1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 * 6 * Architecture independence: 7 * Copyright (c) 2005, Bull S.A. 8 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 9 */ 10 11 /* 12 * Extents support for EXT4 13 * 14 * TODO: 15 * - ext4*_error() should be used in some situations 16 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 17 * - smart tree reduction 18 */ 19 20 #include <linux/fs.h> 21 #include <linux/time.h> 22 #include <linux/jbd2.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/quotaops.h> 26 #include <linux/string.h> 27 #include <linux/slab.h> 28 #include <linux/uaccess.h> 29 #include <linux/fiemap.h> 30 #include <linux/backing-dev.h> 31 #include "ext4_jbd2.h" 32 #include "ext4_extents.h" 33 #include "xattr.h" 34 35 #include <trace/events/ext4.h> 36 37 /* 38 * used by extent splitting. 39 */ 40 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 41 due to ENOSPC */ 42 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 43 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 44 45 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 46 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 47 48 static __le32 ext4_extent_block_csum(struct inode *inode, 49 struct ext4_extent_header *eh) 50 { 51 struct ext4_inode_info *ei = EXT4_I(inode); 52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 53 __u32 csum; 54 55 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 56 EXT4_EXTENT_TAIL_OFFSET(eh)); 57 return cpu_to_le32(csum); 58 } 59 60 static int ext4_extent_block_csum_verify(struct inode *inode, 61 struct ext4_extent_header *eh) 62 { 63 struct ext4_extent_tail *et; 64 65 if (!ext4_has_metadata_csum(inode->i_sb)) 66 return 1; 67 68 et = find_ext4_extent_tail(eh); 69 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 70 return 0; 71 return 1; 72 } 73 74 static void ext4_extent_block_csum_set(struct inode *inode, 75 struct ext4_extent_header *eh) 76 { 77 struct ext4_extent_tail *et; 78 79 if (!ext4_has_metadata_csum(inode->i_sb)) 80 return; 81 82 et = find_ext4_extent_tail(eh); 83 et->et_checksum = ext4_extent_block_csum(inode, eh); 84 } 85 86 static int ext4_split_extent(handle_t *handle, 87 struct inode *inode, 88 struct ext4_ext_path **ppath, 89 struct ext4_map_blocks *map, 90 int split_flag, 91 int flags); 92 93 static int ext4_split_extent_at(handle_t *handle, 94 struct inode *inode, 95 struct ext4_ext_path **ppath, 96 ext4_lblk_t split, 97 int split_flag, 98 int flags); 99 100 static int ext4_find_delayed_extent(struct inode *inode, 101 struct extent_status *newes); 102 103 static int ext4_ext_truncate_extend_restart(handle_t *handle, 104 struct inode *inode, 105 int needed) 106 { 107 int err; 108 109 if (!ext4_handle_valid(handle)) 110 return 0; 111 if (handle->h_buffer_credits >= needed) 112 return 0; 113 /* 114 * If we need to extend the journal get a few extra blocks 115 * while we're at it for efficiency's sake. 116 */ 117 needed += 3; 118 err = ext4_journal_extend(handle, needed - handle->h_buffer_credits); 119 if (err <= 0) 120 return err; 121 err = ext4_truncate_restart_trans(handle, inode, needed); 122 if (err == 0) 123 err = -EAGAIN; 124 125 return err; 126 } 127 128 /* 129 * could return: 130 * - EROFS 131 * - ENOMEM 132 */ 133 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 134 struct ext4_ext_path *path) 135 { 136 if (path->p_bh) { 137 /* path points to block */ 138 BUFFER_TRACE(path->p_bh, "get_write_access"); 139 return ext4_journal_get_write_access(handle, path->p_bh); 140 } 141 /* path points to leaf/index in inode body */ 142 /* we use in-core data, no need to protect them */ 143 return 0; 144 } 145 146 /* 147 * could return: 148 * - EROFS 149 * - ENOMEM 150 * - EIO 151 */ 152 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 153 struct inode *inode, struct ext4_ext_path *path) 154 { 155 int err; 156 157 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 158 if (path->p_bh) { 159 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 160 /* path points to block */ 161 err = __ext4_handle_dirty_metadata(where, line, handle, 162 inode, path->p_bh); 163 } else { 164 /* path points to leaf/index in inode body */ 165 err = ext4_mark_inode_dirty(handle, inode); 166 } 167 return err; 168 } 169 170 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 171 struct ext4_ext_path *path, 172 ext4_lblk_t block) 173 { 174 if (path) { 175 int depth = path->p_depth; 176 struct ext4_extent *ex; 177 178 /* 179 * Try to predict block placement assuming that we are 180 * filling in a file which will eventually be 181 * non-sparse --- i.e., in the case of libbfd writing 182 * an ELF object sections out-of-order but in a way 183 * the eventually results in a contiguous object or 184 * executable file, or some database extending a table 185 * space file. However, this is actually somewhat 186 * non-ideal if we are writing a sparse file such as 187 * qemu or KVM writing a raw image file that is going 188 * to stay fairly sparse, since it will end up 189 * fragmenting the file system's free space. Maybe we 190 * should have some hueristics or some way to allow 191 * userspace to pass a hint to file system, 192 * especially if the latter case turns out to be 193 * common. 194 */ 195 ex = path[depth].p_ext; 196 if (ex) { 197 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 198 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 199 200 if (block > ext_block) 201 return ext_pblk + (block - ext_block); 202 else 203 return ext_pblk - (ext_block - block); 204 } 205 206 /* it looks like index is empty; 207 * try to find starting block from index itself */ 208 if (path[depth].p_bh) 209 return path[depth].p_bh->b_blocknr; 210 } 211 212 /* OK. use inode's group */ 213 return ext4_inode_to_goal_block(inode); 214 } 215 216 /* 217 * Allocation for a meta data block 218 */ 219 static ext4_fsblk_t 220 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 221 struct ext4_ext_path *path, 222 struct ext4_extent *ex, int *err, unsigned int flags) 223 { 224 ext4_fsblk_t goal, newblock; 225 226 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 227 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 228 NULL, err); 229 return newblock; 230 } 231 232 static inline int ext4_ext_space_block(struct inode *inode, int check) 233 { 234 int size; 235 236 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 237 / sizeof(struct ext4_extent); 238 #ifdef AGGRESSIVE_TEST 239 if (!check && size > 6) 240 size = 6; 241 #endif 242 return size; 243 } 244 245 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 246 { 247 int size; 248 249 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 250 / sizeof(struct ext4_extent_idx); 251 #ifdef AGGRESSIVE_TEST 252 if (!check && size > 5) 253 size = 5; 254 #endif 255 return size; 256 } 257 258 static inline int ext4_ext_space_root(struct inode *inode, int check) 259 { 260 int size; 261 262 size = sizeof(EXT4_I(inode)->i_data); 263 size -= sizeof(struct ext4_extent_header); 264 size /= sizeof(struct ext4_extent); 265 #ifdef AGGRESSIVE_TEST 266 if (!check && size > 3) 267 size = 3; 268 #endif 269 return size; 270 } 271 272 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 273 { 274 int size; 275 276 size = sizeof(EXT4_I(inode)->i_data); 277 size -= sizeof(struct ext4_extent_header); 278 size /= sizeof(struct ext4_extent_idx); 279 #ifdef AGGRESSIVE_TEST 280 if (!check && size > 4) 281 size = 4; 282 #endif 283 return size; 284 } 285 286 static inline int 287 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 288 struct ext4_ext_path **ppath, ext4_lblk_t lblk, 289 int nofail) 290 { 291 struct ext4_ext_path *path = *ppath; 292 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 293 294 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ? 295 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 296 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO | 297 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0)); 298 } 299 300 /* 301 * Calculate the number of metadata blocks needed 302 * to allocate @blocks 303 * Worse case is one block per extent 304 */ 305 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 306 { 307 struct ext4_inode_info *ei = EXT4_I(inode); 308 int idxs; 309 310 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 311 / sizeof(struct ext4_extent_idx)); 312 313 /* 314 * If the new delayed allocation block is contiguous with the 315 * previous da block, it can share index blocks with the 316 * previous block, so we only need to allocate a new index 317 * block every idxs leaf blocks. At ldxs**2 blocks, we need 318 * an additional index block, and at ldxs**3 blocks, yet 319 * another index blocks. 320 */ 321 if (ei->i_da_metadata_calc_len && 322 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 323 int num = 0; 324 325 if ((ei->i_da_metadata_calc_len % idxs) == 0) 326 num++; 327 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 328 num++; 329 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 330 num++; 331 ei->i_da_metadata_calc_len = 0; 332 } else 333 ei->i_da_metadata_calc_len++; 334 ei->i_da_metadata_calc_last_lblock++; 335 return num; 336 } 337 338 /* 339 * In the worst case we need a new set of index blocks at 340 * every level of the inode's extent tree. 341 */ 342 ei->i_da_metadata_calc_len = 1; 343 ei->i_da_metadata_calc_last_lblock = lblock; 344 return ext_depth(inode) + 1; 345 } 346 347 static int 348 ext4_ext_max_entries(struct inode *inode, int depth) 349 { 350 int max; 351 352 if (depth == ext_depth(inode)) { 353 if (depth == 0) 354 max = ext4_ext_space_root(inode, 1); 355 else 356 max = ext4_ext_space_root_idx(inode, 1); 357 } else { 358 if (depth == 0) 359 max = ext4_ext_space_block(inode, 1); 360 else 361 max = ext4_ext_space_block_idx(inode, 1); 362 } 363 364 return max; 365 } 366 367 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 368 { 369 ext4_fsblk_t block = ext4_ext_pblock(ext); 370 int len = ext4_ext_get_actual_len(ext); 371 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 372 373 /* 374 * We allow neither: 375 * - zero length 376 * - overflow/wrap-around 377 */ 378 if (lblock + len <= lblock) 379 return 0; 380 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 381 } 382 383 static int ext4_valid_extent_idx(struct inode *inode, 384 struct ext4_extent_idx *ext_idx) 385 { 386 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 387 388 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 389 } 390 391 static int ext4_valid_extent_entries(struct inode *inode, 392 struct ext4_extent_header *eh, 393 int depth) 394 { 395 unsigned short entries; 396 if (eh->eh_entries == 0) 397 return 1; 398 399 entries = le16_to_cpu(eh->eh_entries); 400 401 if (depth == 0) { 402 /* leaf entries */ 403 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 404 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 405 ext4_fsblk_t pblock = 0; 406 ext4_lblk_t lblock = 0; 407 ext4_lblk_t prev = 0; 408 int len = 0; 409 while (entries) { 410 if (!ext4_valid_extent(inode, ext)) 411 return 0; 412 413 /* Check for overlapping extents */ 414 lblock = le32_to_cpu(ext->ee_block); 415 len = ext4_ext_get_actual_len(ext); 416 if ((lblock <= prev) && prev) { 417 pblock = ext4_ext_pblock(ext); 418 es->s_last_error_block = cpu_to_le64(pblock); 419 return 0; 420 } 421 ext++; 422 entries--; 423 prev = lblock + len - 1; 424 } 425 } else { 426 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 427 while (entries) { 428 if (!ext4_valid_extent_idx(inode, ext_idx)) 429 return 0; 430 ext_idx++; 431 entries--; 432 } 433 } 434 return 1; 435 } 436 437 static int __ext4_ext_check(const char *function, unsigned int line, 438 struct inode *inode, struct ext4_extent_header *eh, 439 int depth, ext4_fsblk_t pblk) 440 { 441 const char *error_msg; 442 int max = 0, err = -EFSCORRUPTED; 443 444 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 445 error_msg = "invalid magic"; 446 goto corrupted; 447 } 448 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 449 error_msg = "unexpected eh_depth"; 450 goto corrupted; 451 } 452 if (unlikely(eh->eh_max == 0)) { 453 error_msg = "invalid eh_max"; 454 goto corrupted; 455 } 456 max = ext4_ext_max_entries(inode, depth); 457 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 458 error_msg = "too large eh_max"; 459 goto corrupted; 460 } 461 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 462 error_msg = "invalid eh_entries"; 463 goto corrupted; 464 } 465 if (!ext4_valid_extent_entries(inode, eh, depth)) { 466 error_msg = "invalid extent entries"; 467 goto corrupted; 468 } 469 if (unlikely(depth > 32)) { 470 error_msg = "too large eh_depth"; 471 goto corrupted; 472 } 473 /* Verify checksum on non-root extent tree nodes */ 474 if (ext_depth(inode) != depth && 475 !ext4_extent_block_csum_verify(inode, eh)) { 476 error_msg = "extent tree corrupted"; 477 err = -EFSBADCRC; 478 goto corrupted; 479 } 480 return 0; 481 482 corrupted: 483 ext4_error_inode(inode, function, line, 0, 484 "pblk %llu bad header/extent: %s - magic %x, " 485 "entries %u, max %u(%u), depth %u(%u)", 486 (unsigned long long) pblk, error_msg, 487 le16_to_cpu(eh->eh_magic), 488 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 489 max, le16_to_cpu(eh->eh_depth), depth); 490 return err; 491 } 492 493 #define ext4_ext_check(inode, eh, depth, pblk) \ 494 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 495 496 int ext4_ext_check_inode(struct inode *inode) 497 { 498 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 499 } 500 501 static struct buffer_head * 502 __read_extent_tree_block(const char *function, unsigned int line, 503 struct inode *inode, ext4_fsblk_t pblk, int depth, 504 int flags) 505 { 506 struct buffer_head *bh; 507 int err; 508 509 bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS); 510 if (unlikely(!bh)) 511 return ERR_PTR(-ENOMEM); 512 513 if (!bh_uptodate_or_lock(bh)) { 514 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 515 err = bh_submit_read(bh); 516 if (err < 0) 517 goto errout; 518 } 519 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 520 return bh; 521 err = __ext4_ext_check(function, line, inode, 522 ext_block_hdr(bh), depth, pblk); 523 if (err) 524 goto errout; 525 set_buffer_verified(bh); 526 /* 527 * If this is a leaf block, cache all of its entries 528 */ 529 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 530 struct ext4_extent_header *eh = ext_block_hdr(bh); 531 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 532 ext4_lblk_t prev = 0; 533 int i; 534 535 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 536 unsigned int status = EXTENT_STATUS_WRITTEN; 537 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 538 int len = ext4_ext_get_actual_len(ex); 539 540 if (prev && (prev != lblk)) 541 ext4_es_cache_extent(inode, prev, 542 lblk - prev, ~0, 543 EXTENT_STATUS_HOLE); 544 545 if (ext4_ext_is_unwritten(ex)) 546 status = EXTENT_STATUS_UNWRITTEN; 547 ext4_es_cache_extent(inode, lblk, len, 548 ext4_ext_pblock(ex), status); 549 prev = lblk + len; 550 } 551 } 552 return bh; 553 errout: 554 put_bh(bh); 555 return ERR_PTR(err); 556 557 } 558 559 #define read_extent_tree_block(inode, pblk, depth, flags) \ 560 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 561 (depth), (flags)) 562 563 /* 564 * This function is called to cache a file's extent information in the 565 * extent status tree 566 */ 567 int ext4_ext_precache(struct inode *inode) 568 { 569 struct ext4_inode_info *ei = EXT4_I(inode); 570 struct ext4_ext_path *path = NULL; 571 struct buffer_head *bh; 572 int i = 0, depth, ret = 0; 573 574 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 575 return 0; /* not an extent-mapped inode */ 576 577 down_read(&ei->i_data_sem); 578 depth = ext_depth(inode); 579 580 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 581 GFP_NOFS); 582 if (path == NULL) { 583 up_read(&ei->i_data_sem); 584 return -ENOMEM; 585 } 586 587 /* Don't cache anything if there are no external extent blocks */ 588 if (depth == 0) 589 goto out; 590 path[0].p_hdr = ext_inode_hdr(inode); 591 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 592 if (ret) 593 goto out; 594 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 595 while (i >= 0) { 596 /* 597 * If this is a leaf block or we've reached the end of 598 * the index block, go up 599 */ 600 if ((i == depth) || 601 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 602 brelse(path[i].p_bh); 603 path[i].p_bh = NULL; 604 i--; 605 continue; 606 } 607 bh = read_extent_tree_block(inode, 608 ext4_idx_pblock(path[i].p_idx++), 609 depth - i - 1, 610 EXT4_EX_FORCE_CACHE); 611 if (IS_ERR(bh)) { 612 ret = PTR_ERR(bh); 613 break; 614 } 615 i++; 616 path[i].p_bh = bh; 617 path[i].p_hdr = ext_block_hdr(bh); 618 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 619 } 620 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 621 out: 622 up_read(&ei->i_data_sem); 623 ext4_ext_drop_refs(path); 624 kfree(path); 625 return ret; 626 } 627 628 #ifdef EXT_DEBUG 629 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 630 { 631 int k, l = path->p_depth; 632 633 ext_debug("path:"); 634 for (k = 0; k <= l; k++, path++) { 635 if (path->p_idx) { 636 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 637 ext4_idx_pblock(path->p_idx)); 638 } else if (path->p_ext) { 639 ext_debug(" %d:[%d]%d:%llu ", 640 le32_to_cpu(path->p_ext->ee_block), 641 ext4_ext_is_unwritten(path->p_ext), 642 ext4_ext_get_actual_len(path->p_ext), 643 ext4_ext_pblock(path->p_ext)); 644 } else 645 ext_debug(" []"); 646 } 647 ext_debug("\n"); 648 } 649 650 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 651 { 652 int depth = ext_depth(inode); 653 struct ext4_extent_header *eh; 654 struct ext4_extent *ex; 655 int i; 656 657 if (!path) 658 return; 659 660 eh = path[depth].p_hdr; 661 ex = EXT_FIRST_EXTENT(eh); 662 663 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 664 665 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 666 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 667 ext4_ext_is_unwritten(ex), 668 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 669 } 670 ext_debug("\n"); 671 } 672 673 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 674 ext4_fsblk_t newblock, int level) 675 { 676 int depth = ext_depth(inode); 677 struct ext4_extent *ex; 678 679 if (depth != level) { 680 struct ext4_extent_idx *idx; 681 idx = path[level].p_idx; 682 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 683 ext_debug("%d: move %d:%llu in new index %llu\n", level, 684 le32_to_cpu(idx->ei_block), 685 ext4_idx_pblock(idx), 686 newblock); 687 idx++; 688 } 689 690 return; 691 } 692 693 ex = path[depth].p_ext; 694 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 695 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 696 le32_to_cpu(ex->ee_block), 697 ext4_ext_pblock(ex), 698 ext4_ext_is_unwritten(ex), 699 ext4_ext_get_actual_len(ex), 700 newblock); 701 ex++; 702 } 703 } 704 705 #else 706 #define ext4_ext_show_path(inode, path) 707 #define ext4_ext_show_leaf(inode, path) 708 #define ext4_ext_show_move(inode, path, newblock, level) 709 #endif 710 711 void ext4_ext_drop_refs(struct ext4_ext_path *path) 712 { 713 int depth, i; 714 715 if (!path) 716 return; 717 depth = path->p_depth; 718 for (i = 0; i <= depth; i++, path++) 719 if (path->p_bh) { 720 brelse(path->p_bh); 721 path->p_bh = NULL; 722 } 723 } 724 725 /* 726 * ext4_ext_binsearch_idx: 727 * binary search for the closest index of the given block 728 * the header must be checked before calling this 729 */ 730 static void 731 ext4_ext_binsearch_idx(struct inode *inode, 732 struct ext4_ext_path *path, ext4_lblk_t block) 733 { 734 struct ext4_extent_header *eh = path->p_hdr; 735 struct ext4_extent_idx *r, *l, *m; 736 737 738 ext_debug("binsearch for %u(idx): ", block); 739 740 l = EXT_FIRST_INDEX(eh) + 1; 741 r = EXT_LAST_INDEX(eh); 742 while (l <= r) { 743 m = l + (r - l) / 2; 744 if (block < le32_to_cpu(m->ei_block)) 745 r = m - 1; 746 else 747 l = m + 1; 748 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 749 m, le32_to_cpu(m->ei_block), 750 r, le32_to_cpu(r->ei_block)); 751 } 752 753 path->p_idx = l - 1; 754 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 755 ext4_idx_pblock(path->p_idx)); 756 757 #ifdef CHECK_BINSEARCH 758 { 759 struct ext4_extent_idx *chix, *ix; 760 int k; 761 762 chix = ix = EXT_FIRST_INDEX(eh); 763 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 764 if (k != 0 && 765 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 766 printk(KERN_DEBUG "k=%d, ix=0x%p, " 767 "first=0x%p\n", k, 768 ix, EXT_FIRST_INDEX(eh)); 769 printk(KERN_DEBUG "%u <= %u\n", 770 le32_to_cpu(ix->ei_block), 771 le32_to_cpu(ix[-1].ei_block)); 772 } 773 BUG_ON(k && le32_to_cpu(ix->ei_block) 774 <= le32_to_cpu(ix[-1].ei_block)); 775 if (block < le32_to_cpu(ix->ei_block)) 776 break; 777 chix = ix; 778 } 779 BUG_ON(chix != path->p_idx); 780 } 781 #endif 782 783 } 784 785 /* 786 * ext4_ext_binsearch: 787 * binary search for closest extent of the given block 788 * the header must be checked before calling this 789 */ 790 static void 791 ext4_ext_binsearch(struct inode *inode, 792 struct ext4_ext_path *path, ext4_lblk_t block) 793 { 794 struct ext4_extent_header *eh = path->p_hdr; 795 struct ext4_extent *r, *l, *m; 796 797 if (eh->eh_entries == 0) { 798 /* 799 * this leaf is empty: 800 * we get such a leaf in split/add case 801 */ 802 return; 803 } 804 805 ext_debug("binsearch for %u: ", block); 806 807 l = EXT_FIRST_EXTENT(eh) + 1; 808 r = EXT_LAST_EXTENT(eh); 809 810 while (l <= r) { 811 m = l + (r - l) / 2; 812 if (block < le32_to_cpu(m->ee_block)) 813 r = m - 1; 814 else 815 l = m + 1; 816 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 817 m, le32_to_cpu(m->ee_block), 818 r, le32_to_cpu(r->ee_block)); 819 } 820 821 path->p_ext = l - 1; 822 ext_debug(" -> %d:%llu:[%d]%d ", 823 le32_to_cpu(path->p_ext->ee_block), 824 ext4_ext_pblock(path->p_ext), 825 ext4_ext_is_unwritten(path->p_ext), 826 ext4_ext_get_actual_len(path->p_ext)); 827 828 #ifdef CHECK_BINSEARCH 829 { 830 struct ext4_extent *chex, *ex; 831 int k; 832 833 chex = ex = EXT_FIRST_EXTENT(eh); 834 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 835 BUG_ON(k && le32_to_cpu(ex->ee_block) 836 <= le32_to_cpu(ex[-1].ee_block)); 837 if (block < le32_to_cpu(ex->ee_block)) 838 break; 839 chex = ex; 840 } 841 BUG_ON(chex != path->p_ext); 842 } 843 #endif 844 845 } 846 847 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 848 { 849 struct ext4_extent_header *eh; 850 851 eh = ext_inode_hdr(inode); 852 eh->eh_depth = 0; 853 eh->eh_entries = 0; 854 eh->eh_magic = EXT4_EXT_MAGIC; 855 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 856 ext4_mark_inode_dirty(handle, inode); 857 return 0; 858 } 859 860 struct ext4_ext_path * 861 ext4_find_extent(struct inode *inode, ext4_lblk_t block, 862 struct ext4_ext_path **orig_path, int flags) 863 { 864 struct ext4_extent_header *eh; 865 struct buffer_head *bh; 866 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 867 short int depth, i, ppos = 0; 868 int ret; 869 870 eh = ext_inode_hdr(inode); 871 depth = ext_depth(inode); 872 if (depth < 0 || depth > EXT4_MAX_EXTENT_DEPTH) { 873 EXT4_ERROR_INODE(inode, "inode has invalid extent depth: %d", 874 depth); 875 ret = -EFSCORRUPTED; 876 goto err; 877 } 878 879 if (path) { 880 ext4_ext_drop_refs(path); 881 if (depth > path[0].p_maxdepth) { 882 kfree(path); 883 *orig_path = path = NULL; 884 } 885 } 886 if (!path) { 887 /* account possible depth increase */ 888 path = kcalloc(depth + 2, sizeof(struct ext4_ext_path), 889 GFP_NOFS); 890 if (unlikely(!path)) 891 return ERR_PTR(-ENOMEM); 892 path[0].p_maxdepth = depth + 1; 893 } 894 path[0].p_hdr = eh; 895 path[0].p_bh = NULL; 896 897 i = depth; 898 /* walk through the tree */ 899 while (i) { 900 ext_debug("depth %d: num %d, max %d\n", 901 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 902 903 ext4_ext_binsearch_idx(inode, path + ppos, block); 904 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 905 path[ppos].p_depth = i; 906 path[ppos].p_ext = NULL; 907 908 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 909 flags); 910 if (IS_ERR(bh)) { 911 ret = PTR_ERR(bh); 912 goto err; 913 } 914 915 eh = ext_block_hdr(bh); 916 ppos++; 917 path[ppos].p_bh = bh; 918 path[ppos].p_hdr = eh; 919 } 920 921 path[ppos].p_depth = i; 922 path[ppos].p_ext = NULL; 923 path[ppos].p_idx = NULL; 924 925 /* find extent */ 926 ext4_ext_binsearch(inode, path + ppos, block); 927 /* if not an empty leaf */ 928 if (path[ppos].p_ext) 929 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 930 931 ext4_ext_show_path(inode, path); 932 933 return path; 934 935 err: 936 ext4_ext_drop_refs(path); 937 kfree(path); 938 if (orig_path) 939 *orig_path = NULL; 940 return ERR_PTR(ret); 941 } 942 943 /* 944 * ext4_ext_insert_index: 945 * insert new index [@logical;@ptr] into the block at @curp; 946 * check where to insert: before @curp or after @curp 947 */ 948 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 949 struct ext4_ext_path *curp, 950 int logical, ext4_fsblk_t ptr) 951 { 952 struct ext4_extent_idx *ix; 953 int len, err; 954 955 err = ext4_ext_get_access(handle, inode, curp); 956 if (err) 957 return err; 958 959 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 960 EXT4_ERROR_INODE(inode, 961 "logical %d == ei_block %d!", 962 logical, le32_to_cpu(curp->p_idx->ei_block)); 963 return -EFSCORRUPTED; 964 } 965 966 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 967 >= le16_to_cpu(curp->p_hdr->eh_max))) { 968 EXT4_ERROR_INODE(inode, 969 "eh_entries %d >= eh_max %d!", 970 le16_to_cpu(curp->p_hdr->eh_entries), 971 le16_to_cpu(curp->p_hdr->eh_max)); 972 return -EFSCORRUPTED; 973 } 974 975 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 976 /* insert after */ 977 ext_debug("insert new index %d after: %llu\n", logical, ptr); 978 ix = curp->p_idx + 1; 979 } else { 980 /* insert before */ 981 ext_debug("insert new index %d before: %llu\n", logical, ptr); 982 ix = curp->p_idx; 983 } 984 985 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 986 BUG_ON(len < 0); 987 if (len > 0) { 988 ext_debug("insert new index %d: " 989 "move %d indices from 0x%p to 0x%p\n", 990 logical, len, ix, ix + 1); 991 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 992 } 993 994 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 995 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 996 return -EFSCORRUPTED; 997 } 998 999 ix->ei_block = cpu_to_le32(logical); 1000 ext4_idx_store_pblock(ix, ptr); 1001 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 1002 1003 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 1004 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 1005 return -EFSCORRUPTED; 1006 } 1007 1008 err = ext4_ext_dirty(handle, inode, curp); 1009 ext4_std_error(inode->i_sb, err); 1010 1011 return err; 1012 } 1013 1014 /* 1015 * ext4_ext_split: 1016 * inserts new subtree into the path, using free index entry 1017 * at depth @at: 1018 * - allocates all needed blocks (new leaf and all intermediate index blocks) 1019 * - makes decision where to split 1020 * - moves remaining extents and index entries (right to the split point) 1021 * into the newly allocated blocks 1022 * - initializes subtree 1023 */ 1024 static int ext4_ext_split(handle_t *handle, struct inode *inode, 1025 unsigned int flags, 1026 struct ext4_ext_path *path, 1027 struct ext4_extent *newext, int at) 1028 { 1029 struct buffer_head *bh = NULL; 1030 int depth = ext_depth(inode); 1031 struct ext4_extent_header *neh; 1032 struct ext4_extent_idx *fidx; 1033 int i = at, k, m, a; 1034 ext4_fsblk_t newblock, oldblock; 1035 __le32 border; 1036 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1037 int err = 0; 1038 1039 /* make decision: where to split? */ 1040 /* FIXME: now decision is simplest: at current extent */ 1041 1042 /* if current leaf will be split, then we should use 1043 * border from split point */ 1044 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1045 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1046 return -EFSCORRUPTED; 1047 } 1048 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1049 border = path[depth].p_ext[1].ee_block; 1050 ext_debug("leaf will be split." 1051 " next leaf starts at %d\n", 1052 le32_to_cpu(border)); 1053 } else { 1054 border = newext->ee_block; 1055 ext_debug("leaf will be added." 1056 " next leaf starts at %d\n", 1057 le32_to_cpu(border)); 1058 } 1059 1060 /* 1061 * If error occurs, then we break processing 1062 * and mark filesystem read-only. index won't 1063 * be inserted and tree will be in consistent 1064 * state. Next mount will repair buffers too. 1065 */ 1066 1067 /* 1068 * Get array to track all allocated blocks. 1069 * We need this to handle errors and free blocks 1070 * upon them. 1071 */ 1072 ablocks = kcalloc(depth, sizeof(ext4_fsblk_t), GFP_NOFS); 1073 if (!ablocks) 1074 return -ENOMEM; 1075 1076 /* allocate all needed blocks */ 1077 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1078 for (a = 0; a < depth - at; a++) { 1079 newblock = ext4_ext_new_meta_block(handle, inode, path, 1080 newext, &err, flags); 1081 if (newblock == 0) 1082 goto cleanup; 1083 ablocks[a] = newblock; 1084 } 1085 1086 /* initialize new leaf */ 1087 newblock = ablocks[--a]; 1088 if (unlikely(newblock == 0)) { 1089 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1090 err = -EFSCORRUPTED; 1091 goto cleanup; 1092 } 1093 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1094 if (unlikely(!bh)) { 1095 err = -ENOMEM; 1096 goto cleanup; 1097 } 1098 lock_buffer(bh); 1099 1100 err = ext4_journal_get_create_access(handle, bh); 1101 if (err) 1102 goto cleanup; 1103 1104 neh = ext_block_hdr(bh); 1105 neh->eh_entries = 0; 1106 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1107 neh->eh_magic = EXT4_EXT_MAGIC; 1108 neh->eh_depth = 0; 1109 1110 /* move remainder of path[depth] to the new leaf */ 1111 if (unlikely(path[depth].p_hdr->eh_entries != 1112 path[depth].p_hdr->eh_max)) { 1113 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1114 path[depth].p_hdr->eh_entries, 1115 path[depth].p_hdr->eh_max); 1116 err = -EFSCORRUPTED; 1117 goto cleanup; 1118 } 1119 /* start copy from next extent */ 1120 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1121 ext4_ext_show_move(inode, path, newblock, depth); 1122 if (m) { 1123 struct ext4_extent *ex; 1124 ex = EXT_FIRST_EXTENT(neh); 1125 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1126 le16_add_cpu(&neh->eh_entries, m); 1127 } 1128 1129 ext4_extent_block_csum_set(inode, neh); 1130 set_buffer_uptodate(bh); 1131 unlock_buffer(bh); 1132 1133 err = ext4_handle_dirty_metadata(handle, inode, bh); 1134 if (err) 1135 goto cleanup; 1136 brelse(bh); 1137 bh = NULL; 1138 1139 /* correct old leaf */ 1140 if (m) { 1141 err = ext4_ext_get_access(handle, inode, path + depth); 1142 if (err) 1143 goto cleanup; 1144 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1145 err = ext4_ext_dirty(handle, inode, path + depth); 1146 if (err) 1147 goto cleanup; 1148 1149 } 1150 1151 /* create intermediate indexes */ 1152 k = depth - at - 1; 1153 if (unlikely(k < 0)) { 1154 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1155 err = -EFSCORRUPTED; 1156 goto cleanup; 1157 } 1158 if (k) 1159 ext_debug("create %d intermediate indices\n", k); 1160 /* insert new index into current index block */ 1161 /* current depth stored in i var */ 1162 i = depth - 1; 1163 while (k--) { 1164 oldblock = newblock; 1165 newblock = ablocks[--a]; 1166 bh = sb_getblk(inode->i_sb, newblock); 1167 if (unlikely(!bh)) { 1168 err = -ENOMEM; 1169 goto cleanup; 1170 } 1171 lock_buffer(bh); 1172 1173 err = ext4_journal_get_create_access(handle, bh); 1174 if (err) 1175 goto cleanup; 1176 1177 neh = ext_block_hdr(bh); 1178 neh->eh_entries = cpu_to_le16(1); 1179 neh->eh_magic = EXT4_EXT_MAGIC; 1180 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1181 neh->eh_depth = cpu_to_le16(depth - i); 1182 fidx = EXT_FIRST_INDEX(neh); 1183 fidx->ei_block = border; 1184 ext4_idx_store_pblock(fidx, oldblock); 1185 1186 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1187 i, newblock, le32_to_cpu(border), oldblock); 1188 1189 /* move remainder of path[i] to the new index block */ 1190 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1191 EXT_LAST_INDEX(path[i].p_hdr))) { 1192 EXT4_ERROR_INODE(inode, 1193 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1194 le32_to_cpu(path[i].p_ext->ee_block)); 1195 err = -EFSCORRUPTED; 1196 goto cleanup; 1197 } 1198 /* start copy indexes */ 1199 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1200 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1201 EXT_MAX_INDEX(path[i].p_hdr)); 1202 ext4_ext_show_move(inode, path, newblock, i); 1203 if (m) { 1204 memmove(++fidx, path[i].p_idx, 1205 sizeof(struct ext4_extent_idx) * m); 1206 le16_add_cpu(&neh->eh_entries, m); 1207 } 1208 ext4_extent_block_csum_set(inode, neh); 1209 set_buffer_uptodate(bh); 1210 unlock_buffer(bh); 1211 1212 err = ext4_handle_dirty_metadata(handle, inode, bh); 1213 if (err) 1214 goto cleanup; 1215 brelse(bh); 1216 bh = NULL; 1217 1218 /* correct old index */ 1219 if (m) { 1220 err = ext4_ext_get_access(handle, inode, path + i); 1221 if (err) 1222 goto cleanup; 1223 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1224 err = ext4_ext_dirty(handle, inode, path + i); 1225 if (err) 1226 goto cleanup; 1227 } 1228 1229 i--; 1230 } 1231 1232 /* insert new index */ 1233 err = ext4_ext_insert_index(handle, inode, path + at, 1234 le32_to_cpu(border), newblock); 1235 1236 cleanup: 1237 if (bh) { 1238 if (buffer_locked(bh)) 1239 unlock_buffer(bh); 1240 brelse(bh); 1241 } 1242 1243 if (err) { 1244 /* free all allocated blocks in error case */ 1245 for (i = 0; i < depth; i++) { 1246 if (!ablocks[i]) 1247 continue; 1248 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1249 EXT4_FREE_BLOCKS_METADATA); 1250 } 1251 } 1252 kfree(ablocks); 1253 1254 return err; 1255 } 1256 1257 /* 1258 * ext4_ext_grow_indepth: 1259 * implements tree growing procedure: 1260 * - allocates new block 1261 * - moves top-level data (index block or leaf) into the new block 1262 * - initializes new top-level, creating index that points to the 1263 * just created block 1264 */ 1265 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1266 unsigned int flags) 1267 { 1268 struct ext4_extent_header *neh; 1269 struct buffer_head *bh; 1270 ext4_fsblk_t newblock, goal = 0; 1271 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 1272 int err = 0; 1273 1274 /* Try to prepend new index to old one */ 1275 if (ext_depth(inode)) 1276 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); 1277 if (goal > le32_to_cpu(es->s_first_data_block)) { 1278 flags |= EXT4_MB_HINT_TRY_GOAL; 1279 goal--; 1280 } else 1281 goal = ext4_inode_to_goal_block(inode); 1282 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 1283 NULL, &err); 1284 if (newblock == 0) 1285 return err; 1286 1287 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1288 if (unlikely(!bh)) 1289 return -ENOMEM; 1290 lock_buffer(bh); 1291 1292 err = ext4_journal_get_create_access(handle, bh); 1293 if (err) { 1294 unlock_buffer(bh); 1295 goto out; 1296 } 1297 1298 /* move top-level index/leaf into new block */ 1299 memmove(bh->b_data, EXT4_I(inode)->i_data, 1300 sizeof(EXT4_I(inode)->i_data)); 1301 1302 /* set size of new block */ 1303 neh = ext_block_hdr(bh); 1304 /* old root could have indexes or leaves 1305 * so calculate e_max right way */ 1306 if (ext_depth(inode)) 1307 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1308 else 1309 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1310 neh->eh_magic = EXT4_EXT_MAGIC; 1311 ext4_extent_block_csum_set(inode, neh); 1312 set_buffer_uptodate(bh); 1313 unlock_buffer(bh); 1314 1315 err = ext4_handle_dirty_metadata(handle, inode, bh); 1316 if (err) 1317 goto out; 1318 1319 /* Update top-level index: num,max,pointer */ 1320 neh = ext_inode_hdr(inode); 1321 neh->eh_entries = cpu_to_le16(1); 1322 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1323 if (neh->eh_depth == 0) { 1324 /* Root extent block becomes index block */ 1325 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1326 EXT_FIRST_INDEX(neh)->ei_block = 1327 EXT_FIRST_EXTENT(neh)->ee_block; 1328 } 1329 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1330 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1331 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1332 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1333 1334 le16_add_cpu(&neh->eh_depth, 1); 1335 ext4_mark_inode_dirty(handle, inode); 1336 out: 1337 brelse(bh); 1338 1339 return err; 1340 } 1341 1342 /* 1343 * ext4_ext_create_new_leaf: 1344 * finds empty index and adds new leaf. 1345 * if no free index is found, then it requests in-depth growing. 1346 */ 1347 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1348 unsigned int mb_flags, 1349 unsigned int gb_flags, 1350 struct ext4_ext_path **ppath, 1351 struct ext4_extent *newext) 1352 { 1353 struct ext4_ext_path *path = *ppath; 1354 struct ext4_ext_path *curp; 1355 int depth, i, err = 0; 1356 1357 repeat: 1358 i = depth = ext_depth(inode); 1359 1360 /* walk up to the tree and look for free index entry */ 1361 curp = path + depth; 1362 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1363 i--; 1364 curp--; 1365 } 1366 1367 /* we use already allocated block for index block, 1368 * so subsequent data blocks should be contiguous */ 1369 if (EXT_HAS_FREE_INDEX(curp)) { 1370 /* if we found index with free entry, then use that 1371 * entry: create all needed subtree and add new leaf */ 1372 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1373 if (err) 1374 goto out; 1375 1376 /* refill path */ 1377 path = ext4_find_extent(inode, 1378 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1379 ppath, gb_flags); 1380 if (IS_ERR(path)) 1381 err = PTR_ERR(path); 1382 } else { 1383 /* tree is full, time to grow in depth */ 1384 err = ext4_ext_grow_indepth(handle, inode, mb_flags); 1385 if (err) 1386 goto out; 1387 1388 /* refill path */ 1389 path = ext4_find_extent(inode, 1390 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1391 ppath, gb_flags); 1392 if (IS_ERR(path)) { 1393 err = PTR_ERR(path); 1394 goto out; 1395 } 1396 1397 /* 1398 * only first (depth 0 -> 1) produces free space; 1399 * in all other cases we have to split the grown tree 1400 */ 1401 depth = ext_depth(inode); 1402 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1403 /* now we need to split */ 1404 goto repeat; 1405 } 1406 } 1407 1408 out: 1409 return err; 1410 } 1411 1412 /* 1413 * search the closest allocated block to the left for *logical 1414 * and returns it at @logical + it's physical address at @phys 1415 * if *logical is the smallest allocated block, the function 1416 * returns 0 at @phys 1417 * return value contains 0 (success) or error code 1418 */ 1419 static int ext4_ext_search_left(struct inode *inode, 1420 struct ext4_ext_path *path, 1421 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1422 { 1423 struct ext4_extent_idx *ix; 1424 struct ext4_extent *ex; 1425 int depth, ee_len; 1426 1427 if (unlikely(path == NULL)) { 1428 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1429 return -EFSCORRUPTED; 1430 } 1431 depth = path->p_depth; 1432 *phys = 0; 1433 1434 if (depth == 0 && path->p_ext == NULL) 1435 return 0; 1436 1437 /* usually extent in the path covers blocks smaller 1438 * then *logical, but it can be that extent is the 1439 * first one in the file */ 1440 1441 ex = path[depth].p_ext; 1442 ee_len = ext4_ext_get_actual_len(ex); 1443 if (*logical < le32_to_cpu(ex->ee_block)) { 1444 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1445 EXT4_ERROR_INODE(inode, 1446 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1447 *logical, le32_to_cpu(ex->ee_block)); 1448 return -EFSCORRUPTED; 1449 } 1450 while (--depth >= 0) { 1451 ix = path[depth].p_idx; 1452 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1453 EXT4_ERROR_INODE(inode, 1454 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1455 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1456 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1457 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1458 depth); 1459 return -EFSCORRUPTED; 1460 } 1461 } 1462 return 0; 1463 } 1464 1465 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1466 EXT4_ERROR_INODE(inode, 1467 "logical %d < ee_block %d + ee_len %d!", 1468 *logical, le32_to_cpu(ex->ee_block), ee_len); 1469 return -EFSCORRUPTED; 1470 } 1471 1472 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1473 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1474 return 0; 1475 } 1476 1477 /* 1478 * search the closest allocated block to the right for *logical 1479 * and returns it at @logical + it's physical address at @phys 1480 * if *logical is the largest allocated block, the function 1481 * returns 0 at @phys 1482 * return value contains 0 (success) or error code 1483 */ 1484 static int ext4_ext_search_right(struct inode *inode, 1485 struct ext4_ext_path *path, 1486 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1487 struct ext4_extent **ret_ex) 1488 { 1489 struct buffer_head *bh = NULL; 1490 struct ext4_extent_header *eh; 1491 struct ext4_extent_idx *ix; 1492 struct ext4_extent *ex; 1493 ext4_fsblk_t block; 1494 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1495 int ee_len; 1496 1497 if (unlikely(path == NULL)) { 1498 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1499 return -EFSCORRUPTED; 1500 } 1501 depth = path->p_depth; 1502 *phys = 0; 1503 1504 if (depth == 0 && path->p_ext == NULL) 1505 return 0; 1506 1507 /* usually extent in the path covers blocks smaller 1508 * then *logical, but it can be that extent is the 1509 * first one in the file */ 1510 1511 ex = path[depth].p_ext; 1512 ee_len = ext4_ext_get_actual_len(ex); 1513 if (*logical < le32_to_cpu(ex->ee_block)) { 1514 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1515 EXT4_ERROR_INODE(inode, 1516 "first_extent(path[%d].p_hdr) != ex", 1517 depth); 1518 return -EFSCORRUPTED; 1519 } 1520 while (--depth >= 0) { 1521 ix = path[depth].p_idx; 1522 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1523 EXT4_ERROR_INODE(inode, 1524 "ix != EXT_FIRST_INDEX *logical %d!", 1525 *logical); 1526 return -EFSCORRUPTED; 1527 } 1528 } 1529 goto found_extent; 1530 } 1531 1532 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1533 EXT4_ERROR_INODE(inode, 1534 "logical %d < ee_block %d + ee_len %d!", 1535 *logical, le32_to_cpu(ex->ee_block), ee_len); 1536 return -EFSCORRUPTED; 1537 } 1538 1539 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1540 /* next allocated block in this leaf */ 1541 ex++; 1542 goto found_extent; 1543 } 1544 1545 /* go up and search for index to the right */ 1546 while (--depth >= 0) { 1547 ix = path[depth].p_idx; 1548 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1549 goto got_index; 1550 } 1551 1552 /* we've gone up to the root and found no index to the right */ 1553 return 0; 1554 1555 got_index: 1556 /* we've found index to the right, let's 1557 * follow it and find the closest allocated 1558 * block to the right */ 1559 ix++; 1560 block = ext4_idx_pblock(ix); 1561 while (++depth < path->p_depth) { 1562 /* subtract from p_depth to get proper eh_depth */ 1563 bh = read_extent_tree_block(inode, block, 1564 path->p_depth - depth, 0); 1565 if (IS_ERR(bh)) 1566 return PTR_ERR(bh); 1567 eh = ext_block_hdr(bh); 1568 ix = EXT_FIRST_INDEX(eh); 1569 block = ext4_idx_pblock(ix); 1570 put_bh(bh); 1571 } 1572 1573 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1574 if (IS_ERR(bh)) 1575 return PTR_ERR(bh); 1576 eh = ext_block_hdr(bh); 1577 ex = EXT_FIRST_EXTENT(eh); 1578 found_extent: 1579 *logical = le32_to_cpu(ex->ee_block); 1580 *phys = ext4_ext_pblock(ex); 1581 *ret_ex = ex; 1582 if (bh) 1583 put_bh(bh); 1584 return 0; 1585 } 1586 1587 /* 1588 * ext4_ext_next_allocated_block: 1589 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1590 * NOTE: it considers block number from index entry as 1591 * allocated block. Thus, index entries have to be consistent 1592 * with leaves. 1593 */ 1594 ext4_lblk_t 1595 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1596 { 1597 int depth; 1598 1599 BUG_ON(path == NULL); 1600 depth = path->p_depth; 1601 1602 if (depth == 0 && path->p_ext == NULL) 1603 return EXT_MAX_BLOCKS; 1604 1605 while (depth >= 0) { 1606 if (depth == path->p_depth) { 1607 /* leaf */ 1608 if (path[depth].p_ext && 1609 path[depth].p_ext != 1610 EXT_LAST_EXTENT(path[depth].p_hdr)) 1611 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1612 } else { 1613 /* index */ 1614 if (path[depth].p_idx != 1615 EXT_LAST_INDEX(path[depth].p_hdr)) 1616 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1617 } 1618 depth--; 1619 } 1620 1621 return EXT_MAX_BLOCKS; 1622 } 1623 1624 /* 1625 * ext4_ext_next_leaf_block: 1626 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1627 */ 1628 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1629 { 1630 int depth; 1631 1632 BUG_ON(path == NULL); 1633 depth = path->p_depth; 1634 1635 /* zero-tree has no leaf blocks at all */ 1636 if (depth == 0) 1637 return EXT_MAX_BLOCKS; 1638 1639 /* go to index block */ 1640 depth--; 1641 1642 while (depth >= 0) { 1643 if (path[depth].p_idx != 1644 EXT_LAST_INDEX(path[depth].p_hdr)) 1645 return (ext4_lblk_t) 1646 le32_to_cpu(path[depth].p_idx[1].ei_block); 1647 depth--; 1648 } 1649 1650 return EXT_MAX_BLOCKS; 1651 } 1652 1653 /* 1654 * ext4_ext_correct_indexes: 1655 * if leaf gets modified and modified extent is first in the leaf, 1656 * then we have to correct all indexes above. 1657 * TODO: do we need to correct tree in all cases? 1658 */ 1659 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1660 struct ext4_ext_path *path) 1661 { 1662 struct ext4_extent_header *eh; 1663 int depth = ext_depth(inode); 1664 struct ext4_extent *ex; 1665 __le32 border; 1666 int k, err = 0; 1667 1668 eh = path[depth].p_hdr; 1669 ex = path[depth].p_ext; 1670 1671 if (unlikely(ex == NULL || eh == NULL)) { 1672 EXT4_ERROR_INODE(inode, 1673 "ex %p == NULL or eh %p == NULL", ex, eh); 1674 return -EFSCORRUPTED; 1675 } 1676 1677 if (depth == 0) { 1678 /* there is no tree at all */ 1679 return 0; 1680 } 1681 1682 if (ex != EXT_FIRST_EXTENT(eh)) { 1683 /* we correct tree if first leaf got modified only */ 1684 return 0; 1685 } 1686 1687 /* 1688 * TODO: we need correction if border is smaller than current one 1689 */ 1690 k = depth - 1; 1691 border = path[depth].p_ext->ee_block; 1692 err = ext4_ext_get_access(handle, inode, path + k); 1693 if (err) 1694 return err; 1695 path[k].p_idx->ei_block = border; 1696 err = ext4_ext_dirty(handle, inode, path + k); 1697 if (err) 1698 return err; 1699 1700 while (k--) { 1701 /* change all left-side indexes */ 1702 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1703 break; 1704 err = ext4_ext_get_access(handle, inode, path + k); 1705 if (err) 1706 break; 1707 path[k].p_idx->ei_block = border; 1708 err = ext4_ext_dirty(handle, inode, path + k); 1709 if (err) 1710 break; 1711 } 1712 1713 return err; 1714 } 1715 1716 int 1717 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1718 struct ext4_extent *ex2) 1719 { 1720 unsigned short ext1_ee_len, ext2_ee_len; 1721 1722 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1723 return 0; 1724 1725 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1726 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1727 1728 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1729 le32_to_cpu(ex2->ee_block)) 1730 return 0; 1731 1732 /* 1733 * To allow future support for preallocated extents to be added 1734 * as an RO_COMPAT feature, refuse to merge to extents if 1735 * this can result in the top bit of ee_len being set. 1736 */ 1737 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1738 return 0; 1739 /* 1740 * The check for IO to unwritten extent is somewhat racy as we 1741 * increment i_unwritten / set EXT4_STATE_DIO_UNWRITTEN only after 1742 * dropping i_data_sem. But reserved blocks should save us in that 1743 * case. 1744 */ 1745 if (ext4_ext_is_unwritten(ex1) && 1746 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) || 1747 atomic_read(&EXT4_I(inode)->i_unwritten) || 1748 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN))) 1749 return 0; 1750 #ifdef AGGRESSIVE_TEST 1751 if (ext1_ee_len >= 4) 1752 return 0; 1753 #endif 1754 1755 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1756 return 1; 1757 return 0; 1758 } 1759 1760 /* 1761 * This function tries to merge the "ex" extent to the next extent in the tree. 1762 * It always tries to merge towards right. If you want to merge towards 1763 * left, pass "ex - 1" as argument instead of "ex". 1764 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1765 * 1 if they got merged. 1766 */ 1767 static int ext4_ext_try_to_merge_right(struct inode *inode, 1768 struct ext4_ext_path *path, 1769 struct ext4_extent *ex) 1770 { 1771 struct ext4_extent_header *eh; 1772 unsigned int depth, len; 1773 int merge_done = 0, unwritten; 1774 1775 depth = ext_depth(inode); 1776 BUG_ON(path[depth].p_hdr == NULL); 1777 eh = path[depth].p_hdr; 1778 1779 while (ex < EXT_LAST_EXTENT(eh)) { 1780 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1781 break; 1782 /* merge with next extent! */ 1783 unwritten = ext4_ext_is_unwritten(ex); 1784 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1785 + ext4_ext_get_actual_len(ex + 1)); 1786 if (unwritten) 1787 ext4_ext_mark_unwritten(ex); 1788 1789 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1790 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1791 * sizeof(struct ext4_extent); 1792 memmove(ex + 1, ex + 2, len); 1793 } 1794 le16_add_cpu(&eh->eh_entries, -1); 1795 merge_done = 1; 1796 WARN_ON(eh->eh_entries == 0); 1797 if (!eh->eh_entries) 1798 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1799 } 1800 1801 return merge_done; 1802 } 1803 1804 /* 1805 * This function does a very simple check to see if we can collapse 1806 * an extent tree with a single extent tree leaf block into the inode. 1807 */ 1808 static void ext4_ext_try_to_merge_up(handle_t *handle, 1809 struct inode *inode, 1810 struct ext4_ext_path *path) 1811 { 1812 size_t s; 1813 unsigned max_root = ext4_ext_space_root(inode, 0); 1814 ext4_fsblk_t blk; 1815 1816 if ((path[0].p_depth != 1) || 1817 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1818 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1819 return; 1820 1821 /* 1822 * We need to modify the block allocation bitmap and the block 1823 * group descriptor to release the extent tree block. If we 1824 * can't get the journal credits, give up. 1825 */ 1826 if (ext4_journal_extend(handle, 2)) 1827 return; 1828 1829 /* 1830 * Copy the extent data up to the inode 1831 */ 1832 blk = ext4_idx_pblock(path[0].p_idx); 1833 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1834 sizeof(struct ext4_extent_idx); 1835 s += sizeof(struct ext4_extent_header); 1836 1837 path[1].p_maxdepth = path[0].p_maxdepth; 1838 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1839 path[0].p_depth = 0; 1840 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1841 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1842 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1843 1844 brelse(path[1].p_bh); 1845 ext4_free_blocks(handle, inode, NULL, blk, 1, 1846 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1847 } 1848 1849 /* 1850 * This function tries to merge the @ex extent to neighbours in the tree. 1851 * return 1 if merge left else 0. 1852 */ 1853 static void ext4_ext_try_to_merge(handle_t *handle, 1854 struct inode *inode, 1855 struct ext4_ext_path *path, 1856 struct ext4_extent *ex) { 1857 struct ext4_extent_header *eh; 1858 unsigned int depth; 1859 int merge_done = 0; 1860 1861 depth = ext_depth(inode); 1862 BUG_ON(path[depth].p_hdr == NULL); 1863 eh = path[depth].p_hdr; 1864 1865 if (ex > EXT_FIRST_EXTENT(eh)) 1866 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1867 1868 if (!merge_done) 1869 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1870 1871 ext4_ext_try_to_merge_up(handle, inode, path); 1872 } 1873 1874 /* 1875 * check if a portion of the "newext" extent overlaps with an 1876 * existing extent. 1877 * 1878 * If there is an overlap discovered, it updates the length of the newext 1879 * such that there will be no overlap, and then returns 1. 1880 * If there is no overlap found, it returns 0. 1881 */ 1882 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1883 struct inode *inode, 1884 struct ext4_extent *newext, 1885 struct ext4_ext_path *path) 1886 { 1887 ext4_lblk_t b1, b2; 1888 unsigned int depth, len1; 1889 unsigned int ret = 0; 1890 1891 b1 = le32_to_cpu(newext->ee_block); 1892 len1 = ext4_ext_get_actual_len(newext); 1893 depth = ext_depth(inode); 1894 if (!path[depth].p_ext) 1895 goto out; 1896 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1897 1898 /* 1899 * get the next allocated block if the extent in the path 1900 * is before the requested block(s) 1901 */ 1902 if (b2 < b1) { 1903 b2 = ext4_ext_next_allocated_block(path); 1904 if (b2 == EXT_MAX_BLOCKS) 1905 goto out; 1906 b2 = EXT4_LBLK_CMASK(sbi, b2); 1907 } 1908 1909 /* check for wrap through zero on extent logical start block*/ 1910 if (b1 + len1 < b1) { 1911 len1 = EXT_MAX_BLOCKS - b1; 1912 newext->ee_len = cpu_to_le16(len1); 1913 ret = 1; 1914 } 1915 1916 /* check for overlap */ 1917 if (b1 + len1 > b2) { 1918 newext->ee_len = cpu_to_le16(b2 - b1); 1919 ret = 1; 1920 } 1921 out: 1922 return ret; 1923 } 1924 1925 /* 1926 * ext4_ext_insert_extent: 1927 * tries to merge requsted extent into the existing extent or 1928 * inserts requested extent as new one into the tree, 1929 * creating new leaf in the no-space case. 1930 */ 1931 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1932 struct ext4_ext_path **ppath, 1933 struct ext4_extent *newext, int gb_flags) 1934 { 1935 struct ext4_ext_path *path = *ppath; 1936 struct ext4_extent_header *eh; 1937 struct ext4_extent *ex, *fex; 1938 struct ext4_extent *nearex; /* nearest extent */ 1939 struct ext4_ext_path *npath = NULL; 1940 int depth, len, err; 1941 ext4_lblk_t next; 1942 int mb_flags = 0, unwritten; 1943 1944 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1945 mb_flags |= EXT4_MB_DELALLOC_RESERVED; 1946 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1947 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1948 return -EFSCORRUPTED; 1949 } 1950 depth = ext_depth(inode); 1951 ex = path[depth].p_ext; 1952 eh = path[depth].p_hdr; 1953 if (unlikely(path[depth].p_hdr == NULL)) { 1954 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1955 return -EFSCORRUPTED; 1956 } 1957 1958 /* try to insert block into found extent and return */ 1959 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1960 1961 /* 1962 * Try to see whether we should rather test the extent on 1963 * right from ex, or from the left of ex. This is because 1964 * ext4_find_extent() can return either extent on the 1965 * left, or on the right from the searched position. This 1966 * will make merging more effective. 1967 */ 1968 if (ex < EXT_LAST_EXTENT(eh) && 1969 (le32_to_cpu(ex->ee_block) + 1970 ext4_ext_get_actual_len(ex) < 1971 le32_to_cpu(newext->ee_block))) { 1972 ex += 1; 1973 goto prepend; 1974 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1975 (le32_to_cpu(newext->ee_block) + 1976 ext4_ext_get_actual_len(newext) < 1977 le32_to_cpu(ex->ee_block))) 1978 ex -= 1; 1979 1980 /* Try to append newex to the ex */ 1981 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1982 ext_debug("append [%d]%d block to %u:[%d]%d" 1983 "(from %llu)\n", 1984 ext4_ext_is_unwritten(newext), 1985 ext4_ext_get_actual_len(newext), 1986 le32_to_cpu(ex->ee_block), 1987 ext4_ext_is_unwritten(ex), 1988 ext4_ext_get_actual_len(ex), 1989 ext4_ext_pblock(ex)); 1990 err = ext4_ext_get_access(handle, inode, 1991 path + depth); 1992 if (err) 1993 return err; 1994 unwritten = ext4_ext_is_unwritten(ex); 1995 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1996 + ext4_ext_get_actual_len(newext)); 1997 if (unwritten) 1998 ext4_ext_mark_unwritten(ex); 1999 eh = path[depth].p_hdr; 2000 nearex = ex; 2001 goto merge; 2002 } 2003 2004 prepend: 2005 /* Try to prepend newex to the ex */ 2006 if (ext4_can_extents_be_merged(inode, newext, ex)) { 2007 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 2008 "(from %llu)\n", 2009 le32_to_cpu(newext->ee_block), 2010 ext4_ext_is_unwritten(newext), 2011 ext4_ext_get_actual_len(newext), 2012 le32_to_cpu(ex->ee_block), 2013 ext4_ext_is_unwritten(ex), 2014 ext4_ext_get_actual_len(ex), 2015 ext4_ext_pblock(ex)); 2016 err = ext4_ext_get_access(handle, inode, 2017 path + depth); 2018 if (err) 2019 return err; 2020 2021 unwritten = ext4_ext_is_unwritten(ex); 2022 ex->ee_block = newext->ee_block; 2023 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 2024 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2025 + ext4_ext_get_actual_len(newext)); 2026 if (unwritten) 2027 ext4_ext_mark_unwritten(ex); 2028 eh = path[depth].p_hdr; 2029 nearex = ex; 2030 goto merge; 2031 } 2032 } 2033 2034 depth = ext_depth(inode); 2035 eh = path[depth].p_hdr; 2036 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2037 goto has_space; 2038 2039 /* probably next leaf has space for us? */ 2040 fex = EXT_LAST_EXTENT(eh); 2041 next = EXT_MAX_BLOCKS; 2042 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2043 next = ext4_ext_next_leaf_block(path); 2044 if (next != EXT_MAX_BLOCKS) { 2045 ext_debug("next leaf block - %u\n", next); 2046 BUG_ON(npath != NULL); 2047 npath = ext4_find_extent(inode, next, NULL, 0); 2048 if (IS_ERR(npath)) 2049 return PTR_ERR(npath); 2050 BUG_ON(npath->p_depth != path->p_depth); 2051 eh = npath[depth].p_hdr; 2052 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2053 ext_debug("next leaf isn't full(%d)\n", 2054 le16_to_cpu(eh->eh_entries)); 2055 path = npath; 2056 goto has_space; 2057 } 2058 ext_debug("next leaf has no free space(%d,%d)\n", 2059 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2060 } 2061 2062 /* 2063 * There is no free space in the found leaf. 2064 * We're gonna add a new leaf in the tree. 2065 */ 2066 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2067 mb_flags |= EXT4_MB_USE_RESERVED; 2068 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2069 ppath, newext); 2070 if (err) 2071 goto cleanup; 2072 depth = ext_depth(inode); 2073 eh = path[depth].p_hdr; 2074 2075 has_space: 2076 nearex = path[depth].p_ext; 2077 2078 err = ext4_ext_get_access(handle, inode, path + depth); 2079 if (err) 2080 goto cleanup; 2081 2082 if (!nearex) { 2083 /* there is no extent in this leaf, create first one */ 2084 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2085 le32_to_cpu(newext->ee_block), 2086 ext4_ext_pblock(newext), 2087 ext4_ext_is_unwritten(newext), 2088 ext4_ext_get_actual_len(newext)); 2089 nearex = EXT_FIRST_EXTENT(eh); 2090 } else { 2091 if (le32_to_cpu(newext->ee_block) 2092 > le32_to_cpu(nearex->ee_block)) { 2093 /* Insert after */ 2094 ext_debug("insert %u:%llu:[%d]%d before: " 2095 "nearest %p\n", 2096 le32_to_cpu(newext->ee_block), 2097 ext4_ext_pblock(newext), 2098 ext4_ext_is_unwritten(newext), 2099 ext4_ext_get_actual_len(newext), 2100 nearex); 2101 nearex++; 2102 } else { 2103 /* Insert before */ 2104 BUG_ON(newext->ee_block == nearex->ee_block); 2105 ext_debug("insert %u:%llu:[%d]%d after: " 2106 "nearest %p\n", 2107 le32_to_cpu(newext->ee_block), 2108 ext4_ext_pblock(newext), 2109 ext4_ext_is_unwritten(newext), 2110 ext4_ext_get_actual_len(newext), 2111 nearex); 2112 } 2113 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2114 if (len > 0) { 2115 ext_debug("insert %u:%llu:[%d]%d: " 2116 "move %d extents from 0x%p to 0x%p\n", 2117 le32_to_cpu(newext->ee_block), 2118 ext4_ext_pblock(newext), 2119 ext4_ext_is_unwritten(newext), 2120 ext4_ext_get_actual_len(newext), 2121 len, nearex, nearex + 1); 2122 memmove(nearex + 1, nearex, 2123 len * sizeof(struct ext4_extent)); 2124 } 2125 } 2126 2127 le16_add_cpu(&eh->eh_entries, 1); 2128 path[depth].p_ext = nearex; 2129 nearex->ee_block = newext->ee_block; 2130 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2131 nearex->ee_len = newext->ee_len; 2132 2133 merge: 2134 /* try to merge extents */ 2135 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2136 ext4_ext_try_to_merge(handle, inode, path, nearex); 2137 2138 2139 /* time to correct all indexes above */ 2140 err = ext4_ext_correct_indexes(handle, inode, path); 2141 if (err) 2142 goto cleanup; 2143 2144 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2145 2146 cleanup: 2147 ext4_ext_drop_refs(npath); 2148 kfree(npath); 2149 return err; 2150 } 2151 2152 static int ext4_fill_fiemap_extents(struct inode *inode, 2153 ext4_lblk_t block, ext4_lblk_t num, 2154 struct fiemap_extent_info *fieinfo) 2155 { 2156 struct ext4_ext_path *path = NULL; 2157 struct ext4_extent *ex; 2158 struct extent_status es; 2159 ext4_lblk_t next, next_del, start = 0, end = 0; 2160 ext4_lblk_t last = block + num; 2161 int exists, depth = 0, err = 0; 2162 unsigned int flags = 0; 2163 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2164 2165 while (block < last && block != EXT_MAX_BLOCKS) { 2166 num = last - block; 2167 /* find extent for this block */ 2168 down_read(&EXT4_I(inode)->i_data_sem); 2169 2170 path = ext4_find_extent(inode, block, &path, 0); 2171 if (IS_ERR(path)) { 2172 up_read(&EXT4_I(inode)->i_data_sem); 2173 err = PTR_ERR(path); 2174 path = NULL; 2175 break; 2176 } 2177 2178 depth = ext_depth(inode); 2179 if (unlikely(path[depth].p_hdr == NULL)) { 2180 up_read(&EXT4_I(inode)->i_data_sem); 2181 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2182 err = -EFSCORRUPTED; 2183 break; 2184 } 2185 ex = path[depth].p_ext; 2186 next = ext4_ext_next_allocated_block(path); 2187 2188 flags = 0; 2189 exists = 0; 2190 if (!ex) { 2191 /* there is no extent yet, so try to allocate 2192 * all requested space */ 2193 start = block; 2194 end = block + num; 2195 } else if (le32_to_cpu(ex->ee_block) > block) { 2196 /* need to allocate space before found extent */ 2197 start = block; 2198 end = le32_to_cpu(ex->ee_block); 2199 if (block + num < end) 2200 end = block + num; 2201 } else if (block >= le32_to_cpu(ex->ee_block) 2202 + ext4_ext_get_actual_len(ex)) { 2203 /* need to allocate space after found extent */ 2204 start = block; 2205 end = block + num; 2206 if (end >= next) 2207 end = next; 2208 } else if (block >= le32_to_cpu(ex->ee_block)) { 2209 /* 2210 * some part of requested space is covered 2211 * by found extent 2212 */ 2213 start = block; 2214 end = le32_to_cpu(ex->ee_block) 2215 + ext4_ext_get_actual_len(ex); 2216 if (block + num < end) 2217 end = block + num; 2218 exists = 1; 2219 } else { 2220 BUG(); 2221 } 2222 BUG_ON(end <= start); 2223 2224 if (!exists) { 2225 es.es_lblk = start; 2226 es.es_len = end - start; 2227 es.es_pblk = 0; 2228 } else { 2229 es.es_lblk = le32_to_cpu(ex->ee_block); 2230 es.es_len = ext4_ext_get_actual_len(ex); 2231 es.es_pblk = ext4_ext_pblock(ex); 2232 if (ext4_ext_is_unwritten(ex)) 2233 flags |= FIEMAP_EXTENT_UNWRITTEN; 2234 } 2235 2236 /* 2237 * Find delayed extent and update es accordingly. We call 2238 * it even in !exists case to find out whether es is the 2239 * last existing extent or not. 2240 */ 2241 next_del = ext4_find_delayed_extent(inode, &es); 2242 if (!exists && next_del) { 2243 exists = 1; 2244 flags |= (FIEMAP_EXTENT_DELALLOC | 2245 FIEMAP_EXTENT_UNKNOWN); 2246 } 2247 up_read(&EXT4_I(inode)->i_data_sem); 2248 2249 if (unlikely(es.es_len == 0)) { 2250 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2251 err = -EFSCORRUPTED; 2252 break; 2253 } 2254 2255 /* 2256 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2257 * we need to check next == EXT_MAX_BLOCKS because it is 2258 * possible that an extent is with unwritten and delayed 2259 * status due to when an extent is delayed allocated and 2260 * is allocated by fallocate status tree will track both of 2261 * them in a extent. 2262 * 2263 * So we could return a unwritten and delayed extent, and 2264 * its block is equal to 'next'. 2265 */ 2266 if (next == next_del && next == EXT_MAX_BLOCKS) { 2267 flags |= FIEMAP_EXTENT_LAST; 2268 if (unlikely(next_del != EXT_MAX_BLOCKS || 2269 next != EXT_MAX_BLOCKS)) { 2270 EXT4_ERROR_INODE(inode, 2271 "next extent == %u, next " 2272 "delalloc extent = %u", 2273 next, next_del); 2274 err = -EFSCORRUPTED; 2275 break; 2276 } 2277 } 2278 2279 if (exists) { 2280 err = fiemap_fill_next_extent(fieinfo, 2281 (__u64)es.es_lblk << blksize_bits, 2282 (__u64)es.es_pblk << blksize_bits, 2283 (__u64)es.es_len << blksize_bits, 2284 flags); 2285 if (err < 0) 2286 break; 2287 if (err == 1) { 2288 err = 0; 2289 break; 2290 } 2291 } 2292 2293 block = es.es_lblk + es.es_len; 2294 } 2295 2296 ext4_ext_drop_refs(path); 2297 kfree(path); 2298 return err; 2299 } 2300 2301 /* 2302 * ext4_ext_determine_hole - determine hole around given block 2303 * @inode: inode we lookup in 2304 * @path: path in extent tree to @lblk 2305 * @lblk: pointer to logical block around which we want to determine hole 2306 * 2307 * Determine hole length (and start if easily possible) around given logical 2308 * block. We don't try too hard to find the beginning of the hole but @path 2309 * actually points to extent before @lblk, we provide it. 2310 * 2311 * The function returns the length of a hole starting at @lblk. We update @lblk 2312 * to the beginning of the hole if we managed to find it. 2313 */ 2314 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode, 2315 struct ext4_ext_path *path, 2316 ext4_lblk_t *lblk) 2317 { 2318 int depth = ext_depth(inode); 2319 struct ext4_extent *ex; 2320 ext4_lblk_t len; 2321 2322 ex = path[depth].p_ext; 2323 if (ex == NULL) { 2324 /* there is no extent yet, so gap is [0;-] */ 2325 *lblk = 0; 2326 len = EXT_MAX_BLOCKS; 2327 } else if (*lblk < le32_to_cpu(ex->ee_block)) { 2328 len = le32_to_cpu(ex->ee_block) - *lblk; 2329 } else if (*lblk >= le32_to_cpu(ex->ee_block) 2330 + ext4_ext_get_actual_len(ex)) { 2331 ext4_lblk_t next; 2332 2333 *lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); 2334 next = ext4_ext_next_allocated_block(path); 2335 BUG_ON(next == *lblk); 2336 len = next - *lblk; 2337 } else { 2338 BUG(); 2339 } 2340 return len; 2341 } 2342 2343 /* 2344 * ext4_ext_put_gap_in_cache: 2345 * calculate boundaries of the gap that the requested block fits into 2346 * and cache this gap 2347 */ 2348 static void 2349 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start, 2350 ext4_lblk_t hole_len) 2351 { 2352 struct extent_status es; 2353 2354 ext4_es_find_delayed_extent_range(inode, hole_start, 2355 hole_start + hole_len - 1, &es); 2356 if (es.es_len) { 2357 /* There's delayed extent containing lblock? */ 2358 if (es.es_lblk <= hole_start) 2359 return; 2360 hole_len = min(es.es_lblk - hole_start, hole_len); 2361 } 2362 ext_debug(" -> %u:%u\n", hole_start, hole_len); 2363 ext4_es_insert_extent(inode, hole_start, hole_len, ~0, 2364 EXTENT_STATUS_HOLE); 2365 } 2366 2367 /* 2368 * ext4_ext_rm_idx: 2369 * removes index from the index block. 2370 */ 2371 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2372 struct ext4_ext_path *path, int depth) 2373 { 2374 int err; 2375 ext4_fsblk_t leaf; 2376 2377 /* free index block */ 2378 depth--; 2379 path = path + depth; 2380 leaf = ext4_idx_pblock(path->p_idx); 2381 if (unlikely(path->p_hdr->eh_entries == 0)) { 2382 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2383 return -EFSCORRUPTED; 2384 } 2385 err = ext4_ext_get_access(handle, inode, path); 2386 if (err) 2387 return err; 2388 2389 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2390 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2391 len *= sizeof(struct ext4_extent_idx); 2392 memmove(path->p_idx, path->p_idx + 1, len); 2393 } 2394 2395 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2396 err = ext4_ext_dirty(handle, inode, path); 2397 if (err) 2398 return err; 2399 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2400 trace_ext4_ext_rm_idx(inode, leaf); 2401 2402 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2403 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2404 2405 while (--depth >= 0) { 2406 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2407 break; 2408 path--; 2409 err = ext4_ext_get_access(handle, inode, path); 2410 if (err) 2411 break; 2412 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2413 err = ext4_ext_dirty(handle, inode, path); 2414 if (err) 2415 break; 2416 } 2417 return err; 2418 } 2419 2420 /* 2421 * ext4_ext_calc_credits_for_single_extent: 2422 * This routine returns max. credits that needed to insert an extent 2423 * to the extent tree. 2424 * When pass the actual path, the caller should calculate credits 2425 * under i_data_sem. 2426 */ 2427 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2428 struct ext4_ext_path *path) 2429 { 2430 if (path) { 2431 int depth = ext_depth(inode); 2432 int ret = 0; 2433 2434 /* probably there is space in leaf? */ 2435 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2436 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2437 2438 /* 2439 * There are some space in the leaf tree, no 2440 * need to account for leaf block credit 2441 * 2442 * bitmaps and block group descriptor blocks 2443 * and other metadata blocks still need to be 2444 * accounted. 2445 */ 2446 /* 1 bitmap, 1 block group descriptor */ 2447 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2448 return ret; 2449 } 2450 } 2451 2452 return ext4_chunk_trans_blocks(inode, nrblocks); 2453 } 2454 2455 /* 2456 * How many index/leaf blocks need to change/allocate to add @extents extents? 2457 * 2458 * If we add a single extent, then in the worse case, each tree level 2459 * index/leaf need to be changed in case of the tree split. 2460 * 2461 * If more extents are inserted, they could cause the whole tree split more 2462 * than once, but this is really rare. 2463 */ 2464 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2465 { 2466 int index; 2467 int depth; 2468 2469 /* If we are converting the inline data, only one is needed here. */ 2470 if (ext4_has_inline_data(inode)) 2471 return 1; 2472 2473 depth = ext_depth(inode); 2474 2475 if (extents <= 1) 2476 index = depth * 2; 2477 else 2478 index = depth * 3; 2479 2480 return index; 2481 } 2482 2483 static inline int get_default_free_blocks_flags(struct inode *inode) 2484 { 2485 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) || 2486 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE)) 2487 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2488 else if (ext4_should_journal_data(inode)) 2489 return EXT4_FREE_BLOCKS_FORGET; 2490 return 0; 2491 } 2492 2493 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2494 struct ext4_extent *ex, 2495 long long *partial_cluster, 2496 ext4_lblk_t from, ext4_lblk_t to) 2497 { 2498 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2499 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2500 ext4_fsblk_t pblk; 2501 int flags = get_default_free_blocks_flags(inode); 2502 2503 /* 2504 * For bigalloc file systems, we never free a partial cluster 2505 * at the beginning of the extent. Instead, we make a note 2506 * that we tried freeing the cluster, and check to see if we 2507 * need to free it on a subsequent call to ext4_remove_blocks, 2508 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. 2509 */ 2510 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2511 2512 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2513 /* 2514 * If we have a partial cluster, and it's different from the 2515 * cluster of the last block, we need to explicitly free the 2516 * partial cluster here. 2517 */ 2518 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2519 if (*partial_cluster > 0 && 2520 *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { 2521 ext4_free_blocks(handle, inode, NULL, 2522 EXT4_C2B(sbi, *partial_cluster), 2523 sbi->s_cluster_ratio, flags); 2524 *partial_cluster = 0; 2525 } 2526 2527 #ifdef EXTENTS_STATS 2528 { 2529 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2530 spin_lock(&sbi->s_ext_stats_lock); 2531 sbi->s_ext_blocks += ee_len; 2532 sbi->s_ext_extents++; 2533 if (ee_len < sbi->s_ext_min) 2534 sbi->s_ext_min = ee_len; 2535 if (ee_len > sbi->s_ext_max) 2536 sbi->s_ext_max = ee_len; 2537 if (ext_depth(inode) > sbi->s_depth_max) 2538 sbi->s_depth_max = ext_depth(inode); 2539 spin_unlock(&sbi->s_ext_stats_lock); 2540 } 2541 #endif 2542 if (from >= le32_to_cpu(ex->ee_block) 2543 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2544 /* tail removal */ 2545 ext4_lblk_t num; 2546 long long first_cluster; 2547 2548 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2549 pblk = ext4_ext_pblock(ex) + ee_len - num; 2550 /* 2551 * Usually we want to free partial cluster at the end of the 2552 * extent, except for the situation when the cluster is still 2553 * used by any other extent (partial_cluster is negative). 2554 */ 2555 if (*partial_cluster < 0 && 2556 *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1)) 2557 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2558 2559 ext_debug("free last %u blocks starting %llu partial %lld\n", 2560 num, pblk, *partial_cluster); 2561 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2562 /* 2563 * If the block range to be freed didn't start at the 2564 * beginning of a cluster, and we removed the entire 2565 * extent and the cluster is not used by any other extent, 2566 * save the partial cluster here, since we might need to 2567 * delete if we determine that the truncate or punch hole 2568 * operation has removed all of the blocks in the cluster. 2569 * If that cluster is used by another extent, preserve its 2570 * negative value so it isn't freed later on. 2571 * 2572 * If the whole extent wasn't freed, we've reached the 2573 * start of the truncated/punched region and have finished 2574 * removing blocks. If there's a partial cluster here it's 2575 * shared with the remainder of the extent and is no longer 2576 * a candidate for removal. 2577 */ 2578 if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) { 2579 first_cluster = (long long) EXT4_B2C(sbi, pblk); 2580 if (first_cluster != -*partial_cluster) 2581 *partial_cluster = first_cluster; 2582 } else { 2583 *partial_cluster = 0; 2584 } 2585 } else 2586 ext4_error(sbi->s_sb, "strange request: removal(2) " 2587 "%u-%u from %u:%u", 2588 from, to, le32_to_cpu(ex->ee_block), ee_len); 2589 return 0; 2590 } 2591 2592 2593 /* 2594 * ext4_ext_rm_leaf() Removes the extents associated with the 2595 * blocks appearing between "start" and "end". Both "start" 2596 * and "end" must appear in the same extent or EIO is returned. 2597 * 2598 * @handle: The journal handle 2599 * @inode: The files inode 2600 * @path: The path to the leaf 2601 * @partial_cluster: The cluster which we'll have to free if all extents 2602 * has been released from it. However, if this value is 2603 * negative, it's a cluster just to the right of the 2604 * punched region and it must not be freed. 2605 * @start: The first block to remove 2606 * @end: The last block to remove 2607 */ 2608 static int 2609 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2610 struct ext4_ext_path *path, 2611 long long *partial_cluster, 2612 ext4_lblk_t start, ext4_lblk_t end) 2613 { 2614 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2615 int err = 0, correct_index = 0; 2616 int depth = ext_depth(inode), credits; 2617 struct ext4_extent_header *eh; 2618 ext4_lblk_t a, b; 2619 unsigned num; 2620 ext4_lblk_t ex_ee_block; 2621 unsigned short ex_ee_len; 2622 unsigned unwritten = 0; 2623 struct ext4_extent *ex; 2624 ext4_fsblk_t pblk; 2625 2626 /* the header must be checked already in ext4_ext_remove_space() */ 2627 ext_debug("truncate since %u in leaf to %u\n", start, end); 2628 if (!path[depth].p_hdr) 2629 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2630 eh = path[depth].p_hdr; 2631 if (unlikely(path[depth].p_hdr == NULL)) { 2632 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2633 return -EFSCORRUPTED; 2634 } 2635 /* find where to start removing */ 2636 ex = path[depth].p_ext; 2637 if (!ex) 2638 ex = EXT_LAST_EXTENT(eh); 2639 2640 ex_ee_block = le32_to_cpu(ex->ee_block); 2641 ex_ee_len = ext4_ext_get_actual_len(ex); 2642 2643 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2644 2645 while (ex >= EXT_FIRST_EXTENT(eh) && 2646 ex_ee_block + ex_ee_len > start) { 2647 2648 if (ext4_ext_is_unwritten(ex)) 2649 unwritten = 1; 2650 else 2651 unwritten = 0; 2652 2653 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2654 unwritten, ex_ee_len); 2655 path[depth].p_ext = ex; 2656 2657 a = ex_ee_block > start ? ex_ee_block : start; 2658 b = ex_ee_block+ex_ee_len - 1 < end ? 2659 ex_ee_block+ex_ee_len - 1 : end; 2660 2661 ext_debug(" border %u:%u\n", a, b); 2662 2663 /* If this extent is beyond the end of the hole, skip it */ 2664 if (end < ex_ee_block) { 2665 /* 2666 * We're going to skip this extent and move to another, 2667 * so note that its first cluster is in use to avoid 2668 * freeing it when removing blocks. Eventually, the 2669 * right edge of the truncated/punched region will 2670 * be just to the left. 2671 */ 2672 if (sbi->s_cluster_ratio > 1) { 2673 pblk = ext4_ext_pblock(ex); 2674 *partial_cluster = 2675 -(long long) EXT4_B2C(sbi, pblk); 2676 } 2677 ex--; 2678 ex_ee_block = le32_to_cpu(ex->ee_block); 2679 ex_ee_len = ext4_ext_get_actual_len(ex); 2680 continue; 2681 } else if (b != ex_ee_block + ex_ee_len - 1) { 2682 EXT4_ERROR_INODE(inode, 2683 "can not handle truncate %u:%u " 2684 "on extent %u:%u", 2685 start, end, ex_ee_block, 2686 ex_ee_block + ex_ee_len - 1); 2687 err = -EFSCORRUPTED; 2688 goto out; 2689 } else if (a != ex_ee_block) { 2690 /* remove tail of the extent */ 2691 num = a - ex_ee_block; 2692 } else { 2693 /* remove whole extent: excellent! */ 2694 num = 0; 2695 } 2696 /* 2697 * 3 for leaf, sb, and inode plus 2 (bmap and group 2698 * descriptor) for each block group; assume two block 2699 * groups plus ex_ee_len/blocks_per_block_group for 2700 * the worst case 2701 */ 2702 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2703 if (ex == EXT_FIRST_EXTENT(eh)) { 2704 correct_index = 1; 2705 credits += (ext_depth(inode)) + 1; 2706 } 2707 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2708 2709 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2710 if (err) 2711 goto out; 2712 2713 err = ext4_ext_get_access(handle, inode, path + depth); 2714 if (err) 2715 goto out; 2716 2717 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2718 a, b); 2719 if (err) 2720 goto out; 2721 2722 if (num == 0) 2723 /* this extent is removed; mark slot entirely unused */ 2724 ext4_ext_store_pblock(ex, 0); 2725 2726 ex->ee_len = cpu_to_le16(num); 2727 /* 2728 * Do not mark unwritten if all the blocks in the 2729 * extent have been removed. 2730 */ 2731 if (unwritten && num) 2732 ext4_ext_mark_unwritten(ex); 2733 /* 2734 * If the extent was completely released, 2735 * we need to remove it from the leaf 2736 */ 2737 if (num == 0) { 2738 if (end != EXT_MAX_BLOCKS - 1) { 2739 /* 2740 * For hole punching, we need to scoot all the 2741 * extents up when an extent is removed so that 2742 * we dont have blank extents in the middle 2743 */ 2744 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2745 sizeof(struct ext4_extent)); 2746 2747 /* Now get rid of the one at the end */ 2748 memset(EXT_LAST_EXTENT(eh), 0, 2749 sizeof(struct ext4_extent)); 2750 } 2751 le16_add_cpu(&eh->eh_entries, -1); 2752 } 2753 2754 err = ext4_ext_dirty(handle, inode, path + depth); 2755 if (err) 2756 goto out; 2757 2758 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2759 ext4_ext_pblock(ex)); 2760 ex--; 2761 ex_ee_block = le32_to_cpu(ex->ee_block); 2762 ex_ee_len = ext4_ext_get_actual_len(ex); 2763 } 2764 2765 if (correct_index && eh->eh_entries) 2766 err = ext4_ext_correct_indexes(handle, inode, path); 2767 2768 /* 2769 * If there's a partial cluster and at least one extent remains in 2770 * the leaf, free the partial cluster if it isn't shared with the 2771 * current extent. If it is shared with the current extent 2772 * we zero partial_cluster because we've reached the start of the 2773 * truncated/punched region and we're done removing blocks. 2774 */ 2775 if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) { 2776 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2777 if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { 2778 ext4_free_blocks(handle, inode, NULL, 2779 EXT4_C2B(sbi, *partial_cluster), 2780 sbi->s_cluster_ratio, 2781 get_default_free_blocks_flags(inode)); 2782 } 2783 *partial_cluster = 0; 2784 } 2785 2786 /* if this leaf is free, then we should 2787 * remove it from index block above */ 2788 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2789 err = ext4_ext_rm_idx(handle, inode, path, depth); 2790 2791 out: 2792 return err; 2793 } 2794 2795 /* 2796 * ext4_ext_more_to_rm: 2797 * returns 1 if current index has to be freed (even partial) 2798 */ 2799 static int 2800 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2801 { 2802 BUG_ON(path->p_idx == NULL); 2803 2804 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2805 return 0; 2806 2807 /* 2808 * if truncate on deeper level happened, it wasn't partial, 2809 * so we have to consider current index for truncation 2810 */ 2811 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2812 return 0; 2813 return 1; 2814 } 2815 2816 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2817 ext4_lblk_t end) 2818 { 2819 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2820 int depth = ext_depth(inode); 2821 struct ext4_ext_path *path = NULL; 2822 long long partial_cluster = 0; 2823 handle_t *handle; 2824 int i = 0, err = 0; 2825 2826 ext_debug("truncate since %u to %u\n", start, end); 2827 2828 /* probably first extent we're gonna free will be last in block */ 2829 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2830 if (IS_ERR(handle)) 2831 return PTR_ERR(handle); 2832 2833 again: 2834 trace_ext4_ext_remove_space(inode, start, end, depth); 2835 2836 /* 2837 * Check if we are removing extents inside the extent tree. If that 2838 * is the case, we are going to punch a hole inside the extent tree 2839 * so we have to check whether we need to split the extent covering 2840 * the last block to remove so we can easily remove the part of it 2841 * in ext4_ext_rm_leaf(). 2842 */ 2843 if (end < EXT_MAX_BLOCKS - 1) { 2844 struct ext4_extent *ex; 2845 ext4_lblk_t ee_block, ex_end, lblk; 2846 ext4_fsblk_t pblk; 2847 2848 /* find extent for or closest extent to this block */ 2849 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2850 if (IS_ERR(path)) { 2851 ext4_journal_stop(handle); 2852 return PTR_ERR(path); 2853 } 2854 depth = ext_depth(inode); 2855 /* Leaf not may not exist only if inode has no blocks at all */ 2856 ex = path[depth].p_ext; 2857 if (!ex) { 2858 if (depth) { 2859 EXT4_ERROR_INODE(inode, 2860 "path[%d].p_hdr == NULL", 2861 depth); 2862 err = -EFSCORRUPTED; 2863 } 2864 goto out; 2865 } 2866 2867 ee_block = le32_to_cpu(ex->ee_block); 2868 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1; 2869 2870 /* 2871 * See if the last block is inside the extent, if so split 2872 * the extent at 'end' block so we can easily remove the 2873 * tail of the first part of the split extent in 2874 * ext4_ext_rm_leaf(). 2875 */ 2876 if (end >= ee_block && end < ex_end) { 2877 2878 /* 2879 * If we're going to split the extent, note that 2880 * the cluster containing the block after 'end' is 2881 * in use to avoid freeing it when removing blocks. 2882 */ 2883 if (sbi->s_cluster_ratio > 1) { 2884 pblk = ext4_ext_pblock(ex) + end - ee_block + 2; 2885 partial_cluster = 2886 -(long long) EXT4_B2C(sbi, pblk); 2887 } 2888 2889 /* 2890 * Split the extent in two so that 'end' is the last 2891 * block in the first new extent. Also we should not 2892 * fail removing space due to ENOSPC so try to use 2893 * reserved block if that happens. 2894 */ 2895 err = ext4_force_split_extent_at(handle, inode, &path, 2896 end + 1, 1); 2897 if (err < 0) 2898 goto out; 2899 2900 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end) { 2901 /* 2902 * If there's an extent to the right its first cluster 2903 * contains the immediate right boundary of the 2904 * truncated/punched region. Set partial_cluster to 2905 * its negative value so it won't be freed if shared 2906 * with the current extent. The end < ee_block case 2907 * is handled in ext4_ext_rm_leaf(). 2908 */ 2909 lblk = ex_end + 1; 2910 err = ext4_ext_search_right(inode, path, &lblk, &pblk, 2911 &ex); 2912 if (err) 2913 goto out; 2914 if (pblk) 2915 partial_cluster = 2916 -(long long) EXT4_B2C(sbi, pblk); 2917 } 2918 } 2919 /* 2920 * We start scanning from right side, freeing all the blocks 2921 * after i_size and walking into the tree depth-wise. 2922 */ 2923 depth = ext_depth(inode); 2924 if (path) { 2925 int k = i = depth; 2926 while (--k > 0) 2927 path[k].p_block = 2928 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2929 } else { 2930 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 2931 GFP_NOFS); 2932 if (path == NULL) { 2933 ext4_journal_stop(handle); 2934 return -ENOMEM; 2935 } 2936 path[0].p_maxdepth = path[0].p_depth = depth; 2937 path[0].p_hdr = ext_inode_hdr(inode); 2938 i = 0; 2939 2940 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2941 err = -EFSCORRUPTED; 2942 goto out; 2943 } 2944 } 2945 err = 0; 2946 2947 while (i >= 0 && err == 0) { 2948 if (i == depth) { 2949 /* this is leaf block */ 2950 err = ext4_ext_rm_leaf(handle, inode, path, 2951 &partial_cluster, start, 2952 end); 2953 /* root level has p_bh == NULL, brelse() eats this */ 2954 brelse(path[i].p_bh); 2955 path[i].p_bh = NULL; 2956 i--; 2957 continue; 2958 } 2959 2960 /* this is index block */ 2961 if (!path[i].p_hdr) { 2962 ext_debug("initialize header\n"); 2963 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2964 } 2965 2966 if (!path[i].p_idx) { 2967 /* this level hasn't been touched yet */ 2968 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2969 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2970 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2971 path[i].p_hdr, 2972 le16_to_cpu(path[i].p_hdr->eh_entries)); 2973 } else { 2974 /* we were already here, see at next index */ 2975 path[i].p_idx--; 2976 } 2977 2978 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2979 i, EXT_FIRST_INDEX(path[i].p_hdr), 2980 path[i].p_idx); 2981 if (ext4_ext_more_to_rm(path + i)) { 2982 struct buffer_head *bh; 2983 /* go to the next level */ 2984 ext_debug("move to level %d (block %llu)\n", 2985 i + 1, ext4_idx_pblock(path[i].p_idx)); 2986 memset(path + i + 1, 0, sizeof(*path)); 2987 bh = read_extent_tree_block(inode, 2988 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 2989 EXT4_EX_NOCACHE); 2990 if (IS_ERR(bh)) { 2991 /* should we reset i_size? */ 2992 err = PTR_ERR(bh); 2993 break; 2994 } 2995 /* Yield here to deal with large extent trees. 2996 * Should be a no-op if we did IO above. */ 2997 cond_resched(); 2998 if (WARN_ON(i + 1 > depth)) { 2999 err = -EFSCORRUPTED; 3000 break; 3001 } 3002 path[i + 1].p_bh = bh; 3003 3004 /* save actual number of indexes since this 3005 * number is changed at the next iteration */ 3006 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 3007 i++; 3008 } else { 3009 /* we finished processing this index, go up */ 3010 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 3011 /* index is empty, remove it; 3012 * handle must be already prepared by the 3013 * truncatei_leaf() */ 3014 err = ext4_ext_rm_idx(handle, inode, path, i); 3015 } 3016 /* root level has p_bh == NULL, brelse() eats this */ 3017 brelse(path[i].p_bh); 3018 path[i].p_bh = NULL; 3019 i--; 3020 ext_debug("return to level %d\n", i); 3021 } 3022 } 3023 3024 trace_ext4_ext_remove_space_done(inode, start, end, depth, 3025 partial_cluster, path->p_hdr->eh_entries); 3026 3027 /* 3028 * If we still have something in the partial cluster and we have removed 3029 * even the first extent, then we should free the blocks in the partial 3030 * cluster as well. (This code will only run when there are no leaves 3031 * to the immediate left of the truncated/punched region.) 3032 */ 3033 if (partial_cluster > 0 && err == 0) { 3034 /* don't zero partial_cluster since it's not used afterwards */ 3035 ext4_free_blocks(handle, inode, NULL, 3036 EXT4_C2B(sbi, partial_cluster), 3037 sbi->s_cluster_ratio, 3038 get_default_free_blocks_flags(inode)); 3039 } 3040 3041 /* TODO: flexible tree reduction should be here */ 3042 if (path->p_hdr->eh_entries == 0) { 3043 /* 3044 * truncate to zero freed all the tree, 3045 * so we need to correct eh_depth 3046 */ 3047 err = ext4_ext_get_access(handle, inode, path); 3048 if (err == 0) { 3049 ext_inode_hdr(inode)->eh_depth = 0; 3050 ext_inode_hdr(inode)->eh_max = 3051 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3052 err = ext4_ext_dirty(handle, inode, path); 3053 } 3054 } 3055 out: 3056 ext4_ext_drop_refs(path); 3057 kfree(path); 3058 path = NULL; 3059 if (err == -EAGAIN) 3060 goto again; 3061 ext4_journal_stop(handle); 3062 3063 return err; 3064 } 3065 3066 /* 3067 * called at mount time 3068 */ 3069 void ext4_ext_init(struct super_block *sb) 3070 { 3071 /* 3072 * possible initialization would be here 3073 */ 3074 3075 if (ext4_has_feature_extents(sb)) { 3076 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3077 printk(KERN_INFO "EXT4-fs: file extents enabled" 3078 #ifdef AGGRESSIVE_TEST 3079 ", aggressive tests" 3080 #endif 3081 #ifdef CHECK_BINSEARCH 3082 ", check binsearch" 3083 #endif 3084 #ifdef EXTENTS_STATS 3085 ", stats" 3086 #endif 3087 "\n"); 3088 #endif 3089 #ifdef EXTENTS_STATS 3090 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3091 EXT4_SB(sb)->s_ext_min = 1 << 30; 3092 EXT4_SB(sb)->s_ext_max = 0; 3093 #endif 3094 } 3095 } 3096 3097 /* 3098 * called at umount time 3099 */ 3100 void ext4_ext_release(struct super_block *sb) 3101 { 3102 if (!ext4_has_feature_extents(sb)) 3103 return; 3104 3105 #ifdef EXTENTS_STATS 3106 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3107 struct ext4_sb_info *sbi = EXT4_SB(sb); 3108 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3109 sbi->s_ext_blocks, sbi->s_ext_extents, 3110 sbi->s_ext_blocks / sbi->s_ext_extents); 3111 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3112 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3113 } 3114 #endif 3115 } 3116 3117 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3118 { 3119 ext4_lblk_t ee_block; 3120 ext4_fsblk_t ee_pblock; 3121 unsigned int ee_len; 3122 3123 ee_block = le32_to_cpu(ex->ee_block); 3124 ee_len = ext4_ext_get_actual_len(ex); 3125 ee_pblock = ext4_ext_pblock(ex); 3126 3127 if (ee_len == 0) 3128 return 0; 3129 3130 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3131 EXTENT_STATUS_WRITTEN); 3132 } 3133 3134 /* FIXME!! we need to try to merge to left or right after zero-out */ 3135 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3136 { 3137 ext4_fsblk_t ee_pblock; 3138 unsigned int ee_len; 3139 3140 ee_len = ext4_ext_get_actual_len(ex); 3141 ee_pblock = ext4_ext_pblock(ex); 3142 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock, 3143 ee_len); 3144 } 3145 3146 /* 3147 * ext4_split_extent_at() splits an extent at given block. 3148 * 3149 * @handle: the journal handle 3150 * @inode: the file inode 3151 * @path: the path to the extent 3152 * @split: the logical block where the extent is splitted. 3153 * @split_flags: indicates if the extent could be zeroout if split fails, and 3154 * the states(init or unwritten) of new extents. 3155 * @flags: flags used to insert new extent to extent tree. 3156 * 3157 * 3158 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3159 * of which are deterimined by split_flag. 3160 * 3161 * There are two cases: 3162 * a> the extent are splitted into two extent. 3163 * b> split is not needed, and just mark the extent. 3164 * 3165 * return 0 on success. 3166 */ 3167 static int ext4_split_extent_at(handle_t *handle, 3168 struct inode *inode, 3169 struct ext4_ext_path **ppath, 3170 ext4_lblk_t split, 3171 int split_flag, 3172 int flags) 3173 { 3174 struct ext4_ext_path *path = *ppath; 3175 ext4_fsblk_t newblock; 3176 ext4_lblk_t ee_block; 3177 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3178 struct ext4_extent *ex2 = NULL; 3179 unsigned int ee_len, depth; 3180 int err = 0; 3181 3182 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3183 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3184 3185 ext_debug("ext4_split_extents_at: inode %lu, logical" 3186 "block %llu\n", inode->i_ino, (unsigned long long)split); 3187 3188 ext4_ext_show_leaf(inode, path); 3189 3190 depth = ext_depth(inode); 3191 ex = path[depth].p_ext; 3192 ee_block = le32_to_cpu(ex->ee_block); 3193 ee_len = ext4_ext_get_actual_len(ex); 3194 newblock = split - ee_block + ext4_ext_pblock(ex); 3195 3196 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3197 BUG_ON(!ext4_ext_is_unwritten(ex) && 3198 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3199 EXT4_EXT_MARK_UNWRIT1 | 3200 EXT4_EXT_MARK_UNWRIT2)); 3201 3202 err = ext4_ext_get_access(handle, inode, path + depth); 3203 if (err) 3204 goto out; 3205 3206 if (split == ee_block) { 3207 /* 3208 * case b: block @split is the block that the extent begins with 3209 * then we just change the state of the extent, and splitting 3210 * is not needed. 3211 */ 3212 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3213 ext4_ext_mark_unwritten(ex); 3214 else 3215 ext4_ext_mark_initialized(ex); 3216 3217 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3218 ext4_ext_try_to_merge(handle, inode, path, ex); 3219 3220 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3221 goto out; 3222 } 3223 3224 /* case a */ 3225 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3226 ex->ee_len = cpu_to_le16(split - ee_block); 3227 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3228 ext4_ext_mark_unwritten(ex); 3229 3230 /* 3231 * path may lead to new leaf, not to original leaf any more 3232 * after ext4_ext_insert_extent() returns, 3233 */ 3234 err = ext4_ext_dirty(handle, inode, path + depth); 3235 if (err) 3236 goto fix_extent_len; 3237 3238 ex2 = &newex; 3239 ex2->ee_block = cpu_to_le32(split); 3240 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3241 ext4_ext_store_pblock(ex2, newblock); 3242 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3243 ext4_ext_mark_unwritten(ex2); 3244 3245 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags); 3246 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3247 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3248 if (split_flag & EXT4_EXT_DATA_VALID1) { 3249 err = ext4_ext_zeroout(inode, ex2); 3250 zero_ex.ee_block = ex2->ee_block; 3251 zero_ex.ee_len = cpu_to_le16( 3252 ext4_ext_get_actual_len(ex2)); 3253 ext4_ext_store_pblock(&zero_ex, 3254 ext4_ext_pblock(ex2)); 3255 } else { 3256 err = ext4_ext_zeroout(inode, ex); 3257 zero_ex.ee_block = ex->ee_block; 3258 zero_ex.ee_len = cpu_to_le16( 3259 ext4_ext_get_actual_len(ex)); 3260 ext4_ext_store_pblock(&zero_ex, 3261 ext4_ext_pblock(ex)); 3262 } 3263 } else { 3264 err = ext4_ext_zeroout(inode, &orig_ex); 3265 zero_ex.ee_block = orig_ex.ee_block; 3266 zero_ex.ee_len = cpu_to_le16( 3267 ext4_ext_get_actual_len(&orig_ex)); 3268 ext4_ext_store_pblock(&zero_ex, 3269 ext4_ext_pblock(&orig_ex)); 3270 } 3271 3272 if (err) 3273 goto fix_extent_len; 3274 /* update the extent length and mark as initialized */ 3275 ex->ee_len = cpu_to_le16(ee_len); 3276 ext4_ext_try_to_merge(handle, inode, path, ex); 3277 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3278 if (err) 3279 goto fix_extent_len; 3280 3281 /* update extent status tree */ 3282 err = ext4_zeroout_es(inode, &zero_ex); 3283 3284 goto out; 3285 } else if (err) 3286 goto fix_extent_len; 3287 3288 out: 3289 ext4_ext_show_leaf(inode, path); 3290 return err; 3291 3292 fix_extent_len: 3293 ex->ee_len = orig_ex.ee_len; 3294 ext4_ext_dirty(handle, inode, path + path->p_depth); 3295 return err; 3296 } 3297 3298 /* 3299 * ext4_split_extents() splits an extent and mark extent which is covered 3300 * by @map as split_flags indicates 3301 * 3302 * It may result in splitting the extent into multiple extents (up to three) 3303 * There are three possibilities: 3304 * a> There is no split required 3305 * b> Splits in two extents: Split is happening at either end of the extent 3306 * c> Splits in three extents: Somone is splitting in middle of the extent 3307 * 3308 */ 3309 static int ext4_split_extent(handle_t *handle, 3310 struct inode *inode, 3311 struct ext4_ext_path **ppath, 3312 struct ext4_map_blocks *map, 3313 int split_flag, 3314 int flags) 3315 { 3316 struct ext4_ext_path *path = *ppath; 3317 ext4_lblk_t ee_block; 3318 struct ext4_extent *ex; 3319 unsigned int ee_len, depth; 3320 int err = 0; 3321 int unwritten; 3322 int split_flag1, flags1; 3323 int allocated = map->m_len; 3324 3325 depth = ext_depth(inode); 3326 ex = path[depth].p_ext; 3327 ee_block = le32_to_cpu(ex->ee_block); 3328 ee_len = ext4_ext_get_actual_len(ex); 3329 unwritten = ext4_ext_is_unwritten(ex); 3330 3331 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3332 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3333 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3334 if (unwritten) 3335 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3336 EXT4_EXT_MARK_UNWRIT2; 3337 if (split_flag & EXT4_EXT_DATA_VALID2) 3338 split_flag1 |= EXT4_EXT_DATA_VALID1; 3339 err = ext4_split_extent_at(handle, inode, ppath, 3340 map->m_lblk + map->m_len, split_flag1, flags1); 3341 if (err) 3342 goto out; 3343 } else { 3344 allocated = ee_len - (map->m_lblk - ee_block); 3345 } 3346 /* 3347 * Update path is required because previous ext4_split_extent_at() may 3348 * result in split of original leaf or extent zeroout. 3349 */ 3350 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3351 if (IS_ERR(path)) 3352 return PTR_ERR(path); 3353 depth = ext_depth(inode); 3354 ex = path[depth].p_ext; 3355 if (!ex) { 3356 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3357 (unsigned long) map->m_lblk); 3358 return -EFSCORRUPTED; 3359 } 3360 unwritten = ext4_ext_is_unwritten(ex); 3361 split_flag1 = 0; 3362 3363 if (map->m_lblk >= ee_block) { 3364 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3365 if (unwritten) { 3366 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3367 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3368 EXT4_EXT_MARK_UNWRIT2); 3369 } 3370 err = ext4_split_extent_at(handle, inode, ppath, 3371 map->m_lblk, split_flag1, flags); 3372 if (err) 3373 goto out; 3374 } 3375 3376 ext4_ext_show_leaf(inode, path); 3377 out: 3378 return err ? err : allocated; 3379 } 3380 3381 /* 3382 * This function is called by ext4_ext_map_blocks() if someone tries to write 3383 * to an unwritten extent. It may result in splitting the unwritten 3384 * extent into multiple extents (up to three - one initialized and two 3385 * unwritten). 3386 * There are three possibilities: 3387 * a> There is no split required: Entire extent should be initialized 3388 * b> Splits in two extents: Write is happening at either end of the extent 3389 * c> Splits in three extents: Somone is writing in middle of the extent 3390 * 3391 * Pre-conditions: 3392 * - The extent pointed to by 'path' is unwritten. 3393 * - The extent pointed to by 'path' contains a superset 3394 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3395 * 3396 * Post-conditions on success: 3397 * - the returned value is the number of blocks beyond map->l_lblk 3398 * that are allocated and initialized. 3399 * It is guaranteed to be >= map->m_len. 3400 */ 3401 static int ext4_ext_convert_to_initialized(handle_t *handle, 3402 struct inode *inode, 3403 struct ext4_map_blocks *map, 3404 struct ext4_ext_path **ppath, 3405 int flags) 3406 { 3407 struct ext4_ext_path *path = *ppath; 3408 struct ext4_sb_info *sbi; 3409 struct ext4_extent_header *eh; 3410 struct ext4_map_blocks split_map; 3411 struct ext4_extent zero_ex1, zero_ex2; 3412 struct ext4_extent *ex, *abut_ex; 3413 ext4_lblk_t ee_block, eof_block; 3414 unsigned int ee_len, depth, map_len = map->m_len; 3415 int allocated = 0, max_zeroout = 0; 3416 int err = 0; 3417 int split_flag = EXT4_EXT_DATA_VALID2; 3418 3419 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3420 "block %llu, max_blocks %u\n", inode->i_ino, 3421 (unsigned long long)map->m_lblk, map_len); 3422 3423 sbi = EXT4_SB(inode->i_sb); 3424 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3425 inode->i_sb->s_blocksize_bits; 3426 if (eof_block < map->m_lblk + map_len) 3427 eof_block = map->m_lblk + map_len; 3428 3429 depth = ext_depth(inode); 3430 eh = path[depth].p_hdr; 3431 ex = path[depth].p_ext; 3432 ee_block = le32_to_cpu(ex->ee_block); 3433 ee_len = ext4_ext_get_actual_len(ex); 3434 zero_ex1.ee_len = 0; 3435 zero_ex2.ee_len = 0; 3436 3437 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3438 3439 /* Pre-conditions */ 3440 BUG_ON(!ext4_ext_is_unwritten(ex)); 3441 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3442 3443 /* 3444 * Attempt to transfer newly initialized blocks from the currently 3445 * unwritten extent to its neighbor. This is much cheaper 3446 * than an insertion followed by a merge as those involve costly 3447 * memmove() calls. Transferring to the left is the common case in 3448 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3449 * followed by append writes. 3450 * 3451 * Limitations of the current logic: 3452 * - L1: we do not deal with writes covering the whole extent. 3453 * This would require removing the extent if the transfer 3454 * is possible. 3455 * - L2: we only attempt to merge with an extent stored in the 3456 * same extent tree node. 3457 */ 3458 if ((map->m_lblk == ee_block) && 3459 /* See if we can merge left */ 3460 (map_len < ee_len) && /*L1*/ 3461 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3462 ext4_lblk_t prev_lblk; 3463 ext4_fsblk_t prev_pblk, ee_pblk; 3464 unsigned int prev_len; 3465 3466 abut_ex = ex - 1; 3467 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3468 prev_len = ext4_ext_get_actual_len(abut_ex); 3469 prev_pblk = ext4_ext_pblock(abut_ex); 3470 ee_pblk = ext4_ext_pblock(ex); 3471 3472 /* 3473 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3474 * upon those conditions: 3475 * - C1: abut_ex is initialized, 3476 * - C2: abut_ex is logically abutting ex, 3477 * - C3: abut_ex is physically abutting ex, 3478 * - C4: abut_ex can receive the additional blocks without 3479 * overflowing the (initialized) length limit. 3480 */ 3481 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3482 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3483 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3484 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3485 err = ext4_ext_get_access(handle, inode, path + depth); 3486 if (err) 3487 goto out; 3488 3489 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3490 map, ex, abut_ex); 3491 3492 /* Shift the start of ex by 'map_len' blocks */ 3493 ex->ee_block = cpu_to_le32(ee_block + map_len); 3494 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3495 ex->ee_len = cpu_to_le16(ee_len - map_len); 3496 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3497 3498 /* Extend abut_ex by 'map_len' blocks */ 3499 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3500 3501 /* Result: number of initialized blocks past m_lblk */ 3502 allocated = map_len; 3503 } 3504 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3505 (map_len < ee_len) && /*L1*/ 3506 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3507 /* See if we can merge right */ 3508 ext4_lblk_t next_lblk; 3509 ext4_fsblk_t next_pblk, ee_pblk; 3510 unsigned int next_len; 3511 3512 abut_ex = ex + 1; 3513 next_lblk = le32_to_cpu(abut_ex->ee_block); 3514 next_len = ext4_ext_get_actual_len(abut_ex); 3515 next_pblk = ext4_ext_pblock(abut_ex); 3516 ee_pblk = ext4_ext_pblock(ex); 3517 3518 /* 3519 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3520 * upon those conditions: 3521 * - C1: abut_ex is initialized, 3522 * - C2: abut_ex is logically abutting ex, 3523 * - C3: abut_ex is physically abutting ex, 3524 * - C4: abut_ex can receive the additional blocks without 3525 * overflowing the (initialized) length limit. 3526 */ 3527 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3528 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3529 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3530 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3531 err = ext4_ext_get_access(handle, inode, path + depth); 3532 if (err) 3533 goto out; 3534 3535 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3536 map, ex, abut_ex); 3537 3538 /* Shift the start of abut_ex by 'map_len' blocks */ 3539 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3540 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3541 ex->ee_len = cpu_to_le16(ee_len - map_len); 3542 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3543 3544 /* Extend abut_ex by 'map_len' blocks */ 3545 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3546 3547 /* Result: number of initialized blocks past m_lblk */ 3548 allocated = map_len; 3549 } 3550 } 3551 if (allocated) { 3552 /* Mark the block containing both extents as dirty */ 3553 ext4_ext_dirty(handle, inode, path + depth); 3554 3555 /* Update path to point to the right extent */ 3556 path[depth].p_ext = abut_ex; 3557 goto out; 3558 } else 3559 allocated = ee_len - (map->m_lblk - ee_block); 3560 3561 WARN_ON(map->m_lblk < ee_block); 3562 /* 3563 * It is safe to convert extent to initialized via explicit 3564 * zeroout only if extent is fully inside i_size or new_size. 3565 */ 3566 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3567 3568 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3569 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3570 (inode->i_sb->s_blocksize_bits - 10); 3571 3572 if (ext4_encrypted_inode(inode)) 3573 max_zeroout = 0; 3574 3575 /* 3576 * five cases: 3577 * 1. split the extent into three extents. 3578 * 2. split the extent into two extents, zeroout the head of the first 3579 * extent. 3580 * 3. split the extent into two extents, zeroout the tail of the second 3581 * extent. 3582 * 4. split the extent into two extents with out zeroout. 3583 * 5. no splitting needed, just possibly zeroout the head and / or the 3584 * tail of the extent. 3585 */ 3586 split_map.m_lblk = map->m_lblk; 3587 split_map.m_len = map->m_len; 3588 3589 if (max_zeroout && (allocated > split_map.m_len)) { 3590 if (allocated <= max_zeroout) { 3591 /* case 3 or 5 */ 3592 zero_ex1.ee_block = 3593 cpu_to_le32(split_map.m_lblk + 3594 split_map.m_len); 3595 zero_ex1.ee_len = 3596 cpu_to_le16(allocated - split_map.m_len); 3597 ext4_ext_store_pblock(&zero_ex1, 3598 ext4_ext_pblock(ex) + split_map.m_lblk + 3599 split_map.m_len - ee_block); 3600 err = ext4_ext_zeroout(inode, &zero_ex1); 3601 if (err) 3602 goto out; 3603 split_map.m_len = allocated; 3604 } 3605 if (split_map.m_lblk - ee_block + split_map.m_len < 3606 max_zeroout) { 3607 /* case 2 or 5 */ 3608 if (split_map.m_lblk != ee_block) { 3609 zero_ex2.ee_block = ex->ee_block; 3610 zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk - 3611 ee_block); 3612 ext4_ext_store_pblock(&zero_ex2, 3613 ext4_ext_pblock(ex)); 3614 err = ext4_ext_zeroout(inode, &zero_ex2); 3615 if (err) 3616 goto out; 3617 } 3618 3619 split_map.m_len += split_map.m_lblk - ee_block; 3620 split_map.m_lblk = ee_block; 3621 allocated = map->m_len; 3622 } 3623 } 3624 3625 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag, 3626 flags); 3627 if (err > 0) 3628 err = 0; 3629 out: 3630 /* If we have gotten a failure, don't zero out status tree */ 3631 if (!err) { 3632 err = ext4_zeroout_es(inode, &zero_ex1); 3633 if (!err) 3634 err = ext4_zeroout_es(inode, &zero_ex2); 3635 } 3636 return err ? err : allocated; 3637 } 3638 3639 /* 3640 * This function is called by ext4_ext_map_blocks() from 3641 * ext4_get_blocks_dio_write() when DIO to write 3642 * to an unwritten extent. 3643 * 3644 * Writing to an unwritten extent may result in splitting the unwritten 3645 * extent into multiple initialized/unwritten extents (up to three) 3646 * There are three possibilities: 3647 * a> There is no split required: Entire extent should be unwritten 3648 * b> Splits in two extents: Write is happening at either end of the extent 3649 * c> Splits in three extents: Somone is writing in middle of the extent 3650 * 3651 * This works the same way in the case of initialized -> unwritten conversion. 3652 * 3653 * One of more index blocks maybe needed if the extent tree grow after 3654 * the unwritten extent split. To prevent ENOSPC occur at the IO 3655 * complete, we need to split the unwritten extent before DIO submit 3656 * the IO. The unwritten extent called at this time will be split 3657 * into three unwritten extent(at most). After IO complete, the part 3658 * being filled will be convert to initialized by the end_io callback function 3659 * via ext4_convert_unwritten_extents(). 3660 * 3661 * Returns the size of unwritten extent to be written on success. 3662 */ 3663 static int ext4_split_convert_extents(handle_t *handle, 3664 struct inode *inode, 3665 struct ext4_map_blocks *map, 3666 struct ext4_ext_path **ppath, 3667 int flags) 3668 { 3669 struct ext4_ext_path *path = *ppath; 3670 ext4_lblk_t eof_block; 3671 ext4_lblk_t ee_block; 3672 struct ext4_extent *ex; 3673 unsigned int ee_len; 3674 int split_flag = 0, depth; 3675 3676 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3677 __func__, inode->i_ino, 3678 (unsigned long long)map->m_lblk, map->m_len); 3679 3680 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3681 inode->i_sb->s_blocksize_bits; 3682 if (eof_block < map->m_lblk + map->m_len) 3683 eof_block = map->m_lblk + map->m_len; 3684 /* 3685 * It is safe to convert extent to initialized via explicit 3686 * zeroout only if extent is fully insde i_size or new_size. 3687 */ 3688 depth = ext_depth(inode); 3689 ex = path[depth].p_ext; 3690 ee_block = le32_to_cpu(ex->ee_block); 3691 ee_len = ext4_ext_get_actual_len(ex); 3692 3693 /* Convert to unwritten */ 3694 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3695 split_flag |= EXT4_EXT_DATA_VALID1; 3696 /* Convert to initialized */ 3697 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3698 split_flag |= ee_block + ee_len <= eof_block ? 3699 EXT4_EXT_MAY_ZEROOUT : 0; 3700 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3701 } 3702 flags |= EXT4_GET_BLOCKS_PRE_IO; 3703 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags); 3704 } 3705 3706 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3707 struct inode *inode, 3708 struct ext4_map_blocks *map, 3709 struct ext4_ext_path **ppath) 3710 { 3711 struct ext4_ext_path *path = *ppath; 3712 struct ext4_extent *ex; 3713 ext4_lblk_t ee_block; 3714 unsigned int ee_len; 3715 int depth; 3716 int err = 0; 3717 3718 depth = ext_depth(inode); 3719 ex = path[depth].p_ext; 3720 ee_block = le32_to_cpu(ex->ee_block); 3721 ee_len = ext4_ext_get_actual_len(ex); 3722 3723 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3724 "block %llu, max_blocks %u\n", inode->i_ino, 3725 (unsigned long long)ee_block, ee_len); 3726 3727 /* If extent is larger than requested it is a clear sign that we still 3728 * have some extent state machine issues left. So extent_split is still 3729 * required. 3730 * TODO: Once all related issues will be fixed this situation should be 3731 * illegal. 3732 */ 3733 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3734 #ifdef EXT4_DEBUG 3735 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3736 " len %u; IO logical block %llu, len %u", 3737 inode->i_ino, (unsigned long long)ee_block, ee_len, 3738 (unsigned long long)map->m_lblk, map->m_len); 3739 #endif 3740 err = ext4_split_convert_extents(handle, inode, map, ppath, 3741 EXT4_GET_BLOCKS_CONVERT); 3742 if (err < 0) 3743 return err; 3744 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3745 if (IS_ERR(path)) 3746 return PTR_ERR(path); 3747 depth = ext_depth(inode); 3748 ex = path[depth].p_ext; 3749 } 3750 3751 err = ext4_ext_get_access(handle, inode, path + depth); 3752 if (err) 3753 goto out; 3754 /* first mark the extent as initialized */ 3755 ext4_ext_mark_initialized(ex); 3756 3757 /* note: ext4_ext_correct_indexes() isn't needed here because 3758 * borders are not changed 3759 */ 3760 ext4_ext_try_to_merge(handle, inode, path, ex); 3761 3762 /* Mark modified extent as dirty */ 3763 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3764 out: 3765 ext4_ext_show_leaf(inode, path); 3766 return err; 3767 } 3768 3769 /* 3770 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3771 */ 3772 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3773 ext4_lblk_t lblk, 3774 struct ext4_ext_path *path, 3775 unsigned int len) 3776 { 3777 int i, depth; 3778 struct ext4_extent_header *eh; 3779 struct ext4_extent *last_ex; 3780 3781 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3782 return 0; 3783 3784 depth = ext_depth(inode); 3785 eh = path[depth].p_hdr; 3786 3787 /* 3788 * We're going to remove EOFBLOCKS_FL entirely in future so we 3789 * do not care for this case anymore. Simply remove the flag 3790 * if there are no extents. 3791 */ 3792 if (unlikely(!eh->eh_entries)) 3793 goto out; 3794 last_ex = EXT_LAST_EXTENT(eh); 3795 /* 3796 * We should clear the EOFBLOCKS_FL flag if we are writing the 3797 * last block in the last extent in the file. We test this by 3798 * first checking to see if the caller to 3799 * ext4_ext_get_blocks() was interested in the last block (or 3800 * a block beyond the last block) in the current extent. If 3801 * this turns out to be false, we can bail out from this 3802 * function immediately. 3803 */ 3804 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3805 ext4_ext_get_actual_len(last_ex)) 3806 return 0; 3807 /* 3808 * If the caller does appear to be planning to write at or 3809 * beyond the end of the current extent, we then test to see 3810 * if the current extent is the last extent in the file, by 3811 * checking to make sure it was reached via the rightmost node 3812 * at each level of the tree. 3813 */ 3814 for (i = depth-1; i >= 0; i--) 3815 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3816 return 0; 3817 out: 3818 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3819 return ext4_mark_inode_dirty(handle, inode); 3820 } 3821 3822 /** 3823 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3824 * 3825 * Return 1 if there is a delalloc block in the range, otherwise 0. 3826 */ 3827 int ext4_find_delalloc_range(struct inode *inode, 3828 ext4_lblk_t lblk_start, 3829 ext4_lblk_t lblk_end) 3830 { 3831 struct extent_status es; 3832 3833 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es); 3834 if (es.es_len == 0) 3835 return 0; /* there is no delay extent in this tree */ 3836 else if (es.es_lblk <= lblk_start && 3837 lblk_start < es.es_lblk + es.es_len) 3838 return 1; 3839 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3840 return 1; 3841 else 3842 return 0; 3843 } 3844 3845 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3846 { 3847 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3848 ext4_lblk_t lblk_start, lblk_end; 3849 lblk_start = EXT4_LBLK_CMASK(sbi, lblk); 3850 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3851 3852 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3853 } 3854 3855 /** 3856 * Determines how many complete clusters (out of those specified by the 'map') 3857 * are under delalloc and were reserved quota for. 3858 * This function is called when we are writing out the blocks that were 3859 * originally written with their allocation delayed, but then the space was 3860 * allocated using fallocate() before the delayed allocation could be resolved. 3861 * The cases to look for are: 3862 * ('=' indicated delayed allocated blocks 3863 * '-' indicates non-delayed allocated blocks) 3864 * (a) partial clusters towards beginning and/or end outside of allocated range 3865 * are not delalloc'ed. 3866 * Ex: 3867 * |----c---=|====c====|====c====|===-c----| 3868 * |++++++ allocated ++++++| 3869 * ==> 4 complete clusters in above example 3870 * 3871 * (b) partial cluster (outside of allocated range) towards either end is 3872 * marked for delayed allocation. In this case, we will exclude that 3873 * cluster. 3874 * Ex: 3875 * |----====c========|========c========| 3876 * |++++++ allocated ++++++| 3877 * ==> 1 complete clusters in above example 3878 * 3879 * Ex: 3880 * |================c================| 3881 * |++++++ allocated ++++++| 3882 * ==> 0 complete clusters in above example 3883 * 3884 * The ext4_da_update_reserve_space will be called only if we 3885 * determine here that there were some "entire" clusters that span 3886 * this 'allocated' range. 3887 * In the non-bigalloc case, this function will just end up returning num_blks 3888 * without ever calling ext4_find_delalloc_range. 3889 */ 3890 static unsigned int 3891 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3892 unsigned int num_blks) 3893 { 3894 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3895 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3896 ext4_lblk_t lblk_from, lblk_to, c_offset; 3897 unsigned int allocated_clusters = 0; 3898 3899 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3900 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3901 3902 /* max possible clusters for this allocation */ 3903 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3904 3905 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3906 3907 /* Check towards left side */ 3908 c_offset = EXT4_LBLK_COFF(sbi, lblk_start); 3909 if (c_offset) { 3910 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start); 3911 lblk_to = lblk_from + c_offset - 1; 3912 3913 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3914 allocated_clusters--; 3915 } 3916 3917 /* Now check towards right. */ 3918 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks); 3919 if (allocated_clusters && c_offset) { 3920 lblk_from = lblk_start + num_blks; 3921 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3922 3923 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3924 allocated_clusters--; 3925 } 3926 3927 return allocated_clusters; 3928 } 3929 3930 static int 3931 convert_initialized_extent(handle_t *handle, struct inode *inode, 3932 struct ext4_map_blocks *map, 3933 struct ext4_ext_path **ppath, 3934 unsigned int allocated) 3935 { 3936 struct ext4_ext_path *path = *ppath; 3937 struct ext4_extent *ex; 3938 ext4_lblk_t ee_block; 3939 unsigned int ee_len; 3940 int depth; 3941 int err = 0; 3942 3943 /* 3944 * Make sure that the extent is no bigger than we support with 3945 * unwritten extent 3946 */ 3947 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3948 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3949 3950 depth = ext_depth(inode); 3951 ex = path[depth].p_ext; 3952 ee_block = le32_to_cpu(ex->ee_block); 3953 ee_len = ext4_ext_get_actual_len(ex); 3954 3955 ext_debug("%s: inode %lu, logical" 3956 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3957 (unsigned long long)ee_block, ee_len); 3958 3959 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3960 err = ext4_split_convert_extents(handle, inode, map, ppath, 3961 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3962 if (err < 0) 3963 return err; 3964 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3965 if (IS_ERR(path)) 3966 return PTR_ERR(path); 3967 depth = ext_depth(inode); 3968 ex = path[depth].p_ext; 3969 if (!ex) { 3970 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3971 (unsigned long) map->m_lblk); 3972 return -EFSCORRUPTED; 3973 } 3974 } 3975 3976 err = ext4_ext_get_access(handle, inode, path + depth); 3977 if (err) 3978 return err; 3979 /* first mark the extent as unwritten */ 3980 ext4_ext_mark_unwritten(ex); 3981 3982 /* note: ext4_ext_correct_indexes() isn't needed here because 3983 * borders are not changed 3984 */ 3985 ext4_ext_try_to_merge(handle, inode, path, ex); 3986 3987 /* Mark modified extent as dirty */ 3988 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3989 if (err) 3990 return err; 3991 ext4_ext_show_leaf(inode, path); 3992 3993 ext4_update_inode_fsync_trans(handle, inode, 1); 3994 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len); 3995 if (err) 3996 return err; 3997 map->m_flags |= EXT4_MAP_UNWRITTEN; 3998 if (allocated > map->m_len) 3999 allocated = map->m_len; 4000 map->m_len = allocated; 4001 return allocated; 4002 } 4003 4004 static int 4005 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 4006 struct ext4_map_blocks *map, 4007 struct ext4_ext_path **ppath, int flags, 4008 unsigned int allocated, ext4_fsblk_t newblock) 4009 { 4010 struct ext4_ext_path *path = *ppath; 4011 int ret = 0; 4012 int err = 0; 4013 4014 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 4015 "block %llu, max_blocks %u, flags %x, allocated %u\n", 4016 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 4017 flags, allocated); 4018 ext4_ext_show_leaf(inode, path); 4019 4020 /* 4021 * When writing into unwritten space, we should not fail to 4022 * allocate metadata blocks for the new extent block if needed. 4023 */ 4024 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 4025 4026 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 4027 allocated, newblock); 4028 4029 /* get_block() before submit the IO, split the extent */ 4030 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 4031 ret = ext4_split_convert_extents(handle, inode, map, ppath, 4032 flags | EXT4_GET_BLOCKS_CONVERT); 4033 if (ret <= 0) 4034 goto out; 4035 map->m_flags |= EXT4_MAP_UNWRITTEN; 4036 goto out; 4037 } 4038 /* IO end_io complete, convert the filled extent to written */ 4039 if (flags & EXT4_GET_BLOCKS_CONVERT) { 4040 if (flags & EXT4_GET_BLOCKS_ZERO) { 4041 if (allocated > map->m_len) 4042 allocated = map->m_len; 4043 err = ext4_issue_zeroout(inode, map->m_lblk, newblock, 4044 allocated); 4045 if (err < 0) 4046 goto out2; 4047 } 4048 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 4049 ppath); 4050 if (ret >= 0) { 4051 ext4_update_inode_fsync_trans(handle, inode, 1); 4052 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4053 path, map->m_len); 4054 } else 4055 err = ret; 4056 map->m_flags |= EXT4_MAP_MAPPED; 4057 map->m_pblk = newblock; 4058 if (allocated > map->m_len) 4059 allocated = map->m_len; 4060 map->m_len = allocated; 4061 goto out2; 4062 } 4063 /* buffered IO case */ 4064 /* 4065 * repeat fallocate creation request 4066 * we already have an unwritten extent 4067 */ 4068 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4069 map->m_flags |= EXT4_MAP_UNWRITTEN; 4070 goto map_out; 4071 } 4072 4073 /* buffered READ or buffered write_begin() lookup */ 4074 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4075 /* 4076 * We have blocks reserved already. We 4077 * return allocated blocks so that delalloc 4078 * won't do block reservation for us. But 4079 * the buffer head will be unmapped so that 4080 * a read from the block returns 0s. 4081 */ 4082 map->m_flags |= EXT4_MAP_UNWRITTEN; 4083 goto out1; 4084 } 4085 4086 /* buffered write, writepage time, convert*/ 4087 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags); 4088 if (ret >= 0) 4089 ext4_update_inode_fsync_trans(handle, inode, 1); 4090 out: 4091 if (ret <= 0) { 4092 err = ret; 4093 goto out2; 4094 } else 4095 allocated = ret; 4096 map->m_flags |= EXT4_MAP_NEW; 4097 /* 4098 * if we allocated more blocks than requested 4099 * we need to make sure we unmap the extra block 4100 * allocated. The actual needed block will get 4101 * unmapped later when we find the buffer_head marked 4102 * new. 4103 */ 4104 if (allocated > map->m_len) { 4105 clean_bdev_aliases(inode->i_sb->s_bdev, newblock + map->m_len, 4106 allocated - map->m_len); 4107 allocated = map->m_len; 4108 } 4109 map->m_len = allocated; 4110 4111 /* 4112 * If we have done fallocate with the offset that is already 4113 * delayed allocated, we would have block reservation 4114 * and quota reservation done in the delayed write path. 4115 * But fallocate would have already updated quota and block 4116 * count for this offset. So cancel these reservation 4117 */ 4118 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4119 unsigned int reserved_clusters; 4120 reserved_clusters = get_reserved_cluster_alloc(inode, 4121 map->m_lblk, map->m_len); 4122 if (reserved_clusters) 4123 ext4_da_update_reserve_space(inode, 4124 reserved_clusters, 4125 0); 4126 } 4127 4128 map_out: 4129 map->m_flags |= EXT4_MAP_MAPPED; 4130 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 4131 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 4132 map->m_len); 4133 if (err < 0) 4134 goto out2; 4135 } 4136 out1: 4137 if (allocated > map->m_len) 4138 allocated = map->m_len; 4139 ext4_ext_show_leaf(inode, path); 4140 map->m_pblk = newblock; 4141 map->m_len = allocated; 4142 out2: 4143 return err ? err : allocated; 4144 } 4145 4146 /* 4147 * get_implied_cluster_alloc - check to see if the requested 4148 * allocation (in the map structure) overlaps with a cluster already 4149 * allocated in an extent. 4150 * @sb The filesystem superblock structure 4151 * @map The requested lblk->pblk mapping 4152 * @ex The extent structure which might contain an implied 4153 * cluster allocation 4154 * 4155 * This function is called by ext4_ext_map_blocks() after we failed to 4156 * find blocks that were already in the inode's extent tree. Hence, 4157 * we know that the beginning of the requested region cannot overlap 4158 * the extent from the inode's extent tree. There are three cases we 4159 * want to catch. The first is this case: 4160 * 4161 * |--- cluster # N--| 4162 * |--- extent ---| |---- requested region ---| 4163 * |==========| 4164 * 4165 * The second case that we need to test for is this one: 4166 * 4167 * |--------- cluster # N ----------------| 4168 * |--- requested region --| |------- extent ----| 4169 * |=======================| 4170 * 4171 * The third case is when the requested region lies between two extents 4172 * within the same cluster: 4173 * |------------- cluster # N-------------| 4174 * |----- ex -----| |---- ex_right ----| 4175 * |------ requested region ------| 4176 * |================| 4177 * 4178 * In each of the above cases, we need to set the map->m_pblk and 4179 * map->m_len so it corresponds to the return the extent labelled as 4180 * "|====|" from cluster #N, since it is already in use for data in 4181 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 4182 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 4183 * as a new "allocated" block region. Otherwise, we will return 0 and 4184 * ext4_ext_map_blocks() will then allocate one or more new clusters 4185 * by calling ext4_mb_new_blocks(). 4186 */ 4187 static int get_implied_cluster_alloc(struct super_block *sb, 4188 struct ext4_map_blocks *map, 4189 struct ext4_extent *ex, 4190 struct ext4_ext_path *path) 4191 { 4192 struct ext4_sb_info *sbi = EXT4_SB(sb); 4193 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4194 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4195 ext4_lblk_t rr_cluster_start; 4196 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4197 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4198 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4199 4200 /* The extent passed in that we are trying to match */ 4201 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4202 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4203 4204 /* The requested region passed into ext4_map_blocks() */ 4205 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4206 4207 if ((rr_cluster_start == ex_cluster_end) || 4208 (rr_cluster_start == ex_cluster_start)) { 4209 if (rr_cluster_start == ex_cluster_end) 4210 ee_start += ee_len - 1; 4211 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 4212 map->m_len = min(map->m_len, 4213 (unsigned) sbi->s_cluster_ratio - c_offset); 4214 /* 4215 * Check for and handle this case: 4216 * 4217 * |--------- cluster # N-------------| 4218 * |------- extent ----| 4219 * |--- requested region ---| 4220 * |===========| 4221 */ 4222 4223 if (map->m_lblk < ee_block) 4224 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4225 4226 /* 4227 * Check for the case where there is already another allocated 4228 * block to the right of 'ex' but before the end of the cluster. 4229 * 4230 * |------------- cluster # N-------------| 4231 * |----- ex -----| |---- ex_right ----| 4232 * |------ requested region ------| 4233 * |================| 4234 */ 4235 if (map->m_lblk > ee_block) { 4236 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4237 map->m_len = min(map->m_len, next - map->m_lblk); 4238 } 4239 4240 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4241 return 1; 4242 } 4243 4244 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4245 return 0; 4246 } 4247 4248 4249 /* 4250 * Block allocation/map/preallocation routine for extents based files 4251 * 4252 * 4253 * Need to be called with 4254 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4255 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4256 * 4257 * return > 0, number of of blocks already mapped/allocated 4258 * if create == 0 and these are pre-allocated blocks 4259 * buffer head is unmapped 4260 * otherwise blocks are mapped 4261 * 4262 * return = 0, if plain look up failed (blocks have not been allocated) 4263 * buffer head is unmapped 4264 * 4265 * return < 0, error case. 4266 */ 4267 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4268 struct ext4_map_blocks *map, int flags) 4269 { 4270 struct ext4_ext_path *path = NULL; 4271 struct ext4_extent newex, *ex, *ex2; 4272 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4273 ext4_fsblk_t newblock = 0; 4274 int free_on_err = 0, err = 0, depth, ret; 4275 unsigned int allocated = 0, offset = 0; 4276 unsigned int allocated_clusters = 0; 4277 struct ext4_allocation_request ar; 4278 ext4_lblk_t cluster_offset; 4279 bool map_from_cluster = false; 4280 4281 ext_debug("blocks %u/%u requested for inode %lu\n", 4282 map->m_lblk, map->m_len, inode->i_ino); 4283 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4284 4285 /* find extent for this block */ 4286 path = ext4_find_extent(inode, map->m_lblk, NULL, 0); 4287 if (IS_ERR(path)) { 4288 err = PTR_ERR(path); 4289 path = NULL; 4290 goto out2; 4291 } 4292 4293 depth = ext_depth(inode); 4294 4295 /* 4296 * consistent leaf must not be empty; 4297 * this situation is possible, though, _during_ tree modification; 4298 * this is why assert can't be put in ext4_find_extent() 4299 */ 4300 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4301 EXT4_ERROR_INODE(inode, "bad extent address " 4302 "lblock: %lu, depth: %d pblock %lld", 4303 (unsigned long) map->m_lblk, depth, 4304 path[depth].p_block); 4305 err = -EFSCORRUPTED; 4306 goto out2; 4307 } 4308 4309 ex = path[depth].p_ext; 4310 if (ex) { 4311 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4312 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4313 unsigned short ee_len; 4314 4315 4316 /* 4317 * unwritten extents are treated as holes, except that 4318 * we split out initialized portions during a write. 4319 */ 4320 ee_len = ext4_ext_get_actual_len(ex); 4321 4322 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4323 4324 /* if found extent covers block, simply return it */ 4325 if (in_range(map->m_lblk, ee_block, ee_len)) { 4326 newblock = map->m_lblk - ee_block + ee_start; 4327 /* number of remaining blocks in the extent */ 4328 allocated = ee_len - (map->m_lblk - ee_block); 4329 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4330 ee_block, ee_len, newblock); 4331 4332 /* 4333 * If the extent is initialized check whether the 4334 * caller wants to convert it to unwritten. 4335 */ 4336 if ((!ext4_ext_is_unwritten(ex)) && 4337 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4338 allocated = convert_initialized_extent( 4339 handle, inode, map, &path, 4340 allocated); 4341 goto out2; 4342 } else if (!ext4_ext_is_unwritten(ex)) 4343 goto out; 4344 4345 ret = ext4_ext_handle_unwritten_extents( 4346 handle, inode, map, &path, flags, 4347 allocated, newblock); 4348 if (ret < 0) 4349 err = ret; 4350 else 4351 allocated = ret; 4352 goto out2; 4353 } 4354 } 4355 4356 /* 4357 * requested block isn't allocated yet; 4358 * we couldn't try to create block if create flag is zero 4359 */ 4360 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4361 ext4_lblk_t hole_start, hole_len; 4362 4363 hole_start = map->m_lblk; 4364 hole_len = ext4_ext_determine_hole(inode, path, &hole_start); 4365 /* 4366 * put just found gap into cache to speed up 4367 * subsequent requests 4368 */ 4369 ext4_ext_put_gap_in_cache(inode, hole_start, hole_len); 4370 4371 /* Update hole_len to reflect hole size after map->m_lblk */ 4372 if (hole_start != map->m_lblk) 4373 hole_len -= map->m_lblk - hole_start; 4374 map->m_pblk = 0; 4375 map->m_len = min_t(unsigned int, map->m_len, hole_len); 4376 4377 goto out2; 4378 } 4379 4380 /* 4381 * Okay, we need to do block allocation. 4382 */ 4383 newex.ee_block = cpu_to_le32(map->m_lblk); 4384 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4385 4386 /* 4387 * If we are doing bigalloc, check to see if the extent returned 4388 * by ext4_find_extent() implies a cluster we can use. 4389 */ 4390 if (cluster_offset && ex && 4391 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4392 ar.len = allocated = map->m_len; 4393 newblock = map->m_pblk; 4394 map_from_cluster = true; 4395 goto got_allocated_blocks; 4396 } 4397 4398 /* find neighbour allocated blocks */ 4399 ar.lleft = map->m_lblk; 4400 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4401 if (err) 4402 goto out2; 4403 ar.lright = map->m_lblk; 4404 ex2 = NULL; 4405 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4406 if (err) 4407 goto out2; 4408 4409 /* Check if the extent after searching to the right implies a 4410 * cluster we can use. */ 4411 if ((sbi->s_cluster_ratio > 1) && ex2 && 4412 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4413 ar.len = allocated = map->m_len; 4414 newblock = map->m_pblk; 4415 map_from_cluster = true; 4416 goto got_allocated_blocks; 4417 } 4418 4419 /* 4420 * See if request is beyond maximum number of blocks we can have in 4421 * a single extent. For an initialized extent this limit is 4422 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4423 * EXT_UNWRITTEN_MAX_LEN. 4424 */ 4425 if (map->m_len > EXT_INIT_MAX_LEN && 4426 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4427 map->m_len = EXT_INIT_MAX_LEN; 4428 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4429 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4430 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4431 4432 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4433 newex.ee_len = cpu_to_le16(map->m_len); 4434 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4435 if (err) 4436 allocated = ext4_ext_get_actual_len(&newex); 4437 else 4438 allocated = map->m_len; 4439 4440 /* allocate new block */ 4441 ar.inode = inode; 4442 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4443 ar.logical = map->m_lblk; 4444 /* 4445 * We calculate the offset from the beginning of the cluster 4446 * for the logical block number, since when we allocate a 4447 * physical cluster, the physical block should start at the 4448 * same offset from the beginning of the cluster. This is 4449 * needed so that future calls to get_implied_cluster_alloc() 4450 * work correctly. 4451 */ 4452 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4453 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4454 ar.goal -= offset; 4455 ar.logical -= offset; 4456 if (S_ISREG(inode->i_mode)) 4457 ar.flags = EXT4_MB_HINT_DATA; 4458 else 4459 /* disable in-core preallocation for non-regular files */ 4460 ar.flags = 0; 4461 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4462 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4463 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4464 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 4465 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 4466 ar.flags |= EXT4_MB_USE_RESERVED; 4467 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4468 if (!newblock) 4469 goto out2; 4470 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4471 ar.goal, newblock, allocated); 4472 free_on_err = 1; 4473 allocated_clusters = ar.len; 4474 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4475 if (ar.len > allocated) 4476 ar.len = allocated; 4477 4478 got_allocated_blocks: 4479 /* try to insert new extent into found leaf and return */ 4480 ext4_ext_store_pblock(&newex, newblock + offset); 4481 newex.ee_len = cpu_to_le16(ar.len); 4482 /* Mark unwritten */ 4483 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){ 4484 ext4_ext_mark_unwritten(&newex); 4485 map->m_flags |= EXT4_MAP_UNWRITTEN; 4486 } 4487 4488 err = 0; 4489 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4490 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4491 path, ar.len); 4492 if (!err) 4493 err = ext4_ext_insert_extent(handle, inode, &path, 4494 &newex, flags); 4495 4496 if (err && free_on_err) { 4497 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4498 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4499 /* free data blocks we just allocated */ 4500 /* not a good idea to call discard here directly, 4501 * but otherwise we'd need to call it every free() */ 4502 ext4_discard_preallocations(inode); 4503 ext4_free_blocks(handle, inode, NULL, newblock, 4504 EXT4_C2B(sbi, allocated_clusters), fb_flags); 4505 goto out2; 4506 } 4507 4508 /* previous routine could use block we allocated */ 4509 newblock = ext4_ext_pblock(&newex); 4510 allocated = ext4_ext_get_actual_len(&newex); 4511 if (allocated > map->m_len) 4512 allocated = map->m_len; 4513 map->m_flags |= EXT4_MAP_NEW; 4514 4515 /* 4516 * Update reserved blocks/metadata blocks after successful 4517 * block allocation which had been deferred till now. 4518 */ 4519 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4520 unsigned int reserved_clusters; 4521 /* 4522 * Check how many clusters we had reserved this allocated range 4523 */ 4524 reserved_clusters = get_reserved_cluster_alloc(inode, 4525 map->m_lblk, allocated); 4526 if (!map_from_cluster) { 4527 BUG_ON(allocated_clusters < reserved_clusters); 4528 if (reserved_clusters < allocated_clusters) { 4529 struct ext4_inode_info *ei = EXT4_I(inode); 4530 int reservation = allocated_clusters - 4531 reserved_clusters; 4532 /* 4533 * It seems we claimed few clusters outside of 4534 * the range of this allocation. We should give 4535 * it back to the reservation pool. This can 4536 * happen in the following case: 4537 * 4538 * * Suppose s_cluster_ratio is 4 (i.e., each 4539 * cluster has 4 blocks. Thus, the clusters 4540 * are [0-3],[4-7],[8-11]... 4541 * * First comes delayed allocation write for 4542 * logical blocks 10 & 11. Since there were no 4543 * previous delayed allocated blocks in the 4544 * range [8-11], we would reserve 1 cluster 4545 * for this write. 4546 * * Next comes write for logical blocks 3 to 8. 4547 * In this case, we will reserve 2 clusters 4548 * (for [0-3] and [4-7]; and not for [8-11] as 4549 * that range has a delayed allocated blocks. 4550 * Thus total reserved clusters now becomes 3. 4551 * * Now, during the delayed allocation writeout 4552 * time, we will first write blocks [3-8] and 4553 * allocate 3 clusters for writing these 4554 * blocks. Also, we would claim all these 4555 * three clusters above. 4556 * * Now when we come here to writeout the 4557 * blocks [10-11], we would expect to claim 4558 * the reservation of 1 cluster we had made 4559 * (and we would claim it since there are no 4560 * more delayed allocated blocks in the range 4561 * [8-11]. But our reserved cluster count had 4562 * already gone to 0. 4563 * 4564 * Thus, at the step 4 above when we determine 4565 * that there are still some unwritten delayed 4566 * allocated blocks outside of our current 4567 * block range, we should increment the 4568 * reserved clusters count so that when the 4569 * remaining blocks finally gets written, we 4570 * could claim them. 4571 */ 4572 dquot_reserve_block(inode, 4573 EXT4_C2B(sbi, reservation)); 4574 spin_lock(&ei->i_block_reservation_lock); 4575 ei->i_reserved_data_blocks += reservation; 4576 spin_unlock(&ei->i_block_reservation_lock); 4577 } 4578 /* 4579 * We will claim quota for all newly allocated blocks. 4580 * We're updating the reserved space *after* the 4581 * correction above so we do not accidentally free 4582 * all the metadata reservation because we might 4583 * actually need it later on. 4584 */ 4585 ext4_da_update_reserve_space(inode, allocated_clusters, 4586 1); 4587 } 4588 } 4589 4590 /* 4591 * Cache the extent and update transaction to commit on fdatasync only 4592 * when it is _not_ an unwritten extent. 4593 */ 4594 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4595 ext4_update_inode_fsync_trans(handle, inode, 1); 4596 else 4597 ext4_update_inode_fsync_trans(handle, inode, 0); 4598 out: 4599 if (allocated > map->m_len) 4600 allocated = map->m_len; 4601 ext4_ext_show_leaf(inode, path); 4602 map->m_flags |= EXT4_MAP_MAPPED; 4603 map->m_pblk = newblock; 4604 map->m_len = allocated; 4605 out2: 4606 ext4_ext_drop_refs(path); 4607 kfree(path); 4608 4609 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4610 err ? err : allocated); 4611 return err ? err : allocated; 4612 } 4613 4614 int ext4_ext_truncate(handle_t *handle, struct inode *inode) 4615 { 4616 struct super_block *sb = inode->i_sb; 4617 ext4_lblk_t last_block; 4618 int err = 0; 4619 4620 /* 4621 * TODO: optimization is possible here. 4622 * Probably we need not scan at all, 4623 * because page truncation is enough. 4624 */ 4625 4626 /* we have to know where to truncate from in crash case */ 4627 EXT4_I(inode)->i_disksize = inode->i_size; 4628 err = ext4_mark_inode_dirty(handle, inode); 4629 if (err) 4630 return err; 4631 4632 last_block = (inode->i_size + sb->s_blocksize - 1) 4633 >> EXT4_BLOCK_SIZE_BITS(sb); 4634 retry: 4635 err = ext4_es_remove_extent(inode, last_block, 4636 EXT_MAX_BLOCKS - last_block); 4637 if (err == -ENOMEM) { 4638 cond_resched(); 4639 congestion_wait(BLK_RW_ASYNC, HZ/50); 4640 goto retry; 4641 } 4642 if (err) 4643 return err; 4644 return ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4645 } 4646 4647 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4648 ext4_lblk_t len, loff_t new_size, 4649 int flags) 4650 { 4651 struct inode *inode = file_inode(file); 4652 handle_t *handle; 4653 int ret = 0; 4654 int ret2 = 0; 4655 int retries = 0; 4656 int depth = 0; 4657 struct ext4_map_blocks map; 4658 unsigned int credits; 4659 loff_t epos; 4660 4661 BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)); 4662 map.m_lblk = offset; 4663 map.m_len = len; 4664 /* 4665 * Don't normalize the request if it can fit in one extent so 4666 * that it doesn't get unnecessarily split into multiple 4667 * extents. 4668 */ 4669 if (len <= EXT_UNWRITTEN_MAX_LEN) 4670 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4671 4672 /* 4673 * credits to insert 1 extent into extent tree 4674 */ 4675 credits = ext4_chunk_trans_blocks(inode, len); 4676 depth = ext_depth(inode); 4677 4678 retry: 4679 while (ret >= 0 && len) { 4680 /* 4681 * Recalculate credits when extent tree depth changes. 4682 */ 4683 if (depth != ext_depth(inode)) { 4684 credits = ext4_chunk_trans_blocks(inode, len); 4685 depth = ext_depth(inode); 4686 } 4687 4688 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4689 credits); 4690 if (IS_ERR(handle)) { 4691 ret = PTR_ERR(handle); 4692 break; 4693 } 4694 ret = ext4_map_blocks(handle, inode, &map, flags); 4695 if (ret <= 0) { 4696 ext4_debug("inode #%lu: block %u: len %u: " 4697 "ext4_ext_map_blocks returned %d", 4698 inode->i_ino, map.m_lblk, 4699 map.m_len, ret); 4700 ext4_mark_inode_dirty(handle, inode); 4701 ret2 = ext4_journal_stop(handle); 4702 break; 4703 } 4704 map.m_lblk += ret; 4705 map.m_len = len = len - ret; 4706 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4707 inode->i_ctime = current_time(inode); 4708 if (new_size) { 4709 if (epos > new_size) 4710 epos = new_size; 4711 if (ext4_update_inode_size(inode, epos) & 0x1) 4712 inode->i_mtime = inode->i_ctime; 4713 } else { 4714 if (epos > inode->i_size) 4715 ext4_set_inode_flag(inode, 4716 EXT4_INODE_EOFBLOCKS); 4717 } 4718 ext4_mark_inode_dirty(handle, inode); 4719 ext4_update_inode_fsync_trans(handle, inode, 1); 4720 ret2 = ext4_journal_stop(handle); 4721 if (ret2) 4722 break; 4723 } 4724 if (ret == -ENOSPC && 4725 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4726 ret = 0; 4727 goto retry; 4728 } 4729 4730 return ret > 0 ? ret2 : ret; 4731 } 4732 4733 static long ext4_zero_range(struct file *file, loff_t offset, 4734 loff_t len, int mode) 4735 { 4736 struct inode *inode = file_inode(file); 4737 handle_t *handle = NULL; 4738 unsigned int max_blocks; 4739 loff_t new_size = 0; 4740 int ret = 0; 4741 int flags; 4742 int credits; 4743 int partial_begin, partial_end; 4744 loff_t start, end; 4745 ext4_lblk_t lblk; 4746 unsigned int blkbits = inode->i_blkbits; 4747 4748 trace_ext4_zero_range(inode, offset, len, mode); 4749 4750 if (!S_ISREG(inode->i_mode)) 4751 return -EINVAL; 4752 4753 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4754 if (ext4_should_journal_data(inode)) { 4755 ret = ext4_force_commit(inode->i_sb); 4756 if (ret) 4757 return ret; 4758 } 4759 4760 /* 4761 * Round up offset. This is not fallocate, we neet to zero out 4762 * blocks, so convert interior block aligned part of the range to 4763 * unwritten and possibly manually zero out unaligned parts of the 4764 * range. 4765 */ 4766 start = round_up(offset, 1 << blkbits); 4767 end = round_down((offset + len), 1 << blkbits); 4768 4769 if (start < offset || end > offset + len) 4770 return -EINVAL; 4771 partial_begin = offset & ((1 << blkbits) - 1); 4772 partial_end = (offset + len) & ((1 << blkbits) - 1); 4773 4774 lblk = start >> blkbits; 4775 max_blocks = (end >> blkbits); 4776 if (max_blocks < lblk) 4777 max_blocks = 0; 4778 else 4779 max_blocks -= lblk; 4780 4781 inode_lock(inode); 4782 4783 /* 4784 * Indirect files do not support unwritten extnets 4785 */ 4786 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4787 ret = -EOPNOTSUPP; 4788 goto out_mutex; 4789 } 4790 4791 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4792 (offset + len > i_size_read(inode) || 4793 offset + len > EXT4_I(inode)->i_disksize)) { 4794 new_size = offset + len; 4795 ret = inode_newsize_ok(inode, new_size); 4796 if (ret) 4797 goto out_mutex; 4798 } 4799 4800 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4801 if (mode & FALLOC_FL_KEEP_SIZE) 4802 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4803 4804 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4805 inode_dio_wait(inode); 4806 4807 /* Preallocate the range including the unaligned edges */ 4808 if (partial_begin || partial_end) { 4809 ret = ext4_alloc_file_blocks(file, 4810 round_down(offset, 1 << blkbits) >> blkbits, 4811 (round_up((offset + len), 1 << blkbits) - 4812 round_down(offset, 1 << blkbits)) >> blkbits, 4813 new_size, flags); 4814 if (ret) 4815 goto out_mutex; 4816 4817 } 4818 4819 /* Zero range excluding the unaligned edges */ 4820 if (max_blocks > 0) { 4821 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4822 EXT4_EX_NOCACHE); 4823 4824 /* 4825 * Prevent page faults from reinstantiating pages we have 4826 * released from page cache. 4827 */ 4828 down_write(&EXT4_I(inode)->i_mmap_sem); 4829 ret = ext4_update_disksize_before_punch(inode, offset, len); 4830 if (ret) { 4831 up_write(&EXT4_I(inode)->i_mmap_sem); 4832 goto out_mutex; 4833 } 4834 /* Now release the pages and zero block aligned part of pages */ 4835 truncate_pagecache_range(inode, start, end - 1); 4836 inode->i_mtime = inode->i_ctime = current_time(inode); 4837 4838 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4839 flags); 4840 up_write(&EXT4_I(inode)->i_mmap_sem); 4841 if (ret) 4842 goto out_mutex; 4843 } 4844 if (!partial_begin && !partial_end) 4845 goto out_mutex; 4846 4847 /* 4848 * In worst case we have to writeout two nonadjacent unwritten 4849 * blocks and update the inode 4850 */ 4851 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4852 if (ext4_should_journal_data(inode)) 4853 credits += 2; 4854 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4855 if (IS_ERR(handle)) { 4856 ret = PTR_ERR(handle); 4857 ext4_std_error(inode->i_sb, ret); 4858 goto out_mutex; 4859 } 4860 4861 inode->i_mtime = inode->i_ctime = current_time(inode); 4862 if (new_size) { 4863 ext4_update_inode_size(inode, new_size); 4864 } else { 4865 /* 4866 * Mark that we allocate beyond EOF so the subsequent truncate 4867 * can proceed even if the new size is the same as i_size. 4868 */ 4869 if ((offset + len) > i_size_read(inode)) 4870 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4871 } 4872 ext4_mark_inode_dirty(handle, inode); 4873 4874 /* Zero out partial block at the edges of the range */ 4875 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4876 if (ret >= 0) 4877 ext4_update_inode_fsync_trans(handle, inode, 1); 4878 4879 if (file->f_flags & O_SYNC) 4880 ext4_handle_sync(handle); 4881 4882 ext4_journal_stop(handle); 4883 out_mutex: 4884 inode_unlock(inode); 4885 return ret; 4886 } 4887 4888 /* 4889 * preallocate space for a file. This implements ext4's fallocate file 4890 * operation, which gets called from sys_fallocate system call. 4891 * For block-mapped files, posix_fallocate should fall back to the method 4892 * of writing zeroes to the required new blocks (the same behavior which is 4893 * expected for file systems which do not support fallocate() system call). 4894 */ 4895 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4896 { 4897 struct inode *inode = file_inode(file); 4898 loff_t new_size = 0; 4899 unsigned int max_blocks; 4900 int ret = 0; 4901 int flags; 4902 ext4_lblk_t lblk; 4903 unsigned int blkbits = inode->i_blkbits; 4904 4905 /* 4906 * Encrypted inodes can't handle collapse range or insert 4907 * range since we would need to re-encrypt blocks with a 4908 * different IV or XTS tweak (which are based on the logical 4909 * block number). 4910 * 4911 * XXX It's not clear why zero range isn't working, but we'll 4912 * leave it disabled for encrypted inodes for now. This is a 4913 * bug we should fix.... 4914 */ 4915 if (ext4_encrypted_inode(inode) && 4916 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE | 4917 FALLOC_FL_ZERO_RANGE))) 4918 return -EOPNOTSUPP; 4919 4920 /* Return error if mode is not supported */ 4921 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4922 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 4923 FALLOC_FL_INSERT_RANGE)) 4924 return -EOPNOTSUPP; 4925 4926 if (mode & FALLOC_FL_PUNCH_HOLE) 4927 return ext4_punch_hole(inode, offset, len); 4928 4929 ret = ext4_convert_inline_data(inode); 4930 if (ret) 4931 return ret; 4932 4933 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4934 return ext4_collapse_range(inode, offset, len); 4935 4936 if (mode & FALLOC_FL_INSERT_RANGE) 4937 return ext4_insert_range(inode, offset, len); 4938 4939 if (mode & FALLOC_FL_ZERO_RANGE) 4940 return ext4_zero_range(file, offset, len, mode); 4941 4942 trace_ext4_fallocate_enter(inode, offset, len, mode); 4943 lblk = offset >> blkbits; 4944 4945 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 4946 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4947 if (mode & FALLOC_FL_KEEP_SIZE) 4948 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4949 4950 inode_lock(inode); 4951 4952 /* 4953 * We only support preallocation for extent-based files only 4954 */ 4955 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4956 ret = -EOPNOTSUPP; 4957 goto out; 4958 } 4959 4960 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4961 (offset + len > i_size_read(inode) || 4962 offset + len > EXT4_I(inode)->i_disksize)) { 4963 new_size = offset + len; 4964 ret = inode_newsize_ok(inode, new_size); 4965 if (ret) 4966 goto out; 4967 } 4968 4969 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4970 inode_dio_wait(inode); 4971 4972 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags); 4973 if (ret) 4974 goto out; 4975 4976 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 4977 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 4978 EXT4_I(inode)->i_sync_tid); 4979 } 4980 out: 4981 inode_unlock(inode); 4982 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4983 return ret; 4984 } 4985 4986 /* 4987 * This function convert a range of blocks to written extents 4988 * The caller of this function will pass the start offset and the size. 4989 * all unwritten extents within this range will be converted to 4990 * written extents. 4991 * 4992 * This function is called from the direct IO end io call back 4993 * function, to convert the fallocated extents after IO is completed. 4994 * Returns 0 on success. 4995 */ 4996 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4997 loff_t offset, ssize_t len) 4998 { 4999 unsigned int max_blocks; 5000 int ret = 0; 5001 int ret2 = 0; 5002 struct ext4_map_blocks map; 5003 unsigned int credits, blkbits = inode->i_blkbits; 5004 5005 map.m_lblk = offset >> blkbits; 5006 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 5007 5008 /* 5009 * This is somewhat ugly but the idea is clear: When transaction is 5010 * reserved, everything goes into it. Otherwise we rather start several 5011 * smaller transactions for conversion of each extent separately. 5012 */ 5013 if (handle) { 5014 handle = ext4_journal_start_reserved(handle, 5015 EXT4_HT_EXT_CONVERT); 5016 if (IS_ERR(handle)) 5017 return PTR_ERR(handle); 5018 credits = 0; 5019 } else { 5020 /* 5021 * credits to insert 1 extent into extent tree 5022 */ 5023 credits = ext4_chunk_trans_blocks(inode, max_blocks); 5024 } 5025 while (ret >= 0 && ret < max_blocks) { 5026 map.m_lblk += ret; 5027 map.m_len = (max_blocks -= ret); 5028 if (credits) { 5029 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 5030 credits); 5031 if (IS_ERR(handle)) { 5032 ret = PTR_ERR(handle); 5033 break; 5034 } 5035 } 5036 ret = ext4_map_blocks(handle, inode, &map, 5037 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 5038 if (ret <= 0) 5039 ext4_warning(inode->i_sb, 5040 "inode #%lu: block %u: len %u: " 5041 "ext4_ext_map_blocks returned %d", 5042 inode->i_ino, map.m_lblk, 5043 map.m_len, ret); 5044 ext4_mark_inode_dirty(handle, inode); 5045 if (credits) 5046 ret2 = ext4_journal_stop(handle); 5047 if (ret <= 0 || ret2) 5048 break; 5049 } 5050 if (!credits) 5051 ret2 = ext4_journal_stop(handle); 5052 return ret > 0 ? ret2 : ret; 5053 } 5054 5055 /* 5056 * If newes is not existing extent (newes->ec_pblk equals zero) find 5057 * delayed extent at start of newes and update newes accordingly and 5058 * return start of the next delayed extent. 5059 * 5060 * If newes is existing extent (newes->ec_pblk is not equal zero) 5061 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 5062 * extent found. Leave newes unmodified. 5063 */ 5064 static int ext4_find_delayed_extent(struct inode *inode, 5065 struct extent_status *newes) 5066 { 5067 struct extent_status es; 5068 ext4_lblk_t block, next_del; 5069 5070 if (newes->es_pblk == 0) { 5071 ext4_es_find_delayed_extent_range(inode, newes->es_lblk, 5072 newes->es_lblk + newes->es_len - 1, &es); 5073 5074 /* 5075 * No extent in extent-tree contains block @newes->es_pblk, 5076 * then the block may stay in 1)a hole or 2)delayed-extent. 5077 */ 5078 if (es.es_len == 0) 5079 /* A hole found. */ 5080 return 0; 5081 5082 if (es.es_lblk > newes->es_lblk) { 5083 /* A hole found. */ 5084 newes->es_len = min(es.es_lblk - newes->es_lblk, 5085 newes->es_len); 5086 return 0; 5087 } 5088 5089 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 5090 } 5091 5092 block = newes->es_lblk + newes->es_len; 5093 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es); 5094 if (es.es_len == 0) 5095 next_del = EXT_MAX_BLOCKS; 5096 else 5097 next_del = es.es_lblk; 5098 5099 return next_del; 5100 } 5101 /* fiemap flags we can handle specified here */ 5102 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 5103 5104 static int ext4_xattr_fiemap(struct inode *inode, 5105 struct fiemap_extent_info *fieinfo) 5106 { 5107 __u64 physical = 0; 5108 __u64 length; 5109 __u32 flags = FIEMAP_EXTENT_LAST; 5110 int blockbits = inode->i_sb->s_blocksize_bits; 5111 int error = 0; 5112 5113 /* in-inode? */ 5114 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 5115 struct ext4_iloc iloc; 5116 int offset; /* offset of xattr in inode */ 5117 5118 error = ext4_get_inode_loc(inode, &iloc); 5119 if (error) 5120 return error; 5121 physical = (__u64)iloc.bh->b_blocknr << blockbits; 5122 offset = EXT4_GOOD_OLD_INODE_SIZE + 5123 EXT4_I(inode)->i_extra_isize; 5124 physical += offset; 5125 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 5126 flags |= FIEMAP_EXTENT_DATA_INLINE; 5127 brelse(iloc.bh); 5128 } else { /* external block */ 5129 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 5130 length = inode->i_sb->s_blocksize; 5131 } 5132 5133 if (physical) 5134 error = fiemap_fill_next_extent(fieinfo, 0, physical, 5135 length, flags); 5136 return (error < 0 ? error : 0); 5137 } 5138 5139 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5140 __u64 start, __u64 len) 5141 { 5142 ext4_lblk_t start_blk; 5143 int error = 0; 5144 5145 if (ext4_has_inline_data(inode)) { 5146 int has_inline = 1; 5147 5148 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline, 5149 start, len); 5150 5151 if (has_inline) 5152 return error; 5153 } 5154 5155 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 5156 error = ext4_ext_precache(inode); 5157 if (error) 5158 return error; 5159 } 5160 5161 /* fallback to generic here if not in extents fmt */ 5162 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5163 return generic_block_fiemap(inode, fieinfo, start, len, 5164 ext4_get_block); 5165 5166 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 5167 return -EBADR; 5168 5169 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 5170 error = ext4_xattr_fiemap(inode, fieinfo); 5171 } else { 5172 ext4_lblk_t len_blks; 5173 __u64 last_blk; 5174 5175 start_blk = start >> inode->i_sb->s_blocksize_bits; 5176 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5177 if (last_blk >= EXT_MAX_BLOCKS) 5178 last_blk = EXT_MAX_BLOCKS-1; 5179 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5180 5181 /* 5182 * Walk the extent tree gathering extent information 5183 * and pushing extents back to the user. 5184 */ 5185 error = ext4_fill_fiemap_extents(inode, start_blk, 5186 len_blks, fieinfo); 5187 } 5188 return error; 5189 } 5190 5191 /* 5192 * ext4_access_path: 5193 * Function to access the path buffer for marking it dirty. 5194 * It also checks if there are sufficient credits left in the journal handle 5195 * to update path. 5196 */ 5197 static int 5198 ext4_access_path(handle_t *handle, struct inode *inode, 5199 struct ext4_ext_path *path) 5200 { 5201 int credits, err; 5202 5203 if (!ext4_handle_valid(handle)) 5204 return 0; 5205 5206 /* 5207 * Check if need to extend journal credits 5208 * 3 for leaf, sb, and inode plus 2 (bmap and group 5209 * descriptor) for each block group; assume two block 5210 * groups 5211 */ 5212 if (handle->h_buffer_credits < 7) { 5213 credits = ext4_writepage_trans_blocks(inode); 5214 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 5215 /* EAGAIN is success */ 5216 if (err && err != -EAGAIN) 5217 return err; 5218 } 5219 5220 err = ext4_ext_get_access(handle, inode, path); 5221 return err; 5222 } 5223 5224 /* 5225 * ext4_ext_shift_path_extents: 5226 * Shift the extents of a path structure lying between path[depth].p_ext 5227 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells 5228 * if it is right shift or left shift operation. 5229 */ 5230 static int 5231 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5232 struct inode *inode, handle_t *handle, 5233 enum SHIFT_DIRECTION SHIFT) 5234 { 5235 int depth, err = 0; 5236 struct ext4_extent *ex_start, *ex_last; 5237 bool update = 0; 5238 depth = path->p_depth; 5239 5240 while (depth >= 0) { 5241 if (depth == path->p_depth) { 5242 ex_start = path[depth].p_ext; 5243 if (!ex_start) 5244 return -EFSCORRUPTED; 5245 5246 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5247 5248 err = ext4_access_path(handle, inode, path + depth); 5249 if (err) 5250 goto out; 5251 5252 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 5253 update = 1; 5254 5255 while (ex_start <= ex_last) { 5256 if (SHIFT == SHIFT_LEFT) { 5257 le32_add_cpu(&ex_start->ee_block, 5258 -shift); 5259 /* Try to merge to the left. */ 5260 if ((ex_start > 5261 EXT_FIRST_EXTENT(path[depth].p_hdr)) 5262 && 5263 ext4_ext_try_to_merge_right(inode, 5264 path, ex_start - 1)) 5265 ex_last--; 5266 else 5267 ex_start++; 5268 } else { 5269 le32_add_cpu(&ex_last->ee_block, shift); 5270 ext4_ext_try_to_merge_right(inode, path, 5271 ex_last); 5272 ex_last--; 5273 } 5274 } 5275 err = ext4_ext_dirty(handle, inode, path + depth); 5276 if (err) 5277 goto out; 5278 5279 if (--depth < 0 || !update) 5280 break; 5281 } 5282 5283 /* Update index too */ 5284 err = ext4_access_path(handle, inode, path + depth); 5285 if (err) 5286 goto out; 5287 5288 if (SHIFT == SHIFT_LEFT) 5289 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5290 else 5291 le32_add_cpu(&path[depth].p_idx->ei_block, shift); 5292 err = ext4_ext_dirty(handle, inode, path + depth); 5293 if (err) 5294 goto out; 5295 5296 /* we are done if current index is not a starting index */ 5297 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5298 break; 5299 5300 depth--; 5301 } 5302 5303 out: 5304 return err; 5305 } 5306 5307 /* 5308 * ext4_ext_shift_extents: 5309 * All the extents which lies in the range from @start to the last allocated 5310 * block for the @inode are shifted either towards left or right (depending 5311 * upon @SHIFT) by @shift blocks. 5312 * On success, 0 is returned, error otherwise. 5313 */ 5314 static int 5315 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5316 ext4_lblk_t start, ext4_lblk_t shift, 5317 enum SHIFT_DIRECTION SHIFT) 5318 { 5319 struct ext4_ext_path *path; 5320 int ret = 0, depth; 5321 struct ext4_extent *extent; 5322 ext4_lblk_t stop, *iterator, ex_start, ex_end; 5323 5324 /* Let path point to the last extent */ 5325 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 5326 EXT4_EX_NOCACHE); 5327 if (IS_ERR(path)) 5328 return PTR_ERR(path); 5329 5330 depth = path->p_depth; 5331 extent = path[depth].p_ext; 5332 if (!extent) 5333 goto out; 5334 5335 stop = le32_to_cpu(extent->ee_block); 5336 5337 /* 5338 * For left shifts, make sure the hole on the left is big enough to 5339 * accommodate the shift. For right shifts, make sure the last extent 5340 * won't be shifted beyond EXT_MAX_BLOCKS. 5341 */ 5342 if (SHIFT == SHIFT_LEFT) { 5343 path = ext4_find_extent(inode, start - 1, &path, 5344 EXT4_EX_NOCACHE); 5345 if (IS_ERR(path)) 5346 return PTR_ERR(path); 5347 depth = path->p_depth; 5348 extent = path[depth].p_ext; 5349 if (extent) { 5350 ex_start = le32_to_cpu(extent->ee_block); 5351 ex_end = le32_to_cpu(extent->ee_block) + 5352 ext4_ext_get_actual_len(extent); 5353 } else { 5354 ex_start = 0; 5355 ex_end = 0; 5356 } 5357 5358 if ((start == ex_start && shift > ex_start) || 5359 (shift > start - ex_end)) { 5360 ret = -EINVAL; 5361 goto out; 5362 } 5363 } else { 5364 if (shift > EXT_MAX_BLOCKS - 5365 (stop + ext4_ext_get_actual_len(extent))) { 5366 ret = -EINVAL; 5367 goto out; 5368 } 5369 } 5370 5371 /* 5372 * In case of left shift, iterator points to start and it is increased 5373 * till we reach stop. In case of right shift, iterator points to stop 5374 * and it is decreased till we reach start. 5375 */ 5376 if (SHIFT == SHIFT_LEFT) 5377 iterator = &start; 5378 else 5379 iterator = &stop; 5380 5381 /* 5382 * Its safe to start updating extents. Start and stop are unsigned, so 5383 * in case of right shift if extent with 0 block is reached, iterator 5384 * becomes NULL to indicate the end of the loop. 5385 */ 5386 while (iterator && start <= stop) { 5387 path = ext4_find_extent(inode, *iterator, &path, 5388 EXT4_EX_NOCACHE); 5389 if (IS_ERR(path)) 5390 return PTR_ERR(path); 5391 depth = path->p_depth; 5392 extent = path[depth].p_ext; 5393 if (!extent) { 5394 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5395 (unsigned long) *iterator); 5396 return -EFSCORRUPTED; 5397 } 5398 if (SHIFT == SHIFT_LEFT && *iterator > 5399 le32_to_cpu(extent->ee_block)) { 5400 /* Hole, move to the next extent */ 5401 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5402 path[depth].p_ext++; 5403 } else { 5404 *iterator = ext4_ext_next_allocated_block(path); 5405 continue; 5406 } 5407 } 5408 5409 if (SHIFT == SHIFT_LEFT) { 5410 extent = EXT_LAST_EXTENT(path[depth].p_hdr); 5411 *iterator = le32_to_cpu(extent->ee_block) + 5412 ext4_ext_get_actual_len(extent); 5413 } else { 5414 extent = EXT_FIRST_EXTENT(path[depth].p_hdr); 5415 if (le32_to_cpu(extent->ee_block) > 0) 5416 *iterator = le32_to_cpu(extent->ee_block) - 1; 5417 else 5418 /* Beginning is reached, end of the loop */ 5419 iterator = NULL; 5420 /* Update path extent in case we need to stop */ 5421 while (le32_to_cpu(extent->ee_block) < start) 5422 extent++; 5423 path[depth].p_ext = extent; 5424 } 5425 ret = ext4_ext_shift_path_extents(path, shift, inode, 5426 handle, SHIFT); 5427 if (ret) 5428 break; 5429 } 5430 out: 5431 ext4_ext_drop_refs(path); 5432 kfree(path); 5433 return ret; 5434 } 5435 5436 /* 5437 * ext4_collapse_range: 5438 * This implements the fallocate's collapse range functionality for ext4 5439 * Returns: 0 and non-zero on error. 5440 */ 5441 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5442 { 5443 struct super_block *sb = inode->i_sb; 5444 ext4_lblk_t punch_start, punch_stop; 5445 handle_t *handle; 5446 unsigned int credits; 5447 loff_t new_size, ioffset; 5448 int ret; 5449 5450 /* 5451 * We need to test this early because xfstests assumes that a 5452 * collapse range of (0, 1) will return EOPNOTSUPP if the file 5453 * system does not support collapse range. 5454 */ 5455 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5456 return -EOPNOTSUPP; 5457 5458 /* Collapse range works only on fs block size aligned offsets. */ 5459 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5460 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5461 return -EINVAL; 5462 5463 if (!S_ISREG(inode->i_mode)) 5464 return -EINVAL; 5465 5466 trace_ext4_collapse_range(inode, offset, len); 5467 5468 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5469 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5470 5471 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5472 if (ext4_should_journal_data(inode)) { 5473 ret = ext4_force_commit(inode->i_sb); 5474 if (ret) 5475 return ret; 5476 } 5477 5478 inode_lock(inode); 5479 /* 5480 * There is no need to overlap collapse range with EOF, in which case 5481 * it is effectively a truncate operation 5482 */ 5483 if (offset + len >= i_size_read(inode)) { 5484 ret = -EINVAL; 5485 goto out_mutex; 5486 } 5487 5488 /* Currently just for extent based files */ 5489 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5490 ret = -EOPNOTSUPP; 5491 goto out_mutex; 5492 } 5493 5494 /* Wait for existing dio to complete */ 5495 inode_dio_wait(inode); 5496 5497 /* 5498 * Prevent page faults from reinstantiating pages we have released from 5499 * page cache. 5500 */ 5501 down_write(&EXT4_I(inode)->i_mmap_sem); 5502 /* 5503 * Need to round down offset to be aligned with page size boundary 5504 * for page size > block size. 5505 */ 5506 ioffset = round_down(offset, PAGE_SIZE); 5507 /* 5508 * Write tail of the last page before removed range since it will get 5509 * removed from the page cache below. 5510 */ 5511 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset); 5512 if (ret) 5513 goto out_mmap; 5514 /* 5515 * Write data that will be shifted to preserve them when discarding 5516 * page cache below. We are also protected from pages becoming dirty 5517 * by i_mmap_sem. 5518 */ 5519 ret = filemap_write_and_wait_range(inode->i_mapping, offset + len, 5520 LLONG_MAX); 5521 if (ret) 5522 goto out_mmap; 5523 truncate_pagecache(inode, ioffset); 5524 5525 credits = ext4_writepage_trans_blocks(inode); 5526 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5527 if (IS_ERR(handle)) { 5528 ret = PTR_ERR(handle); 5529 goto out_mmap; 5530 } 5531 5532 down_write(&EXT4_I(inode)->i_data_sem); 5533 ext4_discard_preallocations(inode); 5534 5535 ret = ext4_es_remove_extent(inode, punch_start, 5536 EXT_MAX_BLOCKS - punch_start); 5537 if (ret) { 5538 up_write(&EXT4_I(inode)->i_data_sem); 5539 goto out_stop; 5540 } 5541 5542 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5543 if (ret) { 5544 up_write(&EXT4_I(inode)->i_data_sem); 5545 goto out_stop; 5546 } 5547 ext4_discard_preallocations(inode); 5548 5549 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5550 punch_stop - punch_start, SHIFT_LEFT); 5551 if (ret) { 5552 up_write(&EXT4_I(inode)->i_data_sem); 5553 goto out_stop; 5554 } 5555 5556 new_size = i_size_read(inode) - len; 5557 i_size_write(inode, new_size); 5558 EXT4_I(inode)->i_disksize = new_size; 5559 5560 up_write(&EXT4_I(inode)->i_data_sem); 5561 if (IS_SYNC(inode)) 5562 ext4_handle_sync(handle); 5563 inode->i_mtime = inode->i_ctime = current_time(inode); 5564 ext4_mark_inode_dirty(handle, inode); 5565 ext4_update_inode_fsync_trans(handle, inode, 1); 5566 5567 out_stop: 5568 ext4_journal_stop(handle); 5569 out_mmap: 5570 up_write(&EXT4_I(inode)->i_mmap_sem); 5571 out_mutex: 5572 inode_unlock(inode); 5573 return ret; 5574 } 5575 5576 /* 5577 * ext4_insert_range: 5578 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate. 5579 * The data blocks starting from @offset to the EOF are shifted by @len 5580 * towards right to create a hole in the @inode. Inode size is increased 5581 * by len bytes. 5582 * Returns 0 on success, error otherwise. 5583 */ 5584 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len) 5585 { 5586 struct super_block *sb = inode->i_sb; 5587 handle_t *handle; 5588 struct ext4_ext_path *path; 5589 struct ext4_extent *extent; 5590 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0; 5591 unsigned int credits, ee_len; 5592 int ret = 0, depth, split_flag = 0; 5593 loff_t ioffset; 5594 5595 /* 5596 * We need to test this early because xfstests assumes that an 5597 * insert range of (0, 1) will return EOPNOTSUPP if the file 5598 * system does not support insert range. 5599 */ 5600 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5601 return -EOPNOTSUPP; 5602 5603 /* Insert range works only on fs block size aligned offsets. */ 5604 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5605 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5606 return -EINVAL; 5607 5608 if (!S_ISREG(inode->i_mode)) 5609 return -EOPNOTSUPP; 5610 5611 trace_ext4_insert_range(inode, offset, len); 5612 5613 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5614 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb); 5615 5616 /* Call ext4_force_commit to flush all data in case of data=journal */ 5617 if (ext4_should_journal_data(inode)) { 5618 ret = ext4_force_commit(inode->i_sb); 5619 if (ret) 5620 return ret; 5621 } 5622 5623 inode_lock(inode); 5624 /* Currently just for extent based files */ 5625 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5626 ret = -EOPNOTSUPP; 5627 goto out_mutex; 5628 } 5629 5630 /* Check for wrap through zero */ 5631 if (inode->i_size + len > inode->i_sb->s_maxbytes) { 5632 ret = -EFBIG; 5633 goto out_mutex; 5634 } 5635 5636 /* Offset should be less than i_size */ 5637 if (offset >= i_size_read(inode)) { 5638 ret = -EINVAL; 5639 goto out_mutex; 5640 } 5641 5642 /* Wait for existing dio to complete */ 5643 inode_dio_wait(inode); 5644 5645 /* 5646 * Prevent page faults from reinstantiating pages we have released from 5647 * page cache. 5648 */ 5649 down_write(&EXT4_I(inode)->i_mmap_sem); 5650 /* 5651 * Need to round down to align start offset to page size boundary 5652 * for page size > block size. 5653 */ 5654 ioffset = round_down(offset, PAGE_SIZE); 5655 /* Write out all dirty pages */ 5656 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5657 LLONG_MAX); 5658 if (ret) 5659 goto out_mmap; 5660 truncate_pagecache(inode, ioffset); 5661 5662 credits = ext4_writepage_trans_blocks(inode); 5663 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5664 if (IS_ERR(handle)) { 5665 ret = PTR_ERR(handle); 5666 goto out_mmap; 5667 } 5668 5669 /* Expand file to avoid data loss if there is error while shifting */ 5670 inode->i_size += len; 5671 EXT4_I(inode)->i_disksize += len; 5672 inode->i_mtime = inode->i_ctime = current_time(inode); 5673 ret = ext4_mark_inode_dirty(handle, inode); 5674 if (ret) 5675 goto out_stop; 5676 5677 down_write(&EXT4_I(inode)->i_data_sem); 5678 ext4_discard_preallocations(inode); 5679 5680 path = ext4_find_extent(inode, offset_lblk, NULL, 0); 5681 if (IS_ERR(path)) { 5682 up_write(&EXT4_I(inode)->i_data_sem); 5683 goto out_stop; 5684 } 5685 5686 depth = ext_depth(inode); 5687 extent = path[depth].p_ext; 5688 if (extent) { 5689 ee_start_lblk = le32_to_cpu(extent->ee_block); 5690 ee_len = ext4_ext_get_actual_len(extent); 5691 5692 /* 5693 * If offset_lblk is not the starting block of extent, split 5694 * the extent @offset_lblk 5695 */ 5696 if ((offset_lblk > ee_start_lblk) && 5697 (offset_lblk < (ee_start_lblk + ee_len))) { 5698 if (ext4_ext_is_unwritten(extent)) 5699 split_flag = EXT4_EXT_MARK_UNWRIT1 | 5700 EXT4_EXT_MARK_UNWRIT2; 5701 ret = ext4_split_extent_at(handle, inode, &path, 5702 offset_lblk, split_flag, 5703 EXT4_EX_NOCACHE | 5704 EXT4_GET_BLOCKS_PRE_IO | 5705 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5706 } 5707 5708 ext4_ext_drop_refs(path); 5709 kfree(path); 5710 if (ret < 0) { 5711 up_write(&EXT4_I(inode)->i_data_sem); 5712 goto out_stop; 5713 } 5714 } else { 5715 ext4_ext_drop_refs(path); 5716 kfree(path); 5717 } 5718 5719 ret = ext4_es_remove_extent(inode, offset_lblk, 5720 EXT_MAX_BLOCKS - offset_lblk); 5721 if (ret) { 5722 up_write(&EXT4_I(inode)->i_data_sem); 5723 goto out_stop; 5724 } 5725 5726 /* 5727 * if offset_lblk lies in a hole which is at start of file, use 5728 * ee_start_lblk to shift extents 5729 */ 5730 ret = ext4_ext_shift_extents(inode, handle, 5731 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk, 5732 len_lblk, SHIFT_RIGHT); 5733 5734 up_write(&EXT4_I(inode)->i_data_sem); 5735 if (IS_SYNC(inode)) 5736 ext4_handle_sync(handle); 5737 if (ret >= 0) 5738 ext4_update_inode_fsync_trans(handle, inode, 1); 5739 5740 out_stop: 5741 ext4_journal_stop(handle); 5742 out_mmap: 5743 up_write(&EXT4_I(inode)->i_mmap_sem); 5744 out_mutex: 5745 inode_unlock(inode); 5746 return ret; 5747 } 5748 5749 /** 5750 * ext4_swap_extents - Swap extents between two inodes 5751 * 5752 * @inode1: First inode 5753 * @inode2: Second inode 5754 * @lblk1: Start block for first inode 5755 * @lblk2: Start block for second inode 5756 * @count: Number of blocks to swap 5757 * @unwritten: Mark second inode's extents as unwritten after swap 5758 * @erp: Pointer to save error value 5759 * 5760 * This helper routine does exactly what is promise "swap extents". All other 5761 * stuff such as page-cache locking consistency, bh mapping consistency or 5762 * extent's data copying must be performed by caller. 5763 * Locking: 5764 * i_mutex is held for both inodes 5765 * i_data_sem is locked for write for both inodes 5766 * Assumptions: 5767 * All pages from requested range are locked for both inodes 5768 */ 5769 int 5770 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5771 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5772 ext4_lblk_t count, int unwritten, int *erp) 5773 { 5774 struct ext4_ext_path *path1 = NULL; 5775 struct ext4_ext_path *path2 = NULL; 5776 int replaced_count = 0; 5777 5778 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5779 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5780 BUG_ON(!inode_is_locked(inode1)); 5781 BUG_ON(!inode_is_locked(inode2)); 5782 5783 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5784 if (unlikely(*erp)) 5785 return 0; 5786 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5787 if (unlikely(*erp)) 5788 return 0; 5789 5790 while (count) { 5791 struct ext4_extent *ex1, *ex2, tmp_ex; 5792 ext4_lblk_t e1_blk, e2_blk; 5793 int e1_len, e2_len, len; 5794 int split = 0; 5795 5796 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5797 if (IS_ERR(path1)) { 5798 *erp = PTR_ERR(path1); 5799 path1 = NULL; 5800 finish: 5801 count = 0; 5802 goto repeat; 5803 } 5804 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5805 if (IS_ERR(path2)) { 5806 *erp = PTR_ERR(path2); 5807 path2 = NULL; 5808 goto finish; 5809 } 5810 ex1 = path1[path1->p_depth].p_ext; 5811 ex2 = path2[path2->p_depth].p_ext; 5812 /* Do we have somthing to swap ? */ 5813 if (unlikely(!ex2 || !ex1)) 5814 goto finish; 5815 5816 e1_blk = le32_to_cpu(ex1->ee_block); 5817 e2_blk = le32_to_cpu(ex2->ee_block); 5818 e1_len = ext4_ext_get_actual_len(ex1); 5819 e2_len = ext4_ext_get_actual_len(ex2); 5820 5821 /* Hole handling */ 5822 if (!in_range(lblk1, e1_blk, e1_len) || 5823 !in_range(lblk2, e2_blk, e2_len)) { 5824 ext4_lblk_t next1, next2; 5825 5826 /* if hole after extent, then go to next extent */ 5827 next1 = ext4_ext_next_allocated_block(path1); 5828 next2 = ext4_ext_next_allocated_block(path2); 5829 /* If hole before extent, then shift to that extent */ 5830 if (e1_blk > lblk1) 5831 next1 = e1_blk; 5832 if (e2_blk > lblk2) 5833 next2 = e2_blk; 5834 /* Do we have something to swap */ 5835 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5836 goto finish; 5837 /* Move to the rightest boundary */ 5838 len = next1 - lblk1; 5839 if (len < next2 - lblk2) 5840 len = next2 - lblk2; 5841 if (len > count) 5842 len = count; 5843 lblk1 += len; 5844 lblk2 += len; 5845 count -= len; 5846 goto repeat; 5847 } 5848 5849 /* Prepare left boundary */ 5850 if (e1_blk < lblk1) { 5851 split = 1; 5852 *erp = ext4_force_split_extent_at(handle, inode1, 5853 &path1, lblk1, 0); 5854 if (unlikely(*erp)) 5855 goto finish; 5856 } 5857 if (e2_blk < lblk2) { 5858 split = 1; 5859 *erp = ext4_force_split_extent_at(handle, inode2, 5860 &path2, lblk2, 0); 5861 if (unlikely(*erp)) 5862 goto finish; 5863 } 5864 /* ext4_split_extent_at() may result in leaf extent split, 5865 * path must to be revalidated. */ 5866 if (split) 5867 goto repeat; 5868 5869 /* Prepare right boundary */ 5870 len = count; 5871 if (len > e1_blk + e1_len - lblk1) 5872 len = e1_blk + e1_len - lblk1; 5873 if (len > e2_blk + e2_len - lblk2) 5874 len = e2_blk + e2_len - lblk2; 5875 5876 if (len != e1_len) { 5877 split = 1; 5878 *erp = ext4_force_split_extent_at(handle, inode1, 5879 &path1, lblk1 + len, 0); 5880 if (unlikely(*erp)) 5881 goto finish; 5882 } 5883 if (len != e2_len) { 5884 split = 1; 5885 *erp = ext4_force_split_extent_at(handle, inode2, 5886 &path2, lblk2 + len, 0); 5887 if (*erp) 5888 goto finish; 5889 } 5890 /* ext4_split_extent_at() may result in leaf extent split, 5891 * path must to be revalidated. */ 5892 if (split) 5893 goto repeat; 5894 5895 BUG_ON(e2_len != e1_len); 5896 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5897 if (unlikely(*erp)) 5898 goto finish; 5899 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5900 if (unlikely(*erp)) 5901 goto finish; 5902 5903 /* Both extents are fully inside boundaries. Swap it now */ 5904 tmp_ex = *ex1; 5905 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5906 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5907 ex1->ee_len = cpu_to_le16(e2_len); 5908 ex2->ee_len = cpu_to_le16(e1_len); 5909 if (unwritten) 5910 ext4_ext_mark_unwritten(ex2); 5911 if (ext4_ext_is_unwritten(&tmp_ex)) 5912 ext4_ext_mark_unwritten(ex1); 5913 5914 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5915 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5916 *erp = ext4_ext_dirty(handle, inode2, path2 + 5917 path2->p_depth); 5918 if (unlikely(*erp)) 5919 goto finish; 5920 *erp = ext4_ext_dirty(handle, inode1, path1 + 5921 path1->p_depth); 5922 /* 5923 * Looks scarry ah..? second inode already points to new blocks, 5924 * and it was successfully dirtied. But luckily error may happen 5925 * only due to journal error, so full transaction will be 5926 * aborted anyway. 5927 */ 5928 if (unlikely(*erp)) 5929 goto finish; 5930 lblk1 += len; 5931 lblk2 += len; 5932 replaced_count += len; 5933 count -= len; 5934 5935 repeat: 5936 ext4_ext_drop_refs(path1); 5937 kfree(path1); 5938 ext4_ext_drop_refs(path2); 5939 kfree(path2); 5940 path1 = path2 = NULL; 5941 } 5942 return replaced_count; 5943 } 5944