1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <linux/falloc.h> 41 #include <asm/uaccess.h> 42 #include <linux/fiemap.h> 43 #include "ext4_jbd2.h" 44 #include "ext4_extents.h" 45 #include "xattr.h" 46 47 #include <trace/events/ext4.h> 48 49 /* 50 * used by extent splitting. 51 */ 52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 53 due to ENOSPC */ 54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */ 55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */ 56 57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 59 60 static __le32 ext4_extent_block_csum(struct inode *inode, 61 struct ext4_extent_header *eh) 62 { 63 struct ext4_inode_info *ei = EXT4_I(inode); 64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 65 __u32 csum; 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 68 EXT4_EXTENT_TAIL_OFFSET(eh)); 69 return cpu_to_le32(csum); 70 } 71 72 static int ext4_extent_block_csum_verify(struct inode *inode, 73 struct ext4_extent_header *eh) 74 { 75 struct ext4_extent_tail *et; 76 77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 79 return 1; 80 81 et = find_ext4_extent_tail(eh); 82 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 83 return 0; 84 return 1; 85 } 86 87 static void ext4_extent_block_csum_set(struct inode *inode, 88 struct ext4_extent_header *eh) 89 { 90 struct ext4_extent_tail *et; 91 92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 94 return; 95 96 et = find_ext4_extent_tail(eh); 97 et->et_checksum = ext4_extent_block_csum(inode, eh); 98 } 99 100 static int ext4_split_extent(handle_t *handle, 101 struct inode *inode, 102 struct ext4_ext_path *path, 103 struct ext4_map_blocks *map, 104 int split_flag, 105 int flags); 106 107 static int ext4_split_extent_at(handle_t *handle, 108 struct inode *inode, 109 struct ext4_ext_path *path, 110 ext4_lblk_t split, 111 int split_flag, 112 int flags); 113 114 static int ext4_find_delayed_extent(struct inode *inode, 115 struct ext4_ext_cache *newex); 116 117 static int ext4_ext_truncate_extend_restart(handle_t *handle, 118 struct inode *inode, 119 int needed) 120 { 121 int err; 122 123 if (!ext4_handle_valid(handle)) 124 return 0; 125 if (handle->h_buffer_credits > needed) 126 return 0; 127 err = ext4_journal_extend(handle, needed); 128 if (err <= 0) 129 return err; 130 err = ext4_truncate_restart_trans(handle, inode, needed); 131 if (err == 0) 132 err = -EAGAIN; 133 134 return err; 135 } 136 137 /* 138 * could return: 139 * - EROFS 140 * - ENOMEM 141 */ 142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 143 struct ext4_ext_path *path) 144 { 145 if (path->p_bh) { 146 /* path points to block */ 147 return ext4_journal_get_write_access(handle, path->p_bh); 148 } 149 /* path points to leaf/index in inode body */ 150 /* we use in-core data, no need to protect them */ 151 return 0; 152 } 153 154 /* 155 * could return: 156 * - EROFS 157 * - ENOMEM 158 * - EIO 159 */ 160 #define ext4_ext_dirty(handle, inode, path) \ 161 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) 162 static int __ext4_ext_dirty(const char *where, unsigned int line, 163 handle_t *handle, struct inode *inode, 164 struct ext4_ext_path *path) 165 { 166 int err; 167 if (path->p_bh) { 168 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 169 /* path points to block */ 170 err = __ext4_handle_dirty_metadata(where, line, handle, 171 inode, path->p_bh); 172 } else { 173 /* path points to leaf/index in inode body */ 174 err = ext4_mark_inode_dirty(handle, inode); 175 } 176 return err; 177 } 178 179 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 180 struct ext4_ext_path *path, 181 ext4_lblk_t block) 182 { 183 if (path) { 184 int depth = path->p_depth; 185 struct ext4_extent *ex; 186 187 /* 188 * Try to predict block placement assuming that we are 189 * filling in a file which will eventually be 190 * non-sparse --- i.e., in the case of libbfd writing 191 * an ELF object sections out-of-order but in a way 192 * the eventually results in a contiguous object or 193 * executable file, or some database extending a table 194 * space file. However, this is actually somewhat 195 * non-ideal if we are writing a sparse file such as 196 * qemu or KVM writing a raw image file that is going 197 * to stay fairly sparse, since it will end up 198 * fragmenting the file system's free space. Maybe we 199 * should have some hueristics or some way to allow 200 * userspace to pass a hint to file system, 201 * especially if the latter case turns out to be 202 * common. 203 */ 204 ex = path[depth].p_ext; 205 if (ex) { 206 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 207 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 208 209 if (block > ext_block) 210 return ext_pblk + (block - ext_block); 211 else 212 return ext_pblk - (ext_block - block); 213 } 214 215 /* it looks like index is empty; 216 * try to find starting block from index itself */ 217 if (path[depth].p_bh) 218 return path[depth].p_bh->b_blocknr; 219 } 220 221 /* OK. use inode's group */ 222 return ext4_inode_to_goal_block(inode); 223 } 224 225 /* 226 * Allocation for a meta data block 227 */ 228 static ext4_fsblk_t 229 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 230 struct ext4_ext_path *path, 231 struct ext4_extent *ex, int *err, unsigned int flags) 232 { 233 ext4_fsblk_t goal, newblock; 234 235 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 236 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 237 NULL, err); 238 return newblock; 239 } 240 241 static inline int ext4_ext_space_block(struct inode *inode, int check) 242 { 243 int size; 244 245 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 246 / sizeof(struct ext4_extent); 247 #ifdef AGGRESSIVE_TEST 248 if (!check && size > 6) 249 size = 6; 250 #endif 251 return size; 252 } 253 254 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 255 { 256 int size; 257 258 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 259 / sizeof(struct ext4_extent_idx); 260 #ifdef AGGRESSIVE_TEST 261 if (!check && size > 5) 262 size = 5; 263 #endif 264 return size; 265 } 266 267 static inline int ext4_ext_space_root(struct inode *inode, int check) 268 { 269 int size; 270 271 size = sizeof(EXT4_I(inode)->i_data); 272 size -= sizeof(struct ext4_extent_header); 273 size /= sizeof(struct ext4_extent); 274 #ifdef AGGRESSIVE_TEST 275 if (!check && size > 3) 276 size = 3; 277 #endif 278 return size; 279 } 280 281 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 282 { 283 int size; 284 285 size = sizeof(EXT4_I(inode)->i_data); 286 size -= sizeof(struct ext4_extent_header); 287 size /= sizeof(struct ext4_extent_idx); 288 #ifdef AGGRESSIVE_TEST 289 if (!check && size > 4) 290 size = 4; 291 #endif 292 return size; 293 } 294 295 /* 296 * Calculate the number of metadata blocks needed 297 * to allocate @blocks 298 * Worse case is one block per extent 299 */ 300 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 301 { 302 struct ext4_inode_info *ei = EXT4_I(inode); 303 int idxs; 304 305 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 306 / sizeof(struct ext4_extent_idx)); 307 308 /* 309 * If the new delayed allocation block is contiguous with the 310 * previous da block, it can share index blocks with the 311 * previous block, so we only need to allocate a new index 312 * block every idxs leaf blocks. At ldxs**2 blocks, we need 313 * an additional index block, and at ldxs**3 blocks, yet 314 * another index blocks. 315 */ 316 if (ei->i_da_metadata_calc_len && 317 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 318 int num = 0; 319 320 if ((ei->i_da_metadata_calc_len % idxs) == 0) 321 num++; 322 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 323 num++; 324 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 325 num++; 326 ei->i_da_metadata_calc_len = 0; 327 } else 328 ei->i_da_metadata_calc_len++; 329 ei->i_da_metadata_calc_last_lblock++; 330 return num; 331 } 332 333 /* 334 * In the worst case we need a new set of index blocks at 335 * every level of the inode's extent tree. 336 */ 337 ei->i_da_metadata_calc_len = 1; 338 ei->i_da_metadata_calc_last_lblock = lblock; 339 return ext_depth(inode) + 1; 340 } 341 342 static int 343 ext4_ext_max_entries(struct inode *inode, int depth) 344 { 345 int max; 346 347 if (depth == ext_depth(inode)) { 348 if (depth == 0) 349 max = ext4_ext_space_root(inode, 1); 350 else 351 max = ext4_ext_space_root_idx(inode, 1); 352 } else { 353 if (depth == 0) 354 max = ext4_ext_space_block(inode, 1); 355 else 356 max = ext4_ext_space_block_idx(inode, 1); 357 } 358 359 return max; 360 } 361 362 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 363 { 364 ext4_fsblk_t block = ext4_ext_pblock(ext); 365 int len = ext4_ext_get_actual_len(ext); 366 367 if (len == 0) 368 return 0; 369 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 370 } 371 372 static int ext4_valid_extent_idx(struct inode *inode, 373 struct ext4_extent_idx *ext_idx) 374 { 375 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 376 377 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 378 } 379 380 static int ext4_valid_extent_entries(struct inode *inode, 381 struct ext4_extent_header *eh, 382 int depth) 383 { 384 unsigned short entries; 385 if (eh->eh_entries == 0) 386 return 1; 387 388 entries = le16_to_cpu(eh->eh_entries); 389 390 if (depth == 0) { 391 /* leaf entries */ 392 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 393 while (entries) { 394 if (!ext4_valid_extent(inode, ext)) 395 return 0; 396 ext++; 397 entries--; 398 } 399 } else { 400 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 401 while (entries) { 402 if (!ext4_valid_extent_idx(inode, ext_idx)) 403 return 0; 404 ext_idx++; 405 entries--; 406 } 407 } 408 return 1; 409 } 410 411 static int __ext4_ext_check(const char *function, unsigned int line, 412 struct inode *inode, struct ext4_extent_header *eh, 413 int depth) 414 { 415 const char *error_msg; 416 int max = 0; 417 418 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 419 error_msg = "invalid magic"; 420 goto corrupted; 421 } 422 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 423 error_msg = "unexpected eh_depth"; 424 goto corrupted; 425 } 426 if (unlikely(eh->eh_max == 0)) { 427 error_msg = "invalid eh_max"; 428 goto corrupted; 429 } 430 max = ext4_ext_max_entries(inode, depth); 431 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 432 error_msg = "too large eh_max"; 433 goto corrupted; 434 } 435 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 436 error_msg = "invalid eh_entries"; 437 goto corrupted; 438 } 439 if (!ext4_valid_extent_entries(inode, eh, depth)) { 440 error_msg = "invalid extent entries"; 441 goto corrupted; 442 } 443 /* Verify checksum on non-root extent tree nodes */ 444 if (ext_depth(inode) != depth && 445 !ext4_extent_block_csum_verify(inode, eh)) { 446 error_msg = "extent tree corrupted"; 447 goto corrupted; 448 } 449 return 0; 450 451 corrupted: 452 ext4_error_inode(inode, function, line, 0, 453 "bad header/extent: %s - magic %x, " 454 "entries %u, max %u(%u), depth %u(%u)", 455 error_msg, le16_to_cpu(eh->eh_magic), 456 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 457 max, le16_to_cpu(eh->eh_depth), depth); 458 459 return -EIO; 460 } 461 462 #define ext4_ext_check(inode, eh, depth) \ 463 __ext4_ext_check(__func__, __LINE__, inode, eh, depth) 464 465 int ext4_ext_check_inode(struct inode *inode) 466 { 467 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); 468 } 469 470 static int __ext4_ext_check_block(const char *function, unsigned int line, 471 struct inode *inode, 472 struct ext4_extent_header *eh, 473 int depth, 474 struct buffer_head *bh) 475 { 476 int ret; 477 478 if (buffer_verified(bh)) 479 return 0; 480 ret = ext4_ext_check(inode, eh, depth); 481 if (ret) 482 return ret; 483 set_buffer_verified(bh); 484 return ret; 485 } 486 487 #define ext4_ext_check_block(inode, eh, depth, bh) \ 488 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh) 489 490 #ifdef EXT_DEBUG 491 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 492 { 493 int k, l = path->p_depth; 494 495 ext_debug("path:"); 496 for (k = 0; k <= l; k++, path++) { 497 if (path->p_idx) { 498 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 499 ext4_idx_pblock(path->p_idx)); 500 } else if (path->p_ext) { 501 ext_debug(" %d:[%d]%d:%llu ", 502 le32_to_cpu(path->p_ext->ee_block), 503 ext4_ext_is_uninitialized(path->p_ext), 504 ext4_ext_get_actual_len(path->p_ext), 505 ext4_ext_pblock(path->p_ext)); 506 } else 507 ext_debug(" []"); 508 } 509 ext_debug("\n"); 510 } 511 512 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 513 { 514 int depth = ext_depth(inode); 515 struct ext4_extent_header *eh; 516 struct ext4_extent *ex; 517 int i; 518 519 if (!path) 520 return; 521 522 eh = path[depth].p_hdr; 523 ex = EXT_FIRST_EXTENT(eh); 524 525 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 526 527 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 528 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 529 ext4_ext_is_uninitialized(ex), 530 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 531 } 532 ext_debug("\n"); 533 } 534 535 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 536 ext4_fsblk_t newblock, int level) 537 { 538 int depth = ext_depth(inode); 539 struct ext4_extent *ex; 540 541 if (depth != level) { 542 struct ext4_extent_idx *idx; 543 idx = path[level].p_idx; 544 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 545 ext_debug("%d: move %d:%llu in new index %llu\n", level, 546 le32_to_cpu(idx->ei_block), 547 ext4_idx_pblock(idx), 548 newblock); 549 idx++; 550 } 551 552 return; 553 } 554 555 ex = path[depth].p_ext; 556 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 557 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 558 le32_to_cpu(ex->ee_block), 559 ext4_ext_pblock(ex), 560 ext4_ext_is_uninitialized(ex), 561 ext4_ext_get_actual_len(ex), 562 newblock); 563 ex++; 564 } 565 } 566 567 #else 568 #define ext4_ext_show_path(inode, path) 569 #define ext4_ext_show_leaf(inode, path) 570 #define ext4_ext_show_move(inode, path, newblock, level) 571 #endif 572 573 void ext4_ext_drop_refs(struct ext4_ext_path *path) 574 { 575 int depth = path->p_depth; 576 int i; 577 578 for (i = 0; i <= depth; i++, path++) 579 if (path->p_bh) { 580 brelse(path->p_bh); 581 path->p_bh = NULL; 582 } 583 } 584 585 /* 586 * ext4_ext_binsearch_idx: 587 * binary search for the closest index of the given block 588 * the header must be checked before calling this 589 */ 590 static void 591 ext4_ext_binsearch_idx(struct inode *inode, 592 struct ext4_ext_path *path, ext4_lblk_t block) 593 { 594 struct ext4_extent_header *eh = path->p_hdr; 595 struct ext4_extent_idx *r, *l, *m; 596 597 598 ext_debug("binsearch for %u(idx): ", block); 599 600 l = EXT_FIRST_INDEX(eh) + 1; 601 r = EXT_LAST_INDEX(eh); 602 while (l <= r) { 603 m = l + (r - l) / 2; 604 if (block < le32_to_cpu(m->ei_block)) 605 r = m - 1; 606 else 607 l = m + 1; 608 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 609 m, le32_to_cpu(m->ei_block), 610 r, le32_to_cpu(r->ei_block)); 611 } 612 613 path->p_idx = l - 1; 614 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 615 ext4_idx_pblock(path->p_idx)); 616 617 #ifdef CHECK_BINSEARCH 618 { 619 struct ext4_extent_idx *chix, *ix; 620 int k; 621 622 chix = ix = EXT_FIRST_INDEX(eh); 623 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 624 if (k != 0 && 625 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 626 printk(KERN_DEBUG "k=%d, ix=0x%p, " 627 "first=0x%p\n", k, 628 ix, EXT_FIRST_INDEX(eh)); 629 printk(KERN_DEBUG "%u <= %u\n", 630 le32_to_cpu(ix->ei_block), 631 le32_to_cpu(ix[-1].ei_block)); 632 } 633 BUG_ON(k && le32_to_cpu(ix->ei_block) 634 <= le32_to_cpu(ix[-1].ei_block)); 635 if (block < le32_to_cpu(ix->ei_block)) 636 break; 637 chix = ix; 638 } 639 BUG_ON(chix != path->p_idx); 640 } 641 #endif 642 643 } 644 645 /* 646 * ext4_ext_binsearch: 647 * binary search for closest extent of the given block 648 * the header must be checked before calling this 649 */ 650 static void 651 ext4_ext_binsearch(struct inode *inode, 652 struct ext4_ext_path *path, ext4_lblk_t block) 653 { 654 struct ext4_extent_header *eh = path->p_hdr; 655 struct ext4_extent *r, *l, *m; 656 657 if (eh->eh_entries == 0) { 658 /* 659 * this leaf is empty: 660 * we get such a leaf in split/add case 661 */ 662 return; 663 } 664 665 ext_debug("binsearch for %u: ", block); 666 667 l = EXT_FIRST_EXTENT(eh) + 1; 668 r = EXT_LAST_EXTENT(eh); 669 670 while (l <= r) { 671 m = l + (r - l) / 2; 672 if (block < le32_to_cpu(m->ee_block)) 673 r = m - 1; 674 else 675 l = m + 1; 676 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 677 m, le32_to_cpu(m->ee_block), 678 r, le32_to_cpu(r->ee_block)); 679 } 680 681 path->p_ext = l - 1; 682 ext_debug(" -> %d:%llu:[%d]%d ", 683 le32_to_cpu(path->p_ext->ee_block), 684 ext4_ext_pblock(path->p_ext), 685 ext4_ext_is_uninitialized(path->p_ext), 686 ext4_ext_get_actual_len(path->p_ext)); 687 688 #ifdef CHECK_BINSEARCH 689 { 690 struct ext4_extent *chex, *ex; 691 int k; 692 693 chex = ex = EXT_FIRST_EXTENT(eh); 694 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 695 BUG_ON(k && le32_to_cpu(ex->ee_block) 696 <= le32_to_cpu(ex[-1].ee_block)); 697 if (block < le32_to_cpu(ex->ee_block)) 698 break; 699 chex = ex; 700 } 701 BUG_ON(chex != path->p_ext); 702 } 703 #endif 704 705 } 706 707 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 708 { 709 struct ext4_extent_header *eh; 710 711 eh = ext_inode_hdr(inode); 712 eh->eh_depth = 0; 713 eh->eh_entries = 0; 714 eh->eh_magic = EXT4_EXT_MAGIC; 715 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 716 ext4_mark_inode_dirty(handle, inode); 717 ext4_ext_invalidate_cache(inode); 718 return 0; 719 } 720 721 struct ext4_ext_path * 722 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 723 struct ext4_ext_path *path) 724 { 725 struct ext4_extent_header *eh; 726 struct buffer_head *bh; 727 short int depth, i, ppos = 0, alloc = 0; 728 729 eh = ext_inode_hdr(inode); 730 depth = ext_depth(inode); 731 732 /* account possible depth increase */ 733 if (!path) { 734 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 735 GFP_NOFS); 736 if (!path) 737 return ERR_PTR(-ENOMEM); 738 alloc = 1; 739 } 740 path[0].p_hdr = eh; 741 path[0].p_bh = NULL; 742 743 i = depth; 744 /* walk through the tree */ 745 while (i) { 746 ext_debug("depth %d: num %d, max %d\n", 747 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 748 749 ext4_ext_binsearch_idx(inode, path + ppos, block); 750 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 751 path[ppos].p_depth = i; 752 path[ppos].p_ext = NULL; 753 754 bh = sb_getblk(inode->i_sb, path[ppos].p_block); 755 if (unlikely(!bh)) 756 goto err; 757 if (!bh_uptodate_or_lock(bh)) { 758 trace_ext4_ext_load_extent(inode, block, 759 path[ppos].p_block); 760 if (bh_submit_read(bh) < 0) { 761 put_bh(bh); 762 goto err; 763 } 764 } 765 eh = ext_block_hdr(bh); 766 ppos++; 767 if (unlikely(ppos > depth)) { 768 put_bh(bh); 769 EXT4_ERROR_INODE(inode, 770 "ppos %d > depth %d", ppos, depth); 771 goto err; 772 } 773 path[ppos].p_bh = bh; 774 path[ppos].p_hdr = eh; 775 i--; 776 777 if (ext4_ext_check_block(inode, eh, i, bh)) 778 goto err; 779 } 780 781 path[ppos].p_depth = i; 782 path[ppos].p_ext = NULL; 783 path[ppos].p_idx = NULL; 784 785 /* find extent */ 786 ext4_ext_binsearch(inode, path + ppos, block); 787 /* if not an empty leaf */ 788 if (path[ppos].p_ext) 789 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 790 791 ext4_ext_show_path(inode, path); 792 793 return path; 794 795 err: 796 ext4_ext_drop_refs(path); 797 if (alloc) 798 kfree(path); 799 return ERR_PTR(-EIO); 800 } 801 802 /* 803 * ext4_ext_insert_index: 804 * insert new index [@logical;@ptr] into the block at @curp; 805 * check where to insert: before @curp or after @curp 806 */ 807 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 808 struct ext4_ext_path *curp, 809 int logical, ext4_fsblk_t ptr) 810 { 811 struct ext4_extent_idx *ix; 812 int len, err; 813 814 err = ext4_ext_get_access(handle, inode, curp); 815 if (err) 816 return err; 817 818 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 819 EXT4_ERROR_INODE(inode, 820 "logical %d == ei_block %d!", 821 logical, le32_to_cpu(curp->p_idx->ei_block)); 822 return -EIO; 823 } 824 825 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 826 >= le16_to_cpu(curp->p_hdr->eh_max))) { 827 EXT4_ERROR_INODE(inode, 828 "eh_entries %d >= eh_max %d!", 829 le16_to_cpu(curp->p_hdr->eh_entries), 830 le16_to_cpu(curp->p_hdr->eh_max)); 831 return -EIO; 832 } 833 834 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 835 /* insert after */ 836 ext_debug("insert new index %d after: %llu\n", logical, ptr); 837 ix = curp->p_idx + 1; 838 } else { 839 /* insert before */ 840 ext_debug("insert new index %d before: %llu\n", logical, ptr); 841 ix = curp->p_idx; 842 } 843 844 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 845 BUG_ON(len < 0); 846 if (len > 0) { 847 ext_debug("insert new index %d: " 848 "move %d indices from 0x%p to 0x%p\n", 849 logical, len, ix, ix + 1); 850 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 851 } 852 853 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 854 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 855 return -EIO; 856 } 857 858 ix->ei_block = cpu_to_le32(logical); 859 ext4_idx_store_pblock(ix, ptr); 860 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 861 862 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 863 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 864 return -EIO; 865 } 866 867 err = ext4_ext_dirty(handle, inode, curp); 868 ext4_std_error(inode->i_sb, err); 869 870 return err; 871 } 872 873 /* 874 * ext4_ext_split: 875 * inserts new subtree into the path, using free index entry 876 * at depth @at: 877 * - allocates all needed blocks (new leaf and all intermediate index blocks) 878 * - makes decision where to split 879 * - moves remaining extents and index entries (right to the split point) 880 * into the newly allocated blocks 881 * - initializes subtree 882 */ 883 static int ext4_ext_split(handle_t *handle, struct inode *inode, 884 unsigned int flags, 885 struct ext4_ext_path *path, 886 struct ext4_extent *newext, int at) 887 { 888 struct buffer_head *bh = NULL; 889 int depth = ext_depth(inode); 890 struct ext4_extent_header *neh; 891 struct ext4_extent_idx *fidx; 892 int i = at, k, m, a; 893 ext4_fsblk_t newblock, oldblock; 894 __le32 border; 895 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 896 int err = 0; 897 898 /* make decision: where to split? */ 899 /* FIXME: now decision is simplest: at current extent */ 900 901 /* if current leaf will be split, then we should use 902 * border from split point */ 903 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 904 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 905 return -EIO; 906 } 907 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 908 border = path[depth].p_ext[1].ee_block; 909 ext_debug("leaf will be split." 910 " next leaf starts at %d\n", 911 le32_to_cpu(border)); 912 } else { 913 border = newext->ee_block; 914 ext_debug("leaf will be added." 915 " next leaf starts at %d\n", 916 le32_to_cpu(border)); 917 } 918 919 /* 920 * If error occurs, then we break processing 921 * and mark filesystem read-only. index won't 922 * be inserted and tree will be in consistent 923 * state. Next mount will repair buffers too. 924 */ 925 926 /* 927 * Get array to track all allocated blocks. 928 * We need this to handle errors and free blocks 929 * upon them. 930 */ 931 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 932 if (!ablocks) 933 return -ENOMEM; 934 935 /* allocate all needed blocks */ 936 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 937 for (a = 0; a < depth - at; a++) { 938 newblock = ext4_ext_new_meta_block(handle, inode, path, 939 newext, &err, flags); 940 if (newblock == 0) 941 goto cleanup; 942 ablocks[a] = newblock; 943 } 944 945 /* initialize new leaf */ 946 newblock = ablocks[--a]; 947 if (unlikely(newblock == 0)) { 948 EXT4_ERROR_INODE(inode, "newblock == 0!"); 949 err = -EIO; 950 goto cleanup; 951 } 952 bh = sb_getblk(inode->i_sb, newblock); 953 if (!bh) { 954 err = -EIO; 955 goto cleanup; 956 } 957 lock_buffer(bh); 958 959 err = ext4_journal_get_create_access(handle, bh); 960 if (err) 961 goto cleanup; 962 963 neh = ext_block_hdr(bh); 964 neh->eh_entries = 0; 965 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 966 neh->eh_magic = EXT4_EXT_MAGIC; 967 neh->eh_depth = 0; 968 969 /* move remainder of path[depth] to the new leaf */ 970 if (unlikely(path[depth].p_hdr->eh_entries != 971 path[depth].p_hdr->eh_max)) { 972 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 973 path[depth].p_hdr->eh_entries, 974 path[depth].p_hdr->eh_max); 975 err = -EIO; 976 goto cleanup; 977 } 978 /* start copy from next extent */ 979 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 980 ext4_ext_show_move(inode, path, newblock, depth); 981 if (m) { 982 struct ext4_extent *ex; 983 ex = EXT_FIRST_EXTENT(neh); 984 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 985 le16_add_cpu(&neh->eh_entries, m); 986 } 987 988 ext4_extent_block_csum_set(inode, neh); 989 set_buffer_uptodate(bh); 990 unlock_buffer(bh); 991 992 err = ext4_handle_dirty_metadata(handle, inode, bh); 993 if (err) 994 goto cleanup; 995 brelse(bh); 996 bh = NULL; 997 998 /* correct old leaf */ 999 if (m) { 1000 err = ext4_ext_get_access(handle, inode, path + depth); 1001 if (err) 1002 goto cleanup; 1003 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1004 err = ext4_ext_dirty(handle, inode, path + depth); 1005 if (err) 1006 goto cleanup; 1007 1008 } 1009 1010 /* create intermediate indexes */ 1011 k = depth - at - 1; 1012 if (unlikely(k < 0)) { 1013 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1014 err = -EIO; 1015 goto cleanup; 1016 } 1017 if (k) 1018 ext_debug("create %d intermediate indices\n", k); 1019 /* insert new index into current index block */ 1020 /* current depth stored in i var */ 1021 i = depth - 1; 1022 while (k--) { 1023 oldblock = newblock; 1024 newblock = ablocks[--a]; 1025 bh = sb_getblk(inode->i_sb, newblock); 1026 if (!bh) { 1027 err = -EIO; 1028 goto cleanup; 1029 } 1030 lock_buffer(bh); 1031 1032 err = ext4_journal_get_create_access(handle, bh); 1033 if (err) 1034 goto cleanup; 1035 1036 neh = ext_block_hdr(bh); 1037 neh->eh_entries = cpu_to_le16(1); 1038 neh->eh_magic = EXT4_EXT_MAGIC; 1039 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1040 neh->eh_depth = cpu_to_le16(depth - i); 1041 fidx = EXT_FIRST_INDEX(neh); 1042 fidx->ei_block = border; 1043 ext4_idx_store_pblock(fidx, oldblock); 1044 1045 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1046 i, newblock, le32_to_cpu(border), oldblock); 1047 1048 /* move remainder of path[i] to the new index block */ 1049 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1050 EXT_LAST_INDEX(path[i].p_hdr))) { 1051 EXT4_ERROR_INODE(inode, 1052 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1053 le32_to_cpu(path[i].p_ext->ee_block)); 1054 err = -EIO; 1055 goto cleanup; 1056 } 1057 /* start copy indexes */ 1058 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1059 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1060 EXT_MAX_INDEX(path[i].p_hdr)); 1061 ext4_ext_show_move(inode, path, newblock, i); 1062 if (m) { 1063 memmove(++fidx, path[i].p_idx, 1064 sizeof(struct ext4_extent_idx) * m); 1065 le16_add_cpu(&neh->eh_entries, m); 1066 } 1067 ext4_extent_block_csum_set(inode, neh); 1068 set_buffer_uptodate(bh); 1069 unlock_buffer(bh); 1070 1071 err = ext4_handle_dirty_metadata(handle, inode, bh); 1072 if (err) 1073 goto cleanup; 1074 brelse(bh); 1075 bh = NULL; 1076 1077 /* correct old index */ 1078 if (m) { 1079 err = ext4_ext_get_access(handle, inode, path + i); 1080 if (err) 1081 goto cleanup; 1082 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1083 err = ext4_ext_dirty(handle, inode, path + i); 1084 if (err) 1085 goto cleanup; 1086 } 1087 1088 i--; 1089 } 1090 1091 /* insert new index */ 1092 err = ext4_ext_insert_index(handle, inode, path + at, 1093 le32_to_cpu(border), newblock); 1094 1095 cleanup: 1096 if (bh) { 1097 if (buffer_locked(bh)) 1098 unlock_buffer(bh); 1099 brelse(bh); 1100 } 1101 1102 if (err) { 1103 /* free all allocated blocks in error case */ 1104 for (i = 0; i < depth; i++) { 1105 if (!ablocks[i]) 1106 continue; 1107 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1108 EXT4_FREE_BLOCKS_METADATA); 1109 } 1110 } 1111 kfree(ablocks); 1112 1113 return err; 1114 } 1115 1116 /* 1117 * ext4_ext_grow_indepth: 1118 * implements tree growing procedure: 1119 * - allocates new block 1120 * - moves top-level data (index block or leaf) into the new block 1121 * - initializes new top-level, creating index that points to the 1122 * just created block 1123 */ 1124 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1125 unsigned int flags, 1126 struct ext4_extent *newext) 1127 { 1128 struct ext4_extent_header *neh; 1129 struct buffer_head *bh; 1130 ext4_fsblk_t newblock; 1131 int err = 0; 1132 1133 newblock = ext4_ext_new_meta_block(handle, inode, NULL, 1134 newext, &err, flags); 1135 if (newblock == 0) 1136 return err; 1137 1138 bh = sb_getblk(inode->i_sb, newblock); 1139 if (!bh) { 1140 err = -EIO; 1141 ext4_std_error(inode->i_sb, err); 1142 return err; 1143 } 1144 lock_buffer(bh); 1145 1146 err = ext4_journal_get_create_access(handle, bh); 1147 if (err) { 1148 unlock_buffer(bh); 1149 goto out; 1150 } 1151 1152 /* move top-level index/leaf into new block */ 1153 memmove(bh->b_data, EXT4_I(inode)->i_data, 1154 sizeof(EXT4_I(inode)->i_data)); 1155 1156 /* set size of new block */ 1157 neh = ext_block_hdr(bh); 1158 /* old root could have indexes or leaves 1159 * so calculate e_max right way */ 1160 if (ext_depth(inode)) 1161 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1162 else 1163 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1164 neh->eh_magic = EXT4_EXT_MAGIC; 1165 ext4_extent_block_csum_set(inode, neh); 1166 set_buffer_uptodate(bh); 1167 unlock_buffer(bh); 1168 1169 err = ext4_handle_dirty_metadata(handle, inode, bh); 1170 if (err) 1171 goto out; 1172 1173 /* Update top-level index: num,max,pointer */ 1174 neh = ext_inode_hdr(inode); 1175 neh->eh_entries = cpu_to_le16(1); 1176 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1177 if (neh->eh_depth == 0) { 1178 /* Root extent block becomes index block */ 1179 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1180 EXT_FIRST_INDEX(neh)->ei_block = 1181 EXT_FIRST_EXTENT(neh)->ee_block; 1182 } 1183 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1184 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1185 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1186 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1187 1188 le16_add_cpu(&neh->eh_depth, 1); 1189 ext4_mark_inode_dirty(handle, inode); 1190 out: 1191 brelse(bh); 1192 1193 return err; 1194 } 1195 1196 /* 1197 * ext4_ext_create_new_leaf: 1198 * finds empty index and adds new leaf. 1199 * if no free index is found, then it requests in-depth growing. 1200 */ 1201 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1202 unsigned int flags, 1203 struct ext4_ext_path *path, 1204 struct ext4_extent *newext) 1205 { 1206 struct ext4_ext_path *curp; 1207 int depth, i, err = 0; 1208 1209 repeat: 1210 i = depth = ext_depth(inode); 1211 1212 /* walk up to the tree and look for free index entry */ 1213 curp = path + depth; 1214 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1215 i--; 1216 curp--; 1217 } 1218 1219 /* we use already allocated block for index block, 1220 * so subsequent data blocks should be contiguous */ 1221 if (EXT_HAS_FREE_INDEX(curp)) { 1222 /* if we found index with free entry, then use that 1223 * entry: create all needed subtree and add new leaf */ 1224 err = ext4_ext_split(handle, inode, flags, path, newext, i); 1225 if (err) 1226 goto out; 1227 1228 /* refill path */ 1229 ext4_ext_drop_refs(path); 1230 path = ext4_ext_find_extent(inode, 1231 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1232 path); 1233 if (IS_ERR(path)) 1234 err = PTR_ERR(path); 1235 } else { 1236 /* tree is full, time to grow in depth */ 1237 err = ext4_ext_grow_indepth(handle, inode, flags, newext); 1238 if (err) 1239 goto out; 1240 1241 /* refill path */ 1242 ext4_ext_drop_refs(path); 1243 path = ext4_ext_find_extent(inode, 1244 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1245 path); 1246 if (IS_ERR(path)) { 1247 err = PTR_ERR(path); 1248 goto out; 1249 } 1250 1251 /* 1252 * only first (depth 0 -> 1) produces free space; 1253 * in all other cases we have to split the grown tree 1254 */ 1255 depth = ext_depth(inode); 1256 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1257 /* now we need to split */ 1258 goto repeat; 1259 } 1260 } 1261 1262 out: 1263 return err; 1264 } 1265 1266 /* 1267 * search the closest allocated block to the left for *logical 1268 * and returns it at @logical + it's physical address at @phys 1269 * if *logical is the smallest allocated block, the function 1270 * returns 0 at @phys 1271 * return value contains 0 (success) or error code 1272 */ 1273 static int ext4_ext_search_left(struct inode *inode, 1274 struct ext4_ext_path *path, 1275 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1276 { 1277 struct ext4_extent_idx *ix; 1278 struct ext4_extent *ex; 1279 int depth, ee_len; 1280 1281 if (unlikely(path == NULL)) { 1282 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1283 return -EIO; 1284 } 1285 depth = path->p_depth; 1286 *phys = 0; 1287 1288 if (depth == 0 && path->p_ext == NULL) 1289 return 0; 1290 1291 /* usually extent in the path covers blocks smaller 1292 * then *logical, but it can be that extent is the 1293 * first one in the file */ 1294 1295 ex = path[depth].p_ext; 1296 ee_len = ext4_ext_get_actual_len(ex); 1297 if (*logical < le32_to_cpu(ex->ee_block)) { 1298 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1299 EXT4_ERROR_INODE(inode, 1300 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1301 *logical, le32_to_cpu(ex->ee_block)); 1302 return -EIO; 1303 } 1304 while (--depth >= 0) { 1305 ix = path[depth].p_idx; 1306 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1307 EXT4_ERROR_INODE(inode, 1308 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1309 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1310 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1311 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1312 depth); 1313 return -EIO; 1314 } 1315 } 1316 return 0; 1317 } 1318 1319 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1320 EXT4_ERROR_INODE(inode, 1321 "logical %d < ee_block %d + ee_len %d!", 1322 *logical, le32_to_cpu(ex->ee_block), ee_len); 1323 return -EIO; 1324 } 1325 1326 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1327 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1328 return 0; 1329 } 1330 1331 /* 1332 * search the closest allocated block to the right for *logical 1333 * and returns it at @logical + it's physical address at @phys 1334 * if *logical is the largest allocated block, the function 1335 * returns 0 at @phys 1336 * return value contains 0 (success) or error code 1337 */ 1338 static int ext4_ext_search_right(struct inode *inode, 1339 struct ext4_ext_path *path, 1340 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1341 struct ext4_extent **ret_ex) 1342 { 1343 struct buffer_head *bh = NULL; 1344 struct ext4_extent_header *eh; 1345 struct ext4_extent_idx *ix; 1346 struct ext4_extent *ex; 1347 ext4_fsblk_t block; 1348 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1349 int ee_len; 1350 1351 if (unlikely(path == NULL)) { 1352 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1353 return -EIO; 1354 } 1355 depth = path->p_depth; 1356 *phys = 0; 1357 1358 if (depth == 0 && path->p_ext == NULL) 1359 return 0; 1360 1361 /* usually extent in the path covers blocks smaller 1362 * then *logical, but it can be that extent is the 1363 * first one in the file */ 1364 1365 ex = path[depth].p_ext; 1366 ee_len = ext4_ext_get_actual_len(ex); 1367 if (*logical < le32_to_cpu(ex->ee_block)) { 1368 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1369 EXT4_ERROR_INODE(inode, 1370 "first_extent(path[%d].p_hdr) != ex", 1371 depth); 1372 return -EIO; 1373 } 1374 while (--depth >= 0) { 1375 ix = path[depth].p_idx; 1376 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1377 EXT4_ERROR_INODE(inode, 1378 "ix != EXT_FIRST_INDEX *logical %d!", 1379 *logical); 1380 return -EIO; 1381 } 1382 } 1383 goto found_extent; 1384 } 1385 1386 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1387 EXT4_ERROR_INODE(inode, 1388 "logical %d < ee_block %d + ee_len %d!", 1389 *logical, le32_to_cpu(ex->ee_block), ee_len); 1390 return -EIO; 1391 } 1392 1393 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1394 /* next allocated block in this leaf */ 1395 ex++; 1396 goto found_extent; 1397 } 1398 1399 /* go up and search for index to the right */ 1400 while (--depth >= 0) { 1401 ix = path[depth].p_idx; 1402 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1403 goto got_index; 1404 } 1405 1406 /* we've gone up to the root and found no index to the right */ 1407 return 0; 1408 1409 got_index: 1410 /* we've found index to the right, let's 1411 * follow it and find the closest allocated 1412 * block to the right */ 1413 ix++; 1414 block = ext4_idx_pblock(ix); 1415 while (++depth < path->p_depth) { 1416 bh = sb_bread(inode->i_sb, block); 1417 if (bh == NULL) 1418 return -EIO; 1419 eh = ext_block_hdr(bh); 1420 /* subtract from p_depth to get proper eh_depth */ 1421 if (ext4_ext_check_block(inode, eh, 1422 path->p_depth - depth, bh)) { 1423 put_bh(bh); 1424 return -EIO; 1425 } 1426 ix = EXT_FIRST_INDEX(eh); 1427 block = ext4_idx_pblock(ix); 1428 put_bh(bh); 1429 } 1430 1431 bh = sb_bread(inode->i_sb, block); 1432 if (bh == NULL) 1433 return -EIO; 1434 eh = ext_block_hdr(bh); 1435 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) { 1436 put_bh(bh); 1437 return -EIO; 1438 } 1439 ex = EXT_FIRST_EXTENT(eh); 1440 found_extent: 1441 *logical = le32_to_cpu(ex->ee_block); 1442 *phys = ext4_ext_pblock(ex); 1443 *ret_ex = ex; 1444 if (bh) 1445 put_bh(bh); 1446 return 0; 1447 } 1448 1449 /* 1450 * ext4_ext_next_allocated_block: 1451 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1452 * NOTE: it considers block number from index entry as 1453 * allocated block. Thus, index entries have to be consistent 1454 * with leaves. 1455 */ 1456 static ext4_lblk_t 1457 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1458 { 1459 int depth; 1460 1461 BUG_ON(path == NULL); 1462 depth = path->p_depth; 1463 1464 if (depth == 0 && path->p_ext == NULL) 1465 return EXT_MAX_BLOCKS; 1466 1467 while (depth >= 0) { 1468 if (depth == path->p_depth) { 1469 /* leaf */ 1470 if (path[depth].p_ext && 1471 path[depth].p_ext != 1472 EXT_LAST_EXTENT(path[depth].p_hdr)) 1473 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1474 } else { 1475 /* index */ 1476 if (path[depth].p_idx != 1477 EXT_LAST_INDEX(path[depth].p_hdr)) 1478 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1479 } 1480 depth--; 1481 } 1482 1483 return EXT_MAX_BLOCKS; 1484 } 1485 1486 /* 1487 * ext4_ext_next_leaf_block: 1488 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1489 */ 1490 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1491 { 1492 int depth; 1493 1494 BUG_ON(path == NULL); 1495 depth = path->p_depth; 1496 1497 /* zero-tree has no leaf blocks at all */ 1498 if (depth == 0) 1499 return EXT_MAX_BLOCKS; 1500 1501 /* go to index block */ 1502 depth--; 1503 1504 while (depth >= 0) { 1505 if (path[depth].p_idx != 1506 EXT_LAST_INDEX(path[depth].p_hdr)) 1507 return (ext4_lblk_t) 1508 le32_to_cpu(path[depth].p_idx[1].ei_block); 1509 depth--; 1510 } 1511 1512 return EXT_MAX_BLOCKS; 1513 } 1514 1515 /* 1516 * ext4_ext_correct_indexes: 1517 * if leaf gets modified and modified extent is first in the leaf, 1518 * then we have to correct all indexes above. 1519 * TODO: do we need to correct tree in all cases? 1520 */ 1521 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1522 struct ext4_ext_path *path) 1523 { 1524 struct ext4_extent_header *eh; 1525 int depth = ext_depth(inode); 1526 struct ext4_extent *ex; 1527 __le32 border; 1528 int k, err = 0; 1529 1530 eh = path[depth].p_hdr; 1531 ex = path[depth].p_ext; 1532 1533 if (unlikely(ex == NULL || eh == NULL)) { 1534 EXT4_ERROR_INODE(inode, 1535 "ex %p == NULL or eh %p == NULL", ex, eh); 1536 return -EIO; 1537 } 1538 1539 if (depth == 0) { 1540 /* there is no tree at all */ 1541 return 0; 1542 } 1543 1544 if (ex != EXT_FIRST_EXTENT(eh)) { 1545 /* we correct tree if first leaf got modified only */ 1546 return 0; 1547 } 1548 1549 /* 1550 * TODO: we need correction if border is smaller than current one 1551 */ 1552 k = depth - 1; 1553 border = path[depth].p_ext->ee_block; 1554 err = ext4_ext_get_access(handle, inode, path + k); 1555 if (err) 1556 return err; 1557 path[k].p_idx->ei_block = border; 1558 err = ext4_ext_dirty(handle, inode, path + k); 1559 if (err) 1560 return err; 1561 1562 while (k--) { 1563 /* change all left-side indexes */ 1564 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1565 break; 1566 err = ext4_ext_get_access(handle, inode, path + k); 1567 if (err) 1568 break; 1569 path[k].p_idx->ei_block = border; 1570 err = ext4_ext_dirty(handle, inode, path + k); 1571 if (err) 1572 break; 1573 } 1574 1575 return err; 1576 } 1577 1578 int 1579 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1580 struct ext4_extent *ex2) 1581 { 1582 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1583 1584 /* 1585 * Make sure that either both extents are uninitialized, or 1586 * both are _not_. 1587 */ 1588 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2)) 1589 return 0; 1590 1591 if (ext4_ext_is_uninitialized(ex1)) 1592 max_len = EXT_UNINIT_MAX_LEN; 1593 else 1594 max_len = EXT_INIT_MAX_LEN; 1595 1596 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1597 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1598 1599 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1600 le32_to_cpu(ex2->ee_block)) 1601 return 0; 1602 1603 /* 1604 * To allow future support for preallocated extents to be added 1605 * as an RO_COMPAT feature, refuse to merge to extents if 1606 * this can result in the top bit of ee_len being set. 1607 */ 1608 if (ext1_ee_len + ext2_ee_len > max_len) 1609 return 0; 1610 #ifdef AGGRESSIVE_TEST 1611 if (ext1_ee_len >= 4) 1612 return 0; 1613 #endif 1614 1615 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1616 return 1; 1617 return 0; 1618 } 1619 1620 /* 1621 * This function tries to merge the "ex" extent to the next extent in the tree. 1622 * It always tries to merge towards right. If you want to merge towards 1623 * left, pass "ex - 1" as argument instead of "ex". 1624 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1625 * 1 if they got merged. 1626 */ 1627 static int ext4_ext_try_to_merge_right(struct inode *inode, 1628 struct ext4_ext_path *path, 1629 struct ext4_extent *ex) 1630 { 1631 struct ext4_extent_header *eh; 1632 unsigned int depth, len; 1633 int merge_done = 0; 1634 int uninitialized = 0; 1635 1636 depth = ext_depth(inode); 1637 BUG_ON(path[depth].p_hdr == NULL); 1638 eh = path[depth].p_hdr; 1639 1640 while (ex < EXT_LAST_EXTENT(eh)) { 1641 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1642 break; 1643 /* merge with next extent! */ 1644 if (ext4_ext_is_uninitialized(ex)) 1645 uninitialized = 1; 1646 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1647 + ext4_ext_get_actual_len(ex + 1)); 1648 if (uninitialized) 1649 ext4_ext_mark_uninitialized(ex); 1650 1651 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1652 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1653 * sizeof(struct ext4_extent); 1654 memmove(ex + 1, ex + 2, len); 1655 } 1656 le16_add_cpu(&eh->eh_entries, -1); 1657 merge_done = 1; 1658 WARN_ON(eh->eh_entries == 0); 1659 if (!eh->eh_entries) 1660 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1661 } 1662 1663 return merge_done; 1664 } 1665 1666 /* 1667 * This function does a very simple check to see if we can collapse 1668 * an extent tree with a single extent tree leaf block into the inode. 1669 */ 1670 static void ext4_ext_try_to_merge_up(handle_t *handle, 1671 struct inode *inode, 1672 struct ext4_ext_path *path) 1673 { 1674 size_t s; 1675 unsigned max_root = ext4_ext_space_root(inode, 0); 1676 ext4_fsblk_t blk; 1677 1678 if ((path[0].p_depth != 1) || 1679 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1680 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1681 return; 1682 1683 /* 1684 * We need to modify the block allocation bitmap and the block 1685 * group descriptor to release the extent tree block. If we 1686 * can't get the journal credits, give up. 1687 */ 1688 if (ext4_journal_extend(handle, 2)) 1689 return; 1690 1691 /* 1692 * Copy the extent data up to the inode 1693 */ 1694 blk = ext4_idx_pblock(path[0].p_idx); 1695 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1696 sizeof(struct ext4_extent_idx); 1697 s += sizeof(struct ext4_extent_header); 1698 1699 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1700 path[0].p_depth = 0; 1701 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1702 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1703 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1704 1705 brelse(path[1].p_bh); 1706 ext4_free_blocks(handle, inode, NULL, blk, 1, 1707 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1708 } 1709 1710 /* 1711 * This function tries to merge the @ex extent to neighbours in the tree. 1712 * return 1 if merge left else 0. 1713 */ 1714 static void ext4_ext_try_to_merge(handle_t *handle, 1715 struct inode *inode, 1716 struct ext4_ext_path *path, 1717 struct ext4_extent *ex) { 1718 struct ext4_extent_header *eh; 1719 unsigned int depth; 1720 int merge_done = 0; 1721 1722 depth = ext_depth(inode); 1723 BUG_ON(path[depth].p_hdr == NULL); 1724 eh = path[depth].p_hdr; 1725 1726 if (ex > EXT_FIRST_EXTENT(eh)) 1727 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1728 1729 if (!merge_done) 1730 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1731 1732 ext4_ext_try_to_merge_up(handle, inode, path); 1733 } 1734 1735 /* 1736 * check if a portion of the "newext" extent overlaps with an 1737 * existing extent. 1738 * 1739 * If there is an overlap discovered, it updates the length of the newext 1740 * such that there will be no overlap, and then returns 1. 1741 * If there is no overlap found, it returns 0. 1742 */ 1743 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1744 struct inode *inode, 1745 struct ext4_extent *newext, 1746 struct ext4_ext_path *path) 1747 { 1748 ext4_lblk_t b1, b2; 1749 unsigned int depth, len1; 1750 unsigned int ret = 0; 1751 1752 b1 = le32_to_cpu(newext->ee_block); 1753 len1 = ext4_ext_get_actual_len(newext); 1754 depth = ext_depth(inode); 1755 if (!path[depth].p_ext) 1756 goto out; 1757 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1758 b2 &= ~(sbi->s_cluster_ratio - 1); 1759 1760 /* 1761 * get the next allocated block if the extent in the path 1762 * is before the requested block(s) 1763 */ 1764 if (b2 < b1) { 1765 b2 = ext4_ext_next_allocated_block(path); 1766 if (b2 == EXT_MAX_BLOCKS) 1767 goto out; 1768 b2 &= ~(sbi->s_cluster_ratio - 1); 1769 } 1770 1771 /* check for wrap through zero on extent logical start block*/ 1772 if (b1 + len1 < b1) { 1773 len1 = EXT_MAX_BLOCKS - b1; 1774 newext->ee_len = cpu_to_le16(len1); 1775 ret = 1; 1776 } 1777 1778 /* check for overlap */ 1779 if (b1 + len1 > b2) { 1780 newext->ee_len = cpu_to_le16(b2 - b1); 1781 ret = 1; 1782 } 1783 out: 1784 return ret; 1785 } 1786 1787 /* 1788 * ext4_ext_insert_extent: 1789 * tries to merge requsted extent into the existing extent or 1790 * inserts requested extent as new one into the tree, 1791 * creating new leaf in the no-space case. 1792 */ 1793 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1794 struct ext4_ext_path *path, 1795 struct ext4_extent *newext, int flag) 1796 { 1797 struct ext4_extent_header *eh; 1798 struct ext4_extent *ex, *fex; 1799 struct ext4_extent *nearex; /* nearest extent */ 1800 struct ext4_ext_path *npath = NULL; 1801 int depth, len, err; 1802 ext4_lblk_t next; 1803 unsigned uninitialized = 0; 1804 int flags = 0; 1805 1806 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1807 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1808 return -EIO; 1809 } 1810 depth = ext_depth(inode); 1811 ex = path[depth].p_ext; 1812 if (unlikely(path[depth].p_hdr == NULL)) { 1813 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1814 return -EIO; 1815 } 1816 1817 /* try to insert block into found extent and return */ 1818 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO) 1819 && ext4_can_extents_be_merged(inode, ex, newext)) { 1820 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n", 1821 ext4_ext_is_uninitialized(newext), 1822 ext4_ext_get_actual_len(newext), 1823 le32_to_cpu(ex->ee_block), 1824 ext4_ext_is_uninitialized(ex), 1825 ext4_ext_get_actual_len(ex), 1826 ext4_ext_pblock(ex)); 1827 err = ext4_ext_get_access(handle, inode, path + depth); 1828 if (err) 1829 return err; 1830 1831 /* 1832 * ext4_can_extents_be_merged should have checked that either 1833 * both extents are uninitialized, or both aren't. Thus we 1834 * need to check only one of them here. 1835 */ 1836 if (ext4_ext_is_uninitialized(ex)) 1837 uninitialized = 1; 1838 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1839 + ext4_ext_get_actual_len(newext)); 1840 if (uninitialized) 1841 ext4_ext_mark_uninitialized(ex); 1842 eh = path[depth].p_hdr; 1843 nearex = ex; 1844 goto merge; 1845 } 1846 1847 depth = ext_depth(inode); 1848 eh = path[depth].p_hdr; 1849 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1850 goto has_space; 1851 1852 /* probably next leaf has space for us? */ 1853 fex = EXT_LAST_EXTENT(eh); 1854 next = EXT_MAX_BLOCKS; 1855 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 1856 next = ext4_ext_next_leaf_block(path); 1857 if (next != EXT_MAX_BLOCKS) { 1858 ext_debug("next leaf block - %u\n", next); 1859 BUG_ON(npath != NULL); 1860 npath = ext4_ext_find_extent(inode, next, NULL); 1861 if (IS_ERR(npath)) 1862 return PTR_ERR(npath); 1863 BUG_ON(npath->p_depth != path->p_depth); 1864 eh = npath[depth].p_hdr; 1865 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1866 ext_debug("next leaf isn't full(%d)\n", 1867 le16_to_cpu(eh->eh_entries)); 1868 path = npath; 1869 goto has_space; 1870 } 1871 ext_debug("next leaf has no free space(%d,%d)\n", 1872 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1873 } 1874 1875 /* 1876 * There is no free space in the found leaf. 1877 * We're gonna add a new leaf in the tree. 1878 */ 1879 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) 1880 flags = EXT4_MB_USE_ROOT_BLOCKS; 1881 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext); 1882 if (err) 1883 goto cleanup; 1884 depth = ext_depth(inode); 1885 eh = path[depth].p_hdr; 1886 1887 has_space: 1888 nearex = path[depth].p_ext; 1889 1890 err = ext4_ext_get_access(handle, inode, path + depth); 1891 if (err) 1892 goto cleanup; 1893 1894 if (!nearex) { 1895 /* there is no extent in this leaf, create first one */ 1896 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 1897 le32_to_cpu(newext->ee_block), 1898 ext4_ext_pblock(newext), 1899 ext4_ext_is_uninitialized(newext), 1900 ext4_ext_get_actual_len(newext)); 1901 nearex = EXT_FIRST_EXTENT(eh); 1902 } else { 1903 if (le32_to_cpu(newext->ee_block) 1904 > le32_to_cpu(nearex->ee_block)) { 1905 /* Insert after */ 1906 ext_debug("insert %u:%llu:[%d]%d before: " 1907 "nearest %p\n", 1908 le32_to_cpu(newext->ee_block), 1909 ext4_ext_pblock(newext), 1910 ext4_ext_is_uninitialized(newext), 1911 ext4_ext_get_actual_len(newext), 1912 nearex); 1913 nearex++; 1914 } else { 1915 /* Insert before */ 1916 BUG_ON(newext->ee_block == nearex->ee_block); 1917 ext_debug("insert %u:%llu:[%d]%d after: " 1918 "nearest %p\n", 1919 le32_to_cpu(newext->ee_block), 1920 ext4_ext_pblock(newext), 1921 ext4_ext_is_uninitialized(newext), 1922 ext4_ext_get_actual_len(newext), 1923 nearex); 1924 } 1925 len = EXT_LAST_EXTENT(eh) - nearex + 1; 1926 if (len > 0) { 1927 ext_debug("insert %u:%llu:[%d]%d: " 1928 "move %d extents from 0x%p to 0x%p\n", 1929 le32_to_cpu(newext->ee_block), 1930 ext4_ext_pblock(newext), 1931 ext4_ext_is_uninitialized(newext), 1932 ext4_ext_get_actual_len(newext), 1933 len, nearex, nearex + 1); 1934 memmove(nearex + 1, nearex, 1935 len * sizeof(struct ext4_extent)); 1936 } 1937 } 1938 1939 le16_add_cpu(&eh->eh_entries, 1); 1940 path[depth].p_ext = nearex; 1941 nearex->ee_block = newext->ee_block; 1942 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 1943 nearex->ee_len = newext->ee_len; 1944 1945 merge: 1946 /* try to merge extents */ 1947 if (!(flag & EXT4_GET_BLOCKS_PRE_IO)) 1948 ext4_ext_try_to_merge(handle, inode, path, nearex); 1949 1950 1951 /* time to correct all indexes above */ 1952 err = ext4_ext_correct_indexes(handle, inode, path); 1953 if (err) 1954 goto cleanup; 1955 1956 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 1957 1958 cleanup: 1959 if (npath) { 1960 ext4_ext_drop_refs(npath); 1961 kfree(npath); 1962 } 1963 ext4_ext_invalidate_cache(inode); 1964 return err; 1965 } 1966 1967 static int ext4_fill_fiemap_extents(struct inode *inode, 1968 ext4_lblk_t block, ext4_lblk_t num, 1969 struct fiemap_extent_info *fieinfo) 1970 { 1971 struct ext4_ext_path *path = NULL; 1972 struct ext4_ext_cache newex; 1973 struct ext4_extent *ex; 1974 ext4_lblk_t next, next_del, start = 0, end = 0; 1975 ext4_lblk_t last = block + num; 1976 int exists, depth = 0, err = 0; 1977 unsigned int flags = 0; 1978 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 1979 1980 while (block < last && block != EXT_MAX_BLOCKS) { 1981 num = last - block; 1982 /* find extent for this block */ 1983 down_read(&EXT4_I(inode)->i_data_sem); 1984 1985 if (path && ext_depth(inode) != depth) { 1986 /* depth was changed. we have to realloc path */ 1987 kfree(path); 1988 path = NULL; 1989 } 1990 1991 path = ext4_ext_find_extent(inode, block, path); 1992 if (IS_ERR(path)) { 1993 up_read(&EXT4_I(inode)->i_data_sem); 1994 err = PTR_ERR(path); 1995 path = NULL; 1996 break; 1997 } 1998 1999 depth = ext_depth(inode); 2000 if (unlikely(path[depth].p_hdr == NULL)) { 2001 up_read(&EXT4_I(inode)->i_data_sem); 2002 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2003 err = -EIO; 2004 break; 2005 } 2006 ex = path[depth].p_ext; 2007 next = ext4_ext_next_allocated_block(path); 2008 ext4_ext_drop_refs(path); 2009 2010 flags = 0; 2011 exists = 0; 2012 if (!ex) { 2013 /* there is no extent yet, so try to allocate 2014 * all requested space */ 2015 start = block; 2016 end = block + num; 2017 } else if (le32_to_cpu(ex->ee_block) > block) { 2018 /* need to allocate space before found extent */ 2019 start = block; 2020 end = le32_to_cpu(ex->ee_block); 2021 if (block + num < end) 2022 end = block + num; 2023 } else if (block >= le32_to_cpu(ex->ee_block) 2024 + ext4_ext_get_actual_len(ex)) { 2025 /* need to allocate space after found extent */ 2026 start = block; 2027 end = block + num; 2028 if (end >= next) 2029 end = next; 2030 } else if (block >= le32_to_cpu(ex->ee_block)) { 2031 /* 2032 * some part of requested space is covered 2033 * by found extent 2034 */ 2035 start = block; 2036 end = le32_to_cpu(ex->ee_block) 2037 + ext4_ext_get_actual_len(ex); 2038 if (block + num < end) 2039 end = block + num; 2040 exists = 1; 2041 } else { 2042 BUG(); 2043 } 2044 BUG_ON(end <= start); 2045 2046 if (!exists) { 2047 newex.ec_block = start; 2048 newex.ec_len = end - start; 2049 newex.ec_start = 0; 2050 } else { 2051 newex.ec_block = le32_to_cpu(ex->ee_block); 2052 newex.ec_len = ext4_ext_get_actual_len(ex); 2053 newex.ec_start = ext4_ext_pblock(ex); 2054 if (ext4_ext_is_uninitialized(ex)) 2055 flags |= FIEMAP_EXTENT_UNWRITTEN; 2056 } 2057 2058 /* 2059 * Find delayed extent and update newex accordingly. We call 2060 * it even in !exists case to find out whether newex is the 2061 * last existing extent or not. 2062 */ 2063 next_del = ext4_find_delayed_extent(inode, &newex); 2064 if (!exists && next_del) { 2065 exists = 1; 2066 flags |= FIEMAP_EXTENT_DELALLOC; 2067 } 2068 up_read(&EXT4_I(inode)->i_data_sem); 2069 2070 if (unlikely(newex.ec_len == 0)) { 2071 EXT4_ERROR_INODE(inode, "newex.ec_len == 0"); 2072 err = -EIO; 2073 break; 2074 } 2075 2076 /* This is possible iff next == next_del == EXT_MAX_BLOCKS */ 2077 if (next == next_del) { 2078 flags |= FIEMAP_EXTENT_LAST; 2079 if (unlikely(next_del != EXT_MAX_BLOCKS || 2080 next != EXT_MAX_BLOCKS)) { 2081 EXT4_ERROR_INODE(inode, 2082 "next extent == %u, next " 2083 "delalloc extent = %u", 2084 next, next_del); 2085 err = -EIO; 2086 break; 2087 } 2088 } 2089 2090 if (exists) { 2091 err = fiemap_fill_next_extent(fieinfo, 2092 (__u64)newex.ec_block << blksize_bits, 2093 (__u64)newex.ec_start << blksize_bits, 2094 (__u64)newex.ec_len << blksize_bits, 2095 flags); 2096 if (err < 0) 2097 break; 2098 if (err == 1) { 2099 err = 0; 2100 break; 2101 } 2102 } 2103 2104 block = newex.ec_block + newex.ec_len; 2105 } 2106 2107 if (path) { 2108 ext4_ext_drop_refs(path); 2109 kfree(path); 2110 } 2111 2112 return err; 2113 } 2114 2115 static void 2116 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block, 2117 __u32 len, ext4_fsblk_t start) 2118 { 2119 struct ext4_ext_cache *cex; 2120 BUG_ON(len == 0); 2121 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 2122 trace_ext4_ext_put_in_cache(inode, block, len, start); 2123 cex = &EXT4_I(inode)->i_cached_extent; 2124 cex->ec_block = block; 2125 cex->ec_len = len; 2126 cex->ec_start = start; 2127 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 2128 } 2129 2130 /* 2131 * ext4_ext_put_gap_in_cache: 2132 * calculate boundaries of the gap that the requested block fits into 2133 * and cache this gap 2134 */ 2135 static void 2136 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2137 ext4_lblk_t block) 2138 { 2139 int depth = ext_depth(inode); 2140 unsigned long len; 2141 ext4_lblk_t lblock; 2142 struct ext4_extent *ex; 2143 2144 ex = path[depth].p_ext; 2145 if (ex == NULL) { 2146 /* there is no extent yet, so gap is [0;-] */ 2147 lblock = 0; 2148 len = EXT_MAX_BLOCKS; 2149 ext_debug("cache gap(whole file):"); 2150 } else if (block < le32_to_cpu(ex->ee_block)) { 2151 lblock = block; 2152 len = le32_to_cpu(ex->ee_block) - block; 2153 ext_debug("cache gap(before): %u [%u:%u]", 2154 block, 2155 le32_to_cpu(ex->ee_block), 2156 ext4_ext_get_actual_len(ex)); 2157 } else if (block >= le32_to_cpu(ex->ee_block) 2158 + ext4_ext_get_actual_len(ex)) { 2159 ext4_lblk_t next; 2160 lblock = le32_to_cpu(ex->ee_block) 2161 + ext4_ext_get_actual_len(ex); 2162 2163 next = ext4_ext_next_allocated_block(path); 2164 ext_debug("cache gap(after): [%u:%u] %u", 2165 le32_to_cpu(ex->ee_block), 2166 ext4_ext_get_actual_len(ex), 2167 block); 2168 BUG_ON(next == lblock); 2169 len = next - lblock; 2170 } else { 2171 lblock = len = 0; 2172 BUG(); 2173 } 2174 2175 ext_debug(" -> %u:%lu\n", lblock, len); 2176 ext4_ext_put_in_cache(inode, lblock, len, 0); 2177 } 2178 2179 /* 2180 * ext4_ext_in_cache() 2181 * Checks to see if the given block is in the cache. 2182 * If it is, the cached extent is stored in the given 2183 * cache extent pointer. 2184 * 2185 * @inode: The files inode 2186 * @block: The block to look for in the cache 2187 * @ex: Pointer where the cached extent will be stored 2188 * if it contains block 2189 * 2190 * Return 0 if cache is invalid; 1 if the cache is valid 2191 */ 2192 static int 2193 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block, 2194 struct ext4_extent *ex) 2195 { 2196 struct ext4_ext_cache *cex; 2197 int ret = 0; 2198 2199 /* 2200 * We borrow i_block_reservation_lock to protect i_cached_extent 2201 */ 2202 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 2203 cex = &EXT4_I(inode)->i_cached_extent; 2204 2205 /* has cache valid data? */ 2206 if (cex->ec_len == 0) 2207 goto errout; 2208 2209 if (in_range(block, cex->ec_block, cex->ec_len)) { 2210 ex->ee_block = cpu_to_le32(cex->ec_block); 2211 ext4_ext_store_pblock(ex, cex->ec_start); 2212 ex->ee_len = cpu_to_le16(cex->ec_len); 2213 ext_debug("%u cached by %u:%u:%llu\n", 2214 block, 2215 cex->ec_block, cex->ec_len, cex->ec_start); 2216 ret = 1; 2217 } 2218 errout: 2219 trace_ext4_ext_in_cache(inode, block, ret); 2220 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 2221 return ret; 2222 } 2223 2224 /* 2225 * ext4_ext_rm_idx: 2226 * removes index from the index block. 2227 */ 2228 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2229 struct ext4_ext_path *path, int depth) 2230 { 2231 int err; 2232 ext4_fsblk_t leaf; 2233 2234 /* free index block */ 2235 depth--; 2236 path = path + depth; 2237 leaf = ext4_idx_pblock(path->p_idx); 2238 if (unlikely(path->p_hdr->eh_entries == 0)) { 2239 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2240 return -EIO; 2241 } 2242 err = ext4_ext_get_access(handle, inode, path); 2243 if (err) 2244 return err; 2245 2246 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2247 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2248 len *= sizeof(struct ext4_extent_idx); 2249 memmove(path->p_idx, path->p_idx + 1, len); 2250 } 2251 2252 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2253 err = ext4_ext_dirty(handle, inode, path); 2254 if (err) 2255 return err; 2256 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2257 trace_ext4_ext_rm_idx(inode, leaf); 2258 2259 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2260 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2261 2262 while (--depth >= 0) { 2263 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2264 break; 2265 path--; 2266 err = ext4_ext_get_access(handle, inode, path); 2267 if (err) 2268 break; 2269 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2270 err = ext4_ext_dirty(handle, inode, path); 2271 if (err) 2272 break; 2273 } 2274 return err; 2275 } 2276 2277 /* 2278 * ext4_ext_calc_credits_for_single_extent: 2279 * This routine returns max. credits that needed to insert an extent 2280 * to the extent tree. 2281 * When pass the actual path, the caller should calculate credits 2282 * under i_data_sem. 2283 */ 2284 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2285 struct ext4_ext_path *path) 2286 { 2287 if (path) { 2288 int depth = ext_depth(inode); 2289 int ret = 0; 2290 2291 /* probably there is space in leaf? */ 2292 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2293 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2294 2295 /* 2296 * There are some space in the leaf tree, no 2297 * need to account for leaf block credit 2298 * 2299 * bitmaps and block group descriptor blocks 2300 * and other metadata blocks still need to be 2301 * accounted. 2302 */ 2303 /* 1 bitmap, 1 block group descriptor */ 2304 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2305 return ret; 2306 } 2307 } 2308 2309 return ext4_chunk_trans_blocks(inode, nrblocks); 2310 } 2311 2312 /* 2313 * How many index/leaf blocks need to change/allocate to modify nrblocks? 2314 * 2315 * if nrblocks are fit in a single extent (chunk flag is 1), then 2316 * in the worse case, each tree level index/leaf need to be changed 2317 * if the tree split due to insert a new extent, then the old tree 2318 * index/leaf need to be updated too 2319 * 2320 * If the nrblocks are discontiguous, they could cause 2321 * the whole tree split more than once, but this is really rare. 2322 */ 2323 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 2324 { 2325 int index; 2326 int depth; 2327 2328 /* If we are converting the inline data, only one is needed here. */ 2329 if (ext4_has_inline_data(inode)) 2330 return 1; 2331 2332 depth = ext_depth(inode); 2333 2334 if (chunk) 2335 index = depth * 2; 2336 else 2337 index = depth * 3; 2338 2339 return index; 2340 } 2341 2342 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2343 struct ext4_extent *ex, 2344 ext4_fsblk_t *partial_cluster, 2345 ext4_lblk_t from, ext4_lblk_t to) 2346 { 2347 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2348 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2349 ext4_fsblk_t pblk; 2350 int flags = 0; 2351 2352 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2353 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2354 else if (ext4_should_journal_data(inode)) 2355 flags |= EXT4_FREE_BLOCKS_FORGET; 2356 2357 /* 2358 * For bigalloc file systems, we never free a partial cluster 2359 * at the beginning of the extent. Instead, we make a note 2360 * that we tried freeing the cluster, and check to see if we 2361 * need to free it on a subsequent call to ext4_remove_blocks, 2362 * or at the end of the ext4_truncate() operation. 2363 */ 2364 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2365 2366 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2367 /* 2368 * If we have a partial cluster, and it's different from the 2369 * cluster of the last block, we need to explicitly free the 2370 * partial cluster here. 2371 */ 2372 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2373 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) { 2374 ext4_free_blocks(handle, inode, NULL, 2375 EXT4_C2B(sbi, *partial_cluster), 2376 sbi->s_cluster_ratio, flags); 2377 *partial_cluster = 0; 2378 } 2379 2380 #ifdef EXTENTS_STATS 2381 { 2382 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2383 spin_lock(&sbi->s_ext_stats_lock); 2384 sbi->s_ext_blocks += ee_len; 2385 sbi->s_ext_extents++; 2386 if (ee_len < sbi->s_ext_min) 2387 sbi->s_ext_min = ee_len; 2388 if (ee_len > sbi->s_ext_max) 2389 sbi->s_ext_max = ee_len; 2390 if (ext_depth(inode) > sbi->s_depth_max) 2391 sbi->s_depth_max = ext_depth(inode); 2392 spin_unlock(&sbi->s_ext_stats_lock); 2393 } 2394 #endif 2395 if (from >= le32_to_cpu(ex->ee_block) 2396 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2397 /* tail removal */ 2398 ext4_lblk_t num; 2399 2400 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2401 pblk = ext4_ext_pblock(ex) + ee_len - num; 2402 ext_debug("free last %u blocks starting %llu\n", num, pblk); 2403 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2404 /* 2405 * If the block range to be freed didn't start at the 2406 * beginning of a cluster, and we removed the entire 2407 * extent, save the partial cluster here, since we 2408 * might need to delete if we determine that the 2409 * truncate operation has removed all of the blocks in 2410 * the cluster. 2411 */ 2412 if (pblk & (sbi->s_cluster_ratio - 1) && 2413 (ee_len == num)) 2414 *partial_cluster = EXT4_B2C(sbi, pblk); 2415 else 2416 *partial_cluster = 0; 2417 } else if (from == le32_to_cpu(ex->ee_block) 2418 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { 2419 /* head removal */ 2420 ext4_lblk_t num; 2421 ext4_fsblk_t start; 2422 2423 num = to - from; 2424 start = ext4_ext_pblock(ex); 2425 2426 ext_debug("free first %u blocks starting %llu\n", num, start); 2427 ext4_free_blocks(handle, inode, NULL, start, num, flags); 2428 2429 } else { 2430 printk(KERN_INFO "strange request: removal(2) " 2431 "%u-%u from %u:%u\n", 2432 from, to, le32_to_cpu(ex->ee_block), ee_len); 2433 } 2434 return 0; 2435 } 2436 2437 2438 /* 2439 * ext4_ext_rm_leaf() Removes the extents associated with the 2440 * blocks appearing between "start" and "end", and splits the extents 2441 * if "start" and "end" appear in the same extent 2442 * 2443 * @handle: The journal handle 2444 * @inode: The files inode 2445 * @path: The path to the leaf 2446 * @start: The first block to remove 2447 * @end: The last block to remove 2448 */ 2449 static int 2450 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2451 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster, 2452 ext4_lblk_t start, ext4_lblk_t end) 2453 { 2454 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2455 int err = 0, correct_index = 0; 2456 int depth = ext_depth(inode), credits; 2457 struct ext4_extent_header *eh; 2458 ext4_lblk_t a, b; 2459 unsigned num; 2460 ext4_lblk_t ex_ee_block; 2461 unsigned short ex_ee_len; 2462 unsigned uninitialized = 0; 2463 struct ext4_extent *ex; 2464 2465 /* the header must be checked already in ext4_ext_remove_space() */ 2466 ext_debug("truncate since %u in leaf to %u\n", start, end); 2467 if (!path[depth].p_hdr) 2468 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2469 eh = path[depth].p_hdr; 2470 if (unlikely(path[depth].p_hdr == NULL)) { 2471 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2472 return -EIO; 2473 } 2474 /* find where to start removing */ 2475 ex = EXT_LAST_EXTENT(eh); 2476 2477 ex_ee_block = le32_to_cpu(ex->ee_block); 2478 ex_ee_len = ext4_ext_get_actual_len(ex); 2479 2480 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2481 2482 while (ex >= EXT_FIRST_EXTENT(eh) && 2483 ex_ee_block + ex_ee_len > start) { 2484 2485 if (ext4_ext_is_uninitialized(ex)) 2486 uninitialized = 1; 2487 else 2488 uninitialized = 0; 2489 2490 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2491 uninitialized, ex_ee_len); 2492 path[depth].p_ext = ex; 2493 2494 a = ex_ee_block > start ? ex_ee_block : start; 2495 b = ex_ee_block+ex_ee_len - 1 < end ? 2496 ex_ee_block+ex_ee_len - 1 : end; 2497 2498 ext_debug(" border %u:%u\n", a, b); 2499 2500 /* If this extent is beyond the end of the hole, skip it */ 2501 if (end < ex_ee_block) { 2502 ex--; 2503 ex_ee_block = le32_to_cpu(ex->ee_block); 2504 ex_ee_len = ext4_ext_get_actual_len(ex); 2505 continue; 2506 } else if (b != ex_ee_block + ex_ee_len - 1) { 2507 EXT4_ERROR_INODE(inode, 2508 "can not handle truncate %u:%u " 2509 "on extent %u:%u", 2510 start, end, ex_ee_block, 2511 ex_ee_block + ex_ee_len - 1); 2512 err = -EIO; 2513 goto out; 2514 } else if (a != ex_ee_block) { 2515 /* remove tail of the extent */ 2516 num = a - ex_ee_block; 2517 } else { 2518 /* remove whole extent: excellent! */ 2519 num = 0; 2520 } 2521 /* 2522 * 3 for leaf, sb, and inode plus 2 (bmap and group 2523 * descriptor) for each block group; assume two block 2524 * groups plus ex_ee_len/blocks_per_block_group for 2525 * the worst case 2526 */ 2527 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2528 if (ex == EXT_FIRST_EXTENT(eh)) { 2529 correct_index = 1; 2530 credits += (ext_depth(inode)) + 1; 2531 } 2532 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2533 2534 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2535 if (err) 2536 goto out; 2537 2538 err = ext4_ext_get_access(handle, inode, path + depth); 2539 if (err) 2540 goto out; 2541 2542 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2543 a, b); 2544 if (err) 2545 goto out; 2546 2547 if (num == 0) 2548 /* this extent is removed; mark slot entirely unused */ 2549 ext4_ext_store_pblock(ex, 0); 2550 2551 ex->ee_len = cpu_to_le16(num); 2552 /* 2553 * Do not mark uninitialized if all the blocks in the 2554 * extent have been removed. 2555 */ 2556 if (uninitialized && num) 2557 ext4_ext_mark_uninitialized(ex); 2558 /* 2559 * If the extent was completely released, 2560 * we need to remove it from the leaf 2561 */ 2562 if (num == 0) { 2563 if (end != EXT_MAX_BLOCKS - 1) { 2564 /* 2565 * For hole punching, we need to scoot all the 2566 * extents up when an extent is removed so that 2567 * we dont have blank extents in the middle 2568 */ 2569 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2570 sizeof(struct ext4_extent)); 2571 2572 /* Now get rid of the one at the end */ 2573 memset(EXT_LAST_EXTENT(eh), 0, 2574 sizeof(struct ext4_extent)); 2575 } 2576 le16_add_cpu(&eh->eh_entries, -1); 2577 } else 2578 *partial_cluster = 0; 2579 2580 err = ext4_ext_dirty(handle, inode, path + depth); 2581 if (err) 2582 goto out; 2583 2584 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2585 ext4_ext_pblock(ex)); 2586 ex--; 2587 ex_ee_block = le32_to_cpu(ex->ee_block); 2588 ex_ee_len = ext4_ext_get_actual_len(ex); 2589 } 2590 2591 if (correct_index && eh->eh_entries) 2592 err = ext4_ext_correct_indexes(handle, inode, path); 2593 2594 /* 2595 * If there is still a entry in the leaf node, check to see if 2596 * it references the partial cluster. This is the only place 2597 * where it could; if it doesn't, we can free the cluster. 2598 */ 2599 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) && 2600 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != 2601 *partial_cluster)) { 2602 int flags = EXT4_FREE_BLOCKS_FORGET; 2603 2604 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2605 flags |= EXT4_FREE_BLOCKS_METADATA; 2606 2607 ext4_free_blocks(handle, inode, NULL, 2608 EXT4_C2B(sbi, *partial_cluster), 2609 sbi->s_cluster_ratio, flags); 2610 *partial_cluster = 0; 2611 } 2612 2613 /* if this leaf is free, then we should 2614 * remove it from index block above */ 2615 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2616 err = ext4_ext_rm_idx(handle, inode, path, depth); 2617 2618 out: 2619 return err; 2620 } 2621 2622 /* 2623 * ext4_ext_more_to_rm: 2624 * returns 1 if current index has to be freed (even partial) 2625 */ 2626 static int 2627 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2628 { 2629 BUG_ON(path->p_idx == NULL); 2630 2631 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2632 return 0; 2633 2634 /* 2635 * if truncate on deeper level happened, it wasn't partial, 2636 * so we have to consider current index for truncation 2637 */ 2638 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2639 return 0; 2640 return 1; 2641 } 2642 2643 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2644 ext4_lblk_t end) 2645 { 2646 struct super_block *sb = inode->i_sb; 2647 int depth = ext_depth(inode); 2648 struct ext4_ext_path *path = NULL; 2649 ext4_fsblk_t partial_cluster = 0; 2650 handle_t *handle; 2651 int i = 0, err = 0; 2652 2653 ext_debug("truncate since %u to %u\n", start, end); 2654 2655 /* probably first extent we're gonna free will be last in block */ 2656 handle = ext4_journal_start(inode, depth + 1); 2657 if (IS_ERR(handle)) 2658 return PTR_ERR(handle); 2659 2660 again: 2661 ext4_ext_invalidate_cache(inode); 2662 2663 trace_ext4_ext_remove_space(inode, start, depth); 2664 2665 /* 2666 * Check if we are removing extents inside the extent tree. If that 2667 * is the case, we are going to punch a hole inside the extent tree 2668 * so we have to check whether we need to split the extent covering 2669 * the last block to remove so we can easily remove the part of it 2670 * in ext4_ext_rm_leaf(). 2671 */ 2672 if (end < EXT_MAX_BLOCKS - 1) { 2673 struct ext4_extent *ex; 2674 ext4_lblk_t ee_block; 2675 2676 /* find extent for this block */ 2677 path = ext4_ext_find_extent(inode, end, NULL); 2678 if (IS_ERR(path)) { 2679 ext4_journal_stop(handle); 2680 return PTR_ERR(path); 2681 } 2682 depth = ext_depth(inode); 2683 /* Leaf not may not exist only if inode has no blocks at all */ 2684 ex = path[depth].p_ext; 2685 if (!ex) { 2686 if (depth) { 2687 EXT4_ERROR_INODE(inode, 2688 "path[%d].p_hdr == NULL", 2689 depth); 2690 err = -EIO; 2691 } 2692 goto out; 2693 } 2694 2695 ee_block = le32_to_cpu(ex->ee_block); 2696 2697 /* 2698 * See if the last block is inside the extent, if so split 2699 * the extent at 'end' block so we can easily remove the 2700 * tail of the first part of the split extent in 2701 * ext4_ext_rm_leaf(). 2702 */ 2703 if (end >= ee_block && 2704 end < ee_block + ext4_ext_get_actual_len(ex) - 1) { 2705 int split_flag = 0; 2706 2707 if (ext4_ext_is_uninitialized(ex)) 2708 split_flag = EXT4_EXT_MARK_UNINIT1 | 2709 EXT4_EXT_MARK_UNINIT2; 2710 2711 /* 2712 * Split the extent in two so that 'end' is the last 2713 * block in the first new extent 2714 */ 2715 err = ext4_split_extent_at(handle, inode, path, 2716 end + 1, split_flag, 2717 EXT4_GET_BLOCKS_PRE_IO | 2718 EXT4_GET_BLOCKS_PUNCH_OUT_EXT); 2719 2720 if (err < 0) 2721 goto out; 2722 } 2723 } 2724 /* 2725 * We start scanning from right side, freeing all the blocks 2726 * after i_size and walking into the tree depth-wise. 2727 */ 2728 depth = ext_depth(inode); 2729 if (path) { 2730 int k = i = depth; 2731 while (--k > 0) 2732 path[k].p_block = 2733 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2734 } else { 2735 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2736 GFP_NOFS); 2737 if (path == NULL) { 2738 ext4_journal_stop(handle); 2739 return -ENOMEM; 2740 } 2741 path[0].p_depth = depth; 2742 path[0].p_hdr = ext_inode_hdr(inode); 2743 i = 0; 2744 2745 if (ext4_ext_check(inode, path[0].p_hdr, depth)) { 2746 err = -EIO; 2747 goto out; 2748 } 2749 } 2750 err = 0; 2751 2752 while (i >= 0 && err == 0) { 2753 if (i == depth) { 2754 /* this is leaf block */ 2755 err = ext4_ext_rm_leaf(handle, inode, path, 2756 &partial_cluster, start, 2757 end); 2758 /* root level has p_bh == NULL, brelse() eats this */ 2759 brelse(path[i].p_bh); 2760 path[i].p_bh = NULL; 2761 i--; 2762 continue; 2763 } 2764 2765 /* this is index block */ 2766 if (!path[i].p_hdr) { 2767 ext_debug("initialize header\n"); 2768 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2769 } 2770 2771 if (!path[i].p_idx) { 2772 /* this level hasn't been touched yet */ 2773 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2774 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2775 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2776 path[i].p_hdr, 2777 le16_to_cpu(path[i].p_hdr->eh_entries)); 2778 } else { 2779 /* we were already here, see at next index */ 2780 path[i].p_idx--; 2781 } 2782 2783 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2784 i, EXT_FIRST_INDEX(path[i].p_hdr), 2785 path[i].p_idx); 2786 if (ext4_ext_more_to_rm(path + i)) { 2787 struct buffer_head *bh; 2788 /* go to the next level */ 2789 ext_debug("move to level %d (block %llu)\n", 2790 i + 1, ext4_idx_pblock(path[i].p_idx)); 2791 memset(path + i + 1, 0, sizeof(*path)); 2792 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx)); 2793 if (!bh) { 2794 /* should we reset i_size? */ 2795 err = -EIO; 2796 break; 2797 } 2798 if (WARN_ON(i + 1 > depth)) { 2799 err = -EIO; 2800 break; 2801 } 2802 if (ext4_ext_check_block(inode, ext_block_hdr(bh), 2803 depth - i - 1, bh)) { 2804 err = -EIO; 2805 break; 2806 } 2807 path[i + 1].p_bh = bh; 2808 2809 /* save actual number of indexes since this 2810 * number is changed at the next iteration */ 2811 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2812 i++; 2813 } else { 2814 /* we finished processing this index, go up */ 2815 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2816 /* index is empty, remove it; 2817 * handle must be already prepared by the 2818 * truncatei_leaf() */ 2819 err = ext4_ext_rm_idx(handle, inode, path, i); 2820 } 2821 /* root level has p_bh == NULL, brelse() eats this */ 2822 brelse(path[i].p_bh); 2823 path[i].p_bh = NULL; 2824 i--; 2825 ext_debug("return to level %d\n", i); 2826 } 2827 } 2828 2829 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster, 2830 path->p_hdr->eh_entries); 2831 2832 /* If we still have something in the partial cluster and we have removed 2833 * even the first extent, then we should free the blocks in the partial 2834 * cluster as well. */ 2835 if (partial_cluster && path->p_hdr->eh_entries == 0) { 2836 int flags = EXT4_FREE_BLOCKS_FORGET; 2837 2838 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2839 flags |= EXT4_FREE_BLOCKS_METADATA; 2840 2841 ext4_free_blocks(handle, inode, NULL, 2842 EXT4_C2B(EXT4_SB(sb), partial_cluster), 2843 EXT4_SB(sb)->s_cluster_ratio, flags); 2844 partial_cluster = 0; 2845 } 2846 2847 /* TODO: flexible tree reduction should be here */ 2848 if (path->p_hdr->eh_entries == 0) { 2849 /* 2850 * truncate to zero freed all the tree, 2851 * so we need to correct eh_depth 2852 */ 2853 err = ext4_ext_get_access(handle, inode, path); 2854 if (err == 0) { 2855 ext_inode_hdr(inode)->eh_depth = 0; 2856 ext_inode_hdr(inode)->eh_max = 2857 cpu_to_le16(ext4_ext_space_root(inode, 0)); 2858 err = ext4_ext_dirty(handle, inode, path); 2859 } 2860 } 2861 out: 2862 ext4_ext_drop_refs(path); 2863 kfree(path); 2864 if (err == -EAGAIN) { 2865 path = NULL; 2866 goto again; 2867 } 2868 ext4_journal_stop(handle); 2869 2870 return err; 2871 } 2872 2873 /* 2874 * called at mount time 2875 */ 2876 void ext4_ext_init(struct super_block *sb) 2877 { 2878 /* 2879 * possible initialization would be here 2880 */ 2881 2882 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2883 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 2884 printk(KERN_INFO "EXT4-fs: file extents enabled" 2885 #ifdef AGGRESSIVE_TEST 2886 ", aggressive tests" 2887 #endif 2888 #ifdef CHECK_BINSEARCH 2889 ", check binsearch" 2890 #endif 2891 #ifdef EXTENTS_STATS 2892 ", stats" 2893 #endif 2894 "\n"); 2895 #endif 2896 #ifdef EXTENTS_STATS 2897 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2898 EXT4_SB(sb)->s_ext_min = 1 << 30; 2899 EXT4_SB(sb)->s_ext_max = 0; 2900 #endif 2901 } 2902 } 2903 2904 /* 2905 * called at umount time 2906 */ 2907 void ext4_ext_release(struct super_block *sb) 2908 { 2909 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 2910 return; 2911 2912 #ifdef EXTENTS_STATS 2913 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2914 struct ext4_sb_info *sbi = EXT4_SB(sb); 2915 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2916 sbi->s_ext_blocks, sbi->s_ext_extents, 2917 sbi->s_ext_blocks / sbi->s_ext_extents); 2918 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2919 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2920 } 2921 #endif 2922 } 2923 2924 /* FIXME!! we need to try to merge to left or right after zero-out */ 2925 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 2926 { 2927 ext4_fsblk_t ee_pblock; 2928 unsigned int ee_len; 2929 int ret; 2930 2931 ee_len = ext4_ext_get_actual_len(ex); 2932 ee_pblock = ext4_ext_pblock(ex); 2933 2934 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 2935 if (ret > 0) 2936 ret = 0; 2937 2938 return ret; 2939 } 2940 2941 /* 2942 * ext4_split_extent_at() splits an extent at given block. 2943 * 2944 * @handle: the journal handle 2945 * @inode: the file inode 2946 * @path: the path to the extent 2947 * @split: the logical block where the extent is splitted. 2948 * @split_flags: indicates if the extent could be zeroout if split fails, and 2949 * the states(init or uninit) of new extents. 2950 * @flags: flags used to insert new extent to extent tree. 2951 * 2952 * 2953 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 2954 * of which are deterimined by split_flag. 2955 * 2956 * There are two cases: 2957 * a> the extent are splitted into two extent. 2958 * b> split is not needed, and just mark the extent. 2959 * 2960 * return 0 on success. 2961 */ 2962 static int ext4_split_extent_at(handle_t *handle, 2963 struct inode *inode, 2964 struct ext4_ext_path *path, 2965 ext4_lblk_t split, 2966 int split_flag, 2967 int flags) 2968 { 2969 ext4_fsblk_t newblock; 2970 ext4_lblk_t ee_block; 2971 struct ext4_extent *ex, newex, orig_ex; 2972 struct ext4_extent *ex2 = NULL; 2973 unsigned int ee_len, depth; 2974 int err = 0; 2975 2976 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 2977 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 2978 2979 ext_debug("ext4_split_extents_at: inode %lu, logical" 2980 "block %llu\n", inode->i_ino, (unsigned long long)split); 2981 2982 ext4_ext_show_leaf(inode, path); 2983 2984 depth = ext_depth(inode); 2985 ex = path[depth].p_ext; 2986 ee_block = le32_to_cpu(ex->ee_block); 2987 ee_len = ext4_ext_get_actual_len(ex); 2988 newblock = split - ee_block + ext4_ext_pblock(ex); 2989 2990 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 2991 2992 err = ext4_ext_get_access(handle, inode, path + depth); 2993 if (err) 2994 goto out; 2995 2996 if (split == ee_block) { 2997 /* 2998 * case b: block @split is the block that the extent begins with 2999 * then we just change the state of the extent, and splitting 3000 * is not needed. 3001 */ 3002 if (split_flag & EXT4_EXT_MARK_UNINIT2) 3003 ext4_ext_mark_uninitialized(ex); 3004 else 3005 ext4_ext_mark_initialized(ex); 3006 3007 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3008 ext4_ext_try_to_merge(handle, inode, path, ex); 3009 3010 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3011 goto out; 3012 } 3013 3014 /* case a */ 3015 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3016 ex->ee_len = cpu_to_le16(split - ee_block); 3017 if (split_flag & EXT4_EXT_MARK_UNINIT1) 3018 ext4_ext_mark_uninitialized(ex); 3019 3020 /* 3021 * path may lead to new leaf, not to original leaf any more 3022 * after ext4_ext_insert_extent() returns, 3023 */ 3024 err = ext4_ext_dirty(handle, inode, path + depth); 3025 if (err) 3026 goto fix_extent_len; 3027 3028 ex2 = &newex; 3029 ex2->ee_block = cpu_to_le32(split); 3030 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3031 ext4_ext_store_pblock(ex2, newblock); 3032 if (split_flag & EXT4_EXT_MARK_UNINIT2) 3033 ext4_ext_mark_uninitialized(ex2); 3034 3035 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 3036 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3037 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3038 if (split_flag & EXT4_EXT_DATA_VALID1) 3039 err = ext4_ext_zeroout(inode, ex2); 3040 else 3041 err = ext4_ext_zeroout(inode, ex); 3042 } else 3043 err = ext4_ext_zeroout(inode, &orig_ex); 3044 3045 if (err) 3046 goto fix_extent_len; 3047 /* update the extent length and mark as initialized */ 3048 ex->ee_len = cpu_to_le16(ee_len); 3049 ext4_ext_try_to_merge(handle, inode, path, ex); 3050 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3051 goto out; 3052 } else if (err) 3053 goto fix_extent_len; 3054 3055 out: 3056 ext4_ext_show_leaf(inode, path); 3057 return err; 3058 3059 fix_extent_len: 3060 ex->ee_len = orig_ex.ee_len; 3061 ext4_ext_dirty(handle, inode, path + depth); 3062 return err; 3063 } 3064 3065 /* 3066 * ext4_split_extents() splits an extent and mark extent which is covered 3067 * by @map as split_flags indicates 3068 * 3069 * It may result in splitting the extent into multiple extents (upto three) 3070 * There are three possibilities: 3071 * a> There is no split required 3072 * b> Splits in two extents: Split is happening at either end of the extent 3073 * c> Splits in three extents: Somone is splitting in middle of the extent 3074 * 3075 */ 3076 static int ext4_split_extent(handle_t *handle, 3077 struct inode *inode, 3078 struct ext4_ext_path *path, 3079 struct ext4_map_blocks *map, 3080 int split_flag, 3081 int flags) 3082 { 3083 ext4_lblk_t ee_block; 3084 struct ext4_extent *ex; 3085 unsigned int ee_len, depth; 3086 int err = 0; 3087 int uninitialized; 3088 int split_flag1, flags1; 3089 3090 depth = ext_depth(inode); 3091 ex = path[depth].p_ext; 3092 ee_block = le32_to_cpu(ex->ee_block); 3093 ee_len = ext4_ext_get_actual_len(ex); 3094 uninitialized = ext4_ext_is_uninitialized(ex); 3095 3096 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3097 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3098 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3099 if (uninitialized) 3100 split_flag1 |= EXT4_EXT_MARK_UNINIT1 | 3101 EXT4_EXT_MARK_UNINIT2; 3102 if (split_flag & EXT4_EXT_DATA_VALID2) 3103 split_flag1 |= EXT4_EXT_DATA_VALID1; 3104 err = ext4_split_extent_at(handle, inode, path, 3105 map->m_lblk + map->m_len, split_flag1, flags1); 3106 if (err) 3107 goto out; 3108 } 3109 3110 ext4_ext_drop_refs(path); 3111 path = ext4_ext_find_extent(inode, map->m_lblk, path); 3112 if (IS_ERR(path)) 3113 return PTR_ERR(path); 3114 3115 if (map->m_lblk >= ee_block) { 3116 split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT | 3117 EXT4_EXT_DATA_VALID2); 3118 if (uninitialized) 3119 split_flag1 |= EXT4_EXT_MARK_UNINIT1; 3120 if (split_flag & EXT4_EXT_MARK_UNINIT2) 3121 split_flag1 |= EXT4_EXT_MARK_UNINIT2; 3122 err = ext4_split_extent_at(handle, inode, path, 3123 map->m_lblk, split_flag1, flags); 3124 if (err) 3125 goto out; 3126 } 3127 3128 ext4_ext_show_leaf(inode, path); 3129 out: 3130 return err ? err : map->m_len; 3131 } 3132 3133 /* 3134 * This function is called by ext4_ext_map_blocks() if someone tries to write 3135 * to an uninitialized extent. It may result in splitting the uninitialized 3136 * extent into multiple extents (up to three - one initialized and two 3137 * uninitialized). 3138 * There are three possibilities: 3139 * a> There is no split required: Entire extent should be initialized 3140 * b> Splits in two extents: Write is happening at either end of the extent 3141 * c> Splits in three extents: Somone is writing in middle of the extent 3142 * 3143 * Pre-conditions: 3144 * - The extent pointed to by 'path' is uninitialized. 3145 * - The extent pointed to by 'path' contains a superset 3146 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3147 * 3148 * Post-conditions on success: 3149 * - the returned value is the number of blocks beyond map->l_lblk 3150 * that are allocated and initialized. 3151 * It is guaranteed to be >= map->m_len. 3152 */ 3153 static int ext4_ext_convert_to_initialized(handle_t *handle, 3154 struct inode *inode, 3155 struct ext4_map_blocks *map, 3156 struct ext4_ext_path *path) 3157 { 3158 struct ext4_sb_info *sbi; 3159 struct ext4_extent_header *eh; 3160 struct ext4_map_blocks split_map; 3161 struct ext4_extent zero_ex; 3162 struct ext4_extent *ex; 3163 ext4_lblk_t ee_block, eof_block; 3164 unsigned int ee_len, depth; 3165 int allocated, max_zeroout = 0; 3166 int err = 0; 3167 int split_flag = 0; 3168 3169 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3170 "block %llu, max_blocks %u\n", inode->i_ino, 3171 (unsigned long long)map->m_lblk, map->m_len); 3172 3173 sbi = EXT4_SB(inode->i_sb); 3174 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3175 inode->i_sb->s_blocksize_bits; 3176 if (eof_block < map->m_lblk + map->m_len) 3177 eof_block = map->m_lblk + map->m_len; 3178 3179 depth = ext_depth(inode); 3180 eh = path[depth].p_hdr; 3181 ex = path[depth].p_ext; 3182 ee_block = le32_to_cpu(ex->ee_block); 3183 ee_len = ext4_ext_get_actual_len(ex); 3184 allocated = ee_len - (map->m_lblk - ee_block); 3185 3186 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3187 3188 /* Pre-conditions */ 3189 BUG_ON(!ext4_ext_is_uninitialized(ex)); 3190 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3191 3192 /* 3193 * Attempt to transfer newly initialized blocks from the currently 3194 * uninitialized extent to its left neighbor. This is much cheaper 3195 * than an insertion followed by a merge as those involve costly 3196 * memmove() calls. This is the common case in steady state for 3197 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append 3198 * writes. 3199 * 3200 * Limitations of the current logic: 3201 * - L1: we only deal with writes at the start of the extent. 3202 * The approach could be extended to writes at the end 3203 * of the extent but this scenario was deemed less common. 3204 * - L2: we do not deal with writes covering the whole extent. 3205 * This would require removing the extent if the transfer 3206 * is possible. 3207 * - L3: we only attempt to merge with an extent stored in the 3208 * same extent tree node. 3209 */ 3210 if ((map->m_lblk == ee_block) && /*L1*/ 3211 (map->m_len < ee_len) && /*L2*/ 3212 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/ 3213 struct ext4_extent *prev_ex; 3214 ext4_lblk_t prev_lblk; 3215 ext4_fsblk_t prev_pblk, ee_pblk; 3216 unsigned int prev_len, write_len; 3217 3218 prev_ex = ex - 1; 3219 prev_lblk = le32_to_cpu(prev_ex->ee_block); 3220 prev_len = ext4_ext_get_actual_len(prev_ex); 3221 prev_pblk = ext4_ext_pblock(prev_ex); 3222 ee_pblk = ext4_ext_pblock(ex); 3223 write_len = map->m_len; 3224 3225 /* 3226 * A transfer of blocks from 'ex' to 'prev_ex' is allowed 3227 * upon those conditions: 3228 * - C1: prev_ex is initialized, 3229 * - C2: prev_ex is logically abutting ex, 3230 * - C3: prev_ex is physically abutting ex, 3231 * - C4: prev_ex can receive the additional blocks without 3232 * overflowing the (initialized) length limit. 3233 */ 3234 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/ 3235 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3236 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3237 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/ 3238 err = ext4_ext_get_access(handle, inode, path + depth); 3239 if (err) 3240 goto out; 3241 3242 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3243 map, ex, prev_ex); 3244 3245 /* Shift the start of ex by 'write_len' blocks */ 3246 ex->ee_block = cpu_to_le32(ee_block + write_len); 3247 ext4_ext_store_pblock(ex, ee_pblk + write_len); 3248 ex->ee_len = cpu_to_le16(ee_len - write_len); 3249 ext4_ext_mark_uninitialized(ex); /* Restore the flag */ 3250 3251 /* Extend prev_ex by 'write_len' blocks */ 3252 prev_ex->ee_len = cpu_to_le16(prev_len + write_len); 3253 3254 /* Mark the block containing both extents as dirty */ 3255 ext4_ext_dirty(handle, inode, path + depth); 3256 3257 /* Update path to point to the right extent */ 3258 path[depth].p_ext = prev_ex; 3259 3260 /* Result: number of initialized blocks past m_lblk */ 3261 allocated = write_len; 3262 goto out; 3263 } 3264 } 3265 3266 WARN_ON(map->m_lblk < ee_block); 3267 /* 3268 * It is safe to convert extent to initialized via explicit 3269 * zeroout only if extent is fully insde i_size or new_size. 3270 */ 3271 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3272 3273 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3274 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3275 inode->i_sb->s_blocksize_bits; 3276 3277 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3278 if (max_zeroout && (ee_len <= max_zeroout)) { 3279 err = ext4_ext_zeroout(inode, ex); 3280 if (err) 3281 goto out; 3282 3283 err = ext4_ext_get_access(handle, inode, path + depth); 3284 if (err) 3285 goto out; 3286 ext4_ext_mark_initialized(ex); 3287 ext4_ext_try_to_merge(handle, inode, path, ex); 3288 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3289 goto out; 3290 } 3291 3292 /* 3293 * four cases: 3294 * 1. split the extent into three extents. 3295 * 2. split the extent into two extents, zeroout the first half. 3296 * 3. split the extent into two extents, zeroout the second half. 3297 * 4. split the extent into two extents with out zeroout. 3298 */ 3299 split_map.m_lblk = map->m_lblk; 3300 split_map.m_len = map->m_len; 3301 3302 if (max_zeroout && (allocated > map->m_len)) { 3303 if (allocated <= max_zeroout) { 3304 /* case 3 */ 3305 zero_ex.ee_block = 3306 cpu_to_le32(map->m_lblk); 3307 zero_ex.ee_len = cpu_to_le16(allocated); 3308 ext4_ext_store_pblock(&zero_ex, 3309 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3310 err = ext4_ext_zeroout(inode, &zero_ex); 3311 if (err) 3312 goto out; 3313 split_map.m_lblk = map->m_lblk; 3314 split_map.m_len = allocated; 3315 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3316 /* case 2 */ 3317 if (map->m_lblk != ee_block) { 3318 zero_ex.ee_block = ex->ee_block; 3319 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3320 ee_block); 3321 ext4_ext_store_pblock(&zero_ex, 3322 ext4_ext_pblock(ex)); 3323 err = ext4_ext_zeroout(inode, &zero_ex); 3324 if (err) 3325 goto out; 3326 } 3327 3328 split_map.m_lblk = ee_block; 3329 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3330 allocated = map->m_len; 3331 } 3332 } 3333 3334 allocated = ext4_split_extent(handle, inode, path, 3335 &split_map, split_flag, 0); 3336 if (allocated < 0) 3337 err = allocated; 3338 3339 out: 3340 return err ? err : allocated; 3341 } 3342 3343 /* 3344 * This function is called by ext4_ext_map_blocks() from 3345 * ext4_get_blocks_dio_write() when DIO to write 3346 * to an uninitialized extent. 3347 * 3348 * Writing to an uninitialized extent may result in splitting the uninitialized 3349 * extent into multiple initialized/uninitialized extents (up to three) 3350 * There are three possibilities: 3351 * a> There is no split required: Entire extent should be uninitialized 3352 * b> Splits in two extents: Write is happening at either end of the extent 3353 * c> Splits in three extents: Somone is writing in middle of the extent 3354 * 3355 * One of more index blocks maybe needed if the extent tree grow after 3356 * the uninitialized extent split. To prevent ENOSPC occur at the IO 3357 * complete, we need to split the uninitialized extent before DIO submit 3358 * the IO. The uninitialized extent called at this time will be split 3359 * into three uninitialized extent(at most). After IO complete, the part 3360 * being filled will be convert to initialized by the end_io callback function 3361 * via ext4_convert_unwritten_extents(). 3362 * 3363 * Returns the size of uninitialized extent to be written on success. 3364 */ 3365 static int ext4_split_unwritten_extents(handle_t *handle, 3366 struct inode *inode, 3367 struct ext4_map_blocks *map, 3368 struct ext4_ext_path *path, 3369 int flags) 3370 { 3371 ext4_lblk_t eof_block; 3372 ext4_lblk_t ee_block; 3373 struct ext4_extent *ex; 3374 unsigned int ee_len; 3375 int split_flag = 0, depth; 3376 3377 ext_debug("ext4_split_unwritten_extents: inode %lu, logical" 3378 "block %llu, max_blocks %u\n", inode->i_ino, 3379 (unsigned long long)map->m_lblk, map->m_len); 3380 3381 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3382 inode->i_sb->s_blocksize_bits; 3383 if (eof_block < map->m_lblk + map->m_len) 3384 eof_block = map->m_lblk + map->m_len; 3385 /* 3386 * It is safe to convert extent to initialized via explicit 3387 * zeroout only if extent is fully insde i_size or new_size. 3388 */ 3389 depth = ext_depth(inode); 3390 ex = path[depth].p_ext; 3391 ee_block = le32_to_cpu(ex->ee_block); 3392 ee_len = ext4_ext_get_actual_len(ex); 3393 3394 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3395 split_flag |= EXT4_EXT_MARK_UNINIT2; 3396 if (flags & EXT4_GET_BLOCKS_CONVERT) 3397 split_flag |= EXT4_EXT_DATA_VALID2; 3398 flags |= EXT4_GET_BLOCKS_PRE_IO; 3399 return ext4_split_extent(handle, inode, path, map, split_flag, flags); 3400 } 3401 3402 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3403 struct inode *inode, 3404 struct ext4_map_blocks *map, 3405 struct ext4_ext_path *path) 3406 { 3407 struct ext4_extent *ex; 3408 ext4_lblk_t ee_block; 3409 unsigned int ee_len; 3410 int depth; 3411 int err = 0; 3412 3413 depth = ext_depth(inode); 3414 ex = path[depth].p_ext; 3415 ee_block = le32_to_cpu(ex->ee_block); 3416 ee_len = ext4_ext_get_actual_len(ex); 3417 3418 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3419 "block %llu, max_blocks %u\n", inode->i_ino, 3420 (unsigned long long)ee_block, ee_len); 3421 3422 /* If extent is larger than requested then split is required */ 3423 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3424 err = ext4_split_unwritten_extents(handle, inode, map, path, 3425 EXT4_GET_BLOCKS_CONVERT); 3426 if (err < 0) 3427 goto out; 3428 ext4_ext_drop_refs(path); 3429 path = ext4_ext_find_extent(inode, map->m_lblk, path); 3430 if (IS_ERR(path)) { 3431 err = PTR_ERR(path); 3432 goto out; 3433 } 3434 depth = ext_depth(inode); 3435 ex = path[depth].p_ext; 3436 } 3437 3438 err = ext4_ext_get_access(handle, inode, path + depth); 3439 if (err) 3440 goto out; 3441 /* first mark the extent as initialized */ 3442 ext4_ext_mark_initialized(ex); 3443 3444 /* note: ext4_ext_correct_indexes() isn't needed here because 3445 * borders are not changed 3446 */ 3447 ext4_ext_try_to_merge(handle, inode, path, ex); 3448 3449 /* Mark modified extent as dirty */ 3450 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3451 out: 3452 ext4_ext_show_leaf(inode, path); 3453 return err; 3454 } 3455 3456 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3457 sector_t block, int count) 3458 { 3459 int i; 3460 for (i = 0; i < count; i++) 3461 unmap_underlying_metadata(bdev, block + i); 3462 } 3463 3464 /* 3465 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3466 */ 3467 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3468 ext4_lblk_t lblk, 3469 struct ext4_ext_path *path, 3470 unsigned int len) 3471 { 3472 int i, depth; 3473 struct ext4_extent_header *eh; 3474 struct ext4_extent *last_ex; 3475 3476 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3477 return 0; 3478 3479 depth = ext_depth(inode); 3480 eh = path[depth].p_hdr; 3481 3482 /* 3483 * We're going to remove EOFBLOCKS_FL entirely in future so we 3484 * do not care for this case anymore. Simply remove the flag 3485 * if there are no extents. 3486 */ 3487 if (unlikely(!eh->eh_entries)) 3488 goto out; 3489 last_ex = EXT_LAST_EXTENT(eh); 3490 /* 3491 * We should clear the EOFBLOCKS_FL flag if we are writing the 3492 * last block in the last extent in the file. We test this by 3493 * first checking to see if the caller to 3494 * ext4_ext_get_blocks() was interested in the last block (or 3495 * a block beyond the last block) in the current extent. If 3496 * this turns out to be false, we can bail out from this 3497 * function immediately. 3498 */ 3499 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3500 ext4_ext_get_actual_len(last_ex)) 3501 return 0; 3502 /* 3503 * If the caller does appear to be planning to write at or 3504 * beyond the end of the current extent, we then test to see 3505 * if the current extent is the last extent in the file, by 3506 * checking to make sure it was reached via the rightmost node 3507 * at each level of the tree. 3508 */ 3509 for (i = depth-1; i >= 0; i--) 3510 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3511 return 0; 3512 out: 3513 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3514 return ext4_mark_inode_dirty(handle, inode); 3515 } 3516 3517 /** 3518 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3519 * 3520 * Return 1 if there is a delalloc block in the range, otherwise 0. 3521 */ 3522 static int ext4_find_delalloc_range(struct inode *inode, 3523 ext4_lblk_t lblk_start, 3524 ext4_lblk_t lblk_end) 3525 { 3526 struct extent_status es; 3527 3528 es.start = lblk_start; 3529 ext4_es_find_extent(inode, &es); 3530 if (es.len == 0) 3531 return 0; /* there is no delay extent in this tree */ 3532 else if (es.start <= lblk_start && lblk_start < es.start + es.len) 3533 return 1; 3534 else if (lblk_start <= es.start && es.start <= lblk_end) 3535 return 1; 3536 else 3537 return 0; 3538 } 3539 3540 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3541 { 3542 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3543 ext4_lblk_t lblk_start, lblk_end; 3544 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1)); 3545 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3546 3547 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3548 } 3549 3550 /** 3551 * Determines how many complete clusters (out of those specified by the 'map') 3552 * are under delalloc and were reserved quota for. 3553 * This function is called when we are writing out the blocks that were 3554 * originally written with their allocation delayed, but then the space was 3555 * allocated using fallocate() before the delayed allocation could be resolved. 3556 * The cases to look for are: 3557 * ('=' indicated delayed allocated blocks 3558 * '-' indicates non-delayed allocated blocks) 3559 * (a) partial clusters towards beginning and/or end outside of allocated range 3560 * are not delalloc'ed. 3561 * Ex: 3562 * |----c---=|====c====|====c====|===-c----| 3563 * |++++++ allocated ++++++| 3564 * ==> 4 complete clusters in above example 3565 * 3566 * (b) partial cluster (outside of allocated range) towards either end is 3567 * marked for delayed allocation. In this case, we will exclude that 3568 * cluster. 3569 * Ex: 3570 * |----====c========|========c========| 3571 * |++++++ allocated ++++++| 3572 * ==> 1 complete clusters in above example 3573 * 3574 * Ex: 3575 * |================c================| 3576 * |++++++ allocated ++++++| 3577 * ==> 0 complete clusters in above example 3578 * 3579 * The ext4_da_update_reserve_space will be called only if we 3580 * determine here that there were some "entire" clusters that span 3581 * this 'allocated' range. 3582 * In the non-bigalloc case, this function will just end up returning num_blks 3583 * without ever calling ext4_find_delalloc_range. 3584 */ 3585 static unsigned int 3586 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3587 unsigned int num_blks) 3588 { 3589 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3590 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3591 ext4_lblk_t lblk_from, lblk_to, c_offset; 3592 unsigned int allocated_clusters = 0; 3593 3594 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3595 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3596 3597 /* max possible clusters for this allocation */ 3598 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3599 3600 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3601 3602 /* Check towards left side */ 3603 c_offset = lblk_start & (sbi->s_cluster_ratio - 1); 3604 if (c_offset) { 3605 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1)); 3606 lblk_to = lblk_from + c_offset - 1; 3607 3608 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3609 allocated_clusters--; 3610 } 3611 3612 /* Now check towards right. */ 3613 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1); 3614 if (allocated_clusters && c_offset) { 3615 lblk_from = lblk_start + num_blks; 3616 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3617 3618 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3619 allocated_clusters--; 3620 } 3621 3622 return allocated_clusters; 3623 } 3624 3625 static int 3626 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, 3627 struct ext4_map_blocks *map, 3628 struct ext4_ext_path *path, int flags, 3629 unsigned int allocated, ext4_fsblk_t newblock) 3630 { 3631 int ret = 0; 3632 int err = 0; 3633 ext4_io_end_t *io = ext4_inode_aio(inode); 3634 3635 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical " 3636 "block %llu, max_blocks %u, flags %x, allocated %u\n", 3637 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3638 flags, allocated); 3639 ext4_ext_show_leaf(inode, path); 3640 3641 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags, 3642 allocated, newblock); 3643 3644 /* get_block() before submit the IO, split the extent */ 3645 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 3646 ret = ext4_split_unwritten_extents(handle, inode, map, 3647 path, flags); 3648 if (ret <= 0) 3649 goto out; 3650 /* 3651 * Flag the inode(non aio case) or end_io struct (aio case) 3652 * that this IO needs to conversion to written when IO is 3653 * completed 3654 */ 3655 if (io) 3656 ext4_set_io_unwritten_flag(inode, io); 3657 else 3658 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3659 if (ext4_should_dioread_nolock(inode)) 3660 map->m_flags |= EXT4_MAP_UNINIT; 3661 goto out; 3662 } 3663 /* IO end_io complete, convert the filled extent to written */ 3664 if ((flags & EXT4_GET_BLOCKS_CONVERT)) { 3665 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 3666 path); 3667 if (ret >= 0) { 3668 ext4_update_inode_fsync_trans(handle, inode, 1); 3669 err = check_eofblocks_fl(handle, inode, map->m_lblk, 3670 path, map->m_len); 3671 } else 3672 err = ret; 3673 goto out2; 3674 } 3675 /* buffered IO case */ 3676 /* 3677 * repeat fallocate creation request 3678 * we already have an unwritten extent 3679 */ 3680 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) 3681 goto map_out; 3682 3683 /* buffered READ or buffered write_begin() lookup */ 3684 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3685 /* 3686 * We have blocks reserved already. We 3687 * return allocated blocks so that delalloc 3688 * won't do block reservation for us. But 3689 * the buffer head will be unmapped so that 3690 * a read from the block returns 0s. 3691 */ 3692 map->m_flags |= EXT4_MAP_UNWRITTEN; 3693 goto out1; 3694 } 3695 3696 /* buffered write, writepage time, convert*/ 3697 ret = ext4_ext_convert_to_initialized(handle, inode, map, path); 3698 if (ret >= 0) 3699 ext4_update_inode_fsync_trans(handle, inode, 1); 3700 out: 3701 if (ret <= 0) { 3702 err = ret; 3703 goto out2; 3704 } else 3705 allocated = ret; 3706 map->m_flags |= EXT4_MAP_NEW; 3707 /* 3708 * if we allocated more blocks than requested 3709 * we need to make sure we unmap the extra block 3710 * allocated. The actual needed block will get 3711 * unmapped later when we find the buffer_head marked 3712 * new. 3713 */ 3714 if (allocated > map->m_len) { 3715 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 3716 newblock + map->m_len, 3717 allocated - map->m_len); 3718 allocated = map->m_len; 3719 } 3720 3721 /* 3722 * If we have done fallocate with the offset that is already 3723 * delayed allocated, we would have block reservation 3724 * and quota reservation done in the delayed write path. 3725 * But fallocate would have already updated quota and block 3726 * count for this offset. So cancel these reservation 3727 */ 3728 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 3729 unsigned int reserved_clusters; 3730 reserved_clusters = get_reserved_cluster_alloc(inode, 3731 map->m_lblk, map->m_len); 3732 if (reserved_clusters) 3733 ext4_da_update_reserve_space(inode, 3734 reserved_clusters, 3735 0); 3736 } 3737 3738 map_out: 3739 map->m_flags |= EXT4_MAP_MAPPED; 3740 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 3741 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 3742 map->m_len); 3743 if (err < 0) 3744 goto out2; 3745 } 3746 out1: 3747 if (allocated > map->m_len) 3748 allocated = map->m_len; 3749 ext4_ext_show_leaf(inode, path); 3750 map->m_pblk = newblock; 3751 map->m_len = allocated; 3752 out2: 3753 if (path) { 3754 ext4_ext_drop_refs(path); 3755 kfree(path); 3756 } 3757 return err ? err : allocated; 3758 } 3759 3760 /* 3761 * get_implied_cluster_alloc - check to see if the requested 3762 * allocation (in the map structure) overlaps with a cluster already 3763 * allocated in an extent. 3764 * @sb The filesystem superblock structure 3765 * @map The requested lblk->pblk mapping 3766 * @ex The extent structure which might contain an implied 3767 * cluster allocation 3768 * 3769 * This function is called by ext4_ext_map_blocks() after we failed to 3770 * find blocks that were already in the inode's extent tree. Hence, 3771 * we know that the beginning of the requested region cannot overlap 3772 * the extent from the inode's extent tree. There are three cases we 3773 * want to catch. The first is this case: 3774 * 3775 * |--- cluster # N--| 3776 * |--- extent ---| |---- requested region ---| 3777 * |==========| 3778 * 3779 * The second case that we need to test for is this one: 3780 * 3781 * |--------- cluster # N ----------------| 3782 * |--- requested region --| |------- extent ----| 3783 * |=======================| 3784 * 3785 * The third case is when the requested region lies between two extents 3786 * within the same cluster: 3787 * |------------- cluster # N-------------| 3788 * |----- ex -----| |---- ex_right ----| 3789 * |------ requested region ------| 3790 * |================| 3791 * 3792 * In each of the above cases, we need to set the map->m_pblk and 3793 * map->m_len so it corresponds to the return the extent labelled as 3794 * "|====|" from cluster #N, since it is already in use for data in 3795 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 3796 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 3797 * as a new "allocated" block region. Otherwise, we will return 0 and 3798 * ext4_ext_map_blocks() will then allocate one or more new clusters 3799 * by calling ext4_mb_new_blocks(). 3800 */ 3801 static int get_implied_cluster_alloc(struct super_block *sb, 3802 struct ext4_map_blocks *map, 3803 struct ext4_extent *ex, 3804 struct ext4_ext_path *path) 3805 { 3806 struct ext4_sb_info *sbi = EXT4_SB(sb); 3807 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 3808 ext4_lblk_t ex_cluster_start, ex_cluster_end; 3809 ext4_lblk_t rr_cluster_start; 3810 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3811 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3812 unsigned short ee_len = ext4_ext_get_actual_len(ex); 3813 3814 /* The extent passed in that we are trying to match */ 3815 ex_cluster_start = EXT4_B2C(sbi, ee_block); 3816 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 3817 3818 /* The requested region passed into ext4_map_blocks() */ 3819 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 3820 3821 if ((rr_cluster_start == ex_cluster_end) || 3822 (rr_cluster_start == ex_cluster_start)) { 3823 if (rr_cluster_start == ex_cluster_end) 3824 ee_start += ee_len - 1; 3825 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) + 3826 c_offset; 3827 map->m_len = min(map->m_len, 3828 (unsigned) sbi->s_cluster_ratio - c_offset); 3829 /* 3830 * Check for and handle this case: 3831 * 3832 * |--------- cluster # N-------------| 3833 * |------- extent ----| 3834 * |--- requested region ---| 3835 * |===========| 3836 */ 3837 3838 if (map->m_lblk < ee_block) 3839 map->m_len = min(map->m_len, ee_block - map->m_lblk); 3840 3841 /* 3842 * Check for the case where there is already another allocated 3843 * block to the right of 'ex' but before the end of the cluster. 3844 * 3845 * |------------- cluster # N-------------| 3846 * |----- ex -----| |---- ex_right ----| 3847 * |------ requested region ------| 3848 * |================| 3849 */ 3850 if (map->m_lblk > ee_block) { 3851 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 3852 map->m_len = min(map->m_len, next - map->m_lblk); 3853 } 3854 3855 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 3856 return 1; 3857 } 3858 3859 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 3860 return 0; 3861 } 3862 3863 3864 /* 3865 * Block allocation/map/preallocation routine for extents based files 3866 * 3867 * 3868 * Need to be called with 3869 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 3870 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 3871 * 3872 * return > 0, number of of blocks already mapped/allocated 3873 * if create == 0 and these are pre-allocated blocks 3874 * buffer head is unmapped 3875 * otherwise blocks are mapped 3876 * 3877 * return = 0, if plain look up failed (blocks have not been allocated) 3878 * buffer head is unmapped 3879 * 3880 * return < 0, error case. 3881 */ 3882 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 3883 struct ext4_map_blocks *map, int flags) 3884 { 3885 struct ext4_ext_path *path = NULL; 3886 struct ext4_extent newex, *ex, *ex2; 3887 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3888 ext4_fsblk_t newblock = 0; 3889 int free_on_err = 0, err = 0, depth; 3890 unsigned int allocated = 0, offset = 0; 3891 unsigned int allocated_clusters = 0; 3892 struct ext4_allocation_request ar; 3893 ext4_io_end_t *io = ext4_inode_aio(inode); 3894 ext4_lblk_t cluster_offset; 3895 int set_unwritten = 0; 3896 3897 ext_debug("blocks %u/%u requested for inode %lu\n", 3898 map->m_lblk, map->m_len, inode->i_ino); 3899 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 3900 3901 /* check in cache */ 3902 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) { 3903 if (!newex.ee_start_lo && !newex.ee_start_hi) { 3904 if ((sbi->s_cluster_ratio > 1) && 3905 ext4_find_delalloc_cluster(inode, map->m_lblk)) 3906 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3907 3908 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3909 /* 3910 * block isn't allocated yet and 3911 * user doesn't want to allocate it 3912 */ 3913 goto out2; 3914 } 3915 /* we should allocate requested block */ 3916 } else { 3917 /* block is already allocated */ 3918 if (sbi->s_cluster_ratio > 1) 3919 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3920 newblock = map->m_lblk 3921 - le32_to_cpu(newex.ee_block) 3922 + ext4_ext_pblock(&newex); 3923 /* number of remaining blocks in the extent */ 3924 allocated = ext4_ext_get_actual_len(&newex) - 3925 (map->m_lblk - le32_to_cpu(newex.ee_block)); 3926 goto out; 3927 } 3928 } 3929 3930 /* find extent for this block */ 3931 path = ext4_ext_find_extent(inode, map->m_lblk, NULL); 3932 if (IS_ERR(path)) { 3933 err = PTR_ERR(path); 3934 path = NULL; 3935 goto out2; 3936 } 3937 3938 depth = ext_depth(inode); 3939 3940 /* 3941 * consistent leaf must not be empty; 3942 * this situation is possible, though, _during_ tree modification; 3943 * this is why assert can't be put in ext4_ext_find_extent() 3944 */ 3945 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 3946 EXT4_ERROR_INODE(inode, "bad extent address " 3947 "lblock: %lu, depth: %d pblock %lld", 3948 (unsigned long) map->m_lblk, depth, 3949 path[depth].p_block); 3950 err = -EIO; 3951 goto out2; 3952 } 3953 3954 ex = path[depth].p_ext; 3955 if (ex) { 3956 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3957 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3958 unsigned short ee_len; 3959 3960 /* 3961 * Uninitialized extents are treated as holes, except that 3962 * we split out initialized portions during a write. 3963 */ 3964 ee_len = ext4_ext_get_actual_len(ex); 3965 3966 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 3967 3968 /* if found extent covers block, simply return it */ 3969 if (in_range(map->m_lblk, ee_block, ee_len)) { 3970 newblock = map->m_lblk - ee_block + ee_start; 3971 /* number of remaining blocks in the extent */ 3972 allocated = ee_len - (map->m_lblk - ee_block); 3973 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 3974 ee_block, ee_len, newblock); 3975 3976 /* 3977 * Do not put uninitialized extent 3978 * in the cache 3979 */ 3980 if (!ext4_ext_is_uninitialized(ex)) { 3981 ext4_ext_put_in_cache(inode, ee_block, 3982 ee_len, ee_start); 3983 goto out; 3984 } 3985 allocated = ext4_ext_handle_uninitialized_extents( 3986 handle, inode, map, path, flags, 3987 allocated, newblock); 3988 goto out3; 3989 } 3990 } 3991 3992 if ((sbi->s_cluster_ratio > 1) && 3993 ext4_find_delalloc_cluster(inode, map->m_lblk)) 3994 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3995 3996 /* 3997 * requested block isn't allocated yet; 3998 * we couldn't try to create block if create flag is zero 3999 */ 4000 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4001 /* 4002 * put just found gap into cache to speed up 4003 * subsequent requests 4004 */ 4005 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 4006 goto out2; 4007 } 4008 4009 /* 4010 * Okay, we need to do block allocation. 4011 */ 4012 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 4013 newex.ee_block = cpu_to_le32(map->m_lblk); 4014 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 4015 4016 /* 4017 * If we are doing bigalloc, check to see if the extent returned 4018 * by ext4_ext_find_extent() implies a cluster we can use. 4019 */ 4020 if (cluster_offset && ex && 4021 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4022 ar.len = allocated = map->m_len; 4023 newblock = map->m_pblk; 4024 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4025 goto got_allocated_blocks; 4026 } 4027 4028 /* find neighbour allocated blocks */ 4029 ar.lleft = map->m_lblk; 4030 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4031 if (err) 4032 goto out2; 4033 ar.lright = map->m_lblk; 4034 ex2 = NULL; 4035 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4036 if (err) 4037 goto out2; 4038 4039 /* Check if the extent after searching to the right implies a 4040 * cluster we can use. */ 4041 if ((sbi->s_cluster_ratio > 1) && ex2 && 4042 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4043 ar.len = allocated = map->m_len; 4044 newblock = map->m_pblk; 4045 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4046 goto got_allocated_blocks; 4047 } 4048 4049 /* 4050 * See if request is beyond maximum number of blocks we can have in 4051 * a single extent. For an initialized extent this limit is 4052 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 4053 * EXT_UNINIT_MAX_LEN. 4054 */ 4055 if (map->m_len > EXT_INIT_MAX_LEN && 4056 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 4057 map->m_len = EXT_INIT_MAX_LEN; 4058 else if (map->m_len > EXT_UNINIT_MAX_LEN && 4059 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 4060 map->m_len = EXT_UNINIT_MAX_LEN; 4061 4062 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4063 newex.ee_len = cpu_to_le16(map->m_len); 4064 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4065 if (err) 4066 allocated = ext4_ext_get_actual_len(&newex); 4067 else 4068 allocated = map->m_len; 4069 4070 /* allocate new block */ 4071 ar.inode = inode; 4072 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4073 ar.logical = map->m_lblk; 4074 /* 4075 * We calculate the offset from the beginning of the cluster 4076 * for the logical block number, since when we allocate a 4077 * physical cluster, the physical block should start at the 4078 * same offset from the beginning of the cluster. This is 4079 * needed so that future calls to get_implied_cluster_alloc() 4080 * work correctly. 4081 */ 4082 offset = map->m_lblk & (sbi->s_cluster_ratio - 1); 4083 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4084 ar.goal -= offset; 4085 ar.logical -= offset; 4086 if (S_ISREG(inode->i_mode)) 4087 ar.flags = EXT4_MB_HINT_DATA; 4088 else 4089 /* disable in-core preallocation for non-regular files */ 4090 ar.flags = 0; 4091 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4092 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4093 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4094 if (!newblock) 4095 goto out2; 4096 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4097 ar.goal, newblock, allocated); 4098 free_on_err = 1; 4099 allocated_clusters = ar.len; 4100 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4101 if (ar.len > allocated) 4102 ar.len = allocated; 4103 4104 got_allocated_blocks: 4105 /* try to insert new extent into found leaf and return */ 4106 ext4_ext_store_pblock(&newex, newblock + offset); 4107 newex.ee_len = cpu_to_le16(ar.len); 4108 /* Mark uninitialized */ 4109 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ 4110 ext4_ext_mark_uninitialized(&newex); 4111 /* 4112 * io_end structure was created for every IO write to an 4113 * uninitialized extent. To avoid unnecessary conversion, 4114 * here we flag the IO that really needs the conversion. 4115 * For non asycn direct IO case, flag the inode state 4116 * that we need to perform conversion when IO is done. 4117 */ 4118 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) 4119 set_unwritten = 1; 4120 if (ext4_should_dioread_nolock(inode)) 4121 map->m_flags |= EXT4_MAP_UNINIT; 4122 } 4123 4124 err = 0; 4125 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4126 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4127 path, ar.len); 4128 if (!err) 4129 err = ext4_ext_insert_extent(handle, inode, path, 4130 &newex, flags); 4131 4132 if (!err && set_unwritten) { 4133 if (io) 4134 ext4_set_io_unwritten_flag(inode, io); 4135 else 4136 ext4_set_inode_state(inode, 4137 EXT4_STATE_DIO_UNWRITTEN); 4138 } 4139 4140 if (err && free_on_err) { 4141 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4142 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4143 /* free data blocks we just allocated */ 4144 /* not a good idea to call discard here directly, 4145 * but otherwise we'd need to call it every free() */ 4146 ext4_discard_preallocations(inode); 4147 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex), 4148 ext4_ext_get_actual_len(&newex), fb_flags); 4149 goto out2; 4150 } 4151 4152 /* previous routine could use block we allocated */ 4153 newblock = ext4_ext_pblock(&newex); 4154 allocated = ext4_ext_get_actual_len(&newex); 4155 if (allocated > map->m_len) 4156 allocated = map->m_len; 4157 map->m_flags |= EXT4_MAP_NEW; 4158 4159 /* 4160 * Update reserved blocks/metadata blocks after successful 4161 * block allocation which had been deferred till now. 4162 */ 4163 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4164 unsigned int reserved_clusters; 4165 /* 4166 * Check how many clusters we had reserved this allocated range 4167 */ 4168 reserved_clusters = get_reserved_cluster_alloc(inode, 4169 map->m_lblk, allocated); 4170 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { 4171 if (reserved_clusters) { 4172 /* 4173 * We have clusters reserved for this range. 4174 * But since we are not doing actual allocation 4175 * and are simply using blocks from previously 4176 * allocated cluster, we should release the 4177 * reservation and not claim quota. 4178 */ 4179 ext4_da_update_reserve_space(inode, 4180 reserved_clusters, 0); 4181 } 4182 } else { 4183 BUG_ON(allocated_clusters < reserved_clusters); 4184 /* We will claim quota for all newly allocated blocks.*/ 4185 ext4_da_update_reserve_space(inode, allocated_clusters, 4186 1); 4187 if (reserved_clusters < allocated_clusters) { 4188 struct ext4_inode_info *ei = EXT4_I(inode); 4189 int reservation = allocated_clusters - 4190 reserved_clusters; 4191 /* 4192 * It seems we claimed few clusters outside of 4193 * the range of this allocation. We should give 4194 * it back to the reservation pool. This can 4195 * happen in the following case: 4196 * 4197 * * Suppose s_cluster_ratio is 4 (i.e., each 4198 * cluster has 4 blocks. Thus, the clusters 4199 * are [0-3],[4-7],[8-11]... 4200 * * First comes delayed allocation write for 4201 * logical blocks 10 & 11. Since there were no 4202 * previous delayed allocated blocks in the 4203 * range [8-11], we would reserve 1 cluster 4204 * for this write. 4205 * * Next comes write for logical blocks 3 to 8. 4206 * In this case, we will reserve 2 clusters 4207 * (for [0-3] and [4-7]; and not for [8-11] as 4208 * that range has a delayed allocated blocks. 4209 * Thus total reserved clusters now becomes 3. 4210 * * Now, during the delayed allocation writeout 4211 * time, we will first write blocks [3-8] and 4212 * allocate 3 clusters for writing these 4213 * blocks. Also, we would claim all these 4214 * three clusters above. 4215 * * Now when we come here to writeout the 4216 * blocks [10-11], we would expect to claim 4217 * the reservation of 1 cluster we had made 4218 * (and we would claim it since there are no 4219 * more delayed allocated blocks in the range 4220 * [8-11]. But our reserved cluster count had 4221 * already gone to 0. 4222 * 4223 * Thus, at the step 4 above when we determine 4224 * that there are still some unwritten delayed 4225 * allocated blocks outside of our current 4226 * block range, we should increment the 4227 * reserved clusters count so that when the 4228 * remaining blocks finally gets written, we 4229 * could claim them. 4230 */ 4231 dquot_reserve_block(inode, 4232 EXT4_C2B(sbi, reservation)); 4233 spin_lock(&ei->i_block_reservation_lock); 4234 ei->i_reserved_data_blocks += reservation; 4235 spin_unlock(&ei->i_block_reservation_lock); 4236 } 4237 } 4238 } 4239 4240 /* 4241 * Cache the extent and update transaction to commit on fdatasync only 4242 * when it is _not_ an uninitialized extent. 4243 */ 4244 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) { 4245 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock); 4246 ext4_update_inode_fsync_trans(handle, inode, 1); 4247 } else 4248 ext4_update_inode_fsync_trans(handle, inode, 0); 4249 out: 4250 if (allocated > map->m_len) 4251 allocated = map->m_len; 4252 ext4_ext_show_leaf(inode, path); 4253 map->m_flags |= EXT4_MAP_MAPPED; 4254 map->m_pblk = newblock; 4255 map->m_len = allocated; 4256 out2: 4257 if (path) { 4258 ext4_ext_drop_refs(path); 4259 kfree(path); 4260 } 4261 4262 out3: 4263 trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated); 4264 4265 return err ? err : allocated; 4266 } 4267 4268 void ext4_ext_truncate(struct inode *inode) 4269 { 4270 struct address_space *mapping = inode->i_mapping; 4271 struct super_block *sb = inode->i_sb; 4272 ext4_lblk_t last_block; 4273 handle_t *handle; 4274 loff_t page_len; 4275 int err = 0; 4276 4277 /* 4278 * finish any pending end_io work so we won't run the risk of 4279 * converting any truncated blocks to initialized later 4280 */ 4281 ext4_flush_unwritten_io(inode); 4282 4283 /* 4284 * probably first extent we're gonna free will be last in block 4285 */ 4286 err = ext4_writepage_trans_blocks(inode); 4287 handle = ext4_journal_start(inode, err); 4288 if (IS_ERR(handle)) 4289 return; 4290 4291 if (inode->i_size % PAGE_CACHE_SIZE != 0) { 4292 page_len = PAGE_CACHE_SIZE - 4293 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4294 4295 err = ext4_discard_partial_page_buffers(handle, 4296 mapping, inode->i_size, page_len, 0); 4297 4298 if (err) 4299 goto out_stop; 4300 } 4301 4302 if (ext4_orphan_add(handle, inode)) 4303 goto out_stop; 4304 4305 down_write(&EXT4_I(inode)->i_data_sem); 4306 ext4_ext_invalidate_cache(inode); 4307 4308 ext4_discard_preallocations(inode); 4309 4310 /* 4311 * TODO: optimization is possible here. 4312 * Probably we need not scan at all, 4313 * because page truncation is enough. 4314 */ 4315 4316 /* we have to know where to truncate from in crash case */ 4317 EXT4_I(inode)->i_disksize = inode->i_size; 4318 ext4_mark_inode_dirty(handle, inode); 4319 4320 last_block = (inode->i_size + sb->s_blocksize - 1) 4321 >> EXT4_BLOCK_SIZE_BITS(sb); 4322 err = ext4_es_remove_extent(inode, last_block, 4323 EXT_MAX_BLOCKS - last_block); 4324 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4325 4326 /* In a multi-transaction truncate, we only make the final 4327 * transaction synchronous. 4328 */ 4329 if (IS_SYNC(inode)) 4330 ext4_handle_sync(handle); 4331 4332 up_write(&EXT4_I(inode)->i_data_sem); 4333 4334 out_stop: 4335 /* 4336 * If this was a simple ftruncate() and the file will remain alive, 4337 * then we need to clear up the orphan record which we created above. 4338 * However, if this was a real unlink then we were called by 4339 * ext4_delete_inode(), and we allow that function to clean up the 4340 * orphan info for us. 4341 */ 4342 if (inode->i_nlink) 4343 ext4_orphan_del(handle, inode); 4344 4345 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4346 ext4_mark_inode_dirty(handle, inode); 4347 ext4_journal_stop(handle); 4348 } 4349 4350 static void ext4_falloc_update_inode(struct inode *inode, 4351 int mode, loff_t new_size, int update_ctime) 4352 { 4353 struct timespec now; 4354 4355 if (update_ctime) { 4356 now = current_fs_time(inode->i_sb); 4357 if (!timespec_equal(&inode->i_ctime, &now)) 4358 inode->i_ctime = now; 4359 } 4360 /* 4361 * Update only when preallocation was requested beyond 4362 * the file size. 4363 */ 4364 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 4365 if (new_size > i_size_read(inode)) 4366 i_size_write(inode, new_size); 4367 if (new_size > EXT4_I(inode)->i_disksize) 4368 ext4_update_i_disksize(inode, new_size); 4369 } else { 4370 /* 4371 * Mark that we allocate beyond EOF so the subsequent truncate 4372 * can proceed even if the new size is the same as i_size. 4373 */ 4374 if (new_size > i_size_read(inode)) 4375 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4376 } 4377 4378 } 4379 4380 /* 4381 * preallocate space for a file. This implements ext4's fallocate file 4382 * operation, which gets called from sys_fallocate system call. 4383 * For block-mapped files, posix_fallocate should fall back to the method 4384 * of writing zeroes to the required new blocks (the same behavior which is 4385 * expected for file systems which do not support fallocate() system call). 4386 */ 4387 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4388 { 4389 struct inode *inode = file->f_path.dentry->d_inode; 4390 handle_t *handle; 4391 loff_t new_size; 4392 unsigned int max_blocks; 4393 int ret = 0; 4394 int ret2 = 0; 4395 int retries = 0; 4396 int flags; 4397 struct ext4_map_blocks map; 4398 unsigned int credits, blkbits = inode->i_blkbits; 4399 4400 /* 4401 * currently supporting (pre)allocate mode for extent-based 4402 * files _only_ 4403 */ 4404 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4405 return -EOPNOTSUPP; 4406 4407 /* Return error if mode is not supported */ 4408 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 4409 return -EOPNOTSUPP; 4410 4411 if (mode & FALLOC_FL_PUNCH_HOLE) 4412 return ext4_punch_hole(file, offset, len); 4413 4414 ret = ext4_convert_inline_data(inode); 4415 if (ret) 4416 return ret; 4417 4418 trace_ext4_fallocate_enter(inode, offset, len, mode); 4419 map.m_lblk = offset >> blkbits; 4420 /* 4421 * We can't just convert len to max_blocks because 4422 * If blocksize = 4096 offset = 3072 and len = 2048 4423 */ 4424 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4425 - map.m_lblk; 4426 /* 4427 * credits to insert 1 extent into extent tree 4428 */ 4429 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4430 mutex_lock(&inode->i_mutex); 4431 ret = inode_newsize_ok(inode, (len + offset)); 4432 if (ret) { 4433 mutex_unlock(&inode->i_mutex); 4434 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4435 return ret; 4436 } 4437 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT; 4438 if (mode & FALLOC_FL_KEEP_SIZE) 4439 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4440 /* 4441 * Don't normalize the request if it can fit in one extent so 4442 * that it doesn't get unnecessarily split into multiple 4443 * extents. 4444 */ 4445 if (len <= EXT_UNINIT_MAX_LEN << blkbits) 4446 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4447 4448 /* Prevent race condition between unwritten */ 4449 ext4_flush_unwritten_io(inode); 4450 retry: 4451 while (ret >= 0 && ret < max_blocks) { 4452 map.m_lblk = map.m_lblk + ret; 4453 map.m_len = max_blocks = max_blocks - ret; 4454 handle = ext4_journal_start(inode, credits); 4455 if (IS_ERR(handle)) { 4456 ret = PTR_ERR(handle); 4457 break; 4458 } 4459 ret = ext4_map_blocks(handle, inode, &map, flags); 4460 if (ret <= 0) { 4461 #ifdef EXT4FS_DEBUG 4462 WARN_ON(ret <= 0); 4463 printk(KERN_ERR "%s: ext4_ext_map_blocks " 4464 "returned error inode#%lu, block=%u, " 4465 "max_blocks=%u", __func__, 4466 inode->i_ino, map.m_lblk, max_blocks); 4467 #endif 4468 ext4_mark_inode_dirty(handle, inode); 4469 ret2 = ext4_journal_stop(handle); 4470 break; 4471 } 4472 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 4473 blkbits) >> blkbits)) 4474 new_size = offset + len; 4475 else 4476 new_size = ((loff_t) map.m_lblk + ret) << blkbits; 4477 4478 ext4_falloc_update_inode(inode, mode, new_size, 4479 (map.m_flags & EXT4_MAP_NEW)); 4480 ext4_mark_inode_dirty(handle, inode); 4481 if ((file->f_flags & O_SYNC) && ret >= max_blocks) 4482 ext4_handle_sync(handle); 4483 ret2 = ext4_journal_stop(handle); 4484 if (ret2) 4485 break; 4486 } 4487 if (ret == -ENOSPC && 4488 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4489 ret = 0; 4490 goto retry; 4491 } 4492 mutex_unlock(&inode->i_mutex); 4493 trace_ext4_fallocate_exit(inode, offset, max_blocks, 4494 ret > 0 ? ret2 : ret); 4495 return ret > 0 ? ret2 : ret; 4496 } 4497 4498 /* 4499 * This function convert a range of blocks to written extents 4500 * The caller of this function will pass the start offset and the size. 4501 * all unwritten extents within this range will be converted to 4502 * written extents. 4503 * 4504 * This function is called from the direct IO end io call back 4505 * function, to convert the fallocated extents after IO is completed. 4506 * Returns 0 on success. 4507 */ 4508 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset, 4509 ssize_t len) 4510 { 4511 handle_t *handle; 4512 unsigned int max_blocks; 4513 int ret = 0; 4514 int ret2 = 0; 4515 struct ext4_map_blocks map; 4516 unsigned int credits, blkbits = inode->i_blkbits; 4517 4518 map.m_lblk = offset >> blkbits; 4519 /* 4520 * We can't just convert len to max_blocks because 4521 * If blocksize = 4096 offset = 3072 and len = 2048 4522 */ 4523 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 4524 map.m_lblk); 4525 /* 4526 * credits to insert 1 extent into extent tree 4527 */ 4528 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4529 while (ret >= 0 && ret < max_blocks) { 4530 map.m_lblk += ret; 4531 map.m_len = (max_blocks -= ret); 4532 handle = ext4_journal_start(inode, credits); 4533 if (IS_ERR(handle)) { 4534 ret = PTR_ERR(handle); 4535 break; 4536 } 4537 ret = ext4_map_blocks(handle, inode, &map, 4538 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4539 if (ret <= 0) { 4540 WARN_ON(ret <= 0); 4541 ext4_msg(inode->i_sb, KERN_ERR, 4542 "%s:%d: inode #%lu: block %u: len %u: " 4543 "ext4_ext_map_blocks returned %d", 4544 __func__, __LINE__, inode->i_ino, map.m_lblk, 4545 map.m_len, ret); 4546 } 4547 ext4_mark_inode_dirty(handle, inode); 4548 ret2 = ext4_journal_stop(handle); 4549 if (ret <= 0 || ret2 ) 4550 break; 4551 } 4552 return ret > 0 ? ret2 : ret; 4553 } 4554 4555 /* 4556 * If newex is not existing extent (newex->ec_start equals zero) find 4557 * delayed extent at start of newex and update newex accordingly and 4558 * return start of the next delayed extent. 4559 * 4560 * If newex is existing extent (newex->ec_start is not equal zero) 4561 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 4562 * extent found. Leave newex unmodified. 4563 */ 4564 static int ext4_find_delayed_extent(struct inode *inode, 4565 struct ext4_ext_cache *newex) 4566 { 4567 struct extent_status es; 4568 ext4_lblk_t next_del; 4569 4570 es.start = newex->ec_block; 4571 next_del = ext4_es_find_extent(inode, &es); 4572 4573 if (newex->ec_start == 0) { 4574 /* 4575 * No extent in extent-tree contains block @newex->ec_start, 4576 * then the block may stay in 1)a hole or 2)delayed-extent. 4577 */ 4578 if (es.len == 0) 4579 /* A hole found. */ 4580 return 0; 4581 4582 if (es.start > newex->ec_block) { 4583 /* A hole found. */ 4584 newex->ec_len = min(es.start - newex->ec_block, 4585 newex->ec_len); 4586 return 0; 4587 } 4588 4589 newex->ec_len = es.start + es.len - newex->ec_block; 4590 } 4591 4592 return next_del; 4593 } 4594 /* fiemap flags we can handle specified here */ 4595 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 4596 4597 static int ext4_xattr_fiemap(struct inode *inode, 4598 struct fiemap_extent_info *fieinfo) 4599 { 4600 __u64 physical = 0; 4601 __u64 length; 4602 __u32 flags = FIEMAP_EXTENT_LAST; 4603 int blockbits = inode->i_sb->s_blocksize_bits; 4604 int error = 0; 4605 4606 /* in-inode? */ 4607 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4608 struct ext4_iloc iloc; 4609 int offset; /* offset of xattr in inode */ 4610 4611 error = ext4_get_inode_loc(inode, &iloc); 4612 if (error) 4613 return error; 4614 physical = iloc.bh->b_blocknr << blockbits; 4615 offset = EXT4_GOOD_OLD_INODE_SIZE + 4616 EXT4_I(inode)->i_extra_isize; 4617 physical += offset; 4618 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4619 flags |= FIEMAP_EXTENT_DATA_INLINE; 4620 brelse(iloc.bh); 4621 } else { /* external block */ 4622 physical = EXT4_I(inode)->i_file_acl << blockbits; 4623 length = inode->i_sb->s_blocksize; 4624 } 4625 4626 if (physical) 4627 error = fiemap_fill_next_extent(fieinfo, 0, physical, 4628 length, flags); 4629 return (error < 0 ? error : 0); 4630 } 4631 4632 /* 4633 * ext4_ext_punch_hole 4634 * 4635 * Punches a hole of "length" bytes in a file starting 4636 * at byte "offset" 4637 * 4638 * @inode: The inode of the file to punch a hole in 4639 * @offset: The starting byte offset of the hole 4640 * @length: The length of the hole 4641 * 4642 * Returns the number of blocks removed or negative on err 4643 */ 4644 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length) 4645 { 4646 struct inode *inode = file->f_path.dentry->d_inode; 4647 struct super_block *sb = inode->i_sb; 4648 ext4_lblk_t first_block, stop_block; 4649 struct address_space *mapping = inode->i_mapping; 4650 handle_t *handle; 4651 loff_t first_page, last_page, page_len; 4652 loff_t first_page_offset, last_page_offset; 4653 int credits, err = 0; 4654 4655 /* 4656 * Write out all dirty pages to avoid race conditions 4657 * Then release them. 4658 */ 4659 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4660 err = filemap_write_and_wait_range(mapping, 4661 offset, offset + length - 1); 4662 4663 if (err) 4664 return err; 4665 } 4666 4667 mutex_lock(&inode->i_mutex); 4668 /* It's not possible punch hole on append only file */ 4669 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4670 err = -EPERM; 4671 goto out_mutex; 4672 } 4673 if (IS_SWAPFILE(inode)) { 4674 err = -ETXTBSY; 4675 goto out_mutex; 4676 } 4677 4678 /* No need to punch hole beyond i_size */ 4679 if (offset >= inode->i_size) 4680 goto out_mutex; 4681 4682 /* 4683 * If the hole extends beyond i_size, set the hole 4684 * to end after the page that contains i_size 4685 */ 4686 if (offset + length > inode->i_size) { 4687 length = inode->i_size + 4688 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 4689 offset; 4690 } 4691 4692 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 4693 last_page = (offset + length) >> PAGE_CACHE_SHIFT; 4694 4695 first_page_offset = first_page << PAGE_CACHE_SHIFT; 4696 last_page_offset = last_page << PAGE_CACHE_SHIFT; 4697 4698 /* Now release the pages */ 4699 if (last_page_offset > first_page_offset) { 4700 truncate_pagecache_range(inode, first_page_offset, 4701 last_page_offset - 1); 4702 } 4703 4704 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4705 ext4_inode_block_unlocked_dio(inode); 4706 err = ext4_flush_unwritten_io(inode); 4707 if (err) 4708 goto out_dio; 4709 inode_dio_wait(inode); 4710 4711 credits = ext4_writepage_trans_blocks(inode); 4712 handle = ext4_journal_start(inode, credits); 4713 if (IS_ERR(handle)) { 4714 err = PTR_ERR(handle); 4715 goto out_dio; 4716 } 4717 4718 4719 /* 4720 * Now we need to zero out the non-page-aligned data in the 4721 * pages at the start and tail of the hole, and unmap the buffer 4722 * heads for the block aligned regions of the page that were 4723 * completely zeroed. 4724 */ 4725 if (first_page > last_page) { 4726 /* 4727 * If the file space being truncated is contained within a page 4728 * just zero out and unmap the middle of that page 4729 */ 4730 err = ext4_discard_partial_page_buffers(handle, 4731 mapping, offset, length, 0); 4732 4733 if (err) 4734 goto out; 4735 } else { 4736 /* 4737 * zero out and unmap the partial page that contains 4738 * the start of the hole 4739 */ 4740 page_len = first_page_offset - offset; 4741 if (page_len > 0) { 4742 err = ext4_discard_partial_page_buffers(handle, mapping, 4743 offset, page_len, 0); 4744 if (err) 4745 goto out; 4746 } 4747 4748 /* 4749 * zero out and unmap the partial page that contains 4750 * the end of the hole 4751 */ 4752 page_len = offset + length - last_page_offset; 4753 if (page_len > 0) { 4754 err = ext4_discard_partial_page_buffers(handle, mapping, 4755 last_page_offset, page_len, 0); 4756 if (err) 4757 goto out; 4758 } 4759 } 4760 4761 /* 4762 * If i_size is contained in the last page, we need to 4763 * unmap and zero the partial page after i_size 4764 */ 4765 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page && 4766 inode->i_size % PAGE_CACHE_SIZE != 0) { 4767 4768 page_len = PAGE_CACHE_SIZE - 4769 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4770 4771 if (page_len > 0) { 4772 err = ext4_discard_partial_page_buffers(handle, 4773 mapping, inode->i_size, page_len, 0); 4774 4775 if (err) 4776 goto out; 4777 } 4778 } 4779 4780 first_block = (offset + sb->s_blocksize - 1) >> 4781 EXT4_BLOCK_SIZE_BITS(sb); 4782 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4783 4784 /* If there are no blocks to remove, return now */ 4785 if (first_block >= stop_block) 4786 goto out; 4787 4788 down_write(&EXT4_I(inode)->i_data_sem); 4789 ext4_ext_invalidate_cache(inode); 4790 ext4_discard_preallocations(inode); 4791 4792 err = ext4_es_remove_extent(inode, first_block, 4793 stop_block - first_block); 4794 err = ext4_ext_remove_space(inode, first_block, stop_block - 1); 4795 4796 ext4_ext_invalidate_cache(inode); 4797 ext4_discard_preallocations(inode); 4798 4799 if (IS_SYNC(inode)) 4800 ext4_handle_sync(handle); 4801 4802 up_write(&EXT4_I(inode)->i_data_sem); 4803 4804 out: 4805 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4806 ext4_mark_inode_dirty(handle, inode); 4807 ext4_journal_stop(handle); 4808 out_dio: 4809 ext4_inode_resume_unlocked_dio(inode); 4810 out_mutex: 4811 mutex_unlock(&inode->i_mutex); 4812 return err; 4813 } 4814 4815 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4816 __u64 start, __u64 len) 4817 { 4818 ext4_lblk_t start_blk; 4819 int error = 0; 4820 4821 if (ext4_has_inline_data(inode)) { 4822 int has_inline = 1; 4823 4824 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline); 4825 4826 if (has_inline) 4827 return error; 4828 } 4829 4830 /* fallback to generic here if not in extents fmt */ 4831 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4832 return generic_block_fiemap(inode, fieinfo, start, len, 4833 ext4_get_block); 4834 4835 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 4836 return -EBADR; 4837 4838 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 4839 error = ext4_xattr_fiemap(inode, fieinfo); 4840 } else { 4841 ext4_lblk_t len_blks; 4842 __u64 last_blk; 4843 4844 start_blk = start >> inode->i_sb->s_blocksize_bits; 4845 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 4846 if (last_blk >= EXT_MAX_BLOCKS) 4847 last_blk = EXT_MAX_BLOCKS-1; 4848 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 4849 4850 /* 4851 * Walk the extent tree gathering extent information 4852 * and pushing extents back to the user. 4853 */ 4854 error = ext4_fill_fiemap_extents(inode, start_blk, 4855 len_blks, fieinfo); 4856 } 4857 4858 return error; 4859 } 4860