xref: /openbmc/linux/fs/ext4/extents.c (revision 8bd1369b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  *
6  * Architecture independence:
7  *   Copyright (c) 2005, Bull S.A.
8  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
9  */
10 
11 /*
12  * Extents support for EXT4
13  *
14  * TODO:
15  *   - ext4*_error() should be used in some situations
16  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
17  *   - smart tree reduction
18  */
19 
20 #include <linux/fs.h>
21 #include <linux/time.h>
22 #include <linux/jbd2.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/uaccess.h>
29 #include <linux/fiemap.h>
30 #include <linux/backing-dev.h>
31 #include "ext4_jbd2.h"
32 #include "ext4_extents.h"
33 #include "xattr.h"
34 
35 #include <trace/events/ext4.h>
36 
37 /*
38  * used by extent splitting.
39  */
40 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
41 					due to ENOSPC */
42 #define EXT4_EXT_MARK_UNWRIT1	0x2  /* mark first half unwritten */
43 #define EXT4_EXT_MARK_UNWRIT2	0x4  /* mark second half unwritten */
44 
45 #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
46 #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
47 
48 static __le32 ext4_extent_block_csum(struct inode *inode,
49 				     struct ext4_extent_header *eh)
50 {
51 	struct ext4_inode_info *ei = EXT4_I(inode);
52 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53 	__u32 csum;
54 
55 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
56 			   EXT4_EXTENT_TAIL_OFFSET(eh));
57 	return cpu_to_le32(csum);
58 }
59 
60 static int ext4_extent_block_csum_verify(struct inode *inode,
61 					 struct ext4_extent_header *eh)
62 {
63 	struct ext4_extent_tail *et;
64 
65 	if (!ext4_has_metadata_csum(inode->i_sb))
66 		return 1;
67 
68 	et = find_ext4_extent_tail(eh);
69 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
70 		return 0;
71 	return 1;
72 }
73 
74 static void ext4_extent_block_csum_set(struct inode *inode,
75 				       struct ext4_extent_header *eh)
76 {
77 	struct ext4_extent_tail *et;
78 
79 	if (!ext4_has_metadata_csum(inode->i_sb))
80 		return;
81 
82 	et = find_ext4_extent_tail(eh);
83 	et->et_checksum = ext4_extent_block_csum(inode, eh);
84 }
85 
86 static int ext4_split_extent(handle_t *handle,
87 				struct inode *inode,
88 				struct ext4_ext_path **ppath,
89 				struct ext4_map_blocks *map,
90 				int split_flag,
91 				int flags);
92 
93 static int ext4_split_extent_at(handle_t *handle,
94 			     struct inode *inode,
95 			     struct ext4_ext_path **ppath,
96 			     ext4_lblk_t split,
97 			     int split_flag,
98 			     int flags);
99 
100 static int ext4_find_delayed_extent(struct inode *inode,
101 				    struct extent_status *newes);
102 
103 static int ext4_ext_truncate_extend_restart(handle_t *handle,
104 					    struct inode *inode,
105 					    int needed)
106 {
107 	int err;
108 
109 	if (!ext4_handle_valid(handle))
110 		return 0;
111 	if (handle->h_buffer_credits >= needed)
112 		return 0;
113 	/*
114 	 * If we need to extend the journal get a few extra blocks
115 	 * while we're at it for efficiency's sake.
116 	 */
117 	needed += 3;
118 	err = ext4_journal_extend(handle, needed - handle->h_buffer_credits);
119 	if (err <= 0)
120 		return err;
121 	err = ext4_truncate_restart_trans(handle, inode, needed);
122 	if (err == 0)
123 		err = -EAGAIN;
124 
125 	return err;
126 }
127 
128 /*
129  * could return:
130  *  - EROFS
131  *  - ENOMEM
132  */
133 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
134 				struct ext4_ext_path *path)
135 {
136 	if (path->p_bh) {
137 		/* path points to block */
138 		BUFFER_TRACE(path->p_bh, "get_write_access");
139 		return ext4_journal_get_write_access(handle, path->p_bh);
140 	}
141 	/* path points to leaf/index in inode body */
142 	/* we use in-core data, no need to protect them */
143 	return 0;
144 }
145 
146 /*
147  * could return:
148  *  - EROFS
149  *  - ENOMEM
150  *  - EIO
151  */
152 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
153 		     struct inode *inode, struct ext4_ext_path *path)
154 {
155 	int err;
156 
157 	WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
158 	if (path->p_bh) {
159 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
160 		/* path points to block */
161 		err = __ext4_handle_dirty_metadata(where, line, handle,
162 						   inode, path->p_bh);
163 	} else {
164 		/* path points to leaf/index in inode body */
165 		err = ext4_mark_inode_dirty(handle, inode);
166 	}
167 	return err;
168 }
169 
170 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
171 			      struct ext4_ext_path *path,
172 			      ext4_lblk_t block)
173 {
174 	if (path) {
175 		int depth = path->p_depth;
176 		struct ext4_extent *ex;
177 
178 		/*
179 		 * Try to predict block placement assuming that we are
180 		 * filling in a file which will eventually be
181 		 * non-sparse --- i.e., in the case of libbfd writing
182 		 * an ELF object sections out-of-order but in a way
183 		 * the eventually results in a contiguous object or
184 		 * executable file, or some database extending a table
185 		 * space file.  However, this is actually somewhat
186 		 * non-ideal if we are writing a sparse file such as
187 		 * qemu or KVM writing a raw image file that is going
188 		 * to stay fairly sparse, since it will end up
189 		 * fragmenting the file system's free space.  Maybe we
190 		 * should have some hueristics or some way to allow
191 		 * userspace to pass a hint to file system,
192 		 * especially if the latter case turns out to be
193 		 * common.
194 		 */
195 		ex = path[depth].p_ext;
196 		if (ex) {
197 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
198 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
199 
200 			if (block > ext_block)
201 				return ext_pblk + (block - ext_block);
202 			else
203 				return ext_pblk - (ext_block - block);
204 		}
205 
206 		/* it looks like index is empty;
207 		 * try to find starting block from index itself */
208 		if (path[depth].p_bh)
209 			return path[depth].p_bh->b_blocknr;
210 	}
211 
212 	/* OK. use inode's group */
213 	return ext4_inode_to_goal_block(inode);
214 }
215 
216 /*
217  * Allocation for a meta data block
218  */
219 static ext4_fsblk_t
220 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
221 			struct ext4_ext_path *path,
222 			struct ext4_extent *ex, int *err, unsigned int flags)
223 {
224 	ext4_fsblk_t goal, newblock;
225 
226 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
227 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
228 					NULL, err);
229 	return newblock;
230 }
231 
232 static inline int ext4_ext_space_block(struct inode *inode, int check)
233 {
234 	int size;
235 
236 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
237 			/ sizeof(struct ext4_extent);
238 #ifdef AGGRESSIVE_TEST
239 	if (!check && size > 6)
240 		size = 6;
241 #endif
242 	return size;
243 }
244 
245 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
246 {
247 	int size;
248 
249 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
250 			/ sizeof(struct ext4_extent_idx);
251 #ifdef AGGRESSIVE_TEST
252 	if (!check && size > 5)
253 		size = 5;
254 #endif
255 	return size;
256 }
257 
258 static inline int ext4_ext_space_root(struct inode *inode, int check)
259 {
260 	int size;
261 
262 	size = sizeof(EXT4_I(inode)->i_data);
263 	size -= sizeof(struct ext4_extent_header);
264 	size /= sizeof(struct ext4_extent);
265 #ifdef AGGRESSIVE_TEST
266 	if (!check && size > 3)
267 		size = 3;
268 #endif
269 	return size;
270 }
271 
272 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
273 {
274 	int size;
275 
276 	size = sizeof(EXT4_I(inode)->i_data);
277 	size -= sizeof(struct ext4_extent_header);
278 	size /= sizeof(struct ext4_extent_idx);
279 #ifdef AGGRESSIVE_TEST
280 	if (!check && size > 4)
281 		size = 4;
282 #endif
283 	return size;
284 }
285 
286 static inline int
287 ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
288 			   struct ext4_ext_path **ppath, ext4_lblk_t lblk,
289 			   int nofail)
290 {
291 	struct ext4_ext_path *path = *ppath;
292 	int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
293 
294 	return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
295 			EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
296 			EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
297 			(nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
298 }
299 
300 /*
301  * Calculate the number of metadata blocks needed
302  * to allocate @blocks
303  * Worse case is one block per extent
304  */
305 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
306 {
307 	struct ext4_inode_info *ei = EXT4_I(inode);
308 	int idxs;
309 
310 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
311 		/ sizeof(struct ext4_extent_idx));
312 
313 	/*
314 	 * If the new delayed allocation block is contiguous with the
315 	 * previous da block, it can share index blocks with the
316 	 * previous block, so we only need to allocate a new index
317 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
318 	 * an additional index block, and at ldxs**3 blocks, yet
319 	 * another index blocks.
320 	 */
321 	if (ei->i_da_metadata_calc_len &&
322 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
323 		int num = 0;
324 
325 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
326 			num++;
327 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
328 			num++;
329 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
330 			num++;
331 			ei->i_da_metadata_calc_len = 0;
332 		} else
333 			ei->i_da_metadata_calc_len++;
334 		ei->i_da_metadata_calc_last_lblock++;
335 		return num;
336 	}
337 
338 	/*
339 	 * In the worst case we need a new set of index blocks at
340 	 * every level of the inode's extent tree.
341 	 */
342 	ei->i_da_metadata_calc_len = 1;
343 	ei->i_da_metadata_calc_last_lblock = lblock;
344 	return ext_depth(inode) + 1;
345 }
346 
347 static int
348 ext4_ext_max_entries(struct inode *inode, int depth)
349 {
350 	int max;
351 
352 	if (depth == ext_depth(inode)) {
353 		if (depth == 0)
354 			max = ext4_ext_space_root(inode, 1);
355 		else
356 			max = ext4_ext_space_root_idx(inode, 1);
357 	} else {
358 		if (depth == 0)
359 			max = ext4_ext_space_block(inode, 1);
360 		else
361 			max = ext4_ext_space_block_idx(inode, 1);
362 	}
363 
364 	return max;
365 }
366 
367 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
368 {
369 	ext4_fsblk_t block = ext4_ext_pblock(ext);
370 	int len = ext4_ext_get_actual_len(ext);
371 	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
372 
373 	/*
374 	 * We allow neither:
375 	 *  - zero length
376 	 *  - overflow/wrap-around
377 	 */
378 	if (lblock + len <= lblock)
379 		return 0;
380 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
381 }
382 
383 static int ext4_valid_extent_idx(struct inode *inode,
384 				struct ext4_extent_idx *ext_idx)
385 {
386 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
387 
388 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
389 }
390 
391 static int ext4_valid_extent_entries(struct inode *inode,
392 				struct ext4_extent_header *eh,
393 				int depth)
394 {
395 	unsigned short entries;
396 	if (eh->eh_entries == 0)
397 		return 1;
398 
399 	entries = le16_to_cpu(eh->eh_entries);
400 
401 	if (depth == 0) {
402 		/* leaf entries */
403 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
404 		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
405 		ext4_fsblk_t pblock = 0;
406 		ext4_lblk_t lblock = 0;
407 		ext4_lblk_t prev = 0;
408 		int len = 0;
409 		while (entries) {
410 			if (!ext4_valid_extent(inode, ext))
411 				return 0;
412 
413 			/* Check for overlapping extents */
414 			lblock = le32_to_cpu(ext->ee_block);
415 			len = ext4_ext_get_actual_len(ext);
416 			if ((lblock <= prev) && prev) {
417 				pblock = ext4_ext_pblock(ext);
418 				es->s_last_error_block = cpu_to_le64(pblock);
419 				return 0;
420 			}
421 			ext++;
422 			entries--;
423 			prev = lblock + len - 1;
424 		}
425 	} else {
426 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
427 		while (entries) {
428 			if (!ext4_valid_extent_idx(inode, ext_idx))
429 				return 0;
430 			ext_idx++;
431 			entries--;
432 		}
433 	}
434 	return 1;
435 }
436 
437 static int __ext4_ext_check(const char *function, unsigned int line,
438 			    struct inode *inode, struct ext4_extent_header *eh,
439 			    int depth, ext4_fsblk_t pblk)
440 {
441 	const char *error_msg;
442 	int max = 0, err = -EFSCORRUPTED;
443 
444 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
445 		error_msg = "invalid magic";
446 		goto corrupted;
447 	}
448 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
449 		error_msg = "unexpected eh_depth";
450 		goto corrupted;
451 	}
452 	if (unlikely(eh->eh_max == 0)) {
453 		error_msg = "invalid eh_max";
454 		goto corrupted;
455 	}
456 	max = ext4_ext_max_entries(inode, depth);
457 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
458 		error_msg = "too large eh_max";
459 		goto corrupted;
460 	}
461 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
462 		error_msg = "invalid eh_entries";
463 		goto corrupted;
464 	}
465 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
466 		error_msg = "invalid extent entries";
467 		goto corrupted;
468 	}
469 	if (unlikely(depth > 32)) {
470 		error_msg = "too large eh_depth";
471 		goto corrupted;
472 	}
473 	/* Verify checksum on non-root extent tree nodes */
474 	if (ext_depth(inode) != depth &&
475 	    !ext4_extent_block_csum_verify(inode, eh)) {
476 		error_msg = "extent tree corrupted";
477 		err = -EFSBADCRC;
478 		goto corrupted;
479 	}
480 	return 0;
481 
482 corrupted:
483 	ext4_error_inode(inode, function, line, 0,
484 			 "pblk %llu bad header/extent: %s - magic %x, "
485 			 "entries %u, max %u(%u), depth %u(%u)",
486 			 (unsigned long long) pblk, error_msg,
487 			 le16_to_cpu(eh->eh_magic),
488 			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
489 			 max, le16_to_cpu(eh->eh_depth), depth);
490 	return err;
491 }
492 
493 #define ext4_ext_check(inode, eh, depth, pblk)			\
494 	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
495 
496 int ext4_ext_check_inode(struct inode *inode)
497 {
498 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
499 }
500 
501 static struct buffer_head *
502 __read_extent_tree_block(const char *function, unsigned int line,
503 			 struct inode *inode, ext4_fsblk_t pblk, int depth,
504 			 int flags)
505 {
506 	struct buffer_head		*bh;
507 	int				err;
508 
509 	bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS);
510 	if (unlikely(!bh))
511 		return ERR_PTR(-ENOMEM);
512 
513 	if (!bh_uptodate_or_lock(bh)) {
514 		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
515 		err = bh_submit_read(bh);
516 		if (err < 0)
517 			goto errout;
518 	}
519 	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
520 		return bh;
521 	err = __ext4_ext_check(function, line, inode,
522 			       ext_block_hdr(bh), depth, pblk);
523 	if (err)
524 		goto errout;
525 	set_buffer_verified(bh);
526 	/*
527 	 * If this is a leaf block, cache all of its entries
528 	 */
529 	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
530 		struct ext4_extent_header *eh = ext_block_hdr(bh);
531 		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
532 		ext4_lblk_t prev = 0;
533 		int i;
534 
535 		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
536 			unsigned int status = EXTENT_STATUS_WRITTEN;
537 			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
538 			int len = ext4_ext_get_actual_len(ex);
539 
540 			if (prev && (prev != lblk))
541 				ext4_es_cache_extent(inode, prev,
542 						     lblk - prev, ~0,
543 						     EXTENT_STATUS_HOLE);
544 
545 			if (ext4_ext_is_unwritten(ex))
546 				status = EXTENT_STATUS_UNWRITTEN;
547 			ext4_es_cache_extent(inode, lblk, len,
548 					     ext4_ext_pblock(ex), status);
549 			prev = lblk + len;
550 		}
551 	}
552 	return bh;
553 errout:
554 	put_bh(bh);
555 	return ERR_PTR(err);
556 
557 }
558 
559 #define read_extent_tree_block(inode, pblk, depth, flags)		\
560 	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
561 				 (depth), (flags))
562 
563 /*
564  * This function is called to cache a file's extent information in the
565  * extent status tree
566  */
567 int ext4_ext_precache(struct inode *inode)
568 {
569 	struct ext4_inode_info *ei = EXT4_I(inode);
570 	struct ext4_ext_path *path = NULL;
571 	struct buffer_head *bh;
572 	int i = 0, depth, ret = 0;
573 
574 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
575 		return 0;	/* not an extent-mapped inode */
576 
577 	down_read(&ei->i_data_sem);
578 	depth = ext_depth(inode);
579 
580 	path = kcalloc(depth + 1, sizeof(struct ext4_ext_path),
581 		       GFP_NOFS);
582 	if (path == NULL) {
583 		up_read(&ei->i_data_sem);
584 		return -ENOMEM;
585 	}
586 
587 	/* Don't cache anything if there are no external extent blocks */
588 	if (depth == 0)
589 		goto out;
590 	path[0].p_hdr = ext_inode_hdr(inode);
591 	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
592 	if (ret)
593 		goto out;
594 	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
595 	while (i >= 0) {
596 		/*
597 		 * If this is a leaf block or we've reached the end of
598 		 * the index block, go up
599 		 */
600 		if ((i == depth) ||
601 		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
602 			brelse(path[i].p_bh);
603 			path[i].p_bh = NULL;
604 			i--;
605 			continue;
606 		}
607 		bh = read_extent_tree_block(inode,
608 					    ext4_idx_pblock(path[i].p_idx++),
609 					    depth - i - 1,
610 					    EXT4_EX_FORCE_CACHE);
611 		if (IS_ERR(bh)) {
612 			ret = PTR_ERR(bh);
613 			break;
614 		}
615 		i++;
616 		path[i].p_bh = bh;
617 		path[i].p_hdr = ext_block_hdr(bh);
618 		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
619 	}
620 	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
621 out:
622 	up_read(&ei->i_data_sem);
623 	ext4_ext_drop_refs(path);
624 	kfree(path);
625 	return ret;
626 }
627 
628 #ifdef EXT_DEBUG
629 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
630 {
631 	int k, l = path->p_depth;
632 
633 	ext_debug("path:");
634 	for (k = 0; k <= l; k++, path++) {
635 		if (path->p_idx) {
636 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
637 			    ext4_idx_pblock(path->p_idx));
638 		} else if (path->p_ext) {
639 			ext_debug("  %d:[%d]%d:%llu ",
640 				  le32_to_cpu(path->p_ext->ee_block),
641 				  ext4_ext_is_unwritten(path->p_ext),
642 				  ext4_ext_get_actual_len(path->p_ext),
643 				  ext4_ext_pblock(path->p_ext));
644 		} else
645 			ext_debug("  []");
646 	}
647 	ext_debug("\n");
648 }
649 
650 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
651 {
652 	int depth = ext_depth(inode);
653 	struct ext4_extent_header *eh;
654 	struct ext4_extent *ex;
655 	int i;
656 
657 	if (!path)
658 		return;
659 
660 	eh = path[depth].p_hdr;
661 	ex = EXT_FIRST_EXTENT(eh);
662 
663 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
664 
665 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
666 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
667 			  ext4_ext_is_unwritten(ex),
668 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
669 	}
670 	ext_debug("\n");
671 }
672 
673 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
674 			ext4_fsblk_t newblock, int level)
675 {
676 	int depth = ext_depth(inode);
677 	struct ext4_extent *ex;
678 
679 	if (depth != level) {
680 		struct ext4_extent_idx *idx;
681 		idx = path[level].p_idx;
682 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
683 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
684 					le32_to_cpu(idx->ei_block),
685 					ext4_idx_pblock(idx),
686 					newblock);
687 			idx++;
688 		}
689 
690 		return;
691 	}
692 
693 	ex = path[depth].p_ext;
694 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
695 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
696 				le32_to_cpu(ex->ee_block),
697 				ext4_ext_pblock(ex),
698 				ext4_ext_is_unwritten(ex),
699 				ext4_ext_get_actual_len(ex),
700 				newblock);
701 		ex++;
702 	}
703 }
704 
705 #else
706 #define ext4_ext_show_path(inode, path)
707 #define ext4_ext_show_leaf(inode, path)
708 #define ext4_ext_show_move(inode, path, newblock, level)
709 #endif
710 
711 void ext4_ext_drop_refs(struct ext4_ext_path *path)
712 {
713 	int depth, i;
714 
715 	if (!path)
716 		return;
717 	depth = path->p_depth;
718 	for (i = 0; i <= depth; i++, path++)
719 		if (path->p_bh) {
720 			brelse(path->p_bh);
721 			path->p_bh = NULL;
722 		}
723 }
724 
725 /*
726  * ext4_ext_binsearch_idx:
727  * binary search for the closest index of the given block
728  * the header must be checked before calling this
729  */
730 static void
731 ext4_ext_binsearch_idx(struct inode *inode,
732 			struct ext4_ext_path *path, ext4_lblk_t block)
733 {
734 	struct ext4_extent_header *eh = path->p_hdr;
735 	struct ext4_extent_idx *r, *l, *m;
736 
737 
738 	ext_debug("binsearch for %u(idx):  ", block);
739 
740 	l = EXT_FIRST_INDEX(eh) + 1;
741 	r = EXT_LAST_INDEX(eh);
742 	while (l <= r) {
743 		m = l + (r - l) / 2;
744 		if (block < le32_to_cpu(m->ei_block))
745 			r = m - 1;
746 		else
747 			l = m + 1;
748 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
749 				m, le32_to_cpu(m->ei_block),
750 				r, le32_to_cpu(r->ei_block));
751 	}
752 
753 	path->p_idx = l - 1;
754 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
755 		  ext4_idx_pblock(path->p_idx));
756 
757 #ifdef CHECK_BINSEARCH
758 	{
759 		struct ext4_extent_idx *chix, *ix;
760 		int k;
761 
762 		chix = ix = EXT_FIRST_INDEX(eh);
763 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
764 		  if (k != 0 &&
765 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
766 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
767 				       "first=0x%p\n", k,
768 				       ix, EXT_FIRST_INDEX(eh));
769 				printk(KERN_DEBUG "%u <= %u\n",
770 				       le32_to_cpu(ix->ei_block),
771 				       le32_to_cpu(ix[-1].ei_block));
772 			}
773 			BUG_ON(k && le32_to_cpu(ix->ei_block)
774 					   <= le32_to_cpu(ix[-1].ei_block));
775 			if (block < le32_to_cpu(ix->ei_block))
776 				break;
777 			chix = ix;
778 		}
779 		BUG_ON(chix != path->p_idx);
780 	}
781 #endif
782 
783 }
784 
785 /*
786  * ext4_ext_binsearch:
787  * binary search for closest extent of the given block
788  * the header must be checked before calling this
789  */
790 static void
791 ext4_ext_binsearch(struct inode *inode,
792 		struct ext4_ext_path *path, ext4_lblk_t block)
793 {
794 	struct ext4_extent_header *eh = path->p_hdr;
795 	struct ext4_extent *r, *l, *m;
796 
797 	if (eh->eh_entries == 0) {
798 		/*
799 		 * this leaf is empty:
800 		 * we get such a leaf in split/add case
801 		 */
802 		return;
803 	}
804 
805 	ext_debug("binsearch for %u:  ", block);
806 
807 	l = EXT_FIRST_EXTENT(eh) + 1;
808 	r = EXT_LAST_EXTENT(eh);
809 
810 	while (l <= r) {
811 		m = l + (r - l) / 2;
812 		if (block < le32_to_cpu(m->ee_block))
813 			r = m - 1;
814 		else
815 			l = m + 1;
816 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
817 				m, le32_to_cpu(m->ee_block),
818 				r, le32_to_cpu(r->ee_block));
819 	}
820 
821 	path->p_ext = l - 1;
822 	ext_debug("  -> %d:%llu:[%d]%d ",
823 			le32_to_cpu(path->p_ext->ee_block),
824 			ext4_ext_pblock(path->p_ext),
825 			ext4_ext_is_unwritten(path->p_ext),
826 			ext4_ext_get_actual_len(path->p_ext));
827 
828 #ifdef CHECK_BINSEARCH
829 	{
830 		struct ext4_extent *chex, *ex;
831 		int k;
832 
833 		chex = ex = EXT_FIRST_EXTENT(eh);
834 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
835 			BUG_ON(k && le32_to_cpu(ex->ee_block)
836 					  <= le32_to_cpu(ex[-1].ee_block));
837 			if (block < le32_to_cpu(ex->ee_block))
838 				break;
839 			chex = ex;
840 		}
841 		BUG_ON(chex != path->p_ext);
842 	}
843 #endif
844 
845 }
846 
847 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
848 {
849 	struct ext4_extent_header *eh;
850 
851 	eh = ext_inode_hdr(inode);
852 	eh->eh_depth = 0;
853 	eh->eh_entries = 0;
854 	eh->eh_magic = EXT4_EXT_MAGIC;
855 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
856 	ext4_mark_inode_dirty(handle, inode);
857 	return 0;
858 }
859 
860 struct ext4_ext_path *
861 ext4_find_extent(struct inode *inode, ext4_lblk_t block,
862 		 struct ext4_ext_path **orig_path, int flags)
863 {
864 	struct ext4_extent_header *eh;
865 	struct buffer_head *bh;
866 	struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
867 	short int depth, i, ppos = 0;
868 	int ret;
869 
870 	eh = ext_inode_hdr(inode);
871 	depth = ext_depth(inode);
872 	if (depth < 0 || depth > EXT4_MAX_EXTENT_DEPTH) {
873 		EXT4_ERROR_INODE(inode, "inode has invalid extent depth: %d",
874 				 depth);
875 		ret = -EFSCORRUPTED;
876 		goto err;
877 	}
878 
879 	if (path) {
880 		ext4_ext_drop_refs(path);
881 		if (depth > path[0].p_maxdepth) {
882 			kfree(path);
883 			*orig_path = path = NULL;
884 		}
885 	}
886 	if (!path) {
887 		/* account possible depth increase */
888 		path = kcalloc(depth + 2, sizeof(struct ext4_ext_path),
889 				GFP_NOFS);
890 		if (unlikely(!path))
891 			return ERR_PTR(-ENOMEM);
892 		path[0].p_maxdepth = depth + 1;
893 	}
894 	path[0].p_hdr = eh;
895 	path[0].p_bh = NULL;
896 
897 	i = depth;
898 	/* walk through the tree */
899 	while (i) {
900 		ext_debug("depth %d: num %d, max %d\n",
901 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
902 
903 		ext4_ext_binsearch_idx(inode, path + ppos, block);
904 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
905 		path[ppos].p_depth = i;
906 		path[ppos].p_ext = NULL;
907 
908 		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
909 					    flags);
910 		if (IS_ERR(bh)) {
911 			ret = PTR_ERR(bh);
912 			goto err;
913 		}
914 
915 		eh = ext_block_hdr(bh);
916 		ppos++;
917 		path[ppos].p_bh = bh;
918 		path[ppos].p_hdr = eh;
919 	}
920 
921 	path[ppos].p_depth = i;
922 	path[ppos].p_ext = NULL;
923 	path[ppos].p_idx = NULL;
924 
925 	/* find extent */
926 	ext4_ext_binsearch(inode, path + ppos, block);
927 	/* if not an empty leaf */
928 	if (path[ppos].p_ext)
929 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
930 
931 	ext4_ext_show_path(inode, path);
932 
933 	return path;
934 
935 err:
936 	ext4_ext_drop_refs(path);
937 	kfree(path);
938 	if (orig_path)
939 		*orig_path = NULL;
940 	return ERR_PTR(ret);
941 }
942 
943 /*
944  * ext4_ext_insert_index:
945  * insert new index [@logical;@ptr] into the block at @curp;
946  * check where to insert: before @curp or after @curp
947  */
948 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
949 				 struct ext4_ext_path *curp,
950 				 int logical, ext4_fsblk_t ptr)
951 {
952 	struct ext4_extent_idx *ix;
953 	int len, err;
954 
955 	err = ext4_ext_get_access(handle, inode, curp);
956 	if (err)
957 		return err;
958 
959 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
960 		EXT4_ERROR_INODE(inode,
961 				 "logical %d == ei_block %d!",
962 				 logical, le32_to_cpu(curp->p_idx->ei_block));
963 		return -EFSCORRUPTED;
964 	}
965 
966 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
967 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
968 		EXT4_ERROR_INODE(inode,
969 				 "eh_entries %d >= eh_max %d!",
970 				 le16_to_cpu(curp->p_hdr->eh_entries),
971 				 le16_to_cpu(curp->p_hdr->eh_max));
972 		return -EFSCORRUPTED;
973 	}
974 
975 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
976 		/* insert after */
977 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
978 		ix = curp->p_idx + 1;
979 	} else {
980 		/* insert before */
981 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
982 		ix = curp->p_idx;
983 	}
984 
985 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
986 	BUG_ON(len < 0);
987 	if (len > 0) {
988 		ext_debug("insert new index %d: "
989 				"move %d indices from 0x%p to 0x%p\n",
990 				logical, len, ix, ix + 1);
991 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
992 	}
993 
994 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
995 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
996 		return -EFSCORRUPTED;
997 	}
998 
999 	ix->ei_block = cpu_to_le32(logical);
1000 	ext4_idx_store_pblock(ix, ptr);
1001 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
1002 
1003 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
1004 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
1005 		return -EFSCORRUPTED;
1006 	}
1007 
1008 	err = ext4_ext_dirty(handle, inode, curp);
1009 	ext4_std_error(inode->i_sb, err);
1010 
1011 	return err;
1012 }
1013 
1014 /*
1015  * ext4_ext_split:
1016  * inserts new subtree into the path, using free index entry
1017  * at depth @at:
1018  * - allocates all needed blocks (new leaf and all intermediate index blocks)
1019  * - makes decision where to split
1020  * - moves remaining extents and index entries (right to the split point)
1021  *   into the newly allocated blocks
1022  * - initializes subtree
1023  */
1024 static int ext4_ext_split(handle_t *handle, struct inode *inode,
1025 			  unsigned int flags,
1026 			  struct ext4_ext_path *path,
1027 			  struct ext4_extent *newext, int at)
1028 {
1029 	struct buffer_head *bh = NULL;
1030 	int depth = ext_depth(inode);
1031 	struct ext4_extent_header *neh;
1032 	struct ext4_extent_idx *fidx;
1033 	int i = at, k, m, a;
1034 	ext4_fsblk_t newblock, oldblock;
1035 	__le32 border;
1036 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1037 	int err = 0;
1038 
1039 	/* make decision: where to split? */
1040 	/* FIXME: now decision is simplest: at current extent */
1041 
1042 	/* if current leaf will be split, then we should use
1043 	 * border from split point */
1044 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1045 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1046 		return -EFSCORRUPTED;
1047 	}
1048 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1049 		border = path[depth].p_ext[1].ee_block;
1050 		ext_debug("leaf will be split."
1051 				" next leaf starts at %d\n",
1052 				  le32_to_cpu(border));
1053 	} else {
1054 		border = newext->ee_block;
1055 		ext_debug("leaf will be added."
1056 				" next leaf starts at %d\n",
1057 				le32_to_cpu(border));
1058 	}
1059 
1060 	/*
1061 	 * If error occurs, then we break processing
1062 	 * and mark filesystem read-only. index won't
1063 	 * be inserted and tree will be in consistent
1064 	 * state. Next mount will repair buffers too.
1065 	 */
1066 
1067 	/*
1068 	 * Get array to track all allocated blocks.
1069 	 * We need this to handle errors and free blocks
1070 	 * upon them.
1071 	 */
1072 	ablocks = kcalloc(depth, sizeof(ext4_fsblk_t), GFP_NOFS);
1073 	if (!ablocks)
1074 		return -ENOMEM;
1075 
1076 	/* allocate all needed blocks */
1077 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1078 	for (a = 0; a < depth - at; a++) {
1079 		newblock = ext4_ext_new_meta_block(handle, inode, path,
1080 						   newext, &err, flags);
1081 		if (newblock == 0)
1082 			goto cleanup;
1083 		ablocks[a] = newblock;
1084 	}
1085 
1086 	/* initialize new leaf */
1087 	newblock = ablocks[--a];
1088 	if (unlikely(newblock == 0)) {
1089 		EXT4_ERROR_INODE(inode, "newblock == 0!");
1090 		err = -EFSCORRUPTED;
1091 		goto cleanup;
1092 	}
1093 	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1094 	if (unlikely(!bh)) {
1095 		err = -ENOMEM;
1096 		goto cleanup;
1097 	}
1098 	lock_buffer(bh);
1099 
1100 	err = ext4_journal_get_create_access(handle, bh);
1101 	if (err)
1102 		goto cleanup;
1103 
1104 	neh = ext_block_hdr(bh);
1105 	neh->eh_entries = 0;
1106 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1107 	neh->eh_magic = EXT4_EXT_MAGIC;
1108 	neh->eh_depth = 0;
1109 
1110 	/* move remainder of path[depth] to the new leaf */
1111 	if (unlikely(path[depth].p_hdr->eh_entries !=
1112 		     path[depth].p_hdr->eh_max)) {
1113 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1114 				 path[depth].p_hdr->eh_entries,
1115 				 path[depth].p_hdr->eh_max);
1116 		err = -EFSCORRUPTED;
1117 		goto cleanup;
1118 	}
1119 	/* start copy from next extent */
1120 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1121 	ext4_ext_show_move(inode, path, newblock, depth);
1122 	if (m) {
1123 		struct ext4_extent *ex;
1124 		ex = EXT_FIRST_EXTENT(neh);
1125 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1126 		le16_add_cpu(&neh->eh_entries, m);
1127 	}
1128 
1129 	ext4_extent_block_csum_set(inode, neh);
1130 	set_buffer_uptodate(bh);
1131 	unlock_buffer(bh);
1132 
1133 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1134 	if (err)
1135 		goto cleanup;
1136 	brelse(bh);
1137 	bh = NULL;
1138 
1139 	/* correct old leaf */
1140 	if (m) {
1141 		err = ext4_ext_get_access(handle, inode, path + depth);
1142 		if (err)
1143 			goto cleanup;
1144 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1145 		err = ext4_ext_dirty(handle, inode, path + depth);
1146 		if (err)
1147 			goto cleanup;
1148 
1149 	}
1150 
1151 	/* create intermediate indexes */
1152 	k = depth - at - 1;
1153 	if (unlikely(k < 0)) {
1154 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1155 		err = -EFSCORRUPTED;
1156 		goto cleanup;
1157 	}
1158 	if (k)
1159 		ext_debug("create %d intermediate indices\n", k);
1160 	/* insert new index into current index block */
1161 	/* current depth stored in i var */
1162 	i = depth - 1;
1163 	while (k--) {
1164 		oldblock = newblock;
1165 		newblock = ablocks[--a];
1166 		bh = sb_getblk(inode->i_sb, newblock);
1167 		if (unlikely(!bh)) {
1168 			err = -ENOMEM;
1169 			goto cleanup;
1170 		}
1171 		lock_buffer(bh);
1172 
1173 		err = ext4_journal_get_create_access(handle, bh);
1174 		if (err)
1175 			goto cleanup;
1176 
1177 		neh = ext_block_hdr(bh);
1178 		neh->eh_entries = cpu_to_le16(1);
1179 		neh->eh_magic = EXT4_EXT_MAGIC;
1180 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1181 		neh->eh_depth = cpu_to_le16(depth - i);
1182 		fidx = EXT_FIRST_INDEX(neh);
1183 		fidx->ei_block = border;
1184 		ext4_idx_store_pblock(fidx, oldblock);
1185 
1186 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1187 				i, newblock, le32_to_cpu(border), oldblock);
1188 
1189 		/* move remainder of path[i] to the new index block */
1190 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1191 					EXT_LAST_INDEX(path[i].p_hdr))) {
1192 			EXT4_ERROR_INODE(inode,
1193 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1194 					 le32_to_cpu(path[i].p_ext->ee_block));
1195 			err = -EFSCORRUPTED;
1196 			goto cleanup;
1197 		}
1198 		/* start copy indexes */
1199 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1200 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1201 				EXT_MAX_INDEX(path[i].p_hdr));
1202 		ext4_ext_show_move(inode, path, newblock, i);
1203 		if (m) {
1204 			memmove(++fidx, path[i].p_idx,
1205 				sizeof(struct ext4_extent_idx) * m);
1206 			le16_add_cpu(&neh->eh_entries, m);
1207 		}
1208 		ext4_extent_block_csum_set(inode, neh);
1209 		set_buffer_uptodate(bh);
1210 		unlock_buffer(bh);
1211 
1212 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1213 		if (err)
1214 			goto cleanup;
1215 		brelse(bh);
1216 		bh = NULL;
1217 
1218 		/* correct old index */
1219 		if (m) {
1220 			err = ext4_ext_get_access(handle, inode, path + i);
1221 			if (err)
1222 				goto cleanup;
1223 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1224 			err = ext4_ext_dirty(handle, inode, path + i);
1225 			if (err)
1226 				goto cleanup;
1227 		}
1228 
1229 		i--;
1230 	}
1231 
1232 	/* insert new index */
1233 	err = ext4_ext_insert_index(handle, inode, path + at,
1234 				    le32_to_cpu(border), newblock);
1235 
1236 cleanup:
1237 	if (bh) {
1238 		if (buffer_locked(bh))
1239 			unlock_buffer(bh);
1240 		brelse(bh);
1241 	}
1242 
1243 	if (err) {
1244 		/* free all allocated blocks in error case */
1245 		for (i = 0; i < depth; i++) {
1246 			if (!ablocks[i])
1247 				continue;
1248 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1249 					 EXT4_FREE_BLOCKS_METADATA);
1250 		}
1251 	}
1252 	kfree(ablocks);
1253 
1254 	return err;
1255 }
1256 
1257 /*
1258  * ext4_ext_grow_indepth:
1259  * implements tree growing procedure:
1260  * - allocates new block
1261  * - moves top-level data (index block or leaf) into the new block
1262  * - initializes new top-level, creating index that points to the
1263  *   just created block
1264  */
1265 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1266 				 unsigned int flags)
1267 {
1268 	struct ext4_extent_header *neh;
1269 	struct buffer_head *bh;
1270 	ext4_fsblk_t newblock, goal = 0;
1271 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
1272 	int err = 0;
1273 
1274 	/* Try to prepend new index to old one */
1275 	if (ext_depth(inode))
1276 		goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
1277 	if (goal > le32_to_cpu(es->s_first_data_block)) {
1278 		flags |= EXT4_MB_HINT_TRY_GOAL;
1279 		goal--;
1280 	} else
1281 		goal = ext4_inode_to_goal_block(inode);
1282 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
1283 					NULL, &err);
1284 	if (newblock == 0)
1285 		return err;
1286 
1287 	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1288 	if (unlikely(!bh))
1289 		return -ENOMEM;
1290 	lock_buffer(bh);
1291 
1292 	err = ext4_journal_get_create_access(handle, bh);
1293 	if (err) {
1294 		unlock_buffer(bh);
1295 		goto out;
1296 	}
1297 
1298 	/* move top-level index/leaf into new block */
1299 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1300 		sizeof(EXT4_I(inode)->i_data));
1301 
1302 	/* set size of new block */
1303 	neh = ext_block_hdr(bh);
1304 	/* old root could have indexes or leaves
1305 	 * so calculate e_max right way */
1306 	if (ext_depth(inode))
1307 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1308 	else
1309 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1310 	neh->eh_magic = EXT4_EXT_MAGIC;
1311 	ext4_extent_block_csum_set(inode, neh);
1312 	set_buffer_uptodate(bh);
1313 	unlock_buffer(bh);
1314 
1315 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1316 	if (err)
1317 		goto out;
1318 
1319 	/* Update top-level index: num,max,pointer */
1320 	neh = ext_inode_hdr(inode);
1321 	neh->eh_entries = cpu_to_le16(1);
1322 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1323 	if (neh->eh_depth == 0) {
1324 		/* Root extent block becomes index block */
1325 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1326 		EXT_FIRST_INDEX(neh)->ei_block =
1327 			EXT_FIRST_EXTENT(neh)->ee_block;
1328 	}
1329 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1330 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1331 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1332 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1333 
1334 	le16_add_cpu(&neh->eh_depth, 1);
1335 	ext4_mark_inode_dirty(handle, inode);
1336 out:
1337 	brelse(bh);
1338 
1339 	return err;
1340 }
1341 
1342 /*
1343  * ext4_ext_create_new_leaf:
1344  * finds empty index and adds new leaf.
1345  * if no free index is found, then it requests in-depth growing.
1346  */
1347 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1348 				    unsigned int mb_flags,
1349 				    unsigned int gb_flags,
1350 				    struct ext4_ext_path **ppath,
1351 				    struct ext4_extent *newext)
1352 {
1353 	struct ext4_ext_path *path = *ppath;
1354 	struct ext4_ext_path *curp;
1355 	int depth, i, err = 0;
1356 
1357 repeat:
1358 	i = depth = ext_depth(inode);
1359 
1360 	/* walk up to the tree and look for free index entry */
1361 	curp = path + depth;
1362 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1363 		i--;
1364 		curp--;
1365 	}
1366 
1367 	/* we use already allocated block for index block,
1368 	 * so subsequent data blocks should be contiguous */
1369 	if (EXT_HAS_FREE_INDEX(curp)) {
1370 		/* if we found index with free entry, then use that
1371 		 * entry: create all needed subtree and add new leaf */
1372 		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1373 		if (err)
1374 			goto out;
1375 
1376 		/* refill path */
1377 		path = ext4_find_extent(inode,
1378 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1379 				    ppath, gb_flags);
1380 		if (IS_ERR(path))
1381 			err = PTR_ERR(path);
1382 	} else {
1383 		/* tree is full, time to grow in depth */
1384 		err = ext4_ext_grow_indepth(handle, inode, mb_flags);
1385 		if (err)
1386 			goto out;
1387 
1388 		/* refill path */
1389 		path = ext4_find_extent(inode,
1390 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1391 				    ppath, gb_flags);
1392 		if (IS_ERR(path)) {
1393 			err = PTR_ERR(path);
1394 			goto out;
1395 		}
1396 
1397 		/*
1398 		 * only first (depth 0 -> 1) produces free space;
1399 		 * in all other cases we have to split the grown tree
1400 		 */
1401 		depth = ext_depth(inode);
1402 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1403 			/* now we need to split */
1404 			goto repeat;
1405 		}
1406 	}
1407 
1408 out:
1409 	return err;
1410 }
1411 
1412 /*
1413  * search the closest allocated block to the left for *logical
1414  * and returns it at @logical + it's physical address at @phys
1415  * if *logical is the smallest allocated block, the function
1416  * returns 0 at @phys
1417  * return value contains 0 (success) or error code
1418  */
1419 static int ext4_ext_search_left(struct inode *inode,
1420 				struct ext4_ext_path *path,
1421 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1422 {
1423 	struct ext4_extent_idx *ix;
1424 	struct ext4_extent *ex;
1425 	int depth, ee_len;
1426 
1427 	if (unlikely(path == NULL)) {
1428 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1429 		return -EFSCORRUPTED;
1430 	}
1431 	depth = path->p_depth;
1432 	*phys = 0;
1433 
1434 	if (depth == 0 && path->p_ext == NULL)
1435 		return 0;
1436 
1437 	/* usually extent in the path covers blocks smaller
1438 	 * then *logical, but it can be that extent is the
1439 	 * first one in the file */
1440 
1441 	ex = path[depth].p_ext;
1442 	ee_len = ext4_ext_get_actual_len(ex);
1443 	if (*logical < le32_to_cpu(ex->ee_block)) {
1444 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1445 			EXT4_ERROR_INODE(inode,
1446 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1447 					 *logical, le32_to_cpu(ex->ee_block));
1448 			return -EFSCORRUPTED;
1449 		}
1450 		while (--depth >= 0) {
1451 			ix = path[depth].p_idx;
1452 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1453 				EXT4_ERROR_INODE(inode,
1454 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1455 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1456 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1457 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1458 				  depth);
1459 				return -EFSCORRUPTED;
1460 			}
1461 		}
1462 		return 0;
1463 	}
1464 
1465 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1466 		EXT4_ERROR_INODE(inode,
1467 				 "logical %d < ee_block %d + ee_len %d!",
1468 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1469 		return -EFSCORRUPTED;
1470 	}
1471 
1472 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1473 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1474 	return 0;
1475 }
1476 
1477 /*
1478  * search the closest allocated block to the right for *logical
1479  * and returns it at @logical + it's physical address at @phys
1480  * if *logical is the largest allocated block, the function
1481  * returns 0 at @phys
1482  * return value contains 0 (success) or error code
1483  */
1484 static int ext4_ext_search_right(struct inode *inode,
1485 				 struct ext4_ext_path *path,
1486 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1487 				 struct ext4_extent **ret_ex)
1488 {
1489 	struct buffer_head *bh = NULL;
1490 	struct ext4_extent_header *eh;
1491 	struct ext4_extent_idx *ix;
1492 	struct ext4_extent *ex;
1493 	ext4_fsblk_t block;
1494 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1495 	int ee_len;
1496 
1497 	if (unlikely(path == NULL)) {
1498 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1499 		return -EFSCORRUPTED;
1500 	}
1501 	depth = path->p_depth;
1502 	*phys = 0;
1503 
1504 	if (depth == 0 && path->p_ext == NULL)
1505 		return 0;
1506 
1507 	/* usually extent in the path covers blocks smaller
1508 	 * then *logical, but it can be that extent is the
1509 	 * first one in the file */
1510 
1511 	ex = path[depth].p_ext;
1512 	ee_len = ext4_ext_get_actual_len(ex);
1513 	if (*logical < le32_to_cpu(ex->ee_block)) {
1514 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1515 			EXT4_ERROR_INODE(inode,
1516 					 "first_extent(path[%d].p_hdr) != ex",
1517 					 depth);
1518 			return -EFSCORRUPTED;
1519 		}
1520 		while (--depth >= 0) {
1521 			ix = path[depth].p_idx;
1522 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1523 				EXT4_ERROR_INODE(inode,
1524 						 "ix != EXT_FIRST_INDEX *logical %d!",
1525 						 *logical);
1526 				return -EFSCORRUPTED;
1527 			}
1528 		}
1529 		goto found_extent;
1530 	}
1531 
1532 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1533 		EXT4_ERROR_INODE(inode,
1534 				 "logical %d < ee_block %d + ee_len %d!",
1535 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1536 		return -EFSCORRUPTED;
1537 	}
1538 
1539 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1540 		/* next allocated block in this leaf */
1541 		ex++;
1542 		goto found_extent;
1543 	}
1544 
1545 	/* go up and search for index to the right */
1546 	while (--depth >= 0) {
1547 		ix = path[depth].p_idx;
1548 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1549 			goto got_index;
1550 	}
1551 
1552 	/* we've gone up to the root and found no index to the right */
1553 	return 0;
1554 
1555 got_index:
1556 	/* we've found index to the right, let's
1557 	 * follow it and find the closest allocated
1558 	 * block to the right */
1559 	ix++;
1560 	block = ext4_idx_pblock(ix);
1561 	while (++depth < path->p_depth) {
1562 		/* subtract from p_depth to get proper eh_depth */
1563 		bh = read_extent_tree_block(inode, block,
1564 					    path->p_depth - depth, 0);
1565 		if (IS_ERR(bh))
1566 			return PTR_ERR(bh);
1567 		eh = ext_block_hdr(bh);
1568 		ix = EXT_FIRST_INDEX(eh);
1569 		block = ext4_idx_pblock(ix);
1570 		put_bh(bh);
1571 	}
1572 
1573 	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1574 	if (IS_ERR(bh))
1575 		return PTR_ERR(bh);
1576 	eh = ext_block_hdr(bh);
1577 	ex = EXT_FIRST_EXTENT(eh);
1578 found_extent:
1579 	*logical = le32_to_cpu(ex->ee_block);
1580 	*phys = ext4_ext_pblock(ex);
1581 	*ret_ex = ex;
1582 	if (bh)
1583 		put_bh(bh);
1584 	return 0;
1585 }
1586 
1587 /*
1588  * ext4_ext_next_allocated_block:
1589  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1590  * NOTE: it considers block number from index entry as
1591  * allocated block. Thus, index entries have to be consistent
1592  * with leaves.
1593  */
1594 ext4_lblk_t
1595 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1596 {
1597 	int depth;
1598 
1599 	BUG_ON(path == NULL);
1600 	depth = path->p_depth;
1601 
1602 	if (depth == 0 && path->p_ext == NULL)
1603 		return EXT_MAX_BLOCKS;
1604 
1605 	while (depth >= 0) {
1606 		if (depth == path->p_depth) {
1607 			/* leaf */
1608 			if (path[depth].p_ext &&
1609 				path[depth].p_ext !=
1610 					EXT_LAST_EXTENT(path[depth].p_hdr))
1611 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1612 		} else {
1613 			/* index */
1614 			if (path[depth].p_idx !=
1615 					EXT_LAST_INDEX(path[depth].p_hdr))
1616 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1617 		}
1618 		depth--;
1619 	}
1620 
1621 	return EXT_MAX_BLOCKS;
1622 }
1623 
1624 /*
1625  * ext4_ext_next_leaf_block:
1626  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1627  */
1628 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1629 {
1630 	int depth;
1631 
1632 	BUG_ON(path == NULL);
1633 	depth = path->p_depth;
1634 
1635 	/* zero-tree has no leaf blocks at all */
1636 	if (depth == 0)
1637 		return EXT_MAX_BLOCKS;
1638 
1639 	/* go to index block */
1640 	depth--;
1641 
1642 	while (depth >= 0) {
1643 		if (path[depth].p_idx !=
1644 				EXT_LAST_INDEX(path[depth].p_hdr))
1645 			return (ext4_lblk_t)
1646 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1647 		depth--;
1648 	}
1649 
1650 	return EXT_MAX_BLOCKS;
1651 }
1652 
1653 /*
1654  * ext4_ext_correct_indexes:
1655  * if leaf gets modified and modified extent is first in the leaf,
1656  * then we have to correct all indexes above.
1657  * TODO: do we need to correct tree in all cases?
1658  */
1659 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1660 				struct ext4_ext_path *path)
1661 {
1662 	struct ext4_extent_header *eh;
1663 	int depth = ext_depth(inode);
1664 	struct ext4_extent *ex;
1665 	__le32 border;
1666 	int k, err = 0;
1667 
1668 	eh = path[depth].p_hdr;
1669 	ex = path[depth].p_ext;
1670 
1671 	if (unlikely(ex == NULL || eh == NULL)) {
1672 		EXT4_ERROR_INODE(inode,
1673 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1674 		return -EFSCORRUPTED;
1675 	}
1676 
1677 	if (depth == 0) {
1678 		/* there is no tree at all */
1679 		return 0;
1680 	}
1681 
1682 	if (ex != EXT_FIRST_EXTENT(eh)) {
1683 		/* we correct tree if first leaf got modified only */
1684 		return 0;
1685 	}
1686 
1687 	/*
1688 	 * TODO: we need correction if border is smaller than current one
1689 	 */
1690 	k = depth - 1;
1691 	border = path[depth].p_ext->ee_block;
1692 	err = ext4_ext_get_access(handle, inode, path + k);
1693 	if (err)
1694 		return err;
1695 	path[k].p_idx->ei_block = border;
1696 	err = ext4_ext_dirty(handle, inode, path + k);
1697 	if (err)
1698 		return err;
1699 
1700 	while (k--) {
1701 		/* change all left-side indexes */
1702 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1703 			break;
1704 		err = ext4_ext_get_access(handle, inode, path + k);
1705 		if (err)
1706 			break;
1707 		path[k].p_idx->ei_block = border;
1708 		err = ext4_ext_dirty(handle, inode, path + k);
1709 		if (err)
1710 			break;
1711 	}
1712 
1713 	return err;
1714 }
1715 
1716 int
1717 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1718 				struct ext4_extent *ex2)
1719 {
1720 	unsigned short ext1_ee_len, ext2_ee_len;
1721 
1722 	if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1723 		return 0;
1724 
1725 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1726 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1727 
1728 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1729 			le32_to_cpu(ex2->ee_block))
1730 		return 0;
1731 
1732 	/*
1733 	 * To allow future support for preallocated extents to be added
1734 	 * as an RO_COMPAT feature, refuse to merge to extents if
1735 	 * this can result in the top bit of ee_len being set.
1736 	 */
1737 	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1738 		return 0;
1739 	/*
1740 	 * The check for IO to unwritten extent is somewhat racy as we
1741 	 * increment i_unwritten / set EXT4_STATE_DIO_UNWRITTEN only after
1742 	 * dropping i_data_sem. But reserved blocks should save us in that
1743 	 * case.
1744 	 */
1745 	if (ext4_ext_is_unwritten(ex1) &&
1746 	    (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1747 	     atomic_read(&EXT4_I(inode)->i_unwritten) ||
1748 	     (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1749 		return 0;
1750 #ifdef AGGRESSIVE_TEST
1751 	if (ext1_ee_len >= 4)
1752 		return 0;
1753 #endif
1754 
1755 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1756 		return 1;
1757 	return 0;
1758 }
1759 
1760 /*
1761  * This function tries to merge the "ex" extent to the next extent in the tree.
1762  * It always tries to merge towards right. If you want to merge towards
1763  * left, pass "ex - 1" as argument instead of "ex".
1764  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1765  * 1 if they got merged.
1766  */
1767 static int ext4_ext_try_to_merge_right(struct inode *inode,
1768 				 struct ext4_ext_path *path,
1769 				 struct ext4_extent *ex)
1770 {
1771 	struct ext4_extent_header *eh;
1772 	unsigned int depth, len;
1773 	int merge_done = 0, unwritten;
1774 
1775 	depth = ext_depth(inode);
1776 	BUG_ON(path[depth].p_hdr == NULL);
1777 	eh = path[depth].p_hdr;
1778 
1779 	while (ex < EXT_LAST_EXTENT(eh)) {
1780 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1781 			break;
1782 		/* merge with next extent! */
1783 		unwritten = ext4_ext_is_unwritten(ex);
1784 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1785 				+ ext4_ext_get_actual_len(ex + 1));
1786 		if (unwritten)
1787 			ext4_ext_mark_unwritten(ex);
1788 
1789 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1790 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1791 				* sizeof(struct ext4_extent);
1792 			memmove(ex + 1, ex + 2, len);
1793 		}
1794 		le16_add_cpu(&eh->eh_entries, -1);
1795 		merge_done = 1;
1796 		WARN_ON(eh->eh_entries == 0);
1797 		if (!eh->eh_entries)
1798 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1799 	}
1800 
1801 	return merge_done;
1802 }
1803 
1804 /*
1805  * This function does a very simple check to see if we can collapse
1806  * an extent tree with a single extent tree leaf block into the inode.
1807  */
1808 static void ext4_ext_try_to_merge_up(handle_t *handle,
1809 				     struct inode *inode,
1810 				     struct ext4_ext_path *path)
1811 {
1812 	size_t s;
1813 	unsigned max_root = ext4_ext_space_root(inode, 0);
1814 	ext4_fsblk_t blk;
1815 
1816 	if ((path[0].p_depth != 1) ||
1817 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1818 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1819 		return;
1820 
1821 	/*
1822 	 * We need to modify the block allocation bitmap and the block
1823 	 * group descriptor to release the extent tree block.  If we
1824 	 * can't get the journal credits, give up.
1825 	 */
1826 	if (ext4_journal_extend(handle, 2))
1827 		return;
1828 
1829 	/*
1830 	 * Copy the extent data up to the inode
1831 	 */
1832 	blk = ext4_idx_pblock(path[0].p_idx);
1833 	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1834 		sizeof(struct ext4_extent_idx);
1835 	s += sizeof(struct ext4_extent_header);
1836 
1837 	path[1].p_maxdepth = path[0].p_maxdepth;
1838 	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1839 	path[0].p_depth = 0;
1840 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1841 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1842 	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1843 
1844 	brelse(path[1].p_bh);
1845 	ext4_free_blocks(handle, inode, NULL, blk, 1,
1846 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1847 }
1848 
1849 /*
1850  * This function tries to merge the @ex extent to neighbours in the tree.
1851  * return 1 if merge left else 0.
1852  */
1853 static void ext4_ext_try_to_merge(handle_t *handle,
1854 				  struct inode *inode,
1855 				  struct ext4_ext_path *path,
1856 				  struct ext4_extent *ex) {
1857 	struct ext4_extent_header *eh;
1858 	unsigned int depth;
1859 	int merge_done = 0;
1860 
1861 	depth = ext_depth(inode);
1862 	BUG_ON(path[depth].p_hdr == NULL);
1863 	eh = path[depth].p_hdr;
1864 
1865 	if (ex > EXT_FIRST_EXTENT(eh))
1866 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1867 
1868 	if (!merge_done)
1869 		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1870 
1871 	ext4_ext_try_to_merge_up(handle, inode, path);
1872 }
1873 
1874 /*
1875  * check if a portion of the "newext" extent overlaps with an
1876  * existing extent.
1877  *
1878  * If there is an overlap discovered, it updates the length of the newext
1879  * such that there will be no overlap, and then returns 1.
1880  * If there is no overlap found, it returns 0.
1881  */
1882 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1883 					   struct inode *inode,
1884 					   struct ext4_extent *newext,
1885 					   struct ext4_ext_path *path)
1886 {
1887 	ext4_lblk_t b1, b2;
1888 	unsigned int depth, len1;
1889 	unsigned int ret = 0;
1890 
1891 	b1 = le32_to_cpu(newext->ee_block);
1892 	len1 = ext4_ext_get_actual_len(newext);
1893 	depth = ext_depth(inode);
1894 	if (!path[depth].p_ext)
1895 		goto out;
1896 	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1897 
1898 	/*
1899 	 * get the next allocated block if the extent in the path
1900 	 * is before the requested block(s)
1901 	 */
1902 	if (b2 < b1) {
1903 		b2 = ext4_ext_next_allocated_block(path);
1904 		if (b2 == EXT_MAX_BLOCKS)
1905 			goto out;
1906 		b2 = EXT4_LBLK_CMASK(sbi, b2);
1907 	}
1908 
1909 	/* check for wrap through zero on extent logical start block*/
1910 	if (b1 + len1 < b1) {
1911 		len1 = EXT_MAX_BLOCKS - b1;
1912 		newext->ee_len = cpu_to_le16(len1);
1913 		ret = 1;
1914 	}
1915 
1916 	/* check for overlap */
1917 	if (b1 + len1 > b2) {
1918 		newext->ee_len = cpu_to_le16(b2 - b1);
1919 		ret = 1;
1920 	}
1921 out:
1922 	return ret;
1923 }
1924 
1925 /*
1926  * ext4_ext_insert_extent:
1927  * tries to merge requsted extent into the existing extent or
1928  * inserts requested extent as new one into the tree,
1929  * creating new leaf in the no-space case.
1930  */
1931 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1932 				struct ext4_ext_path **ppath,
1933 				struct ext4_extent *newext, int gb_flags)
1934 {
1935 	struct ext4_ext_path *path = *ppath;
1936 	struct ext4_extent_header *eh;
1937 	struct ext4_extent *ex, *fex;
1938 	struct ext4_extent *nearex; /* nearest extent */
1939 	struct ext4_ext_path *npath = NULL;
1940 	int depth, len, err;
1941 	ext4_lblk_t next;
1942 	int mb_flags = 0, unwritten;
1943 
1944 	if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1945 		mb_flags |= EXT4_MB_DELALLOC_RESERVED;
1946 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1947 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1948 		return -EFSCORRUPTED;
1949 	}
1950 	depth = ext_depth(inode);
1951 	ex = path[depth].p_ext;
1952 	eh = path[depth].p_hdr;
1953 	if (unlikely(path[depth].p_hdr == NULL)) {
1954 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1955 		return -EFSCORRUPTED;
1956 	}
1957 
1958 	/* try to insert block into found extent and return */
1959 	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1960 
1961 		/*
1962 		 * Try to see whether we should rather test the extent on
1963 		 * right from ex, or from the left of ex. This is because
1964 		 * ext4_find_extent() can return either extent on the
1965 		 * left, or on the right from the searched position. This
1966 		 * will make merging more effective.
1967 		 */
1968 		if (ex < EXT_LAST_EXTENT(eh) &&
1969 		    (le32_to_cpu(ex->ee_block) +
1970 		    ext4_ext_get_actual_len(ex) <
1971 		    le32_to_cpu(newext->ee_block))) {
1972 			ex += 1;
1973 			goto prepend;
1974 		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1975 			   (le32_to_cpu(newext->ee_block) +
1976 			   ext4_ext_get_actual_len(newext) <
1977 			   le32_to_cpu(ex->ee_block)))
1978 			ex -= 1;
1979 
1980 		/* Try to append newex to the ex */
1981 		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1982 			ext_debug("append [%d]%d block to %u:[%d]%d"
1983 				  "(from %llu)\n",
1984 				  ext4_ext_is_unwritten(newext),
1985 				  ext4_ext_get_actual_len(newext),
1986 				  le32_to_cpu(ex->ee_block),
1987 				  ext4_ext_is_unwritten(ex),
1988 				  ext4_ext_get_actual_len(ex),
1989 				  ext4_ext_pblock(ex));
1990 			err = ext4_ext_get_access(handle, inode,
1991 						  path + depth);
1992 			if (err)
1993 				return err;
1994 			unwritten = ext4_ext_is_unwritten(ex);
1995 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1996 					+ ext4_ext_get_actual_len(newext));
1997 			if (unwritten)
1998 				ext4_ext_mark_unwritten(ex);
1999 			eh = path[depth].p_hdr;
2000 			nearex = ex;
2001 			goto merge;
2002 		}
2003 
2004 prepend:
2005 		/* Try to prepend newex to the ex */
2006 		if (ext4_can_extents_be_merged(inode, newext, ex)) {
2007 			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
2008 				  "(from %llu)\n",
2009 				  le32_to_cpu(newext->ee_block),
2010 				  ext4_ext_is_unwritten(newext),
2011 				  ext4_ext_get_actual_len(newext),
2012 				  le32_to_cpu(ex->ee_block),
2013 				  ext4_ext_is_unwritten(ex),
2014 				  ext4_ext_get_actual_len(ex),
2015 				  ext4_ext_pblock(ex));
2016 			err = ext4_ext_get_access(handle, inode,
2017 						  path + depth);
2018 			if (err)
2019 				return err;
2020 
2021 			unwritten = ext4_ext_is_unwritten(ex);
2022 			ex->ee_block = newext->ee_block;
2023 			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2024 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2025 					+ ext4_ext_get_actual_len(newext));
2026 			if (unwritten)
2027 				ext4_ext_mark_unwritten(ex);
2028 			eh = path[depth].p_hdr;
2029 			nearex = ex;
2030 			goto merge;
2031 		}
2032 	}
2033 
2034 	depth = ext_depth(inode);
2035 	eh = path[depth].p_hdr;
2036 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2037 		goto has_space;
2038 
2039 	/* probably next leaf has space for us? */
2040 	fex = EXT_LAST_EXTENT(eh);
2041 	next = EXT_MAX_BLOCKS;
2042 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2043 		next = ext4_ext_next_leaf_block(path);
2044 	if (next != EXT_MAX_BLOCKS) {
2045 		ext_debug("next leaf block - %u\n", next);
2046 		BUG_ON(npath != NULL);
2047 		npath = ext4_find_extent(inode, next, NULL, 0);
2048 		if (IS_ERR(npath))
2049 			return PTR_ERR(npath);
2050 		BUG_ON(npath->p_depth != path->p_depth);
2051 		eh = npath[depth].p_hdr;
2052 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2053 			ext_debug("next leaf isn't full(%d)\n",
2054 				  le16_to_cpu(eh->eh_entries));
2055 			path = npath;
2056 			goto has_space;
2057 		}
2058 		ext_debug("next leaf has no free space(%d,%d)\n",
2059 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2060 	}
2061 
2062 	/*
2063 	 * There is no free space in the found leaf.
2064 	 * We're gonna add a new leaf in the tree.
2065 	 */
2066 	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2067 		mb_flags |= EXT4_MB_USE_RESERVED;
2068 	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2069 				       ppath, newext);
2070 	if (err)
2071 		goto cleanup;
2072 	depth = ext_depth(inode);
2073 	eh = path[depth].p_hdr;
2074 
2075 has_space:
2076 	nearex = path[depth].p_ext;
2077 
2078 	err = ext4_ext_get_access(handle, inode, path + depth);
2079 	if (err)
2080 		goto cleanup;
2081 
2082 	if (!nearex) {
2083 		/* there is no extent in this leaf, create first one */
2084 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2085 				le32_to_cpu(newext->ee_block),
2086 				ext4_ext_pblock(newext),
2087 				ext4_ext_is_unwritten(newext),
2088 				ext4_ext_get_actual_len(newext));
2089 		nearex = EXT_FIRST_EXTENT(eh);
2090 	} else {
2091 		if (le32_to_cpu(newext->ee_block)
2092 			   > le32_to_cpu(nearex->ee_block)) {
2093 			/* Insert after */
2094 			ext_debug("insert %u:%llu:[%d]%d before: "
2095 					"nearest %p\n",
2096 					le32_to_cpu(newext->ee_block),
2097 					ext4_ext_pblock(newext),
2098 					ext4_ext_is_unwritten(newext),
2099 					ext4_ext_get_actual_len(newext),
2100 					nearex);
2101 			nearex++;
2102 		} else {
2103 			/* Insert before */
2104 			BUG_ON(newext->ee_block == nearex->ee_block);
2105 			ext_debug("insert %u:%llu:[%d]%d after: "
2106 					"nearest %p\n",
2107 					le32_to_cpu(newext->ee_block),
2108 					ext4_ext_pblock(newext),
2109 					ext4_ext_is_unwritten(newext),
2110 					ext4_ext_get_actual_len(newext),
2111 					nearex);
2112 		}
2113 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2114 		if (len > 0) {
2115 			ext_debug("insert %u:%llu:[%d]%d: "
2116 					"move %d extents from 0x%p to 0x%p\n",
2117 					le32_to_cpu(newext->ee_block),
2118 					ext4_ext_pblock(newext),
2119 					ext4_ext_is_unwritten(newext),
2120 					ext4_ext_get_actual_len(newext),
2121 					len, nearex, nearex + 1);
2122 			memmove(nearex + 1, nearex,
2123 				len * sizeof(struct ext4_extent));
2124 		}
2125 	}
2126 
2127 	le16_add_cpu(&eh->eh_entries, 1);
2128 	path[depth].p_ext = nearex;
2129 	nearex->ee_block = newext->ee_block;
2130 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2131 	nearex->ee_len = newext->ee_len;
2132 
2133 merge:
2134 	/* try to merge extents */
2135 	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2136 		ext4_ext_try_to_merge(handle, inode, path, nearex);
2137 
2138 
2139 	/* time to correct all indexes above */
2140 	err = ext4_ext_correct_indexes(handle, inode, path);
2141 	if (err)
2142 		goto cleanup;
2143 
2144 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2145 
2146 cleanup:
2147 	ext4_ext_drop_refs(npath);
2148 	kfree(npath);
2149 	return err;
2150 }
2151 
2152 static int ext4_fill_fiemap_extents(struct inode *inode,
2153 				    ext4_lblk_t block, ext4_lblk_t num,
2154 				    struct fiemap_extent_info *fieinfo)
2155 {
2156 	struct ext4_ext_path *path = NULL;
2157 	struct ext4_extent *ex;
2158 	struct extent_status es;
2159 	ext4_lblk_t next, next_del, start = 0, end = 0;
2160 	ext4_lblk_t last = block + num;
2161 	int exists, depth = 0, err = 0;
2162 	unsigned int flags = 0;
2163 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2164 
2165 	while (block < last && block != EXT_MAX_BLOCKS) {
2166 		num = last - block;
2167 		/* find extent for this block */
2168 		down_read(&EXT4_I(inode)->i_data_sem);
2169 
2170 		path = ext4_find_extent(inode, block, &path, 0);
2171 		if (IS_ERR(path)) {
2172 			up_read(&EXT4_I(inode)->i_data_sem);
2173 			err = PTR_ERR(path);
2174 			path = NULL;
2175 			break;
2176 		}
2177 
2178 		depth = ext_depth(inode);
2179 		if (unlikely(path[depth].p_hdr == NULL)) {
2180 			up_read(&EXT4_I(inode)->i_data_sem);
2181 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2182 			err = -EFSCORRUPTED;
2183 			break;
2184 		}
2185 		ex = path[depth].p_ext;
2186 		next = ext4_ext_next_allocated_block(path);
2187 
2188 		flags = 0;
2189 		exists = 0;
2190 		if (!ex) {
2191 			/* there is no extent yet, so try to allocate
2192 			 * all requested space */
2193 			start = block;
2194 			end = block + num;
2195 		} else if (le32_to_cpu(ex->ee_block) > block) {
2196 			/* need to allocate space before found extent */
2197 			start = block;
2198 			end = le32_to_cpu(ex->ee_block);
2199 			if (block + num < end)
2200 				end = block + num;
2201 		} else if (block >= le32_to_cpu(ex->ee_block)
2202 					+ ext4_ext_get_actual_len(ex)) {
2203 			/* need to allocate space after found extent */
2204 			start = block;
2205 			end = block + num;
2206 			if (end >= next)
2207 				end = next;
2208 		} else if (block >= le32_to_cpu(ex->ee_block)) {
2209 			/*
2210 			 * some part of requested space is covered
2211 			 * by found extent
2212 			 */
2213 			start = block;
2214 			end = le32_to_cpu(ex->ee_block)
2215 				+ ext4_ext_get_actual_len(ex);
2216 			if (block + num < end)
2217 				end = block + num;
2218 			exists = 1;
2219 		} else {
2220 			BUG();
2221 		}
2222 		BUG_ON(end <= start);
2223 
2224 		if (!exists) {
2225 			es.es_lblk = start;
2226 			es.es_len = end - start;
2227 			es.es_pblk = 0;
2228 		} else {
2229 			es.es_lblk = le32_to_cpu(ex->ee_block);
2230 			es.es_len = ext4_ext_get_actual_len(ex);
2231 			es.es_pblk = ext4_ext_pblock(ex);
2232 			if (ext4_ext_is_unwritten(ex))
2233 				flags |= FIEMAP_EXTENT_UNWRITTEN;
2234 		}
2235 
2236 		/*
2237 		 * Find delayed extent and update es accordingly. We call
2238 		 * it even in !exists case to find out whether es is the
2239 		 * last existing extent or not.
2240 		 */
2241 		next_del = ext4_find_delayed_extent(inode, &es);
2242 		if (!exists && next_del) {
2243 			exists = 1;
2244 			flags |= (FIEMAP_EXTENT_DELALLOC |
2245 				  FIEMAP_EXTENT_UNKNOWN);
2246 		}
2247 		up_read(&EXT4_I(inode)->i_data_sem);
2248 
2249 		if (unlikely(es.es_len == 0)) {
2250 			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2251 			err = -EFSCORRUPTED;
2252 			break;
2253 		}
2254 
2255 		/*
2256 		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2257 		 * we need to check next == EXT_MAX_BLOCKS because it is
2258 		 * possible that an extent is with unwritten and delayed
2259 		 * status due to when an extent is delayed allocated and
2260 		 * is allocated by fallocate status tree will track both of
2261 		 * them in a extent.
2262 		 *
2263 		 * So we could return a unwritten and delayed extent, and
2264 		 * its block is equal to 'next'.
2265 		 */
2266 		if (next == next_del && next == EXT_MAX_BLOCKS) {
2267 			flags |= FIEMAP_EXTENT_LAST;
2268 			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2269 				     next != EXT_MAX_BLOCKS)) {
2270 				EXT4_ERROR_INODE(inode,
2271 						 "next extent == %u, next "
2272 						 "delalloc extent = %u",
2273 						 next, next_del);
2274 				err = -EFSCORRUPTED;
2275 				break;
2276 			}
2277 		}
2278 
2279 		if (exists) {
2280 			err = fiemap_fill_next_extent(fieinfo,
2281 				(__u64)es.es_lblk << blksize_bits,
2282 				(__u64)es.es_pblk << blksize_bits,
2283 				(__u64)es.es_len << blksize_bits,
2284 				flags);
2285 			if (err < 0)
2286 				break;
2287 			if (err == 1) {
2288 				err = 0;
2289 				break;
2290 			}
2291 		}
2292 
2293 		block = es.es_lblk + es.es_len;
2294 	}
2295 
2296 	ext4_ext_drop_refs(path);
2297 	kfree(path);
2298 	return err;
2299 }
2300 
2301 /*
2302  * ext4_ext_determine_hole - determine hole around given block
2303  * @inode:	inode we lookup in
2304  * @path:	path in extent tree to @lblk
2305  * @lblk:	pointer to logical block around which we want to determine hole
2306  *
2307  * Determine hole length (and start if easily possible) around given logical
2308  * block. We don't try too hard to find the beginning of the hole but @path
2309  * actually points to extent before @lblk, we provide it.
2310  *
2311  * The function returns the length of a hole starting at @lblk. We update @lblk
2312  * to the beginning of the hole if we managed to find it.
2313  */
2314 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode,
2315 					   struct ext4_ext_path *path,
2316 					   ext4_lblk_t *lblk)
2317 {
2318 	int depth = ext_depth(inode);
2319 	struct ext4_extent *ex;
2320 	ext4_lblk_t len;
2321 
2322 	ex = path[depth].p_ext;
2323 	if (ex == NULL) {
2324 		/* there is no extent yet, so gap is [0;-] */
2325 		*lblk = 0;
2326 		len = EXT_MAX_BLOCKS;
2327 	} else if (*lblk < le32_to_cpu(ex->ee_block)) {
2328 		len = le32_to_cpu(ex->ee_block) - *lblk;
2329 	} else if (*lblk >= le32_to_cpu(ex->ee_block)
2330 			+ ext4_ext_get_actual_len(ex)) {
2331 		ext4_lblk_t next;
2332 
2333 		*lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex);
2334 		next = ext4_ext_next_allocated_block(path);
2335 		BUG_ON(next == *lblk);
2336 		len = next - *lblk;
2337 	} else {
2338 		BUG();
2339 	}
2340 	return len;
2341 }
2342 
2343 /*
2344  * ext4_ext_put_gap_in_cache:
2345  * calculate boundaries of the gap that the requested block fits into
2346  * and cache this gap
2347  */
2348 static void
2349 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start,
2350 			  ext4_lblk_t hole_len)
2351 {
2352 	struct extent_status es;
2353 
2354 	ext4_es_find_delayed_extent_range(inode, hole_start,
2355 					  hole_start + hole_len - 1, &es);
2356 	if (es.es_len) {
2357 		/* There's delayed extent containing lblock? */
2358 		if (es.es_lblk <= hole_start)
2359 			return;
2360 		hole_len = min(es.es_lblk - hole_start, hole_len);
2361 	}
2362 	ext_debug(" -> %u:%u\n", hole_start, hole_len);
2363 	ext4_es_insert_extent(inode, hole_start, hole_len, ~0,
2364 			      EXTENT_STATUS_HOLE);
2365 }
2366 
2367 /*
2368  * ext4_ext_rm_idx:
2369  * removes index from the index block.
2370  */
2371 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2372 			struct ext4_ext_path *path, int depth)
2373 {
2374 	int err;
2375 	ext4_fsblk_t leaf;
2376 
2377 	/* free index block */
2378 	depth--;
2379 	path = path + depth;
2380 	leaf = ext4_idx_pblock(path->p_idx);
2381 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2382 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2383 		return -EFSCORRUPTED;
2384 	}
2385 	err = ext4_ext_get_access(handle, inode, path);
2386 	if (err)
2387 		return err;
2388 
2389 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2390 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2391 		len *= sizeof(struct ext4_extent_idx);
2392 		memmove(path->p_idx, path->p_idx + 1, len);
2393 	}
2394 
2395 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2396 	err = ext4_ext_dirty(handle, inode, path);
2397 	if (err)
2398 		return err;
2399 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2400 	trace_ext4_ext_rm_idx(inode, leaf);
2401 
2402 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2403 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2404 
2405 	while (--depth >= 0) {
2406 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2407 			break;
2408 		path--;
2409 		err = ext4_ext_get_access(handle, inode, path);
2410 		if (err)
2411 			break;
2412 		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2413 		err = ext4_ext_dirty(handle, inode, path);
2414 		if (err)
2415 			break;
2416 	}
2417 	return err;
2418 }
2419 
2420 /*
2421  * ext4_ext_calc_credits_for_single_extent:
2422  * This routine returns max. credits that needed to insert an extent
2423  * to the extent tree.
2424  * When pass the actual path, the caller should calculate credits
2425  * under i_data_sem.
2426  */
2427 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2428 						struct ext4_ext_path *path)
2429 {
2430 	if (path) {
2431 		int depth = ext_depth(inode);
2432 		int ret = 0;
2433 
2434 		/* probably there is space in leaf? */
2435 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2436 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2437 
2438 			/*
2439 			 *  There are some space in the leaf tree, no
2440 			 *  need to account for leaf block credit
2441 			 *
2442 			 *  bitmaps and block group descriptor blocks
2443 			 *  and other metadata blocks still need to be
2444 			 *  accounted.
2445 			 */
2446 			/* 1 bitmap, 1 block group descriptor */
2447 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2448 			return ret;
2449 		}
2450 	}
2451 
2452 	return ext4_chunk_trans_blocks(inode, nrblocks);
2453 }
2454 
2455 /*
2456  * How many index/leaf blocks need to change/allocate to add @extents extents?
2457  *
2458  * If we add a single extent, then in the worse case, each tree level
2459  * index/leaf need to be changed in case of the tree split.
2460  *
2461  * If more extents are inserted, they could cause the whole tree split more
2462  * than once, but this is really rare.
2463  */
2464 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2465 {
2466 	int index;
2467 	int depth;
2468 
2469 	/* If we are converting the inline data, only one is needed here. */
2470 	if (ext4_has_inline_data(inode))
2471 		return 1;
2472 
2473 	depth = ext_depth(inode);
2474 
2475 	if (extents <= 1)
2476 		index = depth * 2;
2477 	else
2478 		index = depth * 3;
2479 
2480 	return index;
2481 }
2482 
2483 static inline int get_default_free_blocks_flags(struct inode *inode)
2484 {
2485 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
2486 	    ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
2487 		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2488 	else if (ext4_should_journal_data(inode))
2489 		return EXT4_FREE_BLOCKS_FORGET;
2490 	return 0;
2491 }
2492 
2493 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2494 			      struct ext4_extent *ex,
2495 			      long long *partial_cluster,
2496 			      ext4_lblk_t from, ext4_lblk_t to)
2497 {
2498 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2499 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
2500 	ext4_fsblk_t pblk;
2501 	int flags = get_default_free_blocks_flags(inode);
2502 
2503 	/*
2504 	 * For bigalloc file systems, we never free a partial cluster
2505 	 * at the beginning of the extent.  Instead, we make a note
2506 	 * that we tried freeing the cluster, and check to see if we
2507 	 * need to free it on a subsequent call to ext4_remove_blocks,
2508 	 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space.
2509 	 */
2510 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2511 
2512 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2513 	/*
2514 	 * If we have a partial cluster, and it's different from the
2515 	 * cluster of the last block, we need to explicitly free the
2516 	 * partial cluster here.
2517 	 */
2518 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2519 	if (*partial_cluster > 0 &&
2520 	    *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2521 		ext4_free_blocks(handle, inode, NULL,
2522 				 EXT4_C2B(sbi, *partial_cluster),
2523 				 sbi->s_cluster_ratio, flags);
2524 		*partial_cluster = 0;
2525 	}
2526 
2527 #ifdef EXTENTS_STATS
2528 	{
2529 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2530 		spin_lock(&sbi->s_ext_stats_lock);
2531 		sbi->s_ext_blocks += ee_len;
2532 		sbi->s_ext_extents++;
2533 		if (ee_len < sbi->s_ext_min)
2534 			sbi->s_ext_min = ee_len;
2535 		if (ee_len > sbi->s_ext_max)
2536 			sbi->s_ext_max = ee_len;
2537 		if (ext_depth(inode) > sbi->s_depth_max)
2538 			sbi->s_depth_max = ext_depth(inode);
2539 		spin_unlock(&sbi->s_ext_stats_lock);
2540 	}
2541 #endif
2542 	if (from >= le32_to_cpu(ex->ee_block)
2543 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2544 		/* tail removal */
2545 		ext4_lblk_t num;
2546 		long long first_cluster;
2547 
2548 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2549 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2550 		/*
2551 		 * Usually we want to free partial cluster at the end of the
2552 		 * extent, except for the situation when the cluster is still
2553 		 * used by any other extent (partial_cluster is negative).
2554 		 */
2555 		if (*partial_cluster < 0 &&
2556 		    *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1))
2557 			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2558 
2559 		ext_debug("free last %u blocks starting %llu partial %lld\n",
2560 			  num, pblk, *partial_cluster);
2561 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2562 		/*
2563 		 * If the block range to be freed didn't start at the
2564 		 * beginning of a cluster, and we removed the entire
2565 		 * extent and the cluster is not used by any other extent,
2566 		 * save the partial cluster here, since we might need to
2567 		 * delete if we determine that the truncate or punch hole
2568 		 * operation has removed all of the blocks in the cluster.
2569 		 * If that cluster is used by another extent, preserve its
2570 		 * negative value so it isn't freed later on.
2571 		 *
2572 		 * If the whole extent wasn't freed, we've reached the
2573 		 * start of the truncated/punched region and have finished
2574 		 * removing blocks.  If there's a partial cluster here it's
2575 		 * shared with the remainder of the extent and is no longer
2576 		 * a candidate for removal.
2577 		 */
2578 		if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) {
2579 			first_cluster = (long long) EXT4_B2C(sbi, pblk);
2580 			if (first_cluster != -*partial_cluster)
2581 				*partial_cluster = first_cluster;
2582 		} else {
2583 			*partial_cluster = 0;
2584 		}
2585 	} else
2586 		ext4_error(sbi->s_sb, "strange request: removal(2) "
2587 			   "%u-%u from %u:%u",
2588 			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2589 	return 0;
2590 }
2591 
2592 
2593 /*
2594  * ext4_ext_rm_leaf() Removes the extents associated with the
2595  * blocks appearing between "start" and "end".  Both "start"
2596  * and "end" must appear in the same extent or EIO is returned.
2597  *
2598  * @handle: The journal handle
2599  * @inode:  The files inode
2600  * @path:   The path to the leaf
2601  * @partial_cluster: The cluster which we'll have to free if all extents
2602  *                   has been released from it.  However, if this value is
2603  *                   negative, it's a cluster just to the right of the
2604  *                   punched region and it must not be freed.
2605  * @start:  The first block to remove
2606  * @end:   The last block to remove
2607  */
2608 static int
2609 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2610 		 struct ext4_ext_path *path,
2611 		 long long *partial_cluster,
2612 		 ext4_lblk_t start, ext4_lblk_t end)
2613 {
2614 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2615 	int err = 0, correct_index = 0;
2616 	int depth = ext_depth(inode), credits;
2617 	struct ext4_extent_header *eh;
2618 	ext4_lblk_t a, b;
2619 	unsigned num;
2620 	ext4_lblk_t ex_ee_block;
2621 	unsigned short ex_ee_len;
2622 	unsigned unwritten = 0;
2623 	struct ext4_extent *ex;
2624 	ext4_fsblk_t pblk;
2625 
2626 	/* the header must be checked already in ext4_ext_remove_space() */
2627 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2628 	if (!path[depth].p_hdr)
2629 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2630 	eh = path[depth].p_hdr;
2631 	if (unlikely(path[depth].p_hdr == NULL)) {
2632 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2633 		return -EFSCORRUPTED;
2634 	}
2635 	/* find where to start removing */
2636 	ex = path[depth].p_ext;
2637 	if (!ex)
2638 		ex = EXT_LAST_EXTENT(eh);
2639 
2640 	ex_ee_block = le32_to_cpu(ex->ee_block);
2641 	ex_ee_len = ext4_ext_get_actual_len(ex);
2642 
2643 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2644 
2645 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2646 			ex_ee_block + ex_ee_len > start) {
2647 
2648 		if (ext4_ext_is_unwritten(ex))
2649 			unwritten = 1;
2650 		else
2651 			unwritten = 0;
2652 
2653 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2654 			  unwritten, ex_ee_len);
2655 		path[depth].p_ext = ex;
2656 
2657 		a = ex_ee_block > start ? ex_ee_block : start;
2658 		b = ex_ee_block+ex_ee_len - 1 < end ?
2659 			ex_ee_block+ex_ee_len - 1 : end;
2660 
2661 		ext_debug("  border %u:%u\n", a, b);
2662 
2663 		/* If this extent is beyond the end of the hole, skip it */
2664 		if (end < ex_ee_block) {
2665 			/*
2666 			 * We're going to skip this extent and move to another,
2667 			 * so note that its first cluster is in use to avoid
2668 			 * freeing it when removing blocks.  Eventually, the
2669 			 * right edge of the truncated/punched region will
2670 			 * be just to the left.
2671 			 */
2672 			if (sbi->s_cluster_ratio > 1) {
2673 				pblk = ext4_ext_pblock(ex);
2674 				*partial_cluster =
2675 					-(long long) EXT4_B2C(sbi, pblk);
2676 			}
2677 			ex--;
2678 			ex_ee_block = le32_to_cpu(ex->ee_block);
2679 			ex_ee_len = ext4_ext_get_actual_len(ex);
2680 			continue;
2681 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2682 			EXT4_ERROR_INODE(inode,
2683 					 "can not handle truncate %u:%u "
2684 					 "on extent %u:%u",
2685 					 start, end, ex_ee_block,
2686 					 ex_ee_block + ex_ee_len - 1);
2687 			err = -EFSCORRUPTED;
2688 			goto out;
2689 		} else if (a != ex_ee_block) {
2690 			/* remove tail of the extent */
2691 			num = a - ex_ee_block;
2692 		} else {
2693 			/* remove whole extent: excellent! */
2694 			num = 0;
2695 		}
2696 		/*
2697 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2698 		 * descriptor) for each block group; assume two block
2699 		 * groups plus ex_ee_len/blocks_per_block_group for
2700 		 * the worst case
2701 		 */
2702 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2703 		if (ex == EXT_FIRST_EXTENT(eh)) {
2704 			correct_index = 1;
2705 			credits += (ext_depth(inode)) + 1;
2706 		}
2707 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2708 
2709 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2710 		if (err)
2711 			goto out;
2712 
2713 		err = ext4_ext_get_access(handle, inode, path + depth);
2714 		if (err)
2715 			goto out;
2716 
2717 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2718 					 a, b);
2719 		if (err)
2720 			goto out;
2721 
2722 		if (num == 0)
2723 			/* this extent is removed; mark slot entirely unused */
2724 			ext4_ext_store_pblock(ex, 0);
2725 
2726 		ex->ee_len = cpu_to_le16(num);
2727 		/*
2728 		 * Do not mark unwritten if all the blocks in the
2729 		 * extent have been removed.
2730 		 */
2731 		if (unwritten && num)
2732 			ext4_ext_mark_unwritten(ex);
2733 		/*
2734 		 * If the extent was completely released,
2735 		 * we need to remove it from the leaf
2736 		 */
2737 		if (num == 0) {
2738 			if (end != EXT_MAX_BLOCKS - 1) {
2739 				/*
2740 				 * For hole punching, we need to scoot all the
2741 				 * extents up when an extent is removed so that
2742 				 * we dont have blank extents in the middle
2743 				 */
2744 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2745 					sizeof(struct ext4_extent));
2746 
2747 				/* Now get rid of the one at the end */
2748 				memset(EXT_LAST_EXTENT(eh), 0,
2749 					sizeof(struct ext4_extent));
2750 			}
2751 			le16_add_cpu(&eh->eh_entries, -1);
2752 		}
2753 
2754 		err = ext4_ext_dirty(handle, inode, path + depth);
2755 		if (err)
2756 			goto out;
2757 
2758 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2759 				ext4_ext_pblock(ex));
2760 		ex--;
2761 		ex_ee_block = le32_to_cpu(ex->ee_block);
2762 		ex_ee_len = ext4_ext_get_actual_len(ex);
2763 	}
2764 
2765 	if (correct_index && eh->eh_entries)
2766 		err = ext4_ext_correct_indexes(handle, inode, path);
2767 
2768 	/*
2769 	 * If there's a partial cluster and at least one extent remains in
2770 	 * the leaf, free the partial cluster if it isn't shared with the
2771 	 * current extent.  If it is shared with the current extent
2772 	 * we zero partial_cluster because we've reached the start of the
2773 	 * truncated/punched region and we're done removing blocks.
2774 	 */
2775 	if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) {
2776 		pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2777 		if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2778 			ext4_free_blocks(handle, inode, NULL,
2779 					 EXT4_C2B(sbi, *partial_cluster),
2780 					 sbi->s_cluster_ratio,
2781 					 get_default_free_blocks_flags(inode));
2782 		}
2783 		*partial_cluster = 0;
2784 	}
2785 
2786 	/* if this leaf is free, then we should
2787 	 * remove it from index block above */
2788 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2789 		err = ext4_ext_rm_idx(handle, inode, path, depth);
2790 
2791 out:
2792 	return err;
2793 }
2794 
2795 /*
2796  * ext4_ext_more_to_rm:
2797  * returns 1 if current index has to be freed (even partial)
2798  */
2799 static int
2800 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2801 {
2802 	BUG_ON(path->p_idx == NULL);
2803 
2804 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2805 		return 0;
2806 
2807 	/*
2808 	 * if truncate on deeper level happened, it wasn't partial,
2809 	 * so we have to consider current index for truncation
2810 	 */
2811 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2812 		return 0;
2813 	return 1;
2814 }
2815 
2816 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2817 			  ext4_lblk_t end)
2818 {
2819 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2820 	int depth = ext_depth(inode);
2821 	struct ext4_ext_path *path = NULL;
2822 	long long partial_cluster = 0;
2823 	handle_t *handle;
2824 	int i = 0, err = 0;
2825 
2826 	ext_debug("truncate since %u to %u\n", start, end);
2827 
2828 	/* probably first extent we're gonna free will be last in block */
2829 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2830 	if (IS_ERR(handle))
2831 		return PTR_ERR(handle);
2832 
2833 again:
2834 	trace_ext4_ext_remove_space(inode, start, end, depth);
2835 
2836 	/*
2837 	 * Check if we are removing extents inside the extent tree. If that
2838 	 * is the case, we are going to punch a hole inside the extent tree
2839 	 * so we have to check whether we need to split the extent covering
2840 	 * the last block to remove so we can easily remove the part of it
2841 	 * in ext4_ext_rm_leaf().
2842 	 */
2843 	if (end < EXT_MAX_BLOCKS - 1) {
2844 		struct ext4_extent *ex;
2845 		ext4_lblk_t ee_block, ex_end, lblk;
2846 		ext4_fsblk_t pblk;
2847 
2848 		/* find extent for or closest extent to this block */
2849 		path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2850 		if (IS_ERR(path)) {
2851 			ext4_journal_stop(handle);
2852 			return PTR_ERR(path);
2853 		}
2854 		depth = ext_depth(inode);
2855 		/* Leaf not may not exist only if inode has no blocks at all */
2856 		ex = path[depth].p_ext;
2857 		if (!ex) {
2858 			if (depth) {
2859 				EXT4_ERROR_INODE(inode,
2860 						 "path[%d].p_hdr == NULL",
2861 						 depth);
2862 				err = -EFSCORRUPTED;
2863 			}
2864 			goto out;
2865 		}
2866 
2867 		ee_block = le32_to_cpu(ex->ee_block);
2868 		ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1;
2869 
2870 		/*
2871 		 * See if the last block is inside the extent, if so split
2872 		 * the extent at 'end' block so we can easily remove the
2873 		 * tail of the first part of the split extent in
2874 		 * ext4_ext_rm_leaf().
2875 		 */
2876 		if (end >= ee_block && end < ex_end) {
2877 
2878 			/*
2879 			 * If we're going to split the extent, note that
2880 			 * the cluster containing the block after 'end' is
2881 			 * in use to avoid freeing it when removing blocks.
2882 			 */
2883 			if (sbi->s_cluster_ratio > 1) {
2884 				pblk = ext4_ext_pblock(ex) + end - ee_block + 2;
2885 				partial_cluster =
2886 					-(long long) EXT4_B2C(sbi, pblk);
2887 			}
2888 
2889 			/*
2890 			 * Split the extent in two so that 'end' is the last
2891 			 * block in the first new extent. Also we should not
2892 			 * fail removing space due to ENOSPC so try to use
2893 			 * reserved block if that happens.
2894 			 */
2895 			err = ext4_force_split_extent_at(handle, inode, &path,
2896 							 end + 1, 1);
2897 			if (err < 0)
2898 				goto out;
2899 
2900 		} else if (sbi->s_cluster_ratio > 1 && end >= ex_end) {
2901 			/*
2902 			 * If there's an extent to the right its first cluster
2903 			 * contains the immediate right boundary of the
2904 			 * truncated/punched region.  Set partial_cluster to
2905 			 * its negative value so it won't be freed if shared
2906 			 * with the current extent.  The end < ee_block case
2907 			 * is handled in ext4_ext_rm_leaf().
2908 			 */
2909 			lblk = ex_end + 1;
2910 			err = ext4_ext_search_right(inode, path, &lblk, &pblk,
2911 						    &ex);
2912 			if (err)
2913 				goto out;
2914 			if (pblk)
2915 				partial_cluster =
2916 					-(long long) EXT4_B2C(sbi, pblk);
2917 		}
2918 	}
2919 	/*
2920 	 * We start scanning from right side, freeing all the blocks
2921 	 * after i_size and walking into the tree depth-wise.
2922 	 */
2923 	depth = ext_depth(inode);
2924 	if (path) {
2925 		int k = i = depth;
2926 		while (--k > 0)
2927 			path[k].p_block =
2928 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2929 	} else {
2930 		path = kcalloc(depth + 1, sizeof(struct ext4_ext_path),
2931 			       GFP_NOFS);
2932 		if (path == NULL) {
2933 			ext4_journal_stop(handle);
2934 			return -ENOMEM;
2935 		}
2936 		path[0].p_maxdepth = path[0].p_depth = depth;
2937 		path[0].p_hdr = ext_inode_hdr(inode);
2938 		i = 0;
2939 
2940 		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2941 			err = -EFSCORRUPTED;
2942 			goto out;
2943 		}
2944 	}
2945 	err = 0;
2946 
2947 	while (i >= 0 && err == 0) {
2948 		if (i == depth) {
2949 			/* this is leaf block */
2950 			err = ext4_ext_rm_leaf(handle, inode, path,
2951 					       &partial_cluster, start,
2952 					       end);
2953 			/* root level has p_bh == NULL, brelse() eats this */
2954 			brelse(path[i].p_bh);
2955 			path[i].p_bh = NULL;
2956 			i--;
2957 			continue;
2958 		}
2959 
2960 		/* this is index block */
2961 		if (!path[i].p_hdr) {
2962 			ext_debug("initialize header\n");
2963 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2964 		}
2965 
2966 		if (!path[i].p_idx) {
2967 			/* this level hasn't been touched yet */
2968 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2969 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2970 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2971 				  path[i].p_hdr,
2972 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2973 		} else {
2974 			/* we were already here, see at next index */
2975 			path[i].p_idx--;
2976 		}
2977 
2978 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2979 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2980 				path[i].p_idx);
2981 		if (ext4_ext_more_to_rm(path + i)) {
2982 			struct buffer_head *bh;
2983 			/* go to the next level */
2984 			ext_debug("move to level %d (block %llu)\n",
2985 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2986 			memset(path + i + 1, 0, sizeof(*path));
2987 			bh = read_extent_tree_block(inode,
2988 				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2989 				EXT4_EX_NOCACHE);
2990 			if (IS_ERR(bh)) {
2991 				/* should we reset i_size? */
2992 				err = PTR_ERR(bh);
2993 				break;
2994 			}
2995 			/* Yield here to deal with large extent trees.
2996 			 * Should be a no-op if we did IO above. */
2997 			cond_resched();
2998 			if (WARN_ON(i + 1 > depth)) {
2999 				err = -EFSCORRUPTED;
3000 				break;
3001 			}
3002 			path[i + 1].p_bh = bh;
3003 
3004 			/* save actual number of indexes since this
3005 			 * number is changed at the next iteration */
3006 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
3007 			i++;
3008 		} else {
3009 			/* we finished processing this index, go up */
3010 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
3011 				/* index is empty, remove it;
3012 				 * handle must be already prepared by the
3013 				 * truncatei_leaf() */
3014 				err = ext4_ext_rm_idx(handle, inode, path, i);
3015 			}
3016 			/* root level has p_bh == NULL, brelse() eats this */
3017 			brelse(path[i].p_bh);
3018 			path[i].p_bh = NULL;
3019 			i--;
3020 			ext_debug("return to level %d\n", i);
3021 		}
3022 	}
3023 
3024 	trace_ext4_ext_remove_space_done(inode, start, end, depth,
3025 			partial_cluster, path->p_hdr->eh_entries);
3026 
3027 	/*
3028 	 * If we still have something in the partial cluster and we have removed
3029 	 * even the first extent, then we should free the blocks in the partial
3030 	 * cluster as well.  (This code will only run when there are no leaves
3031 	 * to the immediate left of the truncated/punched region.)
3032 	 */
3033 	if (partial_cluster > 0 && err == 0) {
3034 		/* don't zero partial_cluster since it's not used afterwards */
3035 		ext4_free_blocks(handle, inode, NULL,
3036 				 EXT4_C2B(sbi, partial_cluster),
3037 				 sbi->s_cluster_ratio,
3038 				 get_default_free_blocks_flags(inode));
3039 	}
3040 
3041 	/* TODO: flexible tree reduction should be here */
3042 	if (path->p_hdr->eh_entries == 0) {
3043 		/*
3044 		 * truncate to zero freed all the tree,
3045 		 * so we need to correct eh_depth
3046 		 */
3047 		err = ext4_ext_get_access(handle, inode, path);
3048 		if (err == 0) {
3049 			ext_inode_hdr(inode)->eh_depth = 0;
3050 			ext_inode_hdr(inode)->eh_max =
3051 				cpu_to_le16(ext4_ext_space_root(inode, 0));
3052 			err = ext4_ext_dirty(handle, inode, path);
3053 		}
3054 	}
3055 out:
3056 	ext4_ext_drop_refs(path);
3057 	kfree(path);
3058 	path = NULL;
3059 	if (err == -EAGAIN)
3060 		goto again;
3061 	ext4_journal_stop(handle);
3062 
3063 	return err;
3064 }
3065 
3066 /*
3067  * called at mount time
3068  */
3069 void ext4_ext_init(struct super_block *sb)
3070 {
3071 	/*
3072 	 * possible initialization would be here
3073 	 */
3074 
3075 	if (ext4_has_feature_extents(sb)) {
3076 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3077 		printk(KERN_INFO "EXT4-fs: file extents enabled"
3078 #ifdef AGGRESSIVE_TEST
3079 		       ", aggressive tests"
3080 #endif
3081 #ifdef CHECK_BINSEARCH
3082 		       ", check binsearch"
3083 #endif
3084 #ifdef EXTENTS_STATS
3085 		       ", stats"
3086 #endif
3087 		       "\n");
3088 #endif
3089 #ifdef EXTENTS_STATS
3090 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3091 		EXT4_SB(sb)->s_ext_min = 1 << 30;
3092 		EXT4_SB(sb)->s_ext_max = 0;
3093 #endif
3094 	}
3095 }
3096 
3097 /*
3098  * called at umount time
3099  */
3100 void ext4_ext_release(struct super_block *sb)
3101 {
3102 	if (!ext4_has_feature_extents(sb))
3103 		return;
3104 
3105 #ifdef EXTENTS_STATS
3106 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3107 		struct ext4_sb_info *sbi = EXT4_SB(sb);
3108 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3109 			sbi->s_ext_blocks, sbi->s_ext_extents,
3110 			sbi->s_ext_blocks / sbi->s_ext_extents);
3111 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3112 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3113 	}
3114 #endif
3115 }
3116 
3117 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3118 {
3119 	ext4_lblk_t  ee_block;
3120 	ext4_fsblk_t ee_pblock;
3121 	unsigned int ee_len;
3122 
3123 	ee_block  = le32_to_cpu(ex->ee_block);
3124 	ee_len    = ext4_ext_get_actual_len(ex);
3125 	ee_pblock = ext4_ext_pblock(ex);
3126 
3127 	if (ee_len == 0)
3128 		return 0;
3129 
3130 	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3131 				     EXTENT_STATUS_WRITTEN);
3132 }
3133 
3134 /* FIXME!! we need to try to merge to left or right after zero-out  */
3135 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3136 {
3137 	ext4_fsblk_t ee_pblock;
3138 	unsigned int ee_len;
3139 
3140 	ee_len    = ext4_ext_get_actual_len(ex);
3141 	ee_pblock = ext4_ext_pblock(ex);
3142 	return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock,
3143 				  ee_len);
3144 }
3145 
3146 /*
3147  * ext4_split_extent_at() splits an extent at given block.
3148  *
3149  * @handle: the journal handle
3150  * @inode: the file inode
3151  * @path: the path to the extent
3152  * @split: the logical block where the extent is splitted.
3153  * @split_flags: indicates if the extent could be zeroout if split fails, and
3154  *		 the states(init or unwritten) of new extents.
3155  * @flags: flags used to insert new extent to extent tree.
3156  *
3157  *
3158  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3159  * of which are deterimined by split_flag.
3160  *
3161  * There are two cases:
3162  *  a> the extent are splitted into two extent.
3163  *  b> split is not needed, and just mark the extent.
3164  *
3165  * return 0 on success.
3166  */
3167 static int ext4_split_extent_at(handle_t *handle,
3168 			     struct inode *inode,
3169 			     struct ext4_ext_path **ppath,
3170 			     ext4_lblk_t split,
3171 			     int split_flag,
3172 			     int flags)
3173 {
3174 	struct ext4_ext_path *path = *ppath;
3175 	ext4_fsblk_t newblock;
3176 	ext4_lblk_t ee_block;
3177 	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3178 	struct ext4_extent *ex2 = NULL;
3179 	unsigned int ee_len, depth;
3180 	int err = 0;
3181 
3182 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3183 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3184 
3185 	ext_debug("ext4_split_extents_at: inode %lu, logical"
3186 		"block %llu\n", inode->i_ino, (unsigned long long)split);
3187 
3188 	ext4_ext_show_leaf(inode, path);
3189 
3190 	depth = ext_depth(inode);
3191 	ex = path[depth].p_ext;
3192 	ee_block = le32_to_cpu(ex->ee_block);
3193 	ee_len = ext4_ext_get_actual_len(ex);
3194 	newblock = split - ee_block + ext4_ext_pblock(ex);
3195 
3196 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3197 	BUG_ON(!ext4_ext_is_unwritten(ex) &&
3198 	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3199 			     EXT4_EXT_MARK_UNWRIT1 |
3200 			     EXT4_EXT_MARK_UNWRIT2));
3201 
3202 	err = ext4_ext_get_access(handle, inode, path + depth);
3203 	if (err)
3204 		goto out;
3205 
3206 	if (split == ee_block) {
3207 		/*
3208 		 * case b: block @split is the block that the extent begins with
3209 		 * then we just change the state of the extent, and splitting
3210 		 * is not needed.
3211 		 */
3212 		if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3213 			ext4_ext_mark_unwritten(ex);
3214 		else
3215 			ext4_ext_mark_initialized(ex);
3216 
3217 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3218 			ext4_ext_try_to_merge(handle, inode, path, ex);
3219 
3220 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3221 		goto out;
3222 	}
3223 
3224 	/* case a */
3225 	memcpy(&orig_ex, ex, sizeof(orig_ex));
3226 	ex->ee_len = cpu_to_le16(split - ee_block);
3227 	if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3228 		ext4_ext_mark_unwritten(ex);
3229 
3230 	/*
3231 	 * path may lead to new leaf, not to original leaf any more
3232 	 * after ext4_ext_insert_extent() returns,
3233 	 */
3234 	err = ext4_ext_dirty(handle, inode, path + depth);
3235 	if (err)
3236 		goto fix_extent_len;
3237 
3238 	ex2 = &newex;
3239 	ex2->ee_block = cpu_to_le32(split);
3240 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3241 	ext4_ext_store_pblock(ex2, newblock);
3242 	if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3243 		ext4_ext_mark_unwritten(ex2);
3244 
3245 	err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3246 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3247 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3248 			if (split_flag & EXT4_EXT_DATA_VALID1) {
3249 				err = ext4_ext_zeroout(inode, ex2);
3250 				zero_ex.ee_block = ex2->ee_block;
3251 				zero_ex.ee_len = cpu_to_le16(
3252 						ext4_ext_get_actual_len(ex2));
3253 				ext4_ext_store_pblock(&zero_ex,
3254 						      ext4_ext_pblock(ex2));
3255 			} else {
3256 				err = ext4_ext_zeroout(inode, ex);
3257 				zero_ex.ee_block = ex->ee_block;
3258 				zero_ex.ee_len = cpu_to_le16(
3259 						ext4_ext_get_actual_len(ex));
3260 				ext4_ext_store_pblock(&zero_ex,
3261 						      ext4_ext_pblock(ex));
3262 			}
3263 		} else {
3264 			err = ext4_ext_zeroout(inode, &orig_ex);
3265 			zero_ex.ee_block = orig_ex.ee_block;
3266 			zero_ex.ee_len = cpu_to_le16(
3267 						ext4_ext_get_actual_len(&orig_ex));
3268 			ext4_ext_store_pblock(&zero_ex,
3269 					      ext4_ext_pblock(&orig_ex));
3270 		}
3271 
3272 		if (err)
3273 			goto fix_extent_len;
3274 		/* update the extent length and mark as initialized */
3275 		ex->ee_len = cpu_to_le16(ee_len);
3276 		ext4_ext_try_to_merge(handle, inode, path, ex);
3277 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3278 		if (err)
3279 			goto fix_extent_len;
3280 
3281 		/* update extent status tree */
3282 		err = ext4_zeroout_es(inode, &zero_ex);
3283 
3284 		goto out;
3285 	} else if (err)
3286 		goto fix_extent_len;
3287 
3288 out:
3289 	ext4_ext_show_leaf(inode, path);
3290 	return err;
3291 
3292 fix_extent_len:
3293 	ex->ee_len = orig_ex.ee_len;
3294 	ext4_ext_dirty(handle, inode, path + path->p_depth);
3295 	return err;
3296 }
3297 
3298 /*
3299  * ext4_split_extents() splits an extent and mark extent which is covered
3300  * by @map as split_flags indicates
3301  *
3302  * It may result in splitting the extent into multiple extents (up to three)
3303  * There are three possibilities:
3304  *   a> There is no split required
3305  *   b> Splits in two extents: Split is happening at either end of the extent
3306  *   c> Splits in three extents: Somone is splitting in middle of the extent
3307  *
3308  */
3309 static int ext4_split_extent(handle_t *handle,
3310 			      struct inode *inode,
3311 			      struct ext4_ext_path **ppath,
3312 			      struct ext4_map_blocks *map,
3313 			      int split_flag,
3314 			      int flags)
3315 {
3316 	struct ext4_ext_path *path = *ppath;
3317 	ext4_lblk_t ee_block;
3318 	struct ext4_extent *ex;
3319 	unsigned int ee_len, depth;
3320 	int err = 0;
3321 	int unwritten;
3322 	int split_flag1, flags1;
3323 	int allocated = map->m_len;
3324 
3325 	depth = ext_depth(inode);
3326 	ex = path[depth].p_ext;
3327 	ee_block = le32_to_cpu(ex->ee_block);
3328 	ee_len = ext4_ext_get_actual_len(ex);
3329 	unwritten = ext4_ext_is_unwritten(ex);
3330 
3331 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3332 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3333 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3334 		if (unwritten)
3335 			split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3336 				       EXT4_EXT_MARK_UNWRIT2;
3337 		if (split_flag & EXT4_EXT_DATA_VALID2)
3338 			split_flag1 |= EXT4_EXT_DATA_VALID1;
3339 		err = ext4_split_extent_at(handle, inode, ppath,
3340 				map->m_lblk + map->m_len, split_flag1, flags1);
3341 		if (err)
3342 			goto out;
3343 	} else {
3344 		allocated = ee_len - (map->m_lblk - ee_block);
3345 	}
3346 	/*
3347 	 * Update path is required because previous ext4_split_extent_at() may
3348 	 * result in split of original leaf or extent zeroout.
3349 	 */
3350 	path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3351 	if (IS_ERR(path))
3352 		return PTR_ERR(path);
3353 	depth = ext_depth(inode);
3354 	ex = path[depth].p_ext;
3355 	if (!ex) {
3356 		EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3357 				 (unsigned long) map->m_lblk);
3358 		return -EFSCORRUPTED;
3359 	}
3360 	unwritten = ext4_ext_is_unwritten(ex);
3361 	split_flag1 = 0;
3362 
3363 	if (map->m_lblk >= ee_block) {
3364 		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3365 		if (unwritten) {
3366 			split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3367 			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3368 						     EXT4_EXT_MARK_UNWRIT2);
3369 		}
3370 		err = ext4_split_extent_at(handle, inode, ppath,
3371 				map->m_lblk, split_flag1, flags);
3372 		if (err)
3373 			goto out;
3374 	}
3375 
3376 	ext4_ext_show_leaf(inode, path);
3377 out:
3378 	return err ? err : allocated;
3379 }
3380 
3381 /*
3382  * This function is called by ext4_ext_map_blocks() if someone tries to write
3383  * to an unwritten extent. It may result in splitting the unwritten
3384  * extent into multiple extents (up to three - one initialized and two
3385  * unwritten).
3386  * There are three possibilities:
3387  *   a> There is no split required: Entire extent should be initialized
3388  *   b> Splits in two extents: Write is happening at either end of the extent
3389  *   c> Splits in three extents: Somone is writing in middle of the extent
3390  *
3391  * Pre-conditions:
3392  *  - The extent pointed to by 'path' is unwritten.
3393  *  - The extent pointed to by 'path' contains a superset
3394  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3395  *
3396  * Post-conditions on success:
3397  *  - the returned value is the number of blocks beyond map->l_lblk
3398  *    that are allocated and initialized.
3399  *    It is guaranteed to be >= map->m_len.
3400  */
3401 static int ext4_ext_convert_to_initialized(handle_t *handle,
3402 					   struct inode *inode,
3403 					   struct ext4_map_blocks *map,
3404 					   struct ext4_ext_path **ppath,
3405 					   int flags)
3406 {
3407 	struct ext4_ext_path *path = *ppath;
3408 	struct ext4_sb_info *sbi;
3409 	struct ext4_extent_header *eh;
3410 	struct ext4_map_blocks split_map;
3411 	struct ext4_extent zero_ex1, zero_ex2;
3412 	struct ext4_extent *ex, *abut_ex;
3413 	ext4_lblk_t ee_block, eof_block;
3414 	unsigned int ee_len, depth, map_len = map->m_len;
3415 	int allocated = 0, max_zeroout = 0;
3416 	int err = 0;
3417 	int split_flag = EXT4_EXT_DATA_VALID2;
3418 
3419 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3420 		"block %llu, max_blocks %u\n", inode->i_ino,
3421 		(unsigned long long)map->m_lblk, map_len);
3422 
3423 	sbi = EXT4_SB(inode->i_sb);
3424 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3425 		inode->i_sb->s_blocksize_bits;
3426 	if (eof_block < map->m_lblk + map_len)
3427 		eof_block = map->m_lblk + map_len;
3428 
3429 	depth = ext_depth(inode);
3430 	eh = path[depth].p_hdr;
3431 	ex = path[depth].p_ext;
3432 	ee_block = le32_to_cpu(ex->ee_block);
3433 	ee_len = ext4_ext_get_actual_len(ex);
3434 	zero_ex1.ee_len = 0;
3435 	zero_ex2.ee_len = 0;
3436 
3437 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3438 
3439 	/* Pre-conditions */
3440 	BUG_ON(!ext4_ext_is_unwritten(ex));
3441 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3442 
3443 	/*
3444 	 * Attempt to transfer newly initialized blocks from the currently
3445 	 * unwritten extent to its neighbor. This is much cheaper
3446 	 * than an insertion followed by a merge as those involve costly
3447 	 * memmove() calls. Transferring to the left is the common case in
3448 	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3449 	 * followed by append writes.
3450 	 *
3451 	 * Limitations of the current logic:
3452 	 *  - L1: we do not deal with writes covering the whole extent.
3453 	 *    This would require removing the extent if the transfer
3454 	 *    is possible.
3455 	 *  - L2: we only attempt to merge with an extent stored in the
3456 	 *    same extent tree node.
3457 	 */
3458 	if ((map->m_lblk == ee_block) &&
3459 		/* See if we can merge left */
3460 		(map_len < ee_len) &&		/*L1*/
3461 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3462 		ext4_lblk_t prev_lblk;
3463 		ext4_fsblk_t prev_pblk, ee_pblk;
3464 		unsigned int prev_len;
3465 
3466 		abut_ex = ex - 1;
3467 		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3468 		prev_len = ext4_ext_get_actual_len(abut_ex);
3469 		prev_pblk = ext4_ext_pblock(abut_ex);
3470 		ee_pblk = ext4_ext_pblock(ex);
3471 
3472 		/*
3473 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3474 		 * upon those conditions:
3475 		 * - C1: abut_ex is initialized,
3476 		 * - C2: abut_ex is logically abutting ex,
3477 		 * - C3: abut_ex is physically abutting ex,
3478 		 * - C4: abut_ex can receive the additional blocks without
3479 		 *   overflowing the (initialized) length limit.
3480 		 */
3481 		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3482 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3483 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3484 			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3485 			err = ext4_ext_get_access(handle, inode, path + depth);
3486 			if (err)
3487 				goto out;
3488 
3489 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3490 				map, ex, abut_ex);
3491 
3492 			/* Shift the start of ex by 'map_len' blocks */
3493 			ex->ee_block = cpu_to_le32(ee_block + map_len);
3494 			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3495 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3496 			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3497 
3498 			/* Extend abut_ex by 'map_len' blocks */
3499 			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3500 
3501 			/* Result: number of initialized blocks past m_lblk */
3502 			allocated = map_len;
3503 		}
3504 	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3505 		   (map_len < ee_len) &&	/*L1*/
3506 		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3507 		/* See if we can merge right */
3508 		ext4_lblk_t next_lblk;
3509 		ext4_fsblk_t next_pblk, ee_pblk;
3510 		unsigned int next_len;
3511 
3512 		abut_ex = ex + 1;
3513 		next_lblk = le32_to_cpu(abut_ex->ee_block);
3514 		next_len = ext4_ext_get_actual_len(abut_ex);
3515 		next_pblk = ext4_ext_pblock(abut_ex);
3516 		ee_pblk = ext4_ext_pblock(ex);
3517 
3518 		/*
3519 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3520 		 * upon those conditions:
3521 		 * - C1: abut_ex is initialized,
3522 		 * - C2: abut_ex is logically abutting ex,
3523 		 * - C3: abut_ex is physically abutting ex,
3524 		 * - C4: abut_ex can receive the additional blocks without
3525 		 *   overflowing the (initialized) length limit.
3526 		 */
3527 		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3528 		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3529 		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3530 		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3531 			err = ext4_ext_get_access(handle, inode, path + depth);
3532 			if (err)
3533 				goto out;
3534 
3535 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3536 				map, ex, abut_ex);
3537 
3538 			/* Shift the start of abut_ex by 'map_len' blocks */
3539 			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3540 			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3541 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3542 			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3543 
3544 			/* Extend abut_ex by 'map_len' blocks */
3545 			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3546 
3547 			/* Result: number of initialized blocks past m_lblk */
3548 			allocated = map_len;
3549 		}
3550 	}
3551 	if (allocated) {
3552 		/* Mark the block containing both extents as dirty */
3553 		ext4_ext_dirty(handle, inode, path + depth);
3554 
3555 		/* Update path to point to the right extent */
3556 		path[depth].p_ext = abut_ex;
3557 		goto out;
3558 	} else
3559 		allocated = ee_len - (map->m_lblk - ee_block);
3560 
3561 	WARN_ON(map->m_lblk < ee_block);
3562 	/*
3563 	 * It is safe to convert extent to initialized via explicit
3564 	 * zeroout only if extent is fully inside i_size or new_size.
3565 	 */
3566 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3567 
3568 	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3569 		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3570 			(inode->i_sb->s_blocksize_bits - 10);
3571 
3572 	if (ext4_encrypted_inode(inode))
3573 		max_zeroout = 0;
3574 
3575 	/*
3576 	 * five cases:
3577 	 * 1. split the extent into three extents.
3578 	 * 2. split the extent into two extents, zeroout the head of the first
3579 	 *    extent.
3580 	 * 3. split the extent into two extents, zeroout the tail of the second
3581 	 *    extent.
3582 	 * 4. split the extent into two extents with out zeroout.
3583 	 * 5. no splitting needed, just possibly zeroout the head and / or the
3584 	 *    tail of the extent.
3585 	 */
3586 	split_map.m_lblk = map->m_lblk;
3587 	split_map.m_len = map->m_len;
3588 
3589 	if (max_zeroout && (allocated > split_map.m_len)) {
3590 		if (allocated <= max_zeroout) {
3591 			/* case 3 or 5 */
3592 			zero_ex1.ee_block =
3593 				 cpu_to_le32(split_map.m_lblk +
3594 					     split_map.m_len);
3595 			zero_ex1.ee_len =
3596 				cpu_to_le16(allocated - split_map.m_len);
3597 			ext4_ext_store_pblock(&zero_ex1,
3598 				ext4_ext_pblock(ex) + split_map.m_lblk +
3599 				split_map.m_len - ee_block);
3600 			err = ext4_ext_zeroout(inode, &zero_ex1);
3601 			if (err)
3602 				goto out;
3603 			split_map.m_len = allocated;
3604 		}
3605 		if (split_map.m_lblk - ee_block + split_map.m_len <
3606 								max_zeroout) {
3607 			/* case 2 or 5 */
3608 			if (split_map.m_lblk != ee_block) {
3609 				zero_ex2.ee_block = ex->ee_block;
3610 				zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk -
3611 							ee_block);
3612 				ext4_ext_store_pblock(&zero_ex2,
3613 						      ext4_ext_pblock(ex));
3614 				err = ext4_ext_zeroout(inode, &zero_ex2);
3615 				if (err)
3616 					goto out;
3617 			}
3618 
3619 			split_map.m_len += split_map.m_lblk - ee_block;
3620 			split_map.m_lblk = ee_block;
3621 			allocated = map->m_len;
3622 		}
3623 	}
3624 
3625 	err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
3626 				flags);
3627 	if (err > 0)
3628 		err = 0;
3629 out:
3630 	/* If we have gotten a failure, don't zero out status tree */
3631 	if (!err) {
3632 		err = ext4_zeroout_es(inode, &zero_ex1);
3633 		if (!err)
3634 			err = ext4_zeroout_es(inode, &zero_ex2);
3635 	}
3636 	return err ? err : allocated;
3637 }
3638 
3639 /*
3640  * This function is called by ext4_ext_map_blocks() from
3641  * ext4_get_blocks_dio_write() when DIO to write
3642  * to an unwritten extent.
3643  *
3644  * Writing to an unwritten extent may result in splitting the unwritten
3645  * extent into multiple initialized/unwritten extents (up to three)
3646  * There are three possibilities:
3647  *   a> There is no split required: Entire extent should be unwritten
3648  *   b> Splits in two extents: Write is happening at either end of the extent
3649  *   c> Splits in three extents: Somone is writing in middle of the extent
3650  *
3651  * This works the same way in the case of initialized -> unwritten conversion.
3652  *
3653  * One of more index blocks maybe needed if the extent tree grow after
3654  * the unwritten extent split. To prevent ENOSPC occur at the IO
3655  * complete, we need to split the unwritten extent before DIO submit
3656  * the IO. The unwritten extent called at this time will be split
3657  * into three unwritten extent(at most). After IO complete, the part
3658  * being filled will be convert to initialized by the end_io callback function
3659  * via ext4_convert_unwritten_extents().
3660  *
3661  * Returns the size of unwritten extent to be written on success.
3662  */
3663 static int ext4_split_convert_extents(handle_t *handle,
3664 					struct inode *inode,
3665 					struct ext4_map_blocks *map,
3666 					struct ext4_ext_path **ppath,
3667 					int flags)
3668 {
3669 	struct ext4_ext_path *path = *ppath;
3670 	ext4_lblk_t eof_block;
3671 	ext4_lblk_t ee_block;
3672 	struct ext4_extent *ex;
3673 	unsigned int ee_len;
3674 	int split_flag = 0, depth;
3675 
3676 	ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3677 		  __func__, inode->i_ino,
3678 		  (unsigned long long)map->m_lblk, map->m_len);
3679 
3680 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3681 		inode->i_sb->s_blocksize_bits;
3682 	if (eof_block < map->m_lblk + map->m_len)
3683 		eof_block = map->m_lblk + map->m_len;
3684 	/*
3685 	 * It is safe to convert extent to initialized via explicit
3686 	 * zeroout only if extent is fully insde i_size or new_size.
3687 	 */
3688 	depth = ext_depth(inode);
3689 	ex = path[depth].p_ext;
3690 	ee_block = le32_to_cpu(ex->ee_block);
3691 	ee_len = ext4_ext_get_actual_len(ex);
3692 
3693 	/* Convert to unwritten */
3694 	if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3695 		split_flag |= EXT4_EXT_DATA_VALID1;
3696 	/* Convert to initialized */
3697 	} else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3698 		split_flag |= ee_block + ee_len <= eof_block ?
3699 			      EXT4_EXT_MAY_ZEROOUT : 0;
3700 		split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3701 	}
3702 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3703 	return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3704 }
3705 
3706 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3707 						struct inode *inode,
3708 						struct ext4_map_blocks *map,
3709 						struct ext4_ext_path **ppath)
3710 {
3711 	struct ext4_ext_path *path = *ppath;
3712 	struct ext4_extent *ex;
3713 	ext4_lblk_t ee_block;
3714 	unsigned int ee_len;
3715 	int depth;
3716 	int err = 0;
3717 
3718 	depth = ext_depth(inode);
3719 	ex = path[depth].p_ext;
3720 	ee_block = le32_to_cpu(ex->ee_block);
3721 	ee_len = ext4_ext_get_actual_len(ex);
3722 
3723 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3724 		"block %llu, max_blocks %u\n", inode->i_ino,
3725 		  (unsigned long long)ee_block, ee_len);
3726 
3727 	/* If extent is larger than requested it is a clear sign that we still
3728 	 * have some extent state machine issues left. So extent_split is still
3729 	 * required.
3730 	 * TODO: Once all related issues will be fixed this situation should be
3731 	 * illegal.
3732 	 */
3733 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3734 #ifdef EXT4_DEBUG
3735 		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3736 			     " len %u; IO logical block %llu, len %u",
3737 			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3738 			     (unsigned long long)map->m_lblk, map->m_len);
3739 #endif
3740 		err = ext4_split_convert_extents(handle, inode, map, ppath,
3741 						 EXT4_GET_BLOCKS_CONVERT);
3742 		if (err < 0)
3743 			return err;
3744 		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3745 		if (IS_ERR(path))
3746 			return PTR_ERR(path);
3747 		depth = ext_depth(inode);
3748 		ex = path[depth].p_ext;
3749 	}
3750 
3751 	err = ext4_ext_get_access(handle, inode, path + depth);
3752 	if (err)
3753 		goto out;
3754 	/* first mark the extent as initialized */
3755 	ext4_ext_mark_initialized(ex);
3756 
3757 	/* note: ext4_ext_correct_indexes() isn't needed here because
3758 	 * borders are not changed
3759 	 */
3760 	ext4_ext_try_to_merge(handle, inode, path, ex);
3761 
3762 	/* Mark modified extent as dirty */
3763 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3764 out:
3765 	ext4_ext_show_leaf(inode, path);
3766 	return err;
3767 }
3768 
3769 /*
3770  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3771  */
3772 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3773 			      ext4_lblk_t lblk,
3774 			      struct ext4_ext_path *path,
3775 			      unsigned int len)
3776 {
3777 	int i, depth;
3778 	struct ext4_extent_header *eh;
3779 	struct ext4_extent *last_ex;
3780 
3781 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3782 		return 0;
3783 
3784 	depth = ext_depth(inode);
3785 	eh = path[depth].p_hdr;
3786 
3787 	/*
3788 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3789 	 * do not care for this case anymore. Simply remove the flag
3790 	 * if there are no extents.
3791 	 */
3792 	if (unlikely(!eh->eh_entries))
3793 		goto out;
3794 	last_ex = EXT_LAST_EXTENT(eh);
3795 	/*
3796 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3797 	 * last block in the last extent in the file.  We test this by
3798 	 * first checking to see if the caller to
3799 	 * ext4_ext_get_blocks() was interested in the last block (or
3800 	 * a block beyond the last block) in the current extent.  If
3801 	 * this turns out to be false, we can bail out from this
3802 	 * function immediately.
3803 	 */
3804 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3805 	    ext4_ext_get_actual_len(last_ex))
3806 		return 0;
3807 	/*
3808 	 * If the caller does appear to be planning to write at or
3809 	 * beyond the end of the current extent, we then test to see
3810 	 * if the current extent is the last extent in the file, by
3811 	 * checking to make sure it was reached via the rightmost node
3812 	 * at each level of the tree.
3813 	 */
3814 	for (i = depth-1; i >= 0; i--)
3815 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3816 			return 0;
3817 out:
3818 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3819 	return ext4_mark_inode_dirty(handle, inode);
3820 }
3821 
3822 /**
3823  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3824  *
3825  * Return 1 if there is a delalloc block in the range, otherwise 0.
3826  */
3827 int ext4_find_delalloc_range(struct inode *inode,
3828 			     ext4_lblk_t lblk_start,
3829 			     ext4_lblk_t lblk_end)
3830 {
3831 	struct extent_status es;
3832 
3833 	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3834 	if (es.es_len == 0)
3835 		return 0; /* there is no delay extent in this tree */
3836 	else if (es.es_lblk <= lblk_start &&
3837 		 lblk_start < es.es_lblk + es.es_len)
3838 		return 1;
3839 	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3840 		return 1;
3841 	else
3842 		return 0;
3843 }
3844 
3845 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3846 {
3847 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3848 	ext4_lblk_t lblk_start, lblk_end;
3849 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3850 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3851 
3852 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3853 }
3854 
3855 /**
3856  * Determines how many complete clusters (out of those specified by the 'map')
3857  * are under delalloc and were reserved quota for.
3858  * This function is called when we are writing out the blocks that were
3859  * originally written with their allocation delayed, but then the space was
3860  * allocated using fallocate() before the delayed allocation could be resolved.
3861  * The cases to look for are:
3862  * ('=' indicated delayed allocated blocks
3863  *  '-' indicates non-delayed allocated blocks)
3864  * (a) partial clusters towards beginning and/or end outside of allocated range
3865  *     are not delalloc'ed.
3866  *	Ex:
3867  *	|----c---=|====c====|====c====|===-c----|
3868  *	         |++++++ allocated ++++++|
3869  *	==> 4 complete clusters in above example
3870  *
3871  * (b) partial cluster (outside of allocated range) towards either end is
3872  *     marked for delayed allocation. In this case, we will exclude that
3873  *     cluster.
3874  *	Ex:
3875  *	|----====c========|========c========|
3876  *	     |++++++ allocated ++++++|
3877  *	==> 1 complete clusters in above example
3878  *
3879  *	Ex:
3880  *	|================c================|
3881  *            |++++++ allocated ++++++|
3882  *	==> 0 complete clusters in above example
3883  *
3884  * The ext4_da_update_reserve_space will be called only if we
3885  * determine here that there were some "entire" clusters that span
3886  * this 'allocated' range.
3887  * In the non-bigalloc case, this function will just end up returning num_blks
3888  * without ever calling ext4_find_delalloc_range.
3889  */
3890 static unsigned int
3891 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3892 			   unsigned int num_blks)
3893 {
3894 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3895 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3896 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3897 	unsigned int allocated_clusters = 0;
3898 
3899 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3900 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3901 
3902 	/* max possible clusters for this allocation */
3903 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3904 
3905 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3906 
3907 	/* Check towards left side */
3908 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3909 	if (c_offset) {
3910 		lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3911 		lblk_to = lblk_from + c_offset - 1;
3912 
3913 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3914 			allocated_clusters--;
3915 	}
3916 
3917 	/* Now check towards right. */
3918 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3919 	if (allocated_clusters && c_offset) {
3920 		lblk_from = lblk_start + num_blks;
3921 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3922 
3923 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3924 			allocated_clusters--;
3925 	}
3926 
3927 	return allocated_clusters;
3928 }
3929 
3930 static int
3931 convert_initialized_extent(handle_t *handle, struct inode *inode,
3932 			   struct ext4_map_blocks *map,
3933 			   struct ext4_ext_path **ppath,
3934 			   unsigned int allocated)
3935 {
3936 	struct ext4_ext_path *path = *ppath;
3937 	struct ext4_extent *ex;
3938 	ext4_lblk_t ee_block;
3939 	unsigned int ee_len;
3940 	int depth;
3941 	int err = 0;
3942 
3943 	/*
3944 	 * Make sure that the extent is no bigger than we support with
3945 	 * unwritten extent
3946 	 */
3947 	if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3948 		map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3949 
3950 	depth = ext_depth(inode);
3951 	ex = path[depth].p_ext;
3952 	ee_block = le32_to_cpu(ex->ee_block);
3953 	ee_len = ext4_ext_get_actual_len(ex);
3954 
3955 	ext_debug("%s: inode %lu, logical"
3956 		"block %llu, max_blocks %u\n", __func__, inode->i_ino,
3957 		  (unsigned long long)ee_block, ee_len);
3958 
3959 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3960 		err = ext4_split_convert_extents(handle, inode, map, ppath,
3961 				EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3962 		if (err < 0)
3963 			return err;
3964 		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3965 		if (IS_ERR(path))
3966 			return PTR_ERR(path);
3967 		depth = ext_depth(inode);
3968 		ex = path[depth].p_ext;
3969 		if (!ex) {
3970 			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3971 					 (unsigned long) map->m_lblk);
3972 			return -EFSCORRUPTED;
3973 		}
3974 	}
3975 
3976 	err = ext4_ext_get_access(handle, inode, path + depth);
3977 	if (err)
3978 		return err;
3979 	/* first mark the extent as unwritten */
3980 	ext4_ext_mark_unwritten(ex);
3981 
3982 	/* note: ext4_ext_correct_indexes() isn't needed here because
3983 	 * borders are not changed
3984 	 */
3985 	ext4_ext_try_to_merge(handle, inode, path, ex);
3986 
3987 	/* Mark modified extent as dirty */
3988 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3989 	if (err)
3990 		return err;
3991 	ext4_ext_show_leaf(inode, path);
3992 
3993 	ext4_update_inode_fsync_trans(handle, inode, 1);
3994 	err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
3995 	if (err)
3996 		return err;
3997 	map->m_flags |= EXT4_MAP_UNWRITTEN;
3998 	if (allocated > map->m_len)
3999 		allocated = map->m_len;
4000 	map->m_len = allocated;
4001 	return allocated;
4002 }
4003 
4004 static int
4005 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
4006 			struct ext4_map_blocks *map,
4007 			struct ext4_ext_path **ppath, int flags,
4008 			unsigned int allocated, ext4_fsblk_t newblock)
4009 {
4010 	struct ext4_ext_path *path = *ppath;
4011 	int ret = 0;
4012 	int err = 0;
4013 
4014 	ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4015 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
4016 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4017 		  flags, allocated);
4018 	ext4_ext_show_leaf(inode, path);
4019 
4020 	/*
4021 	 * When writing into unwritten space, we should not fail to
4022 	 * allocate metadata blocks for the new extent block if needed.
4023 	 */
4024 	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4025 
4026 	trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4027 						    allocated, newblock);
4028 
4029 	/* get_block() before submit the IO, split the extent */
4030 	if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4031 		ret = ext4_split_convert_extents(handle, inode, map, ppath,
4032 					 flags | EXT4_GET_BLOCKS_CONVERT);
4033 		if (ret <= 0)
4034 			goto out;
4035 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4036 		goto out;
4037 	}
4038 	/* IO end_io complete, convert the filled extent to written */
4039 	if (flags & EXT4_GET_BLOCKS_CONVERT) {
4040 		if (flags & EXT4_GET_BLOCKS_ZERO) {
4041 			if (allocated > map->m_len)
4042 				allocated = map->m_len;
4043 			err = ext4_issue_zeroout(inode, map->m_lblk, newblock,
4044 						 allocated);
4045 			if (err < 0)
4046 				goto out2;
4047 		}
4048 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4049 							   ppath);
4050 		if (ret >= 0) {
4051 			ext4_update_inode_fsync_trans(handle, inode, 1);
4052 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
4053 						 path, map->m_len);
4054 		} else
4055 			err = ret;
4056 		map->m_flags |= EXT4_MAP_MAPPED;
4057 		map->m_pblk = newblock;
4058 		if (allocated > map->m_len)
4059 			allocated = map->m_len;
4060 		map->m_len = allocated;
4061 		goto out2;
4062 	}
4063 	/* buffered IO case */
4064 	/*
4065 	 * repeat fallocate creation request
4066 	 * we already have an unwritten extent
4067 	 */
4068 	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4069 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4070 		goto map_out;
4071 	}
4072 
4073 	/* buffered READ or buffered write_begin() lookup */
4074 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4075 		/*
4076 		 * We have blocks reserved already.  We
4077 		 * return allocated blocks so that delalloc
4078 		 * won't do block reservation for us.  But
4079 		 * the buffer head will be unmapped so that
4080 		 * a read from the block returns 0s.
4081 		 */
4082 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4083 		goto out1;
4084 	}
4085 
4086 	/* buffered write, writepage time, convert*/
4087 	ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
4088 	if (ret >= 0)
4089 		ext4_update_inode_fsync_trans(handle, inode, 1);
4090 out:
4091 	if (ret <= 0) {
4092 		err = ret;
4093 		goto out2;
4094 	} else
4095 		allocated = ret;
4096 	map->m_flags |= EXT4_MAP_NEW;
4097 	/*
4098 	 * if we allocated more blocks than requested
4099 	 * we need to make sure we unmap the extra block
4100 	 * allocated. The actual needed block will get
4101 	 * unmapped later when we find the buffer_head marked
4102 	 * new.
4103 	 */
4104 	if (allocated > map->m_len) {
4105 		clean_bdev_aliases(inode->i_sb->s_bdev, newblock + map->m_len,
4106 				   allocated - map->m_len);
4107 		allocated = map->m_len;
4108 	}
4109 	map->m_len = allocated;
4110 
4111 	/*
4112 	 * If we have done fallocate with the offset that is already
4113 	 * delayed allocated, we would have block reservation
4114 	 * and quota reservation done in the delayed write path.
4115 	 * But fallocate would have already updated quota and block
4116 	 * count for this offset. So cancel these reservation
4117 	 */
4118 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4119 		unsigned int reserved_clusters;
4120 		reserved_clusters = get_reserved_cluster_alloc(inode,
4121 				map->m_lblk, map->m_len);
4122 		if (reserved_clusters)
4123 			ext4_da_update_reserve_space(inode,
4124 						     reserved_clusters,
4125 						     0);
4126 	}
4127 
4128 map_out:
4129 	map->m_flags |= EXT4_MAP_MAPPED;
4130 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4131 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4132 					 map->m_len);
4133 		if (err < 0)
4134 			goto out2;
4135 	}
4136 out1:
4137 	if (allocated > map->m_len)
4138 		allocated = map->m_len;
4139 	ext4_ext_show_leaf(inode, path);
4140 	map->m_pblk = newblock;
4141 	map->m_len = allocated;
4142 out2:
4143 	return err ? err : allocated;
4144 }
4145 
4146 /*
4147  * get_implied_cluster_alloc - check to see if the requested
4148  * allocation (in the map structure) overlaps with a cluster already
4149  * allocated in an extent.
4150  *	@sb	The filesystem superblock structure
4151  *	@map	The requested lblk->pblk mapping
4152  *	@ex	The extent structure which might contain an implied
4153  *			cluster allocation
4154  *
4155  * This function is called by ext4_ext_map_blocks() after we failed to
4156  * find blocks that were already in the inode's extent tree.  Hence,
4157  * we know that the beginning of the requested region cannot overlap
4158  * the extent from the inode's extent tree.  There are three cases we
4159  * want to catch.  The first is this case:
4160  *
4161  *		 |--- cluster # N--|
4162  *    |--- extent ---|	|---- requested region ---|
4163  *			|==========|
4164  *
4165  * The second case that we need to test for is this one:
4166  *
4167  *   |--------- cluster # N ----------------|
4168  *	   |--- requested region --|   |------- extent ----|
4169  *	   |=======================|
4170  *
4171  * The third case is when the requested region lies between two extents
4172  * within the same cluster:
4173  *          |------------- cluster # N-------------|
4174  * |----- ex -----|                  |---- ex_right ----|
4175  *                  |------ requested region ------|
4176  *                  |================|
4177  *
4178  * In each of the above cases, we need to set the map->m_pblk and
4179  * map->m_len so it corresponds to the return the extent labelled as
4180  * "|====|" from cluster #N, since it is already in use for data in
4181  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4182  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4183  * as a new "allocated" block region.  Otherwise, we will return 0 and
4184  * ext4_ext_map_blocks() will then allocate one or more new clusters
4185  * by calling ext4_mb_new_blocks().
4186  */
4187 static int get_implied_cluster_alloc(struct super_block *sb,
4188 				     struct ext4_map_blocks *map,
4189 				     struct ext4_extent *ex,
4190 				     struct ext4_ext_path *path)
4191 {
4192 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4193 	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4194 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4195 	ext4_lblk_t rr_cluster_start;
4196 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4197 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4198 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4199 
4200 	/* The extent passed in that we are trying to match */
4201 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4202 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4203 
4204 	/* The requested region passed into ext4_map_blocks() */
4205 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4206 
4207 	if ((rr_cluster_start == ex_cluster_end) ||
4208 	    (rr_cluster_start == ex_cluster_start)) {
4209 		if (rr_cluster_start == ex_cluster_end)
4210 			ee_start += ee_len - 1;
4211 		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4212 		map->m_len = min(map->m_len,
4213 				 (unsigned) sbi->s_cluster_ratio - c_offset);
4214 		/*
4215 		 * Check for and handle this case:
4216 		 *
4217 		 *   |--------- cluster # N-------------|
4218 		 *		       |------- extent ----|
4219 		 *	   |--- requested region ---|
4220 		 *	   |===========|
4221 		 */
4222 
4223 		if (map->m_lblk < ee_block)
4224 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4225 
4226 		/*
4227 		 * Check for the case where there is already another allocated
4228 		 * block to the right of 'ex' but before the end of the cluster.
4229 		 *
4230 		 *          |------------- cluster # N-------------|
4231 		 * |----- ex -----|                  |---- ex_right ----|
4232 		 *                  |------ requested region ------|
4233 		 *                  |================|
4234 		 */
4235 		if (map->m_lblk > ee_block) {
4236 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4237 			map->m_len = min(map->m_len, next - map->m_lblk);
4238 		}
4239 
4240 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4241 		return 1;
4242 	}
4243 
4244 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4245 	return 0;
4246 }
4247 
4248 
4249 /*
4250  * Block allocation/map/preallocation routine for extents based files
4251  *
4252  *
4253  * Need to be called with
4254  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4255  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4256  *
4257  * return > 0, number of of blocks already mapped/allocated
4258  *          if create == 0 and these are pre-allocated blocks
4259  *          	buffer head is unmapped
4260  *          otherwise blocks are mapped
4261  *
4262  * return = 0, if plain look up failed (blocks have not been allocated)
4263  *          buffer head is unmapped
4264  *
4265  * return < 0, error case.
4266  */
4267 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4268 			struct ext4_map_blocks *map, int flags)
4269 {
4270 	struct ext4_ext_path *path = NULL;
4271 	struct ext4_extent newex, *ex, *ex2;
4272 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4273 	ext4_fsblk_t newblock = 0;
4274 	int free_on_err = 0, err = 0, depth, ret;
4275 	unsigned int allocated = 0, offset = 0;
4276 	unsigned int allocated_clusters = 0;
4277 	struct ext4_allocation_request ar;
4278 	ext4_lblk_t cluster_offset;
4279 	bool map_from_cluster = false;
4280 
4281 	ext_debug("blocks %u/%u requested for inode %lu\n",
4282 		  map->m_lblk, map->m_len, inode->i_ino);
4283 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4284 
4285 	/* find extent for this block */
4286 	path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
4287 	if (IS_ERR(path)) {
4288 		err = PTR_ERR(path);
4289 		path = NULL;
4290 		goto out2;
4291 	}
4292 
4293 	depth = ext_depth(inode);
4294 
4295 	/*
4296 	 * consistent leaf must not be empty;
4297 	 * this situation is possible, though, _during_ tree modification;
4298 	 * this is why assert can't be put in ext4_find_extent()
4299 	 */
4300 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4301 		EXT4_ERROR_INODE(inode, "bad extent address "
4302 				 "lblock: %lu, depth: %d pblock %lld",
4303 				 (unsigned long) map->m_lblk, depth,
4304 				 path[depth].p_block);
4305 		err = -EFSCORRUPTED;
4306 		goto out2;
4307 	}
4308 
4309 	ex = path[depth].p_ext;
4310 	if (ex) {
4311 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4312 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4313 		unsigned short ee_len;
4314 
4315 
4316 		/*
4317 		 * unwritten extents are treated as holes, except that
4318 		 * we split out initialized portions during a write.
4319 		 */
4320 		ee_len = ext4_ext_get_actual_len(ex);
4321 
4322 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4323 
4324 		/* if found extent covers block, simply return it */
4325 		if (in_range(map->m_lblk, ee_block, ee_len)) {
4326 			newblock = map->m_lblk - ee_block + ee_start;
4327 			/* number of remaining blocks in the extent */
4328 			allocated = ee_len - (map->m_lblk - ee_block);
4329 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4330 				  ee_block, ee_len, newblock);
4331 
4332 			/*
4333 			 * If the extent is initialized check whether the
4334 			 * caller wants to convert it to unwritten.
4335 			 */
4336 			if ((!ext4_ext_is_unwritten(ex)) &&
4337 			    (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4338 				allocated = convert_initialized_extent(
4339 						handle, inode, map, &path,
4340 						allocated);
4341 				goto out2;
4342 			} else if (!ext4_ext_is_unwritten(ex))
4343 				goto out;
4344 
4345 			ret = ext4_ext_handle_unwritten_extents(
4346 				handle, inode, map, &path, flags,
4347 				allocated, newblock);
4348 			if (ret < 0)
4349 				err = ret;
4350 			else
4351 				allocated = ret;
4352 			goto out2;
4353 		}
4354 	}
4355 
4356 	/*
4357 	 * requested block isn't allocated yet;
4358 	 * we couldn't try to create block if create flag is zero
4359 	 */
4360 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4361 		ext4_lblk_t hole_start, hole_len;
4362 
4363 		hole_start = map->m_lblk;
4364 		hole_len = ext4_ext_determine_hole(inode, path, &hole_start);
4365 		/*
4366 		 * put just found gap into cache to speed up
4367 		 * subsequent requests
4368 		 */
4369 		ext4_ext_put_gap_in_cache(inode, hole_start, hole_len);
4370 
4371 		/* Update hole_len to reflect hole size after map->m_lblk */
4372 		if (hole_start != map->m_lblk)
4373 			hole_len -= map->m_lblk - hole_start;
4374 		map->m_pblk = 0;
4375 		map->m_len = min_t(unsigned int, map->m_len, hole_len);
4376 
4377 		goto out2;
4378 	}
4379 
4380 	/*
4381 	 * Okay, we need to do block allocation.
4382 	 */
4383 	newex.ee_block = cpu_to_le32(map->m_lblk);
4384 	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4385 
4386 	/*
4387 	 * If we are doing bigalloc, check to see if the extent returned
4388 	 * by ext4_find_extent() implies a cluster we can use.
4389 	 */
4390 	if (cluster_offset && ex &&
4391 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4392 		ar.len = allocated = map->m_len;
4393 		newblock = map->m_pblk;
4394 		map_from_cluster = true;
4395 		goto got_allocated_blocks;
4396 	}
4397 
4398 	/* find neighbour allocated blocks */
4399 	ar.lleft = map->m_lblk;
4400 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4401 	if (err)
4402 		goto out2;
4403 	ar.lright = map->m_lblk;
4404 	ex2 = NULL;
4405 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4406 	if (err)
4407 		goto out2;
4408 
4409 	/* Check if the extent after searching to the right implies a
4410 	 * cluster we can use. */
4411 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4412 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4413 		ar.len = allocated = map->m_len;
4414 		newblock = map->m_pblk;
4415 		map_from_cluster = true;
4416 		goto got_allocated_blocks;
4417 	}
4418 
4419 	/*
4420 	 * See if request is beyond maximum number of blocks we can have in
4421 	 * a single extent. For an initialized extent this limit is
4422 	 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4423 	 * EXT_UNWRITTEN_MAX_LEN.
4424 	 */
4425 	if (map->m_len > EXT_INIT_MAX_LEN &&
4426 	    !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4427 		map->m_len = EXT_INIT_MAX_LEN;
4428 	else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4429 		 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4430 		map->m_len = EXT_UNWRITTEN_MAX_LEN;
4431 
4432 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4433 	newex.ee_len = cpu_to_le16(map->m_len);
4434 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4435 	if (err)
4436 		allocated = ext4_ext_get_actual_len(&newex);
4437 	else
4438 		allocated = map->m_len;
4439 
4440 	/* allocate new block */
4441 	ar.inode = inode;
4442 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4443 	ar.logical = map->m_lblk;
4444 	/*
4445 	 * We calculate the offset from the beginning of the cluster
4446 	 * for the logical block number, since when we allocate a
4447 	 * physical cluster, the physical block should start at the
4448 	 * same offset from the beginning of the cluster.  This is
4449 	 * needed so that future calls to get_implied_cluster_alloc()
4450 	 * work correctly.
4451 	 */
4452 	offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4453 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4454 	ar.goal -= offset;
4455 	ar.logical -= offset;
4456 	if (S_ISREG(inode->i_mode))
4457 		ar.flags = EXT4_MB_HINT_DATA;
4458 	else
4459 		/* disable in-core preallocation for non-regular files */
4460 		ar.flags = 0;
4461 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4462 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4463 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4464 		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
4465 	if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
4466 		ar.flags |= EXT4_MB_USE_RESERVED;
4467 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4468 	if (!newblock)
4469 		goto out2;
4470 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4471 		  ar.goal, newblock, allocated);
4472 	free_on_err = 1;
4473 	allocated_clusters = ar.len;
4474 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4475 	if (ar.len > allocated)
4476 		ar.len = allocated;
4477 
4478 got_allocated_blocks:
4479 	/* try to insert new extent into found leaf and return */
4480 	ext4_ext_store_pblock(&newex, newblock + offset);
4481 	newex.ee_len = cpu_to_le16(ar.len);
4482 	/* Mark unwritten */
4483 	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4484 		ext4_ext_mark_unwritten(&newex);
4485 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4486 	}
4487 
4488 	err = 0;
4489 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4490 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4491 					 path, ar.len);
4492 	if (!err)
4493 		err = ext4_ext_insert_extent(handle, inode, &path,
4494 					     &newex, flags);
4495 
4496 	if (err && free_on_err) {
4497 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4498 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4499 		/* free data blocks we just allocated */
4500 		/* not a good idea to call discard here directly,
4501 		 * but otherwise we'd need to call it every free() */
4502 		ext4_discard_preallocations(inode);
4503 		ext4_free_blocks(handle, inode, NULL, newblock,
4504 				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4505 		goto out2;
4506 	}
4507 
4508 	/* previous routine could use block we allocated */
4509 	newblock = ext4_ext_pblock(&newex);
4510 	allocated = ext4_ext_get_actual_len(&newex);
4511 	if (allocated > map->m_len)
4512 		allocated = map->m_len;
4513 	map->m_flags |= EXT4_MAP_NEW;
4514 
4515 	/*
4516 	 * Update reserved blocks/metadata blocks after successful
4517 	 * block allocation which had been deferred till now.
4518 	 */
4519 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4520 		unsigned int reserved_clusters;
4521 		/*
4522 		 * Check how many clusters we had reserved this allocated range
4523 		 */
4524 		reserved_clusters = get_reserved_cluster_alloc(inode,
4525 						map->m_lblk, allocated);
4526 		if (!map_from_cluster) {
4527 			BUG_ON(allocated_clusters < reserved_clusters);
4528 			if (reserved_clusters < allocated_clusters) {
4529 				struct ext4_inode_info *ei = EXT4_I(inode);
4530 				int reservation = allocated_clusters -
4531 						  reserved_clusters;
4532 				/*
4533 				 * It seems we claimed few clusters outside of
4534 				 * the range of this allocation. We should give
4535 				 * it back to the reservation pool. This can
4536 				 * happen in the following case:
4537 				 *
4538 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4539 				 *   cluster has 4 blocks. Thus, the clusters
4540 				 *   are [0-3],[4-7],[8-11]...
4541 				 * * First comes delayed allocation write for
4542 				 *   logical blocks 10 & 11. Since there were no
4543 				 *   previous delayed allocated blocks in the
4544 				 *   range [8-11], we would reserve 1 cluster
4545 				 *   for this write.
4546 				 * * Next comes write for logical blocks 3 to 8.
4547 				 *   In this case, we will reserve 2 clusters
4548 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4549 				 *   that range has a delayed allocated blocks.
4550 				 *   Thus total reserved clusters now becomes 3.
4551 				 * * Now, during the delayed allocation writeout
4552 				 *   time, we will first write blocks [3-8] and
4553 				 *   allocate 3 clusters for writing these
4554 				 *   blocks. Also, we would claim all these
4555 				 *   three clusters above.
4556 				 * * Now when we come here to writeout the
4557 				 *   blocks [10-11], we would expect to claim
4558 				 *   the reservation of 1 cluster we had made
4559 				 *   (and we would claim it since there are no
4560 				 *   more delayed allocated blocks in the range
4561 				 *   [8-11]. But our reserved cluster count had
4562 				 *   already gone to 0.
4563 				 *
4564 				 *   Thus, at the step 4 above when we determine
4565 				 *   that there are still some unwritten delayed
4566 				 *   allocated blocks outside of our current
4567 				 *   block range, we should increment the
4568 				 *   reserved clusters count so that when the
4569 				 *   remaining blocks finally gets written, we
4570 				 *   could claim them.
4571 				 */
4572 				dquot_reserve_block(inode,
4573 						EXT4_C2B(sbi, reservation));
4574 				spin_lock(&ei->i_block_reservation_lock);
4575 				ei->i_reserved_data_blocks += reservation;
4576 				spin_unlock(&ei->i_block_reservation_lock);
4577 			}
4578 			/*
4579 			 * We will claim quota for all newly allocated blocks.
4580 			 * We're updating the reserved space *after* the
4581 			 * correction above so we do not accidentally free
4582 			 * all the metadata reservation because we might
4583 			 * actually need it later on.
4584 			 */
4585 			ext4_da_update_reserve_space(inode, allocated_clusters,
4586 							1);
4587 		}
4588 	}
4589 
4590 	/*
4591 	 * Cache the extent and update transaction to commit on fdatasync only
4592 	 * when it is _not_ an unwritten extent.
4593 	 */
4594 	if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4595 		ext4_update_inode_fsync_trans(handle, inode, 1);
4596 	else
4597 		ext4_update_inode_fsync_trans(handle, inode, 0);
4598 out:
4599 	if (allocated > map->m_len)
4600 		allocated = map->m_len;
4601 	ext4_ext_show_leaf(inode, path);
4602 	map->m_flags |= EXT4_MAP_MAPPED;
4603 	map->m_pblk = newblock;
4604 	map->m_len = allocated;
4605 out2:
4606 	ext4_ext_drop_refs(path);
4607 	kfree(path);
4608 
4609 	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4610 				       err ? err : allocated);
4611 	return err ? err : allocated;
4612 }
4613 
4614 int ext4_ext_truncate(handle_t *handle, struct inode *inode)
4615 {
4616 	struct super_block *sb = inode->i_sb;
4617 	ext4_lblk_t last_block;
4618 	int err = 0;
4619 
4620 	/*
4621 	 * TODO: optimization is possible here.
4622 	 * Probably we need not scan at all,
4623 	 * because page truncation is enough.
4624 	 */
4625 
4626 	/* we have to know where to truncate from in crash case */
4627 	EXT4_I(inode)->i_disksize = inode->i_size;
4628 	err = ext4_mark_inode_dirty(handle, inode);
4629 	if (err)
4630 		return err;
4631 
4632 	last_block = (inode->i_size + sb->s_blocksize - 1)
4633 			>> EXT4_BLOCK_SIZE_BITS(sb);
4634 retry:
4635 	err = ext4_es_remove_extent(inode, last_block,
4636 				    EXT_MAX_BLOCKS - last_block);
4637 	if (err == -ENOMEM) {
4638 		cond_resched();
4639 		congestion_wait(BLK_RW_ASYNC, HZ/50);
4640 		goto retry;
4641 	}
4642 	if (err)
4643 		return err;
4644 	return ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4645 }
4646 
4647 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4648 				  ext4_lblk_t len, loff_t new_size,
4649 				  int flags)
4650 {
4651 	struct inode *inode = file_inode(file);
4652 	handle_t *handle;
4653 	int ret = 0;
4654 	int ret2 = 0;
4655 	int retries = 0;
4656 	int depth = 0;
4657 	struct ext4_map_blocks map;
4658 	unsigned int credits;
4659 	loff_t epos;
4660 
4661 	BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS));
4662 	map.m_lblk = offset;
4663 	map.m_len = len;
4664 	/*
4665 	 * Don't normalize the request if it can fit in one extent so
4666 	 * that it doesn't get unnecessarily split into multiple
4667 	 * extents.
4668 	 */
4669 	if (len <= EXT_UNWRITTEN_MAX_LEN)
4670 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4671 
4672 	/*
4673 	 * credits to insert 1 extent into extent tree
4674 	 */
4675 	credits = ext4_chunk_trans_blocks(inode, len);
4676 	depth = ext_depth(inode);
4677 
4678 retry:
4679 	while (ret >= 0 && len) {
4680 		/*
4681 		 * Recalculate credits when extent tree depth changes.
4682 		 */
4683 		if (depth != ext_depth(inode)) {
4684 			credits = ext4_chunk_trans_blocks(inode, len);
4685 			depth = ext_depth(inode);
4686 		}
4687 
4688 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4689 					    credits);
4690 		if (IS_ERR(handle)) {
4691 			ret = PTR_ERR(handle);
4692 			break;
4693 		}
4694 		ret = ext4_map_blocks(handle, inode, &map, flags);
4695 		if (ret <= 0) {
4696 			ext4_debug("inode #%lu: block %u: len %u: "
4697 				   "ext4_ext_map_blocks returned %d",
4698 				   inode->i_ino, map.m_lblk,
4699 				   map.m_len, ret);
4700 			ext4_mark_inode_dirty(handle, inode);
4701 			ret2 = ext4_journal_stop(handle);
4702 			break;
4703 		}
4704 		map.m_lblk += ret;
4705 		map.m_len = len = len - ret;
4706 		epos = (loff_t)map.m_lblk << inode->i_blkbits;
4707 		inode->i_ctime = current_time(inode);
4708 		if (new_size) {
4709 			if (epos > new_size)
4710 				epos = new_size;
4711 			if (ext4_update_inode_size(inode, epos) & 0x1)
4712 				inode->i_mtime = inode->i_ctime;
4713 		} else {
4714 			if (epos > inode->i_size)
4715 				ext4_set_inode_flag(inode,
4716 						    EXT4_INODE_EOFBLOCKS);
4717 		}
4718 		ext4_mark_inode_dirty(handle, inode);
4719 		ext4_update_inode_fsync_trans(handle, inode, 1);
4720 		ret2 = ext4_journal_stop(handle);
4721 		if (ret2)
4722 			break;
4723 	}
4724 	if (ret == -ENOSPC &&
4725 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4726 		ret = 0;
4727 		goto retry;
4728 	}
4729 
4730 	return ret > 0 ? ret2 : ret;
4731 }
4732 
4733 static long ext4_zero_range(struct file *file, loff_t offset,
4734 			    loff_t len, int mode)
4735 {
4736 	struct inode *inode = file_inode(file);
4737 	handle_t *handle = NULL;
4738 	unsigned int max_blocks;
4739 	loff_t new_size = 0;
4740 	int ret = 0;
4741 	int flags;
4742 	int credits;
4743 	int partial_begin, partial_end;
4744 	loff_t start, end;
4745 	ext4_lblk_t lblk;
4746 	unsigned int blkbits = inode->i_blkbits;
4747 
4748 	trace_ext4_zero_range(inode, offset, len, mode);
4749 
4750 	if (!S_ISREG(inode->i_mode))
4751 		return -EINVAL;
4752 
4753 	/* Call ext4_force_commit to flush all data in case of data=journal. */
4754 	if (ext4_should_journal_data(inode)) {
4755 		ret = ext4_force_commit(inode->i_sb);
4756 		if (ret)
4757 			return ret;
4758 	}
4759 
4760 	/*
4761 	 * Round up offset. This is not fallocate, we neet to zero out
4762 	 * blocks, so convert interior block aligned part of the range to
4763 	 * unwritten and possibly manually zero out unaligned parts of the
4764 	 * range.
4765 	 */
4766 	start = round_up(offset, 1 << blkbits);
4767 	end = round_down((offset + len), 1 << blkbits);
4768 
4769 	if (start < offset || end > offset + len)
4770 		return -EINVAL;
4771 	partial_begin = offset & ((1 << blkbits) - 1);
4772 	partial_end = (offset + len) & ((1 << blkbits) - 1);
4773 
4774 	lblk = start >> blkbits;
4775 	max_blocks = (end >> blkbits);
4776 	if (max_blocks < lblk)
4777 		max_blocks = 0;
4778 	else
4779 		max_blocks -= lblk;
4780 
4781 	inode_lock(inode);
4782 
4783 	/*
4784 	 * Indirect files do not support unwritten extnets
4785 	 */
4786 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4787 		ret = -EOPNOTSUPP;
4788 		goto out_mutex;
4789 	}
4790 
4791 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4792 	    (offset + len > i_size_read(inode) ||
4793 	     offset + len > EXT4_I(inode)->i_disksize)) {
4794 		new_size = offset + len;
4795 		ret = inode_newsize_ok(inode, new_size);
4796 		if (ret)
4797 			goto out_mutex;
4798 	}
4799 
4800 	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4801 	if (mode & FALLOC_FL_KEEP_SIZE)
4802 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4803 
4804 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4805 	inode_dio_wait(inode);
4806 
4807 	/* Preallocate the range including the unaligned edges */
4808 	if (partial_begin || partial_end) {
4809 		ret = ext4_alloc_file_blocks(file,
4810 				round_down(offset, 1 << blkbits) >> blkbits,
4811 				(round_up((offset + len), 1 << blkbits) -
4812 				 round_down(offset, 1 << blkbits)) >> blkbits,
4813 				new_size, flags);
4814 		if (ret)
4815 			goto out_mutex;
4816 
4817 	}
4818 
4819 	/* Zero range excluding the unaligned edges */
4820 	if (max_blocks > 0) {
4821 		flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4822 			  EXT4_EX_NOCACHE);
4823 
4824 		/*
4825 		 * Prevent page faults from reinstantiating pages we have
4826 		 * released from page cache.
4827 		 */
4828 		down_write(&EXT4_I(inode)->i_mmap_sem);
4829 		ret = ext4_update_disksize_before_punch(inode, offset, len);
4830 		if (ret) {
4831 			up_write(&EXT4_I(inode)->i_mmap_sem);
4832 			goto out_mutex;
4833 		}
4834 		/* Now release the pages and zero block aligned part of pages */
4835 		truncate_pagecache_range(inode, start, end - 1);
4836 		inode->i_mtime = inode->i_ctime = current_time(inode);
4837 
4838 		ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4839 					     flags);
4840 		up_write(&EXT4_I(inode)->i_mmap_sem);
4841 		if (ret)
4842 			goto out_mutex;
4843 	}
4844 	if (!partial_begin && !partial_end)
4845 		goto out_mutex;
4846 
4847 	/*
4848 	 * In worst case we have to writeout two nonadjacent unwritten
4849 	 * blocks and update the inode
4850 	 */
4851 	credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4852 	if (ext4_should_journal_data(inode))
4853 		credits += 2;
4854 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4855 	if (IS_ERR(handle)) {
4856 		ret = PTR_ERR(handle);
4857 		ext4_std_error(inode->i_sb, ret);
4858 		goto out_mutex;
4859 	}
4860 
4861 	inode->i_mtime = inode->i_ctime = current_time(inode);
4862 	if (new_size) {
4863 		ext4_update_inode_size(inode, new_size);
4864 	} else {
4865 		/*
4866 		* Mark that we allocate beyond EOF so the subsequent truncate
4867 		* can proceed even if the new size is the same as i_size.
4868 		*/
4869 		if ((offset + len) > i_size_read(inode))
4870 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4871 	}
4872 	ext4_mark_inode_dirty(handle, inode);
4873 
4874 	/* Zero out partial block at the edges of the range */
4875 	ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4876 	if (ret >= 0)
4877 		ext4_update_inode_fsync_trans(handle, inode, 1);
4878 
4879 	if (file->f_flags & O_SYNC)
4880 		ext4_handle_sync(handle);
4881 
4882 	ext4_journal_stop(handle);
4883 out_mutex:
4884 	inode_unlock(inode);
4885 	return ret;
4886 }
4887 
4888 /*
4889  * preallocate space for a file. This implements ext4's fallocate file
4890  * operation, which gets called from sys_fallocate system call.
4891  * For block-mapped files, posix_fallocate should fall back to the method
4892  * of writing zeroes to the required new blocks (the same behavior which is
4893  * expected for file systems which do not support fallocate() system call).
4894  */
4895 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4896 {
4897 	struct inode *inode = file_inode(file);
4898 	loff_t new_size = 0;
4899 	unsigned int max_blocks;
4900 	int ret = 0;
4901 	int flags;
4902 	ext4_lblk_t lblk;
4903 	unsigned int blkbits = inode->i_blkbits;
4904 
4905 	/*
4906 	 * Encrypted inodes can't handle collapse range or insert
4907 	 * range since we would need to re-encrypt blocks with a
4908 	 * different IV or XTS tweak (which are based on the logical
4909 	 * block number).
4910 	 *
4911 	 * XXX It's not clear why zero range isn't working, but we'll
4912 	 * leave it disabled for encrypted inodes for now.  This is a
4913 	 * bug we should fix....
4914 	 */
4915 	if (ext4_encrypted_inode(inode) &&
4916 	    (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE |
4917 		     FALLOC_FL_ZERO_RANGE)))
4918 		return -EOPNOTSUPP;
4919 
4920 	/* Return error if mode is not supported */
4921 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4922 		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
4923 		     FALLOC_FL_INSERT_RANGE))
4924 		return -EOPNOTSUPP;
4925 
4926 	if (mode & FALLOC_FL_PUNCH_HOLE)
4927 		return ext4_punch_hole(inode, offset, len);
4928 
4929 	ret = ext4_convert_inline_data(inode);
4930 	if (ret)
4931 		return ret;
4932 
4933 	if (mode & FALLOC_FL_COLLAPSE_RANGE)
4934 		return ext4_collapse_range(inode, offset, len);
4935 
4936 	if (mode & FALLOC_FL_INSERT_RANGE)
4937 		return ext4_insert_range(inode, offset, len);
4938 
4939 	if (mode & FALLOC_FL_ZERO_RANGE)
4940 		return ext4_zero_range(file, offset, len, mode);
4941 
4942 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4943 	lblk = offset >> blkbits;
4944 
4945 	max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
4946 	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4947 	if (mode & FALLOC_FL_KEEP_SIZE)
4948 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4949 
4950 	inode_lock(inode);
4951 
4952 	/*
4953 	 * We only support preallocation for extent-based files only
4954 	 */
4955 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4956 		ret = -EOPNOTSUPP;
4957 		goto out;
4958 	}
4959 
4960 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4961 	    (offset + len > i_size_read(inode) ||
4962 	     offset + len > EXT4_I(inode)->i_disksize)) {
4963 		new_size = offset + len;
4964 		ret = inode_newsize_ok(inode, new_size);
4965 		if (ret)
4966 			goto out;
4967 	}
4968 
4969 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4970 	inode_dio_wait(inode);
4971 
4972 	ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags);
4973 	if (ret)
4974 		goto out;
4975 
4976 	if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
4977 		ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
4978 						EXT4_I(inode)->i_sync_tid);
4979 	}
4980 out:
4981 	inode_unlock(inode);
4982 	trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4983 	return ret;
4984 }
4985 
4986 /*
4987  * This function convert a range of blocks to written extents
4988  * The caller of this function will pass the start offset and the size.
4989  * all unwritten extents within this range will be converted to
4990  * written extents.
4991  *
4992  * This function is called from the direct IO end io call back
4993  * function, to convert the fallocated extents after IO is completed.
4994  * Returns 0 on success.
4995  */
4996 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4997 				   loff_t offset, ssize_t len)
4998 {
4999 	unsigned int max_blocks;
5000 	int ret = 0;
5001 	int ret2 = 0;
5002 	struct ext4_map_blocks map;
5003 	unsigned int credits, blkbits = inode->i_blkbits;
5004 
5005 	map.m_lblk = offset >> blkbits;
5006 	max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
5007 
5008 	/*
5009 	 * This is somewhat ugly but the idea is clear: When transaction is
5010 	 * reserved, everything goes into it. Otherwise we rather start several
5011 	 * smaller transactions for conversion of each extent separately.
5012 	 */
5013 	if (handle) {
5014 		handle = ext4_journal_start_reserved(handle,
5015 						     EXT4_HT_EXT_CONVERT);
5016 		if (IS_ERR(handle))
5017 			return PTR_ERR(handle);
5018 		credits = 0;
5019 	} else {
5020 		/*
5021 		 * credits to insert 1 extent into extent tree
5022 		 */
5023 		credits = ext4_chunk_trans_blocks(inode, max_blocks);
5024 	}
5025 	while (ret >= 0 && ret < max_blocks) {
5026 		map.m_lblk += ret;
5027 		map.m_len = (max_blocks -= ret);
5028 		if (credits) {
5029 			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5030 						    credits);
5031 			if (IS_ERR(handle)) {
5032 				ret = PTR_ERR(handle);
5033 				break;
5034 			}
5035 		}
5036 		ret = ext4_map_blocks(handle, inode, &map,
5037 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5038 		if (ret <= 0)
5039 			ext4_warning(inode->i_sb,
5040 				     "inode #%lu: block %u: len %u: "
5041 				     "ext4_ext_map_blocks returned %d",
5042 				     inode->i_ino, map.m_lblk,
5043 				     map.m_len, ret);
5044 		ext4_mark_inode_dirty(handle, inode);
5045 		if (credits)
5046 			ret2 = ext4_journal_stop(handle);
5047 		if (ret <= 0 || ret2)
5048 			break;
5049 	}
5050 	if (!credits)
5051 		ret2 = ext4_journal_stop(handle);
5052 	return ret > 0 ? ret2 : ret;
5053 }
5054 
5055 /*
5056  * If newes is not existing extent (newes->ec_pblk equals zero) find
5057  * delayed extent at start of newes and update newes accordingly and
5058  * return start of the next delayed extent.
5059  *
5060  * If newes is existing extent (newes->ec_pblk is not equal zero)
5061  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5062  * extent found. Leave newes unmodified.
5063  */
5064 static int ext4_find_delayed_extent(struct inode *inode,
5065 				    struct extent_status *newes)
5066 {
5067 	struct extent_status es;
5068 	ext4_lblk_t block, next_del;
5069 
5070 	if (newes->es_pblk == 0) {
5071 		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5072 				newes->es_lblk + newes->es_len - 1, &es);
5073 
5074 		/*
5075 		 * No extent in extent-tree contains block @newes->es_pblk,
5076 		 * then the block may stay in 1)a hole or 2)delayed-extent.
5077 		 */
5078 		if (es.es_len == 0)
5079 			/* A hole found. */
5080 			return 0;
5081 
5082 		if (es.es_lblk > newes->es_lblk) {
5083 			/* A hole found. */
5084 			newes->es_len = min(es.es_lblk - newes->es_lblk,
5085 					    newes->es_len);
5086 			return 0;
5087 		}
5088 
5089 		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5090 	}
5091 
5092 	block = newes->es_lblk + newes->es_len;
5093 	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5094 	if (es.es_len == 0)
5095 		next_del = EXT_MAX_BLOCKS;
5096 	else
5097 		next_del = es.es_lblk;
5098 
5099 	return next_del;
5100 }
5101 /* fiemap flags we can handle specified here */
5102 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5103 
5104 static int ext4_xattr_fiemap(struct inode *inode,
5105 				struct fiemap_extent_info *fieinfo)
5106 {
5107 	__u64 physical = 0;
5108 	__u64 length;
5109 	__u32 flags = FIEMAP_EXTENT_LAST;
5110 	int blockbits = inode->i_sb->s_blocksize_bits;
5111 	int error = 0;
5112 
5113 	/* in-inode? */
5114 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5115 		struct ext4_iloc iloc;
5116 		int offset;	/* offset of xattr in inode */
5117 
5118 		error = ext4_get_inode_loc(inode, &iloc);
5119 		if (error)
5120 			return error;
5121 		physical = (__u64)iloc.bh->b_blocknr << blockbits;
5122 		offset = EXT4_GOOD_OLD_INODE_SIZE +
5123 				EXT4_I(inode)->i_extra_isize;
5124 		physical += offset;
5125 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5126 		flags |= FIEMAP_EXTENT_DATA_INLINE;
5127 		brelse(iloc.bh);
5128 	} else { /* external block */
5129 		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5130 		length = inode->i_sb->s_blocksize;
5131 	}
5132 
5133 	if (physical)
5134 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
5135 						length, flags);
5136 	return (error < 0 ? error : 0);
5137 }
5138 
5139 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5140 		__u64 start, __u64 len)
5141 {
5142 	ext4_lblk_t start_blk;
5143 	int error = 0;
5144 
5145 	if (ext4_has_inline_data(inode)) {
5146 		int has_inline = 1;
5147 
5148 		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline,
5149 						start, len);
5150 
5151 		if (has_inline)
5152 			return error;
5153 	}
5154 
5155 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5156 		error = ext4_ext_precache(inode);
5157 		if (error)
5158 			return error;
5159 	}
5160 
5161 	/* fallback to generic here if not in extents fmt */
5162 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5163 		return generic_block_fiemap(inode, fieinfo, start, len,
5164 			ext4_get_block);
5165 
5166 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5167 		return -EBADR;
5168 
5169 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5170 		error = ext4_xattr_fiemap(inode, fieinfo);
5171 	} else {
5172 		ext4_lblk_t len_blks;
5173 		__u64 last_blk;
5174 
5175 		start_blk = start >> inode->i_sb->s_blocksize_bits;
5176 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5177 		if (last_blk >= EXT_MAX_BLOCKS)
5178 			last_blk = EXT_MAX_BLOCKS-1;
5179 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5180 
5181 		/*
5182 		 * Walk the extent tree gathering extent information
5183 		 * and pushing extents back to the user.
5184 		 */
5185 		error = ext4_fill_fiemap_extents(inode, start_blk,
5186 						 len_blks, fieinfo);
5187 	}
5188 	return error;
5189 }
5190 
5191 /*
5192  * ext4_access_path:
5193  * Function to access the path buffer for marking it dirty.
5194  * It also checks if there are sufficient credits left in the journal handle
5195  * to update path.
5196  */
5197 static int
5198 ext4_access_path(handle_t *handle, struct inode *inode,
5199 		struct ext4_ext_path *path)
5200 {
5201 	int credits, err;
5202 
5203 	if (!ext4_handle_valid(handle))
5204 		return 0;
5205 
5206 	/*
5207 	 * Check if need to extend journal credits
5208 	 * 3 for leaf, sb, and inode plus 2 (bmap and group
5209 	 * descriptor) for each block group; assume two block
5210 	 * groups
5211 	 */
5212 	if (handle->h_buffer_credits < 7) {
5213 		credits = ext4_writepage_trans_blocks(inode);
5214 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5215 		/* EAGAIN is success */
5216 		if (err && err != -EAGAIN)
5217 			return err;
5218 	}
5219 
5220 	err = ext4_ext_get_access(handle, inode, path);
5221 	return err;
5222 }
5223 
5224 /*
5225  * ext4_ext_shift_path_extents:
5226  * Shift the extents of a path structure lying between path[depth].p_ext
5227  * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells
5228  * if it is right shift or left shift operation.
5229  */
5230 static int
5231 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5232 			    struct inode *inode, handle_t *handle,
5233 			    enum SHIFT_DIRECTION SHIFT)
5234 {
5235 	int depth, err = 0;
5236 	struct ext4_extent *ex_start, *ex_last;
5237 	bool update = 0;
5238 	depth = path->p_depth;
5239 
5240 	while (depth >= 0) {
5241 		if (depth == path->p_depth) {
5242 			ex_start = path[depth].p_ext;
5243 			if (!ex_start)
5244 				return -EFSCORRUPTED;
5245 
5246 			ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5247 
5248 			err = ext4_access_path(handle, inode, path + depth);
5249 			if (err)
5250 				goto out;
5251 
5252 			if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5253 				update = 1;
5254 
5255 			while (ex_start <= ex_last) {
5256 				if (SHIFT == SHIFT_LEFT) {
5257 					le32_add_cpu(&ex_start->ee_block,
5258 						-shift);
5259 					/* Try to merge to the left. */
5260 					if ((ex_start >
5261 					    EXT_FIRST_EXTENT(path[depth].p_hdr))
5262 					    &&
5263 					    ext4_ext_try_to_merge_right(inode,
5264 					    path, ex_start - 1))
5265 						ex_last--;
5266 					else
5267 						ex_start++;
5268 				} else {
5269 					le32_add_cpu(&ex_last->ee_block, shift);
5270 					ext4_ext_try_to_merge_right(inode, path,
5271 						ex_last);
5272 					ex_last--;
5273 				}
5274 			}
5275 			err = ext4_ext_dirty(handle, inode, path + depth);
5276 			if (err)
5277 				goto out;
5278 
5279 			if (--depth < 0 || !update)
5280 				break;
5281 		}
5282 
5283 		/* Update index too */
5284 		err = ext4_access_path(handle, inode, path + depth);
5285 		if (err)
5286 			goto out;
5287 
5288 		if (SHIFT == SHIFT_LEFT)
5289 			le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5290 		else
5291 			le32_add_cpu(&path[depth].p_idx->ei_block, shift);
5292 		err = ext4_ext_dirty(handle, inode, path + depth);
5293 		if (err)
5294 			goto out;
5295 
5296 		/* we are done if current index is not a starting index */
5297 		if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5298 			break;
5299 
5300 		depth--;
5301 	}
5302 
5303 out:
5304 	return err;
5305 }
5306 
5307 /*
5308  * ext4_ext_shift_extents:
5309  * All the extents which lies in the range from @start to the last allocated
5310  * block for the @inode are shifted either towards left or right (depending
5311  * upon @SHIFT) by @shift blocks.
5312  * On success, 0 is returned, error otherwise.
5313  */
5314 static int
5315 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5316 		       ext4_lblk_t start, ext4_lblk_t shift,
5317 		       enum SHIFT_DIRECTION SHIFT)
5318 {
5319 	struct ext4_ext_path *path;
5320 	int ret = 0, depth;
5321 	struct ext4_extent *extent;
5322 	ext4_lblk_t stop, *iterator, ex_start, ex_end;
5323 
5324 	/* Let path point to the last extent */
5325 	path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL,
5326 				EXT4_EX_NOCACHE);
5327 	if (IS_ERR(path))
5328 		return PTR_ERR(path);
5329 
5330 	depth = path->p_depth;
5331 	extent = path[depth].p_ext;
5332 	if (!extent)
5333 		goto out;
5334 
5335 	stop = le32_to_cpu(extent->ee_block);
5336 
5337        /*
5338 	* For left shifts, make sure the hole on the left is big enough to
5339 	* accommodate the shift.  For right shifts, make sure the last extent
5340 	* won't be shifted beyond EXT_MAX_BLOCKS.
5341 	*/
5342 	if (SHIFT == SHIFT_LEFT) {
5343 		path = ext4_find_extent(inode, start - 1, &path,
5344 					EXT4_EX_NOCACHE);
5345 		if (IS_ERR(path))
5346 			return PTR_ERR(path);
5347 		depth = path->p_depth;
5348 		extent =  path[depth].p_ext;
5349 		if (extent) {
5350 			ex_start = le32_to_cpu(extent->ee_block);
5351 			ex_end = le32_to_cpu(extent->ee_block) +
5352 				ext4_ext_get_actual_len(extent);
5353 		} else {
5354 			ex_start = 0;
5355 			ex_end = 0;
5356 		}
5357 
5358 		if ((start == ex_start && shift > ex_start) ||
5359 		    (shift > start - ex_end)) {
5360 			ret = -EINVAL;
5361 			goto out;
5362 		}
5363 	} else {
5364 		if (shift > EXT_MAX_BLOCKS -
5365 		    (stop + ext4_ext_get_actual_len(extent))) {
5366 			ret = -EINVAL;
5367 			goto out;
5368 		}
5369 	}
5370 
5371 	/*
5372 	 * In case of left shift, iterator points to start and it is increased
5373 	 * till we reach stop. In case of right shift, iterator points to stop
5374 	 * and it is decreased till we reach start.
5375 	 */
5376 	if (SHIFT == SHIFT_LEFT)
5377 		iterator = &start;
5378 	else
5379 		iterator = &stop;
5380 
5381 	/*
5382 	 * Its safe to start updating extents.  Start and stop are unsigned, so
5383 	 * in case of right shift if extent with 0 block is reached, iterator
5384 	 * becomes NULL to indicate the end of the loop.
5385 	 */
5386 	while (iterator && start <= stop) {
5387 		path = ext4_find_extent(inode, *iterator, &path,
5388 					EXT4_EX_NOCACHE);
5389 		if (IS_ERR(path))
5390 			return PTR_ERR(path);
5391 		depth = path->p_depth;
5392 		extent = path[depth].p_ext;
5393 		if (!extent) {
5394 			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5395 					 (unsigned long) *iterator);
5396 			return -EFSCORRUPTED;
5397 		}
5398 		if (SHIFT == SHIFT_LEFT && *iterator >
5399 		    le32_to_cpu(extent->ee_block)) {
5400 			/* Hole, move to the next extent */
5401 			if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5402 				path[depth].p_ext++;
5403 			} else {
5404 				*iterator = ext4_ext_next_allocated_block(path);
5405 				continue;
5406 			}
5407 		}
5408 
5409 		if (SHIFT == SHIFT_LEFT) {
5410 			extent = EXT_LAST_EXTENT(path[depth].p_hdr);
5411 			*iterator = le32_to_cpu(extent->ee_block) +
5412 					ext4_ext_get_actual_len(extent);
5413 		} else {
5414 			extent = EXT_FIRST_EXTENT(path[depth].p_hdr);
5415 			if (le32_to_cpu(extent->ee_block) > 0)
5416 				*iterator = le32_to_cpu(extent->ee_block) - 1;
5417 			else
5418 				/* Beginning is reached, end of the loop */
5419 				iterator = NULL;
5420 			/* Update path extent in case we need to stop */
5421 			while (le32_to_cpu(extent->ee_block) < start)
5422 				extent++;
5423 			path[depth].p_ext = extent;
5424 		}
5425 		ret = ext4_ext_shift_path_extents(path, shift, inode,
5426 				handle, SHIFT);
5427 		if (ret)
5428 			break;
5429 	}
5430 out:
5431 	ext4_ext_drop_refs(path);
5432 	kfree(path);
5433 	return ret;
5434 }
5435 
5436 /*
5437  * ext4_collapse_range:
5438  * This implements the fallocate's collapse range functionality for ext4
5439  * Returns: 0 and non-zero on error.
5440  */
5441 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5442 {
5443 	struct super_block *sb = inode->i_sb;
5444 	ext4_lblk_t punch_start, punch_stop;
5445 	handle_t *handle;
5446 	unsigned int credits;
5447 	loff_t new_size, ioffset;
5448 	int ret;
5449 
5450 	/*
5451 	 * We need to test this early because xfstests assumes that a
5452 	 * collapse range of (0, 1) will return EOPNOTSUPP if the file
5453 	 * system does not support collapse range.
5454 	 */
5455 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5456 		return -EOPNOTSUPP;
5457 
5458 	/* Collapse range works only on fs block size aligned offsets. */
5459 	if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5460 	    len & (EXT4_CLUSTER_SIZE(sb) - 1))
5461 		return -EINVAL;
5462 
5463 	if (!S_ISREG(inode->i_mode))
5464 		return -EINVAL;
5465 
5466 	trace_ext4_collapse_range(inode, offset, len);
5467 
5468 	punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5469 	punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5470 
5471 	/* Call ext4_force_commit to flush all data in case of data=journal. */
5472 	if (ext4_should_journal_data(inode)) {
5473 		ret = ext4_force_commit(inode->i_sb);
5474 		if (ret)
5475 			return ret;
5476 	}
5477 
5478 	inode_lock(inode);
5479 	/*
5480 	 * There is no need to overlap collapse range with EOF, in which case
5481 	 * it is effectively a truncate operation
5482 	 */
5483 	if (offset + len >= i_size_read(inode)) {
5484 		ret = -EINVAL;
5485 		goto out_mutex;
5486 	}
5487 
5488 	/* Currently just for extent based files */
5489 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5490 		ret = -EOPNOTSUPP;
5491 		goto out_mutex;
5492 	}
5493 
5494 	/* Wait for existing dio to complete */
5495 	inode_dio_wait(inode);
5496 
5497 	/*
5498 	 * Prevent page faults from reinstantiating pages we have released from
5499 	 * page cache.
5500 	 */
5501 	down_write(&EXT4_I(inode)->i_mmap_sem);
5502 	/*
5503 	 * Need to round down offset to be aligned with page size boundary
5504 	 * for page size > block size.
5505 	 */
5506 	ioffset = round_down(offset, PAGE_SIZE);
5507 	/*
5508 	 * Write tail of the last page before removed range since it will get
5509 	 * removed from the page cache below.
5510 	 */
5511 	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset);
5512 	if (ret)
5513 		goto out_mmap;
5514 	/*
5515 	 * Write data that will be shifted to preserve them when discarding
5516 	 * page cache below. We are also protected from pages becoming dirty
5517 	 * by i_mmap_sem.
5518 	 */
5519 	ret = filemap_write_and_wait_range(inode->i_mapping, offset + len,
5520 					   LLONG_MAX);
5521 	if (ret)
5522 		goto out_mmap;
5523 	truncate_pagecache(inode, ioffset);
5524 
5525 	credits = ext4_writepage_trans_blocks(inode);
5526 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5527 	if (IS_ERR(handle)) {
5528 		ret = PTR_ERR(handle);
5529 		goto out_mmap;
5530 	}
5531 
5532 	down_write(&EXT4_I(inode)->i_data_sem);
5533 	ext4_discard_preallocations(inode);
5534 
5535 	ret = ext4_es_remove_extent(inode, punch_start,
5536 				    EXT_MAX_BLOCKS - punch_start);
5537 	if (ret) {
5538 		up_write(&EXT4_I(inode)->i_data_sem);
5539 		goto out_stop;
5540 	}
5541 
5542 	ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5543 	if (ret) {
5544 		up_write(&EXT4_I(inode)->i_data_sem);
5545 		goto out_stop;
5546 	}
5547 	ext4_discard_preallocations(inode);
5548 
5549 	ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5550 				     punch_stop - punch_start, SHIFT_LEFT);
5551 	if (ret) {
5552 		up_write(&EXT4_I(inode)->i_data_sem);
5553 		goto out_stop;
5554 	}
5555 
5556 	new_size = i_size_read(inode) - len;
5557 	i_size_write(inode, new_size);
5558 	EXT4_I(inode)->i_disksize = new_size;
5559 
5560 	up_write(&EXT4_I(inode)->i_data_sem);
5561 	if (IS_SYNC(inode))
5562 		ext4_handle_sync(handle);
5563 	inode->i_mtime = inode->i_ctime = current_time(inode);
5564 	ext4_mark_inode_dirty(handle, inode);
5565 	ext4_update_inode_fsync_trans(handle, inode, 1);
5566 
5567 out_stop:
5568 	ext4_journal_stop(handle);
5569 out_mmap:
5570 	up_write(&EXT4_I(inode)->i_mmap_sem);
5571 out_mutex:
5572 	inode_unlock(inode);
5573 	return ret;
5574 }
5575 
5576 /*
5577  * ext4_insert_range:
5578  * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate.
5579  * The data blocks starting from @offset to the EOF are shifted by @len
5580  * towards right to create a hole in the @inode. Inode size is increased
5581  * by len bytes.
5582  * Returns 0 on success, error otherwise.
5583  */
5584 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len)
5585 {
5586 	struct super_block *sb = inode->i_sb;
5587 	handle_t *handle;
5588 	struct ext4_ext_path *path;
5589 	struct ext4_extent *extent;
5590 	ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0;
5591 	unsigned int credits, ee_len;
5592 	int ret = 0, depth, split_flag = 0;
5593 	loff_t ioffset;
5594 
5595 	/*
5596 	 * We need to test this early because xfstests assumes that an
5597 	 * insert range of (0, 1) will return EOPNOTSUPP if the file
5598 	 * system does not support insert range.
5599 	 */
5600 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5601 		return -EOPNOTSUPP;
5602 
5603 	/* Insert range works only on fs block size aligned offsets. */
5604 	if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5605 			len & (EXT4_CLUSTER_SIZE(sb) - 1))
5606 		return -EINVAL;
5607 
5608 	if (!S_ISREG(inode->i_mode))
5609 		return -EOPNOTSUPP;
5610 
5611 	trace_ext4_insert_range(inode, offset, len);
5612 
5613 	offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5614 	len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb);
5615 
5616 	/* Call ext4_force_commit to flush all data in case of data=journal */
5617 	if (ext4_should_journal_data(inode)) {
5618 		ret = ext4_force_commit(inode->i_sb);
5619 		if (ret)
5620 			return ret;
5621 	}
5622 
5623 	inode_lock(inode);
5624 	/* Currently just for extent based files */
5625 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5626 		ret = -EOPNOTSUPP;
5627 		goto out_mutex;
5628 	}
5629 
5630 	/* Check for wrap through zero */
5631 	if (inode->i_size + len > inode->i_sb->s_maxbytes) {
5632 		ret = -EFBIG;
5633 		goto out_mutex;
5634 	}
5635 
5636 	/* Offset should be less than i_size */
5637 	if (offset >= i_size_read(inode)) {
5638 		ret = -EINVAL;
5639 		goto out_mutex;
5640 	}
5641 
5642 	/* Wait for existing dio to complete */
5643 	inode_dio_wait(inode);
5644 
5645 	/*
5646 	 * Prevent page faults from reinstantiating pages we have released from
5647 	 * page cache.
5648 	 */
5649 	down_write(&EXT4_I(inode)->i_mmap_sem);
5650 	/*
5651 	 * Need to round down to align start offset to page size boundary
5652 	 * for page size > block size.
5653 	 */
5654 	ioffset = round_down(offset, PAGE_SIZE);
5655 	/* Write out all dirty pages */
5656 	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5657 			LLONG_MAX);
5658 	if (ret)
5659 		goto out_mmap;
5660 	truncate_pagecache(inode, ioffset);
5661 
5662 	credits = ext4_writepage_trans_blocks(inode);
5663 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5664 	if (IS_ERR(handle)) {
5665 		ret = PTR_ERR(handle);
5666 		goto out_mmap;
5667 	}
5668 
5669 	/* Expand file to avoid data loss if there is error while shifting */
5670 	inode->i_size += len;
5671 	EXT4_I(inode)->i_disksize += len;
5672 	inode->i_mtime = inode->i_ctime = current_time(inode);
5673 	ret = ext4_mark_inode_dirty(handle, inode);
5674 	if (ret)
5675 		goto out_stop;
5676 
5677 	down_write(&EXT4_I(inode)->i_data_sem);
5678 	ext4_discard_preallocations(inode);
5679 
5680 	path = ext4_find_extent(inode, offset_lblk, NULL, 0);
5681 	if (IS_ERR(path)) {
5682 		up_write(&EXT4_I(inode)->i_data_sem);
5683 		goto out_stop;
5684 	}
5685 
5686 	depth = ext_depth(inode);
5687 	extent = path[depth].p_ext;
5688 	if (extent) {
5689 		ee_start_lblk = le32_to_cpu(extent->ee_block);
5690 		ee_len = ext4_ext_get_actual_len(extent);
5691 
5692 		/*
5693 		 * If offset_lblk is not the starting block of extent, split
5694 		 * the extent @offset_lblk
5695 		 */
5696 		if ((offset_lblk > ee_start_lblk) &&
5697 				(offset_lblk < (ee_start_lblk + ee_len))) {
5698 			if (ext4_ext_is_unwritten(extent))
5699 				split_flag = EXT4_EXT_MARK_UNWRIT1 |
5700 					EXT4_EXT_MARK_UNWRIT2;
5701 			ret = ext4_split_extent_at(handle, inode, &path,
5702 					offset_lblk, split_flag,
5703 					EXT4_EX_NOCACHE |
5704 					EXT4_GET_BLOCKS_PRE_IO |
5705 					EXT4_GET_BLOCKS_METADATA_NOFAIL);
5706 		}
5707 
5708 		ext4_ext_drop_refs(path);
5709 		kfree(path);
5710 		if (ret < 0) {
5711 			up_write(&EXT4_I(inode)->i_data_sem);
5712 			goto out_stop;
5713 		}
5714 	} else {
5715 		ext4_ext_drop_refs(path);
5716 		kfree(path);
5717 	}
5718 
5719 	ret = ext4_es_remove_extent(inode, offset_lblk,
5720 			EXT_MAX_BLOCKS - offset_lblk);
5721 	if (ret) {
5722 		up_write(&EXT4_I(inode)->i_data_sem);
5723 		goto out_stop;
5724 	}
5725 
5726 	/*
5727 	 * if offset_lblk lies in a hole which is at start of file, use
5728 	 * ee_start_lblk to shift extents
5729 	 */
5730 	ret = ext4_ext_shift_extents(inode, handle,
5731 		ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk,
5732 		len_lblk, SHIFT_RIGHT);
5733 
5734 	up_write(&EXT4_I(inode)->i_data_sem);
5735 	if (IS_SYNC(inode))
5736 		ext4_handle_sync(handle);
5737 	if (ret >= 0)
5738 		ext4_update_inode_fsync_trans(handle, inode, 1);
5739 
5740 out_stop:
5741 	ext4_journal_stop(handle);
5742 out_mmap:
5743 	up_write(&EXT4_I(inode)->i_mmap_sem);
5744 out_mutex:
5745 	inode_unlock(inode);
5746 	return ret;
5747 }
5748 
5749 /**
5750  * ext4_swap_extents - Swap extents between two inodes
5751  *
5752  * @inode1:	First inode
5753  * @inode2:	Second inode
5754  * @lblk1:	Start block for first inode
5755  * @lblk2:	Start block for second inode
5756  * @count:	Number of blocks to swap
5757  * @unwritten: Mark second inode's extents as unwritten after swap
5758  * @erp:	Pointer to save error value
5759  *
5760  * This helper routine does exactly what is promise "swap extents". All other
5761  * stuff such as page-cache locking consistency, bh mapping consistency or
5762  * extent's data copying must be performed by caller.
5763  * Locking:
5764  * 		i_mutex is held for both inodes
5765  * 		i_data_sem is locked for write for both inodes
5766  * Assumptions:
5767  *		All pages from requested range are locked for both inodes
5768  */
5769 int
5770 ext4_swap_extents(handle_t *handle, struct inode *inode1,
5771 		  struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5772 		  ext4_lblk_t count, int unwritten, int *erp)
5773 {
5774 	struct ext4_ext_path *path1 = NULL;
5775 	struct ext4_ext_path *path2 = NULL;
5776 	int replaced_count = 0;
5777 
5778 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5779 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5780 	BUG_ON(!inode_is_locked(inode1));
5781 	BUG_ON(!inode_is_locked(inode2));
5782 
5783 	*erp = ext4_es_remove_extent(inode1, lblk1, count);
5784 	if (unlikely(*erp))
5785 		return 0;
5786 	*erp = ext4_es_remove_extent(inode2, lblk2, count);
5787 	if (unlikely(*erp))
5788 		return 0;
5789 
5790 	while (count) {
5791 		struct ext4_extent *ex1, *ex2, tmp_ex;
5792 		ext4_lblk_t e1_blk, e2_blk;
5793 		int e1_len, e2_len, len;
5794 		int split = 0;
5795 
5796 		path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5797 		if (IS_ERR(path1)) {
5798 			*erp = PTR_ERR(path1);
5799 			path1 = NULL;
5800 		finish:
5801 			count = 0;
5802 			goto repeat;
5803 		}
5804 		path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5805 		if (IS_ERR(path2)) {
5806 			*erp = PTR_ERR(path2);
5807 			path2 = NULL;
5808 			goto finish;
5809 		}
5810 		ex1 = path1[path1->p_depth].p_ext;
5811 		ex2 = path2[path2->p_depth].p_ext;
5812 		/* Do we have somthing to swap ? */
5813 		if (unlikely(!ex2 || !ex1))
5814 			goto finish;
5815 
5816 		e1_blk = le32_to_cpu(ex1->ee_block);
5817 		e2_blk = le32_to_cpu(ex2->ee_block);
5818 		e1_len = ext4_ext_get_actual_len(ex1);
5819 		e2_len = ext4_ext_get_actual_len(ex2);
5820 
5821 		/* Hole handling */
5822 		if (!in_range(lblk1, e1_blk, e1_len) ||
5823 		    !in_range(lblk2, e2_blk, e2_len)) {
5824 			ext4_lblk_t next1, next2;
5825 
5826 			/* if hole after extent, then go to next extent */
5827 			next1 = ext4_ext_next_allocated_block(path1);
5828 			next2 = ext4_ext_next_allocated_block(path2);
5829 			/* If hole before extent, then shift to that extent */
5830 			if (e1_blk > lblk1)
5831 				next1 = e1_blk;
5832 			if (e2_blk > lblk2)
5833 				next2 = e2_blk;
5834 			/* Do we have something to swap */
5835 			if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5836 				goto finish;
5837 			/* Move to the rightest boundary */
5838 			len = next1 - lblk1;
5839 			if (len < next2 - lblk2)
5840 				len = next2 - lblk2;
5841 			if (len > count)
5842 				len = count;
5843 			lblk1 += len;
5844 			lblk2 += len;
5845 			count -= len;
5846 			goto repeat;
5847 		}
5848 
5849 		/* Prepare left boundary */
5850 		if (e1_blk < lblk1) {
5851 			split = 1;
5852 			*erp = ext4_force_split_extent_at(handle, inode1,
5853 						&path1, lblk1, 0);
5854 			if (unlikely(*erp))
5855 				goto finish;
5856 		}
5857 		if (e2_blk < lblk2) {
5858 			split = 1;
5859 			*erp = ext4_force_split_extent_at(handle, inode2,
5860 						&path2,  lblk2, 0);
5861 			if (unlikely(*erp))
5862 				goto finish;
5863 		}
5864 		/* ext4_split_extent_at() may result in leaf extent split,
5865 		 * path must to be revalidated. */
5866 		if (split)
5867 			goto repeat;
5868 
5869 		/* Prepare right boundary */
5870 		len = count;
5871 		if (len > e1_blk + e1_len - lblk1)
5872 			len = e1_blk + e1_len - lblk1;
5873 		if (len > e2_blk + e2_len - lblk2)
5874 			len = e2_blk + e2_len - lblk2;
5875 
5876 		if (len != e1_len) {
5877 			split = 1;
5878 			*erp = ext4_force_split_extent_at(handle, inode1,
5879 						&path1, lblk1 + len, 0);
5880 			if (unlikely(*erp))
5881 				goto finish;
5882 		}
5883 		if (len != e2_len) {
5884 			split = 1;
5885 			*erp = ext4_force_split_extent_at(handle, inode2,
5886 						&path2, lblk2 + len, 0);
5887 			if (*erp)
5888 				goto finish;
5889 		}
5890 		/* ext4_split_extent_at() may result in leaf extent split,
5891 		 * path must to be revalidated. */
5892 		if (split)
5893 			goto repeat;
5894 
5895 		BUG_ON(e2_len != e1_len);
5896 		*erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5897 		if (unlikely(*erp))
5898 			goto finish;
5899 		*erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5900 		if (unlikely(*erp))
5901 			goto finish;
5902 
5903 		/* Both extents are fully inside boundaries. Swap it now */
5904 		tmp_ex = *ex1;
5905 		ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5906 		ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5907 		ex1->ee_len = cpu_to_le16(e2_len);
5908 		ex2->ee_len = cpu_to_le16(e1_len);
5909 		if (unwritten)
5910 			ext4_ext_mark_unwritten(ex2);
5911 		if (ext4_ext_is_unwritten(&tmp_ex))
5912 			ext4_ext_mark_unwritten(ex1);
5913 
5914 		ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5915 		ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5916 		*erp = ext4_ext_dirty(handle, inode2, path2 +
5917 				      path2->p_depth);
5918 		if (unlikely(*erp))
5919 			goto finish;
5920 		*erp = ext4_ext_dirty(handle, inode1, path1 +
5921 				      path1->p_depth);
5922 		/*
5923 		 * Looks scarry ah..? second inode already points to new blocks,
5924 		 * and it was successfully dirtied. But luckily error may happen
5925 		 * only due to journal error, so full transaction will be
5926 		 * aborted anyway.
5927 		 */
5928 		if (unlikely(*erp))
5929 			goto finish;
5930 		lblk1 += len;
5931 		lblk2 += len;
5932 		replaced_count += len;
5933 		count -= len;
5934 
5935 	repeat:
5936 		ext4_ext_drop_refs(path1);
5937 		kfree(path1);
5938 		ext4_ext_drop_refs(path2);
5939 		kfree(path2);
5940 		path1 = path2 = NULL;
5941 	}
5942 	return replaced_count;
5943 }
5944