1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <asm/uaccess.h> 41 #include <linux/fiemap.h> 42 #include "ext4_jbd2.h" 43 #include "ext4_extents.h" 44 #include "xattr.h" 45 46 #include <trace/events/ext4.h> 47 48 /* 49 * used by extent splitting. 50 */ 51 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 52 due to ENOSPC */ 53 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 54 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 55 56 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 57 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 58 59 static __le32 ext4_extent_block_csum(struct inode *inode, 60 struct ext4_extent_header *eh) 61 { 62 struct ext4_inode_info *ei = EXT4_I(inode); 63 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 64 __u32 csum; 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 67 EXT4_EXTENT_TAIL_OFFSET(eh)); 68 return cpu_to_le32(csum); 69 } 70 71 static int ext4_extent_block_csum_verify(struct inode *inode, 72 struct ext4_extent_header *eh) 73 { 74 struct ext4_extent_tail *et; 75 76 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 77 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 78 return 1; 79 80 et = find_ext4_extent_tail(eh); 81 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 82 return 0; 83 return 1; 84 } 85 86 static void ext4_extent_block_csum_set(struct inode *inode, 87 struct ext4_extent_header *eh) 88 { 89 struct ext4_extent_tail *et; 90 91 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 92 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 93 return; 94 95 et = find_ext4_extent_tail(eh); 96 et->et_checksum = ext4_extent_block_csum(inode, eh); 97 } 98 99 static int ext4_split_extent(handle_t *handle, 100 struct inode *inode, 101 struct ext4_ext_path *path, 102 struct ext4_map_blocks *map, 103 int split_flag, 104 int flags); 105 106 static int ext4_split_extent_at(handle_t *handle, 107 struct inode *inode, 108 struct ext4_ext_path *path, 109 ext4_lblk_t split, 110 int split_flag, 111 int flags); 112 113 static int ext4_find_delayed_extent(struct inode *inode, 114 struct extent_status *newes); 115 116 static int ext4_ext_truncate_extend_restart(handle_t *handle, 117 struct inode *inode, 118 int needed) 119 { 120 int err; 121 122 if (!ext4_handle_valid(handle)) 123 return 0; 124 if (handle->h_buffer_credits > needed) 125 return 0; 126 err = ext4_journal_extend(handle, needed); 127 if (err <= 0) 128 return err; 129 err = ext4_truncate_restart_trans(handle, inode, needed); 130 if (err == 0) 131 err = -EAGAIN; 132 133 return err; 134 } 135 136 /* 137 * could return: 138 * - EROFS 139 * - ENOMEM 140 */ 141 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 142 struct ext4_ext_path *path) 143 { 144 if (path->p_bh) { 145 /* path points to block */ 146 BUFFER_TRACE(path->p_bh, "get_write_access"); 147 return ext4_journal_get_write_access(handle, path->p_bh); 148 } 149 /* path points to leaf/index in inode body */ 150 /* we use in-core data, no need to protect them */ 151 return 0; 152 } 153 154 /* 155 * could return: 156 * - EROFS 157 * - ENOMEM 158 * - EIO 159 */ 160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 161 struct inode *inode, struct ext4_ext_path *path) 162 { 163 int err; 164 165 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 166 if (path->p_bh) { 167 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 168 /* path points to block */ 169 err = __ext4_handle_dirty_metadata(where, line, handle, 170 inode, path->p_bh); 171 } else { 172 /* path points to leaf/index in inode body */ 173 err = ext4_mark_inode_dirty(handle, inode); 174 } 175 return err; 176 } 177 178 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 179 struct ext4_ext_path *path, 180 ext4_lblk_t block) 181 { 182 if (path) { 183 int depth = path->p_depth; 184 struct ext4_extent *ex; 185 186 /* 187 * Try to predict block placement assuming that we are 188 * filling in a file which will eventually be 189 * non-sparse --- i.e., in the case of libbfd writing 190 * an ELF object sections out-of-order but in a way 191 * the eventually results in a contiguous object or 192 * executable file, or some database extending a table 193 * space file. However, this is actually somewhat 194 * non-ideal if we are writing a sparse file such as 195 * qemu or KVM writing a raw image file that is going 196 * to stay fairly sparse, since it will end up 197 * fragmenting the file system's free space. Maybe we 198 * should have some hueristics or some way to allow 199 * userspace to pass a hint to file system, 200 * especially if the latter case turns out to be 201 * common. 202 */ 203 ex = path[depth].p_ext; 204 if (ex) { 205 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 206 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 207 208 if (block > ext_block) 209 return ext_pblk + (block - ext_block); 210 else 211 return ext_pblk - (ext_block - block); 212 } 213 214 /* it looks like index is empty; 215 * try to find starting block from index itself */ 216 if (path[depth].p_bh) 217 return path[depth].p_bh->b_blocknr; 218 } 219 220 /* OK. use inode's group */ 221 return ext4_inode_to_goal_block(inode); 222 } 223 224 /* 225 * Allocation for a meta data block 226 */ 227 static ext4_fsblk_t 228 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 229 struct ext4_ext_path *path, 230 struct ext4_extent *ex, int *err, unsigned int flags) 231 { 232 ext4_fsblk_t goal, newblock; 233 234 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 235 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 236 NULL, err); 237 return newblock; 238 } 239 240 static inline int ext4_ext_space_block(struct inode *inode, int check) 241 { 242 int size; 243 244 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 245 / sizeof(struct ext4_extent); 246 #ifdef AGGRESSIVE_TEST 247 if (!check && size > 6) 248 size = 6; 249 #endif 250 return size; 251 } 252 253 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 254 { 255 int size; 256 257 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 258 / sizeof(struct ext4_extent_idx); 259 #ifdef AGGRESSIVE_TEST 260 if (!check && size > 5) 261 size = 5; 262 #endif 263 return size; 264 } 265 266 static inline int ext4_ext_space_root(struct inode *inode, int check) 267 { 268 int size; 269 270 size = sizeof(EXT4_I(inode)->i_data); 271 size -= sizeof(struct ext4_extent_header); 272 size /= sizeof(struct ext4_extent); 273 #ifdef AGGRESSIVE_TEST 274 if (!check && size > 3) 275 size = 3; 276 #endif 277 return size; 278 } 279 280 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 281 { 282 int size; 283 284 size = sizeof(EXT4_I(inode)->i_data); 285 size -= sizeof(struct ext4_extent_header); 286 size /= sizeof(struct ext4_extent_idx); 287 #ifdef AGGRESSIVE_TEST 288 if (!check && size > 4) 289 size = 4; 290 #endif 291 return size; 292 } 293 294 /* 295 * Calculate the number of metadata blocks needed 296 * to allocate @blocks 297 * Worse case is one block per extent 298 */ 299 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 300 { 301 struct ext4_inode_info *ei = EXT4_I(inode); 302 int idxs; 303 304 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 305 / sizeof(struct ext4_extent_idx)); 306 307 /* 308 * If the new delayed allocation block is contiguous with the 309 * previous da block, it can share index blocks with the 310 * previous block, so we only need to allocate a new index 311 * block every idxs leaf blocks. At ldxs**2 blocks, we need 312 * an additional index block, and at ldxs**3 blocks, yet 313 * another index blocks. 314 */ 315 if (ei->i_da_metadata_calc_len && 316 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 317 int num = 0; 318 319 if ((ei->i_da_metadata_calc_len % idxs) == 0) 320 num++; 321 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 322 num++; 323 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 324 num++; 325 ei->i_da_metadata_calc_len = 0; 326 } else 327 ei->i_da_metadata_calc_len++; 328 ei->i_da_metadata_calc_last_lblock++; 329 return num; 330 } 331 332 /* 333 * In the worst case we need a new set of index blocks at 334 * every level of the inode's extent tree. 335 */ 336 ei->i_da_metadata_calc_len = 1; 337 ei->i_da_metadata_calc_last_lblock = lblock; 338 return ext_depth(inode) + 1; 339 } 340 341 static int 342 ext4_ext_max_entries(struct inode *inode, int depth) 343 { 344 int max; 345 346 if (depth == ext_depth(inode)) { 347 if (depth == 0) 348 max = ext4_ext_space_root(inode, 1); 349 else 350 max = ext4_ext_space_root_idx(inode, 1); 351 } else { 352 if (depth == 0) 353 max = ext4_ext_space_block(inode, 1); 354 else 355 max = ext4_ext_space_block_idx(inode, 1); 356 } 357 358 return max; 359 } 360 361 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 362 { 363 ext4_fsblk_t block = ext4_ext_pblock(ext); 364 int len = ext4_ext_get_actual_len(ext); 365 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 366 ext4_lblk_t last = lblock + len - 1; 367 368 if (lblock > last) 369 return 0; 370 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 371 } 372 373 static int ext4_valid_extent_idx(struct inode *inode, 374 struct ext4_extent_idx *ext_idx) 375 { 376 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 377 378 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 379 } 380 381 static int ext4_valid_extent_entries(struct inode *inode, 382 struct ext4_extent_header *eh, 383 int depth) 384 { 385 unsigned short entries; 386 if (eh->eh_entries == 0) 387 return 1; 388 389 entries = le16_to_cpu(eh->eh_entries); 390 391 if (depth == 0) { 392 /* leaf entries */ 393 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 394 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 395 ext4_fsblk_t pblock = 0; 396 ext4_lblk_t lblock = 0; 397 ext4_lblk_t prev = 0; 398 int len = 0; 399 while (entries) { 400 if (!ext4_valid_extent(inode, ext)) 401 return 0; 402 403 /* Check for overlapping extents */ 404 lblock = le32_to_cpu(ext->ee_block); 405 len = ext4_ext_get_actual_len(ext); 406 if ((lblock <= prev) && prev) { 407 pblock = ext4_ext_pblock(ext); 408 es->s_last_error_block = cpu_to_le64(pblock); 409 return 0; 410 } 411 ext++; 412 entries--; 413 prev = lblock + len - 1; 414 } 415 } else { 416 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 417 while (entries) { 418 if (!ext4_valid_extent_idx(inode, ext_idx)) 419 return 0; 420 ext_idx++; 421 entries--; 422 } 423 } 424 return 1; 425 } 426 427 static int __ext4_ext_check(const char *function, unsigned int line, 428 struct inode *inode, struct ext4_extent_header *eh, 429 int depth, ext4_fsblk_t pblk) 430 { 431 const char *error_msg; 432 int max = 0; 433 434 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 435 error_msg = "invalid magic"; 436 goto corrupted; 437 } 438 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 439 error_msg = "unexpected eh_depth"; 440 goto corrupted; 441 } 442 if (unlikely(eh->eh_max == 0)) { 443 error_msg = "invalid eh_max"; 444 goto corrupted; 445 } 446 max = ext4_ext_max_entries(inode, depth); 447 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 448 error_msg = "too large eh_max"; 449 goto corrupted; 450 } 451 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 452 error_msg = "invalid eh_entries"; 453 goto corrupted; 454 } 455 if (!ext4_valid_extent_entries(inode, eh, depth)) { 456 error_msg = "invalid extent entries"; 457 goto corrupted; 458 } 459 /* Verify checksum on non-root extent tree nodes */ 460 if (ext_depth(inode) != depth && 461 !ext4_extent_block_csum_verify(inode, eh)) { 462 error_msg = "extent tree corrupted"; 463 goto corrupted; 464 } 465 return 0; 466 467 corrupted: 468 ext4_error_inode(inode, function, line, 0, 469 "pblk %llu bad header/extent: %s - magic %x, " 470 "entries %u, max %u(%u), depth %u(%u)", 471 (unsigned long long) pblk, error_msg, 472 le16_to_cpu(eh->eh_magic), 473 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 474 max, le16_to_cpu(eh->eh_depth), depth); 475 return -EIO; 476 } 477 478 #define ext4_ext_check(inode, eh, depth, pblk) \ 479 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 480 481 int ext4_ext_check_inode(struct inode *inode) 482 { 483 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 484 } 485 486 static struct buffer_head * 487 __read_extent_tree_block(const char *function, unsigned int line, 488 struct inode *inode, ext4_fsblk_t pblk, int depth, 489 int flags) 490 { 491 struct buffer_head *bh; 492 int err; 493 494 bh = sb_getblk(inode->i_sb, pblk); 495 if (unlikely(!bh)) 496 return ERR_PTR(-ENOMEM); 497 498 if (!bh_uptodate_or_lock(bh)) { 499 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 500 err = bh_submit_read(bh); 501 if (err < 0) 502 goto errout; 503 } 504 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 505 return bh; 506 err = __ext4_ext_check(function, line, inode, 507 ext_block_hdr(bh), depth, pblk); 508 if (err) 509 goto errout; 510 set_buffer_verified(bh); 511 /* 512 * If this is a leaf block, cache all of its entries 513 */ 514 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 515 struct ext4_extent_header *eh = ext_block_hdr(bh); 516 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 517 ext4_lblk_t prev = 0; 518 int i; 519 520 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 521 unsigned int status = EXTENT_STATUS_WRITTEN; 522 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 523 int len = ext4_ext_get_actual_len(ex); 524 525 if (prev && (prev != lblk)) 526 ext4_es_cache_extent(inode, prev, 527 lblk - prev, ~0, 528 EXTENT_STATUS_HOLE); 529 530 if (ext4_ext_is_unwritten(ex)) 531 status = EXTENT_STATUS_UNWRITTEN; 532 ext4_es_cache_extent(inode, lblk, len, 533 ext4_ext_pblock(ex), status); 534 prev = lblk + len; 535 } 536 } 537 return bh; 538 errout: 539 put_bh(bh); 540 return ERR_PTR(err); 541 542 } 543 544 #define read_extent_tree_block(inode, pblk, depth, flags) \ 545 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 546 (depth), (flags)) 547 548 /* 549 * This function is called to cache a file's extent information in the 550 * extent status tree 551 */ 552 int ext4_ext_precache(struct inode *inode) 553 { 554 struct ext4_inode_info *ei = EXT4_I(inode); 555 struct ext4_ext_path *path = NULL; 556 struct buffer_head *bh; 557 int i = 0, depth, ret = 0; 558 559 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 560 return 0; /* not an extent-mapped inode */ 561 562 down_read(&ei->i_data_sem); 563 depth = ext_depth(inode); 564 565 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 566 GFP_NOFS); 567 if (path == NULL) { 568 up_read(&ei->i_data_sem); 569 return -ENOMEM; 570 } 571 572 /* Don't cache anything if there are no external extent blocks */ 573 if (depth == 0) 574 goto out; 575 path[0].p_hdr = ext_inode_hdr(inode); 576 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 577 if (ret) 578 goto out; 579 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 580 while (i >= 0) { 581 /* 582 * If this is a leaf block or we've reached the end of 583 * the index block, go up 584 */ 585 if ((i == depth) || 586 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 587 brelse(path[i].p_bh); 588 path[i].p_bh = NULL; 589 i--; 590 continue; 591 } 592 bh = read_extent_tree_block(inode, 593 ext4_idx_pblock(path[i].p_idx++), 594 depth - i - 1, 595 EXT4_EX_FORCE_CACHE); 596 if (IS_ERR(bh)) { 597 ret = PTR_ERR(bh); 598 break; 599 } 600 i++; 601 path[i].p_bh = bh; 602 path[i].p_hdr = ext_block_hdr(bh); 603 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 604 } 605 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 606 out: 607 up_read(&ei->i_data_sem); 608 ext4_ext_drop_refs(path); 609 kfree(path); 610 return ret; 611 } 612 613 #ifdef EXT_DEBUG 614 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 615 { 616 int k, l = path->p_depth; 617 618 ext_debug("path:"); 619 for (k = 0; k <= l; k++, path++) { 620 if (path->p_idx) { 621 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 622 ext4_idx_pblock(path->p_idx)); 623 } else if (path->p_ext) { 624 ext_debug(" %d:[%d]%d:%llu ", 625 le32_to_cpu(path->p_ext->ee_block), 626 ext4_ext_is_unwritten(path->p_ext), 627 ext4_ext_get_actual_len(path->p_ext), 628 ext4_ext_pblock(path->p_ext)); 629 } else 630 ext_debug(" []"); 631 } 632 ext_debug("\n"); 633 } 634 635 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 636 { 637 int depth = ext_depth(inode); 638 struct ext4_extent_header *eh; 639 struct ext4_extent *ex; 640 int i; 641 642 if (!path) 643 return; 644 645 eh = path[depth].p_hdr; 646 ex = EXT_FIRST_EXTENT(eh); 647 648 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 649 650 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 651 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 652 ext4_ext_is_unwritten(ex), 653 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 654 } 655 ext_debug("\n"); 656 } 657 658 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 659 ext4_fsblk_t newblock, int level) 660 { 661 int depth = ext_depth(inode); 662 struct ext4_extent *ex; 663 664 if (depth != level) { 665 struct ext4_extent_idx *idx; 666 idx = path[level].p_idx; 667 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 668 ext_debug("%d: move %d:%llu in new index %llu\n", level, 669 le32_to_cpu(idx->ei_block), 670 ext4_idx_pblock(idx), 671 newblock); 672 idx++; 673 } 674 675 return; 676 } 677 678 ex = path[depth].p_ext; 679 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 680 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 681 le32_to_cpu(ex->ee_block), 682 ext4_ext_pblock(ex), 683 ext4_ext_is_unwritten(ex), 684 ext4_ext_get_actual_len(ex), 685 newblock); 686 ex++; 687 } 688 } 689 690 #else 691 #define ext4_ext_show_path(inode, path) 692 #define ext4_ext_show_leaf(inode, path) 693 #define ext4_ext_show_move(inode, path, newblock, level) 694 #endif 695 696 void ext4_ext_drop_refs(struct ext4_ext_path *path) 697 { 698 int depth = path->p_depth; 699 int i; 700 701 for (i = 0; i <= depth; i++, path++) 702 if (path->p_bh) { 703 brelse(path->p_bh); 704 path->p_bh = NULL; 705 } 706 } 707 708 /* 709 * ext4_ext_binsearch_idx: 710 * binary search for the closest index of the given block 711 * the header must be checked before calling this 712 */ 713 static void 714 ext4_ext_binsearch_idx(struct inode *inode, 715 struct ext4_ext_path *path, ext4_lblk_t block) 716 { 717 struct ext4_extent_header *eh = path->p_hdr; 718 struct ext4_extent_idx *r, *l, *m; 719 720 721 ext_debug("binsearch for %u(idx): ", block); 722 723 l = EXT_FIRST_INDEX(eh) + 1; 724 r = EXT_LAST_INDEX(eh); 725 while (l <= r) { 726 m = l + (r - l) / 2; 727 if (block < le32_to_cpu(m->ei_block)) 728 r = m - 1; 729 else 730 l = m + 1; 731 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 732 m, le32_to_cpu(m->ei_block), 733 r, le32_to_cpu(r->ei_block)); 734 } 735 736 path->p_idx = l - 1; 737 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 738 ext4_idx_pblock(path->p_idx)); 739 740 #ifdef CHECK_BINSEARCH 741 { 742 struct ext4_extent_idx *chix, *ix; 743 int k; 744 745 chix = ix = EXT_FIRST_INDEX(eh); 746 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 747 if (k != 0 && 748 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 749 printk(KERN_DEBUG "k=%d, ix=0x%p, " 750 "first=0x%p\n", k, 751 ix, EXT_FIRST_INDEX(eh)); 752 printk(KERN_DEBUG "%u <= %u\n", 753 le32_to_cpu(ix->ei_block), 754 le32_to_cpu(ix[-1].ei_block)); 755 } 756 BUG_ON(k && le32_to_cpu(ix->ei_block) 757 <= le32_to_cpu(ix[-1].ei_block)); 758 if (block < le32_to_cpu(ix->ei_block)) 759 break; 760 chix = ix; 761 } 762 BUG_ON(chix != path->p_idx); 763 } 764 #endif 765 766 } 767 768 /* 769 * ext4_ext_binsearch: 770 * binary search for closest extent of the given block 771 * the header must be checked before calling this 772 */ 773 static void 774 ext4_ext_binsearch(struct inode *inode, 775 struct ext4_ext_path *path, ext4_lblk_t block) 776 { 777 struct ext4_extent_header *eh = path->p_hdr; 778 struct ext4_extent *r, *l, *m; 779 780 if (eh->eh_entries == 0) { 781 /* 782 * this leaf is empty: 783 * we get such a leaf in split/add case 784 */ 785 return; 786 } 787 788 ext_debug("binsearch for %u: ", block); 789 790 l = EXT_FIRST_EXTENT(eh) + 1; 791 r = EXT_LAST_EXTENT(eh); 792 793 while (l <= r) { 794 m = l + (r - l) / 2; 795 if (block < le32_to_cpu(m->ee_block)) 796 r = m - 1; 797 else 798 l = m + 1; 799 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 800 m, le32_to_cpu(m->ee_block), 801 r, le32_to_cpu(r->ee_block)); 802 } 803 804 path->p_ext = l - 1; 805 ext_debug(" -> %d:%llu:[%d]%d ", 806 le32_to_cpu(path->p_ext->ee_block), 807 ext4_ext_pblock(path->p_ext), 808 ext4_ext_is_unwritten(path->p_ext), 809 ext4_ext_get_actual_len(path->p_ext)); 810 811 #ifdef CHECK_BINSEARCH 812 { 813 struct ext4_extent *chex, *ex; 814 int k; 815 816 chex = ex = EXT_FIRST_EXTENT(eh); 817 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 818 BUG_ON(k && le32_to_cpu(ex->ee_block) 819 <= le32_to_cpu(ex[-1].ee_block)); 820 if (block < le32_to_cpu(ex->ee_block)) 821 break; 822 chex = ex; 823 } 824 BUG_ON(chex != path->p_ext); 825 } 826 #endif 827 828 } 829 830 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 831 { 832 struct ext4_extent_header *eh; 833 834 eh = ext_inode_hdr(inode); 835 eh->eh_depth = 0; 836 eh->eh_entries = 0; 837 eh->eh_magic = EXT4_EXT_MAGIC; 838 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 839 ext4_mark_inode_dirty(handle, inode); 840 return 0; 841 } 842 843 struct ext4_ext_path * 844 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 845 struct ext4_ext_path *path, int flags) 846 { 847 struct ext4_extent_header *eh; 848 struct buffer_head *bh; 849 short int depth, i, ppos = 0, alloc = 0; 850 int ret; 851 852 eh = ext_inode_hdr(inode); 853 depth = ext_depth(inode); 854 855 /* account possible depth increase */ 856 if (!path) { 857 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 858 GFP_NOFS); 859 if (!path) 860 return ERR_PTR(-ENOMEM); 861 alloc = 1; 862 } 863 path[0].p_hdr = eh; 864 path[0].p_bh = NULL; 865 866 i = depth; 867 /* walk through the tree */ 868 while (i) { 869 ext_debug("depth %d: num %d, max %d\n", 870 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 871 872 ext4_ext_binsearch_idx(inode, path + ppos, block); 873 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 874 path[ppos].p_depth = i; 875 path[ppos].p_ext = NULL; 876 877 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 878 flags); 879 if (IS_ERR(bh)) { 880 ret = PTR_ERR(bh); 881 goto err; 882 } 883 884 eh = ext_block_hdr(bh); 885 ppos++; 886 if (unlikely(ppos > depth)) { 887 put_bh(bh); 888 EXT4_ERROR_INODE(inode, 889 "ppos %d > depth %d", ppos, depth); 890 ret = -EIO; 891 goto err; 892 } 893 path[ppos].p_bh = bh; 894 path[ppos].p_hdr = eh; 895 } 896 897 path[ppos].p_depth = i; 898 path[ppos].p_ext = NULL; 899 path[ppos].p_idx = NULL; 900 901 /* find extent */ 902 ext4_ext_binsearch(inode, path + ppos, block); 903 /* if not an empty leaf */ 904 if (path[ppos].p_ext) 905 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 906 907 ext4_ext_show_path(inode, path); 908 909 return path; 910 911 err: 912 ext4_ext_drop_refs(path); 913 if (alloc) 914 kfree(path); 915 return ERR_PTR(ret); 916 } 917 918 /* 919 * ext4_ext_insert_index: 920 * insert new index [@logical;@ptr] into the block at @curp; 921 * check where to insert: before @curp or after @curp 922 */ 923 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 924 struct ext4_ext_path *curp, 925 int logical, ext4_fsblk_t ptr) 926 { 927 struct ext4_extent_idx *ix; 928 int len, err; 929 930 err = ext4_ext_get_access(handle, inode, curp); 931 if (err) 932 return err; 933 934 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 935 EXT4_ERROR_INODE(inode, 936 "logical %d == ei_block %d!", 937 logical, le32_to_cpu(curp->p_idx->ei_block)); 938 return -EIO; 939 } 940 941 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 942 >= le16_to_cpu(curp->p_hdr->eh_max))) { 943 EXT4_ERROR_INODE(inode, 944 "eh_entries %d >= eh_max %d!", 945 le16_to_cpu(curp->p_hdr->eh_entries), 946 le16_to_cpu(curp->p_hdr->eh_max)); 947 return -EIO; 948 } 949 950 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 951 /* insert after */ 952 ext_debug("insert new index %d after: %llu\n", logical, ptr); 953 ix = curp->p_idx + 1; 954 } else { 955 /* insert before */ 956 ext_debug("insert new index %d before: %llu\n", logical, ptr); 957 ix = curp->p_idx; 958 } 959 960 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 961 BUG_ON(len < 0); 962 if (len > 0) { 963 ext_debug("insert new index %d: " 964 "move %d indices from 0x%p to 0x%p\n", 965 logical, len, ix, ix + 1); 966 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 967 } 968 969 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 970 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 971 return -EIO; 972 } 973 974 ix->ei_block = cpu_to_le32(logical); 975 ext4_idx_store_pblock(ix, ptr); 976 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 977 978 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 979 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 980 return -EIO; 981 } 982 983 err = ext4_ext_dirty(handle, inode, curp); 984 ext4_std_error(inode->i_sb, err); 985 986 return err; 987 } 988 989 /* 990 * ext4_ext_split: 991 * inserts new subtree into the path, using free index entry 992 * at depth @at: 993 * - allocates all needed blocks (new leaf and all intermediate index blocks) 994 * - makes decision where to split 995 * - moves remaining extents and index entries (right to the split point) 996 * into the newly allocated blocks 997 * - initializes subtree 998 */ 999 static int ext4_ext_split(handle_t *handle, struct inode *inode, 1000 unsigned int flags, 1001 struct ext4_ext_path *path, 1002 struct ext4_extent *newext, int at) 1003 { 1004 struct buffer_head *bh = NULL; 1005 int depth = ext_depth(inode); 1006 struct ext4_extent_header *neh; 1007 struct ext4_extent_idx *fidx; 1008 int i = at, k, m, a; 1009 ext4_fsblk_t newblock, oldblock; 1010 __le32 border; 1011 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1012 int err = 0; 1013 1014 /* make decision: where to split? */ 1015 /* FIXME: now decision is simplest: at current extent */ 1016 1017 /* if current leaf will be split, then we should use 1018 * border from split point */ 1019 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1020 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1021 return -EIO; 1022 } 1023 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1024 border = path[depth].p_ext[1].ee_block; 1025 ext_debug("leaf will be split." 1026 " next leaf starts at %d\n", 1027 le32_to_cpu(border)); 1028 } else { 1029 border = newext->ee_block; 1030 ext_debug("leaf will be added." 1031 " next leaf starts at %d\n", 1032 le32_to_cpu(border)); 1033 } 1034 1035 /* 1036 * If error occurs, then we break processing 1037 * and mark filesystem read-only. index won't 1038 * be inserted and tree will be in consistent 1039 * state. Next mount will repair buffers too. 1040 */ 1041 1042 /* 1043 * Get array to track all allocated blocks. 1044 * We need this to handle errors and free blocks 1045 * upon them. 1046 */ 1047 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 1048 if (!ablocks) 1049 return -ENOMEM; 1050 1051 /* allocate all needed blocks */ 1052 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1053 for (a = 0; a < depth - at; a++) { 1054 newblock = ext4_ext_new_meta_block(handle, inode, path, 1055 newext, &err, flags); 1056 if (newblock == 0) 1057 goto cleanup; 1058 ablocks[a] = newblock; 1059 } 1060 1061 /* initialize new leaf */ 1062 newblock = ablocks[--a]; 1063 if (unlikely(newblock == 0)) { 1064 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1065 err = -EIO; 1066 goto cleanup; 1067 } 1068 bh = sb_getblk(inode->i_sb, newblock); 1069 if (unlikely(!bh)) { 1070 err = -ENOMEM; 1071 goto cleanup; 1072 } 1073 lock_buffer(bh); 1074 1075 err = ext4_journal_get_create_access(handle, bh); 1076 if (err) 1077 goto cleanup; 1078 1079 neh = ext_block_hdr(bh); 1080 neh->eh_entries = 0; 1081 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1082 neh->eh_magic = EXT4_EXT_MAGIC; 1083 neh->eh_depth = 0; 1084 1085 /* move remainder of path[depth] to the new leaf */ 1086 if (unlikely(path[depth].p_hdr->eh_entries != 1087 path[depth].p_hdr->eh_max)) { 1088 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1089 path[depth].p_hdr->eh_entries, 1090 path[depth].p_hdr->eh_max); 1091 err = -EIO; 1092 goto cleanup; 1093 } 1094 /* start copy from next extent */ 1095 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1096 ext4_ext_show_move(inode, path, newblock, depth); 1097 if (m) { 1098 struct ext4_extent *ex; 1099 ex = EXT_FIRST_EXTENT(neh); 1100 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1101 le16_add_cpu(&neh->eh_entries, m); 1102 } 1103 1104 ext4_extent_block_csum_set(inode, neh); 1105 set_buffer_uptodate(bh); 1106 unlock_buffer(bh); 1107 1108 err = ext4_handle_dirty_metadata(handle, inode, bh); 1109 if (err) 1110 goto cleanup; 1111 brelse(bh); 1112 bh = NULL; 1113 1114 /* correct old leaf */ 1115 if (m) { 1116 err = ext4_ext_get_access(handle, inode, path + depth); 1117 if (err) 1118 goto cleanup; 1119 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1120 err = ext4_ext_dirty(handle, inode, path + depth); 1121 if (err) 1122 goto cleanup; 1123 1124 } 1125 1126 /* create intermediate indexes */ 1127 k = depth - at - 1; 1128 if (unlikely(k < 0)) { 1129 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1130 err = -EIO; 1131 goto cleanup; 1132 } 1133 if (k) 1134 ext_debug("create %d intermediate indices\n", k); 1135 /* insert new index into current index block */ 1136 /* current depth stored in i var */ 1137 i = depth - 1; 1138 while (k--) { 1139 oldblock = newblock; 1140 newblock = ablocks[--a]; 1141 bh = sb_getblk(inode->i_sb, newblock); 1142 if (unlikely(!bh)) { 1143 err = -ENOMEM; 1144 goto cleanup; 1145 } 1146 lock_buffer(bh); 1147 1148 err = ext4_journal_get_create_access(handle, bh); 1149 if (err) 1150 goto cleanup; 1151 1152 neh = ext_block_hdr(bh); 1153 neh->eh_entries = cpu_to_le16(1); 1154 neh->eh_magic = EXT4_EXT_MAGIC; 1155 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1156 neh->eh_depth = cpu_to_le16(depth - i); 1157 fidx = EXT_FIRST_INDEX(neh); 1158 fidx->ei_block = border; 1159 ext4_idx_store_pblock(fidx, oldblock); 1160 1161 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1162 i, newblock, le32_to_cpu(border), oldblock); 1163 1164 /* move remainder of path[i] to the new index block */ 1165 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1166 EXT_LAST_INDEX(path[i].p_hdr))) { 1167 EXT4_ERROR_INODE(inode, 1168 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1169 le32_to_cpu(path[i].p_ext->ee_block)); 1170 err = -EIO; 1171 goto cleanup; 1172 } 1173 /* start copy indexes */ 1174 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1175 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1176 EXT_MAX_INDEX(path[i].p_hdr)); 1177 ext4_ext_show_move(inode, path, newblock, i); 1178 if (m) { 1179 memmove(++fidx, path[i].p_idx, 1180 sizeof(struct ext4_extent_idx) * m); 1181 le16_add_cpu(&neh->eh_entries, m); 1182 } 1183 ext4_extent_block_csum_set(inode, neh); 1184 set_buffer_uptodate(bh); 1185 unlock_buffer(bh); 1186 1187 err = ext4_handle_dirty_metadata(handle, inode, bh); 1188 if (err) 1189 goto cleanup; 1190 brelse(bh); 1191 bh = NULL; 1192 1193 /* correct old index */ 1194 if (m) { 1195 err = ext4_ext_get_access(handle, inode, path + i); 1196 if (err) 1197 goto cleanup; 1198 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1199 err = ext4_ext_dirty(handle, inode, path + i); 1200 if (err) 1201 goto cleanup; 1202 } 1203 1204 i--; 1205 } 1206 1207 /* insert new index */ 1208 err = ext4_ext_insert_index(handle, inode, path + at, 1209 le32_to_cpu(border), newblock); 1210 1211 cleanup: 1212 if (bh) { 1213 if (buffer_locked(bh)) 1214 unlock_buffer(bh); 1215 brelse(bh); 1216 } 1217 1218 if (err) { 1219 /* free all allocated blocks in error case */ 1220 for (i = 0; i < depth; i++) { 1221 if (!ablocks[i]) 1222 continue; 1223 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1224 EXT4_FREE_BLOCKS_METADATA); 1225 } 1226 } 1227 kfree(ablocks); 1228 1229 return err; 1230 } 1231 1232 /* 1233 * ext4_ext_grow_indepth: 1234 * implements tree growing procedure: 1235 * - allocates new block 1236 * - moves top-level data (index block or leaf) into the new block 1237 * - initializes new top-level, creating index that points to the 1238 * just created block 1239 */ 1240 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1241 unsigned int flags, 1242 struct ext4_extent *newext) 1243 { 1244 struct ext4_extent_header *neh; 1245 struct buffer_head *bh; 1246 ext4_fsblk_t newblock; 1247 int err = 0; 1248 1249 newblock = ext4_ext_new_meta_block(handle, inode, NULL, 1250 newext, &err, flags); 1251 if (newblock == 0) 1252 return err; 1253 1254 bh = sb_getblk(inode->i_sb, newblock); 1255 if (unlikely(!bh)) 1256 return -ENOMEM; 1257 lock_buffer(bh); 1258 1259 err = ext4_journal_get_create_access(handle, bh); 1260 if (err) { 1261 unlock_buffer(bh); 1262 goto out; 1263 } 1264 1265 /* move top-level index/leaf into new block */ 1266 memmove(bh->b_data, EXT4_I(inode)->i_data, 1267 sizeof(EXT4_I(inode)->i_data)); 1268 1269 /* set size of new block */ 1270 neh = ext_block_hdr(bh); 1271 /* old root could have indexes or leaves 1272 * so calculate e_max right way */ 1273 if (ext_depth(inode)) 1274 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1275 else 1276 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1277 neh->eh_magic = EXT4_EXT_MAGIC; 1278 ext4_extent_block_csum_set(inode, neh); 1279 set_buffer_uptodate(bh); 1280 unlock_buffer(bh); 1281 1282 err = ext4_handle_dirty_metadata(handle, inode, bh); 1283 if (err) 1284 goto out; 1285 1286 /* Update top-level index: num,max,pointer */ 1287 neh = ext_inode_hdr(inode); 1288 neh->eh_entries = cpu_to_le16(1); 1289 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1290 if (neh->eh_depth == 0) { 1291 /* Root extent block becomes index block */ 1292 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1293 EXT_FIRST_INDEX(neh)->ei_block = 1294 EXT_FIRST_EXTENT(neh)->ee_block; 1295 } 1296 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1297 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1298 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1299 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1300 1301 le16_add_cpu(&neh->eh_depth, 1); 1302 ext4_mark_inode_dirty(handle, inode); 1303 out: 1304 brelse(bh); 1305 1306 return err; 1307 } 1308 1309 /* 1310 * ext4_ext_create_new_leaf: 1311 * finds empty index and adds new leaf. 1312 * if no free index is found, then it requests in-depth growing. 1313 */ 1314 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1315 unsigned int mb_flags, 1316 unsigned int gb_flags, 1317 struct ext4_ext_path *path, 1318 struct ext4_extent *newext) 1319 { 1320 struct ext4_ext_path *curp; 1321 int depth, i, err = 0; 1322 1323 repeat: 1324 i = depth = ext_depth(inode); 1325 1326 /* walk up to the tree and look for free index entry */ 1327 curp = path + depth; 1328 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1329 i--; 1330 curp--; 1331 } 1332 1333 /* we use already allocated block for index block, 1334 * so subsequent data blocks should be contiguous */ 1335 if (EXT_HAS_FREE_INDEX(curp)) { 1336 /* if we found index with free entry, then use that 1337 * entry: create all needed subtree and add new leaf */ 1338 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1339 if (err) 1340 goto out; 1341 1342 /* refill path */ 1343 ext4_ext_drop_refs(path); 1344 path = ext4_ext_find_extent(inode, 1345 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1346 path, gb_flags); 1347 if (IS_ERR(path)) 1348 err = PTR_ERR(path); 1349 } else { 1350 /* tree is full, time to grow in depth */ 1351 err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext); 1352 if (err) 1353 goto out; 1354 1355 /* refill path */ 1356 ext4_ext_drop_refs(path); 1357 path = ext4_ext_find_extent(inode, 1358 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1359 path, gb_flags); 1360 if (IS_ERR(path)) { 1361 err = PTR_ERR(path); 1362 goto out; 1363 } 1364 1365 /* 1366 * only first (depth 0 -> 1) produces free space; 1367 * in all other cases we have to split the grown tree 1368 */ 1369 depth = ext_depth(inode); 1370 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1371 /* now we need to split */ 1372 goto repeat; 1373 } 1374 } 1375 1376 out: 1377 return err; 1378 } 1379 1380 /* 1381 * search the closest allocated block to the left for *logical 1382 * and returns it at @logical + it's physical address at @phys 1383 * if *logical is the smallest allocated block, the function 1384 * returns 0 at @phys 1385 * return value contains 0 (success) or error code 1386 */ 1387 static int ext4_ext_search_left(struct inode *inode, 1388 struct ext4_ext_path *path, 1389 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1390 { 1391 struct ext4_extent_idx *ix; 1392 struct ext4_extent *ex; 1393 int depth, ee_len; 1394 1395 if (unlikely(path == NULL)) { 1396 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1397 return -EIO; 1398 } 1399 depth = path->p_depth; 1400 *phys = 0; 1401 1402 if (depth == 0 && path->p_ext == NULL) 1403 return 0; 1404 1405 /* usually extent in the path covers blocks smaller 1406 * then *logical, but it can be that extent is the 1407 * first one in the file */ 1408 1409 ex = path[depth].p_ext; 1410 ee_len = ext4_ext_get_actual_len(ex); 1411 if (*logical < le32_to_cpu(ex->ee_block)) { 1412 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1413 EXT4_ERROR_INODE(inode, 1414 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1415 *logical, le32_to_cpu(ex->ee_block)); 1416 return -EIO; 1417 } 1418 while (--depth >= 0) { 1419 ix = path[depth].p_idx; 1420 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1421 EXT4_ERROR_INODE(inode, 1422 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1423 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1424 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1425 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1426 depth); 1427 return -EIO; 1428 } 1429 } 1430 return 0; 1431 } 1432 1433 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1434 EXT4_ERROR_INODE(inode, 1435 "logical %d < ee_block %d + ee_len %d!", 1436 *logical, le32_to_cpu(ex->ee_block), ee_len); 1437 return -EIO; 1438 } 1439 1440 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1441 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1442 return 0; 1443 } 1444 1445 /* 1446 * search the closest allocated block to the right for *logical 1447 * and returns it at @logical + it's physical address at @phys 1448 * if *logical is the largest allocated block, the function 1449 * returns 0 at @phys 1450 * return value contains 0 (success) or error code 1451 */ 1452 static int ext4_ext_search_right(struct inode *inode, 1453 struct ext4_ext_path *path, 1454 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1455 struct ext4_extent **ret_ex) 1456 { 1457 struct buffer_head *bh = NULL; 1458 struct ext4_extent_header *eh; 1459 struct ext4_extent_idx *ix; 1460 struct ext4_extent *ex; 1461 ext4_fsblk_t block; 1462 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1463 int ee_len; 1464 1465 if (unlikely(path == NULL)) { 1466 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1467 return -EIO; 1468 } 1469 depth = path->p_depth; 1470 *phys = 0; 1471 1472 if (depth == 0 && path->p_ext == NULL) 1473 return 0; 1474 1475 /* usually extent in the path covers blocks smaller 1476 * then *logical, but it can be that extent is the 1477 * first one in the file */ 1478 1479 ex = path[depth].p_ext; 1480 ee_len = ext4_ext_get_actual_len(ex); 1481 if (*logical < le32_to_cpu(ex->ee_block)) { 1482 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1483 EXT4_ERROR_INODE(inode, 1484 "first_extent(path[%d].p_hdr) != ex", 1485 depth); 1486 return -EIO; 1487 } 1488 while (--depth >= 0) { 1489 ix = path[depth].p_idx; 1490 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1491 EXT4_ERROR_INODE(inode, 1492 "ix != EXT_FIRST_INDEX *logical %d!", 1493 *logical); 1494 return -EIO; 1495 } 1496 } 1497 goto found_extent; 1498 } 1499 1500 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1501 EXT4_ERROR_INODE(inode, 1502 "logical %d < ee_block %d + ee_len %d!", 1503 *logical, le32_to_cpu(ex->ee_block), ee_len); 1504 return -EIO; 1505 } 1506 1507 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1508 /* next allocated block in this leaf */ 1509 ex++; 1510 goto found_extent; 1511 } 1512 1513 /* go up and search for index to the right */ 1514 while (--depth >= 0) { 1515 ix = path[depth].p_idx; 1516 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1517 goto got_index; 1518 } 1519 1520 /* we've gone up to the root and found no index to the right */ 1521 return 0; 1522 1523 got_index: 1524 /* we've found index to the right, let's 1525 * follow it and find the closest allocated 1526 * block to the right */ 1527 ix++; 1528 block = ext4_idx_pblock(ix); 1529 while (++depth < path->p_depth) { 1530 /* subtract from p_depth to get proper eh_depth */ 1531 bh = read_extent_tree_block(inode, block, 1532 path->p_depth - depth, 0); 1533 if (IS_ERR(bh)) 1534 return PTR_ERR(bh); 1535 eh = ext_block_hdr(bh); 1536 ix = EXT_FIRST_INDEX(eh); 1537 block = ext4_idx_pblock(ix); 1538 put_bh(bh); 1539 } 1540 1541 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1542 if (IS_ERR(bh)) 1543 return PTR_ERR(bh); 1544 eh = ext_block_hdr(bh); 1545 ex = EXT_FIRST_EXTENT(eh); 1546 found_extent: 1547 *logical = le32_to_cpu(ex->ee_block); 1548 *phys = ext4_ext_pblock(ex); 1549 *ret_ex = ex; 1550 if (bh) 1551 put_bh(bh); 1552 return 0; 1553 } 1554 1555 /* 1556 * ext4_ext_next_allocated_block: 1557 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1558 * NOTE: it considers block number from index entry as 1559 * allocated block. Thus, index entries have to be consistent 1560 * with leaves. 1561 */ 1562 static ext4_lblk_t 1563 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1564 { 1565 int depth; 1566 1567 BUG_ON(path == NULL); 1568 depth = path->p_depth; 1569 1570 if (depth == 0 && path->p_ext == NULL) 1571 return EXT_MAX_BLOCKS; 1572 1573 while (depth >= 0) { 1574 if (depth == path->p_depth) { 1575 /* leaf */ 1576 if (path[depth].p_ext && 1577 path[depth].p_ext != 1578 EXT_LAST_EXTENT(path[depth].p_hdr)) 1579 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1580 } else { 1581 /* index */ 1582 if (path[depth].p_idx != 1583 EXT_LAST_INDEX(path[depth].p_hdr)) 1584 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1585 } 1586 depth--; 1587 } 1588 1589 return EXT_MAX_BLOCKS; 1590 } 1591 1592 /* 1593 * ext4_ext_next_leaf_block: 1594 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1595 */ 1596 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1597 { 1598 int depth; 1599 1600 BUG_ON(path == NULL); 1601 depth = path->p_depth; 1602 1603 /* zero-tree has no leaf blocks at all */ 1604 if (depth == 0) 1605 return EXT_MAX_BLOCKS; 1606 1607 /* go to index block */ 1608 depth--; 1609 1610 while (depth >= 0) { 1611 if (path[depth].p_idx != 1612 EXT_LAST_INDEX(path[depth].p_hdr)) 1613 return (ext4_lblk_t) 1614 le32_to_cpu(path[depth].p_idx[1].ei_block); 1615 depth--; 1616 } 1617 1618 return EXT_MAX_BLOCKS; 1619 } 1620 1621 /* 1622 * ext4_ext_correct_indexes: 1623 * if leaf gets modified and modified extent is first in the leaf, 1624 * then we have to correct all indexes above. 1625 * TODO: do we need to correct tree in all cases? 1626 */ 1627 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1628 struct ext4_ext_path *path) 1629 { 1630 struct ext4_extent_header *eh; 1631 int depth = ext_depth(inode); 1632 struct ext4_extent *ex; 1633 __le32 border; 1634 int k, err = 0; 1635 1636 eh = path[depth].p_hdr; 1637 ex = path[depth].p_ext; 1638 1639 if (unlikely(ex == NULL || eh == NULL)) { 1640 EXT4_ERROR_INODE(inode, 1641 "ex %p == NULL or eh %p == NULL", ex, eh); 1642 return -EIO; 1643 } 1644 1645 if (depth == 0) { 1646 /* there is no tree at all */ 1647 return 0; 1648 } 1649 1650 if (ex != EXT_FIRST_EXTENT(eh)) { 1651 /* we correct tree if first leaf got modified only */ 1652 return 0; 1653 } 1654 1655 /* 1656 * TODO: we need correction if border is smaller than current one 1657 */ 1658 k = depth - 1; 1659 border = path[depth].p_ext->ee_block; 1660 err = ext4_ext_get_access(handle, inode, path + k); 1661 if (err) 1662 return err; 1663 path[k].p_idx->ei_block = border; 1664 err = ext4_ext_dirty(handle, inode, path + k); 1665 if (err) 1666 return err; 1667 1668 while (k--) { 1669 /* change all left-side indexes */ 1670 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1671 break; 1672 err = ext4_ext_get_access(handle, inode, path + k); 1673 if (err) 1674 break; 1675 path[k].p_idx->ei_block = border; 1676 err = ext4_ext_dirty(handle, inode, path + k); 1677 if (err) 1678 break; 1679 } 1680 1681 return err; 1682 } 1683 1684 int 1685 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1686 struct ext4_extent *ex2) 1687 { 1688 unsigned short ext1_ee_len, ext2_ee_len; 1689 1690 /* 1691 * Make sure that both extents are initialized. We don't merge 1692 * unwritten extents so that we can be sure that end_io code has 1693 * the extent that was written properly split out and conversion to 1694 * initialized is trivial. 1695 */ 1696 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1697 return 0; 1698 1699 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1700 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1701 1702 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1703 le32_to_cpu(ex2->ee_block)) 1704 return 0; 1705 1706 /* 1707 * To allow future support for preallocated extents to be added 1708 * as an RO_COMPAT feature, refuse to merge to extents if 1709 * this can result in the top bit of ee_len being set. 1710 */ 1711 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1712 return 0; 1713 if (ext4_ext_is_unwritten(ex1) && 1714 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) || 1715 atomic_read(&EXT4_I(inode)->i_unwritten) || 1716 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN))) 1717 return 0; 1718 #ifdef AGGRESSIVE_TEST 1719 if (ext1_ee_len >= 4) 1720 return 0; 1721 #endif 1722 1723 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1724 return 1; 1725 return 0; 1726 } 1727 1728 /* 1729 * This function tries to merge the "ex" extent to the next extent in the tree. 1730 * It always tries to merge towards right. If you want to merge towards 1731 * left, pass "ex - 1" as argument instead of "ex". 1732 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1733 * 1 if they got merged. 1734 */ 1735 static int ext4_ext_try_to_merge_right(struct inode *inode, 1736 struct ext4_ext_path *path, 1737 struct ext4_extent *ex) 1738 { 1739 struct ext4_extent_header *eh; 1740 unsigned int depth, len; 1741 int merge_done = 0, unwritten; 1742 1743 depth = ext_depth(inode); 1744 BUG_ON(path[depth].p_hdr == NULL); 1745 eh = path[depth].p_hdr; 1746 1747 while (ex < EXT_LAST_EXTENT(eh)) { 1748 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1749 break; 1750 /* merge with next extent! */ 1751 unwritten = ext4_ext_is_unwritten(ex); 1752 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1753 + ext4_ext_get_actual_len(ex + 1)); 1754 if (unwritten) 1755 ext4_ext_mark_unwritten(ex); 1756 1757 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1758 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1759 * sizeof(struct ext4_extent); 1760 memmove(ex + 1, ex + 2, len); 1761 } 1762 le16_add_cpu(&eh->eh_entries, -1); 1763 merge_done = 1; 1764 WARN_ON(eh->eh_entries == 0); 1765 if (!eh->eh_entries) 1766 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1767 } 1768 1769 return merge_done; 1770 } 1771 1772 /* 1773 * This function does a very simple check to see if we can collapse 1774 * an extent tree with a single extent tree leaf block into the inode. 1775 */ 1776 static void ext4_ext_try_to_merge_up(handle_t *handle, 1777 struct inode *inode, 1778 struct ext4_ext_path *path) 1779 { 1780 size_t s; 1781 unsigned max_root = ext4_ext_space_root(inode, 0); 1782 ext4_fsblk_t blk; 1783 1784 if ((path[0].p_depth != 1) || 1785 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1786 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1787 return; 1788 1789 /* 1790 * We need to modify the block allocation bitmap and the block 1791 * group descriptor to release the extent tree block. If we 1792 * can't get the journal credits, give up. 1793 */ 1794 if (ext4_journal_extend(handle, 2)) 1795 return; 1796 1797 /* 1798 * Copy the extent data up to the inode 1799 */ 1800 blk = ext4_idx_pblock(path[0].p_idx); 1801 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1802 sizeof(struct ext4_extent_idx); 1803 s += sizeof(struct ext4_extent_header); 1804 1805 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1806 path[0].p_depth = 0; 1807 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1808 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1809 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1810 1811 brelse(path[1].p_bh); 1812 ext4_free_blocks(handle, inode, NULL, blk, 1, 1813 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1814 } 1815 1816 /* 1817 * This function tries to merge the @ex extent to neighbours in the tree. 1818 * return 1 if merge left else 0. 1819 */ 1820 static void ext4_ext_try_to_merge(handle_t *handle, 1821 struct inode *inode, 1822 struct ext4_ext_path *path, 1823 struct ext4_extent *ex) { 1824 struct ext4_extent_header *eh; 1825 unsigned int depth; 1826 int merge_done = 0; 1827 1828 depth = ext_depth(inode); 1829 BUG_ON(path[depth].p_hdr == NULL); 1830 eh = path[depth].p_hdr; 1831 1832 if (ex > EXT_FIRST_EXTENT(eh)) 1833 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1834 1835 if (!merge_done) 1836 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1837 1838 ext4_ext_try_to_merge_up(handle, inode, path); 1839 } 1840 1841 /* 1842 * check if a portion of the "newext" extent overlaps with an 1843 * existing extent. 1844 * 1845 * If there is an overlap discovered, it updates the length of the newext 1846 * such that there will be no overlap, and then returns 1. 1847 * If there is no overlap found, it returns 0. 1848 */ 1849 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1850 struct inode *inode, 1851 struct ext4_extent *newext, 1852 struct ext4_ext_path *path) 1853 { 1854 ext4_lblk_t b1, b2; 1855 unsigned int depth, len1; 1856 unsigned int ret = 0; 1857 1858 b1 = le32_to_cpu(newext->ee_block); 1859 len1 = ext4_ext_get_actual_len(newext); 1860 depth = ext_depth(inode); 1861 if (!path[depth].p_ext) 1862 goto out; 1863 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1864 1865 /* 1866 * get the next allocated block if the extent in the path 1867 * is before the requested block(s) 1868 */ 1869 if (b2 < b1) { 1870 b2 = ext4_ext_next_allocated_block(path); 1871 if (b2 == EXT_MAX_BLOCKS) 1872 goto out; 1873 b2 = EXT4_LBLK_CMASK(sbi, b2); 1874 } 1875 1876 /* check for wrap through zero on extent logical start block*/ 1877 if (b1 + len1 < b1) { 1878 len1 = EXT_MAX_BLOCKS - b1; 1879 newext->ee_len = cpu_to_le16(len1); 1880 ret = 1; 1881 } 1882 1883 /* check for overlap */ 1884 if (b1 + len1 > b2) { 1885 newext->ee_len = cpu_to_le16(b2 - b1); 1886 ret = 1; 1887 } 1888 out: 1889 return ret; 1890 } 1891 1892 /* 1893 * ext4_ext_insert_extent: 1894 * tries to merge requsted extent into the existing extent or 1895 * inserts requested extent as new one into the tree, 1896 * creating new leaf in the no-space case. 1897 */ 1898 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1899 struct ext4_ext_path *path, 1900 struct ext4_extent *newext, int gb_flags) 1901 { 1902 struct ext4_extent_header *eh; 1903 struct ext4_extent *ex, *fex; 1904 struct ext4_extent *nearex; /* nearest extent */ 1905 struct ext4_ext_path *npath = NULL; 1906 int depth, len, err; 1907 ext4_lblk_t next; 1908 int mb_flags = 0, unwritten; 1909 1910 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1911 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1912 return -EIO; 1913 } 1914 depth = ext_depth(inode); 1915 ex = path[depth].p_ext; 1916 eh = path[depth].p_hdr; 1917 if (unlikely(path[depth].p_hdr == NULL)) { 1918 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1919 return -EIO; 1920 } 1921 1922 /* try to insert block into found extent and return */ 1923 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1924 1925 /* 1926 * Try to see whether we should rather test the extent on 1927 * right from ex, or from the left of ex. This is because 1928 * ext4_ext_find_extent() can return either extent on the 1929 * left, or on the right from the searched position. This 1930 * will make merging more effective. 1931 */ 1932 if (ex < EXT_LAST_EXTENT(eh) && 1933 (le32_to_cpu(ex->ee_block) + 1934 ext4_ext_get_actual_len(ex) < 1935 le32_to_cpu(newext->ee_block))) { 1936 ex += 1; 1937 goto prepend; 1938 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1939 (le32_to_cpu(newext->ee_block) + 1940 ext4_ext_get_actual_len(newext) < 1941 le32_to_cpu(ex->ee_block))) 1942 ex -= 1; 1943 1944 /* Try to append newex to the ex */ 1945 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1946 ext_debug("append [%d]%d block to %u:[%d]%d" 1947 "(from %llu)\n", 1948 ext4_ext_is_unwritten(newext), 1949 ext4_ext_get_actual_len(newext), 1950 le32_to_cpu(ex->ee_block), 1951 ext4_ext_is_unwritten(ex), 1952 ext4_ext_get_actual_len(ex), 1953 ext4_ext_pblock(ex)); 1954 err = ext4_ext_get_access(handle, inode, 1955 path + depth); 1956 if (err) 1957 return err; 1958 unwritten = ext4_ext_is_unwritten(ex); 1959 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1960 + ext4_ext_get_actual_len(newext)); 1961 if (unwritten) 1962 ext4_ext_mark_unwritten(ex); 1963 eh = path[depth].p_hdr; 1964 nearex = ex; 1965 goto merge; 1966 } 1967 1968 prepend: 1969 /* Try to prepend newex to the ex */ 1970 if (ext4_can_extents_be_merged(inode, newext, ex)) { 1971 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 1972 "(from %llu)\n", 1973 le32_to_cpu(newext->ee_block), 1974 ext4_ext_is_unwritten(newext), 1975 ext4_ext_get_actual_len(newext), 1976 le32_to_cpu(ex->ee_block), 1977 ext4_ext_is_unwritten(ex), 1978 ext4_ext_get_actual_len(ex), 1979 ext4_ext_pblock(ex)); 1980 err = ext4_ext_get_access(handle, inode, 1981 path + depth); 1982 if (err) 1983 return err; 1984 1985 unwritten = ext4_ext_is_unwritten(ex); 1986 ex->ee_block = newext->ee_block; 1987 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 1988 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1989 + ext4_ext_get_actual_len(newext)); 1990 if (unwritten) 1991 ext4_ext_mark_unwritten(ex); 1992 eh = path[depth].p_hdr; 1993 nearex = ex; 1994 goto merge; 1995 } 1996 } 1997 1998 depth = ext_depth(inode); 1999 eh = path[depth].p_hdr; 2000 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2001 goto has_space; 2002 2003 /* probably next leaf has space for us? */ 2004 fex = EXT_LAST_EXTENT(eh); 2005 next = EXT_MAX_BLOCKS; 2006 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2007 next = ext4_ext_next_leaf_block(path); 2008 if (next != EXT_MAX_BLOCKS) { 2009 ext_debug("next leaf block - %u\n", next); 2010 BUG_ON(npath != NULL); 2011 npath = ext4_ext_find_extent(inode, next, NULL, 0); 2012 if (IS_ERR(npath)) 2013 return PTR_ERR(npath); 2014 BUG_ON(npath->p_depth != path->p_depth); 2015 eh = npath[depth].p_hdr; 2016 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2017 ext_debug("next leaf isn't full(%d)\n", 2018 le16_to_cpu(eh->eh_entries)); 2019 path = npath; 2020 goto has_space; 2021 } 2022 ext_debug("next leaf has no free space(%d,%d)\n", 2023 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2024 } 2025 2026 /* 2027 * There is no free space in the found leaf. 2028 * We're gonna add a new leaf in the tree. 2029 */ 2030 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2031 mb_flags = EXT4_MB_USE_RESERVED; 2032 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2033 path, newext); 2034 if (err) 2035 goto cleanup; 2036 depth = ext_depth(inode); 2037 eh = path[depth].p_hdr; 2038 2039 has_space: 2040 nearex = path[depth].p_ext; 2041 2042 err = ext4_ext_get_access(handle, inode, path + depth); 2043 if (err) 2044 goto cleanup; 2045 2046 if (!nearex) { 2047 /* there is no extent in this leaf, create first one */ 2048 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2049 le32_to_cpu(newext->ee_block), 2050 ext4_ext_pblock(newext), 2051 ext4_ext_is_unwritten(newext), 2052 ext4_ext_get_actual_len(newext)); 2053 nearex = EXT_FIRST_EXTENT(eh); 2054 } else { 2055 if (le32_to_cpu(newext->ee_block) 2056 > le32_to_cpu(nearex->ee_block)) { 2057 /* Insert after */ 2058 ext_debug("insert %u:%llu:[%d]%d before: " 2059 "nearest %p\n", 2060 le32_to_cpu(newext->ee_block), 2061 ext4_ext_pblock(newext), 2062 ext4_ext_is_unwritten(newext), 2063 ext4_ext_get_actual_len(newext), 2064 nearex); 2065 nearex++; 2066 } else { 2067 /* Insert before */ 2068 BUG_ON(newext->ee_block == nearex->ee_block); 2069 ext_debug("insert %u:%llu:[%d]%d after: " 2070 "nearest %p\n", 2071 le32_to_cpu(newext->ee_block), 2072 ext4_ext_pblock(newext), 2073 ext4_ext_is_unwritten(newext), 2074 ext4_ext_get_actual_len(newext), 2075 nearex); 2076 } 2077 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2078 if (len > 0) { 2079 ext_debug("insert %u:%llu:[%d]%d: " 2080 "move %d extents from 0x%p to 0x%p\n", 2081 le32_to_cpu(newext->ee_block), 2082 ext4_ext_pblock(newext), 2083 ext4_ext_is_unwritten(newext), 2084 ext4_ext_get_actual_len(newext), 2085 len, nearex, nearex + 1); 2086 memmove(nearex + 1, nearex, 2087 len * sizeof(struct ext4_extent)); 2088 } 2089 } 2090 2091 le16_add_cpu(&eh->eh_entries, 1); 2092 path[depth].p_ext = nearex; 2093 nearex->ee_block = newext->ee_block; 2094 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2095 nearex->ee_len = newext->ee_len; 2096 2097 merge: 2098 /* try to merge extents */ 2099 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2100 ext4_ext_try_to_merge(handle, inode, path, nearex); 2101 2102 2103 /* time to correct all indexes above */ 2104 err = ext4_ext_correct_indexes(handle, inode, path); 2105 if (err) 2106 goto cleanup; 2107 2108 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2109 2110 cleanup: 2111 if (npath) { 2112 ext4_ext_drop_refs(npath); 2113 kfree(npath); 2114 } 2115 return err; 2116 } 2117 2118 static int ext4_fill_fiemap_extents(struct inode *inode, 2119 ext4_lblk_t block, ext4_lblk_t num, 2120 struct fiemap_extent_info *fieinfo) 2121 { 2122 struct ext4_ext_path *path = NULL; 2123 struct ext4_extent *ex; 2124 struct extent_status es; 2125 ext4_lblk_t next, next_del, start = 0, end = 0; 2126 ext4_lblk_t last = block + num; 2127 int exists, depth = 0, err = 0; 2128 unsigned int flags = 0; 2129 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2130 2131 while (block < last && block != EXT_MAX_BLOCKS) { 2132 num = last - block; 2133 /* find extent for this block */ 2134 down_read(&EXT4_I(inode)->i_data_sem); 2135 2136 if (path && ext_depth(inode) != depth) { 2137 /* depth was changed. we have to realloc path */ 2138 kfree(path); 2139 path = NULL; 2140 } 2141 2142 path = ext4_ext_find_extent(inode, block, path, 0); 2143 if (IS_ERR(path)) { 2144 up_read(&EXT4_I(inode)->i_data_sem); 2145 err = PTR_ERR(path); 2146 path = NULL; 2147 break; 2148 } 2149 2150 depth = ext_depth(inode); 2151 if (unlikely(path[depth].p_hdr == NULL)) { 2152 up_read(&EXT4_I(inode)->i_data_sem); 2153 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2154 err = -EIO; 2155 break; 2156 } 2157 ex = path[depth].p_ext; 2158 next = ext4_ext_next_allocated_block(path); 2159 ext4_ext_drop_refs(path); 2160 2161 flags = 0; 2162 exists = 0; 2163 if (!ex) { 2164 /* there is no extent yet, so try to allocate 2165 * all requested space */ 2166 start = block; 2167 end = block + num; 2168 } else if (le32_to_cpu(ex->ee_block) > block) { 2169 /* need to allocate space before found extent */ 2170 start = block; 2171 end = le32_to_cpu(ex->ee_block); 2172 if (block + num < end) 2173 end = block + num; 2174 } else if (block >= le32_to_cpu(ex->ee_block) 2175 + ext4_ext_get_actual_len(ex)) { 2176 /* need to allocate space after found extent */ 2177 start = block; 2178 end = block + num; 2179 if (end >= next) 2180 end = next; 2181 } else if (block >= le32_to_cpu(ex->ee_block)) { 2182 /* 2183 * some part of requested space is covered 2184 * by found extent 2185 */ 2186 start = block; 2187 end = le32_to_cpu(ex->ee_block) 2188 + ext4_ext_get_actual_len(ex); 2189 if (block + num < end) 2190 end = block + num; 2191 exists = 1; 2192 } else { 2193 BUG(); 2194 } 2195 BUG_ON(end <= start); 2196 2197 if (!exists) { 2198 es.es_lblk = start; 2199 es.es_len = end - start; 2200 es.es_pblk = 0; 2201 } else { 2202 es.es_lblk = le32_to_cpu(ex->ee_block); 2203 es.es_len = ext4_ext_get_actual_len(ex); 2204 es.es_pblk = ext4_ext_pblock(ex); 2205 if (ext4_ext_is_unwritten(ex)) 2206 flags |= FIEMAP_EXTENT_UNWRITTEN; 2207 } 2208 2209 /* 2210 * Find delayed extent and update es accordingly. We call 2211 * it even in !exists case to find out whether es is the 2212 * last existing extent or not. 2213 */ 2214 next_del = ext4_find_delayed_extent(inode, &es); 2215 if (!exists && next_del) { 2216 exists = 1; 2217 flags |= (FIEMAP_EXTENT_DELALLOC | 2218 FIEMAP_EXTENT_UNKNOWN); 2219 } 2220 up_read(&EXT4_I(inode)->i_data_sem); 2221 2222 if (unlikely(es.es_len == 0)) { 2223 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2224 err = -EIO; 2225 break; 2226 } 2227 2228 /* 2229 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2230 * we need to check next == EXT_MAX_BLOCKS because it is 2231 * possible that an extent is with unwritten and delayed 2232 * status due to when an extent is delayed allocated and 2233 * is allocated by fallocate status tree will track both of 2234 * them in a extent. 2235 * 2236 * So we could return a unwritten and delayed extent, and 2237 * its block is equal to 'next'. 2238 */ 2239 if (next == next_del && next == EXT_MAX_BLOCKS) { 2240 flags |= FIEMAP_EXTENT_LAST; 2241 if (unlikely(next_del != EXT_MAX_BLOCKS || 2242 next != EXT_MAX_BLOCKS)) { 2243 EXT4_ERROR_INODE(inode, 2244 "next extent == %u, next " 2245 "delalloc extent = %u", 2246 next, next_del); 2247 err = -EIO; 2248 break; 2249 } 2250 } 2251 2252 if (exists) { 2253 err = fiemap_fill_next_extent(fieinfo, 2254 (__u64)es.es_lblk << blksize_bits, 2255 (__u64)es.es_pblk << blksize_bits, 2256 (__u64)es.es_len << blksize_bits, 2257 flags); 2258 if (err < 0) 2259 break; 2260 if (err == 1) { 2261 err = 0; 2262 break; 2263 } 2264 } 2265 2266 block = es.es_lblk + es.es_len; 2267 } 2268 2269 if (path) { 2270 ext4_ext_drop_refs(path); 2271 kfree(path); 2272 } 2273 2274 return err; 2275 } 2276 2277 /* 2278 * ext4_ext_put_gap_in_cache: 2279 * calculate boundaries of the gap that the requested block fits into 2280 * and cache this gap 2281 */ 2282 static void 2283 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2284 ext4_lblk_t block) 2285 { 2286 int depth = ext_depth(inode); 2287 unsigned long len = 0; 2288 ext4_lblk_t lblock = 0; 2289 struct ext4_extent *ex; 2290 2291 ex = path[depth].p_ext; 2292 if (ex == NULL) { 2293 /* 2294 * there is no extent yet, so gap is [0;-] and we 2295 * don't cache it 2296 */ 2297 ext_debug("cache gap(whole file):"); 2298 } else if (block < le32_to_cpu(ex->ee_block)) { 2299 lblock = block; 2300 len = le32_to_cpu(ex->ee_block) - block; 2301 ext_debug("cache gap(before): %u [%u:%u]", 2302 block, 2303 le32_to_cpu(ex->ee_block), 2304 ext4_ext_get_actual_len(ex)); 2305 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2306 ext4_es_insert_extent(inode, lblock, len, ~0, 2307 EXTENT_STATUS_HOLE); 2308 } else if (block >= le32_to_cpu(ex->ee_block) 2309 + ext4_ext_get_actual_len(ex)) { 2310 ext4_lblk_t next; 2311 lblock = le32_to_cpu(ex->ee_block) 2312 + ext4_ext_get_actual_len(ex); 2313 2314 next = ext4_ext_next_allocated_block(path); 2315 ext_debug("cache gap(after): [%u:%u] %u", 2316 le32_to_cpu(ex->ee_block), 2317 ext4_ext_get_actual_len(ex), 2318 block); 2319 BUG_ON(next == lblock); 2320 len = next - lblock; 2321 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2322 ext4_es_insert_extent(inode, lblock, len, ~0, 2323 EXTENT_STATUS_HOLE); 2324 } else { 2325 BUG(); 2326 } 2327 2328 ext_debug(" -> %u:%lu\n", lblock, len); 2329 } 2330 2331 /* 2332 * ext4_ext_rm_idx: 2333 * removes index from the index block. 2334 */ 2335 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2336 struct ext4_ext_path *path, int depth) 2337 { 2338 int err; 2339 ext4_fsblk_t leaf; 2340 2341 /* free index block */ 2342 depth--; 2343 path = path + depth; 2344 leaf = ext4_idx_pblock(path->p_idx); 2345 if (unlikely(path->p_hdr->eh_entries == 0)) { 2346 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2347 return -EIO; 2348 } 2349 err = ext4_ext_get_access(handle, inode, path); 2350 if (err) 2351 return err; 2352 2353 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2354 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2355 len *= sizeof(struct ext4_extent_idx); 2356 memmove(path->p_idx, path->p_idx + 1, len); 2357 } 2358 2359 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2360 err = ext4_ext_dirty(handle, inode, path); 2361 if (err) 2362 return err; 2363 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2364 trace_ext4_ext_rm_idx(inode, leaf); 2365 2366 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2367 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2368 2369 while (--depth >= 0) { 2370 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2371 break; 2372 path--; 2373 err = ext4_ext_get_access(handle, inode, path); 2374 if (err) 2375 break; 2376 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2377 err = ext4_ext_dirty(handle, inode, path); 2378 if (err) 2379 break; 2380 } 2381 return err; 2382 } 2383 2384 /* 2385 * ext4_ext_calc_credits_for_single_extent: 2386 * This routine returns max. credits that needed to insert an extent 2387 * to the extent tree. 2388 * When pass the actual path, the caller should calculate credits 2389 * under i_data_sem. 2390 */ 2391 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2392 struct ext4_ext_path *path) 2393 { 2394 if (path) { 2395 int depth = ext_depth(inode); 2396 int ret = 0; 2397 2398 /* probably there is space in leaf? */ 2399 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2400 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2401 2402 /* 2403 * There are some space in the leaf tree, no 2404 * need to account for leaf block credit 2405 * 2406 * bitmaps and block group descriptor blocks 2407 * and other metadata blocks still need to be 2408 * accounted. 2409 */ 2410 /* 1 bitmap, 1 block group descriptor */ 2411 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2412 return ret; 2413 } 2414 } 2415 2416 return ext4_chunk_trans_blocks(inode, nrblocks); 2417 } 2418 2419 /* 2420 * How many index/leaf blocks need to change/allocate to add @extents extents? 2421 * 2422 * If we add a single extent, then in the worse case, each tree level 2423 * index/leaf need to be changed in case of the tree split. 2424 * 2425 * If more extents are inserted, they could cause the whole tree split more 2426 * than once, but this is really rare. 2427 */ 2428 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2429 { 2430 int index; 2431 int depth; 2432 2433 /* If we are converting the inline data, only one is needed here. */ 2434 if (ext4_has_inline_data(inode)) 2435 return 1; 2436 2437 depth = ext_depth(inode); 2438 2439 if (extents <= 1) 2440 index = depth * 2; 2441 else 2442 index = depth * 3; 2443 2444 return index; 2445 } 2446 2447 static inline int get_default_free_blocks_flags(struct inode *inode) 2448 { 2449 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2450 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2451 else if (ext4_should_journal_data(inode)) 2452 return EXT4_FREE_BLOCKS_FORGET; 2453 return 0; 2454 } 2455 2456 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2457 struct ext4_extent *ex, 2458 long long *partial_cluster, 2459 ext4_lblk_t from, ext4_lblk_t to) 2460 { 2461 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2462 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2463 ext4_fsblk_t pblk; 2464 int flags = get_default_free_blocks_flags(inode); 2465 2466 /* 2467 * For bigalloc file systems, we never free a partial cluster 2468 * at the beginning of the extent. Instead, we make a note 2469 * that we tried freeing the cluster, and check to see if we 2470 * need to free it on a subsequent call to ext4_remove_blocks, 2471 * or at the end of the ext4_truncate() operation. 2472 */ 2473 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2474 2475 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2476 /* 2477 * If we have a partial cluster, and it's different from the 2478 * cluster of the last block, we need to explicitly free the 2479 * partial cluster here. 2480 */ 2481 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2482 if ((*partial_cluster > 0) && 2483 (EXT4_B2C(sbi, pblk) != *partial_cluster)) { 2484 ext4_free_blocks(handle, inode, NULL, 2485 EXT4_C2B(sbi, *partial_cluster), 2486 sbi->s_cluster_ratio, flags); 2487 *partial_cluster = 0; 2488 } 2489 2490 #ifdef EXTENTS_STATS 2491 { 2492 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2493 spin_lock(&sbi->s_ext_stats_lock); 2494 sbi->s_ext_blocks += ee_len; 2495 sbi->s_ext_extents++; 2496 if (ee_len < sbi->s_ext_min) 2497 sbi->s_ext_min = ee_len; 2498 if (ee_len > sbi->s_ext_max) 2499 sbi->s_ext_max = ee_len; 2500 if (ext_depth(inode) > sbi->s_depth_max) 2501 sbi->s_depth_max = ext_depth(inode); 2502 spin_unlock(&sbi->s_ext_stats_lock); 2503 } 2504 #endif 2505 if (from >= le32_to_cpu(ex->ee_block) 2506 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2507 /* tail removal */ 2508 ext4_lblk_t num; 2509 unsigned int unaligned; 2510 2511 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2512 pblk = ext4_ext_pblock(ex) + ee_len - num; 2513 /* 2514 * Usually we want to free partial cluster at the end of the 2515 * extent, except for the situation when the cluster is still 2516 * used by any other extent (partial_cluster is negative). 2517 */ 2518 if (*partial_cluster < 0 && 2519 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1)) 2520 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2521 2522 ext_debug("free last %u blocks starting %llu partial %lld\n", 2523 num, pblk, *partial_cluster); 2524 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2525 /* 2526 * If the block range to be freed didn't start at the 2527 * beginning of a cluster, and we removed the entire 2528 * extent and the cluster is not used by any other extent, 2529 * save the partial cluster here, since we might need to 2530 * delete if we determine that the truncate operation has 2531 * removed all of the blocks in the cluster. 2532 * 2533 * On the other hand, if we did not manage to free the whole 2534 * extent, we have to mark the cluster as used (store negative 2535 * cluster number in partial_cluster). 2536 */ 2537 unaligned = EXT4_PBLK_COFF(sbi, pblk); 2538 if (unaligned && (ee_len == num) && 2539 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk)))) 2540 *partial_cluster = EXT4_B2C(sbi, pblk); 2541 else if (unaligned) 2542 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk)); 2543 else if (*partial_cluster > 0) 2544 *partial_cluster = 0; 2545 } else 2546 ext4_error(sbi->s_sb, "strange request: removal(2) " 2547 "%u-%u from %u:%u\n", 2548 from, to, le32_to_cpu(ex->ee_block), ee_len); 2549 return 0; 2550 } 2551 2552 2553 /* 2554 * ext4_ext_rm_leaf() Removes the extents associated with the 2555 * blocks appearing between "start" and "end", and splits the extents 2556 * if "start" and "end" appear in the same extent 2557 * 2558 * @handle: The journal handle 2559 * @inode: The files inode 2560 * @path: The path to the leaf 2561 * @partial_cluster: The cluster which we'll have to free if all extents 2562 * has been released from it. It gets negative in case 2563 * that the cluster is still used. 2564 * @start: The first block to remove 2565 * @end: The last block to remove 2566 */ 2567 static int 2568 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2569 struct ext4_ext_path *path, 2570 long long *partial_cluster, 2571 ext4_lblk_t start, ext4_lblk_t end) 2572 { 2573 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2574 int err = 0, correct_index = 0; 2575 int depth = ext_depth(inode), credits; 2576 struct ext4_extent_header *eh; 2577 ext4_lblk_t a, b; 2578 unsigned num; 2579 ext4_lblk_t ex_ee_block; 2580 unsigned short ex_ee_len; 2581 unsigned unwritten = 0; 2582 struct ext4_extent *ex; 2583 ext4_fsblk_t pblk; 2584 2585 /* the header must be checked already in ext4_ext_remove_space() */ 2586 ext_debug("truncate since %u in leaf to %u\n", start, end); 2587 if (!path[depth].p_hdr) 2588 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2589 eh = path[depth].p_hdr; 2590 if (unlikely(path[depth].p_hdr == NULL)) { 2591 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2592 return -EIO; 2593 } 2594 /* find where to start removing */ 2595 ex = path[depth].p_ext; 2596 if (!ex) 2597 ex = EXT_LAST_EXTENT(eh); 2598 2599 ex_ee_block = le32_to_cpu(ex->ee_block); 2600 ex_ee_len = ext4_ext_get_actual_len(ex); 2601 2602 /* 2603 * If we're starting with an extent other than the last one in the 2604 * node, we need to see if it shares a cluster with the extent to 2605 * the right (towards the end of the file). If its leftmost cluster 2606 * is this extent's rightmost cluster and it is not cluster aligned, 2607 * we'll mark it as a partial that is not to be deallocated. 2608 */ 2609 2610 if (ex != EXT_LAST_EXTENT(eh)) { 2611 ext4_fsblk_t current_pblk, right_pblk; 2612 long long current_cluster, right_cluster; 2613 2614 current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2615 current_cluster = (long long)EXT4_B2C(sbi, current_pblk); 2616 right_pblk = ext4_ext_pblock(ex + 1); 2617 right_cluster = (long long)EXT4_B2C(sbi, right_pblk); 2618 if (current_cluster == right_cluster && 2619 EXT4_PBLK_COFF(sbi, right_pblk)) 2620 *partial_cluster = -right_cluster; 2621 } 2622 2623 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2624 2625 while (ex >= EXT_FIRST_EXTENT(eh) && 2626 ex_ee_block + ex_ee_len > start) { 2627 2628 if (ext4_ext_is_unwritten(ex)) 2629 unwritten = 1; 2630 else 2631 unwritten = 0; 2632 2633 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2634 unwritten, ex_ee_len); 2635 path[depth].p_ext = ex; 2636 2637 a = ex_ee_block > start ? ex_ee_block : start; 2638 b = ex_ee_block+ex_ee_len - 1 < end ? 2639 ex_ee_block+ex_ee_len - 1 : end; 2640 2641 ext_debug(" border %u:%u\n", a, b); 2642 2643 /* If this extent is beyond the end of the hole, skip it */ 2644 if (end < ex_ee_block) { 2645 /* 2646 * We're going to skip this extent and move to another, 2647 * so if this extent is not cluster aligned we have 2648 * to mark the current cluster as used to avoid 2649 * accidentally freeing it later on 2650 */ 2651 pblk = ext4_ext_pblock(ex); 2652 if (EXT4_PBLK_COFF(sbi, pblk)) 2653 *partial_cluster = 2654 -((long long)EXT4_B2C(sbi, pblk)); 2655 ex--; 2656 ex_ee_block = le32_to_cpu(ex->ee_block); 2657 ex_ee_len = ext4_ext_get_actual_len(ex); 2658 continue; 2659 } else if (b != ex_ee_block + ex_ee_len - 1) { 2660 EXT4_ERROR_INODE(inode, 2661 "can not handle truncate %u:%u " 2662 "on extent %u:%u", 2663 start, end, ex_ee_block, 2664 ex_ee_block + ex_ee_len - 1); 2665 err = -EIO; 2666 goto out; 2667 } else if (a != ex_ee_block) { 2668 /* remove tail of the extent */ 2669 num = a - ex_ee_block; 2670 } else { 2671 /* remove whole extent: excellent! */ 2672 num = 0; 2673 } 2674 /* 2675 * 3 for leaf, sb, and inode plus 2 (bmap and group 2676 * descriptor) for each block group; assume two block 2677 * groups plus ex_ee_len/blocks_per_block_group for 2678 * the worst case 2679 */ 2680 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2681 if (ex == EXT_FIRST_EXTENT(eh)) { 2682 correct_index = 1; 2683 credits += (ext_depth(inode)) + 1; 2684 } 2685 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2686 2687 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2688 if (err) 2689 goto out; 2690 2691 err = ext4_ext_get_access(handle, inode, path + depth); 2692 if (err) 2693 goto out; 2694 2695 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2696 a, b); 2697 if (err) 2698 goto out; 2699 2700 if (num == 0) 2701 /* this extent is removed; mark slot entirely unused */ 2702 ext4_ext_store_pblock(ex, 0); 2703 2704 ex->ee_len = cpu_to_le16(num); 2705 /* 2706 * Do not mark unwritten if all the blocks in the 2707 * extent have been removed. 2708 */ 2709 if (unwritten && num) 2710 ext4_ext_mark_unwritten(ex); 2711 /* 2712 * If the extent was completely released, 2713 * we need to remove it from the leaf 2714 */ 2715 if (num == 0) { 2716 if (end != EXT_MAX_BLOCKS - 1) { 2717 /* 2718 * For hole punching, we need to scoot all the 2719 * extents up when an extent is removed so that 2720 * we dont have blank extents in the middle 2721 */ 2722 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2723 sizeof(struct ext4_extent)); 2724 2725 /* Now get rid of the one at the end */ 2726 memset(EXT_LAST_EXTENT(eh), 0, 2727 sizeof(struct ext4_extent)); 2728 } 2729 le16_add_cpu(&eh->eh_entries, -1); 2730 } else if (*partial_cluster > 0) 2731 *partial_cluster = 0; 2732 2733 err = ext4_ext_dirty(handle, inode, path + depth); 2734 if (err) 2735 goto out; 2736 2737 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2738 ext4_ext_pblock(ex)); 2739 ex--; 2740 ex_ee_block = le32_to_cpu(ex->ee_block); 2741 ex_ee_len = ext4_ext_get_actual_len(ex); 2742 } 2743 2744 if (correct_index && eh->eh_entries) 2745 err = ext4_ext_correct_indexes(handle, inode, path); 2746 2747 /* 2748 * If there's a partial cluster and at least one extent remains in 2749 * the leaf, free the partial cluster if it isn't shared with the 2750 * current extent. If there's a partial cluster and no extents 2751 * remain in the leaf, it can't be freed here. It can only be 2752 * freed when it's possible to determine if it's not shared with 2753 * any other extent - when the next leaf is processed or when space 2754 * removal is complete. 2755 */ 2756 if (*partial_cluster > 0 && eh->eh_entries && 2757 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != 2758 *partial_cluster)) { 2759 int flags = get_default_free_blocks_flags(inode); 2760 2761 ext4_free_blocks(handle, inode, NULL, 2762 EXT4_C2B(sbi, *partial_cluster), 2763 sbi->s_cluster_ratio, flags); 2764 *partial_cluster = 0; 2765 } 2766 2767 /* if this leaf is free, then we should 2768 * remove it from index block above */ 2769 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2770 err = ext4_ext_rm_idx(handle, inode, path, depth); 2771 2772 out: 2773 return err; 2774 } 2775 2776 /* 2777 * ext4_ext_more_to_rm: 2778 * returns 1 if current index has to be freed (even partial) 2779 */ 2780 static int 2781 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2782 { 2783 BUG_ON(path->p_idx == NULL); 2784 2785 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2786 return 0; 2787 2788 /* 2789 * if truncate on deeper level happened, it wasn't partial, 2790 * so we have to consider current index for truncation 2791 */ 2792 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2793 return 0; 2794 return 1; 2795 } 2796 2797 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2798 ext4_lblk_t end) 2799 { 2800 struct super_block *sb = inode->i_sb; 2801 int depth = ext_depth(inode); 2802 struct ext4_ext_path *path = NULL; 2803 long long partial_cluster = 0; 2804 handle_t *handle; 2805 int i = 0, err = 0; 2806 2807 ext_debug("truncate since %u to %u\n", start, end); 2808 2809 /* probably first extent we're gonna free will be last in block */ 2810 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2811 if (IS_ERR(handle)) 2812 return PTR_ERR(handle); 2813 2814 again: 2815 trace_ext4_ext_remove_space(inode, start, end, depth); 2816 2817 /* 2818 * Check if we are removing extents inside the extent tree. If that 2819 * is the case, we are going to punch a hole inside the extent tree 2820 * so we have to check whether we need to split the extent covering 2821 * the last block to remove so we can easily remove the part of it 2822 * in ext4_ext_rm_leaf(). 2823 */ 2824 if (end < EXT_MAX_BLOCKS - 1) { 2825 struct ext4_extent *ex; 2826 ext4_lblk_t ee_block; 2827 2828 /* find extent for this block */ 2829 path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2830 if (IS_ERR(path)) { 2831 ext4_journal_stop(handle); 2832 return PTR_ERR(path); 2833 } 2834 depth = ext_depth(inode); 2835 /* Leaf not may not exist only if inode has no blocks at all */ 2836 ex = path[depth].p_ext; 2837 if (!ex) { 2838 if (depth) { 2839 EXT4_ERROR_INODE(inode, 2840 "path[%d].p_hdr == NULL", 2841 depth); 2842 err = -EIO; 2843 } 2844 goto out; 2845 } 2846 2847 ee_block = le32_to_cpu(ex->ee_block); 2848 2849 /* 2850 * See if the last block is inside the extent, if so split 2851 * the extent at 'end' block so we can easily remove the 2852 * tail of the first part of the split extent in 2853 * ext4_ext_rm_leaf(). 2854 */ 2855 if (end >= ee_block && 2856 end < ee_block + ext4_ext_get_actual_len(ex) - 1) { 2857 int split_flag = 0; 2858 2859 if (ext4_ext_is_unwritten(ex)) 2860 split_flag = EXT4_EXT_MARK_UNWRIT1 | 2861 EXT4_EXT_MARK_UNWRIT2; 2862 2863 /* 2864 * Split the extent in two so that 'end' is the last 2865 * block in the first new extent. Also we should not 2866 * fail removing space due to ENOSPC so try to use 2867 * reserved block if that happens. 2868 */ 2869 err = ext4_split_extent_at(handle, inode, path, 2870 end + 1, split_flag, 2871 EXT4_EX_NOCACHE | 2872 EXT4_GET_BLOCKS_PRE_IO | 2873 EXT4_GET_BLOCKS_METADATA_NOFAIL); 2874 2875 if (err < 0) 2876 goto out; 2877 } 2878 } 2879 /* 2880 * We start scanning from right side, freeing all the blocks 2881 * after i_size and walking into the tree depth-wise. 2882 */ 2883 depth = ext_depth(inode); 2884 if (path) { 2885 int k = i = depth; 2886 while (--k > 0) 2887 path[k].p_block = 2888 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2889 } else { 2890 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2891 GFP_NOFS); 2892 if (path == NULL) { 2893 ext4_journal_stop(handle); 2894 return -ENOMEM; 2895 } 2896 path[0].p_depth = depth; 2897 path[0].p_hdr = ext_inode_hdr(inode); 2898 i = 0; 2899 2900 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2901 err = -EIO; 2902 goto out; 2903 } 2904 } 2905 err = 0; 2906 2907 while (i >= 0 && err == 0) { 2908 if (i == depth) { 2909 /* this is leaf block */ 2910 err = ext4_ext_rm_leaf(handle, inode, path, 2911 &partial_cluster, start, 2912 end); 2913 /* root level has p_bh == NULL, brelse() eats this */ 2914 brelse(path[i].p_bh); 2915 path[i].p_bh = NULL; 2916 i--; 2917 continue; 2918 } 2919 2920 /* this is index block */ 2921 if (!path[i].p_hdr) { 2922 ext_debug("initialize header\n"); 2923 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2924 } 2925 2926 if (!path[i].p_idx) { 2927 /* this level hasn't been touched yet */ 2928 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2929 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2930 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2931 path[i].p_hdr, 2932 le16_to_cpu(path[i].p_hdr->eh_entries)); 2933 } else { 2934 /* we were already here, see at next index */ 2935 path[i].p_idx--; 2936 } 2937 2938 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2939 i, EXT_FIRST_INDEX(path[i].p_hdr), 2940 path[i].p_idx); 2941 if (ext4_ext_more_to_rm(path + i)) { 2942 struct buffer_head *bh; 2943 /* go to the next level */ 2944 ext_debug("move to level %d (block %llu)\n", 2945 i + 1, ext4_idx_pblock(path[i].p_idx)); 2946 memset(path + i + 1, 0, sizeof(*path)); 2947 bh = read_extent_tree_block(inode, 2948 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 2949 EXT4_EX_NOCACHE); 2950 if (IS_ERR(bh)) { 2951 /* should we reset i_size? */ 2952 err = PTR_ERR(bh); 2953 break; 2954 } 2955 /* Yield here to deal with large extent trees. 2956 * Should be a no-op if we did IO above. */ 2957 cond_resched(); 2958 if (WARN_ON(i + 1 > depth)) { 2959 err = -EIO; 2960 break; 2961 } 2962 path[i + 1].p_bh = bh; 2963 2964 /* save actual number of indexes since this 2965 * number is changed at the next iteration */ 2966 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2967 i++; 2968 } else { 2969 /* we finished processing this index, go up */ 2970 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2971 /* index is empty, remove it; 2972 * handle must be already prepared by the 2973 * truncatei_leaf() */ 2974 err = ext4_ext_rm_idx(handle, inode, path, i); 2975 } 2976 /* root level has p_bh == NULL, brelse() eats this */ 2977 brelse(path[i].p_bh); 2978 path[i].p_bh = NULL; 2979 i--; 2980 ext_debug("return to level %d\n", i); 2981 } 2982 } 2983 2984 trace_ext4_ext_remove_space_done(inode, start, end, depth, 2985 partial_cluster, path->p_hdr->eh_entries); 2986 2987 /* If we still have something in the partial cluster and we have removed 2988 * even the first extent, then we should free the blocks in the partial 2989 * cluster as well. */ 2990 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) { 2991 int flags = get_default_free_blocks_flags(inode); 2992 2993 ext4_free_blocks(handle, inode, NULL, 2994 EXT4_C2B(EXT4_SB(sb), partial_cluster), 2995 EXT4_SB(sb)->s_cluster_ratio, flags); 2996 partial_cluster = 0; 2997 } 2998 2999 /* TODO: flexible tree reduction should be here */ 3000 if (path->p_hdr->eh_entries == 0) { 3001 /* 3002 * truncate to zero freed all the tree, 3003 * so we need to correct eh_depth 3004 */ 3005 err = ext4_ext_get_access(handle, inode, path); 3006 if (err == 0) { 3007 ext_inode_hdr(inode)->eh_depth = 0; 3008 ext_inode_hdr(inode)->eh_max = 3009 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3010 err = ext4_ext_dirty(handle, inode, path); 3011 } 3012 } 3013 out: 3014 ext4_ext_drop_refs(path); 3015 kfree(path); 3016 if (err == -EAGAIN) { 3017 path = NULL; 3018 goto again; 3019 } 3020 ext4_journal_stop(handle); 3021 3022 return err; 3023 } 3024 3025 /* 3026 * called at mount time 3027 */ 3028 void ext4_ext_init(struct super_block *sb) 3029 { 3030 /* 3031 * possible initialization would be here 3032 */ 3033 3034 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 3035 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3036 printk(KERN_INFO "EXT4-fs: file extents enabled" 3037 #ifdef AGGRESSIVE_TEST 3038 ", aggressive tests" 3039 #endif 3040 #ifdef CHECK_BINSEARCH 3041 ", check binsearch" 3042 #endif 3043 #ifdef EXTENTS_STATS 3044 ", stats" 3045 #endif 3046 "\n"); 3047 #endif 3048 #ifdef EXTENTS_STATS 3049 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3050 EXT4_SB(sb)->s_ext_min = 1 << 30; 3051 EXT4_SB(sb)->s_ext_max = 0; 3052 #endif 3053 } 3054 } 3055 3056 /* 3057 * called at umount time 3058 */ 3059 void ext4_ext_release(struct super_block *sb) 3060 { 3061 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3062 return; 3063 3064 #ifdef EXTENTS_STATS 3065 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3066 struct ext4_sb_info *sbi = EXT4_SB(sb); 3067 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3068 sbi->s_ext_blocks, sbi->s_ext_extents, 3069 sbi->s_ext_blocks / sbi->s_ext_extents); 3070 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3071 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3072 } 3073 #endif 3074 } 3075 3076 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3077 { 3078 ext4_lblk_t ee_block; 3079 ext4_fsblk_t ee_pblock; 3080 unsigned int ee_len; 3081 3082 ee_block = le32_to_cpu(ex->ee_block); 3083 ee_len = ext4_ext_get_actual_len(ex); 3084 ee_pblock = ext4_ext_pblock(ex); 3085 3086 if (ee_len == 0) 3087 return 0; 3088 3089 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3090 EXTENT_STATUS_WRITTEN); 3091 } 3092 3093 /* FIXME!! we need to try to merge to left or right after zero-out */ 3094 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3095 { 3096 ext4_fsblk_t ee_pblock; 3097 unsigned int ee_len; 3098 int ret; 3099 3100 ee_len = ext4_ext_get_actual_len(ex); 3101 ee_pblock = ext4_ext_pblock(ex); 3102 3103 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 3104 if (ret > 0) 3105 ret = 0; 3106 3107 return ret; 3108 } 3109 3110 /* 3111 * ext4_split_extent_at() splits an extent at given block. 3112 * 3113 * @handle: the journal handle 3114 * @inode: the file inode 3115 * @path: the path to the extent 3116 * @split: the logical block where the extent is splitted. 3117 * @split_flags: indicates if the extent could be zeroout if split fails, and 3118 * the states(init or unwritten) of new extents. 3119 * @flags: flags used to insert new extent to extent tree. 3120 * 3121 * 3122 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3123 * of which are deterimined by split_flag. 3124 * 3125 * There are two cases: 3126 * a> the extent are splitted into two extent. 3127 * b> split is not needed, and just mark the extent. 3128 * 3129 * return 0 on success. 3130 */ 3131 static int ext4_split_extent_at(handle_t *handle, 3132 struct inode *inode, 3133 struct ext4_ext_path *path, 3134 ext4_lblk_t split, 3135 int split_flag, 3136 int flags) 3137 { 3138 ext4_fsblk_t newblock; 3139 ext4_lblk_t ee_block; 3140 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3141 struct ext4_extent *ex2 = NULL; 3142 unsigned int ee_len, depth; 3143 int err = 0; 3144 3145 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3146 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3147 3148 ext_debug("ext4_split_extents_at: inode %lu, logical" 3149 "block %llu\n", inode->i_ino, (unsigned long long)split); 3150 3151 ext4_ext_show_leaf(inode, path); 3152 3153 depth = ext_depth(inode); 3154 ex = path[depth].p_ext; 3155 ee_block = le32_to_cpu(ex->ee_block); 3156 ee_len = ext4_ext_get_actual_len(ex); 3157 newblock = split - ee_block + ext4_ext_pblock(ex); 3158 3159 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3160 BUG_ON(!ext4_ext_is_unwritten(ex) && 3161 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3162 EXT4_EXT_MARK_UNWRIT1 | 3163 EXT4_EXT_MARK_UNWRIT2)); 3164 3165 err = ext4_ext_get_access(handle, inode, path + depth); 3166 if (err) 3167 goto out; 3168 3169 if (split == ee_block) { 3170 /* 3171 * case b: block @split is the block that the extent begins with 3172 * then we just change the state of the extent, and splitting 3173 * is not needed. 3174 */ 3175 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3176 ext4_ext_mark_unwritten(ex); 3177 else 3178 ext4_ext_mark_initialized(ex); 3179 3180 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3181 ext4_ext_try_to_merge(handle, inode, path, ex); 3182 3183 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3184 goto out; 3185 } 3186 3187 /* case a */ 3188 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3189 ex->ee_len = cpu_to_le16(split - ee_block); 3190 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3191 ext4_ext_mark_unwritten(ex); 3192 3193 /* 3194 * path may lead to new leaf, not to original leaf any more 3195 * after ext4_ext_insert_extent() returns, 3196 */ 3197 err = ext4_ext_dirty(handle, inode, path + depth); 3198 if (err) 3199 goto fix_extent_len; 3200 3201 ex2 = &newex; 3202 ex2->ee_block = cpu_to_le32(split); 3203 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3204 ext4_ext_store_pblock(ex2, newblock); 3205 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3206 ext4_ext_mark_unwritten(ex2); 3207 3208 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 3209 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3210 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3211 if (split_flag & EXT4_EXT_DATA_VALID1) { 3212 err = ext4_ext_zeroout(inode, ex2); 3213 zero_ex.ee_block = ex2->ee_block; 3214 zero_ex.ee_len = cpu_to_le16( 3215 ext4_ext_get_actual_len(ex2)); 3216 ext4_ext_store_pblock(&zero_ex, 3217 ext4_ext_pblock(ex2)); 3218 } else { 3219 err = ext4_ext_zeroout(inode, ex); 3220 zero_ex.ee_block = ex->ee_block; 3221 zero_ex.ee_len = cpu_to_le16( 3222 ext4_ext_get_actual_len(ex)); 3223 ext4_ext_store_pblock(&zero_ex, 3224 ext4_ext_pblock(ex)); 3225 } 3226 } else { 3227 err = ext4_ext_zeroout(inode, &orig_ex); 3228 zero_ex.ee_block = orig_ex.ee_block; 3229 zero_ex.ee_len = cpu_to_le16( 3230 ext4_ext_get_actual_len(&orig_ex)); 3231 ext4_ext_store_pblock(&zero_ex, 3232 ext4_ext_pblock(&orig_ex)); 3233 } 3234 3235 if (err) 3236 goto fix_extent_len; 3237 /* update the extent length and mark as initialized */ 3238 ex->ee_len = cpu_to_le16(ee_len); 3239 ext4_ext_try_to_merge(handle, inode, path, ex); 3240 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3241 if (err) 3242 goto fix_extent_len; 3243 3244 /* update extent status tree */ 3245 err = ext4_zeroout_es(inode, &zero_ex); 3246 3247 goto out; 3248 } else if (err) 3249 goto fix_extent_len; 3250 3251 out: 3252 ext4_ext_show_leaf(inode, path); 3253 return err; 3254 3255 fix_extent_len: 3256 ex->ee_len = orig_ex.ee_len; 3257 ext4_ext_dirty(handle, inode, path + path->p_depth); 3258 return err; 3259 } 3260 3261 /* 3262 * ext4_split_extents() splits an extent and mark extent which is covered 3263 * by @map as split_flags indicates 3264 * 3265 * It may result in splitting the extent into multiple extents (up to three) 3266 * There are three possibilities: 3267 * a> There is no split required 3268 * b> Splits in two extents: Split is happening at either end of the extent 3269 * c> Splits in three extents: Somone is splitting in middle of the extent 3270 * 3271 */ 3272 static int ext4_split_extent(handle_t *handle, 3273 struct inode *inode, 3274 struct ext4_ext_path *path, 3275 struct ext4_map_blocks *map, 3276 int split_flag, 3277 int flags) 3278 { 3279 ext4_lblk_t ee_block; 3280 struct ext4_extent *ex; 3281 unsigned int ee_len, depth; 3282 int err = 0; 3283 int unwritten; 3284 int split_flag1, flags1; 3285 int allocated = map->m_len; 3286 3287 depth = ext_depth(inode); 3288 ex = path[depth].p_ext; 3289 ee_block = le32_to_cpu(ex->ee_block); 3290 ee_len = ext4_ext_get_actual_len(ex); 3291 unwritten = ext4_ext_is_unwritten(ex); 3292 3293 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3294 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3295 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3296 if (unwritten) 3297 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3298 EXT4_EXT_MARK_UNWRIT2; 3299 if (split_flag & EXT4_EXT_DATA_VALID2) 3300 split_flag1 |= EXT4_EXT_DATA_VALID1; 3301 err = ext4_split_extent_at(handle, inode, path, 3302 map->m_lblk + map->m_len, split_flag1, flags1); 3303 if (err) 3304 goto out; 3305 } else { 3306 allocated = ee_len - (map->m_lblk - ee_block); 3307 } 3308 /* 3309 * Update path is required because previous ext4_split_extent_at() may 3310 * result in split of original leaf or extent zeroout. 3311 */ 3312 ext4_ext_drop_refs(path); 3313 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0); 3314 if (IS_ERR(path)) 3315 return PTR_ERR(path); 3316 depth = ext_depth(inode); 3317 ex = path[depth].p_ext; 3318 if (!ex) { 3319 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3320 (unsigned long) map->m_lblk); 3321 return -EIO; 3322 } 3323 unwritten = ext4_ext_is_unwritten(ex); 3324 split_flag1 = 0; 3325 3326 if (map->m_lblk >= ee_block) { 3327 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3328 if (unwritten) { 3329 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3330 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3331 EXT4_EXT_MARK_UNWRIT2); 3332 } 3333 err = ext4_split_extent_at(handle, inode, path, 3334 map->m_lblk, split_flag1, flags); 3335 if (err) 3336 goto out; 3337 } 3338 3339 ext4_ext_show_leaf(inode, path); 3340 out: 3341 return err ? err : allocated; 3342 } 3343 3344 /* 3345 * This function is called by ext4_ext_map_blocks() if someone tries to write 3346 * to an unwritten extent. It may result in splitting the unwritten 3347 * extent into multiple extents (up to three - one initialized and two 3348 * unwritten). 3349 * There are three possibilities: 3350 * a> There is no split required: Entire extent should be initialized 3351 * b> Splits in two extents: Write is happening at either end of the extent 3352 * c> Splits in three extents: Somone is writing in middle of the extent 3353 * 3354 * Pre-conditions: 3355 * - The extent pointed to by 'path' is unwritten. 3356 * - The extent pointed to by 'path' contains a superset 3357 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3358 * 3359 * Post-conditions on success: 3360 * - the returned value is the number of blocks beyond map->l_lblk 3361 * that are allocated and initialized. 3362 * It is guaranteed to be >= map->m_len. 3363 */ 3364 static int ext4_ext_convert_to_initialized(handle_t *handle, 3365 struct inode *inode, 3366 struct ext4_map_blocks *map, 3367 struct ext4_ext_path *path, 3368 int flags) 3369 { 3370 struct ext4_sb_info *sbi; 3371 struct ext4_extent_header *eh; 3372 struct ext4_map_blocks split_map; 3373 struct ext4_extent zero_ex; 3374 struct ext4_extent *ex, *abut_ex; 3375 ext4_lblk_t ee_block, eof_block; 3376 unsigned int ee_len, depth, map_len = map->m_len; 3377 int allocated = 0, max_zeroout = 0; 3378 int err = 0; 3379 int split_flag = 0; 3380 3381 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3382 "block %llu, max_blocks %u\n", inode->i_ino, 3383 (unsigned long long)map->m_lblk, map_len); 3384 3385 sbi = EXT4_SB(inode->i_sb); 3386 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3387 inode->i_sb->s_blocksize_bits; 3388 if (eof_block < map->m_lblk + map_len) 3389 eof_block = map->m_lblk + map_len; 3390 3391 depth = ext_depth(inode); 3392 eh = path[depth].p_hdr; 3393 ex = path[depth].p_ext; 3394 ee_block = le32_to_cpu(ex->ee_block); 3395 ee_len = ext4_ext_get_actual_len(ex); 3396 zero_ex.ee_len = 0; 3397 3398 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3399 3400 /* Pre-conditions */ 3401 BUG_ON(!ext4_ext_is_unwritten(ex)); 3402 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3403 3404 /* 3405 * Attempt to transfer newly initialized blocks from the currently 3406 * unwritten extent to its neighbor. This is much cheaper 3407 * than an insertion followed by a merge as those involve costly 3408 * memmove() calls. Transferring to the left is the common case in 3409 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3410 * followed by append writes. 3411 * 3412 * Limitations of the current logic: 3413 * - L1: we do not deal with writes covering the whole extent. 3414 * This would require removing the extent if the transfer 3415 * is possible. 3416 * - L2: we only attempt to merge with an extent stored in the 3417 * same extent tree node. 3418 */ 3419 if ((map->m_lblk == ee_block) && 3420 /* See if we can merge left */ 3421 (map_len < ee_len) && /*L1*/ 3422 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3423 ext4_lblk_t prev_lblk; 3424 ext4_fsblk_t prev_pblk, ee_pblk; 3425 unsigned int prev_len; 3426 3427 abut_ex = ex - 1; 3428 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3429 prev_len = ext4_ext_get_actual_len(abut_ex); 3430 prev_pblk = ext4_ext_pblock(abut_ex); 3431 ee_pblk = ext4_ext_pblock(ex); 3432 3433 /* 3434 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3435 * upon those conditions: 3436 * - C1: abut_ex is initialized, 3437 * - C2: abut_ex is logically abutting ex, 3438 * - C3: abut_ex is physically abutting ex, 3439 * - C4: abut_ex can receive the additional blocks without 3440 * overflowing the (initialized) length limit. 3441 */ 3442 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3443 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3444 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3445 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3446 err = ext4_ext_get_access(handle, inode, path + depth); 3447 if (err) 3448 goto out; 3449 3450 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3451 map, ex, abut_ex); 3452 3453 /* Shift the start of ex by 'map_len' blocks */ 3454 ex->ee_block = cpu_to_le32(ee_block + map_len); 3455 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3456 ex->ee_len = cpu_to_le16(ee_len - map_len); 3457 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3458 3459 /* Extend abut_ex by 'map_len' blocks */ 3460 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3461 3462 /* Result: number of initialized blocks past m_lblk */ 3463 allocated = map_len; 3464 } 3465 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3466 (map_len < ee_len) && /*L1*/ 3467 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3468 /* See if we can merge right */ 3469 ext4_lblk_t next_lblk; 3470 ext4_fsblk_t next_pblk, ee_pblk; 3471 unsigned int next_len; 3472 3473 abut_ex = ex + 1; 3474 next_lblk = le32_to_cpu(abut_ex->ee_block); 3475 next_len = ext4_ext_get_actual_len(abut_ex); 3476 next_pblk = ext4_ext_pblock(abut_ex); 3477 ee_pblk = ext4_ext_pblock(ex); 3478 3479 /* 3480 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3481 * upon those conditions: 3482 * - C1: abut_ex is initialized, 3483 * - C2: abut_ex is logically abutting ex, 3484 * - C3: abut_ex is physically abutting ex, 3485 * - C4: abut_ex can receive the additional blocks without 3486 * overflowing the (initialized) length limit. 3487 */ 3488 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3489 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3490 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3491 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3492 err = ext4_ext_get_access(handle, inode, path + depth); 3493 if (err) 3494 goto out; 3495 3496 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3497 map, ex, abut_ex); 3498 3499 /* Shift the start of abut_ex by 'map_len' blocks */ 3500 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3501 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3502 ex->ee_len = cpu_to_le16(ee_len - map_len); 3503 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3504 3505 /* Extend abut_ex by 'map_len' blocks */ 3506 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3507 3508 /* Result: number of initialized blocks past m_lblk */ 3509 allocated = map_len; 3510 } 3511 } 3512 if (allocated) { 3513 /* Mark the block containing both extents as dirty */ 3514 ext4_ext_dirty(handle, inode, path + depth); 3515 3516 /* Update path to point to the right extent */ 3517 path[depth].p_ext = abut_ex; 3518 goto out; 3519 } else 3520 allocated = ee_len - (map->m_lblk - ee_block); 3521 3522 WARN_ON(map->m_lblk < ee_block); 3523 /* 3524 * It is safe to convert extent to initialized via explicit 3525 * zeroout only if extent is fully inside i_size or new_size. 3526 */ 3527 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3528 3529 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3530 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3531 (inode->i_sb->s_blocksize_bits - 10); 3532 3533 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3534 if (max_zeroout && (ee_len <= max_zeroout)) { 3535 err = ext4_ext_zeroout(inode, ex); 3536 if (err) 3537 goto out; 3538 zero_ex.ee_block = ex->ee_block; 3539 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)); 3540 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex)); 3541 3542 err = ext4_ext_get_access(handle, inode, path + depth); 3543 if (err) 3544 goto out; 3545 ext4_ext_mark_initialized(ex); 3546 ext4_ext_try_to_merge(handle, inode, path, ex); 3547 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3548 goto out; 3549 } 3550 3551 /* 3552 * four cases: 3553 * 1. split the extent into three extents. 3554 * 2. split the extent into two extents, zeroout the first half. 3555 * 3. split the extent into two extents, zeroout the second half. 3556 * 4. split the extent into two extents with out zeroout. 3557 */ 3558 split_map.m_lblk = map->m_lblk; 3559 split_map.m_len = map->m_len; 3560 3561 if (max_zeroout && (allocated > map->m_len)) { 3562 if (allocated <= max_zeroout) { 3563 /* case 3 */ 3564 zero_ex.ee_block = 3565 cpu_to_le32(map->m_lblk); 3566 zero_ex.ee_len = cpu_to_le16(allocated); 3567 ext4_ext_store_pblock(&zero_ex, 3568 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3569 err = ext4_ext_zeroout(inode, &zero_ex); 3570 if (err) 3571 goto out; 3572 split_map.m_lblk = map->m_lblk; 3573 split_map.m_len = allocated; 3574 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3575 /* case 2 */ 3576 if (map->m_lblk != ee_block) { 3577 zero_ex.ee_block = ex->ee_block; 3578 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3579 ee_block); 3580 ext4_ext_store_pblock(&zero_ex, 3581 ext4_ext_pblock(ex)); 3582 err = ext4_ext_zeroout(inode, &zero_ex); 3583 if (err) 3584 goto out; 3585 } 3586 3587 split_map.m_lblk = ee_block; 3588 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3589 allocated = map->m_len; 3590 } 3591 } 3592 3593 allocated = ext4_split_extent(handle, inode, path, 3594 &split_map, split_flag, flags); 3595 if (allocated < 0) 3596 err = allocated; 3597 3598 out: 3599 /* If we have gotten a failure, don't zero out status tree */ 3600 if (!err) 3601 err = ext4_zeroout_es(inode, &zero_ex); 3602 return err ? err : allocated; 3603 } 3604 3605 /* 3606 * This function is called by ext4_ext_map_blocks() from 3607 * ext4_get_blocks_dio_write() when DIO to write 3608 * to an unwritten extent. 3609 * 3610 * Writing to an unwritten extent may result in splitting the unwritten 3611 * extent into multiple initialized/unwritten extents (up to three) 3612 * There are three possibilities: 3613 * a> There is no split required: Entire extent should be unwritten 3614 * b> Splits in two extents: Write is happening at either end of the extent 3615 * c> Splits in three extents: Somone is writing in middle of the extent 3616 * 3617 * This works the same way in the case of initialized -> unwritten conversion. 3618 * 3619 * One of more index blocks maybe needed if the extent tree grow after 3620 * the unwritten extent split. To prevent ENOSPC occur at the IO 3621 * complete, we need to split the unwritten extent before DIO submit 3622 * the IO. The unwritten extent called at this time will be split 3623 * into three unwritten extent(at most). After IO complete, the part 3624 * being filled will be convert to initialized by the end_io callback function 3625 * via ext4_convert_unwritten_extents(). 3626 * 3627 * Returns the size of unwritten extent to be written on success. 3628 */ 3629 static int ext4_split_convert_extents(handle_t *handle, 3630 struct inode *inode, 3631 struct ext4_map_blocks *map, 3632 struct ext4_ext_path *path, 3633 int flags) 3634 { 3635 ext4_lblk_t eof_block; 3636 ext4_lblk_t ee_block; 3637 struct ext4_extent *ex; 3638 unsigned int ee_len; 3639 int split_flag = 0, depth; 3640 3641 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3642 __func__, inode->i_ino, 3643 (unsigned long long)map->m_lblk, map->m_len); 3644 3645 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3646 inode->i_sb->s_blocksize_bits; 3647 if (eof_block < map->m_lblk + map->m_len) 3648 eof_block = map->m_lblk + map->m_len; 3649 /* 3650 * It is safe to convert extent to initialized via explicit 3651 * zeroout only if extent is fully insde i_size or new_size. 3652 */ 3653 depth = ext_depth(inode); 3654 ex = path[depth].p_ext; 3655 ee_block = le32_to_cpu(ex->ee_block); 3656 ee_len = ext4_ext_get_actual_len(ex); 3657 3658 /* Convert to unwritten */ 3659 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3660 split_flag |= EXT4_EXT_DATA_VALID1; 3661 /* Convert to initialized */ 3662 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3663 split_flag |= ee_block + ee_len <= eof_block ? 3664 EXT4_EXT_MAY_ZEROOUT : 0; 3665 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3666 } 3667 flags |= EXT4_GET_BLOCKS_PRE_IO; 3668 return ext4_split_extent(handle, inode, path, map, split_flag, flags); 3669 } 3670 3671 static int ext4_convert_initialized_extents(handle_t *handle, 3672 struct inode *inode, 3673 struct ext4_map_blocks *map, 3674 struct ext4_ext_path *path) 3675 { 3676 struct ext4_extent *ex; 3677 ext4_lblk_t ee_block; 3678 unsigned int ee_len; 3679 int depth; 3680 int err = 0; 3681 3682 depth = ext_depth(inode); 3683 ex = path[depth].p_ext; 3684 ee_block = le32_to_cpu(ex->ee_block); 3685 ee_len = ext4_ext_get_actual_len(ex); 3686 3687 ext_debug("%s: inode %lu, logical" 3688 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3689 (unsigned long long)ee_block, ee_len); 3690 3691 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3692 err = ext4_split_convert_extents(handle, inode, map, path, 3693 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3694 if (err < 0) 3695 goto out; 3696 ext4_ext_drop_refs(path); 3697 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0); 3698 if (IS_ERR(path)) { 3699 err = PTR_ERR(path); 3700 goto out; 3701 } 3702 depth = ext_depth(inode); 3703 ex = path[depth].p_ext; 3704 if (!ex) { 3705 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3706 (unsigned long) map->m_lblk); 3707 err = -EIO; 3708 goto out; 3709 } 3710 } 3711 3712 err = ext4_ext_get_access(handle, inode, path + depth); 3713 if (err) 3714 goto out; 3715 /* first mark the extent as unwritten */ 3716 ext4_ext_mark_unwritten(ex); 3717 3718 /* note: ext4_ext_correct_indexes() isn't needed here because 3719 * borders are not changed 3720 */ 3721 ext4_ext_try_to_merge(handle, inode, path, ex); 3722 3723 /* Mark modified extent as dirty */ 3724 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3725 out: 3726 ext4_ext_show_leaf(inode, path); 3727 return err; 3728 } 3729 3730 3731 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3732 struct inode *inode, 3733 struct ext4_map_blocks *map, 3734 struct ext4_ext_path *path) 3735 { 3736 struct ext4_extent *ex; 3737 ext4_lblk_t ee_block; 3738 unsigned int ee_len; 3739 int depth; 3740 int err = 0; 3741 3742 depth = ext_depth(inode); 3743 ex = path[depth].p_ext; 3744 ee_block = le32_to_cpu(ex->ee_block); 3745 ee_len = ext4_ext_get_actual_len(ex); 3746 3747 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3748 "block %llu, max_blocks %u\n", inode->i_ino, 3749 (unsigned long long)ee_block, ee_len); 3750 3751 /* If extent is larger than requested it is a clear sign that we still 3752 * have some extent state machine issues left. So extent_split is still 3753 * required. 3754 * TODO: Once all related issues will be fixed this situation should be 3755 * illegal. 3756 */ 3757 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3758 #ifdef EXT4_DEBUG 3759 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3760 " len %u; IO logical block %llu, len %u\n", 3761 inode->i_ino, (unsigned long long)ee_block, ee_len, 3762 (unsigned long long)map->m_lblk, map->m_len); 3763 #endif 3764 err = ext4_split_convert_extents(handle, inode, map, path, 3765 EXT4_GET_BLOCKS_CONVERT); 3766 if (err < 0) 3767 goto out; 3768 ext4_ext_drop_refs(path); 3769 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0); 3770 if (IS_ERR(path)) { 3771 err = PTR_ERR(path); 3772 goto out; 3773 } 3774 depth = ext_depth(inode); 3775 ex = path[depth].p_ext; 3776 } 3777 3778 err = ext4_ext_get_access(handle, inode, path + depth); 3779 if (err) 3780 goto out; 3781 /* first mark the extent as initialized */ 3782 ext4_ext_mark_initialized(ex); 3783 3784 /* note: ext4_ext_correct_indexes() isn't needed here because 3785 * borders are not changed 3786 */ 3787 ext4_ext_try_to_merge(handle, inode, path, ex); 3788 3789 /* Mark modified extent as dirty */ 3790 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3791 out: 3792 ext4_ext_show_leaf(inode, path); 3793 return err; 3794 } 3795 3796 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3797 sector_t block, int count) 3798 { 3799 int i; 3800 for (i = 0; i < count; i++) 3801 unmap_underlying_metadata(bdev, block + i); 3802 } 3803 3804 /* 3805 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3806 */ 3807 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3808 ext4_lblk_t lblk, 3809 struct ext4_ext_path *path, 3810 unsigned int len) 3811 { 3812 int i, depth; 3813 struct ext4_extent_header *eh; 3814 struct ext4_extent *last_ex; 3815 3816 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3817 return 0; 3818 3819 depth = ext_depth(inode); 3820 eh = path[depth].p_hdr; 3821 3822 /* 3823 * We're going to remove EOFBLOCKS_FL entirely in future so we 3824 * do not care for this case anymore. Simply remove the flag 3825 * if there are no extents. 3826 */ 3827 if (unlikely(!eh->eh_entries)) 3828 goto out; 3829 last_ex = EXT_LAST_EXTENT(eh); 3830 /* 3831 * We should clear the EOFBLOCKS_FL flag if we are writing the 3832 * last block in the last extent in the file. We test this by 3833 * first checking to see if the caller to 3834 * ext4_ext_get_blocks() was interested in the last block (or 3835 * a block beyond the last block) in the current extent. If 3836 * this turns out to be false, we can bail out from this 3837 * function immediately. 3838 */ 3839 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3840 ext4_ext_get_actual_len(last_ex)) 3841 return 0; 3842 /* 3843 * If the caller does appear to be planning to write at or 3844 * beyond the end of the current extent, we then test to see 3845 * if the current extent is the last extent in the file, by 3846 * checking to make sure it was reached via the rightmost node 3847 * at each level of the tree. 3848 */ 3849 for (i = depth-1; i >= 0; i--) 3850 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3851 return 0; 3852 out: 3853 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3854 return ext4_mark_inode_dirty(handle, inode); 3855 } 3856 3857 /** 3858 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3859 * 3860 * Return 1 if there is a delalloc block in the range, otherwise 0. 3861 */ 3862 int ext4_find_delalloc_range(struct inode *inode, 3863 ext4_lblk_t lblk_start, 3864 ext4_lblk_t lblk_end) 3865 { 3866 struct extent_status es; 3867 3868 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es); 3869 if (es.es_len == 0) 3870 return 0; /* there is no delay extent in this tree */ 3871 else if (es.es_lblk <= lblk_start && 3872 lblk_start < es.es_lblk + es.es_len) 3873 return 1; 3874 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3875 return 1; 3876 else 3877 return 0; 3878 } 3879 3880 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3881 { 3882 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3883 ext4_lblk_t lblk_start, lblk_end; 3884 lblk_start = EXT4_LBLK_CMASK(sbi, lblk); 3885 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3886 3887 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3888 } 3889 3890 /** 3891 * Determines how many complete clusters (out of those specified by the 'map') 3892 * are under delalloc and were reserved quota for. 3893 * This function is called when we are writing out the blocks that were 3894 * originally written with their allocation delayed, but then the space was 3895 * allocated using fallocate() before the delayed allocation could be resolved. 3896 * The cases to look for are: 3897 * ('=' indicated delayed allocated blocks 3898 * '-' indicates non-delayed allocated blocks) 3899 * (a) partial clusters towards beginning and/or end outside of allocated range 3900 * are not delalloc'ed. 3901 * Ex: 3902 * |----c---=|====c====|====c====|===-c----| 3903 * |++++++ allocated ++++++| 3904 * ==> 4 complete clusters in above example 3905 * 3906 * (b) partial cluster (outside of allocated range) towards either end is 3907 * marked for delayed allocation. In this case, we will exclude that 3908 * cluster. 3909 * Ex: 3910 * |----====c========|========c========| 3911 * |++++++ allocated ++++++| 3912 * ==> 1 complete clusters in above example 3913 * 3914 * Ex: 3915 * |================c================| 3916 * |++++++ allocated ++++++| 3917 * ==> 0 complete clusters in above example 3918 * 3919 * The ext4_da_update_reserve_space will be called only if we 3920 * determine here that there were some "entire" clusters that span 3921 * this 'allocated' range. 3922 * In the non-bigalloc case, this function will just end up returning num_blks 3923 * without ever calling ext4_find_delalloc_range. 3924 */ 3925 static unsigned int 3926 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3927 unsigned int num_blks) 3928 { 3929 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3930 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3931 ext4_lblk_t lblk_from, lblk_to, c_offset; 3932 unsigned int allocated_clusters = 0; 3933 3934 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3935 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3936 3937 /* max possible clusters for this allocation */ 3938 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3939 3940 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3941 3942 /* Check towards left side */ 3943 c_offset = EXT4_LBLK_COFF(sbi, lblk_start); 3944 if (c_offset) { 3945 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start); 3946 lblk_to = lblk_from + c_offset - 1; 3947 3948 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3949 allocated_clusters--; 3950 } 3951 3952 /* Now check towards right. */ 3953 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks); 3954 if (allocated_clusters && c_offset) { 3955 lblk_from = lblk_start + num_blks; 3956 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3957 3958 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3959 allocated_clusters--; 3960 } 3961 3962 return allocated_clusters; 3963 } 3964 3965 static int 3966 ext4_ext_convert_initialized_extent(handle_t *handle, struct inode *inode, 3967 struct ext4_map_blocks *map, 3968 struct ext4_ext_path *path, int flags, 3969 unsigned int allocated, ext4_fsblk_t newblock) 3970 { 3971 int ret = 0; 3972 int err = 0; 3973 3974 /* 3975 * Make sure that the extent is no bigger than we support with 3976 * unwritten extent 3977 */ 3978 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3979 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3980 3981 ret = ext4_convert_initialized_extents(handle, inode, map, 3982 path); 3983 if (ret >= 0) { 3984 ext4_update_inode_fsync_trans(handle, inode, 1); 3985 err = check_eofblocks_fl(handle, inode, map->m_lblk, 3986 path, map->m_len); 3987 } else 3988 err = ret; 3989 map->m_flags |= EXT4_MAP_UNWRITTEN; 3990 if (allocated > map->m_len) 3991 allocated = map->m_len; 3992 map->m_len = allocated; 3993 3994 return err ? err : allocated; 3995 } 3996 3997 static int 3998 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 3999 struct ext4_map_blocks *map, 4000 struct ext4_ext_path *path, int flags, 4001 unsigned int allocated, ext4_fsblk_t newblock) 4002 { 4003 int ret = 0; 4004 int err = 0; 4005 ext4_io_end_t *io = ext4_inode_aio(inode); 4006 4007 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 4008 "block %llu, max_blocks %u, flags %x, allocated %u\n", 4009 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 4010 flags, allocated); 4011 ext4_ext_show_leaf(inode, path); 4012 4013 /* 4014 * When writing into unwritten space, we should not fail to 4015 * allocate metadata blocks for the new extent block if needed. 4016 */ 4017 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 4018 4019 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 4020 allocated, newblock); 4021 4022 /* get_block() before submit the IO, split the extent */ 4023 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 4024 ret = ext4_split_convert_extents(handle, inode, map, 4025 path, flags | EXT4_GET_BLOCKS_CONVERT); 4026 if (ret <= 0) 4027 goto out; 4028 /* 4029 * Flag the inode(non aio case) or end_io struct (aio case) 4030 * that this IO needs to conversion to written when IO is 4031 * completed 4032 */ 4033 if (io) 4034 ext4_set_io_unwritten_flag(inode, io); 4035 else 4036 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 4037 map->m_flags |= EXT4_MAP_UNWRITTEN; 4038 goto out; 4039 } 4040 /* IO end_io complete, convert the filled extent to written */ 4041 if (flags & EXT4_GET_BLOCKS_CONVERT) { 4042 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 4043 path); 4044 if (ret >= 0) { 4045 ext4_update_inode_fsync_trans(handle, inode, 1); 4046 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4047 path, map->m_len); 4048 } else 4049 err = ret; 4050 map->m_flags |= EXT4_MAP_MAPPED; 4051 map->m_pblk = newblock; 4052 if (allocated > map->m_len) 4053 allocated = map->m_len; 4054 map->m_len = allocated; 4055 goto out2; 4056 } 4057 /* buffered IO case */ 4058 /* 4059 * repeat fallocate creation request 4060 * we already have an unwritten extent 4061 */ 4062 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4063 map->m_flags |= EXT4_MAP_UNWRITTEN; 4064 goto map_out; 4065 } 4066 4067 /* buffered READ or buffered write_begin() lookup */ 4068 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4069 /* 4070 * We have blocks reserved already. We 4071 * return allocated blocks so that delalloc 4072 * won't do block reservation for us. But 4073 * the buffer head will be unmapped so that 4074 * a read from the block returns 0s. 4075 */ 4076 map->m_flags |= EXT4_MAP_UNWRITTEN; 4077 goto out1; 4078 } 4079 4080 /* buffered write, writepage time, convert*/ 4081 ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags); 4082 if (ret >= 0) 4083 ext4_update_inode_fsync_trans(handle, inode, 1); 4084 out: 4085 if (ret <= 0) { 4086 err = ret; 4087 goto out2; 4088 } else 4089 allocated = ret; 4090 map->m_flags |= EXT4_MAP_NEW; 4091 /* 4092 * if we allocated more blocks than requested 4093 * we need to make sure we unmap the extra block 4094 * allocated. The actual needed block will get 4095 * unmapped later when we find the buffer_head marked 4096 * new. 4097 */ 4098 if (allocated > map->m_len) { 4099 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 4100 newblock + map->m_len, 4101 allocated - map->m_len); 4102 allocated = map->m_len; 4103 } 4104 map->m_len = allocated; 4105 4106 /* 4107 * If we have done fallocate with the offset that is already 4108 * delayed allocated, we would have block reservation 4109 * and quota reservation done in the delayed write path. 4110 * But fallocate would have already updated quota and block 4111 * count for this offset. So cancel these reservation 4112 */ 4113 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4114 unsigned int reserved_clusters; 4115 reserved_clusters = get_reserved_cluster_alloc(inode, 4116 map->m_lblk, map->m_len); 4117 if (reserved_clusters) 4118 ext4_da_update_reserve_space(inode, 4119 reserved_clusters, 4120 0); 4121 } 4122 4123 map_out: 4124 map->m_flags |= EXT4_MAP_MAPPED; 4125 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 4126 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 4127 map->m_len); 4128 if (err < 0) 4129 goto out2; 4130 } 4131 out1: 4132 if (allocated > map->m_len) 4133 allocated = map->m_len; 4134 ext4_ext_show_leaf(inode, path); 4135 map->m_pblk = newblock; 4136 map->m_len = allocated; 4137 out2: 4138 return err ? err : allocated; 4139 } 4140 4141 /* 4142 * get_implied_cluster_alloc - check to see if the requested 4143 * allocation (in the map structure) overlaps with a cluster already 4144 * allocated in an extent. 4145 * @sb The filesystem superblock structure 4146 * @map The requested lblk->pblk mapping 4147 * @ex The extent structure which might contain an implied 4148 * cluster allocation 4149 * 4150 * This function is called by ext4_ext_map_blocks() after we failed to 4151 * find blocks that were already in the inode's extent tree. Hence, 4152 * we know that the beginning of the requested region cannot overlap 4153 * the extent from the inode's extent tree. There are three cases we 4154 * want to catch. The first is this case: 4155 * 4156 * |--- cluster # N--| 4157 * |--- extent ---| |---- requested region ---| 4158 * |==========| 4159 * 4160 * The second case that we need to test for is this one: 4161 * 4162 * |--------- cluster # N ----------------| 4163 * |--- requested region --| |------- extent ----| 4164 * |=======================| 4165 * 4166 * The third case is when the requested region lies between two extents 4167 * within the same cluster: 4168 * |------------- cluster # N-------------| 4169 * |----- ex -----| |---- ex_right ----| 4170 * |------ requested region ------| 4171 * |================| 4172 * 4173 * In each of the above cases, we need to set the map->m_pblk and 4174 * map->m_len so it corresponds to the return the extent labelled as 4175 * "|====|" from cluster #N, since it is already in use for data in 4176 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 4177 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 4178 * as a new "allocated" block region. Otherwise, we will return 0 and 4179 * ext4_ext_map_blocks() will then allocate one or more new clusters 4180 * by calling ext4_mb_new_blocks(). 4181 */ 4182 static int get_implied_cluster_alloc(struct super_block *sb, 4183 struct ext4_map_blocks *map, 4184 struct ext4_extent *ex, 4185 struct ext4_ext_path *path) 4186 { 4187 struct ext4_sb_info *sbi = EXT4_SB(sb); 4188 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4189 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4190 ext4_lblk_t rr_cluster_start; 4191 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4192 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4193 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4194 4195 /* The extent passed in that we are trying to match */ 4196 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4197 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4198 4199 /* The requested region passed into ext4_map_blocks() */ 4200 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4201 4202 if ((rr_cluster_start == ex_cluster_end) || 4203 (rr_cluster_start == ex_cluster_start)) { 4204 if (rr_cluster_start == ex_cluster_end) 4205 ee_start += ee_len - 1; 4206 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 4207 map->m_len = min(map->m_len, 4208 (unsigned) sbi->s_cluster_ratio - c_offset); 4209 /* 4210 * Check for and handle this case: 4211 * 4212 * |--------- cluster # N-------------| 4213 * |------- extent ----| 4214 * |--- requested region ---| 4215 * |===========| 4216 */ 4217 4218 if (map->m_lblk < ee_block) 4219 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4220 4221 /* 4222 * Check for the case where there is already another allocated 4223 * block to the right of 'ex' but before the end of the cluster. 4224 * 4225 * |------------- cluster # N-------------| 4226 * |----- ex -----| |---- ex_right ----| 4227 * |------ requested region ------| 4228 * |================| 4229 */ 4230 if (map->m_lblk > ee_block) { 4231 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4232 map->m_len = min(map->m_len, next - map->m_lblk); 4233 } 4234 4235 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4236 return 1; 4237 } 4238 4239 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4240 return 0; 4241 } 4242 4243 4244 /* 4245 * Block allocation/map/preallocation routine for extents based files 4246 * 4247 * 4248 * Need to be called with 4249 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4250 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4251 * 4252 * return > 0, number of of blocks already mapped/allocated 4253 * if create == 0 and these are pre-allocated blocks 4254 * buffer head is unmapped 4255 * otherwise blocks are mapped 4256 * 4257 * return = 0, if plain look up failed (blocks have not been allocated) 4258 * buffer head is unmapped 4259 * 4260 * return < 0, error case. 4261 */ 4262 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4263 struct ext4_map_blocks *map, int flags) 4264 { 4265 struct ext4_ext_path *path = NULL; 4266 struct ext4_extent newex, *ex, *ex2; 4267 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4268 ext4_fsblk_t newblock = 0; 4269 int free_on_err = 0, err = 0, depth, ret; 4270 unsigned int allocated = 0, offset = 0; 4271 unsigned int allocated_clusters = 0; 4272 struct ext4_allocation_request ar; 4273 ext4_io_end_t *io = ext4_inode_aio(inode); 4274 ext4_lblk_t cluster_offset; 4275 int set_unwritten = 0; 4276 4277 ext_debug("blocks %u/%u requested for inode %lu\n", 4278 map->m_lblk, map->m_len, inode->i_ino); 4279 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4280 4281 /* find extent for this block */ 4282 path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0); 4283 if (IS_ERR(path)) { 4284 err = PTR_ERR(path); 4285 path = NULL; 4286 goto out2; 4287 } 4288 4289 depth = ext_depth(inode); 4290 4291 /* 4292 * consistent leaf must not be empty; 4293 * this situation is possible, though, _during_ tree modification; 4294 * this is why assert can't be put in ext4_ext_find_extent() 4295 */ 4296 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4297 EXT4_ERROR_INODE(inode, "bad extent address " 4298 "lblock: %lu, depth: %d pblock %lld", 4299 (unsigned long) map->m_lblk, depth, 4300 path[depth].p_block); 4301 err = -EIO; 4302 goto out2; 4303 } 4304 4305 ex = path[depth].p_ext; 4306 if (ex) { 4307 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4308 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4309 unsigned short ee_len; 4310 4311 4312 /* 4313 * unwritten extents are treated as holes, except that 4314 * we split out initialized portions during a write. 4315 */ 4316 ee_len = ext4_ext_get_actual_len(ex); 4317 4318 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4319 4320 /* if found extent covers block, simply return it */ 4321 if (in_range(map->m_lblk, ee_block, ee_len)) { 4322 newblock = map->m_lblk - ee_block + ee_start; 4323 /* number of remaining blocks in the extent */ 4324 allocated = ee_len - (map->m_lblk - ee_block); 4325 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4326 ee_block, ee_len, newblock); 4327 4328 /* 4329 * If the extent is initialized check whether the 4330 * caller wants to convert it to unwritten. 4331 */ 4332 if ((!ext4_ext_is_unwritten(ex)) && 4333 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4334 allocated = ext4_ext_convert_initialized_extent( 4335 handle, inode, map, path, flags, 4336 allocated, newblock); 4337 goto out2; 4338 } else if (!ext4_ext_is_unwritten(ex)) 4339 goto out; 4340 4341 ret = ext4_ext_handle_unwritten_extents( 4342 handle, inode, map, path, flags, 4343 allocated, newblock); 4344 if (ret < 0) 4345 err = ret; 4346 else 4347 allocated = ret; 4348 goto out2; 4349 } 4350 } 4351 4352 if ((sbi->s_cluster_ratio > 1) && 4353 ext4_find_delalloc_cluster(inode, map->m_lblk)) 4354 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4355 4356 /* 4357 * requested block isn't allocated yet; 4358 * we couldn't try to create block if create flag is zero 4359 */ 4360 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4361 /* 4362 * put just found gap into cache to speed up 4363 * subsequent requests 4364 */ 4365 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0) 4366 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 4367 goto out2; 4368 } 4369 4370 /* 4371 * Okay, we need to do block allocation. 4372 */ 4373 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 4374 newex.ee_block = cpu_to_le32(map->m_lblk); 4375 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4376 4377 /* 4378 * If we are doing bigalloc, check to see if the extent returned 4379 * by ext4_ext_find_extent() implies a cluster we can use. 4380 */ 4381 if (cluster_offset && ex && 4382 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4383 ar.len = allocated = map->m_len; 4384 newblock = map->m_pblk; 4385 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4386 goto got_allocated_blocks; 4387 } 4388 4389 /* find neighbour allocated blocks */ 4390 ar.lleft = map->m_lblk; 4391 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4392 if (err) 4393 goto out2; 4394 ar.lright = map->m_lblk; 4395 ex2 = NULL; 4396 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4397 if (err) 4398 goto out2; 4399 4400 /* Check if the extent after searching to the right implies a 4401 * cluster we can use. */ 4402 if ((sbi->s_cluster_ratio > 1) && ex2 && 4403 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4404 ar.len = allocated = map->m_len; 4405 newblock = map->m_pblk; 4406 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4407 goto got_allocated_blocks; 4408 } 4409 4410 /* 4411 * See if request is beyond maximum number of blocks we can have in 4412 * a single extent. For an initialized extent this limit is 4413 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4414 * EXT_UNWRITTEN_MAX_LEN. 4415 */ 4416 if (map->m_len > EXT_INIT_MAX_LEN && 4417 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4418 map->m_len = EXT_INIT_MAX_LEN; 4419 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4420 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4421 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4422 4423 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4424 newex.ee_len = cpu_to_le16(map->m_len); 4425 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4426 if (err) 4427 allocated = ext4_ext_get_actual_len(&newex); 4428 else 4429 allocated = map->m_len; 4430 4431 /* allocate new block */ 4432 ar.inode = inode; 4433 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4434 ar.logical = map->m_lblk; 4435 /* 4436 * We calculate the offset from the beginning of the cluster 4437 * for the logical block number, since when we allocate a 4438 * physical cluster, the physical block should start at the 4439 * same offset from the beginning of the cluster. This is 4440 * needed so that future calls to get_implied_cluster_alloc() 4441 * work correctly. 4442 */ 4443 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4444 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4445 ar.goal -= offset; 4446 ar.logical -= offset; 4447 if (S_ISREG(inode->i_mode)) 4448 ar.flags = EXT4_MB_HINT_DATA; 4449 else 4450 /* disable in-core preallocation for non-regular files */ 4451 ar.flags = 0; 4452 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4453 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4454 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4455 if (!newblock) 4456 goto out2; 4457 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4458 ar.goal, newblock, allocated); 4459 free_on_err = 1; 4460 allocated_clusters = ar.len; 4461 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4462 if (ar.len > allocated) 4463 ar.len = allocated; 4464 4465 got_allocated_blocks: 4466 /* try to insert new extent into found leaf and return */ 4467 ext4_ext_store_pblock(&newex, newblock + offset); 4468 newex.ee_len = cpu_to_le16(ar.len); 4469 /* Mark unwritten */ 4470 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){ 4471 ext4_ext_mark_unwritten(&newex); 4472 map->m_flags |= EXT4_MAP_UNWRITTEN; 4473 /* 4474 * io_end structure was created for every IO write to an 4475 * unwritten extent. To avoid unnecessary conversion, 4476 * here we flag the IO that really needs the conversion. 4477 * For non asycn direct IO case, flag the inode state 4478 * that we need to perform conversion when IO is done. 4479 */ 4480 if (flags & EXT4_GET_BLOCKS_PRE_IO) 4481 set_unwritten = 1; 4482 } 4483 4484 err = 0; 4485 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4486 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4487 path, ar.len); 4488 if (!err) 4489 err = ext4_ext_insert_extent(handle, inode, path, 4490 &newex, flags); 4491 4492 if (!err && set_unwritten) { 4493 if (io) 4494 ext4_set_io_unwritten_flag(inode, io); 4495 else 4496 ext4_set_inode_state(inode, 4497 EXT4_STATE_DIO_UNWRITTEN); 4498 } 4499 4500 if (err && free_on_err) { 4501 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4502 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4503 /* free data blocks we just allocated */ 4504 /* not a good idea to call discard here directly, 4505 * but otherwise we'd need to call it every free() */ 4506 ext4_discard_preallocations(inode); 4507 ext4_free_blocks(handle, inode, NULL, newblock, 4508 EXT4_C2B(sbi, allocated_clusters), fb_flags); 4509 goto out2; 4510 } 4511 4512 /* previous routine could use block we allocated */ 4513 newblock = ext4_ext_pblock(&newex); 4514 allocated = ext4_ext_get_actual_len(&newex); 4515 if (allocated > map->m_len) 4516 allocated = map->m_len; 4517 map->m_flags |= EXT4_MAP_NEW; 4518 4519 /* 4520 * Update reserved blocks/metadata blocks after successful 4521 * block allocation which had been deferred till now. 4522 */ 4523 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4524 unsigned int reserved_clusters; 4525 /* 4526 * Check how many clusters we had reserved this allocated range 4527 */ 4528 reserved_clusters = get_reserved_cluster_alloc(inode, 4529 map->m_lblk, allocated); 4530 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { 4531 if (reserved_clusters) { 4532 /* 4533 * We have clusters reserved for this range. 4534 * But since we are not doing actual allocation 4535 * and are simply using blocks from previously 4536 * allocated cluster, we should release the 4537 * reservation and not claim quota. 4538 */ 4539 ext4_da_update_reserve_space(inode, 4540 reserved_clusters, 0); 4541 } 4542 } else { 4543 BUG_ON(allocated_clusters < reserved_clusters); 4544 if (reserved_clusters < allocated_clusters) { 4545 struct ext4_inode_info *ei = EXT4_I(inode); 4546 int reservation = allocated_clusters - 4547 reserved_clusters; 4548 /* 4549 * It seems we claimed few clusters outside of 4550 * the range of this allocation. We should give 4551 * it back to the reservation pool. This can 4552 * happen in the following case: 4553 * 4554 * * Suppose s_cluster_ratio is 4 (i.e., each 4555 * cluster has 4 blocks. Thus, the clusters 4556 * are [0-3],[4-7],[8-11]... 4557 * * First comes delayed allocation write for 4558 * logical blocks 10 & 11. Since there were no 4559 * previous delayed allocated blocks in the 4560 * range [8-11], we would reserve 1 cluster 4561 * for this write. 4562 * * Next comes write for logical blocks 3 to 8. 4563 * In this case, we will reserve 2 clusters 4564 * (for [0-3] and [4-7]; and not for [8-11] as 4565 * that range has a delayed allocated blocks. 4566 * Thus total reserved clusters now becomes 3. 4567 * * Now, during the delayed allocation writeout 4568 * time, we will first write blocks [3-8] and 4569 * allocate 3 clusters for writing these 4570 * blocks. Also, we would claim all these 4571 * three clusters above. 4572 * * Now when we come here to writeout the 4573 * blocks [10-11], we would expect to claim 4574 * the reservation of 1 cluster we had made 4575 * (and we would claim it since there are no 4576 * more delayed allocated blocks in the range 4577 * [8-11]. But our reserved cluster count had 4578 * already gone to 0. 4579 * 4580 * Thus, at the step 4 above when we determine 4581 * that there are still some unwritten delayed 4582 * allocated blocks outside of our current 4583 * block range, we should increment the 4584 * reserved clusters count so that when the 4585 * remaining blocks finally gets written, we 4586 * could claim them. 4587 */ 4588 dquot_reserve_block(inode, 4589 EXT4_C2B(sbi, reservation)); 4590 spin_lock(&ei->i_block_reservation_lock); 4591 ei->i_reserved_data_blocks += reservation; 4592 spin_unlock(&ei->i_block_reservation_lock); 4593 } 4594 /* 4595 * We will claim quota for all newly allocated blocks. 4596 * We're updating the reserved space *after* the 4597 * correction above so we do not accidentally free 4598 * all the metadata reservation because we might 4599 * actually need it later on. 4600 */ 4601 ext4_da_update_reserve_space(inode, allocated_clusters, 4602 1); 4603 } 4604 } 4605 4606 /* 4607 * Cache the extent and update transaction to commit on fdatasync only 4608 * when it is _not_ an unwritten extent. 4609 */ 4610 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4611 ext4_update_inode_fsync_trans(handle, inode, 1); 4612 else 4613 ext4_update_inode_fsync_trans(handle, inode, 0); 4614 out: 4615 if (allocated > map->m_len) 4616 allocated = map->m_len; 4617 ext4_ext_show_leaf(inode, path); 4618 map->m_flags |= EXT4_MAP_MAPPED; 4619 map->m_pblk = newblock; 4620 map->m_len = allocated; 4621 out2: 4622 if (path) { 4623 ext4_ext_drop_refs(path); 4624 kfree(path); 4625 } 4626 4627 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4628 err ? err : allocated); 4629 ext4_es_lru_add(inode); 4630 return err ? err : allocated; 4631 } 4632 4633 void ext4_ext_truncate(handle_t *handle, struct inode *inode) 4634 { 4635 struct super_block *sb = inode->i_sb; 4636 ext4_lblk_t last_block; 4637 int err = 0; 4638 4639 /* 4640 * TODO: optimization is possible here. 4641 * Probably we need not scan at all, 4642 * because page truncation is enough. 4643 */ 4644 4645 /* we have to know where to truncate from in crash case */ 4646 EXT4_I(inode)->i_disksize = inode->i_size; 4647 ext4_mark_inode_dirty(handle, inode); 4648 4649 last_block = (inode->i_size + sb->s_blocksize - 1) 4650 >> EXT4_BLOCK_SIZE_BITS(sb); 4651 retry: 4652 err = ext4_es_remove_extent(inode, last_block, 4653 EXT_MAX_BLOCKS - last_block); 4654 if (err == -ENOMEM) { 4655 cond_resched(); 4656 congestion_wait(BLK_RW_ASYNC, HZ/50); 4657 goto retry; 4658 } 4659 if (err) { 4660 ext4_std_error(inode->i_sb, err); 4661 return; 4662 } 4663 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4664 ext4_std_error(inode->i_sb, err); 4665 } 4666 4667 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4668 ext4_lblk_t len, loff_t new_size, 4669 int flags, int mode) 4670 { 4671 struct inode *inode = file_inode(file); 4672 handle_t *handle; 4673 int ret = 0; 4674 int ret2 = 0; 4675 int retries = 0; 4676 struct ext4_map_blocks map; 4677 unsigned int credits; 4678 loff_t epos; 4679 4680 map.m_lblk = offset; 4681 map.m_len = len; 4682 /* 4683 * Don't normalize the request if it can fit in one extent so 4684 * that it doesn't get unnecessarily split into multiple 4685 * extents. 4686 */ 4687 if (len <= EXT_UNWRITTEN_MAX_LEN) 4688 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4689 4690 /* 4691 * credits to insert 1 extent into extent tree 4692 */ 4693 credits = ext4_chunk_trans_blocks(inode, len); 4694 4695 retry: 4696 while (ret >= 0 && len) { 4697 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4698 credits); 4699 if (IS_ERR(handle)) { 4700 ret = PTR_ERR(handle); 4701 break; 4702 } 4703 ret = ext4_map_blocks(handle, inode, &map, flags); 4704 if (ret <= 0) { 4705 ext4_debug("inode #%lu: block %u: len %u: " 4706 "ext4_ext_map_blocks returned %d", 4707 inode->i_ino, map.m_lblk, 4708 map.m_len, ret); 4709 ext4_mark_inode_dirty(handle, inode); 4710 ret2 = ext4_journal_stop(handle); 4711 break; 4712 } 4713 map.m_lblk += ret; 4714 map.m_len = len = len - ret; 4715 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4716 inode->i_ctime = ext4_current_time(inode); 4717 if (new_size) { 4718 if (epos > new_size) 4719 epos = new_size; 4720 if (ext4_update_inode_size(inode, epos) & 0x1) 4721 inode->i_mtime = inode->i_ctime; 4722 } else { 4723 if (epos > inode->i_size) 4724 ext4_set_inode_flag(inode, 4725 EXT4_INODE_EOFBLOCKS); 4726 } 4727 ext4_mark_inode_dirty(handle, inode); 4728 ret2 = ext4_journal_stop(handle); 4729 if (ret2) 4730 break; 4731 } 4732 if (ret == -ENOSPC && 4733 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4734 ret = 0; 4735 goto retry; 4736 } 4737 4738 return ret > 0 ? ret2 : ret; 4739 } 4740 4741 static long ext4_zero_range(struct file *file, loff_t offset, 4742 loff_t len, int mode) 4743 { 4744 struct inode *inode = file_inode(file); 4745 handle_t *handle = NULL; 4746 unsigned int max_blocks; 4747 loff_t new_size = 0; 4748 int ret = 0; 4749 int flags; 4750 int credits; 4751 int partial_begin, partial_end; 4752 loff_t start, end; 4753 ext4_lblk_t lblk; 4754 struct address_space *mapping = inode->i_mapping; 4755 unsigned int blkbits = inode->i_blkbits; 4756 4757 trace_ext4_zero_range(inode, offset, len, mode); 4758 4759 if (!S_ISREG(inode->i_mode)) 4760 return -EINVAL; 4761 4762 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4763 if (ext4_should_journal_data(inode)) { 4764 ret = ext4_force_commit(inode->i_sb); 4765 if (ret) 4766 return ret; 4767 } 4768 4769 /* 4770 * Write out all dirty pages to avoid race conditions 4771 * Then release them. 4772 */ 4773 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4774 ret = filemap_write_and_wait_range(mapping, offset, 4775 offset + len - 1); 4776 if (ret) 4777 return ret; 4778 } 4779 4780 /* 4781 * Round up offset. This is not fallocate, we neet to zero out 4782 * blocks, so convert interior block aligned part of the range to 4783 * unwritten and possibly manually zero out unaligned parts of the 4784 * range. 4785 */ 4786 start = round_up(offset, 1 << blkbits); 4787 end = round_down((offset + len), 1 << blkbits); 4788 4789 if (start < offset || end > offset + len) 4790 return -EINVAL; 4791 partial_begin = offset & ((1 << blkbits) - 1); 4792 partial_end = (offset + len) & ((1 << blkbits) - 1); 4793 4794 lblk = start >> blkbits; 4795 max_blocks = (end >> blkbits); 4796 if (max_blocks < lblk) 4797 max_blocks = 0; 4798 else 4799 max_blocks -= lblk; 4800 4801 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT | 4802 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN; 4803 if (mode & FALLOC_FL_KEEP_SIZE) 4804 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4805 4806 mutex_lock(&inode->i_mutex); 4807 4808 /* 4809 * Indirect files do not support unwritten extnets 4810 */ 4811 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4812 ret = -EOPNOTSUPP; 4813 goto out_mutex; 4814 } 4815 4816 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4817 offset + len > i_size_read(inode)) { 4818 new_size = offset + len; 4819 ret = inode_newsize_ok(inode, new_size); 4820 if (ret) 4821 goto out_mutex; 4822 /* 4823 * If we have a partial block after EOF we have to allocate 4824 * the entire block. 4825 */ 4826 if (partial_end) 4827 max_blocks += 1; 4828 } 4829 4830 if (max_blocks > 0) { 4831 4832 /* Now release the pages and zero block aligned part of pages*/ 4833 truncate_pagecache_range(inode, start, end - 1); 4834 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4835 4836 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4837 ext4_inode_block_unlocked_dio(inode); 4838 inode_dio_wait(inode); 4839 4840 /* 4841 * Remove entire range from the extent status tree. 4842 */ 4843 ret = ext4_es_remove_extent(inode, lblk, max_blocks); 4844 if (ret) 4845 goto out_dio; 4846 4847 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4848 flags, mode); 4849 if (ret) 4850 goto out_dio; 4851 } 4852 if (!partial_begin && !partial_end) 4853 goto out_dio; 4854 4855 /* 4856 * In worst case we have to writeout two nonadjacent unwritten 4857 * blocks and update the inode 4858 */ 4859 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4860 if (ext4_should_journal_data(inode)) 4861 credits += 2; 4862 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4863 if (IS_ERR(handle)) { 4864 ret = PTR_ERR(handle); 4865 ext4_std_error(inode->i_sb, ret); 4866 goto out_dio; 4867 } 4868 4869 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4870 if (new_size) { 4871 ext4_update_inode_size(inode, new_size); 4872 } else { 4873 /* 4874 * Mark that we allocate beyond EOF so the subsequent truncate 4875 * can proceed even if the new size is the same as i_size. 4876 */ 4877 if ((offset + len) > i_size_read(inode)) 4878 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4879 } 4880 ext4_mark_inode_dirty(handle, inode); 4881 4882 /* Zero out partial block at the edges of the range */ 4883 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4884 4885 if (file->f_flags & O_SYNC) 4886 ext4_handle_sync(handle); 4887 4888 ext4_journal_stop(handle); 4889 out_dio: 4890 ext4_inode_resume_unlocked_dio(inode); 4891 out_mutex: 4892 mutex_unlock(&inode->i_mutex); 4893 return ret; 4894 } 4895 4896 /* 4897 * preallocate space for a file. This implements ext4's fallocate file 4898 * operation, which gets called from sys_fallocate system call. 4899 * For block-mapped files, posix_fallocate should fall back to the method 4900 * of writing zeroes to the required new blocks (the same behavior which is 4901 * expected for file systems which do not support fallocate() system call). 4902 */ 4903 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4904 { 4905 struct inode *inode = file_inode(file); 4906 loff_t new_size = 0; 4907 unsigned int max_blocks; 4908 int ret = 0; 4909 int flags; 4910 ext4_lblk_t lblk; 4911 unsigned int blkbits = inode->i_blkbits; 4912 4913 /* Return error if mode is not supported */ 4914 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4915 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE)) 4916 return -EOPNOTSUPP; 4917 4918 if (mode & FALLOC_FL_PUNCH_HOLE) 4919 return ext4_punch_hole(inode, offset, len); 4920 4921 ret = ext4_convert_inline_data(inode); 4922 if (ret) 4923 return ret; 4924 4925 /* 4926 * currently supporting (pre)allocate mode for extent-based 4927 * files _only_ 4928 */ 4929 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4930 return -EOPNOTSUPP; 4931 4932 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4933 return ext4_collapse_range(inode, offset, len); 4934 4935 if (mode & FALLOC_FL_ZERO_RANGE) 4936 return ext4_zero_range(file, offset, len, mode); 4937 4938 trace_ext4_fallocate_enter(inode, offset, len, mode); 4939 lblk = offset >> blkbits; 4940 /* 4941 * We can't just convert len to max_blocks because 4942 * If blocksize = 4096 offset = 3072 and len = 2048 4943 */ 4944 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4945 - lblk; 4946 4947 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4948 if (mode & FALLOC_FL_KEEP_SIZE) 4949 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4950 4951 mutex_lock(&inode->i_mutex); 4952 4953 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4954 offset + len > i_size_read(inode)) { 4955 new_size = offset + len; 4956 ret = inode_newsize_ok(inode, new_size); 4957 if (ret) 4958 goto out; 4959 } 4960 4961 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4962 flags, mode); 4963 if (ret) 4964 goto out; 4965 4966 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 4967 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 4968 EXT4_I(inode)->i_sync_tid); 4969 } 4970 out: 4971 mutex_unlock(&inode->i_mutex); 4972 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4973 return ret; 4974 } 4975 4976 /* 4977 * This function convert a range of blocks to written extents 4978 * The caller of this function will pass the start offset and the size. 4979 * all unwritten extents within this range will be converted to 4980 * written extents. 4981 * 4982 * This function is called from the direct IO end io call back 4983 * function, to convert the fallocated extents after IO is completed. 4984 * Returns 0 on success. 4985 */ 4986 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4987 loff_t offset, ssize_t len) 4988 { 4989 unsigned int max_blocks; 4990 int ret = 0; 4991 int ret2 = 0; 4992 struct ext4_map_blocks map; 4993 unsigned int credits, blkbits = inode->i_blkbits; 4994 4995 map.m_lblk = offset >> blkbits; 4996 /* 4997 * We can't just convert len to max_blocks because 4998 * If blocksize = 4096 offset = 3072 and len = 2048 4999 */ 5000 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 5001 map.m_lblk); 5002 /* 5003 * This is somewhat ugly but the idea is clear: When transaction is 5004 * reserved, everything goes into it. Otherwise we rather start several 5005 * smaller transactions for conversion of each extent separately. 5006 */ 5007 if (handle) { 5008 handle = ext4_journal_start_reserved(handle, 5009 EXT4_HT_EXT_CONVERT); 5010 if (IS_ERR(handle)) 5011 return PTR_ERR(handle); 5012 credits = 0; 5013 } else { 5014 /* 5015 * credits to insert 1 extent into extent tree 5016 */ 5017 credits = ext4_chunk_trans_blocks(inode, max_blocks); 5018 } 5019 while (ret >= 0 && ret < max_blocks) { 5020 map.m_lblk += ret; 5021 map.m_len = (max_blocks -= ret); 5022 if (credits) { 5023 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 5024 credits); 5025 if (IS_ERR(handle)) { 5026 ret = PTR_ERR(handle); 5027 break; 5028 } 5029 } 5030 ret = ext4_map_blocks(handle, inode, &map, 5031 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 5032 if (ret <= 0) 5033 ext4_warning(inode->i_sb, 5034 "inode #%lu: block %u: len %u: " 5035 "ext4_ext_map_blocks returned %d", 5036 inode->i_ino, map.m_lblk, 5037 map.m_len, ret); 5038 ext4_mark_inode_dirty(handle, inode); 5039 if (credits) 5040 ret2 = ext4_journal_stop(handle); 5041 if (ret <= 0 || ret2) 5042 break; 5043 } 5044 if (!credits) 5045 ret2 = ext4_journal_stop(handle); 5046 return ret > 0 ? ret2 : ret; 5047 } 5048 5049 /* 5050 * If newes is not existing extent (newes->ec_pblk equals zero) find 5051 * delayed extent at start of newes and update newes accordingly and 5052 * return start of the next delayed extent. 5053 * 5054 * If newes is existing extent (newes->ec_pblk is not equal zero) 5055 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 5056 * extent found. Leave newes unmodified. 5057 */ 5058 static int ext4_find_delayed_extent(struct inode *inode, 5059 struct extent_status *newes) 5060 { 5061 struct extent_status es; 5062 ext4_lblk_t block, next_del; 5063 5064 if (newes->es_pblk == 0) { 5065 ext4_es_find_delayed_extent_range(inode, newes->es_lblk, 5066 newes->es_lblk + newes->es_len - 1, &es); 5067 5068 /* 5069 * No extent in extent-tree contains block @newes->es_pblk, 5070 * then the block may stay in 1)a hole or 2)delayed-extent. 5071 */ 5072 if (es.es_len == 0) 5073 /* A hole found. */ 5074 return 0; 5075 5076 if (es.es_lblk > newes->es_lblk) { 5077 /* A hole found. */ 5078 newes->es_len = min(es.es_lblk - newes->es_lblk, 5079 newes->es_len); 5080 return 0; 5081 } 5082 5083 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 5084 } 5085 5086 block = newes->es_lblk + newes->es_len; 5087 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es); 5088 if (es.es_len == 0) 5089 next_del = EXT_MAX_BLOCKS; 5090 else 5091 next_del = es.es_lblk; 5092 5093 return next_del; 5094 } 5095 /* fiemap flags we can handle specified here */ 5096 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 5097 5098 static int ext4_xattr_fiemap(struct inode *inode, 5099 struct fiemap_extent_info *fieinfo) 5100 { 5101 __u64 physical = 0; 5102 __u64 length; 5103 __u32 flags = FIEMAP_EXTENT_LAST; 5104 int blockbits = inode->i_sb->s_blocksize_bits; 5105 int error = 0; 5106 5107 /* in-inode? */ 5108 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 5109 struct ext4_iloc iloc; 5110 int offset; /* offset of xattr in inode */ 5111 5112 error = ext4_get_inode_loc(inode, &iloc); 5113 if (error) 5114 return error; 5115 physical = (__u64)iloc.bh->b_blocknr << blockbits; 5116 offset = EXT4_GOOD_OLD_INODE_SIZE + 5117 EXT4_I(inode)->i_extra_isize; 5118 physical += offset; 5119 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 5120 flags |= FIEMAP_EXTENT_DATA_INLINE; 5121 brelse(iloc.bh); 5122 } else { /* external block */ 5123 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 5124 length = inode->i_sb->s_blocksize; 5125 } 5126 5127 if (physical) 5128 error = fiemap_fill_next_extent(fieinfo, 0, physical, 5129 length, flags); 5130 return (error < 0 ? error : 0); 5131 } 5132 5133 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5134 __u64 start, __u64 len) 5135 { 5136 ext4_lblk_t start_blk; 5137 int error = 0; 5138 5139 if (ext4_has_inline_data(inode)) { 5140 int has_inline = 1; 5141 5142 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline); 5143 5144 if (has_inline) 5145 return error; 5146 } 5147 5148 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 5149 error = ext4_ext_precache(inode); 5150 if (error) 5151 return error; 5152 } 5153 5154 /* fallback to generic here if not in extents fmt */ 5155 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5156 return generic_block_fiemap(inode, fieinfo, start, len, 5157 ext4_get_block); 5158 5159 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 5160 return -EBADR; 5161 5162 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 5163 error = ext4_xattr_fiemap(inode, fieinfo); 5164 } else { 5165 ext4_lblk_t len_blks; 5166 __u64 last_blk; 5167 5168 start_blk = start >> inode->i_sb->s_blocksize_bits; 5169 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5170 if (last_blk >= EXT_MAX_BLOCKS) 5171 last_blk = EXT_MAX_BLOCKS-1; 5172 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5173 5174 /* 5175 * Walk the extent tree gathering extent information 5176 * and pushing extents back to the user. 5177 */ 5178 error = ext4_fill_fiemap_extents(inode, start_blk, 5179 len_blks, fieinfo); 5180 } 5181 ext4_es_lru_add(inode); 5182 return error; 5183 } 5184 5185 /* 5186 * ext4_access_path: 5187 * Function to access the path buffer for marking it dirty. 5188 * It also checks if there are sufficient credits left in the journal handle 5189 * to update path. 5190 */ 5191 static int 5192 ext4_access_path(handle_t *handle, struct inode *inode, 5193 struct ext4_ext_path *path) 5194 { 5195 int credits, err; 5196 5197 if (!ext4_handle_valid(handle)) 5198 return 0; 5199 5200 /* 5201 * Check if need to extend journal credits 5202 * 3 for leaf, sb, and inode plus 2 (bmap and group 5203 * descriptor) for each block group; assume two block 5204 * groups 5205 */ 5206 if (handle->h_buffer_credits < 7) { 5207 credits = ext4_writepage_trans_blocks(inode); 5208 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 5209 /* EAGAIN is success */ 5210 if (err && err != -EAGAIN) 5211 return err; 5212 } 5213 5214 err = ext4_ext_get_access(handle, inode, path); 5215 return err; 5216 } 5217 5218 /* 5219 * ext4_ext_shift_path_extents: 5220 * Shift the extents of a path structure lying between path[depth].p_ext 5221 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift 5222 * from starting block for each extent. 5223 */ 5224 static int 5225 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5226 struct inode *inode, handle_t *handle, 5227 ext4_lblk_t *start) 5228 { 5229 int depth, err = 0; 5230 struct ext4_extent *ex_start, *ex_last; 5231 bool update = 0; 5232 depth = path->p_depth; 5233 5234 while (depth >= 0) { 5235 if (depth == path->p_depth) { 5236 ex_start = path[depth].p_ext; 5237 if (!ex_start) 5238 return -EIO; 5239 5240 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5241 if (!ex_last) 5242 return -EIO; 5243 5244 err = ext4_access_path(handle, inode, path + depth); 5245 if (err) 5246 goto out; 5247 5248 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 5249 update = 1; 5250 5251 *start = le32_to_cpu(ex_last->ee_block) + 5252 ext4_ext_get_actual_len(ex_last); 5253 5254 while (ex_start <= ex_last) { 5255 le32_add_cpu(&ex_start->ee_block, -shift); 5256 /* Try to merge to the left. */ 5257 if ((ex_start > 5258 EXT_FIRST_EXTENT(path[depth].p_hdr)) && 5259 ext4_ext_try_to_merge_right(inode, 5260 path, ex_start - 1)) 5261 ex_last--; 5262 else 5263 ex_start++; 5264 } 5265 err = ext4_ext_dirty(handle, inode, path + depth); 5266 if (err) 5267 goto out; 5268 5269 if (--depth < 0 || !update) 5270 break; 5271 } 5272 5273 /* Update index too */ 5274 err = ext4_access_path(handle, inode, path + depth); 5275 if (err) 5276 goto out; 5277 5278 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5279 err = ext4_ext_dirty(handle, inode, path + depth); 5280 if (err) 5281 goto out; 5282 5283 /* we are done if current index is not a starting index */ 5284 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5285 break; 5286 5287 depth--; 5288 } 5289 5290 out: 5291 return err; 5292 } 5293 5294 /* 5295 * ext4_ext_shift_extents: 5296 * All the extents which lies in the range from start to the last allocated 5297 * block for the file are shifted downwards by shift blocks. 5298 * On success, 0 is returned, error otherwise. 5299 */ 5300 static int 5301 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5302 ext4_lblk_t start, ext4_lblk_t shift) 5303 { 5304 struct ext4_ext_path *path; 5305 int ret = 0, depth; 5306 struct ext4_extent *extent; 5307 ext4_lblk_t stop_block, current_block; 5308 ext4_lblk_t ex_start, ex_end; 5309 5310 /* Let path point to the last extent */ 5311 path = ext4_ext_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0); 5312 if (IS_ERR(path)) 5313 return PTR_ERR(path); 5314 5315 depth = path->p_depth; 5316 extent = path[depth].p_ext; 5317 if (!extent) { 5318 ext4_ext_drop_refs(path); 5319 kfree(path); 5320 return ret; 5321 } 5322 5323 stop_block = le32_to_cpu(extent->ee_block) + 5324 ext4_ext_get_actual_len(extent); 5325 ext4_ext_drop_refs(path); 5326 kfree(path); 5327 5328 /* Nothing to shift, if hole is at the end of file */ 5329 if (start >= stop_block) 5330 return ret; 5331 5332 /* 5333 * Don't start shifting extents until we make sure the hole is big 5334 * enough to accomodate the shift. 5335 */ 5336 path = ext4_ext_find_extent(inode, start - 1, NULL, 0); 5337 if (IS_ERR(path)) 5338 return PTR_ERR(path); 5339 depth = path->p_depth; 5340 extent = path[depth].p_ext; 5341 if (extent) { 5342 ex_start = le32_to_cpu(extent->ee_block); 5343 ex_end = le32_to_cpu(extent->ee_block) + 5344 ext4_ext_get_actual_len(extent); 5345 } else { 5346 ex_start = 0; 5347 ex_end = 0; 5348 } 5349 ext4_ext_drop_refs(path); 5350 kfree(path); 5351 5352 if ((start == ex_start && shift > ex_start) || 5353 (shift > start - ex_end)) 5354 return -EINVAL; 5355 5356 /* Its safe to start updating extents */ 5357 while (start < stop_block) { 5358 path = ext4_ext_find_extent(inode, start, NULL, 0); 5359 if (IS_ERR(path)) 5360 return PTR_ERR(path); 5361 depth = path->p_depth; 5362 extent = path[depth].p_ext; 5363 if (!extent) { 5364 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5365 (unsigned long) start); 5366 return -EIO; 5367 } 5368 5369 current_block = le32_to_cpu(extent->ee_block); 5370 if (start > current_block) { 5371 /* Hole, move to the next extent */ 5372 ret = mext_next_extent(inode, path, &extent); 5373 if (ret != 0) { 5374 ext4_ext_drop_refs(path); 5375 kfree(path); 5376 if (ret == 1) 5377 ret = 0; 5378 break; 5379 } 5380 } 5381 ret = ext4_ext_shift_path_extents(path, shift, inode, 5382 handle, &start); 5383 ext4_ext_drop_refs(path); 5384 kfree(path); 5385 if (ret) 5386 break; 5387 } 5388 5389 return ret; 5390 } 5391 5392 /* 5393 * ext4_collapse_range: 5394 * This implements the fallocate's collapse range functionality for ext4 5395 * Returns: 0 and non-zero on error. 5396 */ 5397 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5398 { 5399 struct super_block *sb = inode->i_sb; 5400 ext4_lblk_t punch_start, punch_stop; 5401 handle_t *handle; 5402 unsigned int credits; 5403 loff_t new_size, ioffset; 5404 int ret; 5405 5406 /* Collapse range works only on fs block size aligned offsets. */ 5407 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5408 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5409 return -EINVAL; 5410 5411 if (!S_ISREG(inode->i_mode)) 5412 return -EINVAL; 5413 5414 trace_ext4_collapse_range(inode, offset, len); 5415 5416 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5417 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5418 5419 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5420 if (ext4_should_journal_data(inode)) { 5421 ret = ext4_force_commit(inode->i_sb); 5422 if (ret) 5423 return ret; 5424 } 5425 5426 /* 5427 * Need to round down offset to be aligned with page size boundary 5428 * for page size > block size. 5429 */ 5430 ioffset = round_down(offset, PAGE_SIZE); 5431 5432 /* Write out all dirty pages */ 5433 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5434 LLONG_MAX); 5435 if (ret) 5436 return ret; 5437 5438 /* Take mutex lock */ 5439 mutex_lock(&inode->i_mutex); 5440 5441 /* 5442 * There is no need to overlap collapse range with EOF, in which case 5443 * it is effectively a truncate operation 5444 */ 5445 if (offset + len >= i_size_read(inode)) { 5446 ret = -EINVAL; 5447 goto out_mutex; 5448 } 5449 5450 /* Currently just for extent based files */ 5451 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5452 ret = -EOPNOTSUPP; 5453 goto out_mutex; 5454 } 5455 5456 truncate_pagecache(inode, ioffset); 5457 5458 /* Wait for existing dio to complete */ 5459 ext4_inode_block_unlocked_dio(inode); 5460 inode_dio_wait(inode); 5461 5462 credits = ext4_writepage_trans_blocks(inode); 5463 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5464 if (IS_ERR(handle)) { 5465 ret = PTR_ERR(handle); 5466 goto out_dio; 5467 } 5468 5469 down_write(&EXT4_I(inode)->i_data_sem); 5470 ext4_discard_preallocations(inode); 5471 5472 ret = ext4_es_remove_extent(inode, punch_start, 5473 EXT_MAX_BLOCKS - punch_start); 5474 if (ret) { 5475 up_write(&EXT4_I(inode)->i_data_sem); 5476 goto out_stop; 5477 } 5478 5479 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5480 if (ret) { 5481 up_write(&EXT4_I(inode)->i_data_sem); 5482 goto out_stop; 5483 } 5484 ext4_discard_preallocations(inode); 5485 5486 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5487 punch_stop - punch_start); 5488 if (ret) { 5489 up_write(&EXT4_I(inode)->i_data_sem); 5490 goto out_stop; 5491 } 5492 5493 new_size = i_size_read(inode) - len; 5494 i_size_write(inode, new_size); 5495 EXT4_I(inode)->i_disksize = new_size; 5496 5497 up_write(&EXT4_I(inode)->i_data_sem); 5498 if (IS_SYNC(inode)) 5499 ext4_handle_sync(handle); 5500 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 5501 ext4_mark_inode_dirty(handle, inode); 5502 5503 out_stop: 5504 ext4_journal_stop(handle); 5505 out_dio: 5506 ext4_inode_resume_unlocked_dio(inode); 5507 out_mutex: 5508 mutex_unlock(&inode->i_mutex); 5509 return ret; 5510 } 5511