xref: /openbmc/linux/fs/ext4/extents.c (revision 94c7b6fc)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <asm/uaccess.h>
41 #include <linux/fiemap.h>
42 #include "ext4_jbd2.h"
43 #include "ext4_extents.h"
44 #include "xattr.h"
45 
46 #include <trace/events/ext4.h>
47 
48 /*
49  * used by extent splitting.
50  */
51 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
52 					due to ENOSPC */
53 #define EXT4_EXT_MARK_UNWRIT1	0x2  /* mark first half unwritten */
54 #define EXT4_EXT_MARK_UNWRIT2	0x4  /* mark second half unwritten */
55 
56 #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
57 #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
58 
59 static __le32 ext4_extent_block_csum(struct inode *inode,
60 				     struct ext4_extent_header *eh)
61 {
62 	struct ext4_inode_info *ei = EXT4_I(inode);
63 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
64 	__u32 csum;
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
67 			   EXT4_EXTENT_TAIL_OFFSET(eh));
68 	return cpu_to_le32(csum);
69 }
70 
71 static int ext4_extent_block_csum_verify(struct inode *inode,
72 					 struct ext4_extent_header *eh)
73 {
74 	struct ext4_extent_tail *et;
75 
76 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
77 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
78 		return 1;
79 
80 	et = find_ext4_extent_tail(eh);
81 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
82 		return 0;
83 	return 1;
84 }
85 
86 static void ext4_extent_block_csum_set(struct inode *inode,
87 				       struct ext4_extent_header *eh)
88 {
89 	struct ext4_extent_tail *et;
90 
91 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
92 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
93 		return;
94 
95 	et = find_ext4_extent_tail(eh);
96 	et->et_checksum = ext4_extent_block_csum(inode, eh);
97 }
98 
99 static int ext4_split_extent(handle_t *handle,
100 				struct inode *inode,
101 				struct ext4_ext_path *path,
102 				struct ext4_map_blocks *map,
103 				int split_flag,
104 				int flags);
105 
106 static int ext4_split_extent_at(handle_t *handle,
107 			     struct inode *inode,
108 			     struct ext4_ext_path *path,
109 			     ext4_lblk_t split,
110 			     int split_flag,
111 			     int flags);
112 
113 static int ext4_find_delayed_extent(struct inode *inode,
114 				    struct extent_status *newes);
115 
116 static int ext4_ext_truncate_extend_restart(handle_t *handle,
117 					    struct inode *inode,
118 					    int needed)
119 {
120 	int err;
121 
122 	if (!ext4_handle_valid(handle))
123 		return 0;
124 	if (handle->h_buffer_credits > needed)
125 		return 0;
126 	err = ext4_journal_extend(handle, needed);
127 	if (err <= 0)
128 		return err;
129 	err = ext4_truncate_restart_trans(handle, inode, needed);
130 	if (err == 0)
131 		err = -EAGAIN;
132 
133 	return err;
134 }
135 
136 /*
137  * could return:
138  *  - EROFS
139  *  - ENOMEM
140  */
141 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
142 				struct ext4_ext_path *path)
143 {
144 	if (path->p_bh) {
145 		/* path points to block */
146 		BUFFER_TRACE(path->p_bh, "get_write_access");
147 		return ext4_journal_get_write_access(handle, path->p_bh);
148 	}
149 	/* path points to leaf/index in inode body */
150 	/* we use in-core data, no need to protect them */
151 	return 0;
152 }
153 
154 /*
155  * could return:
156  *  - EROFS
157  *  - ENOMEM
158  *  - EIO
159  */
160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161 		     struct inode *inode, struct ext4_ext_path *path)
162 {
163 	int err;
164 	if (path->p_bh) {
165 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166 		/* path points to block */
167 		err = __ext4_handle_dirty_metadata(where, line, handle,
168 						   inode, path->p_bh);
169 	} else {
170 		/* path points to leaf/index in inode body */
171 		err = ext4_mark_inode_dirty(handle, inode);
172 	}
173 	return err;
174 }
175 
176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177 			      struct ext4_ext_path *path,
178 			      ext4_lblk_t block)
179 {
180 	if (path) {
181 		int depth = path->p_depth;
182 		struct ext4_extent *ex;
183 
184 		/*
185 		 * Try to predict block placement assuming that we are
186 		 * filling in a file which will eventually be
187 		 * non-sparse --- i.e., in the case of libbfd writing
188 		 * an ELF object sections out-of-order but in a way
189 		 * the eventually results in a contiguous object or
190 		 * executable file, or some database extending a table
191 		 * space file.  However, this is actually somewhat
192 		 * non-ideal if we are writing a sparse file such as
193 		 * qemu or KVM writing a raw image file that is going
194 		 * to stay fairly sparse, since it will end up
195 		 * fragmenting the file system's free space.  Maybe we
196 		 * should have some hueristics or some way to allow
197 		 * userspace to pass a hint to file system,
198 		 * especially if the latter case turns out to be
199 		 * common.
200 		 */
201 		ex = path[depth].p_ext;
202 		if (ex) {
203 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
205 
206 			if (block > ext_block)
207 				return ext_pblk + (block - ext_block);
208 			else
209 				return ext_pblk - (ext_block - block);
210 		}
211 
212 		/* it looks like index is empty;
213 		 * try to find starting block from index itself */
214 		if (path[depth].p_bh)
215 			return path[depth].p_bh->b_blocknr;
216 	}
217 
218 	/* OK. use inode's group */
219 	return ext4_inode_to_goal_block(inode);
220 }
221 
222 /*
223  * Allocation for a meta data block
224  */
225 static ext4_fsblk_t
226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227 			struct ext4_ext_path *path,
228 			struct ext4_extent *ex, int *err, unsigned int flags)
229 {
230 	ext4_fsblk_t goal, newblock;
231 
232 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234 					NULL, err);
235 	return newblock;
236 }
237 
238 static inline int ext4_ext_space_block(struct inode *inode, int check)
239 {
240 	int size;
241 
242 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243 			/ sizeof(struct ext4_extent);
244 #ifdef AGGRESSIVE_TEST
245 	if (!check && size > 6)
246 		size = 6;
247 #endif
248 	return size;
249 }
250 
251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
252 {
253 	int size;
254 
255 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256 			/ sizeof(struct ext4_extent_idx);
257 #ifdef AGGRESSIVE_TEST
258 	if (!check && size > 5)
259 		size = 5;
260 #endif
261 	return size;
262 }
263 
264 static inline int ext4_ext_space_root(struct inode *inode, int check)
265 {
266 	int size;
267 
268 	size = sizeof(EXT4_I(inode)->i_data);
269 	size -= sizeof(struct ext4_extent_header);
270 	size /= sizeof(struct ext4_extent);
271 #ifdef AGGRESSIVE_TEST
272 	if (!check && size > 3)
273 		size = 3;
274 #endif
275 	return size;
276 }
277 
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279 {
280 	int size;
281 
282 	size = sizeof(EXT4_I(inode)->i_data);
283 	size -= sizeof(struct ext4_extent_header);
284 	size /= sizeof(struct ext4_extent_idx);
285 #ifdef AGGRESSIVE_TEST
286 	if (!check && size > 4)
287 		size = 4;
288 #endif
289 	return size;
290 }
291 
292 /*
293  * Calculate the number of metadata blocks needed
294  * to allocate @blocks
295  * Worse case is one block per extent
296  */
297 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
298 {
299 	struct ext4_inode_info *ei = EXT4_I(inode);
300 	int idxs;
301 
302 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
303 		/ sizeof(struct ext4_extent_idx));
304 
305 	/*
306 	 * If the new delayed allocation block is contiguous with the
307 	 * previous da block, it can share index blocks with the
308 	 * previous block, so we only need to allocate a new index
309 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
310 	 * an additional index block, and at ldxs**3 blocks, yet
311 	 * another index blocks.
312 	 */
313 	if (ei->i_da_metadata_calc_len &&
314 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
315 		int num = 0;
316 
317 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
318 			num++;
319 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
320 			num++;
321 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
322 			num++;
323 			ei->i_da_metadata_calc_len = 0;
324 		} else
325 			ei->i_da_metadata_calc_len++;
326 		ei->i_da_metadata_calc_last_lblock++;
327 		return num;
328 	}
329 
330 	/*
331 	 * In the worst case we need a new set of index blocks at
332 	 * every level of the inode's extent tree.
333 	 */
334 	ei->i_da_metadata_calc_len = 1;
335 	ei->i_da_metadata_calc_last_lblock = lblock;
336 	return ext_depth(inode) + 1;
337 }
338 
339 static int
340 ext4_ext_max_entries(struct inode *inode, int depth)
341 {
342 	int max;
343 
344 	if (depth == ext_depth(inode)) {
345 		if (depth == 0)
346 			max = ext4_ext_space_root(inode, 1);
347 		else
348 			max = ext4_ext_space_root_idx(inode, 1);
349 	} else {
350 		if (depth == 0)
351 			max = ext4_ext_space_block(inode, 1);
352 		else
353 			max = ext4_ext_space_block_idx(inode, 1);
354 	}
355 
356 	return max;
357 }
358 
359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
360 {
361 	ext4_fsblk_t block = ext4_ext_pblock(ext);
362 	int len = ext4_ext_get_actual_len(ext);
363 	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
364 	ext4_lblk_t last = lblock + len - 1;
365 
366 	if (lblock > last)
367 		return 0;
368 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
369 }
370 
371 static int ext4_valid_extent_idx(struct inode *inode,
372 				struct ext4_extent_idx *ext_idx)
373 {
374 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
375 
376 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
377 }
378 
379 static int ext4_valid_extent_entries(struct inode *inode,
380 				struct ext4_extent_header *eh,
381 				int depth)
382 {
383 	unsigned short entries;
384 	if (eh->eh_entries == 0)
385 		return 1;
386 
387 	entries = le16_to_cpu(eh->eh_entries);
388 
389 	if (depth == 0) {
390 		/* leaf entries */
391 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
392 		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
393 		ext4_fsblk_t pblock = 0;
394 		ext4_lblk_t lblock = 0;
395 		ext4_lblk_t prev = 0;
396 		int len = 0;
397 		while (entries) {
398 			if (!ext4_valid_extent(inode, ext))
399 				return 0;
400 
401 			/* Check for overlapping extents */
402 			lblock = le32_to_cpu(ext->ee_block);
403 			len = ext4_ext_get_actual_len(ext);
404 			if ((lblock <= prev) && prev) {
405 				pblock = ext4_ext_pblock(ext);
406 				es->s_last_error_block = cpu_to_le64(pblock);
407 				return 0;
408 			}
409 			ext++;
410 			entries--;
411 			prev = lblock + len - 1;
412 		}
413 	} else {
414 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
415 		while (entries) {
416 			if (!ext4_valid_extent_idx(inode, ext_idx))
417 				return 0;
418 			ext_idx++;
419 			entries--;
420 		}
421 	}
422 	return 1;
423 }
424 
425 static int __ext4_ext_check(const char *function, unsigned int line,
426 			    struct inode *inode, struct ext4_extent_header *eh,
427 			    int depth, ext4_fsblk_t pblk)
428 {
429 	const char *error_msg;
430 	int max = 0;
431 
432 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
433 		error_msg = "invalid magic";
434 		goto corrupted;
435 	}
436 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
437 		error_msg = "unexpected eh_depth";
438 		goto corrupted;
439 	}
440 	if (unlikely(eh->eh_max == 0)) {
441 		error_msg = "invalid eh_max";
442 		goto corrupted;
443 	}
444 	max = ext4_ext_max_entries(inode, depth);
445 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
446 		error_msg = "too large eh_max";
447 		goto corrupted;
448 	}
449 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
450 		error_msg = "invalid eh_entries";
451 		goto corrupted;
452 	}
453 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
454 		error_msg = "invalid extent entries";
455 		goto corrupted;
456 	}
457 	/* Verify checksum on non-root extent tree nodes */
458 	if (ext_depth(inode) != depth &&
459 	    !ext4_extent_block_csum_verify(inode, eh)) {
460 		error_msg = "extent tree corrupted";
461 		goto corrupted;
462 	}
463 	return 0;
464 
465 corrupted:
466 	ext4_error_inode(inode, function, line, 0,
467 			 "pblk %llu bad header/extent: %s - magic %x, "
468 			 "entries %u, max %u(%u), depth %u(%u)",
469 			 (unsigned long long) pblk, error_msg,
470 			 le16_to_cpu(eh->eh_magic),
471 			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
472 			 max, le16_to_cpu(eh->eh_depth), depth);
473 	return -EIO;
474 }
475 
476 #define ext4_ext_check(inode, eh, depth, pblk)			\
477 	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
478 
479 int ext4_ext_check_inode(struct inode *inode)
480 {
481 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
482 }
483 
484 static struct buffer_head *
485 __read_extent_tree_block(const char *function, unsigned int line,
486 			 struct inode *inode, ext4_fsblk_t pblk, int depth,
487 			 int flags)
488 {
489 	struct buffer_head		*bh;
490 	int				err;
491 
492 	bh = sb_getblk(inode->i_sb, pblk);
493 	if (unlikely(!bh))
494 		return ERR_PTR(-ENOMEM);
495 
496 	if (!bh_uptodate_or_lock(bh)) {
497 		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
498 		err = bh_submit_read(bh);
499 		if (err < 0)
500 			goto errout;
501 	}
502 	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
503 		return bh;
504 	err = __ext4_ext_check(function, line, inode,
505 			       ext_block_hdr(bh), depth, pblk);
506 	if (err)
507 		goto errout;
508 	set_buffer_verified(bh);
509 	/*
510 	 * If this is a leaf block, cache all of its entries
511 	 */
512 	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
513 		struct ext4_extent_header *eh = ext_block_hdr(bh);
514 		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
515 		ext4_lblk_t prev = 0;
516 		int i;
517 
518 		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
519 			unsigned int status = EXTENT_STATUS_WRITTEN;
520 			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
521 			int len = ext4_ext_get_actual_len(ex);
522 
523 			if (prev && (prev != lblk))
524 				ext4_es_cache_extent(inode, prev,
525 						     lblk - prev, ~0,
526 						     EXTENT_STATUS_HOLE);
527 
528 			if (ext4_ext_is_unwritten(ex))
529 				status = EXTENT_STATUS_UNWRITTEN;
530 			ext4_es_cache_extent(inode, lblk, len,
531 					     ext4_ext_pblock(ex), status);
532 			prev = lblk + len;
533 		}
534 	}
535 	return bh;
536 errout:
537 	put_bh(bh);
538 	return ERR_PTR(err);
539 
540 }
541 
542 #define read_extent_tree_block(inode, pblk, depth, flags)		\
543 	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
544 				 (depth), (flags))
545 
546 /*
547  * This function is called to cache a file's extent information in the
548  * extent status tree
549  */
550 int ext4_ext_precache(struct inode *inode)
551 {
552 	struct ext4_inode_info *ei = EXT4_I(inode);
553 	struct ext4_ext_path *path = NULL;
554 	struct buffer_head *bh;
555 	int i = 0, depth, ret = 0;
556 
557 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
558 		return 0;	/* not an extent-mapped inode */
559 
560 	down_read(&ei->i_data_sem);
561 	depth = ext_depth(inode);
562 
563 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
564 		       GFP_NOFS);
565 	if (path == NULL) {
566 		up_read(&ei->i_data_sem);
567 		return -ENOMEM;
568 	}
569 
570 	/* Don't cache anything if there are no external extent blocks */
571 	if (depth == 0)
572 		goto out;
573 	path[0].p_hdr = ext_inode_hdr(inode);
574 	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
575 	if (ret)
576 		goto out;
577 	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
578 	while (i >= 0) {
579 		/*
580 		 * If this is a leaf block or we've reached the end of
581 		 * the index block, go up
582 		 */
583 		if ((i == depth) ||
584 		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
585 			brelse(path[i].p_bh);
586 			path[i].p_bh = NULL;
587 			i--;
588 			continue;
589 		}
590 		bh = read_extent_tree_block(inode,
591 					    ext4_idx_pblock(path[i].p_idx++),
592 					    depth - i - 1,
593 					    EXT4_EX_FORCE_CACHE);
594 		if (IS_ERR(bh)) {
595 			ret = PTR_ERR(bh);
596 			break;
597 		}
598 		i++;
599 		path[i].p_bh = bh;
600 		path[i].p_hdr = ext_block_hdr(bh);
601 		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
602 	}
603 	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
604 out:
605 	up_read(&ei->i_data_sem);
606 	ext4_ext_drop_refs(path);
607 	kfree(path);
608 	return ret;
609 }
610 
611 #ifdef EXT_DEBUG
612 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
613 {
614 	int k, l = path->p_depth;
615 
616 	ext_debug("path:");
617 	for (k = 0; k <= l; k++, path++) {
618 		if (path->p_idx) {
619 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
620 			    ext4_idx_pblock(path->p_idx));
621 		} else if (path->p_ext) {
622 			ext_debug("  %d:[%d]%d:%llu ",
623 				  le32_to_cpu(path->p_ext->ee_block),
624 				  ext4_ext_is_unwritten(path->p_ext),
625 				  ext4_ext_get_actual_len(path->p_ext),
626 				  ext4_ext_pblock(path->p_ext));
627 		} else
628 			ext_debug("  []");
629 	}
630 	ext_debug("\n");
631 }
632 
633 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
634 {
635 	int depth = ext_depth(inode);
636 	struct ext4_extent_header *eh;
637 	struct ext4_extent *ex;
638 	int i;
639 
640 	if (!path)
641 		return;
642 
643 	eh = path[depth].p_hdr;
644 	ex = EXT_FIRST_EXTENT(eh);
645 
646 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
647 
648 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
649 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
650 			  ext4_ext_is_unwritten(ex),
651 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
652 	}
653 	ext_debug("\n");
654 }
655 
656 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
657 			ext4_fsblk_t newblock, int level)
658 {
659 	int depth = ext_depth(inode);
660 	struct ext4_extent *ex;
661 
662 	if (depth != level) {
663 		struct ext4_extent_idx *idx;
664 		idx = path[level].p_idx;
665 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
666 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
667 					le32_to_cpu(idx->ei_block),
668 					ext4_idx_pblock(idx),
669 					newblock);
670 			idx++;
671 		}
672 
673 		return;
674 	}
675 
676 	ex = path[depth].p_ext;
677 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
678 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
679 				le32_to_cpu(ex->ee_block),
680 				ext4_ext_pblock(ex),
681 				ext4_ext_is_unwritten(ex),
682 				ext4_ext_get_actual_len(ex),
683 				newblock);
684 		ex++;
685 	}
686 }
687 
688 #else
689 #define ext4_ext_show_path(inode, path)
690 #define ext4_ext_show_leaf(inode, path)
691 #define ext4_ext_show_move(inode, path, newblock, level)
692 #endif
693 
694 void ext4_ext_drop_refs(struct ext4_ext_path *path)
695 {
696 	int depth = path->p_depth;
697 	int i;
698 
699 	for (i = 0; i <= depth; i++, path++)
700 		if (path->p_bh) {
701 			brelse(path->p_bh);
702 			path->p_bh = NULL;
703 		}
704 }
705 
706 /*
707  * ext4_ext_binsearch_idx:
708  * binary search for the closest index of the given block
709  * the header must be checked before calling this
710  */
711 static void
712 ext4_ext_binsearch_idx(struct inode *inode,
713 			struct ext4_ext_path *path, ext4_lblk_t block)
714 {
715 	struct ext4_extent_header *eh = path->p_hdr;
716 	struct ext4_extent_idx *r, *l, *m;
717 
718 
719 	ext_debug("binsearch for %u(idx):  ", block);
720 
721 	l = EXT_FIRST_INDEX(eh) + 1;
722 	r = EXT_LAST_INDEX(eh);
723 	while (l <= r) {
724 		m = l + (r - l) / 2;
725 		if (block < le32_to_cpu(m->ei_block))
726 			r = m - 1;
727 		else
728 			l = m + 1;
729 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
730 				m, le32_to_cpu(m->ei_block),
731 				r, le32_to_cpu(r->ei_block));
732 	}
733 
734 	path->p_idx = l - 1;
735 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
736 		  ext4_idx_pblock(path->p_idx));
737 
738 #ifdef CHECK_BINSEARCH
739 	{
740 		struct ext4_extent_idx *chix, *ix;
741 		int k;
742 
743 		chix = ix = EXT_FIRST_INDEX(eh);
744 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
745 		  if (k != 0 &&
746 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
747 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
748 				       "first=0x%p\n", k,
749 				       ix, EXT_FIRST_INDEX(eh));
750 				printk(KERN_DEBUG "%u <= %u\n",
751 				       le32_to_cpu(ix->ei_block),
752 				       le32_to_cpu(ix[-1].ei_block));
753 			}
754 			BUG_ON(k && le32_to_cpu(ix->ei_block)
755 					   <= le32_to_cpu(ix[-1].ei_block));
756 			if (block < le32_to_cpu(ix->ei_block))
757 				break;
758 			chix = ix;
759 		}
760 		BUG_ON(chix != path->p_idx);
761 	}
762 #endif
763 
764 }
765 
766 /*
767  * ext4_ext_binsearch:
768  * binary search for closest extent of the given block
769  * the header must be checked before calling this
770  */
771 static void
772 ext4_ext_binsearch(struct inode *inode,
773 		struct ext4_ext_path *path, ext4_lblk_t block)
774 {
775 	struct ext4_extent_header *eh = path->p_hdr;
776 	struct ext4_extent *r, *l, *m;
777 
778 	if (eh->eh_entries == 0) {
779 		/*
780 		 * this leaf is empty:
781 		 * we get such a leaf in split/add case
782 		 */
783 		return;
784 	}
785 
786 	ext_debug("binsearch for %u:  ", block);
787 
788 	l = EXT_FIRST_EXTENT(eh) + 1;
789 	r = EXT_LAST_EXTENT(eh);
790 
791 	while (l <= r) {
792 		m = l + (r - l) / 2;
793 		if (block < le32_to_cpu(m->ee_block))
794 			r = m - 1;
795 		else
796 			l = m + 1;
797 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
798 				m, le32_to_cpu(m->ee_block),
799 				r, le32_to_cpu(r->ee_block));
800 	}
801 
802 	path->p_ext = l - 1;
803 	ext_debug("  -> %d:%llu:[%d]%d ",
804 			le32_to_cpu(path->p_ext->ee_block),
805 			ext4_ext_pblock(path->p_ext),
806 			ext4_ext_is_unwritten(path->p_ext),
807 			ext4_ext_get_actual_len(path->p_ext));
808 
809 #ifdef CHECK_BINSEARCH
810 	{
811 		struct ext4_extent *chex, *ex;
812 		int k;
813 
814 		chex = ex = EXT_FIRST_EXTENT(eh);
815 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
816 			BUG_ON(k && le32_to_cpu(ex->ee_block)
817 					  <= le32_to_cpu(ex[-1].ee_block));
818 			if (block < le32_to_cpu(ex->ee_block))
819 				break;
820 			chex = ex;
821 		}
822 		BUG_ON(chex != path->p_ext);
823 	}
824 #endif
825 
826 }
827 
828 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
829 {
830 	struct ext4_extent_header *eh;
831 
832 	eh = ext_inode_hdr(inode);
833 	eh->eh_depth = 0;
834 	eh->eh_entries = 0;
835 	eh->eh_magic = EXT4_EXT_MAGIC;
836 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
837 	ext4_mark_inode_dirty(handle, inode);
838 	return 0;
839 }
840 
841 struct ext4_ext_path *
842 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
843 		     struct ext4_ext_path *path, int flags)
844 {
845 	struct ext4_extent_header *eh;
846 	struct buffer_head *bh;
847 	short int depth, i, ppos = 0, alloc = 0;
848 	int ret;
849 
850 	eh = ext_inode_hdr(inode);
851 	depth = ext_depth(inode);
852 
853 	/* account possible depth increase */
854 	if (!path) {
855 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
856 				GFP_NOFS);
857 		if (!path)
858 			return ERR_PTR(-ENOMEM);
859 		alloc = 1;
860 	}
861 	path[0].p_hdr = eh;
862 	path[0].p_bh = NULL;
863 
864 	i = depth;
865 	/* walk through the tree */
866 	while (i) {
867 		ext_debug("depth %d: num %d, max %d\n",
868 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
869 
870 		ext4_ext_binsearch_idx(inode, path + ppos, block);
871 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
872 		path[ppos].p_depth = i;
873 		path[ppos].p_ext = NULL;
874 
875 		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
876 					    flags);
877 		if (IS_ERR(bh)) {
878 			ret = PTR_ERR(bh);
879 			goto err;
880 		}
881 
882 		eh = ext_block_hdr(bh);
883 		ppos++;
884 		if (unlikely(ppos > depth)) {
885 			put_bh(bh);
886 			EXT4_ERROR_INODE(inode,
887 					 "ppos %d > depth %d", ppos, depth);
888 			ret = -EIO;
889 			goto err;
890 		}
891 		path[ppos].p_bh = bh;
892 		path[ppos].p_hdr = eh;
893 	}
894 
895 	path[ppos].p_depth = i;
896 	path[ppos].p_ext = NULL;
897 	path[ppos].p_idx = NULL;
898 
899 	/* find extent */
900 	ext4_ext_binsearch(inode, path + ppos, block);
901 	/* if not an empty leaf */
902 	if (path[ppos].p_ext)
903 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
904 
905 	ext4_ext_show_path(inode, path);
906 
907 	return path;
908 
909 err:
910 	ext4_ext_drop_refs(path);
911 	if (alloc)
912 		kfree(path);
913 	return ERR_PTR(ret);
914 }
915 
916 /*
917  * ext4_ext_insert_index:
918  * insert new index [@logical;@ptr] into the block at @curp;
919  * check where to insert: before @curp or after @curp
920  */
921 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
922 				 struct ext4_ext_path *curp,
923 				 int logical, ext4_fsblk_t ptr)
924 {
925 	struct ext4_extent_idx *ix;
926 	int len, err;
927 
928 	err = ext4_ext_get_access(handle, inode, curp);
929 	if (err)
930 		return err;
931 
932 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
933 		EXT4_ERROR_INODE(inode,
934 				 "logical %d == ei_block %d!",
935 				 logical, le32_to_cpu(curp->p_idx->ei_block));
936 		return -EIO;
937 	}
938 
939 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
940 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
941 		EXT4_ERROR_INODE(inode,
942 				 "eh_entries %d >= eh_max %d!",
943 				 le16_to_cpu(curp->p_hdr->eh_entries),
944 				 le16_to_cpu(curp->p_hdr->eh_max));
945 		return -EIO;
946 	}
947 
948 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
949 		/* insert after */
950 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
951 		ix = curp->p_idx + 1;
952 	} else {
953 		/* insert before */
954 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
955 		ix = curp->p_idx;
956 	}
957 
958 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
959 	BUG_ON(len < 0);
960 	if (len > 0) {
961 		ext_debug("insert new index %d: "
962 				"move %d indices from 0x%p to 0x%p\n",
963 				logical, len, ix, ix + 1);
964 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
965 	}
966 
967 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
968 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
969 		return -EIO;
970 	}
971 
972 	ix->ei_block = cpu_to_le32(logical);
973 	ext4_idx_store_pblock(ix, ptr);
974 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
975 
976 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
977 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
978 		return -EIO;
979 	}
980 
981 	err = ext4_ext_dirty(handle, inode, curp);
982 	ext4_std_error(inode->i_sb, err);
983 
984 	return err;
985 }
986 
987 /*
988  * ext4_ext_split:
989  * inserts new subtree into the path, using free index entry
990  * at depth @at:
991  * - allocates all needed blocks (new leaf and all intermediate index blocks)
992  * - makes decision where to split
993  * - moves remaining extents and index entries (right to the split point)
994  *   into the newly allocated blocks
995  * - initializes subtree
996  */
997 static int ext4_ext_split(handle_t *handle, struct inode *inode,
998 			  unsigned int flags,
999 			  struct ext4_ext_path *path,
1000 			  struct ext4_extent *newext, int at)
1001 {
1002 	struct buffer_head *bh = NULL;
1003 	int depth = ext_depth(inode);
1004 	struct ext4_extent_header *neh;
1005 	struct ext4_extent_idx *fidx;
1006 	int i = at, k, m, a;
1007 	ext4_fsblk_t newblock, oldblock;
1008 	__le32 border;
1009 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1010 	int err = 0;
1011 
1012 	/* make decision: where to split? */
1013 	/* FIXME: now decision is simplest: at current extent */
1014 
1015 	/* if current leaf will be split, then we should use
1016 	 * border from split point */
1017 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1018 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1019 		return -EIO;
1020 	}
1021 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1022 		border = path[depth].p_ext[1].ee_block;
1023 		ext_debug("leaf will be split."
1024 				" next leaf starts at %d\n",
1025 				  le32_to_cpu(border));
1026 	} else {
1027 		border = newext->ee_block;
1028 		ext_debug("leaf will be added."
1029 				" next leaf starts at %d\n",
1030 				le32_to_cpu(border));
1031 	}
1032 
1033 	/*
1034 	 * If error occurs, then we break processing
1035 	 * and mark filesystem read-only. index won't
1036 	 * be inserted and tree will be in consistent
1037 	 * state. Next mount will repair buffers too.
1038 	 */
1039 
1040 	/*
1041 	 * Get array to track all allocated blocks.
1042 	 * We need this to handle errors and free blocks
1043 	 * upon them.
1044 	 */
1045 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1046 	if (!ablocks)
1047 		return -ENOMEM;
1048 
1049 	/* allocate all needed blocks */
1050 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1051 	for (a = 0; a < depth - at; a++) {
1052 		newblock = ext4_ext_new_meta_block(handle, inode, path,
1053 						   newext, &err, flags);
1054 		if (newblock == 0)
1055 			goto cleanup;
1056 		ablocks[a] = newblock;
1057 	}
1058 
1059 	/* initialize new leaf */
1060 	newblock = ablocks[--a];
1061 	if (unlikely(newblock == 0)) {
1062 		EXT4_ERROR_INODE(inode, "newblock == 0!");
1063 		err = -EIO;
1064 		goto cleanup;
1065 	}
1066 	bh = sb_getblk(inode->i_sb, newblock);
1067 	if (unlikely(!bh)) {
1068 		err = -ENOMEM;
1069 		goto cleanup;
1070 	}
1071 	lock_buffer(bh);
1072 
1073 	err = ext4_journal_get_create_access(handle, bh);
1074 	if (err)
1075 		goto cleanup;
1076 
1077 	neh = ext_block_hdr(bh);
1078 	neh->eh_entries = 0;
1079 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1080 	neh->eh_magic = EXT4_EXT_MAGIC;
1081 	neh->eh_depth = 0;
1082 
1083 	/* move remainder of path[depth] to the new leaf */
1084 	if (unlikely(path[depth].p_hdr->eh_entries !=
1085 		     path[depth].p_hdr->eh_max)) {
1086 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1087 				 path[depth].p_hdr->eh_entries,
1088 				 path[depth].p_hdr->eh_max);
1089 		err = -EIO;
1090 		goto cleanup;
1091 	}
1092 	/* start copy from next extent */
1093 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1094 	ext4_ext_show_move(inode, path, newblock, depth);
1095 	if (m) {
1096 		struct ext4_extent *ex;
1097 		ex = EXT_FIRST_EXTENT(neh);
1098 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1099 		le16_add_cpu(&neh->eh_entries, m);
1100 	}
1101 
1102 	ext4_extent_block_csum_set(inode, neh);
1103 	set_buffer_uptodate(bh);
1104 	unlock_buffer(bh);
1105 
1106 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1107 	if (err)
1108 		goto cleanup;
1109 	brelse(bh);
1110 	bh = NULL;
1111 
1112 	/* correct old leaf */
1113 	if (m) {
1114 		err = ext4_ext_get_access(handle, inode, path + depth);
1115 		if (err)
1116 			goto cleanup;
1117 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1118 		err = ext4_ext_dirty(handle, inode, path + depth);
1119 		if (err)
1120 			goto cleanup;
1121 
1122 	}
1123 
1124 	/* create intermediate indexes */
1125 	k = depth - at - 1;
1126 	if (unlikely(k < 0)) {
1127 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1128 		err = -EIO;
1129 		goto cleanup;
1130 	}
1131 	if (k)
1132 		ext_debug("create %d intermediate indices\n", k);
1133 	/* insert new index into current index block */
1134 	/* current depth stored in i var */
1135 	i = depth - 1;
1136 	while (k--) {
1137 		oldblock = newblock;
1138 		newblock = ablocks[--a];
1139 		bh = sb_getblk(inode->i_sb, newblock);
1140 		if (unlikely(!bh)) {
1141 			err = -ENOMEM;
1142 			goto cleanup;
1143 		}
1144 		lock_buffer(bh);
1145 
1146 		err = ext4_journal_get_create_access(handle, bh);
1147 		if (err)
1148 			goto cleanup;
1149 
1150 		neh = ext_block_hdr(bh);
1151 		neh->eh_entries = cpu_to_le16(1);
1152 		neh->eh_magic = EXT4_EXT_MAGIC;
1153 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1154 		neh->eh_depth = cpu_to_le16(depth - i);
1155 		fidx = EXT_FIRST_INDEX(neh);
1156 		fidx->ei_block = border;
1157 		ext4_idx_store_pblock(fidx, oldblock);
1158 
1159 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1160 				i, newblock, le32_to_cpu(border), oldblock);
1161 
1162 		/* move remainder of path[i] to the new index block */
1163 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1164 					EXT_LAST_INDEX(path[i].p_hdr))) {
1165 			EXT4_ERROR_INODE(inode,
1166 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1167 					 le32_to_cpu(path[i].p_ext->ee_block));
1168 			err = -EIO;
1169 			goto cleanup;
1170 		}
1171 		/* start copy indexes */
1172 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1173 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1174 				EXT_MAX_INDEX(path[i].p_hdr));
1175 		ext4_ext_show_move(inode, path, newblock, i);
1176 		if (m) {
1177 			memmove(++fidx, path[i].p_idx,
1178 				sizeof(struct ext4_extent_idx) * m);
1179 			le16_add_cpu(&neh->eh_entries, m);
1180 		}
1181 		ext4_extent_block_csum_set(inode, neh);
1182 		set_buffer_uptodate(bh);
1183 		unlock_buffer(bh);
1184 
1185 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1186 		if (err)
1187 			goto cleanup;
1188 		brelse(bh);
1189 		bh = NULL;
1190 
1191 		/* correct old index */
1192 		if (m) {
1193 			err = ext4_ext_get_access(handle, inode, path + i);
1194 			if (err)
1195 				goto cleanup;
1196 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1197 			err = ext4_ext_dirty(handle, inode, path + i);
1198 			if (err)
1199 				goto cleanup;
1200 		}
1201 
1202 		i--;
1203 	}
1204 
1205 	/* insert new index */
1206 	err = ext4_ext_insert_index(handle, inode, path + at,
1207 				    le32_to_cpu(border), newblock);
1208 
1209 cleanup:
1210 	if (bh) {
1211 		if (buffer_locked(bh))
1212 			unlock_buffer(bh);
1213 		brelse(bh);
1214 	}
1215 
1216 	if (err) {
1217 		/* free all allocated blocks in error case */
1218 		for (i = 0; i < depth; i++) {
1219 			if (!ablocks[i])
1220 				continue;
1221 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1222 					 EXT4_FREE_BLOCKS_METADATA);
1223 		}
1224 	}
1225 	kfree(ablocks);
1226 
1227 	return err;
1228 }
1229 
1230 /*
1231  * ext4_ext_grow_indepth:
1232  * implements tree growing procedure:
1233  * - allocates new block
1234  * - moves top-level data (index block or leaf) into the new block
1235  * - initializes new top-level, creating index that points to the
1236  *   just created block
1237  */
1238 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1239 				 unsigned int flags,
1240 				 struct ext4_extent *newext)
1241 {
1242 	struct ext4_extent_header *neh;
1243 	struct buffer_head *bh;
1244 	ext4_fsblk_t newblock;
1245 	int err = 0;
1246 
1247 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1248 		newext, &err, flags);
1249 	if (newblock == 0)
1250 		return err;
1251 
1252 	bh = sb_getblk(inode->i_sb, newblock);
1253 	if (unlikely(!bh))
1254 		return -ENOMEM;
1255 	lock_buffer(bh);
1256 
1257 	err = ext4_journal_get_create_access(handle, bh);
1258 	if (err) {
1259 		unlock_buffer(bh);
1260 		goto out;
1261 	}
1262 
1263 	/* move top-level index/leaf into new block */
1264 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1265 		sizeof(EXT4_I(inode)->i_data));
1266 
1267 	/* set size of new block */
1268 	neh = ext_block_hdr(bh);
1269 	/* old root could have indexes or leaves
1270 	 * so calculate e_max right way */
1271 	if (ext_depth(inode))
1272 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1273 	else
1274 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1275 	neh->eh_magic = EXT4_EXT_MAGIC;
1276 	ext4_extent_block_csum_set(inode, neh);
1277 	set_buffer_uptodate(bh);
1278 	unlock_buffer(bh);
1279 
1280 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1281 	if (err)
1282 		goto out;
1283 
1284 	/* Update top-level index: num,max,pointer */
1285 	neh = ext_inode_hdr(inode);
1286 	neh->eh_entries = cpu_to_le16(1);
1287 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1288 	if (neh->eh_depth == 0) {
1289 		/* Root extent block becomes index block */
1290 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1291 		EXT_FIRST_INDEX(neh)->ei_block =
1292 			EXT_FIRST_EXTENT(neh)->ee_block;
1293 	}
1294 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1295 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1296 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1297 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1298 
1299 	le16_add_cpu(&neh->eh_depth, 1);
1300 	ext4_mark_inode_dirty(handle, inode);
1301 out:
1302 	brelse(bh);
1303 
1304 	return err;
1305 }
1306 
1307 /*
1308  * ext4_ext_create_new_leaf:
1309  * finds empty index and adds new leaf.
1310  * if no free index is found, then it requests in-depth growing.
1311  */
1312 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1313 				    unsigned int mb_flags,
1314 				    unsigned int gb_flags,
1315 				    struct ext4_ext_path *path,
1316 				    struct ext4_extent *newext)
1317 {
1318 	struct ext4_ext_path *curp;
1319 	int depth, i, err = 0;
1320 
1321 repeat:
1322 	i = depth = ext_depth(inode);
1323 
1324 	/* walk up to the tree and look for free index entry */
1325 	curp = path + depth;
1326 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1327 		i--;
1328 		curp--;
1329 	}
1330 
1331 	/* we use already allocated block for index block,
1332 	 * so subsequent data blocks should be contiguous */
1333 	if (EXT_HAS_FREE_INDEX(curp)) {
1334 		/* if we found index with free entry, then use that
1335 		 * entry: create all needed subtree and add new leaf */
1336 		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1337 		if (err)
1338 			goto out;
1339 
1340 		/* refill path */
1341 		ext4_ext_drop_refs(path);
1342 		path = ext4_ext_find_extent(inode,
1343 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1344 				    path, gb_flags);
1345 		if (IS_ERR(path))
1346 			err = PTR_ERR(path);
1347 	} else {
1348 		/* tree is full, time to grow in depth */
1349 		err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1350 		if (err)
1351 			goto out;
1352 
1353 		/* refill path */
1354 		ext4_ext_drop_refs(path);
1355 		path = ext4_ext_find_extent(inode,
1356 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1357 				    path, gb_flags);
1358 		if (IS_ERR(path)) {
1359 			err = PTR_ERR(path);
1360 			goto out;
1361 		}
1362 
1363 		/*
1364 		 * only first (depth 0 -> 1) produces free space;
1365 		 * in all other cases we have to split the grown tree
1366 		 */
1367 		depth = ext_depth(inode);
1368 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1369 			/* now we need to split */
1370 			goto repeat;
1371 		}
1372 	}
1373 
1374 out:
1375 	return err;
1376 }
1377 
1378 /*
1379  * search the closest allocated block to the left for *logical
1380  * and returns it at @logical + it's physical address at @phys
1381  * if *logical is the smallest allocated block, the function
1382  * returns 0 at @phys
1383  * return value contains 0 (success) or error code
1384  */
1385 static int ext4_ext_search_left(struct inode *inode,
1386 				struct ext4_ext_path *path,
1387 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1388 {
1389 	struct ext4_extent_idx *ix;
1390 	struct ext4_extent *ex;
1391 	int depth, ee_len;
1392 
1393 	if (unlikely(path == NULL)) {
1394 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1395 		return -EIO;
1396 	}
1397 	depth = path->p_depth;
1398 	*phys = 0;
1399 
1400 	if (depth == 0 && path->p_ext == NULL)
1401 		return 0;
1402 
1403 	/* usually extent in the path covers blocks smaller
1404 	 * then *logical, but it can be that extent is the
1405 	 * first one in the file */
1406 
1407 	ex = path[depth].p_ext;
1408 	ee_len = ext4_ext_get_actual_len(ex);
1409 	if (*logical < le32_to_cpu(ex->ee_block)) {
1410 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1411 			EXT4_ERROR_INODE(inode,
1412 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1413 					 *logical, le32_to_cpu(ex->ee_block));
1414 			return -EIO;
1415 		}
1416 		while (--depth >= 0) {
1417 			ix = path[depth].p_idx;
1418 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1419 				EXT4_ERROR_INODE(inode,
1420 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1421 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1422 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1423 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1424 				  depth);
1425 				return -EIO;
1426 			}
1427 		}
1428 		return 0;
1429 	}
1430 
1431 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1432 		EXT4_ERROR_INODE(inode,
1433 				 "logical %d < ee_block %d + ee_len %d!",
1434 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1435 		return -EIO;
1436 	}
1437 
1438 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1439 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1440 	return 0;
1441 }
1442 
1443 /*
1444  * search the closest allocated block to the right for *logical
1445  * and returns it at @logical + it's physical address at @phys
1446  * if *logical is the largest allocated block, the function
1447  * returns 0 at @phys
1448  * return value contains 0 (success) or error code
1449  */
1450 static int ext4_ext_search_right(struct inode *inode,
1451 				 struct ext4_ext_path *path,
1452 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1453 				 struct ext4_extent **ret_ex)
1454 {
1455 	struct buffer_head *bh = NULL;
1456 	struct ext4_extent_header *eh;
1457 	struct ext4_extent_idx *ix;
1458 	struct ext4_extent *ex;
1459 	ext4_fsblk_t block;
1460 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1461 	int ee_len;
1462 
1463 	if (unlikely(path == NULL)) {
1464 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1465 		return -EIO;
1466 	}
1467 	depth = path->p_depth;
1468 	*phys = 0;
1469 
1470 	if (depth == 0 && path->p_ext == NULL)
1471 		return 0;
1472 
1473 	/* usually extent in the path covers blocks smaller
1474 	 * then *logical, but it can be that extent is the
1475 	 * first one in the file */
1476 
1477 	ex = path[depth].p_ext;
1478 	ee_len = ext4_ext_get_actual_len(ex);
1479 	if (*logical < le32_to_cpu(ex->ee_block)) {
1480 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1481 			EXT4_ERROR_INODE(inode,
1482 					 "first_extent(path[%d].p_hdr) != ex",
1483 					 depth);
1484 			return -EIO;
1485 		}
1486 		while (--depth >= 0) {
1487 			ix = path[depth].p_idx;
1488 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1489 				EXT4_ERROR_INODE(inode,
1490 						 "ix != EXT_FIRST_INDEX *logical %d!",
1491 						 *logical);
1492 				return -EIO;
1493 			}
1494 		}
1495 		goto found_extent;
1496 	}
1497 
1498 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1499 		EXT4_ERROR_INODE(inode,
1500 				 "logical %d < ee_block %d + ee_len %d!",
1501 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1502 		return -EIO;
1503 	}
1504 
1505 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1506 		/* next allocated block in this leaf */
1507 		ex++;
1508 		goto found_extent;
1509 	}
1510 
1511 	/* go up and search for index to the right */
1512 	while (--depth >= 0) {
1513 		ix = path[depth].p_idx;
1514 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1515 			goto got_index;
1516 	}
1517 
1518 	/* we've gone up to the root and found no index to the right */
1519 	return 0;
1520 
1521 got_index:
1522 	/* we've found index to the right, let's
1523 	 * follow it and find the closest allocated
1524 	 * block to the right */
1525 	ix++;
1526 	block = ext4_idx_pblock(ix);
1527 	while (++depth < path->p_depth) {
1528 		/* subtract from p_depth to get proper eh_depth */
1529 		bh = read_extent_tree_block(inode, block,
1530 					    path->p_depth - depth, 0);
1531 		if (IS_ERR(bh))
1532 			return PTR_ERR(bh);
1533 		eh = ext_block_hdr(bh);
1534 		ix = EXT_FIRST_INDEX(eh);
1535 		block = ext4_idx_pblock(ix);
1536 		put_bh(bh);
1537 	}
1538 
1539 	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1540 	if (IS_ERR(bh))
1541 		return PTR_ERR(bh);
1542 	eh = ext_block_hdr(bh);
1543 	ex = EXT_FIRST_EXTENT(eh);
1544 found_extent:
1545 	*logical = le32_to_cpu(ex->ee_block);
1546 	*phys = ext4_ext_pblock(ex);
1547 	*ret_ex = ex;
1548 	if (bh)
1549 		put_bh(bh);
1550 	return 0;
1551 }
1552 
1553 /*
1554  * ext4_ext_next_allocated_block:
1555  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1556  * NOTE: it considers block number from index entry as
1557  * allocated block. Thus, index entries have to be consistent
1558  * with leaves.
1559  */
1560 static ext4_lblk_t
1561 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1562 {
1563 	int depth;
1564 
1565 	BUG_ON(path == NULL);
1566 	depth = path->p_depth;
1567 
1568 	if (depth == 0 && path->p_ext == NULL)
1569 		return EXT_MAX_BLOCKS;
1570 
1571 	while (depth >= 0) {
1572 		if (depth == path->p_depth) {
1573 			/* leaf */
1574 			if (path[depth].p_ext &&
1575 				path[depth].p_ext !=
1576 					EXT_LAST_EXTENT(path[depth].p_hdr))
1577 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1578 		} else {
1579 			/* index */
1580 			if (path[depth].p_idx !=
1581 					EXT_LAST_INDEX(path[depth].p_hdr))
1582 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1583 		}
1584 		depth--;
1585 	}
1586 
1587 	return EXT_MAX_BLOCKS;
1588 }
1589 
1590 /*
1591  * ext4_ext_next_leaf_block:
1592  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1593  */
1594 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1595 {
1596 	int depth;
1597 
1598 	BUG_ON(path == NULL);
1599 	depth = path->p_depth;
1600 
1601 	/* zero-tree has no leaf blocks at all */
1602 	if (depth == 0)
1603 		return EXT_MAX_BLOCKS;
1604 
1605 	/* go to index block */
1606 	depth--;
1607 
1608 	while (depth >= 0) {
1609 		if (path[depth].p_idx !=
1610 				EXT_LAST_INDEX(path[depth].p_hdr))
1611 			return (ext4_lblk_t)
1612 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1613 		depth--;
1614 	}
1615 
1616 	return EXT_MAX_BLOCKS;
1617 }
1618 
1619 /*
1620  * ext4_ext_correct_indexes:
1621  * if leaf gets modified and modified extent is first in the leaf,
1622  * then we have to correct all indexes above.
1623  * TODO: do we need to correct tree in all cases?
1624  */
1625 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1626 				struct ext4_ext_path *path)
1627 {
1628 	struct ext4_extent_header *eh;
1629 	int depth = ext_depth(inode);
1630 	struct ext4_extent *ex;
1631 	__le32 border;
1632 	int k, err = 0;
1633 
1634 	eh = path[depth].p_hdr;
1635 	ex = path[depth].p_ext;
1636 
1637 	if (unlikely(ex == NULL || eh == NULL)) {
1638 		EXT4_ERROR_INODE(inode,
1639 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1640 		return -EIO;
1641 	}
1642 
1643 	if (depth == 0) {
1644 		/* there is no tree at all */
1645 		return 0;
1646 	}
1647 
1648 	if (ex != EXT_FIRST_EXTENT(eh)) {
1649 		/* we correct tree if first leaf got modified only */
1650 		return 0;
1651 	}
1652 
1653 	/*
1654 	 * TODO: we need correction if border is smaller than current one
1655 	 */
1656 	k = depth - 1;
1657 	border = path[depth].p_ext->ee_block;
1658 	err = ext4_ext_get_access(handle, inode, path + k);
1659 	if (err)
1660 		return err;
1661 	path[k].p_idx->ei_block = border;
1662 	err = ext4_ext_dirty(handle, inode, path + k);
1663 	if (err)
1664 		return err;
1665 
1666 	while (k--) {
1667 		/* change all left-side indexes */
1668 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1669 			break;
1670 		err = ext4_ext_get_access(handle, inode, path + k);
1671 		if (err)
1672 			break;
1673 		path[k].p_idx->ei_block = border;
1674 		err = ext4_ext_dirty(handle, inode, path + k);
1675 		if (err)
1676 			break;
1677 	}
1678 
1679 	return err;
1680 }
1681 
1682 int
1683 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1684 				struct ext4_extent *ex2)
1685 {
1686 	unsigned short ext1_ee_len, ext2_ee_len;
1687 
1688 	/*
1689 	 * Make sure that both extents are initialized. We don't merge
1690 	 * unwritten extents so that we can be sure that end_io code has
1691 	 * the extent that was written properly split out and conversion to
1692 	 * initialized is trivial.
1693 	 */
1694 	if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1695 		return 0;
1696 
1697 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1698 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1699 
1700 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1701 			le32_to_cpu(ex2->ee_block))
1702 		return 0;
1703 
1704 	/*
1705 	 * To allow future support for preallocated extents to be added
1706 	 * as an RO_COMPAT feature, refuse to merge to extents if
1707 	 * this can result in the top bit of ee_len being set.
1708 	 */
1709 	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1710 		return 0;
1711 	if (ext4_ext_is_unwritten(ex1) &&
1712 	    (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1713 	     atomic_read(&EXT4_I(inode)->i_unwritten) ||
1714 	     (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1715 		return 0;
1716 #ifdef AGGRESSIVE_TEST
1717 	if (ext1_ee_len >= 4)
1718 		return 0;
1719 #endif
1720 
1721 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1722 		return 1;
1723 	return 0;
1724 }
1725 
1726 /*
1727  * This function tries to merge the "ex" extent to the next extent in the tree.
1728  * It always tries to merge towards right. If you want to merge towards
1729  * left, pass "ex - 1" as argument instead of "ex".
1730  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1731  * 1 if they got merged.
1732  */
1733 static int ext4_ext_try_to_merge_right(struct inode *inode,
1734 				 struct ext4_ext_path *path,
1735 				 struct ext4_extent *ex)
1736 {
1737 	struct ext4_extent_header *eh;
1738 	unsigned int depth, len;
1739 	int merge_done = 0, unwritten;
1740 
1741 	depth = ext_depth(inode);
1742 	BUG_ON(path[depth].p_hdr == NULL);
1743 	eh = path[depth].p_hdr;
1744 
1745 	while (ex < EXT_LAST_EXTENT(eh)) {
1746 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1747 			break;
1748 		/* merge with next extent! */
1749 		unwritten = ext4_ext_is_unwritten(ex);
1750 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1751 				+ ext4_ext_get_actual_len(ex + 1));
1752 		if (unwritten)
1753 			ext4_ext_mark_unwritten(ex);
1754 
1755 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1756 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1757 				* sizeof(struct ext4_extent);
1758 			memmove(ex + 1, ex + 2, len);
1759 		}
1760 		le16_add_cpu(&eh->eh_entries, -1);
1761 		merge_done = 1;
1762 		WARN_ON(eh->eh_entries == 0);
1763 		if (!eh->eh_entries)
1764 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1765 	}
1766 
1767 	return merge_done;
1768 }
1769 
1770 /*
1771  * This function does a very simple check to see if we can collapse
1772  * an extent tree with a single extent tree leaf block into the inode.
1773  */
1774 static void ext4_ext_try_to_merge_up(handle_t *handle,
1775 				     struct inode *inode,
1776 				     struct ext4_ext_path *path)
1777 {
1778 	size_t s;
1779 	unsigned max_root = ext4_ext_space_root(inode, 0);
1780 	ext4_fsblk_t blk;
1781 
1782 	if ((path[0].p_depth != 1) ||
1783 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1784 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1785 		return;
1786 
1787 	/*
1788 	 * We need to modify the block allocation bitmap and the block
1789 	 * group descriptor to release the extent tree block.  If we
1790 	 * can't get the journal credits, give up.
1791 	 */
1792 	if (ext4_journal_extend(handle, 2))
1793 		return;
1794 
1795 	/*
1796 	 * Copy the extent data up to the inode
1797 	 */
1798 	blk = ext4_idx_pblock(path[0].p_idx);
1799 	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1800 		sizeof(struct ext4_extent_idx);
1801 	s += sizeof(struct ext4_extent_header);
1802 
1803 	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1804 	path[0].p_depth = 0;
1805 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1806 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1807 	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1808 
1809 	brelse(path[1].p_bh);
1810 	ext4_free_blocks(handle, inode, NULL, blk, 1,
1811 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET |
1812 			 EXT4_FREE_BLOCKS_RESERVE);
1813 }
1814 
1815 /*
1816  * This function tries to merge the @ex extent to neighbours in the tree.
1817  * return 1 if merge left else 0.
1818  */
1819 static void ext4_ext_try_to_merge(handle_t *handle,
1820 				  struct inode *inode,
1821 				  struct ext4_ext_path *path,
1822 				  struct ext4_extent *ex) {
1823 	struct ext4_extent_header *eh;
1824 	unsigned int depth;
1825 	int merge_done = 0;
1826 
1827 	depth = ext_depth(inode);
1828 	BUG_ON(path[depth].p_hdr == NULL);
1829 	eh = path[depth].p_hdr;
1830 
1831 	if (ex > EXT_FIRST_EXTENT(eh))
1832 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1833 
1834 	if (!merge_done)
1835 		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1836 
1837 	ext4_ext_try_to_merge_up(handle, inode, path);
1838 }
1839 
1840 /*
1841  * check if a portion of the "newext" extent overlaps with an
1842  * existing extent.
1843  *
1844  * If there is an overlap discovered, it updates the length of the newext
1845  * such that there will be no overlap, and then returns 1.
1846  * If there is no overlap found, it returns 0.
1847  */
1848 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1849 					   struct inode *inode,
1850 					   struct ext4_extent *newext,
1851 					   struct ext4_ext_path *path)
1852 {
1853 	ext4_lblk_t b1, b2;
1854 	unsigned int depth, len1;
1855 	unsigned int ret = 0;
1856 
1857 	b1 = le32_to_cpu(newext->ee_block);
1858 	len1 = ext4_ext_get_actual_len(newext);
1859 	depth = ext_depth(inode);
1860 	if (!path[depth].p_ext)
1861 		goto out;
1862 	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1863 
1864 	/*
1865 	 * get the next allocated block if the extent in the path
1866 	 * is before the requested block(s)
1867 	 */
1868 	if (b2 < b1) {
1869 		b2 = ext4_ext_next_allocated_block(path);
1870 		if (b2 == EXT_MAX_BLOCKS)
1871 			goto out;
1872 		b2 = EXT4_LBLK_CMASK(sbi, b2);
1873 	}
1874 
1875 	/* check for wrap through zero on extent logical start block*/
1876 	if (b1 + len1 < b1) {
1877 		len1 = EXT_MAX_BLOCKS - b1;
1878 		newext->ee_len = cpu_to_le16(len1);
1879 		ret = 1;
1880 	}
1881 
1882 	/* check for overlap */
1883 	if (b1 + len1 > b2) {
1884 		newext->ee_len = cpu_to_le16(b2 - b1);
1885 		ret = 1;
1886 	}
1887 out:
1888 	return ret;
1889 }
1890 
1891 /*
1892  * ext4_ext_insert_extent:
1893  * tries to merge requsted extent into the existing extent or
1894  * inserts requested extent as new one into the tree,
1895  * creating new leaf in the no-space case.
1896  */
1897 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1898 				struct ext4_ext_path *path,
1899 				struct ext4_extent *newext, int gb_flags)
1900 {
1901 	struct ext4_extent_header *eh;
1902 	struct ext4_extent *ex, *fex;
1903 	struct ext4_extent *nearex; /* nearest extent */
1904 	struct ext4_ext_path *npath = NULL;
1905 	int depth, len, err;
1906 	ext4_lblk_t next;
1907 	int mb_flags = 0, unwritten;
1908 
1909 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1910 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1911 		return -EIO;
1912 	}
1913 	depth = ext_depth(inode);
1914 	ex = path[depth].p_ext;
1915 	eh = path[depth].p_hdr;
1916 	if (unlikely(path[depth].p_hdr == NULL)) {
1917 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1918 		return -EIO;
1919 	}
1920 
1921 	/* try to insert block into found extent and return */
1922 	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1923 
1924 		/*
1925 		 * Try to see whether we should rather test the extent on
1926 		 * right from ex, or from the left of ex. This is because
1927 		 * ext4_ext_find_extent() can return either extent on the
1928 		 * left, or on the right from the searched position. This
1929 		 * will make merging more effective.
1930 		 */
1931 		if (ex < EXT_LAST_EXTENT(eh) &&
1932 		    (le32_to_cpu(ex->ee_block) +
1933 		    ext4_ext_get_actual_len(ex) <
1934 		    le32_to_cpu(newext->ee_block))) {
1935 			ex += 1;
1936 			goto prepend;
1937 		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1938 			   (le32_to_cpu(newext->ee_block) +
1939 			   ext4_ext_get_actual_len(newext) <
1940 			   le32_to_cpu(ex->ee_block)))
1941 			ex -= 1;
1942 
1943 		/* Try to append newex to the ex */
1944 		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1945 			ext_debug("append [%d]%d block to %u:[%d]%d"
1946 				  "(from %llu)\n",
1947 				  ext4_ext_is_unwritten(newext),
1948 				  ext4_ext_get_actual_len(newext),
1949 				  le32_to_cpu(ex->ee_block),
1950 				  ext4_ext_is_unwritten(ex),
1951 				  ext4_ext_get_actual_len(ex),
1952 				  ext4_ext_pblock(ex));
1953 			err = ext4_ext_get_access(handle, inode,
1954 						  path + depth);
1955 			if (err)
1956 				return err;
1957 			unwritten = ext4_ext_is_unwritten(ex);
1958 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1959 					+ ext4_ext_get_actual_len(newext));
1960 			if (unwritten)
1961 				ext4_ext_mark_unwritten(ex);
1962 			eh = path[depth].p_hdr;
1963 			nearex = ex;
1964 			goto merge;
1965 		}
1966 
1967 prepend:
1968 		/* Try to prepend newex to the ex */
1969 		if (ext4_can_extents_be_merged(inode, newext, ex)) {
1970 			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1971 				  "(from %llu)\n",
1972 				  le32_to_cpu(newext->ee_block),
1973 				  ext4_ext_is_unwritten(newext),
1974 				  ext4_ext_get_actual_len(newext),
1975 				  le32_to_cpu(ex->ee_block),
1976 				  ext4_ext_is_unwritten(ex),
1977 				  ext4_ext_get_actual_len(ex),
1978 				  ext4_ext_pblock(ex));
1979 			err = ext4_ext_get_access(handle, inode,
1980 						  path + depth);
1981 			if (err)
1982 				return err;
1983 
1984 			unwritten = ext4_ext_is_unwritten(ex);
1985 			ex->ee_block = newext->ee_block;
1986 			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1987 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1988 					+ ext4_ext_get_actual_len(newext));
1989 			if (unwritten)
1990 				ext4_ext_mark_unwritten(ex);
1991 			eh = path[depth].p_hdr;
1992 			nearex = ex;
1993 			goto merge;
1994 		}
1995 	}
1996 
1997 	depth = ext_depth(inode);
1998 	eh = path[depth].p_hdr;
1999 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2000 		goto has_space;
2001 
2002 	/* probably next leaf has space for us? */
2003 	fex = EXT_LAST_EXTENT(eh);
2004 	next = EXT_MAX_BLOCKS;
2005 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2006 		next = ext4_ext_next_leaf_block(path);
2007 	if (next != EXT_MAX_BLOCKS) {
2008 		ext_debug("next leaf block - %u\n", next);
2009 		BUG_ON(npath != NULL);
2010 		npath = ext4_ext_find_extent(inode, next, NULL, 0);
2011 		if (IS_ERR(npath))
2012 			return PTR_ERR(npath);
2013 		BUG_ON(npath->p_depth != path->p_depth);
2014 		eh = npath[depth].p_hdr;
2015 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2016 			ext_debug("next leaf isn't full(%d)\n",
2017 				  le16_to_cpu(eh->eh_entries));
2018 			path = npath;
2019 			goto has_space;
2020 		}
2021 		ext_debug("next leaf has no free space(%d,%d)\n",
2022 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2023 	}
2024 
2025 	/*
2026 	 * There is no free space in the found leaf.
2027 	 * We're gonna add a new leaf in the tree.
2028 	 */
2029 	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2030 		mb_flags = EXT4_MB_USE_RESERVED;
2031 	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2032 				       path, newext);
2033 	if (err)
2034 		goto cleanup;
2035 	depth = ext_depth(inode);
2036 	eh = path[depth].p_hdr;
2037 
2038 has_space:
2039 	nearex = path[depth].p_ext;
2040 
2041 	err = ext4_ext_get_access(handle, inode, path + depth);
2042 	if (err)
2043 		goto cleanup;
2044 
2045 	if (!nearex) {
2046 		/* there is no extent in this leaf, create first one */
2047 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2048 				le32_to_cpu(newext->ee_block),
2049 				ext4_ext_pblock(newext),
2050 				ext4_ext_is_unwritten(newext),
2051 				ext4_ext_get_actual_len(newext));
2052 		nearex = EXT_FIRST_EXTENT(eh);
2053 	} else {
2054 		if (le32_to_cpu(newext->ee_block)
2055 			   > le32_to_cpu(nearex->ee_block)) {
2056 			/* Insert after */
2057 			ext_debug("insert %u:%llu:[%d]%d before: "
2058 					"nearest %p\n",
2059 					le32_to_cpu(newext->ee_block),
2060 					ext4_ext_pblock(newext),
2061 					ext4_ext_is_unwritten(newext),
2062 					ext4_ext_get_actual_len(newext),
2063 					nearex);
2064 			nearex++;
2065 		} else {
2066 			/* Insert before */
2067 			BUG_ON(newext->ee_block == nearex->ee_block);
2068 			ext_debug("insert %u:%llu:[%d]%d after: "
2069 					"nearest %p\n",
2070 					le32_to_cpu(newext->ee_block),
2071 					ext4_ext_pblock(newext),
2072 					ext4_ext_is_unwritten(newext),
2073 					ext4_ext_get_actual_len(newext),
2074 					nearex);
2075 		}
2076 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2077 		if (len > 0) {
2078 			ext_debug("insert %u:%llu:[%d]%d: "
2079 					"move %d extents from 0x%p to 0x%p\n",
2080 					le32_to_cpu(newext->ee_block),
2081 					ext4_ext_pblock(newext),
2082 					ext4_ext_is_unwritten(newext),
2083 					ext4_ext_get_actual_len(newext),
2084 					len, nearex, nearex + 1);
2085 			memmove(nearex + 1, nearex,
2086 				len * sizeof(struct ext4_extent));
2087 		}
2088 	}
2089 
2090 	le16_add_cpu(&eh->eh_entries, 1);
2091 	path[depth].p_ext = nearex;
2092 	nearex->ee_block = newext->ee_block;
2093 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2094 	nearex->ee_len = newext->ee_len;
2095 
2096 merge:
2097 	/* try to merge extents */
2098 	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2099 		ext4_ext_try_to_merge(handle, inode, path, nearex);
2100 
2101 
2102 	/* time to correct all indexes above */
2103 	err = ext4_ext_correct_indexes(handle, inode, path);
2104 	if (err)
2105 		goto cleanup;
2106 
2107 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2108 
2109 cleanup:
2110 	if (npath) {
2111 		ext4_ext_drop_refs(npath);
2112 		kfree(npath);
2113 	}
2114 	return err;
2115 }
2116 
2117 static int ext4_fill_fiemap_extents(struct inode *inode,
2118 				    ext4_lblk_t block, ext4_lblk_t num,
2119 				    struct fiemap_extent_info *fieinfo)
2120 {
2121 	struct ext4_ext_path *path = NULL;
2122 	struct ext4_extent *ex;
2123 	struct extent_status es;
2124 	ext4_lblk_t next, next_del, start = 0, end = 0;
2125 	ext4_lblk_t last = block + num;
2126 	int exists, depth = 0, err = 0;
2127 	unsigned int flags = 0;
2128 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2129 
2130 	while (block < last && block != EXT_MAX_BLOCKS) {
2131 		num = last - block;
2132 		/* find extent for this block */
2133 		down_read(&EXT4_I(inode)->i_data_sem);
2134 
2135 		if (path && ext_depth(inode) != depth) {
2136 			/* depth was changed. we have to realloc path */
2137 			kfree(path);
2138 			path = NULL;
2139 		}
2140 
2141 		path = ext4_ext_find_extent(inode, block, path, 0);
2142 		if (IS_ERR(path)) {
2143 			up_read(&EXT4_I(inode)->i_data_sem);
2144 			err = PTR_ERR(path);
2145 			path = NULL;
2146 			break;
2147 		}
2148 
2149 		depth = ext_depth(inode);
2150 		if (unlikely(path[depth].p_hdr == NULL)) {
2151 			up_read(&EXT4_I(inode)->i_data_sem);
2152 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2153 			err = -EIO;
2154 			break;
2155 		}
2156 		ex = path[depth].p_ext;
2157 		next = ext4_ext_next_allocated_block(path);
2158 		ext4_ext_drop_refs(path);
2159 
2160 		flags = 0;
2161 		exists = 0;
2162 		if (!ex) {
2163 			/* there is no extent yet, so try to allocate
2164 			 * all requested space */
2165 			start = block;
2166 			end = block + num;
2167 		} else if (le32_to_cpu(ex->ee_block) > block) {
2168 			/* need to allocate space before found extent */
2169 			start = block;
2170 			end = le32_to_cpu(ex->ee_block);
2171 			if (block + num < end)
2172 				end = block + num;
2173 		} else if (block >= le32_to_cpu(ex->ee_block)
2174 					+ ext4_ext_get_actual_len(ex)) {
2175 			/* need to allocate space after found extent */
2176 			start = block;
2177 			end = block + num;
2178 			if (end >= next)
2179 				end = next;
2180 		} else if (block >= le32_to_cpu(ex->ee_block)) {
2181 			/*
2182 			 * some part of requested space is covered
2183 			 * by found extent
2184 			 */
2185 			start = block;
2186 			end = le32_to_cpu(ex->ee_block)
2187 				+ ext4_ext_get_actual_len(ex);
2188 			if (block + num < end)
2189 				end = block + num;
2190 			exists = 1;
2191 		} else {
2192 			BUG();
2193 		}
2194 		BUG_ON(end <= start);
2195 
2196 		if (!exists) {
2197 			es.es_lblk = start;
2198 			es.es_len = end - start;
2199 			es.es_pblk = 0;
2200 		} else {
2201 			es.es_lblk = le32_to_cpu(ex->ee_block);
2202 			es.es_len = ext4_ext_get_actual_len(ex);
2203 			es.es_pblk = ext4_ext_pblock(ex);
2204 			if (ext4_ext_is_unwritten(ex))
2205 				flags |= FIEMAP_EXTENT_UNWRITTEN;
2206 		}
2207 
2208 		/*
2209 		 * Find delayed extent and update es accordingly. We call
2210 		 * it even in !exists case to find out whether es is the
2211 		 * last existing extent or not.
2212 		 */
2213 		next_del = ext4_find_delayed_extent(inode, &es);
2214 		if (!exists && next_del) {
2215 			exists = 1;
2216 			flags |= (FIEMAP_EXTENT_DELALLOC |
2217 				  FIEMAP_EXTENT_UNKNOWN);
2218 		}
2219 		up_read(&EXT4_I(inode)->i_data_sem);
2220 
2221 		if (unlikely(es.es_len == 0)) {
2222 			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2223 			err = -EIO;
2224 			break;
2225 		}
2226 
2227 		/*
2228 		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2229 		 * we need to check next == EXT_MAX_BLOCKS because it is
2230 		 * possible that an extent is with unwritten and delayed
2231 		 * status due to when an extent is delayed allocated and
2232 		 * is allocated by fallocate status tree will track both of
2233 		 * them in a extent.
2234 		 *
2235 		 * So we could return a unwritten and delayed extent, and
2236 		 * its block is equal to 'next'.
2237 		 */
2238 		if (next == next_del && next == EXT_MAX_BLOCKS) {
2239 			flags |= FIEMAP_EXTENT_LAST;
2240 			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2241 				     next != EXT_MAX_BLOCKS)) {
2242 				EXT4_ERROR_INODE(inode,
2243 						 "next extent == %u, next "
2244 						 "delalloc extent = %u",
2245 						 next, next_del);
2246 				err = -EIO;
2247 				break;
2248 			}
2249 		}
2250 
2251 		if (exists) {
2252 			err = fiemap_fill_next_extent(fieinfo,
2253 				(__u64)es.es_lblk << blksize_bits,
2254 				(__u64)es.es_pblk << blksize_bits,
2255 				(__u64)es.es_len << blksize_bits,
2256 				flags);
2257 			if (err < 0)
2258 				break;
2259 			if (err == 1) {
2260 				err = 0;
2261 				break;
2262 			}
2263 		}
2264 
2265 		block = es.es_lblk + es.es_len;
2266 	}
2267 
2268 	if (path) {
2269 		ext4_ext_drop_refs(path);
2270 		kfree(path);
2271 	}
2272 
2273 	return err;
2274 }
2275 
2276 /*
2277  * ext4_ext_put_gap_in_cache:
2278  * calculate boundaries of the gap that the requested block fits into
2279  * and cache this gap
2280  */
2281 static void
2282 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2283 				ext4_lblk_t block)
2284 {
2285 	int depth = ext_depth(inode);
2286 	unsigned long len = 0;
2287 	ext4_lblk_t lblock = 0;
2288 	struct ext4_extent *ex;
2289 
2290 	ex = path[depth].p_ext;
2291 	if (ex == NULL) {
2292 		/*
2293 		 * there is no extent yet, so gap is [0;-] and we
2294 		 * don't cache it
2295 		 */
2296 		ext_debug("cache gap(whole file):");
2297 	} else if (block < le32_to_cpu(ex->ee_block)) {
2298 		lblock = block;
2299 		len = le32_to_cpu(ex->ee_block) - block;
2300 		ext_debug("cache gap(before): %u [%u:%u]",
2301 				block,
2302 				le32_to_cpu(ex->ee_block),
2303 				 ext4_ext_get_actual_len(ex));
2304 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2305 			ext4_es_insert_extent(inode, lblock, len, ~0,
2306 					      EXTENT_STATUS_HOLE);
2307 	} else if (block >= le32_to_cpu(ex->ee_block)
2308 			+ ext4_ext_get_actual_len(ex)) {
2309 		ext4_lblk_t next;
2310 		lblock = le32_to_cpu(ex->ee_block)
2311 			+ ext4_ext_get_actual_len(ex);
2312 
2313 		next = ext4_ext_next_allocated_block(path);
2314 		ext_debug("cache gap(after): [%u:%u] %u",
2315 				le32_to_cpu(ex->ee_block),
2316 				ext4_ext_get_actual_len(ex),
2317 				block);
2318 		BUG_ON(next == lblock);
2319 		len = next - lblock;
2320 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2321 			ext4_es_insert_extent(inode, lblock, len, ~0,
2322 					      EXTENT_STATUS_HOLE);
2323 	} else {
2324 		BUG();
2325 	}
2326 
2327 	ext_debug(" -> %u:%lu\n", lblock, len);
2328 }
2329 
2330 /*
2331  * ext4_ext_rm_idx:
2332  * removes index from the index block.
2333  */
2334 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2335 			struct ext4_ext_path *path, int depth)
2336 {
2337 	int err;
2338 	ext4_fsblk_t leaf;
2339 
2340 	/* free index block */
2341 	depth--;
2342 	path = path + depth;
2343 	leaf = ext4_idx_pblock(path->p_idx);
2344 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2345 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2346 		return -EIO;
2347 	}
2348 	err = ext4_ext_get_access(handle, inode, path);
2349 	if (err)
2350 		return err;
2351 
2352 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2353 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2354 		len *= sizeof(struct ext4_extent_idx);
2355 		memmove(path->p_idx, path->p_idx + 1, len);
2356 	}
2357 
2358 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2359 	err = ext4_ext_dirty(handle, inode, path);
2360 	if (err)
2361 		return err;
2362 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2363 	trace_ext4_ext_rm_idx(inode, leaf);
2364 
2365 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2366 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2367 
2368 	while (--depth >= 0) {
2369 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2370 			break;
2371 		path--;
2372 		err = ext4_ext_get_access(handle, inode, path);
2373 		if (err)
2374 			break;
2375 		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2376 		err = ext4_ext_dirty(handle, inode, path);
2377 		if (err)
2378 			break;
2379 	}
2380 	return err;
2381 }
2382 
2383 /*
2384  * ext4_ext_calc_credits_for_single_extent:
2385  * This routine returns max. credits that needed to insert an extent
2386  * to the extent tree.
2387  * When pass the actual path, the caller should calculate credits
2388  * under i_data_sem.
2389  */
2390 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2391 						struct ext4_ext_path *path)
2392 {
2393 	if (path) {
2394 		int depth = ext_depth(inode);
2395 		int ret = 0;
2396 
2397 		/* probably there is space in leaf? */
2398 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2399 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2400 
2401 			/*
2402 			 *  There are some space in the leaf tree, no
2403 			 *  need to account for leaf block credit
2404 			 *
2405 			 *  bitmaps and block group descriptor blocks
2406 			 *  and other metadata blocks still need to be
2407 			 *  accounted.
2408 			 */
2409 			/* 1 bitmap, 1 block group descriptor */
2410 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2411 			return ret;
2412 		}
2413 	}
2414 
2415 	return ext4_chunk_trans_blocks(inode, nrblocks);
2416 }
2417 
2418 /*
2419  * How many index/leaf blocks need to change/allocate to add @extents extents?
2420  *
2421  * If we add a single extent, then in the worse case, each tree level
2422  * index/leaf need to be changed in case of the tree split.
2423  *
2424  * If more extents are inserted, they could cause the whole tree split more
2425  * than once, but this is really rare.
2426  */
2427 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2428 {
2429 	int index;
2430 	int depth;
2431 
2432 	/* If we are converting the inline data, only one is needed here. */
2433 	if (ext4_has_inline_data(inode))
2434 		return 1;
2435 
2436 	depth = ext_depth(inode);
2437 
2438 	if (extents <= 1)
2439 		index = depth * 2;
2440 	else
2441 		index = depth * 3;
2442 
2443 	return index;
2444 }
2445 
2446 static inline int get_default_free_blocks_flags(struct inode *inode)
2447 {
2448 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2449 		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2450 	else if (ext4_should_journal_data(inode))
2451 		return EXT4_FREE_BLOCKS_FORGET;
2452 	return 0;
2453 }
2454 
2455 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2456 			      struct ext4_extent *ex,
2457 			      long long *partial_cluster,
2458 			      ext4_lblk_t from, ext4_lblk_t to)
2459 {
2460 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2461 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2462 	ext4_fsblk_t pblk;
2463 	int flags = get_default_free_blocks_flags(inode);
2464 
2465 	/*
2466 	 * For bigalloc file systems, we never free a partial cluster
2467 	 * at the beginning of the extent.  Instead, we make a note
2468 	 * that we tried freeing the cluster, and check to see if we
2469 	 * need to free it on a subsequent call to ext4_remove_blocks,
2470 	 * or at the end of the ext4_truncate() operation.
2471 	 */
2472 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2473 
2474 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2475 	/*
2476 	 * If we have a partial cluster, and it's different from the
2477 	 * cluster of the last block, we need to explicitly free the
2478 	 * partial cluster here.
2479 	 */
2480 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2481 	if ((*partial_cluster > 0) &&
2482 	    (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2483 		ext4_free_blocks(handle, inode, NULL,
2484 				 EXT4_C2B(sbi, *partial_cluster),
2485 				 sbi->s_cluster_ratio, flags);
2486 		*partial_cluster = 0;
2487 	}
2488 
2489 #ifdef EXTENTS_STATS
2490 	{
2491 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2492 		spin_lock(&sbi->s_ext_stats_lock);
2493 		sbi->s_ext_blocks += ee_len;
2494 		sbi->s_ext_extents++;
2495 		if (ee_len < sbi->s_ext_min)
2496 			sbi->s_ext_min = ee_len;
2497 		if (ee_len > sbi->s_ext_max)
2498 			sbi->s_ext_max = ee_len;
2499 		if (ext_depth(inode) > sbi->s_depth_max)
2500 			sbi->s_depth_max = ext_depth(inode);
2501 		spin_unlock(&sbi->s_ext_stats_lock);
2502 	}
2503 #endif
2504 	if (from >= le32_to_cpu(ex->ee_block)
2505 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2506 		/* tail removal */
2507 		ext4_lblk_t num;
2508 		unsigned int unaligned;
2509 
2510 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2511 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2512 		/*
2513 		 * Usually we want to free partial cluster at the end of the
2514 		 * extent, except for the situation when the cluster is still
2515 		 * used by any other extent (partial_cluster is negative).
2516 		 */
2517 		if (*partial_cluster < 0 &&
2518 		    -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2519 			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2520 
2521 		ext_debug("free last %u blocks starting %llu partial %lld\n",
2522 			  num, pblk, *partial_cluster);
2523 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2524 		/*
2525 		 * If the block range to be freed didn't start at the
2526 		 * beginning of a cluster, and we removed the entire
2527 		 * extent and the cluster is not used by any other extent,
2528 		 * save the partial cluster here, since we might need to
2529 		 * delete if we determine that the truncate operation has
2530 		 * removed all of the blocks in the cluster.
2531 		 *
2532 		 * On the other hand, if we did not manage to free the whole
2533 		 * extent, we have to mark the cluster as used (store negative
2534 		 * cluster number in partial_cluster).
2535 		 */
2536 		unaligned = EXT4_PBLK_COFF(sbi, pblk);
2537 		if (unaligned && (ee_len == num) &&
2538 		    (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2539 			*partial_cluster = EXT4_B2C(sbi, pblk);
2540 		else if (unaligned)
2541 			*partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2542 		else if (*partial_cluster > 0)
2543 			*partial_cluster = 0;
2544 	} else
2545 		ext4_error(sbi->s_sb, "strange request: removal(2) "
2546 			   "%u-%u from %u:%u\n",
2547 			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2548 	return 0;
2549 }
2550 
2551 
2552 /*
2553  * ext4_ext_rm_leaf() Removes the extents associated with the
2554  * blocks appearing between "start" and "end", and splits the extents
2555  * if "start" and "end" appear in the same extent
2556  *
2557  * @handle: The journal handle
2558  * @inode:  The files inode
2559  * @path:   The path to the leaf
2560  * @partial_cluster: The cluster which we'll have to free if all extents
2561  *                   has been released from it. It gets negative in case
2562  *                   that the cluster is still used.
2563  * @start:  The first block to remove
2564  * @end:   The last block to remove
2565  */
2566 static int
2567 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2568 		 struct ext4_ext_path *path,
2569 		 long long *partial_cluster,
2570 		 ext4_lblk_t start, ext4_lblk_t end)
2571 {
2572 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2573 	int err = 0, correct_index = 0;
2574 	int depth = ext_depth(inode), credits;
2575 	struct ext4_extent_header *eh;
2576 	ext4_lblk_t a, b;
2577 	unsigned num;
2578 	ext4_lblk_t ex_ee_block;
2579 	unsigned short ex_ee_len;
2580 	unsigned unwritten = 0;
2581 	struct ext4_extent *ex;
2582 	ext4_fsblk_t pblk;
2583 
2584 	/* the header must be checked already in ext4_ext_remove_space() */
2585 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2586 	if (!path[depth].p_hdr)
2587 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2588 	eh = path[depth].p_hdr;
2589 	if (unlikely(path[depth].p_hdr == NULL)) {
2590 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2591 		return -EIO;
2592 	}
2593 	/* find where to start removing */
2594 	ex = path[depth].p_ext;
2595 	if (!ex)
2596 		ex = EXT_LAST_EXTENT(eh);
2597 
2598 	ex_ee_block = le32_to_cpu(ex->ee_block);
2599 	ex_ee_len = ext4_ext_get_actual_len(ex);
2600 
2601 	/*
2602 	 * If we're starting with an extent other than the last one in the
2603 	 * node, we need to see if it shares a cluster with the extent to
2604 	 * the right (towards the end of the file). If its leftmost cluster
2605 	 * is this extent's rightmost cluster and it is not cluster aligned,
2606 	 * we'll mark it as a partial that is not to be deallocated.
2607 	 */
2608 
2609 	if (ex != EXT_LAST_EXTENT(eh)) {
2610 		ext4_fsblk_t current_pblk, right_pblk;
2611 		long long current_cluster, right_cluster;
2612 
2613 		current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2614 		current_cluster = (long long)EXT4_B2C(sbi, current_pblk);
2615 		right_pblk = ext4_ext_pblock(ex + 1);
2616 		right_cluster = (long long)EXT4_B2C(sbi, right_pblk);
2617 		if (current_cluster == right_cluster &&
2618 			EXT4_PBLK_COFF(sbi, right_pblk))
2619 			*partial_cluster = -right_cluster;
2620 	}
2621 
2622 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2623 
2624 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2625 			ex_ee_block + ex_ee_len > start) {
2626 
2627 		if (ext4_ext_is_unwritten(ex))
2628 			unwritten = 1;
2629 		else
2630 			unwritten = 0;
2631 
2632 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2633 			  unwritten, ex_ee_len);
2634 		path[depth].p_ext = ex;
2635 
2636 		a = ex_ee_block > start ? ex_ee_block : start;
2637 		b = ex_ee_block+ex_ee_len - 1 < end ?
2638 			ex_ee_block+ex_ee_len - 1 : end;
2639 
2640 		ext_debug("  border %u:%u\n", a, b);
2641 
2642 		/* If this extent is beyond the end of the hole, skip it */
2643 		if (end < ex_ee_block) {
2644 			/*
2645 			 * We're going to skip this extent and move to another,
2646 			 * so if this extent is not cluster aligned we have
2647 			 * to mark the current cluster as used to avoid
2648 			 * accidentally freeing it later on
2649 			 */
2650 			pblk = ext4_ext_pblock(ex);
2651 			if (EXT4_PBLK_COFF(sbi, pblk))
2652 				*partial_cluster =
2653 					-((long long)EXT4_B2C(sbi, pblk));
2654 			ex--;
2655 			ex_ee_block = le32_to_cpu(ex->ee_block);
2656 			ex_ee_len = ext4_ext_get_actual_len(ex);
2657 			continue;
2658 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2659 			EXT4_ERROR_INODE(inode,
2660 					 "can not handle truncate %u:%u "
2661 					 "on extent %u:%u",
2662 					 start, end, ex_ee_block,
2663 					 ex_ee_block + ex_ee_len - 1);
2664 			err = -EIO;
2665 			goto out;
2666 		} else if (a != ex_ee_block) {
2667 			/* remove tail of the extent */
2668 			num = a - ex_ee_block;
2669 		} else {
2670 			/* remove whole extent: excellent! */
2671 			num = 0;
2672 		}
2673 		/*
2674 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2675 		 * descriptor) for each block group; assume two block
2676 		 * groups plus ex_ee_len/blocks_per_block_group for
2677 		 * the worst case
2678 		 */
2679 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2680 		if (ex == EXT_FIRST_EXTENT(eh)) {
2681 			correct_index = 1;
2682 			credits += (ext_depth(inode)) + 1;
2683 		}
2684 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2685 
2686 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2687 		if (err)
2688 			goto out;
2689 
2690 		err = ext4_ext_get_access(handle, inode, path + depth);
2691 		if (err)
2692 			goto out;
2693 
2694 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2695 					 a, b);
2696 		if (err)
2697 			goto out;
2698 
2699 		if (num == 0)
2700 			/* this extent is removed; mark slot entirely unused */
2701 			ext4_ext_store_pblock(ex, 0);
2702 
2703 		ex->ee_len = cpu_to_le16(num);
2704 		/*
2705 		 * Do not mark unwritten if all the blocks in the
2706 		 * extent have been removed.
2707 		 */
2708 		if (unwritten && num)
2709 			ext4_ext_mark_unwritten(ex);
2710 		/*
2711 		 * If the extent was completely released,
2712 		 * we need to remove it from the leaf
2713 		 */
2714 		if (num == 0) {
2715 			if (end != EXT_MAX_BLOCKS - 1) {
2716 				/*
2717 				 * For hole punching, we need to scoot all the
2718 				 * extents up when an extent is removed so that
2719 				 * we dont have blank extents in the middle
2720 				 */
2721 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2722 					sizeof(struct ext4_extent));
2723 
2724 				/* Now get rid of the one at the end */
2725 				memset(EXT_LAST_EXTENT(eh), 0,
2726 					sizeof(struct ext4_extent));
2727 			}
2728 			le16_add_cpu(&eh->eh_entries, -1);
2729 		} else if (*partial_cluster > 0)
2730 			*partial_cluster = 0;
2731 
2732 		err = ext4_ext_dirty(handle, inode, path + depth);
2733 		if (err)
2734 			goto out;
2735 
2736 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2737 				ext4_ext_pblock(ex));
2738 		ex--;
2739 		ex_ee_block = le32_to_cpu(ex->ee_block);
2740 		ex_ee_len = ext4_ext_get_actual_len(ex);
2741 	}
2742 
2743 	if (correct_index && eh->eh_entries)
2744 		err = ext4_ext_correct_indexes(handle, inode, path);
2745 
2746 	/*
2747 	 * If there's a partial cluster and at least one extent remains in
2748 	 * the leaf, free the partial cluster if it isn't shared with the
2749 	 * current extent.  If there's a partial cluster and no extents
2750 	 * remain in the leaf, it can't be freed here.  It can only be
2751 	 * freed when it's possible to determine if it's not shared with
2752 	 * any other extent - when the next leaf is processed or when space
2753 	 * removal is complete.
2754 	 */
2755 	if (*partial_cluster > 0 && eh->eh_entries &&
2756 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2757 	     *partial_cluster)) {
2758 		int flags = get_default_free_blocks_flags(inode);
2759 
2760 		ext4_free_blocks(handle, inode, NULL,
2761 				 EXT4_C2B(sbi, *partial_cluster),
2762 				 sbi->s_cluster_ratio, flags);
2763 		*partial_cluster = 0;
2764 	}
2765 
2766 	/* if this leaf is free, then we should
2767 	 * remove it from index block above */
2768 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2769 		err = ext4_ext_rm_idx(handle, inode, path, depth);
2770 
2771 out:
2772 	return err;
2773 }
2774 
2775 /*
2776  * ext4_ext_more_to_rm:
2777  * returns 1 if current index has to be freed (even partial)
2778  */
2779 static int
2780 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2781 {
2782 	BUG_ON(path->p_idx == NULL);
2783 
2784 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2785 		return 0;
2786 
2787 	/*
2788 	 * if truncate on deeper level happened, it wasn't partial,
2789 	 * so we have to consider current index for truncation
2790 	 */
2791 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2792 		return 0;
2793 	return 1;
2794 }
2795 
2796 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2797 			  ext4_lblk_t end)
2798 {
2799 	struct super_block *sb = inode->i_sb;
2800 	int depth = ext_depth(inode);
2801 	struct ext4_ext_path *path = NULL;
2802 	long long partial_cluster = 0;
2803 	handle_t *handle;
2804 	int i = 0, err = 0;
2805 
2806 	ext_debug("truncate since %u to %u\n", start, end);
2807 
2808 	/* probably first extent we're gonna free will be last in block */
2809 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2810 	if (IS_ERR(handle))
2811 		return PTR_ERR(handle);
2812 
2813 again:
2814 	trace_ext4_ext_remove_space(inode, start, end, depth);
2815 
2816 	/*
2817 	 * Check if we are removing extents inside the extent tree. If that
2818 	 * is the case, we are going to punch a hole inside the extent tree
2819 	 * so we have to check whether we need to split the extent covering
2820 	 * the last block to remove so we can easily remove the part of it
2821 	 * in ext4_ext_rm_leaf().
2822 	 */
2823 	if (end < EXT_MAX_BLOCKS - 1) {
2824 		struct ext4_extent *ex;
2825 		ext4_lblk_t ee_block;
2826 
2827 		/* find extent for this block */
2828 		path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2829 		if (IS_ERR(path)) {
2830 			ext4_journal_stop(handle);
2831 			return PTR_ERR(path);
2832 		}
2833 		depth = ext_depth(inode);
2834 		/* Leaf not may not exist only if inode has no blocks at all */
2835 		ex = path[depth].p_ext;
2836 		if (!ex) {
2837 			if (depth) {
2838 				EXT4_ERROR_INODE(inode,
2839 						 "path[%d].p_hdr == NULL",
2840 						 depth);
2841 				err = -EIO;
2842 			}
2843 			goto out;
2844 		}
2845 
2846 		ee_block = le32_to_cpu(ex->ee_block);
2847 
2848 		/*
2849 		 * See if the last block is inside the extent, if so split
2850 		 * the extent at 'end' block so we can easily remove the
2851 		 * tail of the first part of the split extent in
2852 		 * ext4_ext_rm_leaf().
2853 		 */
2854 		if (end >= ee_block &&
2855 		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2856 			int split_flag = 0;
2857 
2858 			if (ext4_ext_is_unwritten(ex))
2859 				split_flag = EXT4_EXT_MARK_UNWRIT1 |
2860 					     EXT4_EXT_MARK_UNWRIT2;
2861 
2862 			/*
2863 			 * Split the extent in two so that 'end' is the last
2864 			 * block in the first new extent. Also we should not
2865 			 * fail removing space due to ENOSPC so try to use
2866 			 * reserved block if that happens.
2867 			 */
2868 			err = ext4_split_extent_at(handle, inode, path,
2869 					end + 1, split_flag,
2870 					EXT4_EX_NOCACHE |
2871 					EXT4_GET_BLOCKS_PRE_IO |
2872 					EXT4_GET_BLOCKS_METADATA_NOFAIL);
2873 
2874 			if (err < 0)
2875 				goto out;
2876 		}
2877 	}
2878 	/*
2879 	 * We start scanning from right side, freeing all the blocks
2880 	 * after i_size and walking into the tree depth-wise.
2881 	 */
2882 	depth = ext_depth(inode);
2883 	if (path) {
2884 		int k = i = depth;
2885 		while (--k > 0)
2886 			path[k].p_block =
2887 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2888 	} else {
2889 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2890 			       GFP_NOFS);
2891 		if (path == NULL) {
2892 			ext4_journal_stop(handle);
2893 			return -ENOMEM;
2894 		}
2895 		path[0].p_depth = depth;
2896 		path[0].p_hdr = ext_inode_hdr(inode);
2897 		i = 0;
2898 
2899 		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2900 			err = -EIO;
2901 			goto out;
2902 		}
2903 	}
2904 	err = 0;
2905 
2906 	while (i >= 0 && err == 0) {
2907 		if (i == depth) {
2908 			/* this is leaf block */
2909 			err = ext4_ext_rm_leaf(handle, inode, path,
2910 					       &partial_cluster, start,
2911 					       end);
2912 			/* root level has p_bh == NULL, brelse() eats this */
2913 			brelse(path[i].p_bh);
2914 			path[i].p_bh = NULL;
2915 			i--;
2916 			continue;
2917 		}
2918 
2919 		/* this is index block */
2920 		if (!path[i].p_hdr) {
2921 			ext_debug("initialize header\n");
2922 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2923 		}
2924 
2925 		if (!path[i].p_idx) {
2926 			/* this level hasn't been touched yet */
2927 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2928 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2929 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2930 				  path[i].p_hdr,
2931 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2932 		} else {
2933 			/* we were already here, see at next index */
2934 			path[i].p_idx--;
2935 		}
2936 
2937 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2938 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2939 				path[i].p_idx);
2940 		if (ext4_ext_more_to_rm(path + i)) {
2941 			struct buffer_head *bh;
2942 			/* go to the next level */
2943 			ext_debug("move to level %d (block %llu)\n",
2944 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2945 			memset(path + i + 1, 0, sizeof(*path));
2946 			bh = read_extent_tree_block(inode,
2947 				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2948 				EXT4_EX_NOCACHE);
2949 			if (IS_ERR(bh)) {
2950 				/* should we reset i_size? */
2951 				err = PTR_ERR(bh);
2952 				break;
2953 			}
2954 			/* Yield here to deal with large extent trees.
2955 			 * Should be a no-op if we did IO above. */
2956 			cond_resched();
2957 			if (WARN_ON(i + 1 > depth)) {
2958 				err = -EIO;
2959 				break;
2960 			}
2961 			path[i + 1].p_bh = bh;
2962 
2963 			/* save actual number of indexes since this
2964 			 * number is changed at the next iteration */
2965 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2966 			i++;
2967 		} else {
2968 			/* we finished processing this index, go up */
2969 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2970 				/* index is empty, remove it;
2971 				 * handle must be already prepared by the
2972 				 * truncatei_leaf() */
2973 				err = ext4_ext_rm_idx(handle, inode, path, i);
2974 			}
2975 			/* root level has p_bh == NULL, brelse() eats this */
2976 			brelse(path[i].p_bh);
2977 			path[i].p_bh = NULL;
2978 			i--;
2979 			ext_debug("return to level %d\n", i);
2980 		}
2981 	}
2982 
2983 	trace_ext4_ext_remove_space_done(inode, start, end, depth,
2984 			partial_cluster, path->p_hdr->eh_entries);
2985 
2986 	/* If we still have something in the partial cluster and we have removed
2987 	 * even the first extent, then we should free the blocks in the partial
2988 	 * cluster as well. */
2989 	if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2990 		int flags = get_default_free_blocks_flags(inode);
2991 
2992 		ext4_free_blocks(handle, inode, NULL,
2993 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2994 				 EXT4_SB(sb)->s_cluster_ratio, flags);
2995 		partial_cluster = 0;
2996 	}
2997 
2998 	/* TODO: flexible tree reduction should be here */
2999 	if (path->p_hdr->eh_entries == 0) {
3000 		/*
3001 		 * truncate to zero freed all the tree,
3002 		 * so we need to correct eh_depth
3003 		 */
3004 		err = ext4_ext_get_access(handle, inode, path);
3005 		if (err == 0) {
3006 			ext_inode_hdr(inode)->eh_depth = 0;
3007 			ext_inode_hdr(inode)->eh_max =
3008 				cpu_to_le16(ext4_ext_space_root(inode, 0));
3009 			err = ext4_ext_dirty(handle, inode, path);
3010 		}
3011 	}
3012 out:
3013 	ext4_ext_drop_refs(path);
3014 	kfree(path);
3015 	if (err == -EAGAIN) {
3016 		path = NULL;
3017 		goto again;
3018 	}
3019 	ext4_journal_stop(handle);
3020 
3021 	return err;
3022 }
3023 
3024 /*
3025  * called at mount time
3026  */
3027 void ext4_ext_init(struct super_block *sb)
3028 {
3029 	/*
3030 	 * possible initialization would be here
3031 	 */
3032 
3033 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
3034 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3035 		printk(KERN_INFO "EXT4-fs: file extents enabled"
3036 #ifdef AGGRESSIVE_TEST
3037 		       ", aggressive tests"
3038 #endif
3039 #ifdef CHECK_BINSEARCH
3040 		       ", check binsearch"
3041 #endif
3042 #ifdef EXTENTS_STATS
3043 		       ", stats"
3044 #endif
3045 		       "\n");
3046 #endif
3047 #ifdef EXTENTS_STATS
3048 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3049 		EXT4_SB(sb)->s_ext_min = 1 << 30;
3050 		EXT4_SB(sb)->s_ext_max = 0;
3051 #endif
3052 	}
3053 }
3054 
3055 /*
3056  * called at umount time
3057  */
3058 void ext4_ext_release(struct super_block *sb)
3059 {
3060 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3061 		return;
3062 
3063 #ifdef EXTENTS_STATS
3064 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3065 		struct ext4_sb_info *sbi = EXT4_SB(sb);
3066 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3067 			sbi->s_ext_blocks, sbi->s_ext_extents,
3068 			sbi->s_ext_blocks / sbi->s_ext_extents);
3069 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3070 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3071 	}
3072 #endif
3073 }
3074 
3075 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3076 {
3077 	ext4_lblk_t  ee_block;
3078 	ext4_fsblk_t ee_pblock;
3079 	unsigned int ee_len;
3080 
3081 	ee_block  = le32_to_cpu(ex->ee_block);
3082 	ee_len    = ext4_ext_get_actual_len(ex);
3083 	ee_pblock = ext4_ext_pblock(ex);
3084 
3085 	if (ee_len == 0)
3086 		return 0;
3087 
3088 	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3089 				     EXTENT_STATUS_WRITTEN);
3090 }
3091 
3092 /* FIXME!! we need to try to merge to left or right after zero-out  */
3093 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3094 {
3095 	ext4_fsblk_t ee_pblock;
3096 	unsigned int ee_len;
3097 	int ret;
3098 
3099 	ee_len    = ext4_ext_get_actual_len(ex);
3100 	ee_pblock = ext4_ext_pblock(ex);
3101 
3102 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3103 	if (ret > 0)
3104 		ret = 0;
3105 
3106 	return ret;
3107 }
3108 
3109 /*
3110  * ext4_split_extent_at() splits an extent at given block.
3111  *
3112  * @handle: the journal handle
3113  * @inode: the file inode
3114  * @path: the path to the extent
3115  * @split: the logical block where the extent is splitted.
3116  * @split_flags: indicates if the extent could be zeroout if split fails, and
3117  *		 the states(init or unwritten) of new extents.
3118  * @flags: flags used to insert new extent to extent tree.
3119  *
3120  *
3121  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3122  * of which are deterimined by split_flag.
3123  *
3124  * There are two cases:
3125  *  a> the extent are splitted into two extent.
3126  *  b> split is not needed, and just mark the extent.
3127  *
3128  * return 0 on success.
3129  */
3130 static int ext4_split_extent_at(handle_t *handle,
3131 			     struct inode *inode,
3132 			     struct ext4_ext_path *path,
3133 			     ext4_lblk_t split,
3134 			     int split_flag,
3135 			     int flags)
3136 {
3137 	ext4_fsblk_t newblock;
3138 	ext4_lblk_t ee_block;
3139 	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3140 	struct ext4_extent *ex2 = NULL;
3141 	unsigned int ee_len, depth;
3142 	int err = 0;
3143 
3144 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3145 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3146 
3147 	ext_debug("ext4_split_extents_at: inode %lu, logical"
3148 		"block %llu\n", inode->i_ino, (unsigned long long)split);
3149 
3150 	ext4_ext_show_leaf(inode, path);
3151 
3152 	depth = ext_depth(inode);
3153 	ex = path[depth].p_ext;
3154 	ee_block = le32_to_cpu(ex->ee_block);
3155 	ee_len = ext4_ext_get_actual_len(ex);
3156 	newblock = split - ee_block + ext4_ext_pblock(ex);
3157 
3158 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3159 	BUG_ON(!ext4_ext_is_unwritten(ex) &&
3160 	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3161 			     EXT4_EXT_MARK_UNWRIT1 |
3162 			     EXT4_EXT_MARK_UNWRIT2));
3163 
3164 	err = ext4_ext_get_access(handle, inode, path + depth);
3165 	if (err)
3166 		goto out;
3167 
3168 	if (split == ee_block) {
3169 		/*
3170 		 * case b: block @split is the block that the extent begins with
3171 		 * then we just change the state of the extent, and splitting
3172 		 * is not needed.
3173 		 */
3174 		if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3175 			ext4_ext_mark_unwritten(ex);
3176 		else
3177 			ext4_ext_mark_initialized(ex);
3178 
3179 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3180 			ext4_ext_try_to_merge(handle, inode, path, ex);
3181 
3182 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3183 		goto out;
3184 	}
3185 
3186 	/* case a */
3187 	memcpy(&orig_ex, ex, sizeof(orig_ex));
3188 	ex->ee_len = cpu_to_le16(split - ee_block);
3189 	if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3190 		ext4_ext_mark_unwritten(ex);
3191 
3192 	/*
3193 	 * path may lead to new leaf, not to original leaf any more
3194 	 * after ext4_ext_insert_extent() returns,
3195 	 */
3196 	err = ext4_ext_dirty(handle, inode, path + depth);
3197 	if (err)
3198 		goto fix_extent_len;
3199 
3200 	ex2 = &newex;
3201 	ex2->ee_block = cpu_to_le32(split);
3202 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3203 	ext4_ext_store_pblock(ex2, newblock);
3204 	if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3205 		ext4_ext_mark_unwritten(ex2);
3206 
3207 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3208 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3209 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3210 			if (split_flag & EXT4_EXT_DATA_VALID1) {
3211 				err = ext4_ext_zeroout(inode, ex2);
3212 				zero_ex.ee_block = ex2->ee_block;
3213 				zero_ex.ee_len = cpu_to_le16(
3214 						ext4_ext_get_actual_len(ex2));
3215 				ext4_ext_store_pblock(&zero_ex,
3216 						      ext4_ext_pblock(ex2));
3217 			} else {
3218 				err = ext4_ext_zeroout(inode, ex);
3219 				zero_ex.ee_block = ex->ee_block;
3220 				zero_ex.ee_len = cpu_to_le16(
3221 						ext4_ext_get_actual_len(ex));
3222 				ext4_ext_store_pblock(&zero_ex,
3223 						      ext4_ext_pblock(ex));
3224 			}
3225 		} else {
3226 			err = ext4_ext_zeroout(inode, &orig_ex);
3227 			zero_ex.ee_block = orig_ex.ee_block;
3228 			zero_ex.ee_len = cpu_to_le16(
3229 						ext4_ext_get_actual_len(&orig_ex));
3230 			ext4_ext_store_pblock(&zero_ex,
3231 					      ext4_ext_pblock(&orig_ex));
3232 		}
3233 
3234 		if (err)
3235 			goto fix_extent_len;
3236 		/* update the extent length and mark as initialized */
3237 		ex->ee_len = cpu_to_le16(ee_len);
3238 		ext4_ext_try_to_merge(handle, inode, path, ex);
3239 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3240 		if (err)
3241 			goto fix_extent_len;
3242 
3243 		/* update extent status tree */
3244 		err = ext4_zeroout_es(inode, &zero_ex);
3245 
3246 		goto out;
3247 	} else if (err)
3248 		goto fix_extent_len;
3249 
3250 out:
3251 	ext4_ext_show_leaf(inode, path);
3252 	return err;
3253 
3254 fix_extent_len:
3255 	ex->ee_len = orig_ex.ee_len;
3256 	ext4_ext_dirty(handle, inode, path + depth);
3257 	return err;
3258 }
3259 
3260 /*
3261  * ext4_split_extents() splits an extent and mark extent which is covered
3262  * by @map as split_flags indicates
3263  *
3264  * It may result in splitting the extent into multiple extents (up to three)
3265  * There are three possibilities:
3266  *   a> There is no split required
3267  *   b> Splits in two extents: Split is happening at either end of the extent
3268  *   c> Splits in three extents: Somone is splitting in middle of the extent
3269  *
3270  */
3271 static int ext4_split_extent(handle_t *handle,
3272 			      struct inode *inode,
3273 			      struct ext4_ext_path *path,
3274 			      struct ext4_map_blocks *map,
3275 			      int split_flag,
3276 			      int flags)
3277 {
3278 	ext4_lblk_t ee_block;
3279 	struct ext4_extent *ex;
3280 	unsigned int ee_len, depth;
3281 	int err = 0;
3282 	int unwritten;
3283 	int split_flag1, flags1;
3284 	int allocated = map->m_len;
3285 
3286 	depth = ext_depth(inode);
3287 	ex = path[depth].p_ext;
3288 	ee_block = le32_to_cpu(ex->ee_block);
3289 	ee_len = ext4_ext_get_actual_len(ex);
3290 	unwritten = ext4_ext_is_unwritten(ex);
3291 
3292 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3293 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3294 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3295 		if (unwritten)
3296 			split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3297 				       EXT4_EXT_MARK_UNWRIT2;
3298 		if (split_flag & EXT4_EXT_DATA_VALID2)
3299 			split_flag1 |= EXT4_EXT_DATA_VALID1;
3300 		err = ext4_split_extent_at(handle, inode, path,
3301 				map->m_lblk + map->m_len, split_flag1, flags1);
3302 		if (err)
3303 			goto out;
3304 	} else {
3305 		allocated = ee_len - (map->m_lblk - ee_block);
3306 	}
3307 	/*
3308 	 * Update path is required because previous ext4_split_extent_at() may
3309 	 * result in split of original leaf or extent zeroout.
3310 	 */
3311 	ext4_ext_drop_refs(path);
3312 	path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3313 	if (IS_ERR(path))
3314 		return PTR_ERR(path);
3315 	depth = ext_depth(inode);
3316 	ex = path[depth].p_ext;
3317 	if (!ex) {
3318 		EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3319 				 (unsigned long) map->m_lblk);
3320 		return -EIO;
3321 	}
3322 	unwritten = ext4_ext_is_unwritten(ex);
3323 	split_flag1 = 0;
3324 
3325 	if (map->m_lblk >= ee_block) {
3326 		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3327 		if (unwritten) {
3328 			split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3329 			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3330 						     EXT4_EXT_MARK_UNWRIT2);
3331 		}
3332 		err = ext4_split_extent_at(handle, inode, path,
3333 				map->m_lblk, split_flag1, flags);
3334 		if (err)
3335 			goto out;
3336 	}
3337 
3338 	ext4_ext_show_leaf(inode, path);
3339 out:
3340 	return err ? err : allocated;
3341 }
3342 
3343 /*
3344  * This function is called by ext4_ext_map_blocks() if someone tries to write
3345  * to an unwritten extent. It may result in splitting the unwritten
3346  * extent into multiple extents (up to three - one initialized and two
3347  * unwritten).
3348  * There are three possibilities:
3349  *   a> There is no split required: Entire extent should be initialized
3350  *   b> Splits in two extents: Write is happening at either end of the extent
3351  *   c> Splits in three extents: Somone is writing in middle of the extent
3352  *
3353  * Pre-conditions:
3354  *  - The extent pointed to by 'path' is unwritten.
3355  *  - The extent pointed to by 'path' contains a superset
3356  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3357  *
3358  * Post-conditions on success:
3359  *  - the returned value is the number of blocks beyond map->l_lblk
3360  *    that are allocated and initialized.
3361  *    It is guaranteed to be >= map->m_len.
3362  */
3363 static int ext4_ext_convert_to_initialized(handle_t *handle,
3364 					   struct inode *inode,
3365 					   struct ext4_map_blocks *map,
3366 					   struct ext4_ext_path *path,
3367 					   int flags)
3368 {
3369 	struct ext4_sb_info *sbi;
3370 	struct ext4_extent_header *eh;
3371 	struct ext4_map_blocks split_map;
3372 	struct ext4_extent zero_ex;
3373 	struct ext4_extent *ex, *abut_ex;
3374 	ext4_lblk_t ee_block, eof_block;
3375 	unsigned int ee_len, depth, map_len = map->m_len;
3376 	int allocated = 0, max_zeroout = 0;
3377 	int err = 0;
3378 	int split_flag = 0;
3379 
3380 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3381 		"block %llu, max_blocks %u\n", inode->i_ino,
3382 		(unsigned long long)map->m_lblk, map_len);
3383 
3384 	sbi = EXT4_SB(inode->i_sb);
3385 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3386 		inode->i_sb->s_blocksize_bits;
3387 	if (eof_block < map->m_lblk + map_len)
3388 		eof_block = map->m_lblk + map_len;
3389 
3390 	depth = ext_depth(inode);
3391 	eh = path[depth].p_hdr;
3392 	ex = path[depth].p_ext;
3393 	ee_block = le32_to_cpu(ex->ee_block);
3394 	ee_len = ext4_ext_get_actual_len(ex);
3395 	zero_ex.ee_len = 0;
3396 
3397 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3398 
3399 	/* Pre-conditions */
3400 	BUG_ON(!ext4_ext_is_unwritten(ex));
3401 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3402 
3403 	/*
3404 	 * Attempt to transfer newly initialized blocks from the currently
3405 	 * unwritten extent to its neighbor. This is much cheaper
3406 	 * than an insertion followed by a merge as those involve costly
3407 	 * memmove() calls. Transferring to the left is the common case in
3408 	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3409 	 * followed by append writes.
3410 	 *
3411 	 * Limitations of the current logic:
3412 	 *  - L1: we do not deal with writes covering the whole extent.
3413 	 *    This would require removing the extent if the transfer
3414 	 *    is possible.
3415 	 *  - L2: we only attempt to merge with an extent stored in the
3416 	 *    same extent tree node.
3417 	 */
3418 	if ((map->m_lblk == ee_block) &&
3419 		/* See if we can merge left */
3420 		(map_len < ee_len) &&		/*L1*/
3421 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3422 		ext4_lblk_t prev_lblk;
3423 		ext4_fsblk_t prev_pblk, ee_pblk;
3424 		unsigned int prev_len;
3425 
3426 		abut_ex = ex - 1;
3427 		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3428 		prev_len = ext4_ext_get_actual_len(abut_ex);
3429 		prev_pblk = ext4_ext_pblock(abut_ex);
3430 		ee_pblk = ext4_ext_pblock(ex);
3431 
3432 		/*
3433 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3434 		 * upon those conditions:
3435 		 * - C1: abut_ex is initialized,
3436 		 * - C2: abut_ex is logically abutting ex,
3437 		 * - C3: abut_ex is physically abutting ex,
3438 		 * - C4: abut_ex can receive the additional blocks without
3439 		 *   overflowing the (initialized) length limit.
3440 		 */
3441 		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3442 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3443 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3444 			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3445 			err = ext4_ext_get_access(handle, inode, path + depth);
3446 			if (err)
3447 				goto out;
3448 
3449 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3450 				map, ex, abut_ex);
3451 
3452 			/* Shift the start of ex by 'map_len' blocks */
3453 			ex->ee_block = cpu_to_le32(ee_block + map_len);
3454 			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3455 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3456 			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3457 
3458 			/* Extend abut_ex by 'map_len' blocks */
3459 			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3460 
3461 			/* Result: number of initialized blocks past m_lblk */
3462 			allocated = map_len;
3463 		}
3464 	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3465 		   (map_len < ee_len) &&	/*L1*/
3466 		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3467 		/* See if we can merge right */
3468 		ext4_lblk_t next_lblk;
3469 		ext4_fsblk_t next_pblk, ee_pblk;
3470 		unsigned int next_len;
3471 
3472 		abut_ex = ex + 1;
3473 		next_lblk = le32_to_cpu(abut_ex->ee_block);
3474 		next_len = ext4_ext_get_actual_len(abut_ex);
3475 		next_pblk = ext4_ext_pblock(abut_ex);
3476 		ee_pblk = ext4_ext_pblock(ex);
3477 
3478 		/*
3479 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3480 		 * upon those conditions:
3481 		 * - C1: abut_ex is initialized,
3482 		 * - C2: abut_ex is logically abutting ex,
3483 		 * - C3: abut_ex is physically abutting ex,
3484 		 * - C4: abut_ex can receive the additional blocks without
3485 		 *   overflowing the (initialized) length limit.
3486 		 */
3487 		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3488 		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3489 		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3490 		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3491 			err = ext4_ext_get_access(handle, inode, path + depth);
3492 			if (err)
3493 				goto out;
3494 
3495 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3496 				map, ex, abut_ex);
3497 
3498 			/* Shift the start of abut_ex by 'map_len' blocks */
3499 			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3500 			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3501 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3502 			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3503 
3504 			/* Extend abut_ex by 'map_len' blocks */
3505 			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3506 
3507 			/* Result: number of initialized blocks past m_lblk */
3508 			allocated = map_len;
3509 		}
3510 	}
3511 	if (allocated) {
3512 		/* Mark the block containing both extents as dirty */
3513 		ext4_ext_dirty(handle, inode, path + depth);
3514 
3515 		/* Update path to point to the right extent */
3516 		path[depth].p_ext = abut_ex;
3517 		goto out;
3518 	} else
3519 		allocated = ee_len - (map->m_lblk - ee_block);
3520 
3521 	WARN_ON(map->m_lblk < ee_block);
3522 	/*
3523 	 * It is safe to convert extent to initialized via explicit
3524 	 * zeroout only if extent is fully inside i_size or new_size.
3525 	 */
3526 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3527 
3528 	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3529 		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3530 			(inode->i_sb->s_blocksize_bits - 10);
3531 
3532 	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3533 	if (max_zeroout && (ee_len <= max_zeroout)) {
3534 		err = ext4_ext_zeroout(inode, ex);
3535 		if (err)
3536 			goto out;
3537 		zero_ex.ee_block = ex->ee_block;
3538 		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3539 		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3540 
3541 		err = ext4_ext_get_access(handle, inode, path + depth);
3542 		if (err)
3543 			goto out;
3544 		ext4_ext_mark_initialized(ex);
3545 		ext4_ext_try_to_merge(handle, inode, path, ex);
3546 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3547 		goto out;
3548 	}
3549 
3550 	/*
3551 	 * four cases:
3552 	 * 1. split the extent into three extents.
3553 	 * 2. split the extent into two extents, zeroout the first half.
3554 	 * 3. split the extent into two extents, zeroout the second half.
3555 	 * 4. split the extent into two extents with out zeroout.
3556 	 */
3557 	split_map.m_lblk = map->m_lblk;
3558 	split_map.m_len = map->m_len;
3559 
3560 	if (max_zeroout && (allocated > map->m_len)) {
3561 		if (allocated <= max_zeroout) {
3562 			/* case 3 */
3563 			zero_ex.ee_block =
3564 					 cpu_to_le32(map->m_lblk);
3565 			zero_ex.ee_len = cpu_to_le16(allocated);
3566 			ext4_ext_store_pblock(&zero_ex,
3567 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3568 			err = ext4_ext_zeroout(inode, &zero_ex);
3569 			if (err)
3570 				goto out;
3571 			split_map.m_lblk = map->m_lblk;
3572 			split_map.m_len = allocated;
3573 		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3574 			/* case 2 */
3575 			if (map->m_lblk != ee_block) {
3576 				zero_ex.ee_block = ex->ee_block;
3577 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3578 							ee_block);
3579 				ext4_ext_store_pblock(&zero_ex,
3580 						      ext4_ext_pblock(ex));
3581 				err = ext4_ext_zeroout(inode, &zero_ex);
3582 				if (err)
3583 					goto out;
3584 			}
3585 
3586 			split_map.m_lblk = ee_block;
3587 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3588 			allocated = map->m_len;
3589 		}
3590 	}
3591 
3592 	allocated = ext4_split_extent(handle, inode, path,
3593 				      &split_map, split_flag, flags);
3594 	if (allocated < 0)
3595 		err = allocated;
3596 
3597 out:
3598 	/* If we have gotten a failure, don't zero out status tree */
3599 	if (!err)
3600 		err = ext4_zeroout_es(inode, &zero_ex);
3601 	return err ? err : allocated;
3602 }
3603 
3604 /*
3605  * This function is called by ext4_ext_map_blocks() from
3606  * ext4_get_blocks_dio_write() when DIO to write
3607  * to an unwritten extent.
3608  *
3609  * Writing to an unwritten extent may result in splitting the unwritten
3610  * extent into multiple initialized/unwritten extents (up to three)
3611  * There are three possibilities:
3612  *   a> There is no split required: Entire extent should be unwritten
3613  *   b> Splits in two extents: Write is happening at either end of the extent
3614  *   c> Splits in three extents: Somone is writing in middle of the extent
3615  *
3616  * This works the same way in the case of initialized -> unwritten conversion.
3617  *
3618  * One of more index blocks maybe needed if the extent tree grow after
3619  * the unwritten extent split. To prevent ENOSPC occur at the IO
3620  * complete, we need to split the unwritten extent before DIO submit
3621  * the IO. The unwritten extent called at this time will be split
3622  * into three unwritten extent(at most). After IO complete, the part
3623  * being filled will be convert to initialized by the end_io callback function
3624  * via ext4_convert_unwritten_extents().
3625  *
3626  * Returns the size of unwritten extent to be written on success.
3627  */
3628 static int ext4_split_convert_extents(handle_t *handle,
3629 					struct inode *inode,
3630 					struct ext4_map_blocks *map,
3631 					struct ext4_ext_path *path,
3632 					int flags)
3633 {
3634 	ext4_lblk_t eof_block;
3635 	ext4_lblk_t ee_block;
3636 	struct ext4_extent *ex;
3637 	unsigned int ee_len;
3638 	int split_flag = 0, depth;
3639 
3640 	ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3641 		  __func__, inode->i_ino,
3642 		  (unsigned long long)map->m_lblk, map->m_len);
3643 
3644 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3645 		inode->i_sb->s_blocksize_bits;
3646 	if (eof_block < map->m_lblk + map->m_len)
3647 		eof_block = map->m_lblk + map->m_len;
3648 	/*
3649 	 * It is safe to convert extent to initialized via explicit
3650 	 * zeroout only if extent is fully insde i_size or new_size.
3651 	 */
3652 	depth = ext_depth(inode);
3653 	ex = path[depth].p_ext;
3654 	ee_block = le32_to_cpu(ex->ee_block);
3655 	ee_len = ext4_ext_get_actual_len(ex);
3656 
3657 	/* Convert to unwritten */
3658 	if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3659 		split_flag |= EXT4_EXT_DATA_VALID1;
3660 	/* Convert to initialized */
3661 	} else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3662 		split_flag |= ee_block + ee_len <= eof_block ?
3663 			      EXT4_EXT_MAY_ZEROOUT : 0;
3664 		split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3665 	}
3666 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3667 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3668 }
3669 
3670 static int ext4_convert_initialized_extents(handle_t *handle,
3671 					    struct inode *inode,
3672 					    struct ext4_map_blocks *map,
3673 					    struct ext4_ext_path *path)
3674 {
3675 	struct ext4_extent *ex;
3676 	ext4_lblk_t ee_block;
3677 	unsigned int ee_len;
3678 	int depth;
3679 	int err = 0;
3680 
3681 	depth = ext_depth(inode);
3682 	ex = path[depth].p_ext;
3683 	ee_block = le32_to_cpu(ex->ee_block);
3684 	ee_len = ext4_ext_get_actual_len(ex);
3685 
3686 	ext_debug("%s: inode %lu, logical"
3687 		"block %llu, max_blocks %u\n", __func__, inode->i_ino,
3688 		  (unsigned long long)ee_block, ee_len);
3689 
3690 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3691 		err = ext4_split_convert_extents(handle, inode, map, path,
3692 				EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3693 		if (err < 0)
3694 			goto out;
3695 		ext4_ext_drop_refs(path);
3696 		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3697 		if (IS_ERR(path)) {
3698 			err = PTR_ERR(path);
3699 			goto out;
3700 		}
3701 		depth = ext_depth(inode);
3702 		ex = path[depth].p_ext;
3703 		if (!ex) {
3704 			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3705 					 (unsigned long) map->m_lblk);
3706 			err = -EIO;
3707 			goto out;
3708 		}
3709 	}
3710 
3711 	err = ext4_ext_get_access(handle, inode, path + depth);
3712 	if (err)
3713 		goto out;
3714 	/* first mark the extent as unwritten */
3715 	ext4_ext_mark_unwritten(ex);
3716 
3717 	/* note: ext4_ext_correct_indexes() isn't needed here because
3718 	 * borders are not changed
3719 	 */
3720 	ext4_ext_try_to_merge(handle, inode, path, ex);
3721 
3722 	/* Mark modified extent as dirty */
3723 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3724 out:
3725 	ext4_ext_show_leaf(inode, path);
3726 	return err;
3727 }
3728 
3729 
3730 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3731 						struct inode *inode,
3732 						struct ext4_map_blocks *map,
3733 						struct ext4_ext_path *path)
3734 {
3735 	struct ext4_extent *ex;
3736 	ext4_lblk_t ee_block;
3737 	unsigned int ee_len;
3738 	int depth;
3739 	int err = 0;
3740 
3741 	depth = ext_depth(inode);
3742 	ex = path[depth].p_ext;
3743 	ee_block = le32_to_cpu(ex->ee_block);
3744 	ee_len = ext4_ext_get_actual_len(ex);
3745 
3746 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3747 		"block %llu, max_blocks %u\n", inode->i_ino,
3748 		  (unsigned long long)ee_block, ee_len);
3749 
3750 	/* If extent is larger than requested it is a clear sign that we still
3751 	 * have some extent state machine issues left. So extent_split is still
3752 	 * required.
3753 	 * TODO: Once all related issues will be fixed this situation should be
3754 	 * illegal.
3755 	 */
3756 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3757 #ifdef EXT4_DEBUG
3758 		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3759 			     " len %u; IO logical block %llu, len %u\n",
3760 			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3761 			     (unsigned long long)map->m_lblk, map->m_len);
3762 #endif
3763 		err = ext4_split_convert_extents(handle, inode, map, path,
3764 						 EXT4_GET_BLOCKS_CONVERT);
3765 		if (err < 0)
3766 			goto out;
3767 		ext4_ext_drop_refs(path);
3768 		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3769 		if (IS_ERR(path)) {
3770 			err = PTR_ERR(path);
3771 			goto out;
3772 		}
3773 		depth = ext_depth(inode);
3774 		ex = path[depth].p_ext;
3775 	}
3776 
3777 	err = ext4_ext_get_access(handle, inode, path + depth);
3778 	if (err)
3779 		goto out;
3780 	/* first mark the extent as initialized */
3781 	ext4_ext_mark_initialized(ex);
3782 
3783 	/* note: ext4_ext_correct_indexes() isn't needed here because
3784 	 * borders are not changed
3785 	 */
3786 	ext4_ext_try_to_merge(handle, inode, path, ex);
3787 
3788 	/* Mark modified extent as dirty */
3789 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3790 out:
3791 	ext4_ext_show_leaf(inode, path);
3792 	return err;
3793 }
3794 
3795 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3796 			sector_t block, int count)
3797 {
3798 	int i;
3799 	for (i = 0; i < count; i++)
3800                 unmap_underlying_metadata(bdev, block + i);
3801 }
3802 
3803 /*
3804  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3805  */
3806 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3807 			      ext4_lblk_t lblk,
3808 			      struct ext4_ext_path *path,
3809 			      unsigned int len)
3810 {
3811 	int i, depth;
3812 	struct ext4_extent_header *eh;
3813 	struct ext4_extent *last_ex;
3814 
3815 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3816 		return 0;
3817 
3818 	depth = ext_depth(inode);
3819 	eh = path[depth].p_hdr;
3820 
3821 	/*
3822 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3823 	 * do not care for this case anymore. Simply remove the flag
3824 	 * if there are no extents.
3825 	 */
3826 	if (unlikely(!eh->eh_entries))
3827 		goto out;
3828 	last_ex = EXT_LAST_EXTENT(eh);
3829 	/*
3830 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3831 	 * last block in the last extent in the file.  We test this by
3832 	 * first checking to see if the caller to
3833 	 * ext4_ext_get_blocks() was interested in the last block (or
3834 	 * a block beyond the last block) in the current extent.  If
3835 	 * this turns out to be false, we can bail out from this
3836 	 * function immediately.
3837 	 */
3838 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3839 	    ext4_ext_get_actual_len(last_ex))
3840 		return 0;
3841 	/*
3842 	 * If the caller does appear to be planning to write at or
3843 	 * beyond the end of the current extent, we then test to see
3844 	 * if the current extent is the last extent in the file, by
3845 	 * checking to make sure it was reached via the rightmost node
3846 	 * at each level of the tree.
3847 	 */
3848 	for (i = depth-1; i >= 0; i--)
3849 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3850 			return 0;
3851 out:
3852 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3853 	return ext4_mark_inode_dirty(handle, inode);
3854 }
3855 
3856 /**
3857  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3858  *
3859  * Return 1 if there is a delalloc block in the range, otherwise 0.
3860  */
3861 int ext4_find_delalloc_range(struct inode *inode,
3862 			     ext4_lblk_t lblk_start,
3863 			     ext4_lblk_t lblk_end)
3864 {
3865 	struct extent_status es;
3866 
3867 	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3868 	if (es.es_len == 0)
3869 		return 0; /* there is no delay extent in this tree */
3870 	else if (es.es_lblk <= lblk_start &&
3871 		 lblk_start < es.es_lblk + es.es_len)
3872 		return 1;
3873 	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3874 		return 1;
3875 	else
3876 		return 0;
3877 }
3878 
3879 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3880 {
3881 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3882 	ext4_lblk_t lblk_start, lblk_end;
3883 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3884 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3885 
3886 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3887 }
3888 
3889 /**
3890  * Determines how many complete clusters (out of those specified by the 'map')
3891  * are under delalloc and were reserved quota for.
3892  * This function is called when we are writing out the blocks that were
3893  * originally written with their allocation delayed, but then the space was
3894  * allocated using fallocate() before the delayed allocation could be resolved.
3895  * The cases to look for are:
3896  * ('=' indicated delayed allocated blocks
3897  *  '-' indicates non-delayed allocated blocks)
3898  * (a) partial clusters towards beginning and/or end outside of allocated range
3899  *     are not delalloc'ed.
3900  *	Ex:
3901  *	|----c---=|====c====|====c====|===-c----|
3902  *	         |++++++ allocated ++++++|
3903  *	==> 4 complete clusters in above example
3904  *
3905  * (b) partial cluster (outside of allocated range) towards either end is
3906  *     marked for delayed allocation. In this case, we will exclude that
3907  *     cluster.
3908  *	Ex:
3909  *	|----====c========|========c========|
3910  *	     |++++++ allocated ++++++|
3911  *	==> 1 complete clusters in above example
3912  *
3913  *	Ex:
3914  *	|================c================|
3915  *            |++++++ allocated ++++++|
3916  *	==> 0 complete clusters in above example
3917  *
3918  * The ext4_da_update_reserve_space will be called only if we
3919  * determine here that there were some "entire" clusters that span
3920  * this 'allocated' range.
3921  * In the non-bigalloc case, this function will just end up returning num_blks
3922  * without ever calling ext4_find_delalloc_range.
3923  */
3924 static unsigned int
3925 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3926 			   unsigned int num_blks)
3927 {
3928 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3929 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3930 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3931 	unsigned int allocated_clusters = 0;
3932 
3933 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3934 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3935 
3936 	/* max possible clusters for this allocation */
3937 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3938 
3939 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3940 
3941 	/* Check towards left side */
3942 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3943 	if (c_offset) {
3944 		lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3945 		lblk_to = lblk_from + c_offset - 1;
3946 
3947 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3948 			allocated_clusters--;
3949 	}
3950 
3951 	/* Now check towards right. */
3952 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3953 	if (allocated_clusters && c_offset) {
3954 		lblk_from = lblk_start + num_blks;
3955 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3956 
3957 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3958 			allocated_clusters--;
3959 	}
3960 
3961 	return allocated_clusters;
3962 }
3963 
3964 static int
3965 ext4_ext_convert_initialized_extent(handle_t *handle, struct inode *inode,
3966 			struct ext4_map_blocks *map,
3967 			struct ext4_ext_path *path, int flags,
3968 			unsigned int allocated, ext4_fsblk_t newblock)
3969 {
3970 	int ret = 0;
3971 	int err = 0;
3972 
3973 	/*
3974 	 * Make sure that the extent is no bigger than we support with
3975 	 * unwritten extent
3976 	 */
3977 	if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3978 		map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3979 
3980 	ret = ext4_convert_initialized_extents(handle, inode, map,
3981 						path);
3982 	if (ret >= 0) {
3983 		ext4_update_inode_fsync_trans(handle, inode, 1);
3984 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
3985 					 path, map->m_len);
3986 	} else
3987 		err = ret;
3988 	map->m_flags |= EXT4_MAP_UNWRITTEN;
3989 	if (allocated > map->m_len)
3990 		allocated = map->m_len;
3991 	map->m_len = allocated;
3992 
3993 	return err ? err : allocated;
3994 }
3995 
3996 static int
3997 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
3998 			struct ext4_map_blocks *map,
3999 			struct ext4_ext_path *path, int flags,
4000 			unsigned int allocated, ext4_fsblk_t newblock)
4001 {
4002 	int ret = 0;
4003 	int err = 0;
4004 	ext4_io_end_t *io = ext4_inode_aio(inode);
4005 
4006 	ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4007 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
4008 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4009 		  flags, allocated);
4010 	ext4_ext_show_leaf(inode, path);
4011 
4012 	/*
4013 	 * When writing into unwritten space, we should not fail to
4014 	 * allocate metadata blocks for the new extent block if needed.
4015 	 */
4016 	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4017 
4018 	trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4019 						    allocated, newblock);
4020 
4021 	/* get_block() before submit the IO, split the extent */
4022 	if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4023 		ret = ext4_split_convert_extents(handle, inode, map,
4024 					 path, flags | EXT4_GET_BLOCKS_CONVERT);
4025 		if (ret <= 0)
4026 			goto out;
4027 		/*
4028 		 * Flag the inode(non aio case) or end_io struct (aio case)
4029 		 * that this IO needs to conversion to written when IO is
4030 		 * completed
4031 		 */
4032 		if (io)
4033 			ext4_set_io_unwritten_flag(inode, io);
4034 		else
4035 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4036 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4037 		goto out;
4038 	}
4039 	/* IO end_io complete, convert the filled extent to written */
4040 	if (flags & EXT4_GET_BLOCKS_CONVERT) {
4041 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4042 							path);
4043 		if (ret >= 0) {
4044 			ext4_update_inode_fsync_trans(handle, inode, 1);
4045 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
4046 						 path, map->m_len);
4047 		} else
4048 			err = ret;
4049 		map->m_flags |= EXT4_MAP_MAPPED;
4050 		map->m_pblk = newblock;
4051 		if (allocated > map->m_len)
4052 			allocated = map->m_len;
4053 		map->m_len = allocated;
4054 		goto out2;
4055 	}
4056 	/* buffered IO case */
4057 	/*
4058 	 * repeat fallocate creation request
4059 	 * we already have an unwritten extent
4060 	 */
4061 	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4062 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4063 		goto map_out;
4064 	}
4065 
4066 	/* buffered READ or buffered write_begin() lookup */
4067 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4068 		/*
4069 		 * We have blocks reserved already.  We
4070 		 * return allocated blocks so that delalloc
4071 		 * won't do block reservation for us.  But
4072 		 * the buffer head will be unmapped so that
4073 		 * a read from the block returns 0s.
4074 		 */
4075 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4076 		goto out1;
4077 	}
4078 
4079 	/* buffered write, writepage time, convert*/
4080 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
4081 	if (ret >= 0)
4082 		ext4_update_inode_fsync_trans(handle, inode, 1);
4083 out:
4084 	if (ret <= 0) {
4085 		err = ret;
4086 		goto out2;
4087 	} else
4088 		allocated = ret;
4089 	map->m_flags |= EXT4_MAP_NEW;
4090 	/*
4091 	 * if we allocated more blocks than requested
4092 	 * we need to make sure we unmap the extra block
4093 	 * allocated. The actual needed block will get
4094 	 * unmapped later when we find the buffer_head marked
4095 	 * new.
4096 	 */
4097 	if (allocated > map->m_len) {
4098 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
4099 					newblock + map->m_len,
4100 					allocated - map->m_len);
4101 		allocated = map->m_len;
4102 	}
4103 	map->m_len = allocated;
4104 
4105 	/*
4106 	 * If we have done fallocate with the offset that is already
4107 	 * delayed allocated, we would have block reservation
4108 	 * and quota reservation done in the delayed write path.
4109 	 * But fallocate would have already updated quota and block
4110 	 * count for this offset. So cancel these reservation
4111 	 */
4112 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4113 		unsigned int reserved_clusters;
4114 		reserved_clusters = get_reserved_cluster_alloc(inode,
4115 				map->m_lblk, map->m_len);
4116 		if (reserved_clusters)
4117 			ext4_da_update_reserve_space(inode,
4118 						     reserved_clusters,
4119 						     0);
4120 	}
4121 
4122 map_out:
4123 	map->m_flags |= EXT4_MAP_MAPPED;
4124 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4125 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4126 					 map->m_len);
4127 		if (err < 0)
4128 			goto out2;
4129 	}
4130 out1:
4131 	if (allocated > map->m_len)
4132 		allocated = map->m_len;
4133 	ext4_ext_show_leaf(inode, path);
4134 	map->m_pblk = newblock;
4135 	map->m_len = allocated;
4136 out2:
4137 	return err ? err : allocated;
4138 }
4139 
4140 /*
4141  * get_implied_cluster_alloc - check to see if the requested
4142  * allocation (in the map structure) overlaps with a cluster already
4143  * allocated in an extent.
4144  *	@sb	The filesystem superblock structure
4145  *	@map	The requested lblk->pblk mapping
4146  *	@ex	The extent structure which might contain an implied
4147  *			cluster allocation
4148  *
4149  * This function is called by ext4_ext_map_blocks() after we failed to
4150  * find blocks that were already in the inode's extent tree.  Hence,
4151  * we know that the beginning of the requested region cannot overlap
4152  * the extent from the inode's extent tree.  There are three cases we
4153  * want to catch.  The first is this case:
4154  *
4155  *		 |--- cluster # N--|
4156  *    |--- extent ---|	|---- requested region ---|
4157  *			|==========|
4158  *
4159  * The second case that we need to test for is this one:
4160  *
4161  *   |--------- cluster # N ----------------|
4162  *	   |--- requested region --|   |------- extent ----|
4163  *	   |=======================|
4164  *
4165  * The third case is when the requested region lies between two extents
4166  * within the same cluster:
4167  *          |------------- cluster # N-------------|
4168  * |----- ex -----|                  |---- ex_right ----|
4169  *                  |------ requested region ------|
4170  *                  |================|
4171  *
4172  * In each of the above cases, we need to set the map->m_pblk and
4173  * map->m_len so it corresponds to the return the extent labelled as
4174  * "|====|" from cluster #N, since it is already in use for data in
4175  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4176  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4177  * as a new "allocated" block region.  Otherwise, we will return 0 and
4178  * ext4_ext_map_blocks() will then allocate one or more new clusters
4179  * by calling ext4_mb_new_blocks().
4180  */
4181 static int get_implied_cluster_alloc(struct super_block *sb,
4182 				     struct ext4_map_blocks *map,
4183 				     struct ext4_extent *ex,
4184 				     struct ext4_ext_path *path)
4185 {
4186 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4187 	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4188 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4189 	ext4_lblk_t rr_cluster_start;
4190 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4191 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4192 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4193 
4194 	/* The extent passed in that we are trying to match */
4195 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4196 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4197 
4198 	/* The requested region passed into ext4_map_blocks() */
4199 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4200 
4201 	if ((rr_cluster_start == ex_cluster_end) ||
4202 	    (rr_cluster_start == ex_cluster_start)) {
4203 		if (rr_cluster_start == ex_cluster_end)
4204 			ee_start += ee_len - 1;
4205 		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4206 		map->m_len = min(map->m_len,
4207 				 (unsigned) sbi->s_cluster_ratio - c_offset);
4208 		/*
4209 		 * Check for and handle this case:
4210 		 *
4211 		 *   |--------- cluster # N-------------|
4212 		 *		       |------- extent ----|
4213 		 *	   |--- requested region ---|
4214 		 *	   |===========|
4215 		 */
4216 
4217 		if (map->m_lblk < ee_block)
4218 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4219 
4220 		/*
4221 		 * Check for the case where there is already another allocated
4222 		 * block to the right of 'ex' but before the end of the cluster.
4223 		 *
4224 		 *          |------------- cluster # N-------------|
4225 		 * |----- ex -----|                  |---- ex_right ----|
4226 		 *                  |------ requested region ------|
4227 		 *                  |================|
4228 		 */
4229 		if (map->m_lblk > ee_block) {
4230 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4231 			map->m_len = min(map->m_len, next - map->m_lblk);
4232 		}
4233 
4234 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4235 		return 1;
4236 	}
4237 
4238 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4239 	return 0;
4240 }
4241 
4242 
4243 /*
4244  * Block allocation/map/preallocation routine for extents based files
4245  *
4246  *
4247  * Need to be called with
4248  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4249  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4250  *
4251  * return > 0, number of of blocks already mapped/allocated
4252  *          if create == 0 and these are pre-allocated blocks
4253  *          	buffer head is unmapped
4254  *          otherwise blocks are mapped
4255  *
4256  * return = 0, if plain look up failed (blocks have not been allocated)
4257  *          buffer head is unmapped
4258  *
4259  * return < 0, error case.
4260  */
4261 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4262 			struct ext4_map_blocks *map, int flags)
4263 {
4264 	struct ext4_ext_path *path = NULL;
4265 	struct ext4_extent newex, *ex, *ex2;
4266 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4267 	ext4_fsblk_t newblock = 0;
4268 	int free_on_err = 0, err = 0, depth, ret;
4269 	unsigned int allocated = 0, offset = 0;
4270 	unsigned int allocated_clusters = 0;
4271 	struct ext4_allocation_request ar;
4272 	ext4_io_end_t *io = ext4_inode_aio(inode);
4273 	ext4_lblk_t cluster_offset;
4274 	int set_unwritten = 0;
4275 
4276 	ext_debug("blocks %u/%u requested for inode %lu\n",
4277 		  map->m_lblk, map->m_len, inode->i_ino);
4278 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4279 
4280 	/* find extent for this block */
4281 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4282 	if (IS_ERR(path)) {
4283 		err = PTR_ERR(path);
4284 		path = NULL;
4285 		goto out2;
4286 	}
4287 
4288 	depth = ext_depth(inode);
4289 
4290 	/*
4291 	 * consistent leaf must not be empty;
4292 	 * this situation is possible, though, _during_ tree modification;
4293 	 * this is why assert can't be put in ext4_ext_find_extent()
4294 	 */
4295 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4296 		EXT4_ERROR_INODE(inode, "bad extent address "
4297 				 "lblock: %lu, depth: %d pblock %lld",
4298 				 (unsigned long) map->m_lblk, depth,
4299 				 path[depth].p_block);
4300 		err = -EIO;
4301 		goto out2;
4302 	}
4303 
4304 	ex = path[depth].p_ext;
4305 	if (ex) {
4306 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4307 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4308 		unsigned short ee_len;
4309 
4310 
4311 		/*
4312 		 * unwritten extents are treated as holes, except that
4313 		 * we split out initialized portions during a write.
4314 		 */
4315 		ee_len = ext4_ext_get_actual_len(ex);
4316 
4317 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4318 
4319 		/* if found extent covers block, simply return it */
4320 		if (in_range(map->m_lblk, ee_block, ee_len)) {
4321 			newblock = map->m_lblk - ee_block + ee_start;
4322 			/* number of remaining blocks in the extent */
4323 			allocated = ee_len - (map->m_lblk - ee_block);
4324 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4325 				  ee_block, ee_len, newblock);
4326 
4327 			/*
4328 			 * If the extent is initialized check whether the
4329 			 * caller wants to convert it to unwritten.
4330 			 */
4331 			if ((!ext4_ext_is_unwritten(ex)) &&
4332 			    (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4333 				allocated = ext4_ext_convert_initialized_extent(
4334 						handle, inode, map, path, flags,
4335 						allocated, newblock);
4336 				goto out2;
4337 			} else if (!ext4_ext_is_unwritten(ex))
4338 				goto out;
4339 
4340 			ret = ext4_ext_handle_unwritten_extents(
4341 				handle, inode, map, path, flags,
4342 				allocated, newblock);
4343 			if (ret < 0)
4344 				err = ret;
4345 			else
4346 				allocated = ret;
4347 			goto out2;
4348 		}
4349 	}
4350 
4351 	if ((sbi->s_cluster_ratio > 1) &&
4352 	    ext4_find_delalloc_cluster(inode, map->m_lblk))
4353 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4354 
4355 	/*
4356 	 * requested block isn't allocated yet;
4357 	 * we couldn't try to create block if create flag is zero
4358 	 */
4359 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4360 		/*
4361 		 * put just found gap into cache to speed up
4362 		 * subsequent requests
4363 		 */
4364 		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4365 			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4366 		goto out2;
4367 	}
4368 
4369 	/*
4370 	 * Okay, we need to do block allocation.
4371 	 */
4372 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4373 	newex.ee_block = cpu_to_le32(map->m_lblk);
4374 	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4375 
4376 	/*
4377 	 * If we are doing bigalloc, check to see if the extent returned
4378 	 * by ext4_ext_find_extent() implies a cluster we can use.
4379 	 */
4380 	if (cluster_offset && ex &&
4381 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4382 		ar.len = allocated = map->m_len;
4383 		newblock = map->m_pblk;
4384 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4385 		goto got_allocated_blocks;
4386 	}
4387 
4388 	/* find neighbour allocated blocks */
4389 	ar.lleft = map->m_lblk;
4390 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4391 	if (err)
4392 		goto out2;
4393 	ar.lright = map->m_lblk;
4394 	ex2 = NULL;
4395 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4396 	if (err)
4397 		goto out2;
4398 
4399 	/* Check if the extent after searching to the right implies a
4400 	 * cluster we can use. */
4401 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4402 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4403 		ar.len = allocated = map->m_len;
4404 		newblock = map->m_pblk;
4405 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4406 		goto got_allocated_blocks;
4407 	}
4408 
4409 	/*
4410 	 * See if request is beyond maximum number of blocks we can have in
4411 	 * a single extent. For an initialized extent this limit is
4412 	 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4413 	 * EXT_UNWRITTEN_MAX_LEN.
4414 	 */
4415 	if (map->m_len > EXT_INIT_MAX_LEN &&
4416 	    !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4417 		map->m_len = EXT_INIT_MAX_LEN;
4418 	else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4419 		 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4420 		map->m_len = EXT_UNWRITTEN_MAX_LEN;
4421 
4422 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4423 	newex.ee_len = cpu_to_le16(map->m_len);
4424 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4425 	if (err)
4426 		allocated = ext4_ext_get_actual_len(&newex);
4427 	else
4428 		allocated = map->m_len;
4429 
4430 	/* allocate new block */
4431 	ar.inode = inode;
4432 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4433 	ar.logical = map->m_lblk;
4434 	/*
4435 	 * We calculate the offset from the beginning of the cluster
4436 	 * for the logical block number, since when we allocate a
4437 	 * physical cluster, the physical block should start at the
4438 	 * same offset from the beginning of the cluster.  This is
4439 	 * needed so that future calls to get_implied_cluster_alloc()
4440 	 * work correctly.
4441 	 */
4442 	offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4443 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4444 	ar.goal -= offset;
4445 	ar.logical -= offset;
4446 	if (S_ISREG(inode->i_mode))
4447 		ar.flags = EXT4_MB_HINT_DATA;
4448 	else
4449 		/* disable in-core preallocation for non-regular files */
4450 		ar.flags = 0;
4451 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4452 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4453 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4454 	if (!newblock)
4455 		goto out2;
4456 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4457 		  ar.goal, newblock, allocated);
4458 	free_on_err = 1;
4459 	allocated_clusters = ar.len;
4460 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4461 	if (ar.len > allocated)
4462 		ar.len = allocated;
4463 
4464 got_allocated_blocks:
4465 	/* try to insert new extent into found leaf and return */
4466 	ext4_ext_store_pblock(&newex, newblock + offset);
4467 	newex.ee_len = cpu_to_le16(ar.len);
4468 	/* Mark unwritten */
4469 	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4470 		ext4_ext_mark_unwritten(&newex);
4471 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4472 		/*
4473 		 * io_end structure was created for every IO write to an
4474 		 * unwritten extent. To avoid unnecessary conversion,
4475 		 * here we flag the IO that really needs the conversion.
4476 		 * For non asycn direct IO case, flag the inode state
4477 		 * that we need to perform conversion when IO is done.
4478 		 */
4479 		if (flags & EXT4_GET_BLOCKS_PRE_IO)
4480 			set_unwritten = 1;
4481 	}
4482 
4483 	err = 0;
4484 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4485 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4486 					 path, ar.len);
4487 	if (!err)
4488 		err = ext4_ext_insert_extent(handle, inode, path,
4489 					     &newex, flags);
4490 
4491 	if (!err && set_unwritten) {
4492 		if (io)
4493 			ext4_set_io_unwritten_flag(inode, io);
4494 		else
4495 			ext4_set_inode_state(inode,
4496 					     EXT4_STATE_DIO_UNWRITTEN);
4497 	}
4498 
4499 	if (err && free_on_err) {
4500 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4501 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4502 		/* free data blocks we just allocated */
4503 		/* not a good idea to call discard here directly,
4504 		 * but otherwise we'd need to call it every free() */
4505 		ext4_discard_preallocations(inode);
4506 		ext4_free_blocks(handle, inode, NULL, newblock,
4507 				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4508 		goto out2;
4509 	}
4510 
4511 	/* previous routine could use block we allocated */
4512 	newblock = ext4_ext_pblock(&newex);
4513 	allocated = ext4_ext_get_actual_len(&newex);
4514 	if (allocated > map->m_len)
4515 		allocated = map->m_len;
4516 	map->m_flags |= EXT4_MAP_NEW;
4517 
4518 	/*
4519 	 * Update reserved blocks/metadata blocks after successful
4520 	 * block allocation which had been deferred till now.
4521 	 */
4522 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4523 		unsigned int reserved_clusters;
4524 		/*
4525 		 * Check how many clusters we had reserved this allocated range
4526 		 */
4527 		reserved_clusters = get_reserved_cluster_alloc(inode,
4528 						map->m_lblk, allocated);
4529 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4530 			if (reserved_clusters) {
4531 				/*
4532 				 * We have clusters reserved for this range.
4533 				 * But since we are not doing actual allocation
4534 				 * and are simply using blocks from previously
4535 				 * allocated cluster, we should release the
4536 				 * reservation and not claim quota.
4537 				 */
4538 				ext4_da_update_reserve_space(inode,
4539 						reserved_clusters, 0);
4540 			}
4541 		} else {
4542 			BUG_ON(allocated_clusters < reserved_clusters);
4543 			if (reserved_clusters < allocated_clusters) {
4544 				struct ext4_inode_info *ei = EXT4_I(inode);
4545 				int reservation = allocated_clusters -
4546 						  reserved_clusters;
4547 				/*
4548 				 * It seems we claimed few clusters outside of
4549 				 * the range of this allocation. We should give
4550 				 * it back to the reservation pool. This can
4551 				 * happen in the following case:
4552 				 *
4553 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4554 				 *   cluster has 4 blocks. Thus, the clusters
4555 				 *   are [0-3],[4-7],[8-11]...
4556 				 * * First comes delayed allocation write for
4557 				 *   logical blocks 10 & 11. Since there were no
4558 				 *   previous delayed allocated blocks in the
4559 				 *   range [8-11], we would reserve 1 cluster
4560 				 *   for this write.
4561 				 * * Next comes write for logical blocks 3 to 8.
4562 				 *   In this case, we will reserve 2 clusters
4563 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4564 				 *   that range has a delayed allocated blocks.
4565 				 *   Thus total reserved clusters now becomes 3.
4566 				 * * Now, during the delayed allocation writeout
4567 				 *   time, we will first write blocks [3-8] and
4568 				 *   allocate 3 clusters for writing these
4569 				 *   blocks. Also, we would claim all these
4570 				 *   three clusters above.
4571 				 * * Now when we come here to writeout the
4572 				 *   blocks [10-11], we would expect to claim
4573 				 *   the reservation of 1 cluster we had made
4574 				 *   (and we would claim it since there are no
4575 				 *   more delayed allocated blocks in the range
4576 				 *   [8-11]. But our reserved cluster count had
4577 				 *   already gone to 0.
4578 				 *
4579 				 *   Thus, at the step 4 above when we determine
4580 				 *   that there are still some unwritten delayed
4581 				 *   allocated blocks outside of our current
4582 				 *   block range, we should increment the
4583 				 *   reserved clusters count so that when the
4584 				 *   remaining blocks finally gets written, we
4585 				 *   could claim them.
4586 				 */
4587 				dquot_reserve_block(inode,
4588 						EXT4_C2B(sbi, reservation));
4589 				spin_lock(&ei->i_block_reservation_lock);
4590 				ei->i_reserved_data_blocks += reservation;
4591 				spin_unlock(&ei->i_block_reservation_lock);
4592 			}
4593 			/*
4594 			 * We will claim quota for all newly allocated blocks.
4595 			 * We're updating the reserved space *after* the
4596 			 * correction above so we do not accidentally free
4597 			 * all the metadata reservation because we might
4598 			 * actually need it later on.
4599 			 */
4600 			ext4_da_update_reserve_space(inode, allocated_clusters,
4601 							1);
4602 		}
4603 	}
4604 
4605 	/*
4606 	 * Cache the extent and update transaction to commit on fdatasync only
4607 	 * when it is _not_ an unwritten extent.
4608 	 */
4609 	if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4610 		ext4_update_inode_fsync_trans(handle, inode, 1);
4611 	else
4612 		ext4_update_inode_fsync_trans(handle, inode, 0);
4613 out:
4614 	if (allocated > map->m_len)
4615 		allocated = map->m_len;
4616 	ext4_ext_show_leaf(inode, path);
4617 	map->m_flags |= EXT4_MAP_MAPPED;
4618 	map->m_pblk = newblock;
4619 	map->m_len = allocated;
4620 out2:
4621 	if (path) {
4622 		ext4_ext_drop_refs(path);
4623 		kfree(path);
4624 	}
4625 
4626 	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4627 				       err ? err : allocated);
4628 	ext4_es_lru_add(inode);
4629 	return err ? err : allocated;
4630 }
4631 
4632 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4633 {
4634 	struct super_block *sb = inode->i_sb;
4635 	ext4_lblk_t last_block;
4636 	int err = 0;
4637 
4638 	/*
4639 	 * TODO: optimization is possible here.
4640 	 * Probably we need not scan at all,
4641 	 * because page truncation is enough.
4642 	 */
4643 
4644 	/* we have to know where to truncate from in crash case */
4645 	EXT4_I(inode)->i_disksize = inode->i_size;
4646 	ext4_mark_inode_dirty(handle, inode);
4647 
4648 	last_block = (inode->i_size + sb->s_blocksize - 1)
4649 			>> EXT4_BLOCK_SIZE_BITS(sb);
4650 retry:
4651 	err = ext4_es_remove_extent(inode, last_block,
4652 				    EXT_MAX_BLOCKS - last_block);
4653 	if (err == -ENOMEM) {
4654 		cond_resched();
4655 		congestion_wait(BLK_RW_ASYNC, HZ/50);
4656 		goto retry;
4657 	}
4658 	if (err) {
4659 		ext4_std_error(inode->i_sb, err);
4660 		return;
4661 	}
4662 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4663 	ext4_std_error(inode->i_sb, err);
4664 }
4665 
4666 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4667 				  ext4_lblk_t len, int flags, int mode)
4668 {
4669 	struct inode *inode = file_inode(file);
4670 	handle_t *handle;
4671 	int ret = 0;
4672 	int ret2 = 0;
4673 	int retries = 0;
4674 	struct ext4_map_blocks map;
4675 	unsigned int credits;
4676 
4677 	map.m_lblk = offset;
4678 	/*
4679 	 * Don't normalize the request if it can fit in one extent so
4680 	 * that it doesn't get unnecessarily split into multiple
4681 	 * extents.
4682 	 */
4683 	if (len <= EXT_UNWRITTEN_MAX_LEN)
4684 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4685 
4686 	/*
4687 	 * credits to insert 1 extent into extent tree
4688 	 */
4689 	credits = ext4_chunk_trans_blocks(inode, len);
4690 
4691 retry:
4692 	while (ret >= 0 && ret < len) {
4693 		map.m_lblk = map.m_lblk + ret;
4694 		map.m_len = len = len - ret;
4695 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4696 					    credits);
4697 		if (IS_ERR(handle)) {
4698 			ret = PTR_ERR(handle);
4699 			break;
4700 		}
4701 		ret = ext4_map_blocks(handle, inode, &map, flags);
4702 		if (ret <= 0) {
4703 			ext4_debug("inode #%lu: block %u: len %u: "
4704 				   "ext4_ext_map_blocks returned %d",
4705 				   inode->i_ino, map.m_lblk,
4706 				   map.m_len, ret);
4707 			ext4_mark_inode_dirty(handle, inode);
4708 			ret2 = ext4_journal_stop(handle);
4709 			break;
4710 		}
4711 		ret2 = ext4_journal_stop(handle);
4712 		if (ret2)
4713 			break;
4714 	}
4715 	if (ret == -ENOSPC &&
4716 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4717 		ret = 0;
4718 		goto retry;
4719 	}
4720 
4721 	return ret > 0 ? ret2 : ret;
4722 }
4723 
4724 static long ext4_zero_range(struct file *file, loff_t offset,
4725 			    loff_t len, int mode)
4726 {
4727 	struct inode *inode = file_inode(file);
4728 	handle_t *handle = NULL;
4729 	unsigned int max_blocks;
4730 	loff_t new_size = 0;
4731 	int ret = 0;
4732 	int flags;
4733 	int partial;
4734 	loff_t start, end;
4735 	ext4_lblk_t lblk;
4736 	struct address_space *mapping = inode->i_mapping;
4737 	unsigned int blkbits = inode->i_blkbits;
4738 
4739 	trace_ext4_zero_range(inode, offset, len, mode);
4740 
4741 	if (!S_ISREG(inode->i_mode))
4742 		return -EINVAL;
4743 
4744 	/* Call ext4_force_commit to flush all data in case of data=journal. */
4745 	if (ext4_should_journal_data(inode)) {
4746 		ret = ext4_force_commit(inode->i_sb);
4747 		if (ret)
4748 			return ret;
4749 	}
4750 
4751 	/*
4752 	 * Write out all dirty pages to avoid race conditions
4753 	 * Then release them.
4754 	 */
4755 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4756 		ret = filemap_write_and_wait_range(mapping, offset,
4757 						   offset + len - 1);
4758 		if (ret)
4759 			return ret;
4760 	}
4761 
4762 	/*
4763 	 * Round up offset. This is not fallocate, we neet to zero out
4764 	 * blocks, so convert interior block aligned part of the range to
4765 	 * unwritten and possibly manually zero out unaligned parts of the
4766 	 * range.
4767 	 */
4768 	start = round_up(offset, 1 << blkbits);
4769 	end = round_down((offset + len), 1 << blkbits);
4770 
4771 	if (start < offset || end > offset + len)
4772 		return -EINVAL;
4773 	partial = (offset + len) & ((1 << blkbits) - 1);
4774 
4775 	lblk = start >> blkbits;
4776 	max_blocks = (end >> blkbits);
4777 	if (max_blocks < lblk)
4778 		max_blocks = 0;
4779 	else
4780 		max_blocks -= lblk;
4781 
4782 	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT |
4783 		EXT4_GET_BLOCKS_CONVERT_UNWRITTEN;
4784 	if (mode & FALLOC_FL_KEEP_SIZE)
4785 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4786 
4787 	mutex_lock(&inode->i_mutex);
4788 
4789 	/*
4790 	 * Indirect files do not support unwritten extnets
4791 	 */
4792 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4793 		ret = -EOPNOTSUPP;
4794 		goto out_mutex;
4795 	}
4796 
4797 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4798 	     offset + len > i_size_read(inode)) {
4799 		new_size = offset + len;
4800 		ret = inode_newsize_ok(inode, new_size);
4801 		if (ret)
4802 			goto out_mutex;
4803 		/*
4804 		 * If we have a partial block after EOF we have to allocate
4805 		 * the entire block.
4806 		 */
4807 		if (partial)
4808 			max_blocks += 1;
4809 	}
4810 
4811 	if (max_blocks > 0) {
4812 
4813 		/* Now release the pages and zero block aligned part of pages*/
4814 		truncate_pagecache_range(inode, start, end - 1);
4815 
4816 		/* Wait all existing dio workers, newcomers will block on i_mutex */
4817 		ext4_inode_block_unlocked_dio(inode);
4818 		inode_dio_wait(inode);
4819 
4820 		/*
4821 		 * Remove entire range from the extent status tree.
4822 		 */
4823 		ret = ext4_es_remove_extent(inode, lblk, max_blocks);
4824 		if (ret)
4825 			goto out_dio;
4826 
4827 		ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags,
4828 					     mode);
4829 		if (ret)
4830 			goto out_dio;
4831 	}
4832 
4833 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 4);
4834 	if (IS_ERR(handle)) {
4835 		ret = PTR_ERR(handle);
4836 		ext4_std_error(inode->i_sb, ret);
4837 		goto out_dio;
4838 	}
4839 
4840 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4841 
4842 	if (new_size) {
4843 		if (new_size > i_size_read(inode))
4844 			i_size_write(inode, new_size);
4845 		if (new_size > EXT4_I(inode)->i_disksize)
4846 			ext4_update_i_disksize(inode, new_size);
4847 	} else {
4848 		/*
4849 		* Mark that we allocate beyond EOF so the subsequent truncate
4850 		* can proceed even if the new size is the same as i_size.
4851 		*/
4852 		if ((offset + len) > i_size_read(inode))
4853 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4854 	}
4855 
4856 	ext4_mark_inode_dirty(handle, inode);
4857 
4858 	/* Zero out partial block at the edges of the range */
4859 	ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4860 
4861 	if (file->f_flags & O_SYNC)
4862 		ext4_handle_sync(handle);
4863 
4864 	ext4_journal_stop(handle);
4865 out_dio:
4866 	ext4_inode_resume_unlocked_dio(inode);
4867 out_mutex:
4868 	mutex_unlock(&inode->i_mutex);
4869 	return ret;
4870 }
4871 
4872 /*
4873  * preallocate space for a file. This implements ext4's fallocate file
4874  * operation, which gets called from sys_fallocate system call.
4875  * For block-mapped files, posix_fallocate should fall back to the method
4876  * of writing zeroes to the required new blocks (the same behavior which is
4877  * expected for file systems which do not support fallocate() system call).
4878  */
4879 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4880 {
4881 	struct inode *inode = file_inode(file);
4882 	handle_t *handle;
4883 	loff_t new_size = 0;
4884 	unsigned int max_blocks;
4885 	int ret = 0;
4886 	int flags;
4887 	ext4_lblk_t lblk;
4888 	struct timespec tv;
4889 	unsigned int blkbits = inode->i_blkbits;
4890 
4891 	/* Return error if mode is not supported */
4892 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4893 		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
4894 		return -EOPNOTSUPP;
4895 
4896 	if (mode & FALLOC_FL_PUNCH_HOLE)
4897 		return ext4_punch_hole(inode, offset, len);
4898 
4899 	ret = ext4_convert_inline_data(inode);
4900 	if (ret)
4901 		return ret;
4902 
4903 	/*
4904 	 * currently supporting (pre)allocate mode for extent-based
4905 	 * files _only_
4906 	 */
4907 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4908 		return -EOPNOTSUPP;
4909 
4910 	if (mode & FALLOC_FL_COLLAPSE_RANGE)
4911 		return ext4_collapse_range(inode, offset, len);
4912 
4913 	if (mode & FALLOC_FL_ZERO_RANGE)
4914 		return ext4_zero_range(file, offset, len, mode);
4915 
4916 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4917 	lblk = offset >> blkbits;
4918 	/*
4919 	 * We can't just convert len to max_blocks because
4920 	 * If blocksize = 4096 offset = 3072 and len = 2048
4921 	 */
4922 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4923 		- lblk;
4924 
4925 	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4926 	if (mode & FALLOC_FL_KEEP_SIZE)
4927 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4928 
4929 	mutex_lock(&inode->i_mutex);
4930 
4931 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4932 	     offset + len > i_size_read(inode)) {
4933 		new_size = offset + len;
4934 		ret = inode_newsize_ok(inode, new_size);
4935 		if (ret)
4936 			goto out;
4937 	}
4938 
4939 	ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags, mode);
4940 	if (ret)
4941 		goto out;
4942 
4943 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4944 	if (IS_ERR(handle))
4945 		goto out;
4946 
4947 	tv = inode->i_ctime = ext4_current_time(inode);
4948 
4949 	if (new_size) {
4950 		if (new_size > i_size_read(inode)) {
4951 			i_size_write(inode, new_size);
4952 			inode->i_mtime = tv;
4953 		}
4954 		if (new_size > EXT4_I(inode)->i_disksize)
4955 			ext4_update_i_disksize(inode, new_size);
4956 	} else {
4957 		/*
4958 		* Mark that we allocate beyond EOF so the subsequent truncate
4959 		* can proceed even if the new size is the same as i_size.
4960 		*/
4961 		if ((offset + len) > i_size_read(inode))
4962 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4963 	}
4964 	ext4_mark_inode_dirty(handle, inode);
4965 	if (file->f_flags & O_SYNC)
4966 		ext4_handle_sync(handle);
4967 
4968 	ext4_journal_stop(handle);
4969 out:
4970 	mutex_unlock(&inode->i_mutex);
4971 	trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4972 	return ret;
4973 }
4974 
4975 /*
4976  * This function convert a range of blocks to written extents
4977  * The caller of this function will pass the start offset and the size.
4978  * all unwritten extents within this range will be converted to
4979  * written extents.
4980  *
4981  * This function is called from the direct IO end io call back
4982  * function, to convert the fallocated extents after IO is completed.
4983  * Returns 0 on success.
4984  */
4985 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4986 				   loff_t offset, ssize_t len)
4987 {
4988 	unsigned int max_blocks;
4989 	int ret = 0;
4990 	int ret2 = 0;
4991 	struct ext4_map_blocks map;
4992 	unsigned int credits, blkbits = inode->i_blkbits;
4993 
4994 	map.m_lblk = offset >> blkbits;
4995 	/*
4996 	 * We can't just convert len to max_blocks because
4997 	 * If blocksize = 4096 offset = 3072 and len = 2048
4998 	 */
4999 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
5000 		      map.m_lblk);
5001 	/*
5002 	 * This is somewhat ugly but the idea is clear: When transaction is
5003 	 * reserved, everything goes into it. Otherwise we rather start several
5004 	 * smaller transactions for conversion of each extent separately.
5005 	 */
5006 	if (handle) {
5007 		handle = ext4_journal_start_reserved(handle,
5008 						     EXT4_HT_EXT_CONVERT);
5009 		if (IS_ERR(handle))
5010 			return PTR_ERR(handle);
5011 		credits = 0;
5012 	} else {
5013 		/*
5014 		 * credits to insert 1 extent into extent tree
5015 		 */
5016 		credits = ext4_chunk_trans_blocks(inode, max_blocks);
5017 	}
5018 	while (ret >= 0 && ret < max_blocks) {
5019 		map.m_lblk += ret;
5020 		map.m_len = (max_blocks -= ret);
5021 		if (credits) {
5022 			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5023 						    credits);
5024 			if (IS_ERR(handle)) {
5025 				ret = PTR_ERR(handle);
5026 				break;
5027 			}
5028 		}
5029 		ret = ext4_map_blocks(handle, inode, &map,
5030 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5031 		if (ret <= 0)
5032 			ext4_warning(inode->i_sb,
5033 				     "inode #%lu: block %u: len %u: "
5034 				     "ext4_ext_map_blocks returned %d",
5035 				     inode->i_ino, map.m_lblk,
5036 				     map.m_len, ret);
5037 		ext4_mark_inode_dirty(handle, inode);
5038 		if (credits)
5039 			ret2 = ext4_journal_stop(handle);
5040 		if (ret <= 0 || ret2)
5041 			break;
5042 	}
5043 	if (!credits)
5044 		ret2 = ext4_journal_stop(handle);
5045 	return ret > 0 ? ret2 : ret;
5046 }
5047 
5048 /*
5049  * If newes is not existing extent (newes->ec_pblk equals zero) find
5050  * delayed extent at start of newes and update newes accordingly and
5051  * return start of the next delayed extent.
5052  *
5053  * If newes is existing extent (newes->ec_pblk is not equal zero)
5054  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5055  * extent found. Leave newes unmodified.
5056  */
5057 static int ext4_find_delayed_extent(struct inode *inode,
5058 				    struct extent_status *newes)
5059 {
5060 	struct extent_status es;
5061 	ext4_lblk_t block, next_del;
5062 
5063 	if (newes->es_pblk == 0) {
5064 		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5065 				newes->es_lblk + newes->es_len - 1, &es);
5066 
5067 		/*
5068 		 * No extent in extent-tree contains block @newes->es_pblk,
5069 		 * then the block may stay in 1)a hole or 2)delayed-extent.
5070 		 */
5071 		if (es.es_len == 0)
5072 			/* A hole found. */
5073 			return 0;
5074 
5075 		if (es.es_lblk > newes->es_lblk) {
5076 			/* A hole found. */
5077 			newes->es_len = min(es.es_lblk - newes->es_lblk,
5078 					    newes->es_len);
5079 			return 0;
5080 		}
5081 
5082 		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5083 	}
5084 
5085 	block = newes->es_lblk + newes->es_len;
5086 	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5087 	if (es.es_len == 0)
5088 		next_del = EXT_MAX_BLOCKS;
5089 	else
5090 		next_del = es.es_lblk;
5091 
5092 	return next_del;
5093 }
5094 /* fiemap flags we can handle specified here */
5095 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5096 
5097 static int ext4_xattr_fiemap(struct inode *inode,
5098 				struct fiemap_extent_info *fieinfo)
5099 {
5100 	__u64 physical = 0;
5101 	__u64 length;
5102 	__u32 flags = FIEMAP_EXTENT_LAST;
5103 	int blockbits = inode->i_sb->s_blocksize_bits;
5104 	int error = 0;
5105 
5106 	/* in-inode? */
5107 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5108 		struct ext4_iloc iloc;
5109 		int offset;	/* offset of xattr in inode */
5110 
5111 		error = ext4_get_inode_loc(inode, &iloc);
5112 		if (error)
5113 			return error;
5114 		physical = (__u64)iloc.bh->b_blocknr << blockbits;
5115 		offset = EXT4_GOOD_OLD_INODE_SIZE +
5116 				EXT4_I(inode)->i_extra_isize;
5117 		physical += offset;
5118 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5119 		flags |= FIEMAP_EXTENT_DATA_INLINE;
5120 		brelse(iloc.bh);
5121 	} else { /* external block */
5122 		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5123 		length = inode->i_sb->s_blocksize;
5124 	}
5125 
5126 	if (physical)
5127 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
5128 						length, flags);
5129 	return (error < 0 ? error : 0);
5130 }
5131 
5132 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5133 		__u64 start, __u64 len)
5134 {
5135 	ext4_lblk_t start_blk;
5136 	int error = 0;
5137 
5138 	if (ext4_has_inline_data(inode)) {
5139 		int has_inline = 1;
5140 
5141 		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
5142 
5143 		if (has_inline)
5144 			return error;
5145 	}
5146 
5147 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5148 		error = ext4_ext_precache(inode);
5149 		if (error)
5150 			return error;
5151 	}
5152 
5153 	/* fallback to generic here if not in extents fmt */
5154 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5155 		return generic_block_fiemap(inode, fieinfo, start, len,
5156 			ext4_get_block);
5157 
5158 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5159 		return -EBADR;
5160 
5161 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5162 		error = ext4_xattr_fiemap(inode, fieinfo);
5163 	} else {
5164 		ext4_lblk_t len_blks;
5165 		__u64 last_blk;
5166 
5167 		start_blk = start >> inode->i_sb->s_blocksize_bits;
5168 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5169 		if (last_blk >= EXT_MAX_BLOCKS)
5170 			last_blk = EXT_MAX_BLOCKS-1;
5171 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5172 
5173 		/*
5174 		 * Walk the extent tree gathering extent information
5175 		 * and pushing extents back to the user.
5176 		 */
5177 		error = ext4_fill_fiemap_extents(inode, start_blk,
5178 						 len_blks, fieinfo);
5179 	}
5180 	ext4_es_lru_add(inode);
5181 	return error;
5182 }
5183 
5184 /*
5185  * ext4_access_path:
5186  * Function to access the path buffer for marking it dirty.
5187  * It also checks if there are sufficient credits left in the journal handle
5188  * to update path.
5189  */
5190 static int
5191 ext4_access_path(handle_t *handle, struct inode *inode,
5192 		struct ext4_ext_path *path)
5193 {
5194 	int credits, err;
5195 
5196 	if (!ext4_handle_valid(handle))
5197 		return 0;
5198 
5199 	/*
5200 	 * Check if need to extend journal credits
5201 	 * 3 for leaf, sb, and inode plus 2 (bmap and group
5202 	 * descriptor) for each block group; assume two block
5203 	 * groups
5204 	 */
5205 	if (handle->h_buffer_credits < 7) {
5206 		credits = ext4_writepage_trans_blocks(inode);
5207 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5208 		/* EAGAIN is success */
5209 		if (err && err != -EAGAIN)
5210 			return err;
5211 	}
5212 
5213 	err = ext4_ext_get_access(handle, inode, path);
5214 	return err;
5215 }
5216 
5217 /*
5218  * ext4_ext_shift_path_extents:
5219  * Shift the extents of a path structure lying between path[depth].p_ext
5220  * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift
5221  * from starting block for each extent.
5222  */
5223 static int
5224 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5225 			    struct inode *inode, handle_t *handle,
5226 			    ext4_lblk_t *start)
5227 {
5228 	int depth, err = 0;
5229 	struct ext4_extent *ex_start, *ex_last;
5230 	bool update = 0;
5231 	depth = path->p_depth;
5232 
5233 	while (depth >= 0) {
5234 		if (depth == path->p_depth) {
5235 			ex_start = path[depth].p_ext;
5236 			if (!ex_start)
5237 				return -EIO;
5238 
5239 			ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5240 			if (!ex_last)
5241 				return -EIO;
5242 
5243 			err = ext4_access_path(handle, inode, path + depth);
5244 			if (err)
5245 				goto out;
5246 
5247 			if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5248 				update = 1;
5249 
5250 			*start = le32_to_cpu(ex_last->ee_block) +
5251 				ext4_ext_get_actual_len(ex_last);
5252 
5253 			while (ex_start <= ex_last) {
5254 				le32_add_cpu(&ex_start->ee_block, -shift);
5255 				/* Try to merge to the left. */
5256 				if ((ex_start >
5257 				     EXT_FIRST_EXTENT(path[depth].p_hdr)) &&
5258 				    ext4_ext_try_to_merge_right(inode,
5259 							path, ex_start - 1))
5260 					ex_last--;
5261 				else
5262 					ex_start++;
5263 			}
5264 			err = ext4_ext_dirty(handle, inode, path + depth);
5265 			if (err)
5266 				goto out;
5267 
5268 			if (--depth < 0 || !update)
5269 				break;
5270 		}
5271 
5272 		/* Update index too */
5273 		err = ext4_access_path(handle, inode, path + depth);
5274 		if (err)
5275 			goto out;
5276 
5277 		le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5278 		err = ext4_ext_dirty(handle, inode, path + depth);
5279 		if (err)
5280 			goto out;
5281 
5282 		/* we are done if current index is not a starting index */
5283 		if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5284 			break;
5285 
5286 		depth--;
5287 	}
5288 
5289 out:
5290 	return err;
5291 }
5292 
5293 /*
5294  * ext4_ext_shift_extents:
5295  * All the extents which lies in the range from start to the last allocated
5296  * block for the file are shifted downwards by shift blocks.
5297  * On success, 0 is returned, error otherwise.
5298  */
5299 static int
5300 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5301 		       ext4_lblk_t start, ext4_lblk_t shift)
5302 {
5303 	struct ext4_ext_path *path;
5304 	int ret = 0, depth;
5305 	struct ext4_extent *extent;
5306 	ext4_lblk_t stop_block, current_block;
5307 	ext4_lblk_t ex_start, ex_end;
5308 
5309 	/* Let path point to the last extent */
5310 	path = ext4_ext_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
5311 	if (IS_ERR(path))
5312 		return PTR_ERR(path);
5313 
5314 	depth = path->p_depth;
5315 	extent = path[depth].p_ext;
5316 	if (!extent) {
5317 		ext4_ext_drop_refs(path);
5318 		kfree(path);
5319 		return ret;
5320 	}
5321 
5322 	stop_block = le32_to_cpu(extent->ee_block) +
5323 			ext4_ext_get_actual_len(extent);
5324 	ext4_ext_drop_refs(path);
5325 	kfree(path);
5326 
5327 	/* Nothing to shift, if hole is at the end of file */
5328 	if (start >= stop_block)
5329 		return ret;
5330 
5331 	/*
5332 	 * Don't start shifting extents until we make sure the hole is big
5333 	 * enough to accomodate the shift.
5334 	 */
5335 	path = ext4_ext_find_extent(inode, start - 1, NULL, 0);
5336 	if (IS_ERR(path))
5337 		return PTR_ERR(path);
5338 	depth = path->p_depth;
5339 	extent =  path[depth].p_ext;
5340 	if (extent) {
5341 		ex_start = le32_to_cpu(extent->ee_block);
5342 		ex_end = le32_to_cpu(extent->ee_block) +
5343 			ext4_ext_get_actual_len(extent);
5344 	} else {
5345 		ex_start = 0;
5346 		ex_end = 0;
5347 	}
5348 	ext4_ext_drop_refs(path);
5349 	kfree(path);
5350 
5351 	if ((start == ex_start && shift > ex_start) ||
5352 	    (shift > start - ex_end))
5353 		return -EINVAL;
5354 
5355 	/* Its safe to start updating extents */
5356 	while (start < stop_block) {
5357 		path = ext4_ext_find_extent(inode, start, NULL, 0);
5358 		if (IS_ERR(path))
5359 			return PTR_ERR(path);
5360 		depth = path->p_depth;
5361 		extent = path[depth].p_ext;
5362 		if (!extent) {
5363 			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5364 					 (unsigned long) start);
5365 			return -EIO;
5366 		}
5367 
5368 		current_block = le32_to_cpu(extent->ee_block);
5369 		if (start > current_block) {
5370 			/* Hole, move to the next extent */
5371 			ret = mext_next_extent(inode, path, &extent);
5372 			if (ret != 0) {
5373 				ext4_ext_drop_refs(path);
5374 				kfree(path);
5375 				if (ret == 1)
5376 					ret = 0;
5377 				break;
5378 			}
5379 		}
5380 		ret = ext4_ext_shift_path_extents(path, shift, inode,
5381 				handle, &start);
5382 		ext4_ext_drop_refs(path);
5383 		kfree(path);
5384 		if (ret)
5385 			break;
5386 	}
5387 
5388 	return ret;
5389 }
5390 
5391 /*
5392  * ext4_collapse_range:
5393  * This implements the fallocate's collapse range functionality for ext4
5394  * Returns: 0 and non-zero on error.
5395  */
5396 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5397 {
5398 	struct super_block *sb = inode->i_sb;
5399 	ext4_lblk_t punch_start, punch_stop;
5400 	handle_t *handle;
5401 	unsigned int credits;
5402 	loff_t new_size, ioffset;
5403 	int ret;
5404 
5405 	/* Collapse range works only on fs block size aligned offsets. */
5406 	if (offset & (EXT4_BLOCK_SIZE(sb) - 1) ||
5407 	    len & (EXT4_BLOCK_SIZE(sb) - 1))
5408 		return -EINVAL;
5409 
5410 	if (!S_ISREG(inode->i_mode))
5411 		return -EINVAL;
5412 
5413 	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1)
5414 		return -EOPNOTSUPP;
5415 
5416 	trace_ext4_collapse_range(inode, offset, len);
5417 
5418 	punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5419 	punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5420 
5421 	/* Call ext4_force_commit to flush all data in case of data=journal. */
5422 	if (ext4_should_journal_data(inode)) {
5423 		ret = ext4_force_commit(inode->i_sb);
5424 		if (ret)
5425 			return ret;
5426 	}
5427 
5428 	/*
5429 	 * Need to round down offset to be aligned with page size boundary
5430 	 * for page size > block size.
5431 	 */
5432 	ioffset = round_down(offset, PAGE_SIZE);
5433 
5434 	/* Write out all dirty pages */
5435 	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5436 					   LLONG_MAX);
5437 	if (ret)
5438 		return ret;
5439 
5440 	/* Take mutex lock */
5441 	mutex_lock(&inode->i_mutex);
5442 
5443 	/*
5444 	 * There is no need to overlap collapse range with EOF, in which case
5445 	 * it is effectively a truncate operation
5446 	 */
5447 	if (offset + len >= i_size_read(inode)) {
5448 		ret = -EINVAL;
5449 		goto out_mutex;
5450 	}
5451 
5452 	/* Currently just for extent based files */
5453 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5454 		ret = -EOPNOTSUPP;
5455 		goto out_mutex;
5456 	}
5457 
5458 	truncate_pagecache(inode, ioffset);
5459 
5460 	/* Wait for existing dio to complete */
5461 	ext4_inode_block_unlocked_dio(inode);
5462 	inode_dio_wait(inode);
5463 
5464 	credits = ext4_writepage_trans_blocks(inode);
5465 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5466 	if (IS_ERR(handle)) {
5467 		ret = PTR_ERR(handle);
5468 		goto out_dio;
5469 	}
5470 
5471 	down_write(&EXT4_I(inode)->i_data_sem);
5472 	ext4_discard_preallocations(inode);
5473 
5474 	ret = ext4_es_remove_extent(inode, punch_start,
5475 				    EXT_MAX_BLOCKS - punch_start);
5476 	if (ret) {
5477 		up_write(&EXT4_I(inode)->i_data_sem);
5478 		goto out_stop;
5479 	}
5480 
5481 	ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5482 	if (ret) {
5483 		up_write(&EXT4_I(inode)->i_data_sem);
5484 		goto out_stop;
5485 	}
5486 	ext4_discard_preallocations(inode);
5487 
5488 	ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5489 				     punch_stop - punch_start);
5490 	if (ret) {
5491 		up_write(&EXT4_I(inode)->i_data_sem);
5492 		goto out_stop;
5493 	}
5494 
5495 	new_size = i_size_read(inode) - len;
5496 	i_size_write(inode, new_size);
5497 	EXT4_I(inode)->i_disksize = new_size;
5498 
5499 	up_write(&EXT4_I(inode)->i_data_sem);
5500 	if (IS_SYNC(inode))
5501 		ext4_handle_sync(handle);
5502 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5503 	ext4_mark_inode_dirty(handle, inode);
5504 
5505 out_stop:
5506 	ext4_journal_stop(handle);
5507 out_dio:
5508 	ext4_inode_resume_unlocked_dio(inode);
5509 out_mutex:
5510 	mutex_unlock(&inode->i_mutex);
5511 	return ret;
5512 }
5513