xref: /openbmc/linux/fs/ext4/extents.c (revision b34e08d5)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <asm/uaccess.h>
41 #include <linux/fiemap.h>
42 #include "ext4_jbd2.h"
43 #include "ext4_extents.h"
44 #include "xattr.h"
45 
46 #include <trace/events/ext4.h>
47 
48 /*
49  * used by extent splitting.
50  */
51 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
52 					due to ENOSPC */
53 #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
54 #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
55 
56 #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
57 #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
58 
59 static __le32 ext4_extent_block_csum(struct inode *inode,
60 				     struct ext4_extent_header *eh)
61 {
62 	struct ext4_inode_info *ei = EXT4_I(inode);
63 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
64 	__u32 csum;
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
67 			   EXT4_EXTENT_TAIL_OFFSET(eh));
68 	return cpu_to_le32(csum);
69 }
70 
71 static int ext4_extent_block_csum_verify(struct inode *inode,
72 					 struct ext4_extent_header *eh)
73 {
74 	struct ext4_extent_tail *et;
75 
76 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
77 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
78 		return 1;
79 
80 	et = find_ext4_extent_tail(eh);
81 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
82 		return 0;
83 	return 1;
84 }
85 
86 static void ext4_extent_block_csum_set(struct inode *inode,
87 				       struct ext4_extent_header *eh)
88 {
89 	struct ext4_extent_tail *et;
90 
91 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
92 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
93 		return;
94 
95 	et = find_ext4_extent_tail(eh);
96 	et->et_checksum = ext4_extent_block_csum(inode, eh);
97 }
98 
99 static int ext4_split_extent(handle_t *handle,
100 				struct inode *inode,
101 				struct ext4_ext_path *path,
102 				struct ext4_map_blocks *map,
103 				int split_flag,
104 				int flags);
105 
106 static int ext4_split_extent_at(handle_t *handle,
107 			     struct inode *inode,
108 			     struct ext4_ext_path *path,
109 			     ext4_lblk_t split,
110 			     int split_flag,
111 			     int flags);
112 
113 static int ext4_find_delayed_extent(struct inode *inode,
114 				    struct extent_status *newes);
115 
116 static int ext4_ext_truncate_extend_restart(handle_t *handle,
117 					    struct inode *inode,
118 					    int needed)
119 {
120 	int err;
121 
122 	if (!ext4_handle_valid(handle))
123 		return 0;
124 	if (handle->h_buffer_credits > needed)
125 		return 0;
126 	err = ext4_journal_extend(handle, needed);
127 	if (err <= 0)
128 		return err;
129 	err = ext4_truncate_restart_trans(handle, inode, needed);
130 	if (err == 0)
131 		err = -EAGAIN;
132 
133 	return err;
134 }
135 
136 /*
137  * could return:
138  *  - EROFS
139  *  - ENOMEM
140  */
141 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
142 				struct ext4_ext_path *path)
143 {
144 	if (path->p_bh) {
145 		/* path points to block */
146 		return ext4_journal_get_write_access(handle, path->p_bh);
147 	}
148 	/* path points to leaf/index in inode body */
149 	/* we use in-core data, no need to protect them */
150 	return 0;
151 }
152 
153 /*
154  * could return:
155  *  - EROFS
156  *  - ENOMEM
157  *  - EIO
158  */
159 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
160 		     struct inode *inode, struct ext4_ext_path *path)
161 {
162 	int err;
163 	if (path->p_bh) {
164 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
165 		/* path points to block */
166 		err = __ext4_handle_dirty_metadata(where, line, handle,
167 						   inode, path->p_bh);
168 	} else {
169 		/* path points to leaf/index in inode body */
170 		err = ext4_mark_inode_dirty(handle, inode);
171 	}
172 	return err;
173 }
174 
175 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
176 			      struct ext4_ext_path *path,
177 			      ext4_lblk_t block)
178 {
179 	if (path) {
180 		int depth = path->p_depth;
181 		struct ext4_extent *ex;
182 
183 		/*
184 		 * Try to predict block placement assuming that we are
185 		 * filling in a file which will eventually be
186 		 * non-sparse --- i.e., in the case of libbfd writing
187 		 * an ELF object sections out-of-order but in a way
188 		 * the eventually results in a contiguous object or
189 		 * executable file, or some database extending a table
190 		 * space file.  However, this is actually somewhat
191 		 * non-ideal if we are writing a sparse file such as
192 		 * qemu or KVM writing a raw image file that is going
193 		 * to stay fairly sparse, since it will end up
194 		 * fragmenting the file system's free space.  Maybe we
195 		 * should have some hueristics or some way to allow
196 		 * userspace to pass a hint to file system,
197 		 * especially if the latter case turns out to be
198 		 * common.
199 		 */
200 		ex = path[depth].p_ext;
201 		if (ex) {
202 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
203 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
204 
205 			if (block > ext_block)
206 				return ext_pblk + (block - ext_block);
207 			else
208 				return ext_pblk - (ext_block - block);
209 		}
210 
211 		/* it looks like index is empty;
212 		 * try to find starting block from index itself */
213 		if (path[depth].p_bh)
214 			return path[depth].p_bh->b_blocknr;
215 	}
216 
217 	/* OK. use inode's group */
218 	return ext4_inode_to_goal_block(inode);
219 }
220 
221 /*
222  * Allocation for a meta data block
223  */
224 static ext4_fsblk_t
225 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
226 			struct ext4_ext_path *path,
227 			struct ext4_extent *ex, int *err, unsigned int flags)
228 {
229 	ext4_fsblk_t goal, newblock;
230 
231 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
232 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
233 					NULL, err);
234 	return newblock;
235 }
236 
237 static inline int ext4_ext_space_block(struct inode *inode, int check)
238 {
239 	int size;
240 
241 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
242 			/ sizeof(struct ext4_extent);
243 #ifdef AGGRESSIVE_TEST
244 	if (!check && size > 6)
245 		size = 6;
246 #endif
247 	return size;
248 }
249 
250 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
251 {
252 	int size;
253 
254 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
255 			/ sizeof(struct ext4_extent_idx);
256 #ifdef AGGRESSIVE_TEST
257 	if (!check && size > 5)
258 		size = 5;
259 #endif
260 	return size;
261 }
262 
263 static inline int ext4_ext_space_root(struct inode *inode, int check)
264 {
265 	int size;
266 
267 	size = sizeof(EXT4_I(inode)->i_data);
268 	size -= sizeof(struct ext4_extent_header);
269 	size /= sizeof(struct ext4_extent);
270 #ifdef AGGRESSIVE_TEST
271 	if (!check && size > 3)
272 		size = 3;
273 #endif
274 	return size;
275 }
276 
277 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
278 {
279 	int size;
280 
281 	size = sizeof(EXT4_I(inode)->i_data);
282 	size -= sizeof(struct ext4_extent_header);
283 	size /= sizeof(struct ext4_extent_idx);
284 #ifdef AGGRESSIVE_TEST
285 	if (!check && size > 4)
286 		size = 4;
287 #endif
288 	return size;
289 }
290 
291 /*
292  * Calculate the number of metadata blocks needed
293  * to allocate @blocks
294  * Worse case is one block per extent
295  */
296 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
297 {
298 	struct ext4_inode_info *ei = EXT4_I(inode);
299 	int idxs;
300 
301 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
302 		/ sizeof(struct ext4_extent_idx));
303 
304 	/*
305 	 * If the new delayed allocation block is contiguous with the
306 	 * previous da block, it can share index blocks with the
307 	 * previous block, so we only need to allocate a new index
308 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
309 	 * an additional index block, and at ldxs**3 blocks, yet
310 	 * another index blocks.
311 	 */
312 	if (ei->i_da_metadata_calc_len &&
313 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
314 		int num = 0;
315 
316 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
317 			num++;
318 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
319 			num++;
320 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
321 			num++;
322 			ei->i_da_metadata_calc_len = 0;
323 		} else
324 			ei->i_da_metadata_calc_len++;
325 		ei->i_da_metadata_calc_last_lblock++;
326 		return num;
327 	}
328 
329 	/*
330 	 * In the worst case we need a new set of index blocks at
331 	 * every level of the inode's extent tree.
332 	 */
333 	ei->i_da_metadata_calc_len = 1;
334 	ei->i_da_metadata_calc_last_lblock = lblock;
335 	return ext_depth(inode) + 1;
336 }
337 
338 static int
339 ext4_ext_max_entries(struct inode *inode, int depth)
340 {
341 	int max;
342 
343 	if (depth == ext_depth(inode)) {
344 		if (depth == 0)
345 			max = ext4_ext_space_root(inode, 1);
346 		else
347 			max = ext4_ext_space_root_idx(inode, 1);
348 	} else {
349 		if (depth == 0)
350 			max = ext4_ext_space_block(inode, 1);
351 		else
352 			max = ext4_ext_space_block_idx(inode, 1);
353 	}
354 
355 	return max;
356 }
357 
358 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
359 {
360 	ext4_fsblk_t block = ext4_ext_pblock(ext);
361 	int len = ext4_ext_get_actual_len(ext);
362 	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
363 	ext4_lblk_t last = lblock + len - 1;
364 
365 	if (lblock > last)
366 		return 0;
367 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
368 }
369 
370 static int ext4_valid_extent_idx(struct inode *inode,
371 				struct ext4_extent_idx *ext_idx)
372 {
373 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
374 
375 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
376 }
377 
378 static int ext4_valid_extent_entries(struct inode *inode,
379 				struct ext4_extent_header *eh,
380 				int depth)
381 {
382 	unsigned short entries;
383 	if (eh->eh_entries == 0)
384 		return 1;
385 
386 	entries = le16_to_cpu(eh->eh_entries);
387 
388 	if (depth == 0) {
389 		/* leaf entries */
390 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
391 		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
392 		ext4_fsblk_t pblock = 0;
393 		ext4_lblk_t lblock = 0;
394 		ext4_lblk_t prev = 0;
395 		int len = 0;
396 		while (entries) {
397 			if (!ext4_valid_extent(inode, ext))
398 				return 0;
399 
400 			/* Check for overlapping extents */
401 			lblock = le32_to_cpu(ext->ee_block);
402 			len = ext4_ext_get_actual_len(ext);
403 			if ((lblock <= prev) && prev) {
404 				pblock = ext4_ext_pblock(ext);
405 				es->s_last_error_block = cpu_to_le64(pblock);
406 				return 0;
407 			}
408 			ext++;
409 			entries--;
410 			prev = lblock + len - 1;
411 		}
412 	} else {
413 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
414 		while (entries) {
415 			if (!ext4_valid_extent_idx(inode, ext_idx))
416 				return 0;
417 			ext_idx++;
418 			entries--;
419 		}
420 	}
421 	return 1;
422 }
423 
424 static int __ext4_ext_check(const char *function, unsigned int line,
425 			    struct inode *inode, struct ext4_extent_header *eh,
426 			    int depth, ext4_fsblk_t pblk)
427 {
428 	const char *error_msg;
429 	int max = 0;
430 
431 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
432 		error_msg = "invalid magic";
433 		goto corrupted;
434 	}
435 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
436 		error_msg = "unexpected eh_depth";
437 		goto corrupted;
438 	}
439 	if (unlikely(eh->eh_max == 0)) {
440 		error_msg = "invalid eh_max";
441 		goto corrupted;
442 	}
443 	max = ext4_ext_max_entries(inode, depth);
444 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
445 		error_msg = "too large eh_max";
446 		goto corrupted;
447 	}
448 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
449 		error_msg = "invalid eh_entries";
450 		goto corrupted;
451 	}
452 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
453 		error_msg = "invalid extent entries";
454 		goto corrupted;
455 	}
456 	/* Verify checksum on non-root extent tree nodes */
457 	if (ext_depth(inode) != depth &&
458 	    !ext4_extent_block_csum_verify(inode, eh)) {
459 		error_msg = "extent tree corrupted";
460 		goto corrupted;
461 	}
462 	return 0;
463 
464 corrupted:
465 	ext4_error_inode(inode, function, line, 0,
466 			 "pblk %llu bad header/extent: %s - magic %x, "
467 			 "entries %u, max %u(%u), depth %u(%u)",
468 			 (unsigned long long) pblk, error_msg,
469 			 le16_to_cpu(eh->eh_magic),
470 			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
471 			 max, le16_to_cpu(eh->eh_depth), depth);
472 	return -EIO;
473 }
474 
475 #define ext4_ext_check(inode, eh, depth, pblk)			\
476 	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
477 
478 int ext4_ext_check_inode(struct inode *inode)
479 {
480 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
481 }
482 
483 static struct buffer_head *
484 __read_extent_tree_block(const char *function, unsigned int line,
485 			 struct inode *inode, ext4_fsblk_t pblk, int depth,
486 			 int flags)
487 {
488 	struct buffer_head		*bh;
489 	int				err;
490 
491 	bh = sb_getblk(inode->i_sb, pblk);
492 	if (unlikely(!bh))
493 		return ERR_PTR(-ENOMEM);
494 
495 	if (!bh_uptodate_or_lock(bh)) {
496 		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
497 		err = bh_submit_read(bh);
498 		if (err < 0)
499 			goto errout;
500 	}
501 	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
502 		return bh;
503 	err = __ext4_ext_check(function, line, inode,
504 			       ext_block_hdr(bh), depth, pblk);
505 	if (err)
506 		goto errout;
507 	set_buffer_verified(bh);
508 	/*
509 	 * If this is a leaf block, cache all of its entries
510 	 */
511 	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
512 		struct ext4_extent_header *eh = ext_block_hdr(bh);
513 		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
514 		ext4_lblk_t prev = 0;
515 		int i;
516 
517 		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
518 			unsigned int status = EXTENT_STATUS_WRITTEN;
519 			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
520 			int len = ext4_ext_get_actual_len(ex);
521 
522 			if (prev && (prev != lblk))
523 				ext4_es_cache_extent(inode, prev,
524 						     lblk - prev, ~0,
525 						     EXTENT_STATUS_HOLE);
526 
527 			if (ext4_ext_is_uninitialized(ex))
528 				status = EXTENT_STATUS_UNWRITTEN;
529 			ext4_es_cache_extent(inode, lblk, len,
530 					     ext4_ext_pblock(ex), status);
531 			prev = lblk + len;
532 		}
533 	}
534 	return bh;
535 errout:
536 	put_bh(bh);
537 	return ERR_PTR(err);
538 
539 }
540 
541 #define read_extent_tree_block(inode, pblk, depth, flags)		\
542 	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
543 				 (depth), (flags))
544 
545 /*
546  * This function is called to cache a file's extent information in the
547  * extent status tree
548  */
549 int ext4_ext_precache(struct inode *inode)
550 {
551 	struct ext4_inode_info *ei = EXT4_I(inode);
552 	struct ext4_ext_path *path = NULL;
553 	struct buffer_head *bh;
554 	int i = 0, depth, ret = 0;
555 
556 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
557 		return 0;	/* not an extent-mapped inode */
558 
559 	down_read(&ei->i_data_sem);
560 	depth = ext_depth(inode);
561 
562 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
563 		       GFP_NOFS);
564 	if (path == NULL) {
565 		up_read(&ei->i_data_sem);
566 		return -ENOMEM;
567 	}
568 
569 	/* Don't cache anything if there are no external extent blocks */
570 	if (depth == 0)
571 		goto out;
572 	path[0].p_hdr = ext_inode_hdr(inode);
573 	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
574 	if (ret)
575 		goto out;
576 	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
577 	while (i >= 0) {
578 		/*
579 		 * If this is a leaf block or we've reached the end of
580 		 * the index block, go up
581 		 */
582 		if ((i == depth) ||
583 		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
584 			brelse(path[i].p_bh);
585 			path[i].p_bh = NULL;
586 			i--;
587 			continue;
588 		}
589 		bh = read_extent_tree_block(inode,
590 					    ext4_idx_pblock(path[i].p_idx++),
591 					    depth - i - 1,
592 					    EXT4_EX_FORCE_CACHE);
593 		if (IS_ERR(bh)) {
594 			ret = PTR_ERR(bh);
595 			break;
596 		}
597 		i++;
598 		path[i].p_bh = bh;
599 		path[i].p_hdr = ext_block_hdr(bh);
600 		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
601 	}
602 	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
603 out:
604 	up_read(&ei->i_data_sem);
605 	ext4_ext_drop_refs(path);
606 	kfree(path);
607 	return ret;
608 }
609 
610 #ifdef EXT_DEBUG
611 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
612 {
613 	int k, l = path->p_depth;
614 
615 	ext_debug("path:");
616 	for (k = 0; k <= l; k++, path++) {
617 		if (path->p_idx) {
618 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
619 			    ext4_idx_pblock(path->p_idx));
620 		} else if (path->p_ext) {
621 			ext_debug("  %d:[%d]%d:%llu ",
622 				  le32_to_cpu(path->p_ext->ee_block),
623 				  ext4_ext_is_uninitialized(path->p_ext),
624 				  ext4_ext_get_actual_len(path->p_ext),
625 				  ext4_ext_pblock(path->p_ext));
626 		} else
627 			ext_debug("  []");
628 	}
629 	ext_debug("\n");
630 }
631 
632 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
633 {
634 	int depth = ext_depth(inode);
635 	struct ext4_extent_header *eh;
636 	struct ext4_extent *ex;
637 	int i;
638 
639 	if (!path)
640 		return;
641 
642 	eh = path[depth].p_hdr;
643 	ex = EXT_FIRST_EXTENT(eh);
644 
645 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
646 
647 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
648 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
649 			  ext4_ext_is_uninitialized(ex),
650 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
651 	}
652 	ext_debug("\n");
653 }
654 
655 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
656 			ext4_fsblk_t newblock, int level)
657 {
658 	int depth = ext_depth(inode);
659 	struct ext4_extent *ex;
660 
661 	if (depth != level) {
662 		struct ext4_extent_idx *idx;
663 		idx = path[level].p_idx;
664 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
665 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
666 					le32_to_cpu(idx->ei_block),
667 					ext4_idx_pblock(idx),
668 					newblock);
669 			idx++;
670 		}
671 
672 		return;
673 	}
674 
675 	ex = path[depth].p_ext;
676 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
677 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
678 				le32_to_cpu(ex->ee_block),
679 				ext4_ext_pblock(ex),
680 				ext4_ext_is_uninitialized(ex),
681 				ext4_ext_get_actual_len(ex),
682 				newblock);
683 		ex++;
684 	}
685 }
686 
687 #else
688 #define ext4_ext_show_path(inode, path)
689 #define ext4_ext_show_leaf(inode, path)
690 #define ext4_ext_show_move(inode, path, newblock, level)
691 #endif
692 
693 void ext4_ext_drop_refs(struct ext4_ext_path *path)
694 {
695 	int depth = path->p_depth;
696 	int i;
697 
698 	for (i = 0; i <= depth; i++, path++)
699 		if (path->p_bh) {
700 			brelse(path->p_bh);
701 			path->p_bh = NULL;
702 		}
703 }
704 
705 /*
706  * ext4_ext_binsearch_idx:
707  * binary search for the closest index of the given block
708  * the header must be checked before calling this
709  */
710 static void
711 ext4_ext_binsearch_idx(struct inode *inode,
712 			struct ext4_ext_path *path, ext4_lblk_t block)
713 {
714 	struct ext4_extent_header *eh = path->p_hdr;
715 	struct ext4_extent_idx *r, *l, *m;
716 
717 
718 	ext_debug("binsearch for %u(idx):  ", block);
719 
720 	l = EXT_FIRST_INDEX(eh) + 1;
721 	r = EXT_LAST_INDEX(eh);
722 	while (l <= r) {
723 		m = l + (r - l) / 2;
724 		if (block < le32_to_cpu(m->ei_block))
725 			r = m - 1;
726 		else
727 			l = m + 1;
728 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
729 				m, le32_to_cpu(m->ei_block),
730 				r, le32_to_cpu(r->ei_block));
731 	}
732 
733 	path->p_idx = l - 1;
734 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
735 		  ext4_idx_pblock(path->p_idx));
736 
737 #ifdef CHECK_BINSEARCH
738 	{
739 		struct ext4_extent_idx *chix, *ix;
740 		int k;
741 
742 		chix = ix = EXT_FIRST_INDEX(eh);
743 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
744 		  if (k != 0 &&
745 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
746 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
747 				       "first=0x%p\n", k,
748 				       ix, EXT_FIRST_INDEX(eh));
749 				printk(KERN_DEBUG "%u <= %u\n",
750 				       le32_to_cpu(ix->ei_block),
751 				       le32_to_cpu(ix[-1].ei_block));
752 			}
753 			BUG_ON(k && le32_to_cpu(ix->ei_block)
754 					   <= le32_to_cpu(ix[-1].ei_block));
755 			if (block < le32_to_cpu(ix->ei_block))
756 				break;
757 			chix = ix;
758 		}
759 		BUG_ON(chix != path->p_idx);
760 	}
761 #endif
762 
763 }
764 
765 /*
766  * ext4_ext_binsearch:
767  * binary search for closest extent of the given block
768  * the header must be checked before calling this
769  */
770 static void
771 ext4_ext_binsearch(struct inode *inode,
772 		struct ext4_ext_path *path, ext4_lblk_t block)
773 {
774 	struct ext4_extent_header *eh = path->p_hdr;
775 	struct ext4_extent *r, *l, *m;
776 
777 	if (eh->eh_entries == 0) {
778 		/*
779 		 * this leaf is empty:
780 		 * we get such a leaf in split/add case
781 		 */
782 		return;
783 	}
784 
785 	ext_debug("binsearch for %u:  ", block);
786 
787 	l = EXT_FIRST_EXTENT(eh) + 1;
788 	r = EXT_LAST_EXTENT(eh);
789 
790 	while (l <= r) {
791 		m = l + (r - l) / 2;
792 		if (block < le32_to_cpu(m->ee_block))
793 			r = m - 1;
794 		else
795 			l = m + 1;
796 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
797 				m, le32_to_cpu(m->ee_block),
798 				r, le32_to_cpu(r->ee_block));
799 	}
800 
801 	path->p_ext = l - 1;
802 	ext_debug("  -> %d:%llu:[%d]%d ",
803 			le32_to_cpu(path->p_ext->ee_block),
804 			ext4_ext_pblock(path->p_ext),
805 			ext4_ext_is_uninitialized(path->p_ext),
806 			ext4_ext_get_actual_len(path->p_ext));
807 
808 #ifdef CHECK_BINSEARCH
809 	{
810 		struct ext4_extent *chex, *ex;
811 		int k;
812 
813 		chex = ex = EXT_FIRST_EXTENT(eh);
814 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
815 			BUG_ON(k && le32_to_cpu(ex->ee_block)
816 					  <= le32_to_cpu(ex[-1].ee_block));
817 			if (block < le32_to_cpu(ex->ee_block))
818 				break;
819 			chex = ex;
820 		}
821 		BUG_ON(chex != path->p_ext);
822 	}
823 #endif
824 
825 }
826 
827 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
828 {
829 	struct ext4_extent_header *eh;
830 
831 	eh = ext_inode_hdr(inode);
832 	eh->eh_depth = 0;
833 	eh->eh_entries = 0;
834 	eh->eh_magic = EXT4_EXT_MAGIC;
835 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
836 	ext4_mark_inode_dirty(handle, inode);
837 	return 0;
838 }
839 
840 struct ext4_ext_path *
841 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
842 		     struct ext4_ext_path *path, int flags)
843 {
844 	struct ext4_extent_header *eh;
845 	struct buffer_head *bh;
846 	short int depth, i, ppos = 0, alloc = 0;
847 	int ret;
848 
849 	eh = ext_inode_hdr(inode);
850 	depth = ext_depth(inode);
851 
852 	/* account possible depth increase */
853 	if (!path) {
854 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
855 				GFP_NOFS);
856 		if (!path)
857 			return ERR_PTR(-ENOMEM);
858 		alloc = 1;
859 	}
860 	path[0].p_hdr = eh;
861 	path[0].p_bh = NULL;
862 
863 	i = depth;
864 	/* walk through the tree */
865 	while (i) {
866 		ext_debug("depth %d: num %d, max %d\n",
867 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
868 
869 		ext4_ext_binsearch_idx(inode, path + ppos, block);
870 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
871 		path[ppos].p_depth = i;
872 		path[ppos].p_ext = NULL;
873 
874 		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
875 					    flags);
876 		if (IS_ERR(bh)) {
877 			ret = PTR_ERR(bh);
878 			goto err;
879 		}
880 
881 		eh = ext_block_hdr(bh);
882 		ppos++;
883 		if (unlikely(ppos > depth)) {
884 			put_bh(bh);
885 			EXT4_ERROR_INODE(inode,
886 					 "ppos %d > depth %d", ppos, depth);
887 			ret = -EIO;
888 			goto err;
889 		}
890 		path[ppos].p_bh = bh;
891 		path[ppos].p_hdr = eh;
892 	}
893 
894 	path[ppos].p_depth = i;
895 	path[ppos].p_ext = NULL;
896 	path[ppos].p_idx = NULL;
897 
898 	/* find extent */
899 	ext4_ext_binsearch(inode, path + ppos, block);
900 	/* if not an empty leaf */
901 	if (path[ppos].p_ext)
902 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
903 
904 	ext4_ext_show_path(inode, path);
905 
906 	return path;
907 
908 err:
909 	ext4_ext_drop_refs(path);
910 	if (alloc)
911 		kfree(path);
912 	return ERR_PTR(ret);
913 }
914 
915 /*
916  * ext4_ext_insert_index:
917  * insert new index [@logical;@ptr] into the block at @curp;
918  * check where to insert: before @curp or after @curp
919  */
920 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
921 				 struct ext4_ext_path *curp,
922 				 int logical, ext4_fsblk_t ptr)
923 {
924 	struct ext4_extent_idx *ix;
925 	int len, err;
926 
927 	err = ext4_ext_get_access(handle, inode, curp);
928 	if (err)
929 		return err;
930 
931 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
932 		EXT4_ERROR_INODE(inode,
933 				 "logical %d == ei_block %d!",
934 				 logical, le32_to_cpu(curp->p_idx->ei_block));
935 		return -EIO;
936 	}
937 
938 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
939 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
940 		EXT4_ERROR_INODE(inode,
941 				 "eh_entries %d >= eh_max %d!",
942 				 le16_to_cpu(curp->p_hdr->eh_entries),
943 				 le16_to_cpu(curp->p_hdr->eh_max));
944 		return -EIO;
945 	}
946 
947 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
948 		/* insert after */
949 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
950 		ix = curp->p_idx + 1;
951 	} else {
952 		/* insert before */
953 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
954 		ix = curp->p_idx;
955 	}
956 
957 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
958 	BUG_ON(len < 0);
959 	if (len > 0) {
960 		ext_debug("insert new index %d: "
961 				"move %d indices from 0x%p to 0x%p\n",
962 				logical, len, ix, ix + 1);
963 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
964 	}
965 
966 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
967 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
968 		return -EIO;
969 	}
970 
971 	ix->ei_block = cpu_to_le32(logical);
972 	ext4_idx_store_pblock(ix, ptr);
973 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
974 
975 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
976 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
977 		return -EIO;
978 	}
979 
980 	err = ext4_ext_dirty(handle, inode, curp);
981 	ext4_std_error(inode->i_sb, err);
982 
983 	return err;
984 }
985 
986 /*
987  * ext4_ext_split:
988  * inserts new subtree into the path, using free index entry
989  * at depth @at:
990  * - allocates all needed blocks (new leaf and all intermediate index blocks)
991  * - makes decision where to split
992  * - moves remaining extents and index entries (right to the split point)
993  *   into the newly allocated blocks
994  * - initializes subtree
995  */
996 static int ext4_ext_split(handle_t *handle, struct inode *inode,
997 			  unsigned int flags,
998 			  struct ext4_ext_path *path,
999 			  struct ext4_extent *newext, int at)
1000 {
1001 	struct buffer_head *bh = NULL;
1002 	int depth = ext_depth(inode);
1003 	struct ext4_extent_header *neh;
1004 	struct ext4_extent_idx *fidx;
1005 	int i = at, k, m, a;
1006 	ext4_fsblk_t newblock, oldblock;
1007 	__le32 border;
1008 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1009 	int err = 0;
1010 
1011 	/* make decision: where to split? */
1012 	/* FIXME: now decision is simplest: at current extent */
1013 
1014 	/* if current leaf will be split, then we should use
1015 	 * border from split point */
1016 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1017 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1018 		return -EIO;
1019 	}
1020 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1021 		border = path[depth].p_ext[1].ee_block;
1022 		ext_debug("leaf will be split."
1023 				" next leaf starts at %d\n",
1024 				  le32_to_cpu(border));
1025 	} else {
1026 		border = newext->ee_block;
1027 		ext_debug("leaf will be added."
1028 				" next leaf starts at %d\n",
1029 				le32_to_cpu(border));
1030 	}
1031 
1032 	/*
1033 	 * If error occurs, then we break processing
1034 	 * and mark filesystem read-only. index won't
1035 	 * be inserted and tree will be in consistent
1036 	 * state. Next mount will repair buffers too.
1037 	 */
1038 
1039 	/*
1040 	 * Get array to track all allocated blocks.
1041 	 * We need this to handle errors and free blocks
1042 	 * upon them.
1043 	 */
1044 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1045 	if (!ablocks)
1046 		return -ENOMEM;
1047 
1048 	/* allocate all needed blocks */
1049 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1050 	for (a = 0; a < depth - at; a++) {
1051 		newblock = ext4_ext_new_meta_block(handle, inode, path,
1052 						   newext, &err, flags);
1053 		if (newblock == 0)
1054 			goto cleanup;
1055 		ablocks[a] = newblock;
1056 	}
1057 
1058 	/* initialize new leaf */
1059 	newblock = ablocks[--a];
1060 	if (unlikely(newblock == 0)) {
1061 		EXT4_ERROR_INODE(inode, "newblock == 0!");
1062 		err = -EIO;
1063 		goto cleanup;
1064 	}
1065 	bh = sb_getblk(inode->i_sb, newblock);
1066 	if (unlikely(!bh)) {
1067 		err = -ENOMEM;
1068 		goto cleanup;
1069 	}
1070 	lock_buffer(bh);
1071 
1072 	err = ext4_journal_get_create_access(handle, bh);
1073 	if (err)
1074 		goto cleanup;
1075 
1076 	neh = ext_block_hdr(bh);
1077 	neh->eh_entries = 0;
1078 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1079 	neh->eh_magic = EXT4_EXT_MAGIC;
1080 	neh->eh_depth = 0;
1081 
1082 	/* move remainder of path[depth] to the new leaf */
1083 	if (unlikely(path[depth].p_hdr->eh_entries !=
1084 		     path[depth].p_hdr->eh_max)) {
1085 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1086 				 path[depth].p_hdr->eh_entries,
1087 				 path[depth].p_hdr->eh_max);
1088 		err = -EIO;
1089 		goto cleanup;
1090 	}
1091 	/* start copy from next extent */
1092 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1093 	ext4_ext_show_move(inode, path, newblock, depth);
1094 	if (m) {
1095 		struct ext4_extent *ex;
1096 		ex = EXT_FIRST_EXTENT(neh);
1097 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1098 		le16_add_cpu(&neh->eh_entries, m);
1099 	}
1100 
1101 	ext4_extent_block_csum_set(inode, neh);
1102 	set_buffer_uptodate(bh);
1103 	unlock_buffer(bh);
1104 
1105 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1106 	if (err)
1107 		goto cleanup;
1108 	brelse(bh);
1109 	bh = NULL;
1110 
1111 	/* correct old leaf */
1112 	if (m) {
1113 		err = ext4_ext_get_access(handle, inode, path + depth);
1114 		if (err)
1115 			goto cleanup;
1116 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1117 		err = ext4_ext_dirty(handle, inode, path + depth);
1118 		if (err)
1119 			goto cleanup;
1120 
1121 	}
1122 
1123 	/* create intermediate indexes */
1124 	k = depth - at - 1;
1125 	if (unlikely(k < 0)) {
1126 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1127 		err = -EIO;
1128 		goto cleanup;
1129 	}
1130 	if (k)
1131 		ext_debug("create %d intermediate indices\n", k);
1132 	/* insert new index into current index block */
1133 	/* current depth stored in i var */
1134 	i = depth - 1;
1135 	while (k--) {
1136 		oldblock = newblock;
1137 		newblock = ablocks[--a];
1138 		bh = sb_getblk(inode->i_sb, newblock);
1139 		if (unlikely(!bh)) {
1140 			err = -ENOMEM;
1141 			goto cleanup;
1142 		}
1143 		lock_buffer(bh);
1144 
1145 		err = ext4_journal_get_create_access(handle, bh);
1146 		if (err)
1147 			goto cleanup;
1148 
1149 		neh = ext_block_hdr(bh);
1150 		neh->eh_entries = cpu_to_le16(1);
1151 		neh->eh_magic = EXT4_EXT_MAGIC;
1152 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1153 		neh->eh_depth = cpu_to_le16(depth - i);
1154 		fidx = EXT_FIRST_INDEX(neh);
1155 		fidx->ei_block = border;
1156 		ext4_idx_store_pblock(fidx, oldblock);
1157 
1158 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1159 				i, newblock, le32_to_cpu(border), oldblock);
1160 
1161 		/* move remainder of path[i] to the new index block */
1162 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1163 					EXT_LAST_INDEX(path[i].p_hdr))) {
1164 			EXT4_ERROR_INODE(inode,
1165 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1166 					 le32_to_cpu(path[i].p_ext->ee_block));
1167 			err = -EIO;
1168 			goto cleanup;
1169 		}
1170 		/* start copy indexes */
1171 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1172 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1173 				EXT_MAX_INDEX(path[i].p_hdr));
1174 		ext4_ext_show_move(inode, path, newblock, i);
1175 		if (m) {
1176 			memmove(++fidx, path[i].p_idx,
1177 				sizeof(struct ext4_extent_idx) * m);
1178 			le16_add_cpu(&neh->eh_entries, m);
1179 		}
1180 		ext4_extent_block_csum_set(inode, neh);
1181 		set_buffer_uptodate(bh);
1182 		unlock_buffer(bh);
1183 
1184 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1185 		if (err)
1186 			goto cleanup;
1187 		brelse(bh);
1188 		bh = NULL;
1189 
1190 		/* correct old index */
1191 		if (m) {
1192 			err = ext4_ext_get_access(handle, inode, path + i);
1193 			if (err)
1194 				goto cleanup;
1195 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1196 			err = ext4_ext_dirty(handle, inode, path + i);
1197 			if (err)
1198 				goto cleanup;
1199 		}
1200 
1201 		i--;
1202 	}
1203 
1204 	/* insert new index */
1205 	err = ext4_ext_insert_index(handle, inode, path + at,
1206 				    le32_to_cpu(border), newblock);
1207 
1208 cleanup:
1209 	if (bh) {
1210 		if (buffer_locked(bh))
1211 			unlock_buffer(bh);
1212 		brelse(bh);
1213 	}
1214 
1215 	if (err) {
1216 		/* free all allocated blocks in error case */
1217 		for (i = 0; i < depth; i++) {
1218 			if (!ablocks[i])
1219 				continue;
1220 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1221 					 EXT4_FREE_BLOCKS_METADATA);
1222 		}
1223 	}
1224 	kfree(ablocks);
1225 
1226 	return err;
1227 }
1228 
1229 /*
1230  * ext4_ext_grow_indepth:
1231  * implements tree growing procedure:
1232  * - allocates new block
1233  * - moves top-level data (index block or leaf) into the new block
1234  * - initializes new top-level, creating index that points to the
1235  *   just created block
1236  */
1237 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1238 				 unsigned int flags,
1239 				 struct ext4_extent *newext)
1240 {
1241 	struct ext4_extent_header *neh;
1242 	struct buffer_head *bh;
1243 	ext4_fsblk_t newblock;
1244 	int err = 0;
1245 
1246 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1247 		newext, &err, flags);
1248 	if (newblock == 0)
1249 		return err;
1250 
1251 	bh = sb_getblk(inode->i_sb, newblock);
1252 	if (unlikely(!bh))
1253 		return -ENOMEM;
1254 	lock_buffer(bh);
1255 
1256 	err = ext4_journal_get_create_access(handle, bh);
1257 	if (err) {
1258 		unlock_buffer(bh);
1259 		goto out;
1260 	}
1261 
1262 	/* move top-level index/leaf into new block */
1263 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1264 		sizeof(EXT4_I(inode)->i_data));
1265 
1266 	/* set size of new block */
1267 	neh = ext_block_hdr(bh);
1268 	/* old root could have indexes or leaves
1269 	 * so calculate e_max right way */
1270 	if (ext_depth(inode))
1271 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1272 	else
1273 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1274 	neh->eh_magic = EXT4_EXT_MAGIC;
1275 	ext4_extent_block_csum_set(inode, neh);
1276 	set_buffer_uptodate(bh);
1277 	unlock_buffer(bh);
1278 
1279 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1280 	if (err)
1281 		goto out;
1282 
1283 	/* Update top-level index: num,max,pointer */
1284 	neh = ext_inode_hdr(inode);
1285 	neh->eh_entries = cpu_to_le16(1);
1286 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1287 	if (neh->eh_depth == 0) {
1288 		/* Root extent block becomes index block */
1289 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1290 		EXT_FIRST_INDEX(neh)->ei_block =
1291 			EXT_FIRST_EXTENT(neh)->ee_block;
1292 	}
1293 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1294 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1295 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1296 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1297 
1298 	le16_add_cpu(&neh->eh_depth, 1);
1299 	ext4_mark_inode_dirty(handle, inode);
1300 out:
1301 	brelse(bh);
1302 
1303 	return err;
1304 }
1305 
1306 /*
1307  * ext4_ext_create_new_leaf:
1308  * finds empty index and adds new leaf.
1309  * if no free index is found, then it requests in-depth growing.
1310  */
1311 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1312 				    unsigned int mb_flags,
1313 				    unsigned int gb_flags,
1314 				    struct ext4_ext_path *path,
1315 				    struct ext4_extent *newext)
1316 {
1317 	struct ext4_ext_path *curp;
1318 	int depth, i, err = 0;
1319 
1320 repeat:
1321 	i = depth = ext_depth(inode);
1322 
1323 	/* walk up to the tree and look for free index entry */
1324 	curp = path + depth;
1325 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1326 		i--;
1327 		curp--;
1328 	}
1329 
1330 	/* we use already allocated block for index block,
1331 	 * so subsequent data blocks should be contiguous */
1332 	if (EXT_HAS_FREE_INDEX(curp)) {
1333 		/* if we found index with free entry, then use that
1334 		 * entry: create all needed subtree and add new leaf */
1335 		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1336 		if (err)
1337 			goto out;
1338 
1339 		/* refill path */
1340 		ext4_ext_drop_refs(path);
1341 		path = ext4_ext_find_extent(inode,
1342 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1343 				    path, gb_flags);
1344 		if (IS_ERR(path))
1345 			err = PTR_ERR(path);
1346 	} else {
1347 		/* tree is full, time to grow in depth */
1348 		err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1349 		if (err)
1350 			goto out;
1351 
1352 		/* refill path */
1353 		ext4_ext_drop_refs(path);
1354 		path = ext4_ext_find_extent(inode,
1355 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1356 				    path, gb_flags);
1357 		if (IS_ERR(path)) {
1358 			err = PTR_ERR(path);
1359 			goto out;
1360 		}
1361 
1362 		/*
1363 		 * only first (depth 0 -> 1) produces free space;
1364 		 * in all other cases we have to split the grown tree
1365 		 */
1366 		depth = ext_depth(inode);
1367 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1368 			/* now we need to split */
1369 			goto repeat;
1370 		}
1371 	}
1372 
1373 out:
1374 	return err;
1375 }
1376 
1377 /*
1378  * search the closest allocated block to the left for *logical
1379  * and returns it at @logical + it's physical address at @phys
1380  * if *logical is the smallest allocated block, the function
1381  * returns 0 at @phys
1382  * return value contains 0 (success) or error code
1383  */
1384 static int ext4_ext_search_left(struct inode *inode,
1385 				struct ext4_ext_path *path,
1386 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1387 {
1388 	struct ext4_extent_idx *ix;
1389 	struct ext4_extent *ex;
1390 	int depth, ee_len;
1391 
1392 	if (unlikely(path == NULL)) {
1393 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1394 		return -EIO;
1395 	}
1396 	depth = path->p_depth;
1397 	*phys = 0;
1398 
1399 	if (depth == 0 && path->p_ext == NULL)
1400 		return 0;
1401 
1402 	/* usually extent in the path covers blocks smaller
1403 	 * then *logical, but it can be that extent is the
1404 	 * first one in the file */
1405 
1406 	ex = path[depth].p_ext;
1407 	ee_len = ext4_ext_get_actual_len(ex);
1408 	if (*logical < le32_to_cpu(ex->ee_block)) {
1409 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1410 			EXT4_ERROR_INODE(inode,
1411 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1412 					 *logical, le32_to_cpu(ex->ee_block));
1413 			return -EIO;
1414 		}
1415 		while (--depth >= 0) {
1416 			ix = path[depth].p_idx;
1417 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1418 				EXT4_ERROR_INODE(inode,
1419 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1420 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1421 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1422 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1423 				  depth);
1424 				return -EIO;
1425 			}
1426 		}
1427 		return 0;
1428 	}
1429 
1430 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1431 		EXT4_ERROR_INODE(inode,
1432 				 "logical %d < ee_block %d + ee_len %d!",
1433 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1434 		return -EIO;
1435 	}
1436 
1437 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1438 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1439 	return 0;
1440 }
1441 
1442 /*
1443  * search the closest allocated block to the right for *logical
1444  * and returns it at @logical + it's physical address at @phys
1445  * if *logical is the largest allocated block, the function
1446  * returns 0 at @phys
1447  * return value contains 0 (success) or error code
1448  */
1449 static int ext4_ext_search_right(struct inode *inode,
1450 				 struct ext4_ext_path *path,
1451 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1452 				 struct ext4_extent **ret_ex)
1453 {
1454 	struct buffer_head *bh = NULL;
1455 	struct ext4_extent_header *eh;
1456 	struct ext4_extent_idx *ix;
1457 	struct ext4_extent *ex;
1458 	ext4_fsblk_t block;
1459 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1460 	int ee_len;
1461 
1462 	if (unlikely(path == NULL)) {
1463 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1464 		return -EIO;
1465 	}
1466 	depth = path->p_depth;
1467 	*phys = 0;
1468 
1469 	if (depth == 0 && path->p_ext == NULL)
1470 		return 0;
1471 
1472 	/* usually extent in the path covers blocks smaller
1473 	 * then *logical, but it can be that extent is the
1474 	 * first one in the file */
1475 
1476 	ex = path[depth].p_ext;
1477 	ee_len = ext4_ext_get_actual_len(ex);
1478 	if (*logical < le32_to_cpu(ex->ee_block)) {
1479 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1480 			EXT4_ERROR_INODE(inode,
1481 					 "first_extent(path[%d].p_hdr) != ex",
1482 					 depth);
1483 			return -EIO;
1484 		}
1485 		while (--depth >= 0) {
1486 			ix = path[depth].p_idx;
1487 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1488 				EXT4_ERROR_INODE(inode,
1489 						 "ix != EXT_FIRST_INDEX *logical %d!",
1490 						 *logical);
1491 				return -EIO;
1492 			}
1493 		}
1494 		goto found_extent;
1495 	}
1496 
1497 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1498 		EXT4_ERROR_INODE(inode,
1499 				 "logical %d < ee_block %d + ee_len %d!",
1500 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1501 		return -EIO;
1502 	}
1503 
1504 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1505 		/* next allocated block in this leaf */
1506 		ex++;
1507 		goto found_extent;
1508 	}
1509 
1510 	/* go up and search for index to the right */
1511 	while (--depth >= 0) {
1512 		ix = path[depth].p_idx;
1513 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1514 			goto got_index;
1515 	}
1516 
1517 	/* we've gone up to the root and found no index to the right */
1518 	return 0;
1519 
1520 got_index:
1521 	/* we've found index to the right, let's
1522 	 * follow it and find the closest allocated
1523 	 * block to the right */
1524 	ix++;
1525 	block = ext4_idx_pblock(ix);
1526 	while (++depth < path->p_depth) {
1527 		/* subtract from p_depth to get proper eh_depth */
1528 		bh = read_extent_tree_block(inode, block,
1529 					    path->p_depth - depth, 0);
1530 		if (IS_ERR(bh))
1531 			return PTR_ERR(bh);
1532 		eh = ext_block_hdr(bh);
1533 		ix = EXT_FIRST_INDEX(eh);
1534 		block = ext4_idx_pblock(ix);
1535 		put_bh(bh);
1536 	}
1537 
1538 	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1539 	if (IS_ERR(bh))
1540 		return PTR_ERR(bh);
1541 	eh = ext_block_hdr(bh);
1542 	ex = EXT_FIRST_EXTENT(eh);
1543 found_extent:
1544 	*logical = le32_to_cpu(ex->ee_block);
1545 	*phys = ext4_ext_pblock(ex);
1546 	*ret_ex = ex;
1547 	if (bh)
1548 		put_bh(bh);
1549 	return 0;
1550 }
1551 
1552 /*
1553  * ext4_ext_next_allocated_block:
1554  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1555  * NOTE: it considers block number from index entry as
1556  * allocated block. Thus, index entries have to be consistent
1557  * with leaves.
1558  */
1559 static ext4_lblk_t
1560 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1561 {
1562 	int depth;
1563 
1564 	BUG_ON(path == NULL);
1565 	depth = path->p_depth;
1566 
1567 	if (depth == 0 && path->p_ext == NULL)
1568 		return EXT_MAX_BLOCKS;
1569 
1570 	while (depth >= 0) {
1571 		if (depth == path->p_depth) {
1572 			/* leaf */
1573 			if (path[depth].p_ext &&
1574 				path[depth].p_ext !=
1575 					EXT_LAST_EXTENT(path[depth].p_hdr))
1576 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1577 		} else {
1578 			/* index */
1579 			if (path[depth].p_idx !=
1580 					EXT_LAST_INDEX(path[depth].p_hdr))
1581 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1582 		}
1583 		depth--;
1584 	}
1585 
1586 	return EXT_MAX_BLOCKS;
1587 }
1588 
1589 /*
1590  * ext4_ext_next_leaf_block:
1591  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1592  */
1593 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1594 {
1595 	int depth;
1596 
1597 	BUG_ON(path == NULL);
1598 	depth = path->p_depth;
1599 
1600 	/* zero-tree has no leaf blocks at all */
1601 	if (depth == 0)
1602 		return EXT_MAX_BLOCKS;
1603 
1604 	/* go to index block */
1605 	depth--;
1606 
1607 	while (depth >= 0) {
1608 		if (path[depth].p_idx !=
1609 				EXT_LAST_INDEX(path[depth].p_hdr))
1610 			return (ext4_lblk_t)
1611 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1612 		depth--;
1613 	}
1614 
1615 	return EXT_MAX_BLOCKS;
1616 }
1617 
1618 /*
1619  * ext4_ext_correct_indexes:
1620  * if leaf gets modified and modified extent is first in the leaf,
1621  * then we have to correct all indexes above.
1622  * TODO: do we need to correct tree in all cases?
1623  */
1624 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1625 				struct ext4_ext_path *path)
1626 {
1627 	struct ext4_extent_header *eh;
1628 	int depth = ext_depth(inode);
1629 	struct ext4_extent *ex;
1630 	__le32 border;
1631 	int k, err = 0;
1632 
1633 	eh = path[depth].p_hdr;
1634 	ex = path[depth].p_ext;
1635 
1636 	if (unlikely(ex == NULL || eh == NULL)) {
1637 		EXT4_ERROR_INODE(inode,
1638 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1639 		return -EIO;
1640 	}
1641 
1642 	if (depth == 0) {
1643 		/* there is no tree at all */
1644 		return 0;
1645 	}
1646 
1647 	if (ex != EXT_FIRST_EXTENT(eh)) {
1648 		/* we correct tree if first leaf got modified only */
1649 		return 0;
1650 	}
1651 
1652 	/*
1653 	 * TODO: we need correction if border is smaller than current one
1654 	 */
1655 	k = depth - 1;
1656 	border = path[depth].p_ext->ee_block;
1657 	err = ext4_ext_get_access(handle, inode, path + k);
1658 	if (err)
1659 		return err;
1660 	path[k].p_idx->ei_block = border;
1661 	err = ext4_ext_dirty(handle, inode, path + k);
1662 	if (err)
1663 		return err;
1664 
1665 	while (k--) {
1666 		/* change all left-side indexes */
1667 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1668 			break;
1669 		err = ext4_ext_get_access(handle, inode, path + k);
1670 		if (err)
1671 			break;
1672 		path[k].p_idx->ei_block = border;
1673 		err = ext4_ext_dirty(handle, inode, path + k);
1674 		if (err)
1675 			break;
1676 	}
1677 
1678 	return err;
1679 }
1680 
1681 int
1682 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1683 				struct ext4_extent *ex2)
1684 {
1685 	unsigned short ext1_ee_len, ext2_ee_len;
1686 
1687 	/*
1688 	 * Make sure that both extents are initialized. We don't merge
1689 	 * uninitialized extents so that we can be sure that end_io code has
1690 	 * the extent that was written properly split out and conversion to
1691 	 * initialized is trivial.
1692 	 */
1693 	if (ext4_ext_is_uninitialized(ex1) != ext4_ext_is_uninitialized(ex2))
1694 		return 0;
1695 
1696 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1697 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1698 
1699 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1700 			le32_to_cpu(ex2->ee_block))
1701 		return 0;
1702 
1703 	/*
1704 	 * To allow future support for preallocated extents to be added
1705 	 * as an RO_COMPAT feature, refuse to merge to extents if
1706 	 * this can result in the top bit of ee_len being set.
1707 	 */
1708 	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1709 		return 0;
1710 	if (ext4_ext_is_uninitialized(ex1) &&
1711 	    (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1712 	     atomic_read(&EXT4_I(inode)->i_unwritten) ||
1713 	     (ext1_ee_len + ext2_ee_len > EXT_UNINIT_MAX_LEN)))
1714 		return 0;
1715 #ifdef AGGRESSIVE_TEST
1716 	if (ext1_ee_len >= 4)
1717 		return 0;
1718 #endif
1719 
1720 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1721 		return 1;
1722 	return 0;
1723 }
1724 
1725 /*
1726  * This function tries to merge the "ex" extent to the next extent in the tree.
1727  * It always tries to merge towards right. If you want to merge towards
1728  * left, pass "ex - 1" as argument instead of "ex".
1729  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1730  * 1 if they got merged.
1731  */
1732 static int ext4_ext_try_to_merge_right(struct inode *inode,
1733 				 struct ext4_ext_path *path,
1734 				 struct ext4_extent *ex)
1735 {
1736 	struct ext4_extent_header *eh;
1737 	unsigned int depth, len;
1738 	int merge_done = 0, uninit;
1739 
1740 	depth = ext_depth(inode);
1741 	BUG_ON(path[depth].p_hdr == NULL);
1742 	eh = path[depth].p_hdr;
1743 
1744 	while (ex < EXT_LAST_EXTENT(eh)) {
1745 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1746 			break;
1747 		/* merge with next extent! */
1748 		uninit = ext4_ext_is_uninitialized(ex);
1749 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1750 				+ ext4_ext_get_actual_len(ex + 1));
1751 		if (uninit)
1752 			ext4_ext_mark_uninitialized(ex);
1753 
1754 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1755 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1756 				* sizeof(struct ext4_extent);
1757 			memmove(ex + 1, ex + 2, len);
1758 		}
1759 		le16_add_cpu(&eh->eh_entries, -1);
1760 		merge_done = 1;
1761 		WARN_ON(eh->eh_entries == 0);
1762 		if (!eh->eh_entries)
1763 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1764 	}
1765 
1766 	return merge_done;
1767 }
1768 
1769 /*
1770  * This function does a very simple check to see if we can collapse
1771  * an extent tree with a single extent tree leaf block into the inode.
1772  */
1773 static void ext4_ext_try_to_merge_up(handle_t *handle,
1774 				     struct inode *inode,
1775 				     struct ext4_ext_path *path)
1776 {
1777 	size_t s;
1778 	unsigned max_root = ext4_ext_space_root(inode, 0);
1779 	ext4_fsblk_t blk;
1780 
1781 	if ((path[0].p_depth != 1) ||
1782 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1783 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1784 		return;
1785 
1786 	/*
1787 	 * We need to modify the block allocation bitmap and the block
1788 	 * group descriptor to release the extent tree block.  If we
1789 	 * can't get the journal credits, give up.
1790 	 */
1791 	if (ext4_journal_extend(handle, 2))
1792 		return;
1793 
1794 	/*
1795 	 * Copy the extent data up to the inode
1796 	 */
1797 	blk = ext4_idx_pblock(path[0].p_idx);
1798 	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1799 		sizeof(struct ext4_extent_idx);
1800 	s += sizeof(struct ext4_extent_header);
1801 
1802 	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1803 	path[0].p_depth = 0;
1804 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1805 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1806 	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1807 
1808 	brelse(path[1].p_bh);
1809 	ext4_free_blocks(handle, inode, NULL, blk, 1,
1810 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET |
1811 			 EXT4_FREE_BLOCKS_RESERVE);
1812 }
1813 
1814 /*
1815  * This function tries to merge the @ex extent to neighbours in the tree.
1816  * return 1 if merge left else 0.
1817  */
1818 static void ext4_ext_try_to_merge(handle_t *handle,
1819 				  struct inode *inode,
1820 				  struct ext4_ext_path *path,
1821 				  struct ext4_extent *ex) {
1822 	struct ext4_extent_header *eh;
1823 	unsigned int depth;
1824 	int merge_done = 0;
1825 
1826 	depth = ext_depth(inode);
1827 	BUG_ON(path[depth].p_hdr == NULL);
1828 	eh = path[depth].p_hdr;
1829 
1830 	if (ex > EXT_FIRST_EXTENT(eh))
1831 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1832 
1833 	if (!merge_done)
1834 		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1835 
1836 	ext4_ext_try_to_merge_up(handle, inode, path);
1837 }
1838 
1839 /*
1840  * check if a portion of the "newext" extent overlaps with an
1841  * existing extent.
1842  *
1843  * If there is an overlap discovered, it updates the length of the newext
1844  * such that there will be no overlap, and then returns 1.
1845  * If there is no overlap found, it returns 0.
1846  */
1847 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1848 					   struct inode *inode,
1849 					   struct ext4_extent *newext,
1850 					   struct ext4_ext_path *path)
1851 {
1852 	ext4_lblk_t b1, b2;
1853 	unsigned int depth, len1;
1854 	unsigned int ret = 0;
1855 
1856 	b1 = le32_to_cpu(newext->ee_block);
1857 	len1 = ext4_ext_get_actual_len(newext);
1858 	depth = ext_depth(inode);
1859 	if (!path[depth].p_ext)
1860 		goto out;
1861 	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1862 
1863 	/*
1864 	 * get the next allocated block if the extent in the path
1865 	 * is before the requested block(s)
1866 	 */
1867 	if (b2 < b1) {
1868 		b2 = ext4_ext_next_allocated_block(path);
1869 		if (b2 == EXT_MAX_BLOCKS)
1870 			goto out;
1871 		b2 = EXT4_LBLK_CMASK(sbi, b2);
1872 	}
1873 
1874 	/* check for wrap through zero on extent logical start block*/
1875 	if (b1 + len1 < b1) {
1876 		len1 = EXT_MAX_BLOCKS - b1;
1877 		newext->ee_len = cpu_to_le16(len1);
1878 		ret = 1;
1879 	}
1880 
1881 	/* check for overlap */
1882 	if (b1 + len1 > b2) {
1883 		newext->ee_len = cpu_to_le16(b2 - b1);
1884 		ret = 1;
1885 	}
1886 out:
1887 	return ret;
1888 }
1889 
1890 /*
1891  * ext4_ext_insert_extent:
1892  * tries to merge requsted extent into the existing extent or
1893  * inserts requested extent as new one into the tree,
1894  * creating new leaf in the no-space case.
1895  */
1896 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1897 				struct ext4_ext_path *path,
1898 				struct ext4_extent *newext, int gb_flags)
1899 {
1900 	struct ext4_extent_header *eh;
1901 	struct ext4_extent *ex, *fex;
1902 	struct ext4_extent *nearex; /* nearest extent */
1903 	struct ext4_ext_path *npath = NULL;
1904 	int depth, len, err;
1905 	ext4_lblk_t next;
1906 	int mb_flags = 0, uninit;
1907 
1908 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1909 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1910 		return -EIO;
1911 	}
1912 	depth = ext_depth(inode);
1913 	ex = path[depth].p_ext;
1914 	eh = path[depth].p_hdr;
1915 	if (unlikely(path[depth].p_hdr == NULL)) {
1916 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1917 		return -EIO;
1918 	}
1919 
1920 	/* try to insert block into found extent and return */
1921 	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1922 
1923 		/*
1924 		 * Try to see whether we should rather test the extent on
1925 		 * right from ex, or from the left of ex. This is because
1926 		 * ext4_ext_find_extent() can return either extent on the
1927 		 * left, or on the right from the searched position. This
1928 		 * will make merging more effective.
1929 		 */
1930 		if (ex < EXT_LAST_EXTENT(eh) &&
1931 		    (le32_to_cpu(ex->ee_block) +
1932 		    ext4_ext_get_actual_len(ex) <
1933 		    le32_to_cpu(newext->ee_block))) {
1934 			ex += 1;
1935 			goto prepend;
1936 		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1937 			   (le32_to_cpu(newext->ee_block) +
1938 			   ext4_ext_get_actual_len(newext) <
1939 			   le32_to_cpu(ex->ee_block)))
1940 			ex -= 1;
1941 
1942 		/* Try to append newex to the ex */
1943 		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1944 			ext_debug("append [%d]%d block to %u:[%d]%d"
1945 				  "(from %llu)\n",
1946 				  ext4_ext_is_uninitialized(newext),
1947 				  ext4_ext_get_actual_len(newext),
1948 				  le32_to_cpu(ex->ee_block),
1949 				  ext4_ext_is_uninitialized(ex),
1950 				  ext4_ext_get_actual_len(ex),
1951 				  ext4_ext_pblock(ex));
1952 			err = ext4_ext_get_access(handle, inode,
1953 						  path + depth);
1954 			if (err)
1955 				return err;
1956 			uninit = ext4_ext_is_uninitialized(ex);
1957 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1958 					+ ext4_ext_get_actual_len(newext));
1959 			if (uninit)
1960 				ext4_ext_mark_uninitialized(ex);
1961 			eh = path[depth].p_hdr;
1962 			nearex = ex;
1963 			goto merge;
1964 		}
1965 
1966 prepend:
1967 		/* Try to prepend newex to the ex */
1968 		if (ext4_can_extents_be_merged(inode, newext, ex)) {
1969 			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1970 				  "(from %llu)\n",
1971 				  le32_to_cpu(newext->ee_block),
1972 				  ext4_ext_is_uninitialized(newext),
1973 				  ext4_ext_get_actual_len(newext),
1974 				  le32_to_cpu(ex->ee_block),
1975 				  ext4_ext_is_uninitialized(ex),
1976 				  ext4_ext_get_actual_len(ex),
1977 				  ext4_ext_pblock(ex));
1978 			err = ext4_ext_get_access(handle, inode,
1979 						  path + depth);
1980 			if (err)
1981 				return err;
1982 
1983 			uninit = ext4_ext_is_uninitialized(ex);
1984 			ex->ee_block = newext->ee_block;
1985 			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1986 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1987 					+ ext4_ext_get_actual_len(newext));
1988 			if (uninit)
1989 				ext4_ext_mark_uninitialized(ex);
1990 			eh = path[depth].p_hdr;
1991 			nearex = ex;
1992 			goto merge;
1993 		}
1994 	}
1995 
1996 	depth = ext_depth(inode);
1997 	eh = path[depth].p_hdr;
1998 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1999 		goto has_space;
2000 
2001 	/* probably next leaf has space for us? */
2002 	fex = EXT_LAST_EXTENT(eh);
2003 	next = EXT_MAX_BLOCKS;
2004 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2005 		next = ext4_ext_next_leaf_block(path);
2006 	if (next != EXT_MAX_BLOCKS) {
2007 		ext_debug("next leaf block - %u\n", next);
2008 		BUG_ON(npath != NULL);
2009 		npath = ext4_ext_find_extent(inode, next, NULL, 0);
2010 		if (IS_ERR(npath))
2011 			return PTR_ERR(npath);
2012 		BUG_ON(npath->p_depth != path->p_depth);
2013 		eh = npath[depth].p_hdr;
2014 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2015 			ext_debug("next leaf isn't full(%d)\n",
2016 				  le16_to_cpu(eh->eh_entries));
2017 			path = npath;
2018 			goto has_space;
2019 		}
2020 		ext_debug("next leaf has no free space(%d,%d)\n",
2021 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2022 	}
2023 
2024 	/*
2025 	 * There is no free space in the found leaf.
2026 	 * We're gonna add a new leaf in the tree.
2027 	 */
2028 	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2029 		mb_flags = EXT4_MB_USE_RESERVED;
2030 	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2031 				       path, newext);
2032 	if (err)
2033 		goto cleanup;
2034 	depth = ext_depth(inode);
2035 	eh = path[depth].p_hdr;
2036 
2037 has_space:
2038 	nearex = path[depth].p_ext;
2039 
2040 	err = ext4_ext_get_access(handle, inode, path + depth);
2041 	if (err)
2042 		goto cleanup;
2043 
2044 	if (!nearex) {
2045 		/* there is no extent in this leaf, create first one */
2046 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2047 				le32_to_cpu(newext->ee_block),
2048 				ext4_ext_pblock(newext),
2049 				ext4_ext_is_uninitialized(newext),
2050 				ext4_ext_get_actual_len(newext));
2051 		nearex = EXT_FIRST_EXTENT(eh);
2052 	} else {
2053 		if (le32_to_cpu(newext->ee_block)
2054 			   > le32_to_cpu(nearex->ee_block)) {
2055 			/* Insert after */
2056 			ext_debug("insert %u:%llu:[%d]%d before: "
2057 					"nearest %p\n",
2058 					le32_to_cpu(newext->ee_block),
2059 					ext4_ext_pblock(newext),
2060 					ext4_ext_is_uninitialized(newext),
2061 					ext4_ext_get_actual_len(newext),
2062 					nearex);
2063 			nearex++;
2064 		} else {
2065 			/* Insert before */
2066 			BUG_ON(newext->ee_block == nearex->ee_block);
2067 			ext_debug("insert %u:%llu:[%d]%d after: "
2068 					"nearest %p\n",
2069 					le32_to_cpu(newext->ee_block),
2070 					ext4_ext_pblock(newext),
2071 					ext4_ext_is_uninitialized(newext),
2072 					ext4_ext_get_actual_len(newext),
2073 					nearex);
2074 		}
2075 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2076 		if (len > 0) {
2077 			ext_debug("insert %u:%llu:[%d]%d: "
2078 					"move %d extents from 0x%p to 0x%p\n",
2079 					le32_to_cpu(newext->ee_block),
2080 					ext4_ext_pblock(newext),
2081 					ext4_ext_is_uninitialized(newext),
2082 					ext4_ext_get_actual_len(newext),
2083 					len, nearex, nearex + 1);
2084 			memmove(nearex + 1, nearex,
2085 				len * sizeof(struct ext4_extent));
2086 		}
2087 	}
2088 
2089 	le16_add_cpu(&eh->eh_entries, 1);
2090 	path[depth].p_ext = nearex;
2091 	nearex->ee_block = newext->ee_block;
2092 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2093 	nearex->ee_len = newext->ee_len;
2094 
2095 merge:
2096 	/* try to merge extents */
2097 	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2098 		ext4_ext_try_to_merge(handle, inode, path, nearex);
2099 
2100 
2101 	/* time to correct all indexes above */
2102 	err = ext4_ext_correct_indexes(handle, inode, path);
2103 	if (err)
2104 		goto cleanup;
2105 
2106 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2107 
2108 cleanup:
2109 	if (npath) {
2110 		ext4_ext_drop_refs(npath);
2111 		kfree(npath);
2112 	}
2113 	return err;
2114 }
2115 
2116 static int ext4_fill_fiemap_extents(struct inode *inode,
2117 				    ext4_lblk_t block, ext4_lblk_t num,
2118 				    struct fiemap_extent_info *fieinfo)
2119 {
2120 	struct ext4_ext_path *path = NULL;
2121 	struct ext4_extent *ex;
2122 	struct extent_status es;
2123 	ext4_lblk_t next, next_del, start = 0, end = 0;
2124 	ext4_lblk_t last = block + num;
2125 	int exists, depth = 0, err = 0;
2126 	unsigned int flags = 0;
2127 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2128 
2129 	while (block < last && block != EXT_MAX_BLOCKS) {
2130 		num = last - block;
2131 		/* find extent for this block */
2132 		down_read(&EXT4_I(inode)->i_data_sem);
2133 
2134 		if (path && ext_depth(inode) != depth) {
2135 			/* depth was changed. we have to realloc path */
2136 			kfree(path);
2137 			path = NULL;
2138 		}
2139 
2140 		path = ext4_ext_find_extent(inode, block, path, 0);
2141 		if (IS_ERR(path)) {
2142 			up_read(&EXT4_I(inode)->i_data_sem);
2143 			err = PTR_ERR(path);
2144 			path = NULL;
2145 			break;
2146 		}
2147 
2148 		depth = ext_depth(inode);
2149 		if (unlikely(path[depth].p_hdr == NULL)) {
2150 			up_read(&EXT4_I(inode)->i_data_sem);
2151 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2152 			err = -EIO;
2153 			break;
2154 		}
2155 		ex = path[depth].p_ext;
2156 		next = ext4_ext_next_allocated_block(path);
2157 		ext4_ext_drop_refs(path);
2158 
2159 		flags = 0;
2160 		exists = 0;
2161 		if (!ex) {
2162 			/* there is no extent yet, so try to allocate
2163 			 * all requested space */
2164 			start = block;
2165 			end = block + num;
2166 		} else if (le32_to_cpu(ex->ee_block) > block) {
2167 			/* need to allocate space before found extent */
2168 			start = block;
2169 			end = le32_to_cpu(ex->ee_block);
2170 			if (block + num < end)
2171 				end = block + num;
2172 		} else if (block >= le32_to_cpu(ex->ee_block)
2173 					+ ext4_ext_get_actual_len(ex)) {
2174 			/* need to allocate space after found extent */
2175 			start = block;
2176 			end = block + num;
2177 			if (end >= next)
2178 				end = next;
2179 		} else if (block >= le32_to_cpu(ex->ee_block)) {
2180 			/*
2181 			 * some part of requested space is covered
2182 			 * by found extent
2183 			 */
2184 			start = block;
2185 			end = le32_to_cpu(ex->ee_block)
2186 				+ ext4_ext_get_actual_len(ex);
2187 			if (block + num < end)
2188 				end = block + num;
2189 			exists = 1;
2190 		} else {
2191 			BUG();
2192 		}
2193 		BUG_ON(end <= start);
2194 
2195 		if (!exists) {
2196 			es.es_lblk = start;
2197 			es.es_len = end - start;
2198 			es.es_pblk = 0;
2199 		} else {
2200 			es.es_lblk = le32_to_cpu(ex->ee_block);
2201 			es.es_len = ext4_ext_get_actual_len(ex);
2202 			es.es_pblk = ext4_ext_pblock(ex);
2203 			if (ext4_ext_is_uninitialized(ex))
2204 				flags |= FIEMAP_EXTENT_UNWRITTEN;
2205 		}
2206 
2207 		/*
2208 		 * Find delayed extent and update es accordingly. We call
2209 		 * it even in !exists case to find out whether es is the
2210 		 * last existing extent or not.
2211 		 */
2212 		next_del = ext4_find_delayed_extent(inode, &es);
2213 		if (!exists && next_del) {
2214 			exists = 1;
2215 			flags |= (FIEMAP_EXTENT_DELALLOC |
2216 				  FIEMAP_EXTENT_UNKNOWN);
2217 		}
2218 		up_read(&EXT4_I(inode)->i_data_sem);
2219 
2220 		if (unlikely(es.es_len == 0)) {
2221 			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2222 			err = -EIO;
2223 			break;
2224 		}
2225 
2226 		/*
2227 		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2228 		 * we need to check next == EXT_MAX_BLOCKS because it is
2229 		 * possible that an extent is with unwritten and delayed
2230 		 * status due to when an extent is delayed allocated and
2231 		 * is allocated by fallocate status tree will track both of
2232 		 * them in a extent.
2233 		 *
2234 		 * So we could return a unwritten and delayed extent, and
2235 		 * its block is equal to 'next'.
2236 		 */
2237 		if (next == next_del && next == EXT_MAX_BLOCKS) {
2238 			flags |= FIEMAP_EXTENT_LAST;
2239 			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2240 				     next != EXT_MAX_BLOCKS)) {
2241 				EXT4_ERROR_INODE(inode,
2242 						 "next extent == %u, next "
2243 						 "delalloc extent = %u",
2244 						 next, next_del);
2245 				err = -EIO;
2246 				break;
2247 			}
2248 		}
2249 
2250 		if (exists) {
2251 			err = fiemap_fill_next_extent(fieinfo,
2252 				(__u64)es.es_lblk << blksize_bits,
2253 				(__u64)es.es_pblk << blksize_bits,
2254 				(__u64)es.es_len << blksize_bits,
2255 				flags);
2256 			if (err < 0)
2257 				break;
2258 			if (err == 1) {
2259 				err = 0;
2260 				break;
2261 			}
2262 		}
2263 
2264 		block = es.es_lblk + es.es_len;
2265 	}
2266 
2267 	if (path) {
2268 		ext4_ext_drop_refs(path);
2269 		kfree(path);
2270 	}
2271 
2272 	return err;
2273 }
2274 
2275 /*
2276  * ext4_ext_put_gap_in_cache:
2277  * calculate boundaries of the gap that the requested block fits into
2278  * and cache this gap
2279  */
2280 static void
2281 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2282 				ext4_lblk_t block)
2283 {
2284 	int depth = ext_depth(inode);
2285 	unsigned long len = 0;
2286 	ext4_lblk_t lblock = 0;
2287 	struct ext4_extent *ex;
2288 
2289 	ex = path[depth].p_ext;
2290 	if (ex == NULL) {
2291 		/*
2292 		 * there is no extent yet, so gap is [0;-] and we
2293 		 * don't cache it
2294 		 */
2295 		ext_debug("cache gap(whole file):");
2296 	} else if (block < le32_to_cpu(ex->ee_block)) {
2297 		lblock = block;
2298 		len = le32_to_cpu(ex->ee_block) - block;
2299 		ext_debug("cache gap(before): %u [%u:%u]",
2300 				block,
2301 				le32_to_cpu(ex->ee_block),
2302 				 ext4_ext_get_actual_len(ex));
2303 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2304 			ext4_es_insert_extent(inode, lblock, len, ~0,
2305 					      EXTENT_STATUS_HOLE);
2306 	} else if (block >= le32_to_cpu(ex->ee_block)
2307 			+ ext4_ext_get_actual_len(ex)) {
2308 		ext4_lblk_t next;
2309 		lblock = le32_to_cpu(ex->ee_block)
2310 			+ ext4_ext_get_actual_len(ex);
2311 
2312 		next = ext4_ext_next_allocated_block(path);
2313 		ext_debug("cache gap(after): [%u:%u] %u",
2314 				le32_to_cpu(ex->ee_block),
2315 				ext4_ext_get_actual_len(ex),
2316 				block);
2317 		BUG_ON(next == lblock);
2318 		len = next - lblock;
2319 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2320 			ext4_es_insert_extent(inode, lblock, len, ~0,
2321 					      EXTENT_STATUS_HOLE);
2322 	} else {
2323 		BUG();
2324 	}
2325 
2326 	ext_debug(" -> %u:%lu\n", lblock, len);
2327 }
2328 
2329 /*
2330  * ext4_ext_rm_idx:
2331  * removes index from the index block.
2332  */
2333 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2334 			struct ext4_ext_path *path, int depth)
2335 {
2336 	int err;
2337 	ext4_fsblk_t leaf;
2338 
2339 	/* free index block */
2340 	depth--;
2341 	path = path + depth;
2342 	leaf = ext4_idx_pblock(path->p_idx);
2343 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2344 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2345 		return -EIO;
2346 	}
2347 	err = ext4_ext_get_access(handle, inode, path);
2348 	if (err)
2349 		return err;
2350 
2351 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2352 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2353 		len *= sizeof(struct ext4_extent_idx);
2354 		memmove(path->p_idx, path->p_idx + 1, len);
2355 	}
2356 
2357 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2358 	err = ext4_ext_dirty(handle, inode, path);
2359 	if (err)
2360 		return err;
2361 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2362 	trace_ext4_ext_rm_idx(inode, leaf);
2363 
2364 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2365 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2366 
2367 	while (--depth >= 0) {
2368 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2369 			break;
2370 		path--;
2371 		err = ext4_ext_get_access(handle, inode, path);
2372 		if (err)
2373 			break;
2374 		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2375 		err = ext4_ext_dirty(handle, inode, path);
2376 		if (err)
2377 			break;
2378 	}
2379 	return err;
2380 }
2381 
2382 /*
2383  * ext4_ext_calc_credits_for_single_extent:
2384  * This routine returns max. credits that needed to insert an extent
2385  * to the extent tree.
2386  * When pass the actual path, the caller should calculate credits
2387  * under i_data_sem.
2388  */
2389 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2390 						struct ext4_ext_path *path)
2391 {
2392 	if (path) {
2393 		int depth = ext_depth(inode);
2394 		int ret = 0;
2395 
2396 		/* probably there is space in leaf? */
2397 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2398 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2399 
2400 			/*
2401 			 *  There are some space in the leaf tree, no
2402 			 *  need to account for leaf block credit
2403 			 *
2404 			 *  bitmaps and block group descriptor blocks
2405 			 *  and other metadata blocks still need to be
2406 			 *  accounted.
2407 			 */
2408 			/* 1 bitmap, 1 block group descriptor */
2409 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2410 			return ret;
2411 		}
2412 	}
2413 
2414 	return ext4_chunk_trans_blocks(inode, nrblocks);
2415 }
2416 
2417 /*
2418  * How many index/leaf blocks need to change/allocate to add @extents extents?
2419  *
2420  * If we add a single extent, then in the worse case, each tree level
2421  * index/leaf need to be changed in case of the tree split.
2422  *
2423  * If more extents are inserted, they could cause the whole tree split more
2424  * than once, but this is really rare.
2425  */
2426 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2427 {
2428 	int index;
2429 	int depth;
2430 
2431 	/* If we are converting the inline data, only one is needed here. */
2432 	if (ext4_has_inline_data(inode))
2433 		return 1;
2434 
2435 	depth = ext_depth(inode);
2436 
2437 	if (extents <= 1)
2438 		index = depth * 2;
2439 	else
2440 		index = depth * 3;
2441 
2442 	return index;
2443 }
2444 
2445 static inline int get_default_free_blocks_flags(struct inode *inode)
2446 {
2447 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2448 		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2449 	else if (ext4_should_journal_data(inode))
2450 		return EXT4_FREE_BLOCKS_FORGET;
2451 	return 0;
2452 }
2453 
2454 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2455 			      struct ext4_extent *ex,
2456 			      long long *partial_cluster,
2457 			      ext4_lblk_t from, ext4_lblk_t to)
2458 {
2459 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2460 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2461 	ext4_fsblk_t pblk;
2462 	int flags = get_default_free_blocks_flags(inode);
2463 
2464 	/*
2465 	 * For bigalloc file systems, we never free a partial cluster
2466 	 * at the beginning of the extent.  Instead, we make a note
2467 	 * that we tried freeing the cluster, and check to see if we
2468 	 * need to free it on a subsequent call to ext4_remove_blocks,
2469 	 * or at the end of the ext4_truncate() operation.
2470 	 */
2471 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2472 
2473 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2474 	/*
2475 	 * If we have a partial cluster, and it's different from the
2476 	 * cluster of the last block, we need to explicitly free the
2477 	 * partial cluster here.
2478 	 */
2479 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2480 	if ((*partial_cluster > 0) &&
2481 	    (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2482 		ext4_free_blocks(handle, inode, NULL,
2483 				 EXT4_C2B(sbi, *partial_cluster),
2484 				 sbi->s_cluster_ratio, flags);
2485 		*partial_cluster = 0;
2486 	}
2487 
2488 #ifdef EXTENTS_STATS
2489 	{
2490 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2491 		spin_lock(&sbi->s_ext_stats_lock);
2492 		sbi->s_ext_blocks += ee_len;
2493 		sbi->s_ext_extents++;
2494 		if (ee_len < sbi->s_ext_min)
2495 			sbi->s_ext_min = ee_len;
2496 		if (ee_len > sbi->s_ext_max)
2497 			sbi->s_ext_max = ee_len;
2498 		if (ext_depth(inode) > sbi->s_depth_max)
2499 			sbi->s_depth_max = ext_depth(inode);
2500 		spin_unlock(&sbi->s_ext_stats_lock);
2501 	}
2502 #endif
2503 	if (from >= le32_to_cpu(ex->ee_block)
2504 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2505 		/* tail removal */
2506 		ext4_lblk_t num;
2507 		unsigned int unaligned;
2508 
2509 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2510 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2511 		/*
2512 		 * Usually we want to free partial cluster at the end of the
2513 		 * extent, except for the situation when the cluster is still
2514 		 * used by any other extent (partial_cluster is negative).
2515 		 */
2516 		if (*partial_cluster < 0 &&
2517 		    -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2518 			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2519 
2520 		ext_debug("free last %u blocks starting %llu partial %lld\n",
2521 			  num, pblk, *partial_cluster);
2522 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2523 		/*
2524 		 * If the block range to be freed didn't start at the
2525 		 * beginning of a cluster, and we removed the entire
2526 		 * extent and the cluster is not used by any other extent,
2527 		 * save the partial cluster here, since we might need to
2528 		 * delete if we determine that the truncate operation has
2529 		 * removed all of the blocks in the cluster.
2530 		 *
2531 		 * On the other hand, if we did not manage to free the whole
2532 		 * extent, we have to mark the cluster as used (store negative
2533 		 * cluster number in partial_cluster).
2534 		 */
2535 		unaligned = EXT4_PBLK_COFF(sbi, pblk);
2536 		if (unaligned && (ee_len == num) &&
2537 		    (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2538 			*partial_cluster = EXT4_B2C(sbi, pblk);
2539 		else if (unaligned)
2540 			*partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2541 		else if (*partial_cluster > 0)
2542 			*partial_cluster = 0;
2543 	} else
2544 		ext4_error(sbi->s_sb, "strange request: removal(2) "
2545 			   "%u-%u from %u:%u\n",
2546 			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2547 	return 0;
2548 }
2549 
2550 
2551 /*
2552  * ext4_ext_rm_leaf() Removes the extents associated with the
2553  * blocks appearing between "start" and "end", and splits the extents
2554  * if "start" and "end" appear in the same extent
2555  *
2556  * @handle: The journal handle
2557  * @inode:  The files inode
2558  * @path:   The path to the leaf
2559  * @partial_cluster: The cluster which we'll have to free if all extents
2560  *                   has been released from it. It gets negative in case
2561  *                   that the cluster is still used.
2562  * @start:  The first block to remove
2563  * @end:   The last block to remove
2564  */
2565 static int
2566 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2567 		 struct ext4_ext_path *path,
2568 		 long long *partial_cluster,
2569 		 ext4_lblk_t start, ext4_lblk_t end)
2570 {
2571 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2572 	int err = 0, correct_index = 0;
2573 	int depth = ext_depth(inode), credits;
2574 	struct ext4_extent_header *eh;
2575 	ext4_lblk_t a, b;
2576 	unsigned num;
2577 	ext4_lblk_t ex_ee_block;
2578 	unsigned short ex_ee_len;
2579 	unsigned uninitialized = 0;
2580 	struct ext4_extent *ex;
2581 	ext4_fsblk_t pblk;
2582 
2583 	/* the header must be checked already in ext4_ext_remove_space() */
2584 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2585 	if (!path[depth].p_hdr)
2586 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2587 	eh = path[depth].p_hdr;
2588 	if (unlikely(path[depth].p_hdr == NULL)) {
2589 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2590 		return -EIO;
2591 	}
2592 	/* find where to start removing */
2593 	ex = path[depth].p_ext;
2594 	if (!ex)
2595 		ex = EXT_LAST_EXTENT(eh);
2596 
2597 	ex_ee_block = le32_to_cpu(ex->ee_block);
2598 	ex_ee_len = ext4_ext_get_actual_len(ex);
2599 
2600 	/*
2601 	 * If we're starting with an extent other than the last one in the
2602 	 * node, we need to see if it shares a cluster with the extent to
2603 	 * the right (towards the end of the file). If its leftmost cluster
2604 	 * is this extent's rightmost cluster and it is not cluster aligned,
2605 	 * we'll mark it as a partial that is not to be deallocated.
2606 	 */
2607 
2608 	if (ex != EXT_LAST_EXTENT(eh)) {
2609 		ext4_fsblk_t current_pblk, right_pblk;
2610 		long long current_cluster, right_cluster;
2611 
2612 		current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2613 		current_cluster = (long long)EXT4_B2C(sbi, current_pblk);
2614 		right_pblk = ext4_ext_pblock(ex + 1);
2615 		right_cluster = (long long)EXT4_B2C(sbi, right_pblk);
2616 		if (current_cluster == right_cluster &&
2617 			EXT4_PBLK_COFF(sbi, right_pblk))
2618 			*partial_cluster = -right_cluster;
2619 	}
2620 
2621 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2622 
2623 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2624 			ex_ee_block + ex_ee_len > start) {
2625 
2626 		if (ext4_ext_is_uninitialized(ex))
2627 			uninitialized = 1;
2628 		else
2629 			uninitialized = 0;
2630 
2631 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2632 			 uninitialized, ex_ee_len);
2633 		path[depth].p_ext = ex;
2634 
2635 		a = ex_ee_block > start ? ex_ee_block : start;
2636 		b = ex_ee_block+ex_ee_len - 1 < end ?
2637 			ex_ee_block+ex_ee_len - 1 : end;
2638 
2639 		ext_debug("  border %u:%u\n", a, b);
2640 
2641 		/* If this extent is beyond the end of the hole, skip it */
2642 		if (end < ex_ee_block) {
2643 			/*
2644 			 * We're going to skip this extent and move to another,
2645 			 * so if this extent is not cluster aligned we have
2646 			 * to mark the current cluster as used to avoid
2647 			 * accidentally freeing it later on
2648 			 */
2649 			pblk = ext4_ext_pblock(ex);
2650 			if (EXT4_PBLK_COFF(sbi, pblk))
2651 				*partial_cluster =
2652 					-((long long)EXT4_B2C(sbi, pblk));
2653 			ex--;
2654 			ex_ee_block = le32_to_cpu(ex->ee_block);
2655 			ex_ee_len = ext4_ext_get_actual_len(ex);
2656 			continue;
2657 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2658 			EXT4_ERROR_INODE(inode,
2659 					 "can not handle truncate %u:%u "
2660 					 "on extent %u:%u",
2661 					 start, end, ex_ee_block,
2662 					 ex_ee_block + ex_ee_len - 1);
2663 			err = -EIO;
2664 			goto out;
2665 		} else if (a != ex_ee_block) {
2666 			/* remove tail of the extent */
2667 			num = a - ex_ee_block;
2668 		} else {
2669 			/* remove whole extent: excellent! */
2670 			num = 0;
2671 		}
2672 		/*
2673 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2674 		 * descriptor) for each block group; assume two block
2675 		 * groups plus ex_ee_len/blocks_per_block_group for
2676 		 * the worst case
2677 		 */
2678 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2679 		if (ex == EXT_FIRST_EXTENT(eh)) {
2680 			correct_index = 1;
2681 			credits += (ext_depth(inode)) + 1;
2682 		}
2683 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2684 
2685 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2686 		if (err)
2687 			goto out;
2688 
2689 		err = ext4_ext_get_access(handle, inode, path + depth);
2690 		if (err)
2691 			goto out;
2692 
2693 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2694 					 a, b);
2695 		if (err)
2696 			goto out;
2697 
2698 		if (num == 0)
2699 			/* this extent is removed; mark slot entirely unused */
2700 			ext4_ext_store_pblock(ex, 0);
2701 
2702 		ex->ee_len = cpu_to_le16(num);
2703 		/*
2704 		 * Do not mark uninitialized if all the blocks in the
2705 		 * extent have been removed.
2706 		 */
2707 		if (uninitialized && num)
2708 			ext4_ext_mark_uninitialized(ex);
2709 		/*
2710 		 * If the extent was completely released,
2711 		 * we need to remove it from the leaf
2712 		 */
2713 		if (num == 0) {
2714 			if (end != EXT_MAX_BLOCKS - 1) {
2715 				/*
2716 				 * For hole punching, we need to scoot all the
2717 				 * extents up when an extent is removed so that
2718 				 * we dont have blank extents in the middle
2719 				 */
2720 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2721 					sizeof(struct ext4_extent));
2722 
2723 				/* Now get rid of the one at the end */
2724 				memset(EXT_LAST_EXTENT(eh), 0,
2725 					sizeof(struct ext4_extent));
2726 			}
2727 			le16_add_cpu(&eh->eh_entries, -1);
2728 		} else if (*partial_cluster > 0)
2729 			*partial_cluster = 0;
2730 
2731 		err = ext4_ext_dirty(handle, inode, path + depth);
2732 		if (err)
2733 			goto out;
2734 
2735 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2736 				ext4_ext_pblock(ex));
2737 		ex--;
2738 		ex_ee_block = le32_to_cpu(ex->ee_block);
2739 		ex_ee_len = ext4_ext_get_actual_len(ex);
2740 	}
2741 
2742 	if (correct_index && eh->eh_entries)
2743 		err = ext4_ext_correct_indexes(handle, inode, path);
2744 
2745 	/*
2746 	 * If there's a partial cluster and at least one extent remains in
2747 	 * the leaf, free the partial cluster if it isn't shared with the
2748 	 * current extent.  If there's a partial cluster and no extents
2749 	 * remain in the leaf, it can't be freed here.  It can only be
2750 	 * freed when it's possible to determine if it's not shared with
2751 	 * any other extent - when the next leaf is processed or when space
2752 	 * removal is complete.
2753 	 */
2754 	if (*partial_cluster > 0 && eh->eh_entries &&
2755 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2756 	     *partial_cluster)) {
2757 		int flags = get_default_free_blocks_flags(inode);
2758 
2759 		ext4_free_blocks(handle, inode, NULL,
2760 				 EXT4_C2B(sbi, *partial_cluster),
2761 				 sbi->s_cluster_ratio, flags);
2762 		*partial_cluster = 0;
2763 	}
2764 
2765 	/* if this leaf is free, then we should
2766 	 * remove it from index block above */
2767 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2768 		err = ext4_ext_rm_idx(handle, inode, path, depth);
2769 
2770 out:
2771 	return err;
2772 }
2773 
2774 /*
2775  * ext4_ext_more_to_rm:
2776  * returns 1 if current index has to be freed (even partial)
2777  */
2778 static int
2779 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2780 {
2781 	BUG_ON(path->p_idx == NULL);
2782 
2783 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2784 		return 0;
2785 
2786 	/*
2787 	 * if truncate on deeper level happened, it wasn't partial,
2788 	 * so we have to consider current index for truncation
2789 	 */
2790 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2791 		return 0;
2792 	return 1;
2793 }
2794 
2795 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2796 			  ext4_lblk_t end)
2797 {
2798 	struct super_block *sb = inode->i_sb;
2799 	int depth = ext_depth(inode);
2800 	struct ext4_ext_path *path = NULL;
2801 	long long partial_cluster = 0;
2802 	handle_t *handle;
2803 	int i = 0, err = 0;
2804 
2805 	ext_debug("truncate since %u to %u\n", start, end);
2806 
2807 	/* probably first extent we're gonna free will be last in block */
2808 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2809 	if (IS_ERR(handle))
2810 		return PTR_ERR(handle);
2811 
2812 again:
2813 	trace_ext4_ext_remove_space(inode, start, end, depth);
2814 
2815 	/*
2816 	 * Check if we are removing extents inside the extent tree. If that
2817 	 * is the case, we are going to punch a hole inside the extent tree
2818 	 * so we have to check whether we need to split the extent covering
2819 	 * the last block to remove so we can easily remove the part of it
2820 	 * in ext4_ext_rm_leaf().
2821 	 */
2822 	if (end < EXT_MAX_BLOCKS - 1) {
2823 		struct ext4_extent *ex;
2824 		ext4_lblk_t ee_block;
2825 
2826 		/* find extent for this block */
2827 		path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2828 		if (IS_ERR(path)) {
2829 			ext4_journal_stop(handle);
2830 			return PTR_ERR(path);
2831 		}
2832 		depth = ext_depth(inode);
2833 		/* Leaf not may not exist only if inode has no blocks at all */
2834 		ex = path[depth].p_ext;
2835 		if (!ex) {
2836 			if (depth) {
2837 				EXT4_ERROR_INODE(inode,
2838 						 "path[%d].p_hdr == NULL",
2839 						 depth);
2840 				err = -EIO;
2841 			}
2842 			goto out;
2843 		}
2844 
2845 		ee_block = le32_to_cpu(ex->ee_block);
2846 
2847 		/*
2848 		 * See if the last block is inside the extent, if so split
2849 		 * the extent at 'end' block so we can easily remove the
2850 		 * tail of the first part of the split extent in
2851 		 * ext4_ext_rm_leaf().
2852 		 */
2853 		if (end >= ee_block &&
2854 		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2855 			int split_flag = 0;
2856 
2857 			if (ext4_ext_is_uninitialized(ex))
2858 				split_flag = EXT4_EXT_MARK_UNINIT1 |
2859 					     EXT4_EXT_MARK_UNINIT2;
2860 
2861 			/*
2862 			 * Split the extent in two so that 'end' is the last
2863 			 * block in the first new extent. Also we should not
2864 			 * fail removing space due to ENOSPC so try to use
2865 			 * reserved block if that happens.
2866 			 */
2867 			err = ext4_split_extent_at(handle, inode, path,
2868 					end + 1, split_flag,
2869 					EXT4_EX_NOCACHE |
2870 					EXT4_GET_BLOCKS_PRE_IO |
2871 					EXT4_GET_BLOCKS_METADATA_NOFAIL);
2872 
2873 			if (err < 0)
2874 				goto out;
2875 		}
2876 	}
2877 	/*
2878 	 * We start scanning from right side, freeing all the blocks
2879 	 * after i_size and walking into the tree depth-wise.
2880 	 */
2881 	depth = ext_depth(inode);
2882 	if (path) {
2883 		int k = i = depth;
2884 		while (--k > 0)
2885 			path[k].p_block =
2886 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2887 	} else {
2888 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2889 			       GFP_NOFS);
2890 		if (path == NULL) {
2891 			ext4_journal_stop(handle);
2892 			return -ENOMEM;
2893 		}
2894 		path[0].p_depth = depth;
2895 		path[0].p_hdr = ext_inode_hdr(inode);
2896 		i = 0;
2897 
2898 		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2899 			err = -EIO;
2900 			goto out;
2901 		}
2902 	}
2903 	err = 0;
2904 
2905 	while (i >= 0 && err == 0) {
2906 		if (i == depth) {
2907 			/* this is leaf block */
2908 			err = ext4_ext_rm_leaf(handle, inode, path,
2909 					       &partial_cluster, start,
2910 					       end);
2911 			/* root level has p_bh == NULL, brelse() eats this */
2912 			brelse(path[i].p_bh);
2913 			path[i].p_bh = NULL;
2914 			i--;
2915 			continue;
2916 		}
2917 
2918 		/* this is index block */
2919 		if (!path[i].p_hdr) {
2920 			ext_debug("initialize header\n");
2921 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2922 		}
2923 
2924 		if (!path[i].p_idx) {
2925 			/* this level hasn't been touched yet */
2926 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2927 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2928 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2929 				  path[i].p_hdr,
2930 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2931 		} else {
2932 			/* we were already here, see at next index */
2933 			path[i].p_idx--;
2934 		}
2935 
2936 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2937 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2938 				path[i].p_idx);
2939 		if (ext4_ext_more_to_rm(path + i)) {
2940 			struct buffer_head *bh;
2941 			/* go to the next level */
2942 			ext_debug("move to level %d (block %llu)\n",
2943 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2944 			memset(path + i + 1, 0, sizeof(*path));
2945 			bh = read_extent_tree_block(inode,
2946 				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2947 				EXT4_EX_NOCACHE);
2948 			if (IS_ERR(bh)) {
2949 				/* should we reset i_size? */
2950 				err = PTR_ERR(bh);
2951 				break;
2952 			}
2953 			/* Yield here to deal with large extent trees.
2954 			 * Should be a no-op if we did IO above. */
2955 			cond_resched();
2956 			if (WARN_ON(i + 1 > depth)) {
2957 				err = -EIO;
2958 				break;
2959 			}
2960 			path[i + 1].p_bh = bh;
2961 
2962 			/* save actual number of indexes since this
2963 			 * number is changed at the next iteration */
2964 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2965 			i++;
2966 		} else {
2967 			/* we finished processing this index, go up */
2968 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2969 				/* index is empty, remove it;
2970 				 * handle must be already prepared by the
2971 				 * truncatei_leaf() */
2972 				err = ext4_ext_rm_idx(handle, inode, path, i);
2973 			}
2974 			/* root level has p_bh == NULL, brelse() eats this */
2975 			brelse(path[i].p_bh);
2976 			path[i].p_bh = NULL;
2977 			i--;
2978 			ext_debug("return to level %d\n", i);
2979 		}
2980 	}
2981 
2982 	trace_ext4_ext_remove_space_done(inode, start, end, depth,
2983 			partial_cluster, path->p_hdr->eh_entries);
2984 
2985 	/* If we still have something in the partial cluster and we have removed
2986 	 * even the first extent, then we should free the blocks in the partial
2987 	 * cluster as well. */
2988 	if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2989 		int flags = get_default_free_blocks_flags(inode);
2990 
2991 		ext4_free_blocks(handle, inode, NULL,
2992 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2993 				 EXT4_SB(sb)->s_cluster_ratio, flags);
2994 		partial_cluster = 0;
2995 	}
2996 
2997 	/* TODO: flexible tree reduction should be here */
2998 	if (path->p_hdr->eh_entries == 0) {
2999 		/*
3000 		 * truncate to zero freed all the tree,
3001 		 * so we need to correct eh_depth
3002 		 */
3003 		err = ext4_ext_get_access(handle, inode, path);
3004 		if (err == 0) {
3005 			ext_inode_hdr(inode)->eh_depth = 0;
3006 			ext_inode_hdr(inode)->eh_max =
3007 				cpu_to_le16(ext4_ext_space_root(inode, 0));
3008 			err = ext4_ext_dirty(handle, inode, path);
3009 		}
3010 	}
3011 out:
3012 	ext4_ext_drop_refs(path);
3013 	kfree(path);
3014 	if (err == -EAGAIN) {
3015 		path = NULL;
3016 		goto again;
3017 	}
3018 	ext4_journal_stop(handle);
3019 
3020 	return err;
3021 }
3022 
3023 /*
3024  * called at mount time
3025  */
3026 void ext4_ext_init(struct super_block *sb)
3027 {
3028 	/*
3029 	 * possible initialization would be here
3030 	 */
3031 
3032 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
3033 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3034 		printk(KERN_INFO "EXT4-fs: file extents enabled"
3035 #ifdef AGGRESSIVE_TEST
3036 		       ", aggressive tests"
3037 #endif
3038 #ifdef CHECK_BINSEARCH
3039 		       ", check binsearch"
3040 #endif
3041 #ifdef EXTENTS_STATS
3042 		       ", stats"
3043 #endif
3044 		       "\n");
3045 #endif
3046 #ifdef EXTENTS_STATS
3047 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3048 		EXT4_SB(sb)->s_ext_min = 1 << 30;
3049 		EXT4_SB(sb)->s_ext_max = 0;
3050 #endif
3051 	}
3052 }
3053 
3054 /*
3055  * called at umount time
3056  */
3057 void ext4_ext_release(struct super_block *sb)
3058 {
3059 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3060 		return;
3061 
3062 #ifdef EXTENTS_STATS
3063 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3064 		struct ext4_sb_info *sbi = EXT4_SB(sb);
3065 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3066 			sbi->s_ext_blocks, sbi->s_ext_extents,
3067 			sbi->s_ext_blocks / sbi->s_ext_extents);
3068 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3069 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3070 	}
3071 #endif
3072 }
3073 
3074 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3075 {
3076 	ext4_lblk_t  ee_block;
3077 	ext4_fsblk_t ee_pblock;
3078 	unsigned int ee_len;
3079 
3080 	ee_block  = le32_to_cpu(ex->ee_block);
3081 	ee_len    = ext4_ext_get_actual_len(ex);
3082 	ee_pblock = ext4_ext_pblock(ex);
3083 
3084 	if (ee_len == 0)
3085 		return 0;
3086 
3087 	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3088 				     EXTENT_STATUS_WRITTEN);
3089 }
3090 
3091 /* FIXME!! we need to try to merge to left or right after zero-out  */
3092 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3093 {
3094 	ext4_fsblk_t ee_pblock;
3095 	unsigned int ee_len;
3096 	int ret;
3097 
3098 	ee_len    = ext4_ext_get_actual_len(ex);
3099 	ee_pblock = ext4_ext_pblock(ex);
3100 
3101 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3102 	if (ret > 0)
3103 		ret = 0;
3104 
3105 	return ret;
3106 }
3107 
3108 /*
3109  * ext4_split_extent_at() splits an extent at given block.
3110  *
3111  * @handle: the journal handle
3112  * @inode: the file inode
3113  * @path: the path to the extent
3114  * @split: the logical block where the extent is splitted.
3115  * @split_flags: indicates if the extent could be zeroout if split fails, and
3116  *		 the states(init or uninit) of new extents.
3117  * @flags: flags used to insert new extent to extent tree.
3118  *
3119  *
3120  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3121  * of which are deterimined by split_flag.
3122  *
3123  * There are two cases:
3124  *  a> the extent are splitted into two extent.
3125  *  b> split is not needed, and just mark the extent.
3126  *
3127  * return 0 on success.
3128  */
3129 static int ext4_split_extent_at(handle_t *handle,
3130 			     struct inode *inode,
3131 			     struct ext4_ext_path *path,
3132 			     ext4_lblk_t split,
3133 			     int split_flag,
3134 			     int flags)
3135 {
3136 	ext4_fsblk_t newblock;
3137 	ext4_lblk_t ee_block;
3138 	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3139 	struct ext4_extent *ex2 = NULL;
3140 	unsigned int ee_len, depth;
3141 	int err = 0;
3142 
3143 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3144 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3145 
3146 	ext_debug("ext4_split_extents_at: inode %lu, logical"
3147 		"block %llu\n", inode->i_ino, (unsigned long long)split);
3148 
3149 	ext4_ext_show_leaf(inode, path);
3150 
3151 	depth = ext_depth(inode);
3152 	ex = path[depth].p_ext;
3153 	ee_block = le32_to_cpu(ex->ee_block);
3154 	ee_len = ext4_ext_get_actual_len(ex);
3155 	newblock = split - ee_block + ext4_ext_pblock(ex);
3156 
3157 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3158 	BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3159 	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3160 			     EXT4_EXT_MARK_UNINIT1 |
3161 			     EXT4_EXT_MARK_UNINIT2));
3162 
3163 	err = ext4_ext_get_access(handle, inode, path + depth);
3164 	if (err)
3165 		goto out;
3166 
3167 	if (split == ee_block) {
3168 		/*
3169 		 * case b: block @split is the block that the extent begins with
3170 		 * then we just change the state of the extent, and splitting
3171 		 * is not needed.
3172 		 */
3173 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3174 			ext4_ext_mark_uninitialized(ex);
3175 		else
3176 			ext4_ext_mark_initialized(ex);
3177 
3178 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3179 			ext4_ext_try_to_merge(handle, inode, path, ex);
3180 
3181 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3182 		goto out;
3183 	}
3184 
3185 	/* case a */
3186 	memcpy(&orig_ex, ex, sizeof(orig_ex));
3187 	ex->ee_len = cpu_to_le16(split - ee_block);
3188 	if (split_flag & EXT4_EXT_MARK_UNINIT1)
3189 		ext4_ext_mark_uninitialized(ex);
3190 
3191 	/*
3192 	 * path may lead to new leaf, not to original leaf any more
3193 	 * after ext4_ext_insert_extent() returns,
3194 	 */
3195 	err = ext4_ext_dirty(handle, inode, path + depth);
3196 	if (err)
3197 		goto fix_extent_len;
3198 
3199 	ex2 = &newex;
3200 	ex2->ee_block = cpu_to_le32(split);
3201 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3202 	ext4_ext_store_pblock(ex2, newblock);
3203 	if (split_flag & EXT4_EXT_MARK_UNINIT2)
3204 		ext4_ext_mark_uninitialized(ex2);
3205 
3206 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3207 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3208 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3209 			if (split_flag & EXT4_EXT_DATA_VALID1) {
3210 				err = ext4_ext_zeroout(inode, ex2);
3211 				zero_ex.ee_block = ex2->ee_block;
3212 				zero_ex.ee_len = cpu_to_le16(
3213 						ext4_ext_get_actual_len(ex2));
3214 				ext4_ext_store_pblock(&zero_ex,
3215 						      ext4_ext_pblock(ex2));
3216 			} else {
3217 				err = ext4_ext_zeroout(inode, ex);
3218 				zero_ex.ee_block = ex->ee_block;
3219 				zero_ex.ee_len = cpu_to_le16(
3220 						ext4_ext_get_actual_len(ex));
3221 				ext4_ext_store_pblock(&zero_ex,
3222 						      ext4_ext_pblock(ex));
3223 			}
3224 		} else {
3225 			err = ext4_ext_zeroout(inode, &orig_ex);
3226 			zero_ex.ee_block = orig_ex.ee_block;
3227 			zero_ex.ee_len = cpu_to_le16(
3228 						ext4_ext_get_actual_len(&orig_ex));
3229 			ext4_ext_store_pblock(&zero_ex,
3230 					      ext4_ext_pblock(&orig_ex));
3231 		}
3232 
3233 		if (err)
3234 			goto fix_extent_len;
3235 		/* update the extent length and mark as initialized */
3236 		ex->ee_len = cpu_to_le16(ee_len);
3237 		ext4_ext_try_to_merge(handle, inode, path, ex);
3238 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3239 		if (err)
3240 			goto fix_extent_len;
3241 
3242 		/* update extent status tree */
3243 		err = ext4_zeroout_es(inode, &zero_ex);
3244 
3245 		goto out;
3246 	} else if (err)
3247 		goto fix_extent_len;
3248 
3249 out:
3250 	ext4_ext_show_leaf(inode, path);
3251 	return err;
3252 
3253 fix_extent_len:
3254 	ex->ee_len = orig_ex.ee_len;
3255 	ext4_ext_dirty(handle, inode, path + depth);
3256 	return err;
3257 }
3258 
3259 /*
3260  * ext4_split_extents() splits an extent and mark extent which is covered
3261  * by @map as split_flags indicates
3262  *
3263  * It may result in splitting the extent into multiple extents (up to three)
3264  * There are three possibilities:
3265  *   a> There is no split required
3266  *   b> Splits in two extents: Split is happening at either end of the extent
3267  *   c> Splits in three extents: Somone is splitting in middle of the extent
3268  *
3269  */
3270 static int ext4_split_extent(handle_t *handle,
3271 			      struct inode *inode,
3272 			      struct ext4_ext_path *path,
3273 			      struct ext4_map_blocks *map,
3274 			      int split_flag,
3275 			      int flags)
3276 {
3277 	ext4_lblk_t ee_block;
3278 	struct ext4_extent *ex;
3279 	unsigned int ee_len, depth;
3280 	int err = 0;
3281 	int uninitialized;
3282 	int split_flag1, flags1;
3283 	int allocated = map->m_len;
3284 
3285 	depth = ext_depth(inode);
3286 	ex = path[depth].p_ext;
3287 	ee_block = le32_to_cpu(ex->ee_block);
3288 	ee_len = ext4_ext_get_actual_len(ex);
3289 	uninitialized = ext4_ext_is_uninitialized(ex);
3290 
3291 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3292 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3293 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3294 		if (uninitialized)
3295 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3296 				       EXT4_EXT_MARK_UNINIT2;
3297 		if (split_flag & EXT4_EXT_DATA_VALID2)
3298 			split_flag1 |= EXT4_EXT_DATA_VALID1;
3299 		err = ext4_split_extent_at(handle, inode, path,
3300 				map->m_lblk + map->m_len, split_flag1, flags1);
3301 		if (err)
3302 			goto out;
3303 	} else {
3304 		allocated = ee_len - (map->m_lblk - ee_block);
3305 	}
3306 	/*
3307 	 * Update path is required because previous ext4_split_extent_at() may
3308 	 * result in split of original leaf or extent zeroout.
3309 	 */
3310 	ext4_ext_drop_refs(path);
3311 	path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3312 	if (IS_ERR(path))
3313 		return PTR_ERR(path);
3314 	depth = ext_depth(inode);
3315 	ex = path[depth].p_ext;
3316 	uninitialized = ext4_ext_is_uninitialized(ex);
3317 	split_flag1 = 0;
3318 
3319 	if (map->m_lblk >= ee_block) {
3320 		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3321 		if (uninitialized) {
3322 			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3323 			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3324 						     EXT4_EXT_MARK_UNINIT2);
3325 		}
3326 		err = ext4_split_extent_at(handle, inode, path,
3327 				map->m_lblk, split_flag1, flags);
3328 		if (err)
3329 			goto out;
3330 	}
3331 
3332 	ext4_ext_show_leaf(inode, path);
3333 out:
3334 	return err ? err : allocated;
3335 }
3336 
3337 /*
3338  * This function is called by ext4_ext_map_blocks() if someone tries to write
3339  * to an uninitialized extent. It may result in splitting the uninitialized
3340  * extent into multiple extents (up to three - one initialized and two
3341  * uninitialized).
3342  * There are three possibilities:
3343  *   a> There is no split required: Entire extent should be initialized
3344  *   b> Splits in two extents: Write is happening at either end of the extent
3345  *   c> Splits in three extents: Somone is writing in middle of the extent
3346  *
3347  * Pre-conditions:
3348  *  - The extent pointed to by 'path' is uninitialized.
3349  *  - The extent pointed to by 'path' contains a superset
3350  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3351  *
3352  * Post-conditions on success:
3353  *  - the returned value is the number of blocks beyond map->l_lblk
3354  *    that are allocated and initialized.
3355  *    It is guaranteed to be >= map->m_len.
3356  */
3357 static int ext4_ext_convert_to_initialized(handle_t *handle,
3358 					   struct inode *inode,
3359 					   struct ext4_map_blocks *map,
3360 					   struct ext4_ext_path *path,
3361 					   int flags)
3362 {
3363 	struct ext4_sb_info *sbi;
3364 	struct ext4_extent_header *eh;
3365 	struct ext4_map_blocks split_map;
3366 	struct ext4_extent zero_ex;
3367 	struct ext4_extent *ex, *abut_ex;
3368 	ext4_lblk_t ee_block, eof_block;
3369 	unsigned int ee_len, depth, map_len = map->m_len;
3370 	int allocated = 0, max_zeroout = 0;
3371 	int err = 0;
3372 	int split_flag = 0;
3373 
3374 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3375 		"block %llu, max_blocks %u\n", inode->i_ino,
3376 		(unsigned long long)map->m_lblk, map_len);
3377 
3378 	sbi = EXT4_SB(inode->i_sb);
3379 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3380 		inode->i_sb->s_blocksize_bits;
3381 	if (eof_block < map->m_lblk + map_len)
3382 		eof_block = map->m_lblk + map_len;
3383 
3384 	depth = ext_depth(inode);
3385 	eh = path[depth].p_hdr;
3386 	ex = path[depth].p_ext;
3387 	ee_block = le32_to_cpu(ex->ee_block);
3388 	ee_len = ext4_ext_get_actual_len(ex);
3389 	zero_ex.ee_len = 0;
3390 
3391 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3392 
3393 	/* Pre-conditions */
3394 	BUG_ON(!ext4_ext_is_uninitialized(ex));
3395 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3396 
3397 	/*
3398 	 * Attempt to transfer newly initialized blocks from the currently
3399 	 * uninitialized extent to its neighbor. This is much cheaper
3400 	 * than an insertion followed by a merge as those involve costly
3401 	 * memmove() calls. Transferring to the left is the common case in
3402 	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3403 	 * followed by append writes.
3404 	 *
3405 	 * Limitations of the current logic:
3406 	 *  - L1: we do not deal with writes covering the whole extent.
3407 	 *    This would require removing the extent if the transfer
3408 	 *    is possible.
3409 	 *  - L2: we only attempt to merge with an extent stored in the
3410 	 *    same extent tree node.
3411 	 */
3412 	if ((map->m_lblk == ee_block) &&
3413 		/* See if we can merge left */
3414 		(map_len < ee_len) &&		/*L1*/
3415 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3416 		ext4_lblk_t prev_lblk;
3417 		ext4_fsblk_t prev_pblk, ee_pblk;
3418 		unsigned int prev_len;
3419 
3420 		abut_ex = ex - 1;
3421 		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3422 		prev_len = ext4_ext_get_actual_len(abut_ex);
3423 		prev_pblk = ext4_ext_pblock(abut_ex);
3424 		ee_pblk = ext4_ext_pblock(ex);
3425 
3426 		/*
3427 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3428 		 * upon those conditions:
3429 		 * - C1: abut_ex is initialized,
3430 		 * - C2: abut_ex is logically abutting ex,
3431 		 * - C3: abut_ex is physically abutting ex,
3432 		 * - C4: abut_ex can receive the additional blocks without
3433 		 *   overflowing the (initialized) length limit.
3434 		 */
3435 		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3436 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3437 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3438 			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3439 			err = ext4_ext_get_access(handle, inode, path + depth);
3440 			if (err)
3441 				goto out;
3442 
3443 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3444 				map, ex, abut_ex);
3445 
3446 			/* Shift the start of ex by 'map_len' blocks */
3447 			ex->ee_block = cpu_to_le32(ee_block + map_len);
3448 			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3449 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3450 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3451 
3452 			/* Extend abut_ex by 'map_len' blocks */
3453 			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3454 
3455 			/* Result: number of initialized blocks past m_lblk */
3456 			allocated = map_len;
3457 		}
3458 	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3459 		   (map_len < ee_len) &&	/*L1*/
3460 		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3461 		/* See if we can merge right */
3462 		ext4_lblk_t next_lblk;
3463 		ext4_fsblk_t next_pblk, ee_pblk;
3464 		unsigned int next_len;
3465 
3466 		abut_ex = ex + 1;
3467 		next_lblk = le32_to_cpu(abut_ex->ee_block);
3468 		next_len = ext4_ext_get_actual_len(abut_ex);
3469 		next_pblk = ext4_ext_pblock(abut_ex);
3470 		ee_pblk = ext4_ext_pblock(ex);
3471 
3472 		/*
3473 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3474 		 * upon those conditions:
3475 		 * - C1: abut_ex is initialized,
3476 		 * - C2: abut_ex is logically abutting ex,
3477 		 * - C3: abut_ex is physically abutting ex,
3478 		 * - C4: abut_ex can receive the additional blocks without
3479 		 *   overflowing the (initialized) length limit.
3480 		 */
3481 		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3482 		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3483 		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3484 		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3485 			err = ext4_ext_get_access(handle, inode, path + depth);
3486 			if (err)
3487 				goto out;
3488 
3489 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3490 				map, ex, abut_ex);
3491 
3492 			/* Shift the start of abut_ex by 'map_len' blocks */
3493 			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3494 			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3495 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3496 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3497 
3498 			/* Extend abut_ex by 'map_len' blocks */
3499 			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3500 
3501 			/* Result: number of initialized blocks past m_lblk */
3502 			allocated = map_len;
3503 		}
3504 	}
3505 	if (allocated) {
3506 		/* Mark the block containing both extents as dirty */
3507 		ext4_ext_dirty(handle, inode, path + depth);
3508 
3509 		/* Update path to point to the right extent */
3510 		path[depth].p_ext = abut_ex;
3511 		goto out;
3512 	} else
3513 		allocated = ee_len - (map->m_lblk - ee_block);
3514 
3515 	WARN_ON(map->m_lblk < ee_block);
3516 	/*
3517 	 * It is safe to convert extent to initialized via explicit
3518 	 * zeroout only if extent is fully inside i_size or new_size.
3519 	 */
3520 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3521 
3522 	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3523 		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3524 			(inode->i_sb->s_blocksize_bits - 10);
3525 
3526 	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3527 	if (max_zeroout && (ee_len <= max_zeroout)) {
3528 		err = ext4_ext_zeroout(inode, ex);
3529 		if (err)
3530 			goto out;
3531 		zero_ex.ee_block = ex->ee_block;
3532 		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3533 		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3534 
3535 		err = ext4_ext_get_access(handle, inode, path + depth);
3536 		if (err)
3537 			goto out;
3538 		ext4_ext_mark_initialized(ex);
3539 		ext4_ext_try_to_merge(handle, inode, path, ex);
3540 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3541 		goto out;
3542 	}
3543 
3544 	/*
3545 	 * four cases:
3546 	 * 1. split the extent into three extents.
3547 	 * 2. split the extent into two extents, zeroout the first half.
3548 	 * 3. split the extent into two extents, zeroout the second half.
3549 	 * 4. split the extent into two extents with out zeroout.
3550 	 */
3551 	split_map.m_lblk = map->m_lblk;
3552 	split_map.m_len = map->m_len;
3553 
3554 	if (max_zeroout && (allocated > map->m_len)) {
3555 		if (allocated <= max_zeroout) {
3556 			/* case 3 */
3557 			zero_ex.ee_block =
3558 					 cpu_to_le32(map->m_lblk);
3559 			zero_ex.ee_len = cpu_to_le16(allocated);
3560 			ext4_ext_store_pblock(&zero_ex,
3561 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3562 			err = ext4_ext_zeroout(inode, &zero_ex);
3563 			if (err)
3564 				goto out;
3565 			split_map.m_lblk = map->m_lblk;
3566 			split_map.m_len = allocated;
3567 		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3568 			/* case 2 */
3569 			if (map->m_lblk != ee_block) {
3570 				zero_ex.ee_block = ex->ee_block;
3571 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3572 							ee_block);
3573 				ext4_ext_store_pblock(&zero_ex,
3574 						      ext4_ext_pblock(ex));
3575 				err = ext4_ext_zeroout(inode, &zero_ex);
3576 				if (err)
3577 					goto out;
3578 			}
3579 
3580 			split_map.m_lblk = ee_block;
3581 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3582 			allocated = map->m_len;
3583 		}
3584 	}
3585 
3586 	allocated = ext4_split_extent(handle, inode, path,
3587 				      &split_map, split_flag, flags);
3588 	if (allocated < 0)
3589 		err = allocated;
3590 
3591 out:
3592 	/* If we have gotten a failure, don't zero out status tree */
3593 	if (!err)
3594 		err = ext4_zeroout_es(inode, &zero_ex);
3595 	return err ? err : allocated;
3596 }
3597 
3598 /*
3599  * This function is called by ext4_ext_map_blocks() from
3600  * ext4_get_blocks_dio_write() when DIO to write
3601  * to an uninitialized extent.
3602  *
3603  * Writing to an uninitialized extent may result in splitting the uninitialized
3604  * extent into multiple initialized/uninitialized extents (up to three)
3605  * There are three possibilities:
3606  *   a> There is no split required: Entire extent should be uninitialized
3607  *   b> Splits in two extents: Write is happening at either end of the extent
3608  *   c> Splits in three extents: Somone is writing in middle of the extent
3609  *
3610  * This works the same way in the case of initialized -> unwritten conversion.
3611  *
3612  * One of more index blocks maybe needed if the extent tree grow after
3613  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3614  * complete, we need to split the uninitialized extent before DIO submit
3615  * the IO. The uninitialized extent called at this time will be split
3616  * into three uninitialized extent(at most). After IO complete, the part
3617  * being filled will be convert to initialized by the end_io callback function
3618  * via ext4_convert_unwritten_extents().
3619  *
3620  * Returns the size of uninitialized extent to be written on success.
3621  */
3622 static int ext4_split_convert_extents(handle_t *handle,
3623 					struct inode *inode,
3624 					struct ext4_map_blocks *map,
3625 					struct ext4_ext_path *path,
3626 					int flags)
3627 {
3628 	ext4_lblk_t eof_block;
3629 	ext4_lblk_t ee_block;
3630 	struct ext4_extent *ex;
3631 	unsigned int ee_len;
3632 	int split_flag = 0, depth;
3633 
3634 	ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3635 		  __func__, inode->i_ino,
3636 		  (unsigned long long)map->m_lblk, map->m_len);
3637 
3638 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3639 		inode->i_sb->s_blocksize_bits;
3640 	if (eof_block < map->m_lblk + map->m_len)
3641 		eof_block = map->m_lblk + map->m_len;
3642 	/*
3643 	 * It is safe to convert extent to initialized via explicit
3644 	 * zeroout only if extent is fully insde i_size or new_size.
3645 	 */
3646 	depth = ext_depth(inode);
3647 	ex = path[depth].p_ext;
3648 	ee_block = le32_to_cpu(ex->ee_block);
3649 	ee_len = ext4_ext_get_actual_len(ex);
3650 
3651 	/* Convert to unwritten */
3652 	if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3653 		split_flag |= EXT4_EXT_DATA_VALID1;
3654 	/* Convert to initialized */
3655 	} else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3656 		split_flag |= ee_block + ee_len <= eof_block ?
3657 			      EXT4_EXT_MAY_ZEROOUT : 0;
3658 		split_flag |= (EXT4_EXT_MARK_UNINIT2 | EXT4_EXT_DATA_VALID2);
3659 	}
3660 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3661 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3662 }
3663 
3664 static int ext4_convert_initialized_extents(handle_t *handle,
3665 					    struct inode *inode,
3666 					    struct ext4_map_blocks *map,
3667 					    struct ext4_ext_path *path)
3668 {
3669 	struct ext4_extent *ex;
3670 	ext4_lblk_t ee_block;
3671 	unsigned int ee_len;
3672 	int depth;
3673 	int err = 0;
3674 
3675 	depth = ext_depth(inode);
3676 	ex = path[depth].p_ext;
3677 	ee_block = le32_to_cpu(ex->ee_block);
3678 	ee_len = ext4_ext_get_actual_len(ex);
3679 
3680 	ext_debug("%s: inode %lu, logical"
3681 		"block %llu, max_blocks %u\n", __func__, inode->i_ino,
3682 		  (unsigned long long)ee_block, ee_len);
3683 
3684 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3685 		err = ext4_split_convert_extents(handle, inode, map, path,
3686 				EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3687 		if (err < 0)
3688 			goto out;
3689 		ext4_ext_drop_refs(path);
3690 		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3691 		if (IS_ERR(path)) {
3692 			err = PTR_ERR(path);
3693 			goto out;
3694 		}
3695 		depth = ext_depth(inode);
3696 		ex = path[depth].p_ext;
3697 	}
3698 
3699 	err = ext4_ext_get_access(handle, inode, path + depth);
3700 	if (err)
3701 		goto out;
3702 	/* first mark the extent as uninitialized */
3703 	ext4_ext_mark_uninitialized(ex);
3704 
3705 	/* note: ext4_ext_correct_indexes() isn't needed here because
3706 	 * borders are not changed
3707 	 */
3708 	ext4_ext_try_to_merge(handle, inode, path, ex);
3709 
3710 	/* Mark modified extent as dirty */
3711 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3712 out:
3713 	ext4_ext_show_leaf(inode, path);
3714 	return err;
3715 }
3716 
3717 
3718 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3719 						struct inode *inode,
3720 						struct ext4_map_blocks *map,
3721 						struct ext4_ext_path *path)
3722 {
3723 	struct ext4_extent *ex;
3724 	ext4_lblk_t ee_block;
3725 	unsigned int ee_len;
3726 	int depth;
3727 	int err = 0;
3728 
3729 	depth = ext_depth(inode);
3730 	ex = path[depth].p_ext;
3731 	ee_block = le32_to_cpu(ex->ee_block);
3732 	ee_len = ext4_ext_get_actual_len(ex);
3733 
3734 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3735 		"block %llu, max_blocks %u\n", inode->i_ino,
3736 		  (unsigned long long)ee_block, ee_len);
3737 
3738 	/* If extent is larger than requested it is a clear sign that we still
3739 	 * have some extent state machine issues left. So extent_split is still
3740 	 * required.
3741 	 * TODO: Once all related issues will be fixed this situation should be
3742 	 * illegal.
3743 	 */
3744 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3745 #ifdef EXT4_DEBUG
3746 		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3747 			     " len %u; IO logical block %llu, len %u\n",
3748 			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3749 			     (unsigned long long)map->m_lblk, map->m_len);
3750 #endif
3751 		err = ext4_split_convert_extents(handle, inode, map, path,
3752 						 EXT4_GET_BLOCKS_CONVERT);
3753 		if (err < 0)
3754 			goto out;
3755 		ext4_ext_drop_refs(path);
3756 		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3757 		if (IS_ERR(path)) {
3758 			err = PTR_ERR(path);
3759 			goto out;
3760 		}
3761 		depth = ext_depth(inode);
3762 		ex = path[depth].p_ext;
3763 	}
3764 
3765 	err = ext4_ext_get_access(handle, inode, path + depth);
3766 	if (err)
3767 		goto out;
3768 	/* first mark the extent as initialized */
3769 	ext4_ext_mark_initialized(ex);
3770 
3771 	/* note: ext4_ext_correct_indexes() isn't needed here because
3772 	 * borders are not changed
3773 	 */
3774 	ext4_ext_try_to_merge(handle, inode, path, ex);
3775 
3776 	/* Mark modified extent as dirty */
3777 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3778 out:
3779 	ext4_ext_show_leaf(inode, path);
3780 	return err;
3781 }
3782 
3783 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3784 			sector_t block, int count)
3785 {
3786 	int i;
3787 	for (i = 0; i < count; i++)
3788                 unmap_underlying_metadata(bdev, block + i);
3789 }
3790 
3791 /*
3792  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3793  */
3794 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3795 			      ext4_lblk_t lblk,
3796 			      struct ext4_ext_path *path,
3797 			      unsigned int len)
3798 {
3799 	int i, depth;
3800 	struct ext4_extent_header *eh;
3801 	struct ext4_extent *last_ex;
3802 
3803 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3804 		return 0;
3805 
3806 	depth = ext_depth(inode);
3807 	eh = path[depth].p_hdr;
3808 
3809 	/*
3810 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3811 	 * do not care for this case anymore. Simply remove the flag
3812 	 * if there are no extents.
3813 	 */
3814 	if (unlikely(!eh->eh_entries))
3815 		goto out;
3816 	last_ex = EXT_LAST_EXTENT(eh);
3817 	/*
3818 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3819 	 * last block in the last extent in the file.  We test this by
3820 	 * first checking to see if the caller to
3821 	 * ext4_ext_get_blocks() was interested in the last block (or
3822 	 * a block beyond the last block) in the current extent.  If
3823 	 * this turns out to be false, we can bail out from this
3824 	 * function immediately.
3825 	 */
3826 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3827 	    ext4_ext_get_actual_len(last_ex))
3828 		return 0;
3829 	/*
3830 	 * If the caller does appear to be planning to write at or
3831 	 * beyond the end of the current extent, we then test to see
3832 	 * if the current extent is the last extent in the file, by
3833 	 * checking to make sure it was reached via the rightmost node
3834 	 * at each level of the tree.
3835 	 */
3836 	for (i = depth-1; i >= 0; i--)
3837 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3838 			return 0;
3839 out:
3840 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3841 	return ext4_mark_inode_dirty(handle, inode);
3842 }
3843 
3844 /**
3845  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3846  *
3847  * Return 1 if there is a delalloc block in the range, otherwise 0.
3848  */
3849 int ext4_find_delalloc_range(struct inode *inode,
3850 			     ext4_lblk_t lblk_start,
3851 			     ext4_lblk_t lblk_end)
3852 {
3853 	struct extent_status es;
3854 
3855 	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3856 	if (es.es_len == 0)
3857 		return 0; /* there is no delay extent in this tree */
3858 	else if (es.es_lblk <= lblk_start &&
3859 		 lblk_start < es.es_lblk + es.es_len)
3860 		return 1;
3861 	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3862 		return 1;
3863 	else
3864 		return 0;
3865 }
3866 
3867 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3868 {
3869 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3870 	ext4_lblk_t lblk_start, lblk_end;
3871 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3872 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3873 
3874 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3875 }
3876 
3877 /**
3878  * Determines how many complete clusters (out of those specified by the 'map')
3879  * are under delalloc and were reserved quota for.
3880  * This function is called when we are writing out the blocks that were
3881  * originally written with their allocation delayed, but then the space was
3882  * allocated using fallocate() before the delayed allocation could be resolved.
3883  * The cases to look for are:
3884  * ('=' indicated delayed allocated blocks
3885  *  '-' indicates non-delayed allocated blocks)
3886  * (a) partial clusters towards beginning and/or end outside of allocated range
3887  *     are not delalloc'ed.
3888  *	Ex:
3889  *	|----c---=|====c====|====c====|===-c----|
3890  *	         |++++++ allocated ++++++|
3891  *	==> 4 complete clusters in above example
3892  *
3893  * (b) partial cluster (outside of allocated range) towards either end is
3894  *     marked for delayed allocation. In this case, we will exclude that
3895  *     cluster.
3896  *	Ex:
3897  *	|----====c========|========c========|
3898  *	     |++++++ allocated ++++++|
3899  *	==> 1 complete clusters in above example
3900  *
3901  *	Ex:
3902  *	|================c================|
3903  *            |++++++ allocated ++++++|
3904  *	==> 0 complete clusters in above example
3905  *
3906  * The ext4_da_update_reserve_space will be called only if we
3907  * determine here that there were some "entire" clusters that span
3908  * this 'allocated' range.
3909  * In the non-bigalloc case, this function will just end up returning num_blks
3910  * without ever calling ext4_find_delalloc_range.
3911  */
3912 static unsigned int
3913 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3914 			   unsigned int num_blks)
3915 {
3916 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3917 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3918 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3919 	unsigned int allocated_clusters = 0;
3920 
3921 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3922 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3923 
3924 	/* max possible clusters for this allocation */
3925 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3926 
3927 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3928 
3929 	/* Check towards left side */
3930 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3931 	if (c_offset) {
3932 		lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3933 		lblk_to = lblk_from + c_offset - 1;
3934 
3935 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3936 			allocated_clusters--;
3937 	}
3938 
3939 	/* Now check towards right. */
3940 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3941 	if (allocated_clusters && c_offset) {
3942 		lblk_from = lblk_start + num_blks;
3943 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3944 
3945 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3946 			allocated_clusters--;
3947 	}
3948 
3949 	return allocated_clusters;
3950 }
3951 
3952 static int
3953 ext4_ext_convert_initialized_extent(handle_t *handle, struct inode *inode,
3954 			struct ext4_map_blocks *map,
3955 			struct ext4_ext_path *path, int flags,
3956 			unsigned int allocated, ext4_fsblk_t newblock)
3957 {
3958 	int ret = 0;
3959 	int err = 0;
3960 
3961 	/*
3962 	 * Make sure that the extent is no bigger than we support with
3963 	 * uninitialized extent
3964 	 */
3965 	if (map->m_len > EXT_UNINIT_MAX_LEN)
3966 		map->m_len = EXT_UNINIT_MAX_LEN / 2;
3967 
3968 	ret = ext4_convert_initialized_extents(handle, inode, map,
3969 						path);
3970 	if (ret >= 0) {
3971 		ext4_update_inode_fsync_trans(handle, inode, 1);
3972 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
3973 					 path, map->m_len);
3974 	} else
3975 		err = ret;
3976 	map->m_flags |= EXT4_MAP_UNWRITTEN;
3977 	if (allocated > map->m_len)
3978 		allocated = map->m_len;
3979 	map->m_len = allocated;
3980 
3981 	return err ? err : allocated;
3982 }
3983 
3984 static int
3985 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3986 			struct ext4_map_blocks *map,
3987 			struct ext4_ext_path *path, int flags,
3988 			unsigned int allocated, ext4_fsblk_t newblock)
3989 {
3990 	int ret = 0;
3991 	int err = 0;
3992 	ext4_io_end_t *io = ext4_inode_aio(inode);
3993 
3994 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3995 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3996 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3997 		  flags, allocated);
3998 	ext4_ext_show_leaf(inode, path);
3999 
4000 	/*
4001 	 * When writing into uninitialized space, we should not fail to
4002 	 * allocate metadata blocks for the new extent block if needed.
4003 	 */
4004 	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4005 
4006 	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
4007 						    allocated, newblock);
4008 
4009 	/* get_block() before submit the IO, split the extent */
4010 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4011 		ret = ext4_split_convert_extents(handle, inode, map,
4012 					 path, flags | EXT4_GET_BLOCKS_CONVERT);
4013 		if (ret <= 0)
4014 			goto out;
4015 		/*
4016 		 * Flag the inode(non aio case) or end_io struct (aio case)
4017 		 * that this IO needs to conversion to written when IO is
4018 		 * completed
4019 		 */
4020 		if (io)
4021 			ext4_set_io_unwritten_flag(inode, io);
4022 		else
4023 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4024 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4025 		if (ext4_should_dioread_nolock(inode))
4026 			map->m_flags |= EXT4_MAP_UNINIT;
4027 		goto out;
4028 	}
4029 	/* IO end_io complete, convert the filled extent to written */
4030 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
4031 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4032 							path);
4033 		if (ret >= 0) {
4034 			ext4_update_inode_fsync_trans(handle, inode, 1);
4035 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
4036 						 path, map->m_len);
4037 		} else
4038 			err = ret;
4039 		map->m_flags |= EXT4_MAP_MAPPED;
4040 		map->m_pblk = newblock;
4041 		if (allocated > map->m_len)
4042 			allocated = map->m_len;
4043 		map->m_len = allocated;
4044 		goto out2;
4045 	}
4046 	/* buffered IO case */
4047 	/*
4048 	 * repeat fallocate creation request
4049 	 * we already have an unwritten extent
4050 	 */
4051 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
4052 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4053 		goto map_out;
4054 	}
4055 
4056 	/* buffered READ or buffered write_begin() lookup */
4057 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4058 		/*
4059 		 * We have blocks reserved already.  We
4060 		 * return allocated blocks so that delalloc
4061 		 * won't do block reservation for us.  But
4062 		 * the buffer head will be unmapped so that
4063 		 * a read from the block returns 0s.
4064 		 */
4065 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4066 		goto out1;
4067 	}
4068 
4069 	/* buffered write, writepage time, convert*/
4070 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
4071 	if (ret >= 0)
4072 		ext4_update_inode_fsync_trans(handle, inode, 1);
4073 out:
4074 	if (ret <= 0) {
4075 		err = ret;
4076 		goto out2;
4077 	} else
4078 		allocated = ret;
4079 	map->m_flags |= EXT4_MAP_NEW;
4080 	/*
4081 	 * if we allocated more blocks than requested
4082 	 * we need to make sure we unmap the extra block
4083 	 * allocated. The actual needed block will get
4084 	 * unmapped later when we find the buffer_head marked
4085 	 * new.
4086 	 */
4087 	if (allocated > map->m_len) {
4088 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
4089 					newblock + map->m_len,
4090 					allocated - map->m_len);
4091 		allocated = map->m_len;
4092 	}
4093 	map->m_len = allocated;
4094 
4095 	/*
4096 	 * If we have done fallocate with the offset that is already
4097 	 * delayed allocated, we would have block reservation
4098 	 * and quota reservation done in the delayed write path.
4099 	 * But fallocate would have already updated quota and block
4100 	 * count for this offset. So cancel these reservation
4101 	 */
4102 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4103 		unsigned int reserved_clusters;
4104 		reserved_clusters = get_reserved_cluster_alloc(inode,
4105 				map->m_lblk, map->m_len);
4106 		if (reserved_clusters)
4107 			ext4_da_update_reserve_space(inode,
4108 						     reserved_clusters,
4109 						     0);
4110 	}
4111 
4112 map_out:
4113 	map->m_flags |= EXT4_MAP_MAPPED;
4114 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4115 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4116 					 map->m_len);
4117 		if (err < 0)
4118 			goto out2;
4119 	}
4120 out1:
4121 	if (allocated > map->m_len)
4122 		allocated = map->m_len;
4123 	ext4_ext_show_leaf(inode, path);
4124 	map->m_pblk = newblock;
4125 	map->m_len = allocated;
4126 out2:
4127 	return err ? err : allocated;
4128 }
4129 
4130 /*
4131  * get_implied_cluster_alloc - check to see if the requested
4132  * allocation (in the map structure) overlaps with a cluster already
4133  * allocated in an extent.
4134  *	@sb	The filesystem superblock structure
4135  *	@map	The requested lblk->pblk mapping
4136  *	@ex	The extent structure which might contain an implied
4137  *			cluster allocation
4138  *
4139  * This function is called by ext4_ext_map_blocks() after we failed to
4140  * find blocks that were already in the inode's extent tree.  Hence,
4141  * we know that the beginning of the requested region cannot overlap
4142  * the extent from the inode's extent tree.  There are three cases we
4143  * want to catch.  The first is this case:
4144  *
4145  *		 |--- cluster # N--|
4146  *    |--- extent ---|	|---- requested region ---|
4147  *			|==========|
4148  *
4149  * The second case that we need to test for is this one:
4150  *
4151  *   |--------- cluster # N ----------------|
4152  *	   |--- requested region --|   |------- extent ----|
4153  *	   |=======================|
4154  *
4155  * The third case is when the requested region lies between two extents
4156  * within the same cluster:
4157  *          |------------- cluster # N-------------|
4158  * |----- ex -----|                  |---- ex_right ----|
4159  *                  |------ requested region ------|
4160  *                  |================|
4161  *
4162  * In each of the above cases, we need to set the map->m_pblk and
4163  * map->m_len so it corresponds to the return the extent labelled as
4164  * "|====|" from cluster #N, since it is already in use for data in
4165  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4166  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4167  * as a new "allocated" block region.  Otherwise, we will return 0 and
4168  * ext4_ext_map_blocks() will then allocate one or more new clusters
4169  * by calling ext4_mb_new_blocks().
4170  */
4171 static int get_implied_cluster_alloc(struct super_block *sb,
4172 				     struct ext4_map_blocks *map,
4173 				     struct ext4_extent *ex,
4174 				     struct ext4_ext_path *path)
4175 {
4176 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4177 	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4178 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4179 	ext4_lblk_t rr_cluster_start;
4180 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4181 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4182 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4183 
4184 	/* The extent passed in that we are trying to match */
4185 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4186 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4187 
4188 	/* The requested region passed into ext4_map_blocks() */
4189 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4190 
4191 	if ((rr_cluster_start == ex_cluster_end) ||
4192 	    (rr_cluster_start == ex_cluster_start)) {
4193 		if (rr_cluster_start == ex_cluster_end)
4194 			ee_start += ee_len - 1;
4195 		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4196 		map->m_len = min(map->m_len,
4197 				 (unsigned) sbi->s_cluster_ratio - c_offset);
4198 		/*
4199 		 * Check for and handle this case:
4200 		 *
4201 		 *   |--------- cluster # N-------------|
4202 		 *		       |------- extent ----|
4203 		 *	   |--- requested region ---|
4204 		 *	   |===========|
4205 		 */
4206 
4207 		if (map->m_lblk < ee_block)
4208 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4209 
4210 		/*
4211 		 * Check for the case where there is already another allocated
4212 		 * block to the right of 'ex' but before the end of the cluster.
4213 		 *
4214 		 *          |------------- cluster # N-------------|
4215 		 * |----- ex -----|                  |---- ex_right ----|
4216 		 *                  |------ requested region ------|
4217 		 *                  |================|
4218 		 */
4219 		if (map->m_lblk > ee_block) {
4220 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4221 			map->m_len = min(map->m_len, next - map->m_lblk);
4222 		}
4223 
4224 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4225 		return 1;
4226 	}
4227 
4228 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4229 	return 0;
4230 }
4231 
4232 
4233 /*
4234  * Block allocation/map/preallocation routine for extents based files
4235  *
4236  *
4237  * Need to be called with
4238  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4239  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4240  *
4241  * return > 0, number of of blocks already mapped/allocated
4242  *          if create == 0 and these are pre-allocated blocks
4243  *          	buffer head is unmapped
4244  *          otherwise blocks are mapped
4245  *
4246  * return = 0, if plain look up failed (blocks have not been allocated)
4247  *          buffer head is unmapped
4248  *
4249  * return < 0, error case.
4250  */
4251 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4252 			struct ext4_map_blocks *map, int flags)
4253 {
4254 	struct ext4_ext_path *path = NULL;
4255 	struct ext4_extent newex, *ex, *ex2;
4256 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4257 	ext4_fsblk_t newblock = 0;
4258 	int free_on_err = 0, err = 0, depth, ret;
4259 	unsigned int allocated = 0, offset = 0;
4260 	unsigned int allocated_clusters = 0;
4261 	struct ext4_allocation_request ar;
4262 	ext4_io_end_t *io = ext4_inode_aio(inode);
4263 	ext4_lblk_t cluster_offset;
4264 	int set_unwritten = 0;
4265 
4266 	ext_debug("blocks %u/%u requested for inode %lu\n",
4267 		  map->m_lblk, map->m_len, inode->i_ino);
4268 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4269 
4270 	/* find extent for this block */
4271 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4272 	if (IS_ERR(path)) {
4273 		err = PTR_ERR(path);
4274 		path = NULL;
4275 		goto out2;
4276 	}
4277 
4278 	depth = ext_depth(inode);
4279 
4280 	/*
4281 	 * consistent leaf must not be empty;
4282 	 * this situation is possible, though, _during_ tree modification;
4283 	 * this is why assert can't be put in ext4_ext_find_extent()
4284 	 */
4285 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4286 		EXT4_ERROR_INODE(inode, "bad extent address "
4287 				 "lblock: %lu, depth: %d pblock %lld",
4288 				 (unsigned long) map->m_lblk, depth,
4289 				 path[depth].p_block);
4290 		err = -EIO;
4291 		goto out2;
4292 	}
4293 
4294 	ex = path[depth].p_ext;
4295 	if (ex) {
4296 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4297 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4298 		unsigned short ee_len;
4299 
4300 
4301 		/*
4302 		 * Uninitialized extents are treated as holes, except that
4303 		 * we split out initialized portions during a write.
4304 		 */
4305 		ee_len = ext4_ext_get_actual_len(ex);
4306 
4307 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4308 
4309 		/* if found extent covers block, simply return it */
4310 		if (in_range(map->m_lblk, ee_block, ee_len)) {
4311 			newblock = map->m_lblk - ee_block + ee_start;
4312 			/* number of remaining blocks in the extent */
4313 			allocated = ee_len - (map->m_lblk - ee_block);
4314 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4315 				  ee_block, ee_len, newblock);
4316 
4317 			/*
4318 			 * If the extent is initialized check whether the
4319 			 * caller wants to convert it to unwritten.
4320 			 */
4321 			if ((!ext4_ext_is_uninitialized(ex)) &&
4322 			    (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4323 				allocated = ext4_ext_convert_initialized_extent(
4324 						handle, inode, map, path, flags,
4325 						allocated, newblock);
4326 				goto out2;
4327 			} else if (!ext4_ext_is_uninitialized(ex))
4328 				goto out;
4329 
4330 			ret = ext4_ext_handle_uninitialized_extents(
4331 				handle, inode, map, path, flags,
4332 				allocated, newblock);
4333 			if (ret < 0)
4334 				err = ret;
4335 			else
4336 				allocated = ret;
4337 			goto out2;
4338 		}
4339 	}
4340 
4341 	if ((sbi->s_cluster_ratio > 1) &&
4342 	    ext4_find_delalloc_cluster(inode, map->m_lblk))
4343 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4344 
4345 	/*
4346 	 * requested block isn't allocated yet;
4347 	 * we couldn't try to create block if create flag is zero
4348 	 */
4349 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4350 		/*
4351 		 * put just found gap into cache to speed up
4352 		 * subsequent requests
4353 		 */
4354 		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4355 			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4356 		goto out2;
4357 	}
4358 
4359 	/*
4360 	 * Okay, we need to do block allocation.
4361 	 */
4362 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4363 	newex.ee_block = cpu_to_le32(map->m_lblk);
4364 	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4365 
4366 	/*
4367 	 * If we are doing bigalloc, check to see if the extent returned
4368 	 * by ext4_ext_find_extent() implies a cluster we can use.
4369 	 */
4370 	if (cluster_offset && ex &&
4371 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4372 		ar.len = allocated = map->m_len;
4373 		newblock = map->m_pblk;
4374 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4375 		goto got_allocated_blocks;
4376 	}
4377 
4378 	/* find neighbour allocated blocks */
4379 	ar.lleft = map->m_lblk;
4380 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4381 	if (err)
4382 		goto out2;
4383 	ar.lright = map->m_lblk;
4384 	ex2 = NULL;
4385 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4386 	if (err)
4387 		goto out2;
4388 
4389 	/* Check if the extent after searching to the right implies a
4390 	 * cluster we can use. */
4391 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4392 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4393 		ar.len = allocated = map->m_len;
4394 		newblock = map->m_pblk;
4395 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4396 		goto got_allocated_blocks;
4397 	}
4398 
4399 	/*
4400 	 * See if request is beyond maximum number of blocks we can have in
4401 	 * a single extent. For an initialized extent this limit is
4402 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4403 	 * EXT_UNINIT_MAX_LEN.
4404 	 */
4405 	if (map->m_len > EXT_INIT_MAX_LEN &&
4406 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4407 		map->m_len = EXT_INIT_MAX_LEN;
4408 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4409 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4410 		map->m_len = EXT_UNINIT_MAX_LEN;
4411 
4412 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4413 	newex.ee_len = cpu_to_le16(map->m_len);
4414 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4415 	if (err)
4416 		allocated = ext4_ext_get_actual_len(&newex);
4417 	else
4418 		allocated = map->m_len;
4419 
4420 	/* allocate new block */
4421 	ar.inode = inode;
4422 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4423 	ar.logical = map->m_lblk;
4424 	/*
4425 	 * We calculate the offset from the beginning of the cluster
4426 	 * for the logical block number, since when we allocate a
4427 	 * physical cluster, the physical block should start at the
4428 	 * same offset from the beginning of the cluster.  This is
4429 	 * needed so that future calls to get_implied_cluster_alloc()
4430 	 * work correctly.
4431 	 */
4432 	offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4433 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4434 	ar.goal -= offset;
4435 	ar.logical -= offset;
4436 	if (S_ISREG(inode->i_mode))
4437 		ar.flags = EXT4_MB_HINT_DATA;
4438 	else
4439 		/* disable in-core preallocation for non-regular files */
4440 		ar.flags = 0;
4441 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4442 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4443 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4444 	if (!newblock)
4445 		goto out2;
4446 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4447 		  ar.goal, newblock, allocated);
4448 	free_on_err = 1;
4449 	allocated_clusters = ar.len;
4450 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4451 	if (ar.len > allocated)
4452 		ar.len = allocated;
4453 
4454 got_allocated_blocks:
4455 	/* try to insert new extent into found leaf and return */
4456 	ext4_ext_store_pblock(&newex, newblock + offset);
4457 	newex.ee_len = cpu_to_le16(ar.len);
4458 	/* Mark uninitialized */
4459 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4460 		ext4_ext_mark_uninitialized(&newex);
4461 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4462 		/*
4463 		 * io_end structure was created for every IO write to an
4464 		 * uninitialized extent. To avoid unnecessary conversion,
4465 		 * here we flag the IO that really needs the conversion.
4466 		 * For non asycn direct IO case, flag the inode state
4467 		 * that we need to perform conversion when IO is done.
4468 		 */
4469 		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4470 			set_unwritten = 1;
4471 		if (ext4_should_dioread_nolock(inode))
4472 			map->m_flags |= EXT4_MAP_UNINIT;
4473 	}
4474 
4475 	err = 0;
4476 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4477 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4478 					 path, ar.len);
4479 	if (!err)
4480 		err = ext4_ext_insert_extent(handle, inode, path,
4481 					     &newex, flags);
4482 
4483 	if (!err && set_unwritten) {
4484 		if (io)
4485 			ext4_set_io_unwritten_flag(inode, io);
4486 		else
4487 			ext4_set_inode_state(inode,
4488 					     EXT4_STATE_DIO_UNWRITTEN);
4489 	}
4490 
4491 	if (err && free_on_err) {
4492 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4493 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4494 		/* free data blocks we just allocated */
4495 		/* not a good idea to call discard here directly,
4496 		 * but otherwise we'd need to call it every free() */
4497 		ext4_discard_preallocations(inode);
4498 		ext4_free_blocks(handle, inode, NULL, newblock,
4499 				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4500 		goto out2;
4501 	}
4502 
4503 	/* previous routine could use block we allocated */
4504 	newblock = ext4_ext_pblock(&newex);
4505 	allocated = ext4_ext_get_actual_len(&newex);
4506 	if (allocated > map->m_len)
4507 		allocated = map->m_len;
4508 	map->m_flags |= EXT4_MAP_NEW;
4509 
4510 	/*
4511 	 * Update reserved blocks/metadata blocks after successful
4512 	 * block allocation which had been deferred till now.
4513 	 */
4514 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4515 		unsigned int reserved_clusters;
4516 		/*
4517 		 * Check how many clusters we had reserved this allocated range
4518 		 */
4519 		reserved_clusters = get_reserved_cluster_alloc(inode,
4520 						map->m_lblk, allocated);
4521 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4522 			if (reserved_clusters) {
4523 				/*
4524 				 * We have clusters reserved for this range.
4525 				 * But since we are not doing actual allocation
4526 				 * and are simply using blocks from previously
4527 				 * allocated cluster, we should release the
4528 				 * reservation and not claim quota.
4529 				 */
4530 				ext4_da_update_reserve_space(inode,
4531 						reserved_clusters, 0);
4532 			}
4533 		} else {
4534 			BUG_ON(allocated_clusters < reserved_clusters);
4535 			if (reserved_clusters < allocated_clusters) {
4536 				struct ext4_inode_info *ei = EXT4_I(inode);
4537 				int reservation = allocated_clusters -
4538 						  reserved_clusters;
4539 				/*
4540 				 * It seems we claimed few clusters outside of
4541 				 * the range of this allocation. We should give
4542 				 * it back to the reservation pool. This can
4543 				 * happen in the following case:
4544 				 *
4545 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4546 				 *   cluster has 4 blocks. Thus, the clusters
4547 				 *   are [0-3],[4-7],[8-11]...
4548 				 * * First comes delayed allocation write for
4549 				 *   logical blocks 10 & 11. Since there were no
4550 				 *   previous delayed allocated blocks in the
4551 				 *   range [8-11], we would reserve 1 cluster
4552 				 *   for this write.
4553 				 * * Next comes write for logical blocks 3 to 8.
4554 				 *   In this case, we will reserve 2 clusters
4555 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4556 				 *   that range has a delayed allocated blocks.
4557 				 *   Thus total reserved clusters now becomes 3.
4558 				 * * Now, during the delayed allocation writeout
4559 				 *   time, we will first write blocks [3-8] and
4560 				 *   allocate 3 clusters for writing these
4561 				 *   blocks. Also, we would claim all these
4562 				 *   three clusters above.
4563 				 * * Now when we come here to writeout the
4564 				 *   blocks [10-11], we would expect to claim
4565 				 *   the reservation of 1 cluster we had made
4566 				 *   (and we would claim it since there are no
4567 				 *   more delayed allocated blocks in the range
4568 				 *   [8-11]. But our reserved cluster count had
4569 				 *   already gone to 0.
4570 				 *
4571 				 *   Thus, at the step 4 above when we determine
4572 				 *   that there are still some unwritten delayed
4573 				 *   allocated blocks outside of our current
4574 				 *   block range, we should increment the
4575 				 *   reserved clusters count so that when the
4576 				 *   remaining blocks finally gets written, we
4577 				 *   could claim them.
4578 				 */
4579 				dquot_reserve_block(inode,
4580 						EXT4_C2B(sbi, reservation));
4581 				spin_lock(&ei->i_block_reservation_lock);
4582 				ei->i_reserved_data_blocks += reservation;
4583 				spin_unlock(&ei->i_block_reservation_lock);
4584 			}
4585 			/*
4586 			 * We will claim quota for all newly allocated blocks.
4587 			 * We're updating the reserved space *after* the
4588 			 * correction above so we do not accidentally free
4589 			 * all the metadata reservation because we might
4590 			 * actually need it later on.
4591 			 */
4592 			ext4_da_update_reserve_space(inode, allocated_clusters,
4593 							1);
4594 		}
4595 	}
4596 
4597 	/*
4598 	 * Cache the extent and update transaction to commit on fdatasync only
4599 	 * when it is _not_ an uninitialized extent.
4600 	 */
4601 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4602 		ext4_update_inode_fsync_trans(handle, inode, 1);
4603 	else
4604 		ext4_update_inode_fsync_trans(handle, inode, 0);
4605 out:
4606 	if (allocated > map->m_len)
4607 		allocated = map->m_len;
4608 	ext4_ext_show_leaf(inode, path);
4609 	map->m_flags |= EXT4_MAP_MAPPED;
4610 	map->m_pblk = newblock;
4611 	map->m_len = allocated;
4612 out2:
4613 	if (path) {
4614 		ext4_ext_drop_refs(path);
4615 		kfree(path);
4616 	}
4617 
4618 	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4619 				       err ? err : allocated);
4620 	ext4_es_lru_add(inode);
4621 	return err ? err : allocated;
4622 }
4623 
4624 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4625 {
4626 	struct super_block *sb = inode->i_sb;
4627 	ext4_lblk_t last_block;
4628 	int err = 0;
4629 
4630 	/*
4631 	 * TODO: optimization is possible here.
4632 	 * Probably we need not scan at all,
4633 	 * because page truncation is enough.
4634 	 */
4635 
4636 	/* we have to know where to truncate from in crash case */
4637 	EXT4_I(inode)->i_disksize = inode->i_size;
4638 	ext4_mark_inode_dirty(handle, inode);
4639 
4640 	last_block = (inode->i_size + sb->s_blocksize - 1)
4641 			>> EXT4_BLOCK_SIZE_BITS(sb);
4642 retry:
4643 	err = ext4_es_remove_extent(inode, last_block,
4644 				    EXT_MAX_BLOCKS - last_block);
4645 	if (err == -ENOMEM) {
4646 		cond_resched();
4647 		congestion_wait(BLK_RW_ASYNC, HZ/50);
4648 		goto retry;
4649 	}
4650 	if (err) {
4651 		ext4_std_error(inode->i_sb, err);
4652 		return;
4653 	}
4654 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4655 	ext4_std_error(inode->i_sb, err);
4656 }
4657 
4658 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4659 				  ext4_lblk_t len, int flags, int mode)
4660 {
4661 	struct inode *inode = file_inode(file);
4662 	handle_t *handle;
4663 	int ret = 0;
4664 	int ret2 = 0;
4665 	int retries = 0;
4666 	struct ext4_map_blocks map;
4667 	unsigned int credits;
4668 
4669 	map.m_lblk = offset;
4670 	/*
4671 	 * Don't normalize the request if it can fit in one extent so
4672 	 * that it doesn't get unnecessarily split into multiple
4673 	 * extents.
4674 	 */
4675 	if (len <= EXT_UNINIT_MAX_LEN)
4676 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4677 
4678 	/*
4679 	 * credits to insert 1 extent into extent tree
4680 	 */
4681 	credits = ext4_chunk_trans_blocks(inode, len);
4682 
4683 retry:
4684 	while (ret >= 0 && ret < len) {
4685 		map.m_lblk = map.m_lblk + ret;
4686 		map.m_len = len = len - ret;
4687 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4688 					    credits);
4689 		if (IS_ERR(handle)) {
4690 			ret = PTR_ERR(handle);
4691 			break;
4692 		}
4693 		ret = ext4_map_blocks(handle, inode, &map, flags);
4694 		if (ret <= 0) {
4695 			ext4_debug("inode #%lu: block %u: len %u: "
4696 				   "ext4_ext_map_blocks returned %d",
4697 				   inode->i_ino, map.m_lblk,
4698 				   map.m_len, ret);
4699 			ext4_mark_inode_dirty(handle, inode);
4700 			ret2 = ext4_journal_stop(handle);
4701 			break;
4702 		}
4703 		ret2 = ext4_journal_stop(handle);
4704 		if (ret2)
4705 			break;
4706 	}
4707 	if (ret == -ENOSPC &&
4708 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4709 		ret = 0;
4710 		goto retry;
4711 	}
4712 
4713 	return ret > 0 ? ret2 : ret;
4714 }
4715 
4716 static long ext4_zero_range(struct file *file, loff_t offset,
4717 			    loff_t len, int mode)
4718 {
4719 	struct inode *inode = file_inode(file);
4720 	handle_t *handle = NULL;
4721 	unsigned int max_blocks;
4722 	loff_t new_size = 0;
4723 	int ret = 0;
4724 	int flags;
4725 	int partial;
4726 	loff_t start, end;
4727 	ext4_lblk_t lblk;
4728 	struct address_space *mapping = inode->i_mapping;
4729 	unsigned int blkbits = inode->i_blkbits;
4730 
4731 	trace_ext4_zero_range(inode, offset, len, mode);
4732 
4733 	/*
4734 	 * Write out all dirty pages to avoid race conditions
4735 	 * Then release them.
4736 	 */
4737 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4738 		ret = filemap_write_and_wait_range(mapping, offset,
4739 						   offset + len - 1);
4740 		if (ret)
4741 			return ret;
4742 	}
4743 
4744 	/*
4745 	 * Round up offset. This is not fallocate, we neet to zero out
4746 	 * blocks, so convert interior block aligned part of the range to
4747 	 * unwritten and possibly manually zero out unaligned parts of the
4748 	 * range.
4749 	 */
4750 	start = round_up(offset, 1 << blkbits);
4751 	end = round_down((offset + len), 1 << blkbits);
4752 
4753 	if (start < offset || end > offset + len)
4754 		return -EINVAL;
4755 	partial = (offset + len) & ((1 << blkbits) - 1);
4756 
4757 	lblk = start >> blkbits;
4758 	max_blocks = (end >> blkbits);
4759 	if (max_blocks < lblk)
4760 		max_blocks = 0;
4761 	else
4762 		max_blocks -= lblk;
4763 
4764 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
4765 		EXT4_GET_BLOCKS_CONVERT_UNWRITTEN;
4766 	if (mode & FALLOC_FL_KEEP_SIZE)
4767 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4768 
4769 	mutex_lock(&inode->i_mutex);
4770 
4771 	/*
4772 	 * Indirect files do not support unwritten extnets
4773 	 */
4774 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4775 		ret = -EOPNOTSUPP;
4776 		goto out_mutex;
4777 	}
4778 
4779 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4780 	     offset + len > i_size_read(inode)) {
4781 		new_size = offset + len;
4782 		ret = inode_newsize_ok(inode, new_size);
4783 		if (ret)
4784 			goto out_mutex;
4785 		/*
4786 		 * If we have a partial block after EOF we have to allocate
4787 		 * the entire block.
4788 		 */
4789 		if (partial)
4790 			max_blocks += 1;
4791 	}
4792 
4793 	if (max_blocks > 0) {
4794 
4795 		/* Now release the pages and zero block aligned part of pages*/
4796 		truncate_pagecache_range(inode, start, end - 1);
4797 
4798 		/* Wait all existing dio workers, newcomers will block on i_mutex */
4799 		ext4_inode_block_unlocked_dio(inode);
4800 		inode_dio_wait(inode);
4801 
4802 		/*
4803 		 * Remove entire range from the extent status tree.
4804 		 */
4805 		ret = ext4_es_remove_extent(inode, lblk, max_blocks);
4806 		if (ret)
4807 			goto out_dio;
4808 
4809 		ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags,
4810 					     mode);
4811 		if (ret)
4812 			goto out_dio;
4813 	}
4814 
4815 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 4);
4816 	if (IS_ERR(handle)) {
4817 		ret = PTR_ERR(handle);
4818 		ext4_std_error(inode->i_sb, ret);
4819 		goto out_dio;
4820 	}
4821 
4822 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4823 
4824 	if (new_size) {
4825 		if (new_size > i_size_read(inode))
4826 			i_size_write(inode, new_size);
4827 		if (new_size > EXT4_I(inode)->i_disksize)
4828 			ext4_update_i_disksize(inode, new_size);
4829 	} else {
4830 		/*
4831 		* Mark that we allocate beyond EOF so the subsequent truncate
4832 		* can proceed even if the new size is the same as i_size.
4833 		*/
4834 		if ((offset + len) > i_size_read(inode))
4835 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4836 	}
4837 
4838 	ext4_mark_inode_dirty(handle, inode);
4839 
4840 	/* Zero out partial block at the edges of the range */
4841 	ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4842 
4843 	if (file->f_flags & O_SYNC)
4844 		ext4_handle_sync(handle);
4845 
4846 	ext4_journal_stop(handle);
4847 out_dio:
4848 	ext4_inode_resume_unlocked_dio(inode);
4849 out_mutex:
4850 	mutex_unlock(&inode->i_mutex);
4851 	return ret;
4852 }
4853 
4854 /*
4855  * preallocate space for a file. This implements ext4's fallocate file
4856  * operation, which gets called from sys_fallocate system call.
4857  * For block-mapped files, posix_fallocate should fall back to the method
4858  * of writing zeroes to the required new blocks (the same behavior which is
4859  * expected for file systems which do not support fallocate() system call).
4860  */
4861 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4862 {
4863 	struct inode *inode = file_inode(file);
4864 	handle_t *handle;
4865 	loff_t new_size = 0;
4866 	unsigned int max_blocks;
4867 	int ret = 0;
4868 	int flags;
4869 	ext4_lblk_t lblk;
4870 	struct timespec tv;
4871 	unsigned int blkbits = inode->i_blkbits;
4872 
4873 	/* Return error if mode is not supported */
4874 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4875 		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
4876 		return -EOPNOTSUPP;
4877 
4878 	if (mode & FALLOC_FL_PUNCH_HOLE)
4879 		return ext4_punch_hole(inode, offset, len);
4880 
4881 	if (mode & FALLOC_FL_COLLAPSE_RANGE)
4882 		return ext4_collapse_range(inode, offset, len);
4883 
4884 	ret = ext4_convert_inline_data(inode);
4885 	if (ret)
4886 		return ret;
4887 
4888 	/*
4889 	 * currently supporting (pre)allocate mode for extent-based
4890 	 * files _only_
4891 	 */
4892 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4893 		return -EOPNOTSUPP;
4894 
4895 	if (mode & FALLOC_FL_ZERO_RANGE)
4896 		return ext4_zero_range(file, offset, len, mode);
4897 
4898 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4899 	lblk = offset >> blkbits;
4900 	/*
4901 	 * We can't just convert len to max_blocks because
4902 	 * If blocksize = 4096 offset = 3072 and len = 2048
4903 	 */
4904 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4905 		- lblk;
4906 
4907 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4908 	if (mode & FALLOC_FL_KEEP_SIZE)
4909 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4910 
4911 	mutex_lock(&inode->i_mutex);
4912 
4913 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4914 	     offset + len > i_size_read(inode)) {
4915 		new_size = offset + len;
4916 		ret = inode_newsize_ok(inode, new_size);
4917 		if (ret)
4918 			goto out;
4919 	}
4920 
4921 	ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags, mode);
4922 	if (ret)
4923 		goto out;
4924 
4925 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4926 	if (IS_ERR(handle))
4927 		goto out;
4928 
4929 	tv = inode->i_ctime = ext4_current_time(inode);
4930 
4931 	if (new_size) {
4932 		if (new_size > i_size_read(inode)) {
4933 			i_size_write(inode, new_size);
4934 			inode->i_mtime = tv;
4935 		}
4936 		if (new_size > EXT4_I(inode)->i_disksize)
4937 			ext4_update_i_disksize(inode, new_size);
4938 	} else {
4939 		/*
4940 		* Mark that we allocate beyond EOF so the subsequent truncate
4941 		* can proceed even if the new size is the same as i_size.
4942 		*/
4943 		if ((offset + len) > i_size_read(inode))
4944 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4945 	}
4946 	ext4_mark_inode_dirty(handle, inode);
4947 	if (file->f_flags & O_SYNC)
4948 		ext4_handle_sync(handle);
4949 
4950 	ext4_journal_stop(handle);
4951 out:
4952 	mutex_unlock(&inode->i_mutex);
4953 	trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4954 	return ret;
4955 }
4956 
4957 /*
4958  * This function convert a range of blocks to written extents
4959  * The caller of this function will pass the start offset and the size.
4960  * all unwritten extents within this range will be converted to
4961  * written extents.
4962  *
4963  * This function is called from the direct IO end io call back
4964  * function, to convert the fallocated extents after IO is completed.
4965  * Returns 0 on success.
4966  */
4967 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4968 				   loff_t offset, ssize_t len)
4969 {
4970 	unsigned int max_blocks;
4971 	int ret = 0;
4972 	int ret2 = 0;
4973 	struct ext4_map_blocks map;
4974 	unsigned int credits, blkbits = inode->i_blkbits;
4975 
4976 	map.m_lblk = offset >> blkbits;
4977 	/*
4978 	 * We can't just convert len to max_blocks because
4979 	 * If blocksize = 4096 offset = 3072 and len = 2048
4980 	 */
4981 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4982 		      map.m_lblk);
4983 	/*
4984 	 * This is somewhat ugly but the idea is clear: When transaction is
4985 	 * reserved, everything goes into it. Otherwise we rather start several
4986 	 * smaller transactions for conversion of each extent separately.
4987 	 */
4988 	if (handle) {
4989 		handle = ext4_journal_start_reserved(handle,
4990 						     EXT4_HT_EXT_CONVERT);
4991 		if (IS_ERR(handle))
4992 			return PTR_ERR(handle);
4993 		credits = 0;
4994 	} else {
4995 		/*
4996 		 * credits to insert 1 extent into extent tree
4997 		 */
4998 		credits = ext4_chunk_trans_blocks(inode, max_blocks);
4999 	}
5000 	while (ret >= 0 && ret < max_blocks) {
5001 		map.m_lblk += ret;
5002 		map.m_len = (max_blocks -= ret);
5003 		if (credits) {
5004 			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5005 						    credits);
5006 			if (IS_ERR(handle)) {
5007 				ret = PTR_ERR(handle);
5008 				break;
5009 			}
5010 		}
5011 		ret = ext4_map_blocks(handle, inode, &map,
5012 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5013 		if (ret <= 0)
5014 			ext4_warning(inode->i_sb,
5015 				     "inode #%lu: block %u: len %u: "
5016 				     "ext4_ext_map_blocks returned %d",
5017 				     inode->i_ino, map.m_lblk,
5018 				     map.m_len, ret);
5019 		ext4_mark_inode_dirty(handle, inode);
5020 		if (credits)
5021 			ret2 = ext4_journal_stop(handle);
5022 		if (ret <= 0 || ret2)
5023 			break;
5024 	}
5025 	if (!credits)
5026 		ret2 = ext4_journal_stop(handle);
5027 	return ret > 0 ? ret2 : ret;
5028 }
5029 
5030 /*
5031  * If newes is not existing extent (newes->ec_pblk equals zero) find
5032  * delayed extent at start of newes and update newes accordingly and
5033  * return start of the next delayed extent.
5034  *
5035  * If newes is existing extent (newes->ec_pblk is not equal zero)
5036  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5037  * extent found. Leave newes unmodified.
5038  */
5039 static int ext4_find_delayed_extent(struct inode *inode,
5040 				    struct extent_status *newes)
5041 {
5042 	struct extent_status es;
5043 	ext4_lblk_t block, next_del;
5044 
5045 	if (newes->es_pblk == 0) {
5046 		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5047 				newes->es_lblk + newes->es_len - 1, &es);
5048 
5049 		/*
5050 		 * No extent in extent-tree contains block @newes->es_pblk,
5051 		 * then the block may stay in 1)a hole or 2)delayed-extent.
5052 		 */
5053 		if (es.es_len == 0)
5054 			/* A hole found. */
5055 			return 0;
5056 
5057 		if (es.es_lblk > newes->es_lblk) {
5058 			/* A hole found. */
5059 			newes->es_len = min(es.es_lblk - newes->es_lblk,
5060 					    newes->es_len);
5061 			return 0;
5062 		}
5063 
5064 		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5065 	}
5066 
5067 	block = newes->es_lblk + newes->es_len;
5068 	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5069 	if (es.es_len == 0)
5070 		next_del = EXT_MAX_BLOCKS;
5071 	else
5072 		next_del = es.es_lblk;
5073 
5074 	return next_del;
5075 }
5076 /* fiemap flags we can handle specified here */
5077 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5078 
5079 static int ext4_xattr_fiemap(struct inode *inode,
5080 				struct fiemap_extent_info *fieinfo)
5081 {
5082 	__u64 physical = 0;
5083 	__u64 length;
5084 	__u32 flags = FIEMAP_EXTENT_LAST;
5085 	int blockbits = inode->i_sb->s_blocksize_bits;
5086 	int error = 0;
5087 
5088 	/* in-inode? */
5089 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5090 		struct ext4_iloc iloc;
5091 		int offset;	/* offset of xattr in inode */
5092 
5093 		error = ext4_get_inode_loc(inode, &iloc);
5094 		if (error)
5095 			return error;
5096 		physical = (__u64)iloc.bh->b_blocknr << blockbits;
5097 		offset = EXT4_GOOD_OLD_INODE_SIZE +
5098 				EXT4_I(inode)->i_extra_isize;
5099 		physical += offset;
5100 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5101 		flags |= FIEMAP_EXTENT_DATA_INLINE;
5102 		brelse(iloc.bh);
5103 	} else { /* external block */
5104 		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5105 		length = inode->i_sb->s_blocksize;
5106 	}
5107 
5108 	if (physical)
5109 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
5110 						length, flags);
5111 	return (error < 0 ? error : 0);
5112 }
5113 
5114 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5115 		__u64 start, __u64 len)
5116 {
5117 	ext4_lblk_t start_blk;
5118 	int error = 0;
5119 
5120 	if (ext4_has_inline_data(inode)) {
5121 		int has_inline = 1;
5122 
5123 		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
5124 
5125 		if (has_inline)
5126 			return error;
5127 	}
5128 
5129 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5130 		error = ext4_ext_precache(inode);
5131 		if (error)
5132 			return error;
5133 	}
5134 
5135 	/* fallback to generic here if not in extents fmt */
5136 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5137 		return generic_block_fiemap(inode, fieinfo, start, len,
5138 			ext4_get_block);
5139 
5140 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5141 		return -EBADR;
5142 
5143 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5144 		error = ext4_xattr_fiemap(inode, fieinfo);
5145 	} else {
5146 		ext4_lblk_t len_blks;
5147 		__u64 last_blk;
5148 
5149 		start_blk = start >> inode->i_sb->s_blocksize_bits;
5150 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5151 		if (last_blk >= EXT_MAX_BLOCKS)
5152 			last_blk = EXT_MAX_BLOCKS-1;
5153 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5154 
5155 		/*
5156 		 * Walk the extent tree gathering extent information
5157 		 * and pushing extents back to the user.
5158 		 */
5159 		error = ext4_fill_fiemap_extents(inode, start_blk,
5160 						 len_blks, fieinfo);
5161 	}
5162 	ext4_es_lru_add(inode);
5163 	return error;
5164 }
5165 
5166 /*
5167  * ext4_access_path:
5168  * Function to access the path buffer for marking it dirty.
5169  * It also checks if there are sufficient credits left in the journal handle
5170  * to update path.
5171  */
5172 static int
5173 ext4_access_path(handle_t *handle, struct inode *inode,
5174 		struct ext4_ext_path *path)
5175 {
5176 	int credits, err;
5177 
5178 	if (!ext4_handle_valid(handle))
5179 		return 0;
5180 
5181 	/*
5182 	 * Check if need to extend journal credits
5183 	 * 3 for leaf, sb, and inode plus 2 (bmap and group
5184 	 * descriptor) for each block group; assume two block
5185 	 * groups
5186 	 */
5187 	if (handle->h_buffer_credits < 7) {
5188 		credits = ext4_writepage_trans_blocks(inode);
5189 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5190 		/* EAGAIN is success */
5191 		if (err && err != -EAGAIN)
5192 			return err;
5193 	}
5194 
5195 	err = ext4_ext_get_access(handle, inode, path);
5196 	return err;
5197 }
5198 
5199 /*
5200  * ext4_ext_shift_path_extents:
5201  * Shift the extents of a path structure lying between path[depth].p_ext
5202  * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift
5203  * from starting block for each extent.
5204  */
5205 static int
5206 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5207 			    struct inode *inode, handle_t *handle,
5208 			    ext4_lblk_t *start)
5209 {
5210 	int depth, err = 0;
5211 	struct ext4_extent *ex_start, *ex_last;
5212 	bool update = 0;
5213 	depth = path->p_depth;
5214 
5215 	while (depth >= 0) {
5216 		if (depth == path->p_depth) {
5217 			ex_start = path[depth].p_ext;
5218 			if (!ex_start)
5219 				return -EIO;
5220 
5221 			ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5222 			if (!ex_last)
5223 				return -EIO;
5224 
5225 			err = ext4_access_path(handle, inode, path + depth);
5226 			if (err)
5227 				goto out;
5228 
5229 			if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5230 				update = 1;
5231 
5232 			*start = ex_last->ee_block +
5233 				ext4_ext_get_actual_len(ex_last);
5234 
5235 			while (ex_start <= ex_last) {
5236 				ex_start->ee_block -= shift;
5237 				if (ex_start >
5238 					EXT_FIRST_EXTENT(path[depth].p_hdr)) {
5239 					if (ext4_ext_try_to_merge_right(inode,
5240 						path, ex_start - 1))
5241 						ex_last--;
5242 				}
5243 				ex_start++;
5244 			}
5245 			err = ext4_ext_dirty(handle, inode, path + depth);
5246 			if (err)
5247 				goto out;
5248 
5249 			if (--depth < 0 || !update)
5250 				break;
5251 		}
5252 
5253 		/* Update index too */
5254 		err = ext4_access_path(handle, inode, path + depth);
5255 		if (err)
5256 			goto out;
5257 
5258 		path[depth].p_idx->ei_block -= shift;
5259 		err = ext4_ext_dirty(handle, inode, path + depth);
5260 		if (err)
5261 			goto out;
5262 
5263 		/* we are done if current index is not a starting index */
5264 		if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5265 			break;
5266 
5267 		depth--;
5268 	}
5269 
5270 out:
5271 	return err;
5272 }
5273 
5274 /*
5275  * ext4_ext_shift_extents:
5276  * All the extents which lies in the range from start to the last allocated
5277  * block for the file are shifted downwards by shift blocks.
5278  * On success, 0 is returned, error otherwise.
5279  */
5280 static int
5281 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5282 		       ext4_lblk_t start, ext4_lblk_t shift)
5283 {
5284 	struct ext4_ext_path *path;
5285 	int ret = 0, depth;
5286 	struct ext4_extent *extent;
5287 	ext4_lblk_t stop_block, current_block;
5288 	ext4_lblk_t ex_start, ex_end;
5289 
5290 	/* Let path point to the last extent */
5291 	path = ext4_ext_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
5292 	if (IS_ERR(path))
5293 		return PTR_ERR(path);
5294 
5295 	depth = path->p_depth;
5296 	extent = path[depth].p_ext;
5297 	if (!extent) {
5298 		ext4_ext_drop_refs(path);
5299 		kfree(path);
5300 		return ret;
5301 	}
5302 
5303 	stop_block = extent->ee_block + ext4_ext_get_actual_len(extent);
5304 	ext4_ext_drop_refs(path);
5305 	kfree(path);
5306 
5307 	/* Nothing to shift, if hole is at the end of file */
5308 	if (start >= stop_block)
5309 		return ret;
5310 
5311 	/*
5312 	 * Don't start shifting extents until we make sure the hole is big
5313 	 * enough to accomodate the shift.
5314 	 */
5315 	path = ext4_ext_find_extent(inode, start - 1, NULL, 0);
5316 	depth = path->p_depth;
5317 	extent =  path[depth].p_ext;
5318 	ex_start = extent->ee_block;
5319 	ex_end = extent->ee_block + ext4_ext_get_actual_len(extent);
5320 	ext4_ext_drop_refs(path);
5321 	kfree(path);
5322 
5323 	if ((start == ex_start && shift > ex_start) ||
5324 	    (shift > start - ex_end))
5325 		return -EINVAL;
5326 
5327 	/* Its safe to start updating extents */
5328 	while (start < stop_block) {
5329 		path = ext4_ext_find_extent(inode, start, NULL, 0);
5330 		if (IS_ERR(path))
5331 			return PTR_ERR(path);
5332 		depth = path->p_depth;
5333 		extent = path[depth].p_ext;
5334 		current_block = extent->ee_block;
5335 		if (start > current_block) {
5336 			/* Hole, move to the next extent */
5337 			ret = mext_next_extent(inode, path, &extent);
5338 			if (ret != 0) {
5339 				ext4_ext_drop_refs(path);
5340 				kfree(path);
5341 				if (ret == 1)
5342 					ret = 0;
5343 				break;
5344 			}
5345 		}
5346 		ret = ext4_ext_shift_path_extents(path, shift, inode,
5347 				handle, &start);
5348 		ext4_ext_drop_refs(path);
5349 		kfree(path);
5350 		if (ret)
5351 			break;
5352 	}
5353 
5354 	return ret;
5355 }
5356 
5357 /*
5358  * ext4_collapse_range:
5359  * This implements the fallocate's collapse range functionality for ext4
5360  * Returns: 0 and non-zero on error.
5361  */
5362 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5363 {
5364 	struct super_block *sb = inode->i_sb;
5365 	ext4_lblk_t punch_start, punch_stop;
5366 	handle_t *handle;
5367 	unsigned int credits;
5368 	loff_t new_size;
5369 	int ret;
5370 
5371 	BUG_ON(offset + len > i_size_read(inode));
5372 
5373 	/* Collapse range works only on fs block size aligned offsets. */
5374 	if (offset & (EXT4_BLOCK_SIZE(sb) - 1) ||
5375 	    len & (EXT4_BLOCK_SIZE(sb) - 1))
5376 		return -EINVAL;
5377 
5378 	if (!S_ISREG(inode->i_mode))
5379 		return -EOPNOTSUPP;
5380 
5381 	trace_ext4_collapse_range(inode, offset, len);
5382 
5383 	punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5384 	punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5385 
5386 	/* Write out all dirty pages */
5387 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, -1);
5388 	if (ret)
5389 		return ret;
5390 
5391 	/* Take mutex lock */
5392 	mutex_lock(&inode->i_mutex);
5393 
5394 	/* It's not possible punch hole on append only file */
5395 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5396 		ret = -EPERM;
5397 		goto out_mutex;
5398 	}
5399 
5400 	if (IS_SWAPFILE(inode)) {
5401 		ret = -ETXTBSY;
5402 		goto out_mutex;
5403 	}
5404 
5405 	/* Currently just for extent based files */
5406 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5407 		ret = -EOPNOTSUPP;
5408 		goto out_mutex;
5409 	}
5410 
5411 	truncate_pagecache_range(inode, offset, -1);
5412 
5413 	/* Wait for existing dio to complete */
5414 	ext4_inode_block_unlocked_dio(inode);
5415 	inode_dio_wait(inode);
5416 
5417 	credits = ext4_writepage_trans_blocks(inode);
5418 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5419 	if (IS_ERR(handle)) {
5420 		ret = PTR_ERR(handle);
5421 		goto out_dio;
5422 	}
5423 
5424 	down_write(&EXT4_I(inode)->i_data_sem);
5425 	ext4_discard_preallocations(inode);
5426 
5427 	ret = ext4_es_remove_extent(inode, punch_start,
5428 				    EXT_MAX_BLOCKS - punch_start - 1);
5429 	if (ret) {
5430 		up_write(&EXT4_I(inode)->i_data_sem);
5431 		goto out_stop;
5432 	}
5433 
5434 	ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5435 	if (ret) {
5436 		up_write(&EXT4_I(inode)->i_data_sem);
5437 		goto out_stop;
5438 	}
5439 
5440 	ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5441 				     punch_stop - punch_start);
5442 	if (ret) {
5443 		up_write(&EXT4_I(inode)->i_data_sem);
5444 		goto out_stop;
5445 	}
5446 
5447 	new_size = i_size_read(inode) - len;
5448 	truncate_setsize(inode, new_size);
5449 	EXT4_I(inode)->i_disksize = new_size;
5450 
5451 	ext4_discard_preallocations(inode);
5452 	up_write(&EXT4_I(inode)->i_data_sem);
5453 	if (IS_SYNC(inode))
5454 		ext4_handle_sync(handle);
5455 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5456 	ext4_mark_inode_dirty(handle, inode);
5457 
5458 out_stop:
5459 	ext4_journal_stop(handle);
5460 out_dio:
5461 	ext4_inode_resume_unlocked_dio(inode);
5462 out_mutex:
5463 	mutex_unlock(&inode->i_mutex);
5464 	return ret;
5465 }
5466