext_store_pblock(ex2, newblock); 2951 ex2->ee_len = cpu_to_le16(allocated); 2952 ext4_ext_mark_uninitialized(ex2); 2953 if (ex2 != ex) 2954 goto insert; 2955 /* Mark modified extent as dirty */ 2956 err = ext4_ext_dirty(handle, inode, path + depth); 2957 ext_debug("out here\n"); 2958 goto out; 2959 insert: 2960 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 2961 if (err == -ENOSPC) { 2962 err = ext4_ext_zeroout(inode, &orig_ex); 2963 if (err) 2964 goto fix_extent_len; 2965 /* update the extent length and mark as initialized */ 2966 ex->ee_block = orig_ex.ee_block; 2967 ex->ee_len = orig_ex.ee_len; 2968 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2969 ext4_ext_dirty(handle, inode, path + depth); 2970 /* zero out the first half */ 2971 return allocated; 2972 } else if (err) 2973 goto fix_extent_len; 2974 out: 2975 ext4_ext_show_leaf(inode, path); 2976 return err ? err : allocated; 2977 2978 fix_extent_len: 2979 ex->ee_block = orig_ex.ee_block; 2980 ex->ee_len = orig_ex.ee_len; 2981 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2982 ext4_ext_mark_uninitialized(ex); 2983 ext4_ext_dirty(handle, inode, path + depth); 2984 return err; 2985 } 2986 static int ext4_convert_unwritten_extents_dio(handle_t *handle, 2987 struct inode *inode, 2988 struct ext4_ext_path *path) 2989 { 2990 struct ext4_extent *ex; 2991 struct ext4_extent_header *eh; 2992 int depth; 2993 int err = 0; 2994 int ret = 0; 2995 2996 depth = ext_depth(inode); 2997 eh = path[depth].p_hdr; 2998 ex = path[depth].p_ext; 2999 3000 err = ext4_ext_get_access(handle, inode, path + depth); 3001 if (err) 3002 goto out; 3003 /* first mark the extent as initialized */ 3004 ext4_ext_mark_initialized(ex); 3005 3006 /* 3007 * We have to see if it can be merged with the extent 3008 * on the left. 3009 */ 3010 if (ex > EXT_FIRST_EXTENT(eh)) { 3011 /* 3012 * To merge left, pass "ex - 1" to try_to_merge(), 3013 * since it merges towards right _only_. 3014 */ 3015 ret = ext4_ext_try_to_merge(inode, path, ex - 1); 3016 if (ret) { 3017 err = ext4_ext_correct_indexes(handle, inode, path); 3018 if (err) 3019 goto out; 3020 depth = ext_depth(inode); 3021 ex--; 3022 } 3023 } 3024 /* 3025 * Try to Merge towards right. 3026 */ 3027 ret = ext4_ext_try_to_merge(inode, path, ex); 3028 if (ret) { 3029 err = ext4_ext_correct_indexes(handle, inode, path); 3030 if (err) 3031 goto out; 3032 depth = ext_depth(inode); 3033 } 3034 /* Mark modified extent as dirty */ 3035 err = ext4_ext_dirty(handle, inode, path + depth); 3036 out: 3037 ext4_ext_show_leaf(inode, path); 3038 return err; 3039 } 3040 3041 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3042 sector_t block, int count) 3043 { 3044 int i; 3045 for (i = 0; i < count; i++) 3046 unmap_underlying_metadata(bdev, block + i); 3047 } 3048 3049 static int 3050 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, 3051 ext4_lblk_t iblock, unsigned int max_blocks, 3052 struct ext4_ext_path *path, int flags, 3053 unsigned int allocated, struct buffer_head *bh_result, 3054 ext4_fsblk_t newblock) 3055 { 3056 int ret = 0; 3057 int err = 0; 3058 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio; 3059 3060 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical" 3061 "block %llu, max_blocks %u, flags %d, allocated %u", 3062 inode->i_ino, (unsigned long long)iblock, max_blocks, 3063 flags, allocated); 3064 ext4_ext_show_leaf(inode, path); 3065 3066 /* DIO get_block() before submit the IO, split the extent */ 3067 if (flags == EXT4_GET_BLOCKS_DIO_CREATE_EXT) { 3068 ret = ext4_split_unwritten_extents(handle, 3069 inode, path, iblock, 3070 max_blocks, flags); 3071 /* 3072 * Flag the inode(non aio case) or end_io struct (aio case) 3073 * that this IO needs to convertion to written when IO is 3074 * completed 3075 */ 3076 if (io) 3077 io->flag = DIO_AIO_UNWRITTEN; 3078 else 3079 EXT4_I(inode)->i_state |= EXT4_STATE_DIO_UNWRITTEN; 3080 goto out; 3081 } 3082 /* async DIO end_io complete, convert the filled extent to written */ 3083 if (flags == EXT4_GET_BLOCKS_DIO_CONVERT_EXT) { 3084 ret = ext4_convert_unwritten_extents_dio(handle, inode, 3085 path); 3086 if (ret >= 0) 3087 ext4_update_inode_fsync_trans(handle, inode, 1); 3088 goto out2; 3089 } 3090 /* buffered IO case */ 3091 /* 3092 * repeat fallocate creation request 3093 * we already have an unwritten extent 3094 */ 3095 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) 3096 goto map_out; 3097 3098 /* buffered READ or buffered write_begin() lookup */ 3099 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3100 /* 3101 * We have blocks reserved already. We 3102 * return allocated blocks so that delalloc 3103 * won't do block reservation for us. But 3104 * the buffer head will be unmapped so that 3105 * a read from the block returns 0s. 3106 */ 3107 set_buffer_unwritten(bh_result); 3108 goto out1; 3109 } 3110 3111 /* buffered write, writepage time, convert*/ 3112 ret = ext4_ext_convert_to_initialized(handle, inode, 3113 path, iblock, 3114 max_blocks); 3115 if (ret >= 0) 3116 ext4_update_inode_fsync_trans(handle, inode, 1); 3117 out: 3118 if (ret <= 0) { 3119 err = ret; 3120 goto out2; 3121 } else 3122 allocated = ret; 3123 set_buffer_new(bh_result); 3124 /* 3125 * if we allocated more blocks than requested 3126 * we need to make sure we unmap the extra block 3127 * allocated. The actual needed block will get 3128 * unmapped later when we find the buffer_head marked 3129 * new. 3130 */ 3131 if (allocated > max_blocks) { 3132 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 3133 newblock + max_blocks, 3134 allocated - max_blocks); 3135 allocated = max_blocks; 3136 } 3137 3138 /* 3139 * If we have done fallocate with the offset that is already 3140 * delayed allocated, we would have block reservation 3141 * and quota reservation done in the delayed write path. 3142 * But fallocate would have already updated quota and block 3143 * count for this offset. So cancel these reservation 3144 */ 3145 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 3146 ext4_da_update_reserve_space(inode, allocated, 0); 3147 3148 map_out: 3149 set_buffer_mapped(bh_result); 3150 out1: 3151 if (allocated > max_blocks) 3152 allocated = max_blocks; 3153 ext4_ext_show_leaf(inode, path); 3154 bh_result->b_bdev = inode->i_sb->s_bdev; 3155 bh_result->b_blocknr = newblock; 3156 out2: 3157 if (path) { 3158 ext4_ext_drop_refs(path); 3159 kfree(path); 3160 } 3161 return err ? err : allocated; 3162 } 3163 /* 3164 * Block allocation/map/preallocation routine for extents based files 3165 * 3166 * 3167 * Need to be called with 3168 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 3169 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 3170 * 3171 * return > 0, number of of blocks already mapped/allocated 3172 * if create == 0 and these are pre-allocated blocks 3173 * buffer head is unmapped 3174 * otherwise blocks are mapped 3175 * 3176 * return = 0, if plain look up failed (blocks have not been allocated) 3177 * buffer head is unmapped 3178 * 3179 * return < 0, error case. 3180 */ 3181 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode, 3182 ext4_lblk_t iblock, 3183 unsigned int max_blocks, struct buffer_head *bh_result, 3184 int flags) 3185 { 3186 struct ext4_ext_path *path = NULL; 3187 struct ext4_extent_header *eh; 3188 struct ext4_extent newex, *ex; 3189 ext4_fsblk_t newblock; 3190 int err = 0, depth, ret, cache_type; 3191 unsigned int allocated = 0; 3192 struct ext4_allocation_request ar; 3193 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio; 3194 3195 __clear_bit(BH_New, &bh_result->b_state); 3196 ext_debug("blocks %u/%u requested for inode %lu\n", 3197 iblock, max_blocks, inode->i_ino); 3198 3199 /* check in cache */ 3200 cache_type = ext4_ext_in_cache(inode, iblock, &newex); 3201 if (cache_type) { 3202 if (cache_type == EXT4_EXT_CACHE_GAP) { 3203 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3204 /* 3205 * block isn't allocated yet and 3206 * user doesn't want to allocate it 3207 */ 3208 goto out2; 3209 } 3210 /* we should allocate requested block */ 3211 } else if (cache_type == EXT4_EXT_CACHE_EXTENT) { 3212 /* block is already allocated */ 3213 newblock = iblock 3214 - le32_to_cpu(newex.ee_block) 3215 + ext_pblock(&newex); 3216 /* number of remaining blocks in the extent */ 3217 allocated = ext4_ext_get_actual_len(&newex) - 3218 (iblock - le32_to_cpu(newex.ee_block)); 3219 goto out; 3220 } else { 3221 BUG(); 3222 } 3223 } 3224 3225 /* find extent for this block */ 3226 path = ext4_ext_find_extent(inode, iblock, NULL); 3227 if (IS_ERR(path)) { 3228 err = PTR_ERR(path); 3229 path = NULL; 3230 goto out2; 3231 } 3232 3233 depth = ext_depth(inode); 3234 3235 /* 3236 * consistent leaf must not be empty; 3237 * this situation is possible, though, _during_ tree modification; 3238 * this is why assert can't be put in ext4_ext_find_extent() 3239 */ 3240 if (path[depth].p_ext == NULL && depth != 0) { 3241 ext4_error(inode->i_sb, __func__, "bad extent address " 3242 "inode: %lu, iblock: %d, depth: %d", 3243 inode->i_ino, iblock, depth); 3244 err = -EIO; 3245 goto out2; 3246 } 3247 eh = path[depth].p_hdr; 3248 3249 ex = path[depth].p_ext; 3250 if (ex) { 3251 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3252 ext4_fsblk_t ee_start = ext_pblock(ex); 3253 unsigned short ee_len; 3254 3255 /* 3256 * Uninitialized extents are treated as holes, except that 3257 * we split out initialized portions during a write. 3258 */ 3259 ee_len = ext4_ext_get_actual_len(ex); 3260 /* if found extent covers block, simply return it */ 3261 if (iblock >= ee_block && iblock < ee_block + ee_len) { 3262 newblock = iblock - ee_block + ee_start; 3263 /* number of remaining blocks in the extent */ 3264 allocated = ee_len - (iblock - ee_block); 3265 ext_debug("%u fit into %u:%d -> %llu\n", iblock, 3266 ee_block, ee_len, newblock); 3267 3268 /* Do not put uninitialized extent in the cache */ 3269 if (!ext4_ext_is_uninitialized(ex)) { 3270 ext4_ext_put_in_cache(inode, ee_block, 3271 ee_len, ee_start, 3272 EXT4_EXT_CACHE_EXTENT); 3273 goto out; 3274 } 3275 ret = ext4_ext_handle_uninitialized_extents(handle, 3276 inode, iblock, max_blocks, path, 3277 flags, allocated, bh_result, newblock); 3278 return ret; 3279 } 3280 } 3281 3282 /* 3283 * requested block isn't allocated yet; 3284 * we couldn't try to create block if create flag is zero 3285 */ 3286 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3287 /* 3288 * put just found gap into cache to speed up 3289 * subsequent requests 3290 */ 3291 ext4_ext_put_gap_in_cache(inode, path, iblock); 3292 goto out2; 3293 } 3294 /* 3295 * Okay, we need to do block allocation. 3296 */ 3297 3298 /* find neighbour allocated blocks */ 3299 ar.lleft = iblock; 3300 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 3301 if (err) 3302 goto out2; 3303 ar.lright = iblock; 3304 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright); 3305 if (err) 3306 goto out2; 3307 3308 /* 3309 * See if request is beyond maximum number of blocks we can have in 3310 * a single extent. For an initialized extent this limit is 3311 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 3312 * EXT_UNINIT_MAX_LEN. 3313 */ 3314 if (max_blocks > EXT_INIT_MAX_LEN && 3315 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 3316 max_blocks = EXT_INIT_MAX_LEN; 3317 else if (max_blocks > EXT_UNINIT_MAX_LEN && 3318 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 3319 max_blocks = EXT_UNINIT_MAX_LEN; 3320 3321 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */ 3322 newex.ee_block = cpu_to_le32(iblock); 3323 newex.ee_len = cpu_to_le16(max_blocks); 3324 err = ext4_ext_check_overlap(inode, &newex, path); 3325 if (err) 3326 allocated = ext4_ext_get_actual_len(&newex); 3327 else 3328 allocated = max_blocks; 3329 3330 /* allocate new block */ 3331 ar.inode = inode; 3332 ar.goal = ext4_ext_find_goal(inode, path, iblock); 3333 ar.logical = iblock; 3334 ar.len = allocated; 3335 if (S_ISREG(inode->i_mode)) 3336 ar.flags = EXT4_MB_HINT_DATA; 3337 else 3338 /* disable in-core preallocation for non-regular files */ 3339 ar.flags = 0; 3340 newblock = ext4_mb_new_blocks(handle, &ar, &err); 3341 if (!newblock) 3342 goto out2; 3343 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 3344 ar.goal, newblock, allocated); 3345 3346 /* try to insert new extent into found leaf and return */ 3347 ext4_ext_store_pblock(&newex, newblock); 3348 newex.ee_len = cpu_to_le16(ar.len); 3349 /* Mark uninitialized */ 3350 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ 3351 ext4_ext_mark_uninitialized(&newex); 3352 /* 3353 * io_end structure was created for every async 3354 * direct IO write to the middle of the file. 3355 * To avoid unecessary convertion for every aio dio rewrite 3356 * to the mid of file, here we flag the IO that is really 3357 * need the convertion. 3358 * For non asycn direct IO case, flag the inode state 3359 * that we need to perform convertion when IO is done. 3360 */ 3361 if (flags == EXT4_GET_BLOCKS_DIO_CREATE_EXT) { 3362 if (io) 3363 io->flag = DIO_AIO_UNWRITTEN; 3364 else 3365 EXT4_I(inode)->i_state |= 3366 EXT4_STATE_DIO_UNWRITTEN;; 3367 } 3368 } 3369 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 3370 if (err) { 3371 /* free data blocks we just allocated */ 3372 /* not a good idea to call discard here directly, 3373 * but otherwise we'd need to call it every free() */ 3374 ext4_discard_preallocations(inode); 3375 ext4_free_blocks(handle, inode, 0, ext_pblock(&newex), 3376 ext4_ext_get_actual_len(&newex), 0); 3377 goto out2; 3378 } 3379 3380 /* previous routine could use block we allocated */ 3381 newblock = ext_pblock(&newex); 3382 allocated = ext4_ext_get_actual_len(&newex); 3383 if (allocated > max_blocks) 3384 allocated = max_blocks; 3385 set_buffer_new(bh_result); 3386 3387 /* 3388 * Update reserved blocks/metadata blocks after successful 3389 * block allocation which had been deferred till now. 3390 */ 3391 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 3392 ext4_da_update_reserve_space(inode, allocated, 1); 3393 3394 /* 3395 * Cache the extent and update transaction to commit on fdatasync only 3396 * when it is _not_ an uninitialized extent. 3397 */ 3398 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) { 3399 ext4_ext_put_in_cache(inode, iblock, allocated, newblock, 3400 EXT4_EXT_CACHE_EXTENT); 3401 ext4_update_inode_fsync_trans(handle, inode, 1); 3402 } else 3403 ext4_update_inode_fsync_trans(handle, inode, 0); 3404 out: 3405 if (allocated > max_blocks) 3406 allocated = max_blocks; 3407 ext4_ext_show_leaf(inode, path); 3408 set_buffer_mapped(bh_result); 3409 bh_result->b_bdev = inode->i_sb->s_bdev; 3410 bh_result->b_blocknr = newblock; 3411 out2: 3412 if (path) { 3413 ext4_ext_drop_refs(path); 3414 kfree(path); 3415 } 3416 return err ? err : allocated; 3417 } 3418 3419 void ext4_ext_truncate(struct inode *inode) 3420 { 3421 struct address_space *mapping = inode->i_mapping; 3422 struct super_block *sb = inode->i_sb; 3423 ext4_lblk_t last_block; 3424 handle_t *handle; 3425 int err = 0; 3426 3427 /* 3428 * probably first extent we're gonna free will be last in block 3429 */ 3430 err = ext4_writepage_trans_blocks(inode); 3431 handle = ext4_journal_start(inode, err); 3432 if (IS_ERR(handle)) 3433 return; 3434 3435 if (inode->i_size & (sb->s_blocksize - 1)) 3436 ext4_block_truncate_page(handle, mapping, inode->i_size); 3437 3438 if (ext4_orphan_add(handle, inode)) 3439 goto out_stop; 3440 3441 down_write(&EXT4_I(inode)->i_data_sem); 3442 ext4_ext_invalidate_cache(inode); 3443 3444 ext4_discard_preallocations(inode); 3445 3446 /* 3447 * TODO: optimization is possible here. 3448 * Probably we need not scan at all, 3449 * because page truncation is enough. 3450 */ 3451 3452 /* we have to know where to truncate from in crash case */ 3453 EXT4_I(inode)->i_disksize = inode->i_size; 3454 ext4_mark_inode_dirty(handle, inode); 3455 3456 last_block = (inode->i_size + sb->s_blocksize - 1) 3457 >> EXT4_BLOCK_SIZE_BITS(sb); 3458 err = ext4_ext_remove_space(inode, last_block); 3459 3460 /* In a multi-transaction truncate, we only make the final 3461 * transaction synchronous. 3462 */ 3463 if (IS_SYNC(inode)) 3464 ext4_handle_sync(handle); 3465 3466 out_stop: 3467 up_write(&EXT4_I(inode)->i_data_sem); 3468 /* 3469 * If this was a simple ftruncate() and the file will remain alive, 3470 * then we need to clear up the orphan record which we created above. 3471 * However, if this was a real unlink then we were called by 3472 * ext4_delete_inode(), and we allow that function to clean up the 3473 * orphan info for us. 3474 */ 3475 if (inode->i_nlink) 3476 ext4_orphan_del(handle, inode); 3477 3478 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3479 ext4_mark_inode_dirty(handle, inode); 3480 ext4_journal_stop(handle); 3481 } 3482 3483 static void ext4_falloc_update_inode(struct inode *inode, 3484 int mode, loff_t new_size, int update_ctime) 3485 { 3486 struct timespec now; 3487 3488 if (update_ctime) { 3489 now = current_fs_time(inode->i_sb); 3490 if (!timespec_equal(&inode->i_ctime, &now)) 3491 inode->i_ctime = now; 3492 } 3493 /* 3494 * Update only when preallocation was requested beyond 3495 * the file size. 3496 */ 3497 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3498 if (new_size > i_size_read(inode)) 3499 i_size_write(inode, new_size); 3500 if (new_size > EXT4_I(inode)->i_disksize) 3501 ext4_update_i_disksize(inode, new_size); 3502 } 3503 3504 } 3505 3506 /* 3507 * preallocate space for a file. This implements ext4's fallocate inode 3508 * operation, which gets called from sys_fallocate system call. 3509 * For block-mapped files, posix_fallocate should fall back to the method 3510 * of writing zeroes to the required new blocks (the same behavior which is 3511 * expected for file systems which do not support fallocate() system call). 3512 */ 3513 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len) 3514 { 3515 handle_t *handle; 3516 ext4_lblk_t block; 3517 loff_t new_size; 3518 unsigned int max_blocks; 3519 int ret = 0; 3520 int ret2 = 0; 3521 int retries = 0; 3522 struct buffer_head map_bh; 3523 unsigned int credits, blkbits = inode->i_blkbits; 3524 3525 /* 3526 * currently supporting (pre)allocate mode for extent-based 3527 * files _only_ 3528 */ 3529 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 3530 return -EOPNOTSUPP; 3531 3532 /* preallocation to directories is currently not supported */ 3533 if (S_ISDIR(inode->i_mode)) 3534 return -ENODEV; 3535 3536 block = offset >> blkbits; 3537 /* 3538 * We can't just convert len to max_blocks because 3539 * If blocksize = 4096 offset = 3072 and len = 2048 3540 */ 3541 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 3542 - block; 3543 /* 3544 * credits to insert 1 extent into extent tree 3545 */ 3546 credits = ext4_chunk_trans_blocks(inode, max_blocks); 3547 mutex_lock(&inode->i_mutex); 3548 retry: 3549 while (ret >= 0 && ret < max_blocks) { 3550 block = block + ret; 3551 max_blocks = max_blocks - ret; 3552 handle = ext4_journal_start(inode, credits); 3553 if (IS_ERR(handle)) { 3554 ret = PTR_ERR(handle); 3555 break; 3556 } 3557 map_bh.b_state = 0; 3558 ret = ext4_get_blocks(handle, inode, block, 3559 max_blocks, &map_bh, 3560 EXT4_GET_BLOCKS_CREATE_UNINIT_EXT); 3561 if (ret <= 0) { 3562 #ifdef EXT4FS_DEBUG 3563 WARN_ON(ret <= 0); 3564 printk(KERN_ERR "%s: ext4_ext_get_blocks " 3565 "returned error inode#%lu, block=%u, " 3566 "max_blocks=%u", __func__, 3567 inode->i_ino, block, max_blocks); 3568 #endif 3569 ext4_mark_inode_dirty(handle, inode); 3570 ret2 = ext4_journal_stop(handle); 3571 break; 3572 } 3573 if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 3574 blkbits) >> blkbits)) 3575 new_size = offset + len; 3576 else 3577 new_size = (block + ret) << blkbits; 3578 3579 ext4_falloc_update_inode(inode, mode, new_size, 3580 buffer_new(&map_bh)); 3581 ext4_mark_inode_dirty(handle, inode); 3582 ret2 = ext4_journal_stop(handle); 3583 if (ret2) 3584 break; 3585 } 3586 if (ret == -ENOSPC && 3587 ext4_should_retry_alloc(inode->i_sb, &retries)) { 3588 ret = 0; 3589 goto retry; 3590 } 3591 mutex_unlock(&inode->i_mutex); 3592 return ret > 0 ? ret2 : ret; 3593 } 3594 3595 /* 3596 * This function convert a range of blocks to written extents 3597 * The caller of this function will pass the start offset and the size. 3598 * all unwritten extents within this range will be converted to 3599 * written extents. 3600 * 3601 * This function is called from the direct IO end io call back 3602 * function, to convert the fallocated extents after IO is completed. 3603 * Returns 0 on success. 3604 */ 3605 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset, 3606 loff_t len) 3607 { 3608 handle_t *handle; 3609 ext4_lblk_t block; 3610 unsigned int max_blocks; 3611 int ret = 0; 3612 int ret2 = 0; 3613 struct buffer_head map_bh; 3614 unsigned int credits, blkbits = inode->i_blkbits; 3615 3616 block = offset >> blkbits; 3617 /* 3618 * We can't just convert len to max_blocks because 3619 * If blocksize = 4096 offset = 3072 and len = 2048 3620 */ 3621 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 3622 - block; 3623 /* 3624 * credits to insert 1 extent into extent tree 3625 */ 3626 credits = ext4_chunk_trans_blocks(inode, max_blocks); 3627 while (ret >= 0 && ret < max_blocks) { 3628 block = block + ret; 3629 max_blocks = max_blocks - ret; 3630 handle = ext4_journal_start(inode, credits); 3631 if (IS_ERR(handle)) { 3632 ret = PTR_ERR(handle); 3633 break; 3634 } 3635 map_bh.b_state = 0; 3636 ret = ext4_get_blocks(handle, inode, block, 3637 max_blocks, &map_bh, 3638 EXT4_GET_BLOCKS_DIO_CONVERT_EXT); 3639 if (ret <= 0) { 3640 WARN_ON(ret <= 0); 3641 printk(KERN_ERR "%s: ext4_ext_get_blocks " 3642 "returned error inode#%lu, block=%u, " 3643 "max_blocks=%u", __func__, 3644 inode->i_ino, block, max_blocks); 3645 } 3646 ext4_mark_inode_dirty(handle, inode); 3647 ret2 = ext4_journal_stop(handle); 3648 if (ret <= 0 || ret2 ) 3649 break; 3650 } 3651 return ret > 0 ? ret2 : ret; 3652 } 3653 /* 3654 * Callback function called for each extent to gather FIEMAP information. 3655 */ 3656 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path, 3657 struct ext4_ext_cache *newex, struct ext4_extent *ex, 3658 void *data) 3659 { 3660 struct fiemap_extent_info *fieinfo = data; 3661 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 3662 __u64 logical; 3663 __u64 physical; 3664 __u64 length; 3665 __u32 flags = 0; 3666 int error; 3667 3668 logical = (__u64)newex->ec_block << blksize_bits; 3669 3670 if (newex->ec_type == EXT4_EXT_CACHE_GAP) { 3671 pgoff_t offset; 3672 struct page *page; 3673 struct buffer_head *bh = NULL; 3674 3675 offset = logical >> PAGE_SHIFT; 3676 page = find_get_page(inode->i_mapping, offset); 3677 if (!page || !page_has_buffers(page)) 3678 return EXT_CONTINUE; 3679 3680 bh = page_buffers(page); 3681 3682 if (!bh) 3683 return EXT_CONTINUE; 3684 3685 if (buffer_delay(bh)) { 3686 flags |= FIEMAP_EXTENT_DELALLOC; 3687 page_cache_release(page); 3688 } else { 3689 page_cache_release(page); 3690 return EXT_CONTINUE; 3691 } 3692 } 3693 3694 physical = (__u64)newex->ec_start << blksize_bits; 3695 length = (__u64)newex->ec_len << blksize_bits; 3696 3697 if (ex && ext4_ext_is_uninitialized(ex)) 3698 flags |= FIEMAP_EXTENT_UNWRITTEN; 3699 3700 /* 3701 * If this extent reaches EXT_MAX_BLOCK, it must be last. 3702 * 3703 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK, 3704 * this also indicates no more allocated blocks. 3705 * 3706 * XXX this might miss a single-block extent at EXT_MAX_BLOCK 3707 */ 3708 if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK || 3709 newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) { 3710 loff_t size = i_size_read(inode); 3711 loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb); 3712 3713 flags |= FIEMAP_EXTENT_LAST; 3714 if ((flags & FIEMAP_EXTENT_DELALLOC) && 3715 logical+length > size) 3716 length = (size - logical + bs - 1) & ~(bs-1); 3717 } 3718 3719 error = fiemap_fill_next_extent(fieinfo, logical, physical, 3720 length, flags); 3721 if (error < 0) 3722 return error; 3723 if (error == 1) 3724 return EXT_BREAK; 3725 3726 return EXT_CONTINUE; 3727 } 3728 3729 /* fiemap flags we can handle specified here */ 3730 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 3731 3732 static int ext4_xattr_fiemap(struct inode *inode, 3733 struct fiemap_extent_info *fieinfo) 3734 { 3735 __u64 physical = 0; 3736 __u64 length; 3737 __u32 flags = FIEMAP_EXTENT_LAST; 3738 int blockbits = inode->i_sb->s_blocksize_bits; 3739 int error = 0; 3740 3741 /* in-inode? */ 3742 if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) { 3743 struct ext4_iloc iloc; 3744 int offset; /* offset of xattr in inode */ 3745 3746 error = ext4_get_inode_loc(inode, &iloc); 3747 if (error) 3748 return error; 3749 physical = iloc.bh->b_blocknr << blockbits; 3750 offset = EXT4_GOOD_OLD_INODE_SIZE + 3751 EXT4_I(inode)->i_extra_isize; 3752 physical += offset; 3753 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 3754 flags |= FIEMAP_EXTENT_DATA_INLINE; 3755 } else { /* external block */ 3756 physical = EXT4_I(inode)->i_file_acl << blockbits; 3757 length = inode->i_sb->s_blocksize; 3758 } 3759 3760 if (physical) 3761 error = fiemap_fill_next_extent(fieinfo, 0, physical, 3762 length, flags); 3763 return (error < 0 ? error : 0); 3764 } 3765 3766 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3767 __u64 start, __u64 len) 3768 { 3769 ext4_lblk_t start_blk; 3770 ext4_lblk_t len_blks; 3771 int error = 0; 3772 3773 /* fallback to generic here if not in extents fmt */ 3774 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 3775 return generic_block_fiemap(inode, fieinfo, start, len, 3776 ext4_get_block); 3777 3778 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 3779 return -EBADR; 3780 3781 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 3782 error = ext4_xattr_fiemap(inode, fieinfo); 3783 } else { 3784 start_blk = start >> inode->i_sb->s_blocksize_bits; 3785 len_blks = len >> inode->i_sb->s_blocksize_bits; 3786 3787 /* 3788 * Walk the extent tree gathering extent information. 3789 * ext4_ext_fiemap_cb will push extents back to user. 3790 */ 3791 error = ext4_ext_walk_space(inode, start_blk, len_blks, 3792 ext4_ext_fiemap_cb, fieinfo); 3793 } 3794 3795 return error; 3796 } 3797 3798