xref: /openbmc/linux/fs/ext4/extents.c (revision 83a530e1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  *
6  * Architecture independence:
7  *   Copyright (c) 2005, Bull S.A.
8  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
9  */
10 
11 /*
12  * Extents support for EXT4
13  *
14  * TODO:
15  *   - ext4*_error() should be used in some situations
16  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
17  *   - smart tree reduction
18  */
19 
20 #include <linux/fs.h>
21 #include <linux/time.h>
22 #include <linux/jbd2.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/uaccess.h>
29 #include <linux/fiemap.h>
30 #include <linux/backing-dev.h>
31 #include "ext4_jbd2.h"
32 #include "ext4_extents.h"
33 #include "xattr.h"
34 
35 #include <trace/events/ext4.h>
36 
37 /*
38  * used by extent splitting.
39  */
40 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
41 					due to ENOSPC */
42 #define EXT4_EXT_MARK_UNWRIT1	0x2  /* mark first half unwritten */
43 #define EXT4_EXT_MARK_UNWRIT2	0x4  /* mark second half unwritten */
44 
45 #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
46 #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
47 
48 static __le32 ext4_extent_block_csum(struct inode *inode,
49 				     struct ext4_extent_header *eh)
50 {
51 	struct ext4_inode_info *ei = EXT4_I(inode);
52 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53 	__u32 csum;
54 
55 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
56 			   EXT4_EXTENT_TAIL_OFFSET(eh));
57 	return cpu_to_le32(csum);
58 }
59 
60 static int ext4_extent_block_csum_verify(struct inode *inode,
61 					 struct ext4_extent_header *eh)
62 {
63 	struct ext4_extent_tail *et;
64 
65 	if (!ext4_has_metadata_csum(inode->i_sb))
66 		return 1;
67 
68 	et = find_ext4_extent_tail(eh);
69 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
70 		return 0;
71 	return 1;
72 }
73 
74 static void ext4_extent_block_csum_set(struct inode *inode,
75 				       struct ext4_extent_header *eh)
76 {
77 	struct ext4_extent_tail *et;
78 
79 	if (!ext4_has_metadata_csum(inode->i_sb))
80 		return;
81 
82 	et = find_ext4_extent_tail(eh);
83 	et->et_checksum = ext4_extent_block_csum(inode, eh);
84 }
85 
86 static int ext4_split_extent(handle_t *handle,
87 				struct inode *inode,
88 				struct ext4_ext_path **ppath,
89 				struct ext4_map_blocks *map,
90 				int split_flag,
91 				int flags);
92 
93 static int ext4_split_extent_at(handle_t *handle,
94 			     struct inode *inode,
95 			     struct ext4_ext_path **ppath,
96 			     ext4_lblk_t split,
97 			     int split_flag,
98 			     int flags);
99 
100 static int ext4_find_delayed_extent(struct inode *inode,
101 				    struct extent_status *newes);
102 
103 static int ext4_ext_truncate_extend_restart(handle_t *handle,
104 					    struct inode *inode,
105 					    int needed)
106 {
107 	int err;
108 
109 	if (!ext4_handle_valid(handle))
110 		return 0;
111 	if (handle->h_buffer_credits >= needed)
112 		return 0;
113 	/*
114 	 * If we need to extend the journal get a few extra blocks
115 	 * while we're at it for efficiency's sake.
116 	 */
117 	needed += 3;
118 	err = ext4_journal_extend(handle, needed - handle->h_buffer_credits);
119 	if (err <= 0)
120 		return err;
121 	err = ext4_truncate_restart_trans(handle, inode, needed);
122 	if (err == 0)
123 		err = -EAGAIN;
124 
125 	return err;
126 }
127 
128 /*
129  * could return:
130  *  - EROFS
131  *  - ENOMEM
132  */
133 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
134 				struct ext4_ext_path *path)
135 {
136 	if (path->p_bh) {
137 		/* path points to block */
138 		BUFFER_TRACE(path->p_bh, "get_write_access");
139 		return ext4_journal_get_write_access(handle, path->p_bh);
140 	}
141 	/* path points to leaf/index in inode body */
142 	/* we use in-core data, no need to protect them */
143 	return 0;
144 }
145 
146 /*
147  * could return:
148  *  - EROFS
149  *  - ENOMEM
150  *  - EIO
151  */
152 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
153 		     struct inode *inode, struct ext4_ext_path *path)
154 {
155 	int err;
156 
157 	WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
158 	if (path->p_bh) {
159 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
160 		/* path points to block */
161 		err = __ext4_handle_dirty_metadata(where, line, handle,
162 						   inode, path->p_bh);
163 	} else {
164 		/* path points to leaf/index in inode body */
165 		err = ext4_mark_inode_dirty(handle, inode);
166 	}
167 	return err;
168 }
169 
170 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
171 			      struct ext4_ext_path *path,
172 			      ext4_lblk_t block)
173 {
174 	if (path) {
175 		int depth = path->p_depth;
176 		struct ext4_extent *ex;
177 
178 		/*
179 		 * Try to predict block placement assuming that we are
180 		 * filling in a file which will eventually be
181 		 * non-sparse --- i.e., in the case of libbfd writing
182 		 * an ELF object sections out-of-order but in a way
183 		 * the eventually results in a contiguous object or
184 		 * executable file, or some database extending a table
185 		 * space file.  However, this is actually somewhat
186 		 * non-ideal if we are writing a sparse file such as
187 		 * qemu or KVM writing a raw image file that is going
188 		 * to stay fairly sparse, since it will end up
189 		 * fragmenting the file system's free space.  Maybe we
190 		 * should have some hueristics or some way to allow
191 		 * userspace to pass a hint to file system,
192 		 * especially if the latter case turns out to be
193 		 * common.
194 		 */
195 		ex = path[depth].p_ext;
196 		if (ex) {
197 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
198 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
199 
200 			if (block > ext_block)
201 				return ext_pblk + (block - ext_block);
202 			else
203 				return ext_pblk - (ext_block - block);
204 		}
205 
206 		/* it looks like index is empty;
207 		 * try to find starting block from index itself */
208 		if (path[depth].p_bh)
209 			return path[depth].p_bh->b_blocknr;
210 	}
211 
212 	/* OK. use inode's group */
213 	return ext4_inode_to_goal_block(inode);
214 }
215 
216 /*
217  * Allocation for a meta data block
218  */
219 static ext4_fsblk_t
220 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
221 			struct ext4_ext_path *path,
222 			struct ext4_extent *ex, int *err, unsigned int flags)
223 {
224 	ext4_fsblk_t goal, newblock;
225 
226 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
227 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
228 					NULL, err);
229 	return newblock;
230 }
231 
232 static inline int ext4_ext_space_block(struct inode *inode, int check)
233 {
234 	int size;
235 
236 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
237 			/ sizeof(struct ext4_extent);
238 #ifdef AGGRESSIVE_TEST
239 	if (!check && size > 6)
240 		size = 6;
241 #endif
242 	return size;
243 }
244 
245 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
246 {
247 	int size;
248 
249 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
250 			/ sizeof(struct ext4_extent_idx);
251 #ifdef AGGRESSIVE_TEST
252 	if (!check && size > 5)
253 		size = 5;
254 #endif
255 	return size;
256 }
257 
258 static inline int ext4_ext_space_root(struct inode *inode, int check)
259 {
260 	int size;
261 
262 	size = sizeof(EXT4_I(inode)->i_data);
263 	size -= sizeof(struct ext4_extent_header);
264 	size /= sizeof(struct ext4_extent);
265 #ifdef AGGRESSIVE_TEST
266 	if (!check && size > 3)
267 		size = 3;
268 #endif
269 	return size;
270 }
271 
272 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
273 {
274 	int size;
275 
276 	size = sizeof(EXT4_I(inode)->i_data);
277 	size -= sizeof(struct ext4_extent_header);
278 	size /= sizeof(struct ext4_extent_idx);
279 #ifdef AGGRESSIVE_TEST
280 	if (!check && size > 4)
281 		size = 4;
282 #endif
283 	return size;
284 }
285 
286 static inline int
287 ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
288 			   struct ext4_ext_path **ppath, ext4_lblk_t lblk,
289 			   int nofail)
290 {
291 	struct ext4_ext_path *path = *ppath;
292 	int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
293 
294 	return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
295 			EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
296 			EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
297 			(nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
298 }
299 
300 /*
301  * Calculate the number of metadata blocks needed
302  * to allocate @blocks
303  * Worse case is one block per extent
304  */
305 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
306 {
307 	struct ext4_inode_info *ei = EXT4_I(inode);
308 	int idxs;
309 
310 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
311 		/ sizeof(struct ext4_extent_idx));
312 
313 	/*
314 	 * If the new delayed allocation block is contiguous with the
315 	 * previous da block, it can share index blocks with the
316 	 * previous block, so we only need to allocate a new index
317 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
318 	 * an additional index block, and at ldxs**3 blocks, yet
319 	 * another index blocks.
320 	 */
321 	if (ei->i_da_metadata_calc_len &&
322 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
323 		int num = 0;
324 
325 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
326 			num++;
327 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
328 			num++;
329 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
330 			num++;
331 			ei->i_da_metadata_calc_len = 0;
332 		} else
333 			ei->i_da_metadata_calc_len++;
334 		ei->i_da_metadata_calc_last_lblock++;
335 		return num;
336 	}
337 
338 	/*
339 	 * In the worst case we need a new set of index blocks at
340 	 * every level of the inode's extent tree.
341 	 */
342 	ei->i_da_metadata_calc_len = 1;
343 	ei->i_da_metadata_calc_last_lblock = lblock;
344 	return ext_depth(inode) + 1;
345 }
346 
347 static int
348 ext4_ext_max_entries(struct inode *inode, int depth)
349 {
350 	int max;
351 
352 	if (depth == ext_depth(inode)) {
353 		if (depth == 0)
354 			max = ext4_ext_space_root(inode, 1);
355 		else
356 			max = ext4_ext_space_root_idx(inode, 1);
357 	} else {
358 		if (depth == 0)
359 			max = ext4_ext_space_block(inode, 1);
360 		else
361 			max = ext4_ext_space_block_idx(inode, 1);
362 	}
363 
364 	return max;
365 }
366 
367 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
368 {
369 	ext4_fsblk_t block = ext4_ext_pblock(ext);
370 	int len = ext4_ext_get_actual_len(ext);
371 	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
372 
373 	/*
374 	 * We allow neither:
375 	 *  - zero length
376 	 *  - overflow/wrap-around
377 	 */
378 	if (lblock + len <= lblock)
379 		return 0;
380 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
381 }
382 
383 static int ext4_valid_extent_idx(struct inode *inode,
384 				struct ext4_extent_idx *ext_idx)
385 {
386 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
387 
388 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
389 }
390 
391 static int ext4_valid_extent_entries(struct inode *inode,
392 				struct ext4_extent_header *eh,
393 				int depth)
394 {
395 	unsigned short entries;
396 	if (eh->eh_entries == 0)
397 		return 1;
398 
399 	entries = le16_to_cpu(eh->eh_entries);
400 
401 	if (depth == 0) {
402 		/* leaf entries */
403 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
404 		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
405 		ext4_fsblk_t pblock = 0;
406 		ext4_lblk_t lblock = 0;
407 		ext4_lblk_t prev = 0;
408 		int len = 0;
409 		while (entries) {
410 			if (!ext4_valid_extent(inode, ext))
411 				return 0;
412 
413 			/* Check for overlapping extents */
414 			lblock = le32_to_cpu(ext->ee_block);
415 			len = ext4_ext_get_actual_len(ext);
416 			if ((lblock <= prev) && prev) {
417 				pblock = ext4_ext_pblock(ext);
418 				es->s_last_error_block = cpu_to_le64(pblock);
419 				return 0;
420 			}
421 			ext++;
422 			entries--;
423 			prev = lblock + len - 1;
424 		}
425 	} else {
426 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
427 		while (entries) {
428 			if (!ext4_valid_extent_idx(inode, ext_idx))
429 				return 0;
430 			ext_idx++;
431 			entries--;
432 		}
433 	}
434 	return 1;
435 }
436 
437 static int __ext4_ext_check(const char *function, unsigned int line,
438 			    struct inode *inode, struct ext4_extent_header *eh,
439 			    int depth, ext4_fsblk_t pblk)
440 {
441 	const char *error_msg;
442 	int max = 0, err = -EFSCORRUPTED;
443 
444 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
445 		error_msg = "invalid magic";
446 		goto corrupted;
447 	}
448 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
449 		error_msg = "unexpected eh_depth";
450 		goto corrupted;
451 	}
452 	if (unlikely(eh->eh_max == 0)) {
453 		error_msg = "invalid eh_max";
454 		goto corrupted;
455 	}
456 	max = ext4_ext_max_entries(inode, depth);
457 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
458 		error_msg = "too large eh_max";
459 		goto corrupted;
460 	}
461 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
462 		error_msg = "invalid eh_entries";
463 		goto corrupted;
464 	}
465 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
466 		error_msg = "invalid extent entries";
467 		goto corrupted;
468 	}
469 	if (unlikely(depth > 32)) {
470 		error_msg = "too large eh_depth";
471 		goto corrupted;
472 	}
473 	/* Verify checksum on non-root extent tree nodes */
474 	if (ext_depth(inode) != depth &&
475 	    !ext4_extent_block_csum_verify(inode, eh)) {
476 		error_msg = "extent tree corrupted";
477 		err = -EFSBADCRC;
478 		goto corrupted;
479 	}
480 	return 0;
481 
482 corrupted:
483 	ext4_error_inode(inode, function, line, 0,
484 			 "pblk %llu bad header/extent: %s - magic %x, "
485 			 "entries %u, max %u(%u), depth %u(%u)",
486 			 (unsigned long long) pblk, error_msg,
487 			 le16_to_cpu(eh->eh_magic),
488 			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
489 			 max, le16_to_cpu(eh->eh_depth), depth);
490 	return err;
491 }
492 
493 #define ext4_ext_check(inode, eh, depth, pblk)			\
494 	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
495 
496 int ext4_ext_check_inode(struct inode *inode)
497 {
498 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
499 }
500 
501 static struct buffer_head *
502 __read_extent_tree_block(const char *function, unsigned int line,
503 			 struct inode *inode, ext4_fsblk_t pblk, int depth,
504 			 int flags)
505 {
506 	struct buffer_head		*bh;
507 	int				err;
508 
509 	bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS);
510 	if (unlikely(!bh))
511 		return ERR_PTR(-ENOMEM);
512 
513 	if (!bh_uptodate_or_lock(bh)) {
514 		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
515 		err = bh_submit_read(bh);
516 		if (err < 0)
517 			goto errout;
518 	}
519 	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
520 		return bh;
521 	err = __ext4_ext_check(function, line, inode,
522 			       ext_block_hdr(bh), depth, pblk);
523 	if (err)
524 		goto errout;
525 	set_buffer_verified(bh);
526 	/*
527 	 * If this is a leaf block, cache all of its entries
528 	 */
529 	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
530 		struct ext4_extent_header *eh = ext_block_hdr(bh);
531 		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
532 		ext4_lblk_t prev = 0;
533 		int i;
534 
535 		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
536 			unsigned int status = EXTENT_STATUS_WRITTEN;
537 			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
538 			int len = ext4_ext_get_actual_len(ex);
539 
540 			if (prev && (prev != lblk))
541 				ext4_es_cache_extent(inode, prev,
542 						     lblk - prev, ~0,
543 						     EXTENT_STATUS_HOLE);
544 
545 			if (ext4_ext_is_unwritten(ex))
546 				status = EXTENT_STATUS_UNWRITTEN;
547 			ext4_es_cache_extent(inode, lblk, len,
548 					     ext4_ext_pblock(ex), status);
549 			prev = lblk + len;
550 		}
551 	}
552 	return bh;
553 errout:
554 	put_bh(bh);
555 	return ERR_PTR(err);
556 
557 }
558 
559 #define read_extent_tree_block(inode, pblk, depth, flags)		\
560 	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
561 				 (depth), (flags))
562 
563 /*
564  * This function is called to cache a file's extent information in the
565  * extent status tree
566  */
567 int ext4_ext_precache(struct inode *inode)
568 {
569 	struct ext4_inode_info *ei = EXT4_I(inode);
570 	struct ext4_ext_path *path = NULL;
571 	struct buffer_head *bh;
572 	int i = 0, depth, ret = 0;
573 
574 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
575 		return 0;	/* not an extent-mapped inode */
576 
577 	down_read(&ei->i_data_sem);
578 	depth = ext_depth(inode);
579 
580 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
581 		       GFP_NOFS);
582 	if (path == NULL) {
583 		up_read(&ei->i_data_sem);
584 		return -ENOMEM;
585 	}
586 
587 	/* Don't cache anything if there are no external extent blocks */
588 	if (depth == 0)
589 		goto out;
590 	path[0].p_hdr = ext_inode_hdr(inode);
591 	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
592 	if (ret)
593 		goto out;
594 	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
595 	while (i >= 0) {
596 		/*
597 		 * If this is a leaf block or we've reached the end of
598 		 * the index block, go up
599 		 */
600 		if ((i == depth) ||
601 		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
602 			brelse(path[i].p_bh);
603 			path[i].p_bh = NULL;
604 			i--;
605 			continue;
606 		}
607 		bh = read_extent_tree_block(inode,
608 					    ext4_idx_pblock(path[i].p_idx++),
609 					    depth - i - 1,
610 					    EXT4_EX_FORCE_CACHE);
611 		if (IS_ERR(bh)) {
612 			ret = PTR_ERR(bh);
613 			break;
614 		}
615 		i++;
616 		path[i].p_bh = bh;
617 		path[i].p_hdr = ext_block_hdr(bh);
618 		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
619 	}
620 	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
621 out:
622 	up_read(&ei->i_data_sem);
623 	ext4_ext_drop_refs(path);
624 	kfree(path);
625 	return ret;
626 }
627 
628 #ifdef EXT_DEBUG
629 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
630 {
631 	int k, l = path->p_depth;
632 
633 	ext_debug("path:");
634 	for (k = 0; k <= l; k++, path++) {
635 		if (path->p_idx) {
636 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
637 			    ext4_idx_pblock(path->p_idx));
638 		} else if (path->p_ext) {
639 			ext_debug("  %d:[%d]%d:%llu ",
640 				  le32_to_cpu(path->p_ext->ee_block),
641 				  ext4_ext_is_unwritten(path->p_ext),
642 				  ext4_ext_get_actual_len(path->p_ext),
643 				  ext4_ext_pblock(path->p_ext));
644 		} else
645 			ext_debug("  []");
646 	}
647 	ext_debug("\n");
648 }
649 
650 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
651 {
652 	int depth = ext_depth(inode);
653 	struct ext4_extent_header *eh;
654 	struct ext4_extent *ex;
655 	int i;
656 
657 	if (!path)
658 		return;
659 
660 	eh = path[depth].p_hdr;
661 	ex = EXT_FIRST_EXTENT(eh);
662 
663 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
664 
665 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
666 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
667 			  ext4_ext_is_unwritten(ex),
668 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
669 	}
670 	ext_debug("\n");
671 }
672 
673 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
674 			ext4_fsblk_t newblock, int level)
675 {
676 	int depth = ext_depth(inode);
677 	struct ext4_extent *ex;
678 
679 	if (depth != level) {
680 		struct ext4_extent_idx *idx;
681 		idx = path[level].p_idx;
682 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
683 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
684 					le32_to_cpu(idx->ei_block),
685 					ext4_idx_pblock(idx),
686 					newblock);
687 			idx++;
688 		}
689 
690 		return;
691 	}
692 
693 	ex = path[depth].p_ext;
694 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
695 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
696 				le32_to_cpu(ex->ee_block),
697 				ext4_ext_pblock(ex),
698 				ext4_ext_is_unwritten(ex),
699 				ext4_ext_get_actual_len(ex),
700 				newblock);
701 		ex++;
702 	}
703 }
704 
705 #else
706 #define ext4_ext_show_path(inode, path)
707 #define ext4_ext_show_leaf(inode, path)
708 #define ext4_ext_show_move(inode, path, newblock, level)
709 #endif
710 
711 void ext4_ext_drop_refs(struct ext4_ext_path *path)
712 {
713 	int depth, i;
714 
715 	if (!path)
716 		return;
717 	depth = path->p_depth;
718 	for (i = 0; i <= depth; i++, path++)
719 		if (path->p_bh) {
720 			brelse(path->p_bh);
721 			path->p_bh = NULL;
722 		}
723 }
724 
725 /*
726  * ext4_ext_binsearch_idx:
727  * binary search for the closest index of the given block
728  * the header must be checked before calling this
729  */
730 static void
731 ext4_ext_binsearch_idx(struct inode *inode,
732 			struct ext4_ext_path *path, ext4_lblk_t block)
733 {
734 	struct ext4_extent_header *eh = path->p_hdr;
735 	struct ext4_extent_idx *r, *l, *m;
736 
737 
738 	ext_debug("binsearch for %u(idx):  ", block);
739 
740 	l = EXT_FIRST_INDEX(eh) + 1;
741 	r = EXT_LAST_INDEX(eh);
742 	while (l <= r) {
743 		m = l + (r - l) / 2;
744 		if (block < le32_to_cpu(m->ei_block))
745 			r = m - 1;
746 		else
747 			l = m + 1;
748 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
749 				m, le32_to_cpu(m->ei_block),
750 				r, le32_to_cpu(r->ei_block));
751 	}
752 
753 	path->p_idx = l - 1;
754 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
755 		  ext4_idx_pblock(path->p_idx));
756 
757 #ifdef CHECK_BINSEARCH
758 	{
759 		struct ext4_extent_idx *chix, *ix;
760 		int k;
761 
762 		chix = ix = EXT_FIRST_INDEX(eh);
763 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
764 		  if (k != 0 &&
765 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
766 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
767 				       "first=0x%p\n", k,
768 				       ix, EXT_FIRST_INDEX(eh));
769 				printk(KERN_DEBUG "%u <= %u\n",
770 				       le32_to_cpu(ix->ei_block),
771 				       le32_to_cpu(ix[-1].ei_block));
772 			}
773 			BUG_ON(k && le32_to_cpu(ix->ei_block)
774 					   <= le32_to_cpu(ix[-1].ei_block));
775 			if (block < le32_to_cpu(ix->ei_block))
776 				break;
777 			chix = ix;
778 		}
779 		BUG_ON(chix != path->p_idx);
780 	}
781 #endif
782 
783 }
784 
785 /*
786  * ext4_ext_binsearch:
787  * binary search for closest extent of the given block
788  * the header must be checked before calling this
789  */
790 static void
791 ext4_ext_binsearch(struct inode *inode,
792 		struct ext4_ext_path *path, ext4_lblk_t block)
793 {
794 	struct ext4_extent_header *eh = path->p_hdr;
795 	struct ext4_extent *r, *l, *m;
796 
797 	if (eh->eh_entries == 0) {
798 		/*
799 		 * this leaf is empty:
800 		 * we get such a leaf in split/add case
801 		 */
802 		return;
803 	}
804 
805 	ext_debug("binsearch for %u:  ", block);
806 
807 	l = EXT_FIRST_EXTENT(eh) + 1;
808 	r = EXT_LAST_EXTENT(eh);
809 
810 	while (l <= r) {
811 		m = l + (r - l) / 2;
812 		if (block < le32_to_cpu(m->ee_block))
813 			r = m - 1;
814 		else
815 			l = m + 1;
816 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
817 				m, le32_to_cpu(m->ee_block),
818 				r, le32_to_cpu(r->ee_block));
819 	}
820 
821 	path->p_ext = l - 1;
822 	ext_debug("  -> %d:%llu:[%d]%d ",
823 			le32_to_cpu(path->p_ext->ee_block),
824 			ext4_ext_pblock(path->p_ext),
825 			ext4_ext_is_unwritten(path->p_ext),
826 			ext4_ext_get_actual_len(path->p_ext));
827 
828 #ifdef CHECK_BINSEARCH
829 	{
830 		struct ext4_extent *chex, *ex;
831 		int k;
832 
833 		chex = ex = EXT_FIRST_EXTENT(eh);
834 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
835 			BUG_ON(k && le32_to_cpu(ex->ee_block)
836 					  <= le32_to_cpu(ex[-1].ee_block));
837 			if (block < le32_to_cpu(ex->ee_block))
838 				break;
839 			chex = ex;
840 		}
841 		BUG_ON(chex != path->p_ext);
842 	}
843 #endif
844 
845 }
846 
847 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
848 {
849 	struct ext4_extent_header *eh;
850 
851 	eh = ext_inode_hdr(inode);
852 	eh->eh_depth = 0;
853 	eh->eh_entries = 0;
854 	eh->eh_magic = EXT4_EXT_MAGIC;
855 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
856 	ext4_mark_inode_dirty(handle, inode);
857 	return 0;
858 }
859 
860 struct ext4_ext_path *
861 ext4_find_extent(struct inode *inode, ext4_lblk_t block,
862 		 struct ext4_ext_path **orig_path, int flags)
863 {
864 	struct ext4_extent_header *eh;
865 	struct buffer_head *bh;
866 	struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
867 	short int depth, i, ppos = 0;
868 	int ret;
869 
870 	eh = ext_inode_hdr(inode);
871 	depth = ext_depth(inode);
872 
873 	if (path) {
874 		ext4_ext_drop_refs(path);
875 		if (depth > path[0].p_maxdepth) {
876 			kfree(path);
877 			*orig_path = path = NULL;
878 		}
879 	}
880 	if (!path) {
881 		/* account possible depth increase */
882 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
883 				GFP_NOFS);
884 		if (unlikely(!path))
885 			return ERR_PTR(-ENOMEM);
886 		path[0].p_maxdepth = depth + 1;
887 	}
888 	path[0].p_hdr = eh;
889 	path[0].p_bh = NULL;
890 
891 	i = depth;
892 	/* walk through the tree */
893 	while (i) {
894 		ext_debug("depth %d: num %d, max %d\n",
895 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
896 
897 		ext4_ext_binsearch_idx(inode, path + ppos, block);
898 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
899 		path[ppos].p_depth = i;
900 		path[ppos].p_ext = NULL;
901 
902 		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
903 					    flags);
904 		if (IS_ERR(bh)) {
905 			ret = PTR_ERR(bh);
906 			goto err;
907 		}
908 
909 		eh = ext_block_hdr(bh);
910 		ppos++;
911 		path[ppos].p_bh = bh;
912 		path[ppos].p_hdr = eh;
913 	}
914 
915 	path[ppos].p_depth = i;
916 	path[ppos].p_ext = NULL;
917 	path[ppos].p_idx = NULL;
918 
919 	/* find extent */
920 	ext4_ext_binsearch(inode, path + ppos, block);
921 	/* if not an empty leaf */
922 	if (path[ppos].p_ext)
923 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
924 
925 	ext4_ext_show_path(inode, path);
926 
927 	return path;
928 
929 err:
930 	ext4_ext_drop_refs(path);
931 	kfree(path);
932 	if (orig_path)
933 		*orig_path = NULL;
934 	return ERR_PTR(ret);
935 }
936 
937 /*
938  * ext4_ext_insert_index:
939  * insert new index [@logical;@ptr] into the block at @curp;
940  * check where to insert: before @curp or after @curp
941  */
942 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
943 				 struct ext4_ext_path *curp,
944 				 int logical, ext4_fsblk_t ptr)
945 {
946 	struct ext4_extent_idx *ix;
947 	int len, err;
948 
949 	err = ext4_ext_get_access(handle, inode, curp);
950 	if (err)
951 		return err;
952 
953 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
954 		EXT4_ERROR_INODE(inode,
955 				 "logical %d == ei_block %d!",
956 				 logical, le32_to_cpu(curp->p_idx->ei_block));
957 		return -EFSCORRUPTED;
958 	}
959 
960 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
961 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
962 		EXT4_ERROR_INODE(inode,
963 				 "eh_entries %d >= eh_max %d!",
964 				 le16_to_cpu(curp->p_hdr->eh_entries),
965 				 le16_to_cpu(curp->p_hdr->eh_max));
966 		return -EFSCORRUPTED;
967 	}
968 
969 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
970 		/* insert after */
971 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
972 		ix = curp->p_idx + 1;
973 	} else {
974 		/* insert before */
975 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
976 		ix = curp->p_idx;
977 	}
978 
979 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
980 	BUG_ON(len < 0);
981 	if (len > 0) {
982 		ext_debug("insert new index %d: "
983 				"move %d indices from 0x%p to 0x%p\n",
984 				logical, len, ix, ix + 1);
985 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
986 	}
987 
988 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
989 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
990 		return -EFSCORRUPTED;
991 	}
992 
993 	ix->ei_block = cpu_to_le32(logical);
994 	ext4_idx_store_pblock(ix, ptr);
995 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
996 
997 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
998 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
999 		return -EFSCORRUPTED;
1000 	}
1001 
1002 	err = ext4_ext_dirty(handle, inode, curp);
1003 	ext4_std_error(inode->i_sb, err);
1004 
1005 	return err;
1006 }
1007 
1008 /*
1009  * ext4_ext_split:
1010  * inserts new subtree into the path, using free index entry
1011  * at depth @at:
1012  * - allocates all needed blocks (new leaf and all intermediate index blocks)
1013  * - makes decision where to split
1014  * - moves remaining extents and index entries (right to the split point)
1015  *   into the newly allocated blocks
1016  * - initializes subtree
1017  */
1018 static int ext4_ext_split(handle_t *handle, struct inode *inode,
1019 			  unsigned int flags,
1020 			  struct ext4_ext_path *path,
1021 			  struct ext4_extent *newext, int at)
1022 {
1023 	struct buffer_head *bh = NULL;
1024 	int depth = ext_depth(inode);
1025 	struct ext4_extent_header *neh;
1026 	struct ext4_extent_idx *fidx;
1027 	int i = at, k, m, a;
1028 	ext4_fsblk_t newblock, oldblock;
1029 	__le32 border;
1030 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1031 	int err = 0;
1032 
1033 	/* make decision: where to split? */
1034 	/* FIXME: now decision is simplest: at current extent */
1035 
1036 	/* if current leaf will be split, then we should use
1037 	 * border from split point */
1038 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1039 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1040 		return -EFSCORRUPTED;
1041 	}
1042 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1043 		border = path[depth].p_ext[1].ee_block;
1044 		ext_debug("leaf will be split."
1045 				" next leaf starts at %d\n",
1046 				  le32_to_cpu(border));
1047 	} else {
1048 		border = newext->ee_block;
1049 		ext_debug("leaf will be added."
1050 				" next leaf starts at %d\n",
1051 				le32_to_cpu(border));
1052 	}
1053 
1054 	/*
1055 	 * If error occurs, then we break processing
1056 	 * and mark filesystem read-only. index won't
1057 	 * be inserted and tree will be in consistent
1058 	 * state. Next mount will repair buffers too.
1059 	 */
1060 
1061 	/*
1062 	 * Get array to track all allocated blocks.
1063 	 * We need this to handle errors and free blocks
1064 	 * upon them.
1065 	 */
1066 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1067 	if (!ablocks)
1068 		return -ENOMEM;
1069 
1070 	/* allocate all needed blocks */
1071 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1072 	for (a = 0; a < depth - at; a++) {
1073 		newblock = ext4_ext_new_meta_block(handle, inode, path,
1074 						   newext, &err, flags);
1075 		if (newblock == 0)
1076 			goto cleanup;
1077 		ablocks[a] = newblock;
1078 	}
1079 
1080 	/* initialize new leaf */
1081 	newblock = ablocks[--a];
1082 	if (unlikely(newblock == 0)) {
1083 		EXT4_ERROR_INODE(inode, "newblock == 0!");
1084 		err = -EFSCORRUPTED;
1085 		goto cleanup;
1086 	}
1087 	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1088 	if (unlikely(!bh)) {
1089 		err = -ENOMEM;
1090 		goto cleanup;
1091 	}
1092 	lock_buffer(bh);
1093 
1094 	err = ext4_journal_get_create_access(handle, bh);
1095 	if (err)
1096 		goto cleanup;
1097 
1098 	neh = ext_block_hdr(bh);
1099 	neh->eh_entries = 0;
1100 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1101 	neh->eh_magic = EXT4_EXT_MAGIC;
1102 	neh->eh_depth = 0;
1103 
1104 	/* move remainder of path[depth] to the new leaf */
1105 	if (unlikely(path[depth].p_hdr->eh_entries !=
1106 		     path[depth].p_hdr->eh_max)) {
1107 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1108 				 path[depth].p_hdr->eh_entries,
1109 				 path[depth].p_hdr->eh_max);
1110 		err = -EFSCORRUPTED;
1111 		goto cleanup;
1112 	}
1113 	/* start copy from next extent */
1114 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1115 	ext4_ext_show_move(inode, path, newblock, depth);
1116 	if (m) {
1117 		struct ext4_extent *ex;
1118 		ex = EXT_FIRST_EXTENT(neh);
1119 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1120 		le16_add_cpu(&neh->eh_entries, m);
1121 	}
1122 
1123 	ext4_extent_block_csum_set(inode, neh);
1124 	set_buffer_uptodate(bh);
1125 	unlock_buffer(bh);
1126 
1127 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1128 	if (err)
1129 		goto cleanup;
1130 	brelse(bh);
1131 	bh = NULL;
1132 
1133 	/* correct old leaf */
1134 	if (m) {
1135 		err = ext4_ext_get_access(handle, inode, path + depth);
1136 		if (err)
1137 			goto cleanup;
1138 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1139 		err = ext4_ext_dirty(handle, inode, path + depth);
1140 		if (err)
1141 			goto cleanup;
1142 
1143 	}
1144 
1145 	/* create intermediate indexes */
1146 	k = depth - at - 1;
1147 	if (unlikely(k < 0)) {
1148 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1149 		err = -EFSCORRUPTED;
1150 		goto cleanup;
1151 	}
1152 	if (k)
1153 		ext_debug("create %d intermediate indices\n", k);
1154 	/* insert new index into current index block */
1155 	/* current depth stored in i var */
1156 	i = depth - 1;
1157 	while (k--) {
1158 		oldblock = newblock;
1159 		newblock = ablocks[--a];
1160 		bh = sb_getblk(inode->i_sb, newblock);
1161 		if (unlikely(!bh)) {
1162 			err = -ENOMEM;
1163 			goto cleanup;
1164 		}
1165 		lock_buffer(bh);
1166 
1167 		err = ext4_journal_get_create_access(handle, bh);
1168 		if (err)
1169 			goto cleanup;
1170 
1171 		neh = ext_block_hdr(bh);
1172 		neh->eh_entries = cpu_to_le16(1);
1173 		neh->eh_magic = EXT4_EXT_MAGIC;
1174 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1175 		neh->eh_depth = cpu_to_le16(depth - i);
1176 		fidx = EXT_FIRST_INDEX(neh);
1177 		fidx->ei_block = border;
1178 		ext4_idx_store_pblock(fidx, oldblock);
1179 
1180 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1181 				i, newblock, le32_to_cpu(border), oldblock);
1182 
1183 		/* move remainder of path[i] to the new index block */
1184 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1185 					EXT_LAST_INDEX(path[i].p_hdr))) {
1186 			EXT4_ERROR_INODE(inode,
1187 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1188 					 le32_to_cpu(path[i].p_ext->ee_block));
1189 			err = -EFSCORRUPTED;
1190 			goto cleanup;
1191 		}
1192 		/* start copy indexes */
1193 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1194 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1195 				EXT_MAX_INDEX(path[i].p_hdr));
1196 		ext4_ext_show_move(inode, path, newblock, i);
1197 		if (m) {
1198 			memmove(++fidx, path[i].p_idx,
1199 				sizeof(struct ext4_extent_idx) * m);
1200 			le16_add_cpu(&neh->eh_entries, m);
1201 		}
1202 		ext4_extent_block_csum_set(inode, neh);
1203 		set_buffer_uptodate(bh);
1204 		unlock_buffer(bh);
1205 
1206 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1207 		if (err)
1208 			goto cleanup;
1209 		brelse(bh);
1210 		bh = NULL;
1211 
1212 		/* correct old index */
1213 		if (m) {
1214 			err = ext4_ext_get_access(handle, inode, path + i);
1215 			if (err)
1216 				goto cleanup;
1217 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1218 			err = ext4_ext_dirty(handle, inode, path + i);
1219 			if (err)
1220 				goto cleanup;
1221 		}
1222 
1223 		i--;
1224 	}
1225 
1226 	/* insert new index */
1227 	err = ext4_ext_insert_index(handle, inode, path + at,
1228 				    le32_to_cpu(border), newblock);
1229 
1230 cleanup:
1231 	if (bh) {
1232 		if (buffer_locked(bh))
1233 			unlock_buffer(bh);
1234 		brelse(bh);
1235 	}
1236 
1237 	if (err) {
1238 		/* free all allocated blocks in error case */
1239 		for (i = 0; i < depth; i++) {
1240 			if (!ablocks[i])
1241 				continue;
1242 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1243 					 EXT4_FREE_BLOCKS_METADATA);
1244 		}
1245 	}
1246 	kfree(ablocks);
1247 
1248 	return err;
1249 }
1250 
1251 /*
1252  * ext4_ext_grow_indepth:
1253  * implements tree growing procedure:
1254  * - allocates new block
1255  * - moves top-level data (index block or leaf) into the new block
1256  * - initializes new top-level, creating index that points to the
1257  *   just created block
1258  */
1259 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1260 				 unsigned int flags)
1261 {
1262 	struct ext4_extent_header *neh;
1263 	struct buffer_head *bh;
1264 	ext4_fsblk_t newblock, goal = 0;
1265 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
1266 	int err = 0;
1267 
1268 	/* Try to prepend new index to old one */
1269 	if (ext_depth(inode))
1270 		goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
1271 	if (goal > le32_to_cpu(es->s_first_data_block)) {
1272 		flags |= EXT4_MB_HINT_TRY_GOAL;
1273 		goal--;
1274 	} else
1275 		goal = ext4_inode_to_goal_block(inode);
1276 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
1277 					NULL, &err);
1278 	if (newblock == 0)
1279 		return err;
1280 
1281 	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1282 	if (unlikely(!bh))
1283 		return -ENOMEM;
1284 	lock_buffer(bh);
1285 
1286 	err = ext4_journal_get_create_access(handle, bh);
1287 	if (err) {
1288 		unlock_buffer(bh);
1289 		goto out;
1290 	}
1291 
1292 	/* move top-level index/leaf into new block */
1293 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1294 		sizeof(EXT4_I(inode)->i_data));
1295 
1296 	/* set size of new block */
1297 	neh = ext_block_hdr(bh);
1298 	/* old root could have indexes or leaves
1299 	 * so calculate e_max right way */
1300 	if (ext_depth(inode))
1301 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1302 	else
1303 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1304 	neh->eh_magic = EXT4_EXT_MAGIC;
1305 	ext4_extent_block_csum_set(inode, neh);
1306 	set_buffer_uptodate(bh);
1307 	unlock_buffer(bh);
1308 
1309 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1310 	if (err)
1311 		goto out;
1312 
1313 	/* Update top-level index: num,max,pointer */
1314 	neh = ext_inode_hdr(inode);
1315 	neh->eh_entries = cpu_to_le16(1);
1316 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1317 	if (neh->eh_depth == 0) {
1318 		/* Root extent block becomes index block */
1319 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1320 		EXT_FIRST_INDEX(neh)->ei_block =
1321 			EXT_FIRST_EXTENT(neh)->ee_block;
1322 	}
1323 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1324 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1325 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1326 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1327 
1328 	le16_add_cpu(&neh->eh_depth, 1);
1329 	ext4_mark_inode_dirty(handle, inode);
1330 out:
1331 	brelse(bh);
1332 
1333 	return err;
1334 }
1335 
1336 /*
1337  * ext4_ext_create_new_leaf:
1338  * finds empty index and adds new leaf.
1339  * if no free index is found, then it requests in-depth growing.
1340  */
1341 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1342 				    unsigned int mb_flags,
1343 				    unsigned int gb_flags,
1344 				    struct ext4_ext_path **ppath,
1345 				    struct ext4_extent *newext)
1346 {
1347 	struct ext4_ext_path *path = *ppath;
1348 	struct ext4_ext_path *curp;
1349 	int depth, i, err = 0;
1350 
1351 repeat:
1352 	i = depth = ext_depth(inode);
1353 
1354 	/* walk up to the tree and look for free index entry */
1355 	curp = path + depth;
1356 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1357 		i--;
1358 		curp--;
1359 	}
1360 
1361 	/* we use already allocated block for index block,
1362 	 * so subsequent data blocks should be contiguous */
1363 	if (EXT_HAS_FREE_INDEX(curp)) {
1364 		/* if we found index with free entry, then use that
1365 		 * entry: create all needed subtree and add new leaf */
1366 		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1367 		if (err)
1368 			goto out;
1369 
1370 		/* refill path */
1371 		path = ext4_find_extent(inode,
1372 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1373 				    ppath, gb_flags);
1374 		if (IS_ERR(path))
1375 			err = PTR_ERR(path);
1376 	} else {
1377 		/* tree is full, time to grow in depth */
1378 		err = ext4_ext_grow_indepth(handle, inode, mb_flags);
1379 		if (err)
1380 			goto out;
1381 
1382 		/* refill path */
1383 		path = ext4_find_extent(inode,
1384 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1385 				    ppath, gb_flags);
1386 		if (IS_ERR(path)) {
1387 			err = PTR_ERR(path);
1388 			goto out;
1389 		}
1390 
1391 		/*
1392 		 * only first (depth 0 -> 1) produces free space;
1393 		 * in all other cases we have to split the grown tree
1394 		 */
1395 		depth = ext_depth(inode);
1396 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1397 			/* now we need to split */
1398 			goto repeat;
1399 		}
1400 	}
1401 
1402 out:
1403 	return err;
1404 }
1405 
1406 /*
1407  * search the closest allocated block to the left for *logical
1408  * and returns it at @logical + it's physical address at @phys
1409  * if *logical is the smallest allocated block, the function
1410  * returns 0 at @phys
1411  * return value contains 0 (success) or error code
1412  */
1413 static int ext4_ext_search_left(struct inode *inode,
1414 				struct ext4_ext_path *path,
1415 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1416 {
1417 	struct ext4_extent_idx *ix;
1418 	struct ext4_extent *ex;
1419 	int depth, ee_len;
1420 
1421 	if (unlikely(path == NULL)) {
1422 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1423 		return -EFSCORRUPTED;
1424 	}
1425 	depth = path->p_depth;
1426 	*phys = 0;
1427 
1428 	if (depth == 0 && path->p_ext == NULL)
1429 		return 0;
1430 
1431 	/* usually extent in the path covers blocks smaller
1432 	 * then *logical, but it can be that extent is the
1433 	 * first one in the file */
1434 
1435 	ex = path[depth].p_ext;
1436 	ee_len = ext4_ext_get_actual_len(ex);
1437 	if (*logical < le32_to_cpu(ex->ee_block)) {
1438 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1439 			EXT4_ERROR_INODE(inode,
1440 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1441 					 *logical, le32_to_cpu(ex->ee_block));
1442 			return -EFSCORRUPTED;
1443 		}
1444 		while (--depth >= 0) {
1445 			ix = path[depth].p_idx;
1446 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1447 				EXT4_ERROR_INODE(inode,
1448 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1449 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1450 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1451 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1452 				  depth);
1453 				return -EFSCORRUPTED;
1454 			}
1455 		}
1456 		return 0;
1457 	}
1458 
1459 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1460 		EXT4_ERROR_INODE(inode,
1461 				 "logical %d < ee_block %d + ee_len %d!",
1462 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1463 		return -EFSCORRUPTED;
1464 	}
1465 
1466 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1467 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1468 	return 0;
1469 }
1470 
1471 /*
1472  * search the closest allocated block to the right for *logical
1473  * and returns it at @logical + it's physical address at @phys
1474  * if *logical is the largest allocated block, the function
1475  * returns 0 at @phys
1476  * return value contains 0 (success) or error code
1477  */
1478 static int ext4_ext_search_right(struct inode *inode,
1479 				 struct ext4_ext_path *path,
1480 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1481 				 struct ext4_extent **ret_ex)
1482 {
1483 	struct buffer_head *bh = NULL;
1484 	struct ext4_extent_header *eh;
1485 	struct ext4_extent_idx *ix;
1486 	struct ext4_extent *ex;
1487 	ext4_fsblk_t block;
1488 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1489 	int ee_len;
1490 
1491 	if (unlikely(path == NULL)) {
1492 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1493 		return -EFSCORRUPTED;
1494 	}
1495 	depth = path->p_depth;
1496 	*phys = 0;
1497 
1498 	if (depth == 0 && path->p_ext == NULL)
1499 		return 0;
1500 
1501 	/* usually extent in the path covers blocks smaller
1502 	 * then *logical, but it can be that extent is the
1503 	 * first one in the file */
1504 
1505 	ex = path[depth].p_ext;
1506 	ee_len = ext4_ext_get_actual_len(ex);
1507 	if (*logical < le32_to_cpu(ex->ee_block)) {
1508 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1509 			EXT4_ERROR_INODE(inode,
1510 					 "first_extent(path[%d].p_hdr) != ex",
1511 					 depth);
1512 			return -EFSCORRUPTED;
1513 		}
1514 		while (--depth >= 0) {
1515 			ix = path[depth].p_idx;
1516 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1517 				EXT4_ERROR_INODE(inode,
1518 						 "ix != EXT_FIRST_INDEX *logical %d!",
1519 						 *logical);
1520 				return -EFSCORRUPTED;
1521 			}
1522 		}
1523 		goto found_extent;
1524 	}
1525 
1526 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1527 		EXT4_ERROR_INODE(inode,
1528 				 "logical %d < ee_block %d + ee_len %d!",
1529 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1530 		return -EFSCORRUPTED;
1531 	}
1532 
1533 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1534 		/* next allocated block in this leaf */
1535 		ex++;
1536 		goto found_extent;
1537 	}
1538 
1539 	/* go up and search for index to the right */
1540 	while (--depth >= 0) {
1541 		ix = path[depth].p_idx;
1542 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1543 			goto got_index;
1544 	}
1545 
1546 	/* we've gone up to the root and found no index to the right */
1547 	return 0;
1548 
1549 got_index:
1550 	/* we've found index to the right, let's
1551 	 * follow it and find the closest allocated
1552 	 * block to the right */
1553 	ix++;
1554 	block = ext4_idx_pblock(ix);
1555 	while (++depth < path->p_depth) {
1556 		/* subtract from p_depth to get proper eh_depth */
1557 		bh = read_extent_tree_block(inode, block,
1558 					    path->p_depth - depth, 0);
1559 		if (IS_ERR(bh))
1560 			return PTR_ERR(bh);
1561 		eh = ext_block_hdr(bh);
1562 		ix = EXT_FIRST_INDEX(eh);
1563 		block = ext4_idx_pblock(ix);
1564 		put_bh(bh);
1565 	}
1566 
1567 	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1568 	if (IS_ERR(bh))
1569 		return PTR_ERR(bh);
1570 	eh = ext_block_hdr(bh);
1571 	ex = EXT_FIRST_EXTENT(eh);
1572 found_extent:
1573 	*logical = le32_to_cpu(ex->ee_block);
1574 	*phys = ext4_ext_pblock(ex);
1575 	*ret_ex = ex;
1576 	if (bh)
1577 		put_bh(bh);
1578 	return 0;
1579 }
1580 
1581 /*
1582  * ext4_ext_next_allocated_block:
1583  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1584  * NOTE: it considers block number from index entry as
1585  * allocated block. Thus, index entries have to be consistent
1586  * with leaves.
1587  */
1588 ext4_lblk_t
1589 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1590 {
1591 	int depth;
1592 
1593 	BUG_ON(path == NULL);
1594 	depth = path->p_depth;
1595 
1596 	if (depth == 0 && path->p_ext == NULL)
1597 		return EXT_MAX_BLOCKS;
1598 
1599 	while (depth >= 0) {
1600 		if (depth == path->p_depth) {
1601 			/* leaf */
1602 			if (path[depth].p_ext &&
1603 				path[depth].p_ext !=
1604 					EXT_LAST_EXTENT(path[depth].p_hdr))
1605 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1606 		} else {
1607 			/* index */
1608 			if (path[depth].p_idx !=
1609 					EXT_LAST_INDEX(path[depth].p_hdr))
1610 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1611 		}
1612 		depth--;
1613 	}
1614 
1615 	return EXT_MAX_BLOCKS;
1616 }
1617 
1618 /*
1619  * ext4_ext_next_leaf_block:
1620  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1621  */
1622 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1623 {
1624 	int depth;
1625 
1626 	BUG_ON(path == NULL);
1627 	depth = path->p_depth;
1628 
1629 	/* zero-tree has no leaf blocks at all */
1630 	if (depth == 0)
1631 		return EXT_MAX_BLOCKS;
1632 
1633 	/* go to index block */
1634 	depth--;
1635 
1636 	while (depth >= 0) {
1637 		if (path[depth].p_idx !=
1638 				EXT_LAST_INDEX(path[depth].p_hdr))
1639 			return (ext4_lblk_t)
1640 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1641 		depth--;
1642 	}
1643 
1644 	return EXT_MAX_BLOCKS;
1645 }
1646 
1647 /*
1648  * ext4_ext_correct_indexes:
1649  * if leaf gets modified and modified extent is first in the leaf,
1650  * then we have to correct all indexes above.
1651  * TODO: do we need to correct tree in all cases?
1652  */
1653 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1654 				struct ext4_ext_path *path)
1655 {
1656 	struct ext4_extent_header *eh;
1657 	int depth = ext_depth(inode);
1658 	struct ext4_extent *ex;
1659 	__le32 border;
1660 	int k, err = 0;
1661 
1662 	eh = path[depth].p_hdr;
1663 	ex = path[depth].p_ext;
1664 
1665 	if (unlikely(ex == NULL || eh == NULL)) {
1666 		EXT4_ERROR_INODE(inode,
1667 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1668 		return -EFSCORRUPTED;
1669 	}
1670 
1671 	if (depth == 0) {
1672 		/* there is no tree at all */
1673 		return 0;
1674 	}
1675 
1676 	if (ex != EXT_FIRST_EXTENT(eh)) {
1677 		/* we correct tree if first leaf got modified only */
1678 		return 0;
1679 	}
1680 
1681 	/*
1682 	 * TODO: we need correction if border is smaller than current one
1683 	 */
1684 	k = depth - 1;
1685 	border = path[depth].p_ext->ee_block;
1686 	err = ext4_ext_get_access(handle, inode, path + k);
1687 	if (err)
1688 		return err;
1689 	path[k].p_idx->ei_block = border;
1690 	err = ext4_ext_dirty(handle, inode, path + k);
1691 	if (err)
1692 		return err;
1693 
1694 	while (k--) {
1695 		/* change all left-side indexes */
1696 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1697 			break;
1698 		err = ext4_ext_get_access(handle, inode, path + k);
1699 		if (err)
1700 			break;
1701 		path[k].p_idx->ei_block = border;
1702 		err = ext4_ext_dirty(handle, inode, path + k);
1703 		if (err)
1704 			break;
1705 	}
1706 
1707 	return err;
1708 }
1709 
1710 int
1711 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1712 				struct ext4_extent *ex2)
1713 {
1714 	unsigned short ext1_ee_len, ext2_ee_len;
1715 
1716 	if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1717 		return 0;
1718 
1719 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1720 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1721 
1722 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1723 			le32_to_cpu(ex2->ee_block))
1724 		return 0;
1725 
1726 	/*
1727 	 * To allow future support for preallocated extents to be added
1728 	 * as an RO_COMPAT feature, refuse to merge to extents if
1729 	 * this can result in the top bit of ee_len being set.
1730 	 */
1731 	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1732 		return 0;
1733 	/*
1734 	 * The check for IO to unwritten extent is somewhat racy as we
1735 	 * increment i_unwritten / set EXT4_STATE_DIO_UNWRITTEN only after
1736 	 * dropping i_data_sem. But reserved blocks should save us in that
1737 	 * case.
1738 	 */
1739 	if (ext4_ext_is_unwritten(ex1) &&
1740 	    (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1741 	     atomic_read(&EXT4_I(inode)->i_unwritten) ||
1742 	     (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1743 		return 0;
1744 #ifdef AGGRESSIVE_TEST
1745 	if (ext1_ee_len >= 4)
1746 		return 0;
1747 #endif
1748 
1749 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1750 		return 1;
1751 	return 0;
1752 }
1753 
1754 /*
1755  * This function tries to merge the "ex" extent to the next extent in the tree.
1756  * It always tries to merge towards right. If you want to merge towards
1757  * left, pass "ex - 1" as argument instead of "ex".
1758  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1759  * 1 if they got merged.
1760  */
1761 static int ext4_ext_try_to_merge_right(struct inode *inode,
1762 				 struct ext4_ext_path *path,
1763 				 struct ext4_extent *ex)
1764 {
1765 	struct ext4_extent_header *eh;
1766 	unsigned int depth, len;
1767 	int merge_done = 0, unwritten;
1768 
1769 	depth = ext_depth(inode);
1770 	BUG_ON(path[depth].p_hdr == NULL);
1771 	eh = path[depth].p_hdr;
1772 
1773 	while (ex < EXT_LAST_EXTENT(eh)) {
1774 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1775 			break;
1776 		/* merge with next extent! */
1777 		unwritten = ext4_ext_is_unwritten(ex);
1778 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1779 				+ ext4_ext_get_actual_len(ex + 1));
1780 		if (unwritten)
1781 			ext4_ext_mark_unwritten(ex);
1782 
1783 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1784 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1785 				* sizeof(struct ext4_extent);
1786 			memmove(ex + 1, ex + 2, len);
1787 		}
1788 		le16_add_cpu(&eh->eh_entries, -1);
1789 		merge_done = 1;
1790 		WARN_ON(eh->eh_entries == 0);
1791 		if (!eh->eh_entries)
1792 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1793 	}
1794 
1795 	return merge_done;
1796 }
1797 
1798 /*
1799  * This function does a very simple check to see if we can collapse
1800  * an extent tree with a single extent tree leaf block into the inode.
1801  */
1802 static void ext4_ext_try_to_merge_up(handle_t *handle,
1803 				     struct inode *inode,
1804 				     struct ext4_ext_path *path)
1805 {
1806 	size_t s;
1807 	unsigned max_root = ext4_ext_space_root(inode, 0);
1808 	ext4_fsblk_t blk;
1809 
1810 	if ((path[0].p_depth != 1) ||
1811 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1812 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1813 		return;
1814 
1815 	/*
1816 	 * We need to modify the block allocation bitmap and the block
1817 	 * group descriptor to release the extent tree block.  If we
1818 	 * can't get the journal credits, give up.
1819 	 */
1820 	if (ext4_journal_extend(handle, 2))
1821 		return;
1822 
1823 	/*
1824 	 * Copy the extent data up to the inode
1825 	 */
1826 	blk = ext4_idx_pblock(path[0].p_idx);
1827 	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1828 		sizeof(struct ext4_extent_idx);
1829 	s += sizeof(struct ext4_extent_header);
1830 
1831 	path[1].p_maxdepth = path[0].p_maxdepth;
1832 	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1833 	path[0].p_depth = 0;
1834 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1835 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1836 	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1837 
1838 	brelse(path[1].p_bh);
1839 	ext4_free_blocks(handle, inode, NULL, blk, 1,
1840 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1841 }
1842 
1843 /*
1844  * This function tries to merge the @ex extent to neighbours in the tree.
1845  * return 1 if merge left else 0.
1846  */
1847 static void ext4_ext_try_to_merge(handle_t *handle,
1848 				  struct inode *inode,
1849 				  struct ext4_ext_path *path,
1850 				  struct ext4_extent *ex) {
1851 	struct ext4_extent_header *eh;
1852 	unsigned int depth;
1853 	int merge_done = 0;
1854 
1855 	depth = ext_depth(inode);
1856 	BUG_ON(path[depth].p_hdr == NULL);
1857 	eh = path[depth].p_hdr;
1858 
1859 	if (ex > EXT_FIRST_EXTENT(eh))
1860 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1861 
1862 	if (!merge_done)
1863 		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1864 
1865 	ext4_ext_try_to_merge_up(handle, inode, path);
1866 }
1867 
1868 /*
1869  * check if a portion of the "newext" extent overlaps with an
1870  * existing extent.
1871  *
1872  * If there is an overlap discovered, it updates the length of the newext
1873  * such that there will be no overlap, and then returns 1.
1874  * If there is no overlap found, it returns 0.
1875  */
1876 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1877 					   struct inode *inode,
1878 					   struct ext4_extent *newext,
1879 					   struct ext4_ext_path *path)
1880 {
1881 	ext4_lblk_t b1, b2;
1882 	unsigned int depth, len1;
1883 	unsigned int ret = 0;
1884 
1885 	b1 = le32_to_cpu(newext->ee_block);
1886 	len1 = ext4_ext_get_actual_len(newext);
1887 	depth = ext_depth(inode);
1888 	if (!path[depth].p_ext)
1889 		goto out;
1890 	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1891 
1892 	/*
1893 	 * get the next allocated block if the extent in the path
1894 	 * is before the requested block(s)
1895 	 */
1896 	if (b2 < b1) {
1897 		b2 = ext4_ext_next_allocated_block(path);
1898 		if (b2 == EXT_MAX_BLOCKS)
1899 			goto out;
1900 		b2 = EXT4_LBLK_CMASK(sbi, b2);
1901 	}
1902 
1903 	/* check for wrap through zero on extent logical start block*/
1904 	if (b1 + len1 < b1) {
1905 		len1 = EXT_MAX_BLOCKS - b1;
1906 		newext->ee_len = cpu_to_le16(len1);
1907 		ret = 1;
1908 	}
1909 
1910 	/* check for overlap */
1911 	if (b1 + len1 > b2) {
1912 		newext->ee_len = cpu_to_le16(b2 - b1);
1913 		ret = 1;
1914 	}
1915 out:
1916 	return ret;
1917 }
1918 
1919 /*
1920  * ext4_ext_insert_extent:
1921  * tries to merge requsted extent into the existing extent or
1922  * inserts requested extent as new one into the tree,
1923  * creating new leaf in the no-space case.
1924  */
1925 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1926 				struct ext4_ext_path **ppath,
1927 				struct ext4_extent *newext, int gb_flags)
1928 {
1929 	struct ext4_ext_path *path = *ppath;
1930 	struct ext4_extent_header *eh;
1931 	struct ext4_extent *ex, *fex;
1932 	struct ext4_extent *nearex; /* nearest extent */
1933 	struct ext4_ext_path *npath = NULL;
1934 	int depth, len, err;
1935 	ext4_lblk_t next;
1936 	int mb_flags = 0, unwritten;
1937 
1938 	if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1939 		mb_flags |= EXT4_MB_DELALLOC_RESERVED;
1940 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1941 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1942 		return -EFSCORRUPTED;
1943 	}
1944 	depth = ext_depth(inode);
1945 	ex = path[depth].p_ext;
1946 	eh = path[depth].p_hdr;
1947 	if (unlikely(path[depth].p_hdr == NULL)) {
1948 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1949 		return -EFSCORRUPTED;
1950 	}
1951 
1952 	/* try to insert block into found extent and return */
1953 	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1954 
1955 		/*
1956 		 * Try to see whether we should rather test the extent on
1957 		 * right from ex, or from the left of ex. This is because
1958 		 * ext4_find_extent() can return either extent on the
1959 		 * left, or on the right from the searched position. This
1960 		 * will make merging more effective.
1961 		 */
1962 		if (ex < EXT_LAST_EXTENT(eh) &&
1963 		    (le32_to_cpu(ex->ee_block) +
1964 		    ext4_ext_get_actual_len(ex) <
1965 		    le32_to_cpu(newext->ee_block))) {
1966 			ex += 1;
1967 			goto prepend;
1968 		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1969 			   (le32_to_cpu(newext->ee_block) +
1970 			   ext4_ext_get_actual_len(newext) <
1971 			   le32_to_cpu(ex->ee_block)))
1972 			ex -= 1;
1973 
1974 		/* Try to append newex to the ex */
1975 		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1976 			ext_debug("append [%d]%d block to %u:[%d]%d"
1977 				  "(from %llu)\n",
1978 				  ext4_ext_is_unwritten(newext),
1979 				  ext4_ext_get_actual_len(newext),
1980 				  le32_to_cpu(ex->ee_block),
1981 				  ext4_ext_is_unwritten(ex),
1982 				  ext4_ext_get_actual_len(ex),
1983 				  ext4_ext_pblock(ex));
1984 			err = ext4_ext_get_access(handle, inode,
1985 						  path + depth);
1986 			if (err)
1987 				return err;
1988 			unwritten = ext4_ext_is_unwritten(ex);
1989 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1990 					+ ext4_ext_get_actual_len(newext));
1991 			if (unwritten)
1992 				ext4_ext_mark_unwritten(ex);
1993 			eh = path[depth].p_hdr;
1994 			nearex = ex;
1995 			goto merge;
1996 		}
1997 
1998 prepend:
1999 		/* Try to prepend newex to the ex */
2000 		if (ext4_can_extents_be_merged(inode, newext, ex)) {
2001 			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
2002 				  "(from %llu)\n",
2003 				  le32_to_cpu(newext->ee_block),
2004 				  ext4_ext_is_unwritten(newext),
2005 				  ext4_ext_get_actual_len(newext),
2006 				  le32_to_cpu(ex->ee_block),
2007 				  ext4_ext_is_unwritten(ex),
2008 				  ext4_ext_get_actual_len(ex),
2009 				  ext4_ext_pblock(ex));
2010 			err = ext4_ext_get_access(handle, inode,
2011 						  path + depth);
2012 			if (err)
2013 				return err;
2014 
2015 			unwritten = ext4_ext_is_unwritten(ex);
2016 			ex->ee_block = newext->ee_block;
2017 			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2018 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2019 					+ ext4_ext_get_actual_len(newext));
2020 			if (unwritten)
2021 				ext4_ext_mark_unwritten(ex);
2022 			eh = path[depth].p_hdr;
2023 			nearex = ex;
2024 			goto merge;
2025 		}
2026 	}
2027 
2028 	depth = ext_depth(inode);
2029 	eh = path[depth].p_hdr;
2030 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2031 		goto has_space;
2032 
2033 	/* probably next leaf has space for us? */
2034 	fex = EXT_LAST_EXTENT(eh);
2035 	next = EXT_MAX_BLOCKS;
2036 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2037 		next = ext4_ext_next_leaf_block(path);
2038 	if (next != EXT_MAX_BLOCKS) {
2039 		ext_debug("next leaf block - %u\n", next);
2040 		BUG_ON(npath != NULL);
2041 		npath = ext4_find_extent(inode, next, NULL, 0);
2042 		if (IS_ERR(npath))
2043 			return PTR_ERR(npath);
2044 		BUG_ON(npath->p_depth != path->p_depth);
2045 		eh = npath[depth].p_hdr;
2046 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2047 			ext_debug("next leaf isn't full(%d)\n",
2048 				  le16_to_cpu(eh->eh_entries));
2049 			path = npath;
2050 			goto has_space;
2051 		}
2052 		ext_debug("next leaf has no free space(%d,%d)\n",
2053 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2054 	}
2055 
2056 	/*
2057 	 * There is no free space in the found leaf.
2058 	 * We're gonna add a new leaf in the tree.
2059 	 */
2060 	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2061 		mb_flags |= EXT4_MB_USE_RESERVED;
2062 	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2063 				       ppath, newext);
2064 	if (err)
2065 		goto cleanup;
2066 	depth = ext_depth(inode);
2067 	eh = path[depth].p_hdr;
2068 
2069 has_space:
2070 	nearex = path[depth].p_ext;
2071 
2072 	err = ext4_ext_get_access(handle, inode, path + depth);
2073 	if (err)
2074 		goto cleanup;
2075 
2076 	if (!nearex) {
2077 		/* there is no extent in this leaf, create first one */
2078 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2079 				le32_to_cpu(newext->ee_block),
2080 				ext4_ext_pblock(newext),
2081 				ext4_ext_is_unwritten(newext),
2082 				ext4_ext_get_actual_len(newext));
2083 		nearex = EXT_FIRST_EXTENT(eh);
2084 	} else {
2085 		if (le32_to_cpu(newext->ee_block)
2086 			   > le32_to_cpu(nearex->ee_block)) {
2087 			/* Insert after */
2088 			ext_debug("insert %u:%llu:[%d]%d before: "
2089 					"nearest %p\n",
2090 					le32_to_cpu(newext->ee_block),
2091 					ext4_ext_pblock(newext),
2092 					ext4_ext_is_unwritten(newext),
2093 					ext4_ext_get_actual_len(newext),
2094 					nearex);
2095 			nearex++;
2096 		} else {
2097 			/* Insert before */
2098 			BUG_ON(newext->ee_block == nearex->ee_block);
2099 			ext_debug("insert %u:%llu:[%d]%d after: "
2100 					"nearest %p\n",
2101 					le32_to_cpu(newext->ee_block),
2102 					ext4_ext_pblock(newext),
2103 					ext4_ext_is_unwritten(newext),
2104 					ext4_ext_get_actual_len(newext),
2105 					nearex);
2106 		}
2107 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2108 		if (len > 0) {
2109 			ext_debug("insert %u:%llu:[%d]%d: "
2110 					"move %d extents from 0x%p to 0x%p\n",
2111 					le32_to_cpu(newext->ee_block),
2112 					ext4_ext_pblock(newext),
2113 					ext4_ext_is_unwritten(newext),
2114 					ext4_ext_get_actual_len(newext),
2115 					len, nearex, nearex + 1);
2116 			memmove(nearex + 1, nearex,
2117 				len * sizeof(struct ext4_extent));
2118 		}
2119 	}
2120 
2121 	le16_add_cpu(&eh->eh_entries, 1);
2122 	path[depth].p_ext = nearex;
2123 	nearex->ee_block = newext->ee_block;
2124 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2125 	nearex->ee_len = newext->ee_len;
2126 
2127 merge:
2128 	/* try to merge extents */
2129 	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2130 		ext4_ext_try_to_merge(handle, inode, path, nearex);
2131 
2132 
2133 	/* time to correct all indexes above */
2134 	err = ext4_ext_correct_indexes(handle, inode, path);
2135 	if (err)
2136 		goto cleanup;
2137 
2138 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2139 
2140 cleanup:
2141 	ext4_ext_drop_refs(npath);
2142 	kfree(npath);
2143 	return err;
2144 }
2145 
2146 static int ext4_fill_fiemap_extents(struct inode *inode,
2147 				    ext4_lblk_t block, ext4_lblk_t num,
2148 				    struct fiemap_extent_info *fieinfo)
2149 {
2150 	struct ext4_ext_path *path = NULL;
2151 	struct ext4_extent *ex;
2152 	struct extent_status es;
2153 	ext4_lblk_t next, next_del, start = 0, end = 0;
2154 	ext4_lblk_t last = block + num;
2155 	int exists, depth = 0, err = 0;
2156 	unsigned int flags = 0;
2157 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2158 
2159 	while (block < last && block != EXT_MAX_BLOCKS) {
2160 		num = last - block;
2161 		/* find extent for this block */
2162 		down_read(&EXT4_I(inode)->i_data_sem);
2163 
2164 		path = ext4_find_extent(inode, block, &path, 0);
2165 		if (IS_ERR(path)) {
2166 			up_read(&EXT4_I(inode)->i_data_sem);
2167 			err = PTR_ERR(path);
2168 			path = NULL;
2169 			break;
2170 		}
2171 
2172 		depth = ext_depth(inode);
2173 		if (unlikely(path[depth].p_hdr == NULL)) {
2174 			up_read(&EXT4_I(inode)->i_data_sem);
2175 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2176 			err = -EFSCORRUPTED;
2177 			break;
2178 		}
2179 		ex = path[depth].p_ext;
2180 		next = ext4_ext_next_allocated_block(path);
2181 
2182 		flags = 0;
2183 		exists = 0;
2184 		if (!ex) {
2185 			/* there is no extent yet, so try to allocate
2186 			 * all requested space */
2187 			start = block;
2188 			end = block + num;
2189 		} else if (le32_to_cpu(ex->ee_block) > block) {
2190 			/* need to allocate space before found extent */
2191 			start = block;
2192 			end = le32_to_cpu(ex->ee_block);
2193 			if (block + num < end)
2194 				end = block + num;
2195 		} else if (block >= le32_to_cpu(ex->ee_block)
2196 					+ ext4_ext_get_actual_len(ex)) {
2197 			/* need to allocate space after found extent */
2198 			start = block;
2199 			end = block + num;
2200 			if (end >= next)
2201 				end = next;
2202 		} else if (block >= le32_to_cpu(ex->ee_block)) {
2203 			/*
2204 			 * some part of requested space is covered
2205 			 * by found extent
2206 			 */
2207 			start = block;
2208 			end = le32_to_cpu(ex->ee_block)
2209 				+ ext4_ext_get_actual_len(ex);
2210 			if (block + num < end)
2211 				end = block + num;
2212 			exists = 1;
2213 		} else {
2214 			BUG();
2215 		}
2216 		BUG_ON(end <= start);
2217 
2218 		if (!exists) {
2219 			es.es_lblk = start;
2220 			es.es_len = end - start;
2221 			es.es_pblk = 0;
2222 		} else {
2223 			es.es_lblk = le32_to_cpu(ex->ee_block);
2224 			es.es_len = ext4_ext_get_actual_len(ex);
2225 			es.es_pblk = ext4_ext_pblock(ex);
2226 			if (ext4_ext_is_unwritten(ex))
2227 				flags |= FIEMAP_EXTENT_UNWRITTEN;
2228 		}
2229 
2230 		/*
2231 		 * Find delayed extent and update es accordingly. We call
2232 		 * it even in !exists case to find out whether es is the
2233 		 * last existing extent or not.
2234 		 */
2235 		next_del = ext4_find_delayed_extent(inode, &es);
2236 		if (!exists && next_del) {
2237 			exists = 1;
2238 			flags |= (FIEMAP_EXTENT_DELALLOC |
2239 				  FIEMAP_EXTENT_UNKNOWN);
2240 		}
2241 		up_read(&EXT4_I(inode)->i_data_sem);
2242 
2243 		if (unlikely(es.es_len == 0)) {
2244 			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2245 			err = -EFSCORRUPTED;
2246 			break;
2247 		}
2248 
2249 		/*
2250 		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2251 		 * we need to check next == EXT_MAX_BLOCKS because it is
2252 		 * possible that an extent is with unwritten and delayed
2253 		 * status due to when an extent is delayed allocated and
2254 		 * is allocated by fallocate status tree will track both of
2255 		 * them in a extent.
2256 		 *
2257 		 * So we could return a unwritten and delayed extent, and
2258 		 * its block is equal to 'next'.
2259 		 */
2260 		if (next == next_del && next == EXT_MAX_BLOCKS) {
2261 			flags |= FIEMAP_EXTENT_LAST;
2262 			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2263 				     next != EXT_MAX_BLOCKS)) {
2264 				EXT4_ERROR_INODE(inode,
2265 						 "next extent == %u, next "
2266 						 "delalloc extent = %u",
2267 						 next, next_del);
2268 				err = -EFSCORRUPTED;
2269 				break;
2270 			}
2271 		}
2272 
2273 		if (exists) {
2274 			err = fiemap_fill_next_extent(fieinfo,
2275 				(__u64)es.es_lblk << blksize_bits,
2276 				(__u64)es.es_pblk << blksize_bits,
2277 				(__u64)es.es_len << blksize_bits,
2278 				flags);
2279 			if (err < 0)
2280 				break;
2281 			if (err == 1) {
2282 				err = 0;
2283 				break;
2284 			}
2285 		}
2286 
2287 		block = es.es_lblk + es.es_len;
2288 	}
2289 
2290 	ext4_ext_drop_refs(path);
2291 	kfree(path);
2292 	return err;
2293 }
2294 
2295 /*
2296  * ext4_ext_determine_hole - determine hole around given block
2297  * @inode:	inode we lookup in
2298  * @path:	path in extent tree to @lblk
2299  * @lblk:	pointer to logical block around which we want to determine hole
2300  *
2301  * Determine hole length (and start if easily possible) around given logical
2302  * block. We don't try too hard to find the beginning of the hole but @path
2303  * actually points to extent before @lblk, we provide it.
2304  *
2305  * The function returns the length of a hole starting at @lblk. We update @lblk
2306  * to the beginning of the hole if we managed to find it.
2307  */
2308 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode,
2309 					   struct ext4_ext_path *path,
2310 					   ext4_lblk_t *lblk)
2311 {
2312 	int depth = ext_depth(inode);
2313 	struct ext4_extent *ex;
2314 	ext4_lblk_t len;
2315 
2316 	ex = path[depth].p_ext;
2317 	if (ex == NULL) {
2318 		/* there is no extent yet, so gap is [0;-] */
2319 		*lblk = 0;
2320 		len = EXT_MAX_BLOCKS;
2321 	} else if (*lblk < le32_to_cpu(ex->ee_block)) {
2322 		len = le32_to_cpu(ex->ee_block) - *lblk;
2323 	} else if (*lblk >= le32_to_cpu(ex->ee_block)
2324 			+ ext4_ext_get_actual_len(ex)) {
2325 		ext4_lblk_t next;
2326 
2327 		*lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex);
2328 		next = ext4_ext_next_allocated_block(path);
2329 		BUG_ON(next == *lblk);
2330 		len = next - *lblk;
2331 	} else {
2332 		BUG();
2333 	}
2334 	return len;
2335 }
2336 
2337 /*
2338  * ext4_ext_put_gap_in_cache:
2339  * calculate boundaries of the gap that the requested block fits into
2340  * and cache this gap
2341  */
2342 static void
2343 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start,
2344 			  ext4_lblk_t hole_len)
2345 {
2346 	struct extent_status es;
2347 
2348 	ext4_es_find_delayed_extent_range(inode, hole_start,
2349 					  hole_start + hole_len - 1, &es);
2350 	if (es.es_len) {
2351 		/* There's delayed extent containing lblock? */
2352 		if (es.es_lblk <= hole_start)
2353 			return;
2354 		hole_len = min(es.es_lblk - hole_start, hole_len);
2355 	}
2356 	ext_debug(" -> %u:%u\n", hole_start, hole_len);
2357 	ext4_es_insert_extent(inode, hole_start, hole_len, ~0,
2358 			      EXTENT_STATUS_HOLE);
2359 }
2360 
2361 /*
2362  * ext4_ext_rm_idx:
2363  * removes index from the index block.
2364  */
2365 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2366 			struct ext4_ext_path *path, int depth)
2367 {
2368 	int err;
2369 	ext4_fsblk_t leaf;
2370 
2371 	/* free index block */
2372 	depth--;
2373 	path = path + depth;
2374 	leaf = ext4_idx_pblock(path->p_idx);
2375 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2376 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2377 		return -EFSCORRUPTED;
2378 	}
2379 	err = ext4_ext_get_access(handle, inode, path);
2380 	if (err)
2381 		return err;
2382 
2383 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2384 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2385 		len *= sizeof(struct ext4_extent_idx);
2386 		memmove(path->p_idx, path->p_idx + 1, len);
2387 	}
2388 
2389 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2390 	err = ext4_ext_dirty(handle, inode, path);
2391 	if (err)
2392 		return err;
2393 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2394 	trace_ext4_ext_rm_idx(inode, leaf);
2395 
2396 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2397 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2398 
2399 	while (--depth >= 0) {
2400 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2401 			break;
2402 		path--;
2403 		err = ext4_ext_get_access(handle, inode, path);
2404 		if (err)
2405 			break;
2406 		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2407 		err = ext4_ext_dirty(handle, inode, path);
2408 		if (err)
2409 			break;
2410 	}
2411 	return err;
2412 }
2413 
2414 /*
2415  * ext4_ext_calc_credits_for_single_extent:
2416  * This routine returns max. credits that needed to insert an extent
2417  * to the extent tree.
2418  * When pass the actual path, the caller should calculate credits
2419  * under i_data_sem.
2420  */
2421 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2422 						struct ext4_ext_path *path)
2423 {
2424 	if (path) {
2425 		int depth = ext_depth(inode);
2426 		int ret = 0;
2427 
2428 		/* probably there is space in leaf? */
2429 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2430 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2431 
2432 			/*
2433 			 *  There are some space in the leaf tree, no
2434 			 *  need to account for leaf block credit
2435 			 *
2436 			 *  bitmaps and block group descriptor blocks
2437 			 *  and other metadata blocks still need to be
2438 			 *  accounted.
2439 			 */
2440 			/* 1 bitmap, 1 block group descriptor */
2441 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2442 			return ret;
2443 		}
2444 	}
2445 
2446 	return ext4_chunk_trans_blocks(inode, nrblocks);
2447 }
2448 
2449 /*
2450  * How many index/leaf blocks need to change/allocate to add @extents extents?
2451  *
2452  * If we add a single extent, then in the worse case, each tree level
2453  * index/leaf need to be changed in case of the tree split.
2454  *
2455  * If more extents are inserted, they could cause the whole tree split more
2456  * than once, but this is really rare.
2457  */
2458 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2459 {
2460 	int index;
2461 	int depth;
2462 
2463 	/* If we are converting the inline data, only one is needed here. */
2464 	if (ext4_has_inline_data(inode))
2465 		return 1;
2466 
2467 	depth = ext_depth(inode);
2468 
2469 	if (extents <= 1)
2470 		index = depth * 2;
2471 	else
2472 		index = depth * 3;
2473 
2474 	return index;
2475 }
2476 
2477 static inline int get_default_free_blocks_flags(struct inode *inode)
2478 {
2479 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
2480 	    ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
2481 		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2482 	else if (ext4_should_journal_data(inode))
2483 		return EXT4_FREE_BLOCKS_FORGET;
2484 	return 0;
2485 }
2486 
2487 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2488 			      struct ext4_extent *ex,
2489 			      long long *partial_cluster,
2490 			      ext4_lblk_t from, ext4_lblk_t to)
2491 {
2492 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2493 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
2494 	ext4_fsblk_t pblk;
2495 	int flags = get_default_free_blocks_flags(inode);
2496 
2497 	/*
2498 	 * For bigalloc file systems, we never free a partial cluster
2499 	 * at the beginning of the extent.  Instead, we make a note
2500 	 * that we tried freeing the cluster, and check to see if we
2501 	 * need to free it on a subsequent call to ext4_remove_blocks,
2502 	 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space.
2503 	 */
2504 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2505 
2506 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2507 	/*
2508 	 * If we have a partial cluster, and it's different from the
2509 	 * cluster of the last block, we need to explicitly free the
2510 	 * partial cluster here.
2511 	 */
2512 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2513 	if (*partial_cluster > 0 &&
2514 	    *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2515 		ext4_free_blocks(handle, inode, NULL,
2516 				 EXT4_C2B(sbi, *partial_cluster),
2517 				 sbi->s_cluster_ratio, flags);
2518 		*partial_cluster = 0;
2519 	}
2520 
2521 #ifdef EXTENTS_STATS
2522 	{
2523 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2524 		spin_lock(&sbi->s_ext_stats_lock);
2525 		sbi->s_ext_blocks += ee_len;
2526 		sbi->s_ext_extents++;
2527 		if (ee_len < sbi->s_ext_min)
2528 			sbi->s_ext_min = ee_len;
2529 		if (ee_len > sbi->s_ext_max)
2530 			sbi->s_ext_max = ee_len;
2531 		if (ext_depth(inode) > sbi->s_depth_max)
2532 			sbi->s_depth_max = ext_depth(inode);
2533 		spin_unlock(&sbi->s_ext_stats_lock);
2534 	}
2535 #endif
2536 	if (from >= le32_to_cpu(ex->ee_block)
2537 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2538 		/* tail removal */
2539 		ext4_lblk_t num;
2540 		long long first_cluster;
2541 
2542 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2543 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2544 		/*
2545 		 * Usually we want to free partial cluster at the end of the
2546 		 * extent, except for the situation when the cluster is still
2547 		 * used by any other extent (partial_cluster is negative).
2548 		 */
2549 		if (*partial_cluster < 0 &&
2550 		    *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1))
2551 			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2552 
2553 		ext_debug("free last %u blocks starting %llu partial %lld\n",
2554 			  num, pblk, *partial_cluster);
2555 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2556 		/*
2557 		 * If the block range to be freed didn't start at the
2558 		 * beginning of a cluster, and we removed the entire
2559 		 * extent and the cluster is not used by any other extent,
2560 		 * save the partial cluster here, since we might need to
2561 		 * delete if we determine that the truncate or punch hole
2562 		 * operation has removed all of the blocks in the cluster.
2563 		 * If that cluster is used by another extent, preserve its
2564 		 * negative value so it isn't freed later on.
2565 		 *
2566 		 * If the whole extent wasn't freed, we've reached the
2567 		 * start of the truncated/punched region and have finished
2568 		 * removing blocks.  If there's a partial cluster here it's
2569 		 * shared with the remainder of the extent and is no longer
2570 		 * a candidate for removal.
2571 		 */
2572 		if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) {
2573 			first_cluster = (long long) EXT4_B2C(sbi, pblk);
2574 			if (first_cluster != -*partial_cluster)
2575 				*partial_cluster = first_cluster;
2576 		} else {
2577 			*partial_cluster = 0;
2578 		}
2579 	} else
2580 		ext4_error(sbi->s_sb, "strange request: removal(2) "
2581 			   "%u-%u from %u:%u",
2582 			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2583 	return 0;
2584 }
2585 
2586 
2587 /*
2588  * ext4_ext_rm_leaf() Removes the extents associated with the
2589  * blocks appearing between "start" and "end".  Both "start"
2590  * and "end" must appear in the same extent or EIO is returned.
2591  *
2592  * @handle: The journal handle
2593  * @inode:  The files inode
2594  * @path:   The path to the leaf
2595  * @partial_cluster: The cluster which we'll have to free if all extents
2596  *                   has been released from it.  However, if this value is
2597  *                   negative, it's a cluster just to the right of the
2598  *                   punched region and it must not be freed.
2599  * @start:  The first block to remove
2600  * @end:   The last block to remove
2601  */
2602 static int
2603 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2604 		 struct ext4_ext_path *path,
2605 		 long long *partial_cluster,
2606 		 ext4_lblk_t start, ext4_lblk_t end)
2607 {
2608 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2609 	int err = 0, correct_index = 0;
2610 	int depth = ext_depth(inode), credits;
2611 	struct ext4_extent_header *eh;
2612 	ext4_lblk_t a, b;
2613 	unsigned num;
2614 	ext4_lblk_t ex_ee_block;
2615 	unsigned short ex_ee_len;
2616 	unsigned unwritten = 0;
2617 	struct ext4_extent *ex;
2618 	ext4_fsblk_t pblk;
2619 
2620 	/* the header must be checked already in ext4_ext_remove_space() */
2621 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2622 	if (!path[depth].p_hdr)
2623 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2624 	eh = path[depth].p_hdr;
2625 	if (unlikely(path[depth].p_hdr == NULL)) {
2626 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2627 		return -EFSCORRUPTED;
2628 	}
2629 	/* find where to start removing */
2630 	ex = path[depth].p_ext;
2631 	if (!ex)
2632 		ex = EXT_LAST_EXTENT(eh);
2633 
2634 	ex_ee_block = le32_to_cpu(ex->ee_block);
2635 	ex_ee_len = ext4_ext_get_actual_len(ex);
2636 
2637 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2638 
2639 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2640 			ex_ee_block + ex_ee_len > start) {
2641 
2642 		if (ext4_ext_is_unwritten(ex))
2643 			unwritten = 1;
2644 		else
2645 			unwritten = 0;
2646 
2647 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2648 			  unwritten, ex_ee_len);
2649 		path[depth].p_ext = ex;
2650 
2651 		a = ex_ee_block > start ? ex_ee_block : start;
2652 		b = ex_ee_block+ex_ee_len - 1 < end ?
2653 			ex_ee_block+ex_ee_len - 1 : end;
2654 
2655 		ext_debug("  border %u:%u\n", a, b);
2656 
2657 		/* If this extent is beyond the end of the hole, skip it */
2658 		if (end < ex_ee_block) {
2659 			/*
2660 			 * We're going to skip this extent and move to another,
2661 			 * so note that its first cluster is in use to avoid
2662 			 * freeing it when removing blocks.  Eventually, the
2663 			 * right edge of the truncated/punched region will
2664 			 * be just to the left.
2665 			 */
2666 			if (sbi->s_cluster_ratio > 1) {
2667 				pblk = ext4_ext_pblock(ex);
2668 				*partial_cluster =
2669 					-(long long) EXT4_B2C(sbi, pblk);
2670 			}
2671 			ex--;
2672 			ex_ee_block = le32_to_cpu(ex->ee_block);
2673 			ex_ee_len = ext4_ext_get_actual_len(ex);
2674 			continue;
2675 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2676 			EXT4_ERROR_INODE(inode,
2677 					 "can not handle truncate %u:%u "
2678 					 "on extent %u:%u",
2679 					 start, end, ex_ee_block,
2680 					 ex_ee_block + ex_ee_len - 1);
2681 			err = -EFSCORRUPTED;
2682 			goto out;
2683 		} else if (a != ex_ee_block) {
2684 			/* remove tail of the extent */
2685 			num = a - ex_ee_block;
2686 		} else {
2687 			/* remove whole extent: excellent! */
2688 			num = 0;
2689 		}
2690 		/*
2691 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2692 		 * descriptor) for each block group; assume two block
2693 		 * groups plus ex_ee_len/blocks_per_block_group for
2694 		 * the worst case
2695 		 */
2696 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2697 		if (ex == EXT_FIRST_EXTENT(eh)) {
2698 			correct_index = 1;
2699 			credits += (ext_depth(inode)) + 1;
2700 		}
2701 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2702 
2703 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2704 		if (err)
2705 			goto out;
2706 
2707 		err = ext4_ext_get_access(handle, inode, path + depth);
2708 		if (err)
2709 			goto out;
2710 
2711 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2712 					 a, b);
2713 		if (err)
2714 			goto out;
2715 
2716 		if (num == 0)
2717 			/* this extent is removed; mark slot entirely unused */
2718 			ext4_ext_store_pblock(ex, 0);
2719 
2720 		ex->ee_len = cpu_to_le16(num);
2721 		/*
2722 		 * Do not mark unwritten if all the blocks in the
2723 		 * extent have been removed.
2724 		 */
2725 		if (unwritten && num)
2726 			ext4_ext_mark_unwritten(ex);
2727 		/*
2728 		 * If the extent was completely released,
2729 		 * we need to remove it from the leaf
2730 		 */
2731 		if (num == 0) {
2732 			if (end != EXT_MAX_BLOCKS - 1) {
2733 				/*
2734 				 * For hole punching, we need to scoot all the
2735 				 * extents up when an extent is removed so that
2736 				 * we dont have blank extents in the middle
2737 				 */
2738 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2739 					sizeof(struct ext4_extent));
2740 
2741 				/* Now get rid of the one at the end */
2742 				memset(EXT_LAST_EXTENT(eh), 0,
2743 					sizeof(struct ext4_extent));
2744 			}
2745 			le16_add_cpu(&eh->eh_entries, -1);
2746 		}
2747 
2748 		err = ext4_ext_dirty(handle, inode, path + depth);
2749 		if (err)
2750 			goto out;
2751 
2752 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2753 				ext4_ext_pblock(ex));
2754 		ex--;
2755 		ex_ee_block = le32_to_cpu(ex->ee_block);
2756 		ex_ee_len = ext4_ext_get_actual_len(ex);
2757 	}
2758 
2759 	if (correct_index && eh->eh_entries)
2760 		err = ext4_ext_correct_indexes(handle, inode, path);
2761 
2762 	/*
2763 	 * If there's a partial cluster and at least one extent remains in
2764 	 * the leaf, free the partial cluster if it isn't shared with the
2765 	 * current extent.  If it is shared with the current extent
2766 	 * we zero partial_cluster because we've reached the start of the
2767 	 * truncated/punched region and we're done removing blocks.
2768 	 */
2769 	if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) {
2770 		pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2771 		if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2772 			ext4_free_blocks(handle, inode, NULL,
2773 					 EXT4_C2B(sbi, *partial_cluster),
2774 					 sbi->s_cluster_ratio,
2775 					 get_default_free_blocks_flags(inode));
2776 		}
2777 		*partial_cluster = 0;
2778 	}
2779 
2780 	/* if this leaf is free, then we should
2781 	 * remove it from index block above */
2782 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2783 		err = ext4_ext_rm_idx(handle, inode, path, depth);
2784 
2785 out:
2786 	return err;
2787 }
2788 
2789 /*
2790  * ext4_ext_more_to_rm:
2791  * returns 1 if current index has to be freed (even partial)
2792  */
2793 static int
2794 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2795 {
2796 	BUG_ON(path->p_idx == NULL);
2797 
2798 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2799 		return 0;
2800 
2801 	/*
2802 	 * if truncate on deeper level happened, it wasn't partial,
2803 	 * so we have to consider current index for truncation
2804 	 */
2805 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2806 		return 0;
2807 	return 1;
2808 }
2809 
2810 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2811 			  ext4_lblk_t end)
2812 {
2813 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2814 	int depth = ext_depth(inode);
2815 	struct ext4_ext_path *path = NULL;
2816 	long long partial_cluster = 0;
2817 	handle_t *handle;
2818 	int i = 0, err = 0;
2819 
2820 	ext_debug("truncate since %u to %u\n", start, end);
2821 
2822 	/* probably first extent we're gonna free will be last in block */
2823 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2824 	if (IS_ERR(handle))
2825 		return PTR_ERR(handle);
2826 
2827 again:
2828 	trace_ext4_ext_remove_space(inode, start, end, depth);
2829 
2830 	/*
2831 	 * Check if we are removing extents inside the extent tree. If that
2832 	 * is the case, we are going to punch a hole inside the extent tree
2833 	 * so we have to check whether we need to split the extent covering
2834 	 * the last block to remove so we can easily remove the part of it
2835 	 * in ext4_ext_rm_leaf().
2836 	 */
2837 	if (end < EXT_MAX_BLOCKS - 1) {
2838 		struct ext4_extent *ex;
2839 		ext4_lblk_t ee_block, ex_end, lblk;
2840 		ext4_fsblk_t pblk;
2841 
2842 		/* find extent for or closest extent to this block */
2843 		path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2844 		if (IS_ERR(path)) {
2845 			ext4_journal_stop(handle);
2846 			return PTR_ERR(path);
2847 		}
2848 		depth = ext_depth(inode);
2849 		/* Leaf not may not exist only if inode has no blocks at all */
2850 		ex = path[depth].p_ext;
2851 		if (!ex) {
2852 			if (depth) {
2853 				EXT4_ERROR_INODE(inode,
2854 						 "path[%d].p_hdr == NULL",
2855 						 depth);
2856 				err = -EFSCORRUPTED;
2857 			}
2858 			goto out;
2859 		}
2860 
2861 		ee_block = le32_to_cpu(ex->ee_block);
2862 		ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1;
2863 
2864 		/*
2865 		 * See if the last block is inside the extent, if so split
2866 		 * the extent at 'end' block so we can easily remove the
2867 		 * tail of the first part of the split extent in
2868 		 * ext4_ext_rm_leaf().
2869 		 */
2870 		if (end >= ee_block && end < ex_end) {
2871 
2872 			/*
2873 			 * If we're going to split the extent, note that
2874 			 * the cluster containing the block after 'end' is
2875 			 * in use to avoid freeing it when removing blocks.
2876 			 */
2877 			if (sbi->s_cluster_ratio > 1) {
2878 				pblk = ext4_ext_pblock(ex) + end - ee_block + 2;
2879 				partial_cluster =
2880 					-(long long) EXT4_B2C(sbi, pblk);
2881 			}
2882 
2883 			/*
2884 			 * Split the extent in two so that 'end' is the last
2885 			 * block in the first new extent. Also we should not
2886 			 * fail removing space due to ENOSPC so try to use
2887 			 * reserved block if that happens.
2888 			 */
2889 			err = ext4_force_split_extent_at(handle, inode, &path,
2890 							 end + 1, 1);
2891 			if (err < 0)
2892 				goto out;
2893 
2894 		} else if (sbi->s_cluster_ratio > 1 && end >= ex_end) {
2895 			/*
2896 			 * If there's an extent to the right its first cluster
2897 			 * contains the immediate right boundary of the
2898 			 * truncated/punched region.  Set partial_cluster to
2899 			 * its negative value so it won't be freed if shared
2900 			 * with the current extent.  The end < ee_block case
2901 			 * is handled in ext4_ext_rm_leaf().
2902 			 */
2903 			lblk = ex_end + 1;
2904 			err = ext4_ext_search_right(inode, path, &lblk, &pblk,
2905 						    &ex);
2906 			if (err)
2907 				goto out;
2908 			if (pblk)
2909 				partial_cluster =
2910 					-(long long) EXT4_B2C(sbi, pblk);
2911 		}
2912 	}
2913 	/*
2914 	 * We start scanning from right side, freeing all the blocks
2915 	 * after i_size and walking into the tree depth-wise.
2916 	 */
2917 	depth = ext_depth(inode);
2918 	if (path) {
2919 		int k = i = depth;
2920 		while (--k > 0)
2921 			path[k].p_block =
2922 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2923 	} else {
2924 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2925 			       GFP_NOFS);
2926 		if (path == NULL) {
2927 			ext4_journal_stop(handle);
2928 			return -ENOMEM;
2929 		}
2930 		path[0].p_maxdepth = path[0].p_depth = depth;
2931 		path[0].p_hdr = ext_inode_hdr(inode);
2932 		i = 0;
2933 
2934 		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2935 			err = -EFSCORRUPTED;
2936 			goto out;
2937 		}
2938 	}
2939 	err = 0;
2940 
2941 	while (i >= 0 && err == 0) {
2942 		if (i == depth) {
2943 			/* this is leaf block */
2944 			err = ext4_ext_rm_leaf(handle, inode, path,
2945 					       &partial_cluster, start,
2946 					       end);
2947 			/* root level has p_bh == NULL, brelse() eats this */
2948 			brelse(path[i].p_bh);
2949 			path[i].p_bh = NULL;
2950 			i--;
2951 			continue;
2952 		}
2953 
2954 		/* this is index block */
2955 		if (!path[i].p_hdr) {
2956 			ext_debug("initialize header\n");
2957 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2958 		}
2959 
2960 		if (!path[i].p_idx) {
2961 			/* this level hasn't been touched yet */
2962 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2963 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2964 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2965 				  path[i].p_hdr,
2966 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2967 		} else {
2968 			/* we were already here, see at next index */
2969 			path[i].p_idx--;
2970 		}
2971 
2972 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2973 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2974 				path[i].p_idx);
2975 		if (ext4_ext_more_to_rm(path + i)) {
2976 			struct buffer_head *bh;
2977 			/* go to the next level */
2978 			ext_debug("move to level %d (block %llu)\n",
2979 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2980 			memset(path + i + 1, 0, sizeof(*path));
2981 			bh = read_extent_tree_block(inode,
2982 				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2983 				EXT4_EX_NOCACHE);
2984 			if (IS_ERR(bh)) {
2985 				/* should we reset i_size? */
2986 				err = PTR_ERR(bh);
2987 				break;
2988 			}
2989 			/* Yield here to deal with large extent trees.
2990 			 * Should be a no-op if we did IO above. */
2991 			cond_resched();
2992 			if (WARN_ON(i + 1 > depth)) {
2993 				err = -EFSCORRUPTED;
2994 				break;
2995 			}
2996 			path[i + 1].p_bh = bh;
2997 
2998 			/* save actual number of indexes since this
2999 			 * number is changed at the next iteration */
3000 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
3001 			i++;
3002 		} else {
3003 			/* we finished processing this index, go up */
3004 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
3005 				/* index is empty, remove it;
3006 				 * handle must be already prepared by the
3007 				 * truncatei_leaf() */
3008 				err = ext4_ext_rm_idx(handle, inode, path, i);
3009 			}
3010 			/* root level has p_bh == NULL, brelse() eats this */
3011 			brelse(path[i].p_bh);
3012 			path[i].p_bh = NULL;
3013 			i--;
3014 			ext_debug("return to level %d\n", i);
3015 		}
3016 	}
3017 
3018 	trace_ext4_ext_remove_space_done(inode, start, end, depth,
3019 			partial_cluster, path->p_hdr->eh_entries);
3020 
3021 	/*
3022 	 * If we still have something in the partial cluster and we have removed
3023 	 * even the first extent, then we should free the blocks in the partial
3024 	 * cluster as well.  (This code will only run when there are no leaves
3025 	 * to the immediate left of the truncated/punched region.)
3026 	 */
3027 	if (partial_cluster > 0 && err == 0) {
3028 		/* don't zero partial_cluster since it's not used afterwards */
3029 		ext4_free_blocks(handle, inode, NULL,
3030 				 EXT4_C2B(sbi, partial_cluster),
3031 				 sbi->s_cluster_ratio,
3032 				 get_default_free_blocks_flags(inode));
3033 	}
3034 
3035 	/* TODO: flexible tree reduction should be here */
3036 	if (path->p_hdr->eh_entries == 0) {
3037 		/*
3038 		 * truncate to zero freed all the tree,
3039 		 * so we need to correct eh_depth
3040 		 */
3041 		err = ext4_ext_get_access(handle, inode, path);
3042 		if (err == 0) {
3043 			ext_inode_hdr(inode)->eh_depth = 0;
3044 			ext_inode_hdr(inode)->eh_max =
3045 				cpu_to_le16(ext4_ext_space_root(inode, 0));
3046 			err = ext4_ext_dirty(handle, inode, path);
3047 		}
3048 	}
3049 out:
3050 	ext4_ext_drop_refs(path);
3051 	kfree(path);
3052 	path = NULL;
3053 	if (err == -EAGAIN)
3054 		goto again;
3055 	ext4_journal_stop(handle);
3056 
3057 	return err;
3058 }
3059 
3060 /*
3061  * called at mount time
3062  */
3063 void ext4_ext_init(struct super_block *sb)
3064 {
3065 	/*
3066 	 * possible initialization would be here
3067 	 */
3068 
3069 	if (ext4_has_feature_extents(sb)) {
3070 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3071 		printk(KERN_INFO "EXT4-fs: file extents enabled"
3072 #ifdef AGGRESSIVE_TEST
3073 		       ", aggressive tests"
3074 #endif
3075 #ifdef CHECK_BINSEARCH
3076 		       ", check binsearch"
3077 #endif
3078 #ifdef EXTENTS_STATS
3079 		       ", stats"
3080 #endif
3081 		       "\n");
3082 #endif
3083 #ifdef EXTENTS_STATS
3084 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3085 		EXT4_SB(sb)->s_ext_min = 1 << 30;
3086 		EXT4_SB(sb)->s_ext_max = 0;
3087 #endif
3088 	}
3089 }
3090 
3091 /*
3092  * called at umount time
3093  */
3094 void ext4_ext_release(struct super_block *sb)
3095 {
3096 	if (!ext4_has_feature_extents(sb))
3097 		return;
3098 
3099 #ifdef EXTENTS_STATS
3100 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3101 		struct ext4_sb_info *sbi = EXT4_SB(sb);
3102 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3103 			sbi->s_ext_blocks, sbi->s_ext_extents,
3104 			sbi->s_ext_blocks / sbi->s_ext_extents);
3105 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3106 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3107 	}
3108 #endif
3109 }
3110 
3111 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3112 {
3113 	ext4_lblk_t  ee_block;
3114 	ext4_fsblk_t ee_pblock;
3115 	unsigned int ee_len;
3116 
3117 	ee_block  = le32_to_cpu(ex->ee_block);
3118 	ee_len    = ext4_ext_get_actual_len(ex);
3119 	ee_pblock = ext4_ext_pblock(ex);
3120 
3121 	if (ee_len == 0)
3122 		return 0;
3123 
3124 	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3125 				     EXTENT_STATUS_WRITTEN);
3126 }
3127 
3128 /* FIXME!! we need to try to merge to left or right after zero-out  */
3129 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3130 {
3131 	ext4_fsblk_t ee_pblock;
3132 	unsigned int ee_len;
3133 
3134 	ee_len    = ext4_ext_get_actual_len(ex);
3135 	ee_pblock = ext4_ext_pblock(ex);
3136 	return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock,
3137 				  ee_len);
3138 }
3139 
3140 /*
3141  * ext4_split_extent_at() splits an extent at given block.
3142  *
3143  * @handle: the journal handle
3144  * @inode: the file inode
3145  * @path: the path to the extent
3146  * @split: the logical block where the extent is splitted.
3147  * @split_flags: indicates if the extent could be zeroout if split fails, and
3148  *		 the states(init or unwritten) of new extents.
3149  * @flags: flags used to insert new extent to extent tree.
3150  *
3151  *
3152  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3153  * of which are deterimined by split_flag.
3154  *
3155  * There are two cases:
3156  *  a> the extent are splitted into two extent.
3157  *  b> split is not needed, and just mark the extent.
3158  *
3159  * return 0 on success.
3160  */
3161 static int ext4_split_extent_at(handle_t *handle,
3162 			     struct inode *inode,
3163 			     struct ext4_ext_path **ppath,
3164 			     ext4_lblk_t split,
3165 			     int split_flag,
3166 			     int flags)
3167 {
3168 	struct ext4_ext_path *path = *ppath;
3169 	ext4_fsblk_t newblock;
3170 	ext4_lblk_t ee_block;
3171 	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3172 	struct ext4_extent *ex2 = NULL;
3173 	unsigned int ee_len, depth;
3174 	int err = 0;
3175 
3176 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3177 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3178 
3179 	ext_debug("ext4_split_extents_at: inode %lu, logical"
3180 		"block %llu\n", inode->i_ino, (unsigned long long)split);
3181 
3182 	ext4_ext_show_leaf(inode, path);
3183 
3184 	depth = ext_depth(inode);
3185 	ex = path[depth].p_ext;
3186 	ee_block = le32_to_cpu(ex->ee_block);
3187 	ee_len = ext4_ext_get_actual_len(ex);
3188 	newblock = split - ee_block + ext4_ext_pblock(ex);
3189 
3190 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3191 	BUG_ON(!ext4_ext_is_unwritten(ex) &&
3192 	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3193 			     EXT4_EXT_MARK_UNWRIT1 |
3194 			     EXT4_EXT_MARK_UNWRIT2));
3195 
3196 	err = ext4_ext_get_access(handle, inode, path + depth);
3197 	if (err)
3198 		goto out;
3199 
3200 	if (split == ee_block) {
3201 		/*
3202 		 * case b: block @split is the block that the extent begins with
3203 		 * then we just change the state of the extent, and splitting
3204 		 * is not needed.
3205 		 */
3206 		if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3207 			ext4_ext_mark_unwritten(ex);
3208 		else
3209 			ext4_ext_mark_initialized(ex);
3210 
3211 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3212 			ext4_ext_try_to_merge(handle, inode, path, ex);
3213 
3214 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3215 		goto out;
3216 	}
3217 
3218 	/* case a */
3219 	memcpy(&orig_ex, ex, sizeof(orig_ex));
3220 	ex->ee_len = cpu_to_le16(split - ee_block);
3221 	if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3222 		ext4_ext_mark_unwritten(ex);
3223 
3224 	/*
3225 	 * path may lead to new leaf, not to original leaf any more
3226 	 * after ext4_ext_insert_extent() returns,
3227 	 */
3228 	err = ext4_ext_dirty(handle, inode, path + depth);
3229 	if (err)
3230 		goto fix_extent_len;
3231 
3232 	ex2 = &newex;
3233 	ex2->ee_block = cpu_to_le32(split);
3234 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3235 	ext4_ext_store_pblock(ex2, newblock);
3236 	if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3237 		ext4_ext_mark_unwritten(ex2);
3238 
3239 	err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3240 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3241 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3242 			if (split_flag & EXT4_EXT_DATA_VALID1) {
3243 				err = ext4_ext_zeroout(inode, ex2);
3244 				zero_ex.ee_block = ex2->ee_block;
3245 				zero_ex.ee_len = cpu_to_le16(
3246 						ext4_ext_get_actual_len(ex2));
3247 				ext4_ext_store_pblock(&zero_ex,
3248 						      ext4_ext_pblock(ex2));
3249 			} else {
3250 				err = ext4_ext_zeroout(inode, ex);
3251 				zero_ex.ee_block = ex->ee_block;
3252 				zero_ex.ee_len = cpu_to_le16(
3253 						ext4_ext_get_actual_len(ex));
3254 				ext4_ext_store_pblock(&zero_ex,
3255 						      ext4_ext_pblock(ex));
3256 			}
3257 		} else {
3258 			err = ext4_ext_zeroout(inode, &orig_ex);
3259 			zero_ex.ee_block = orig_ex.ee_block;
3260 			zero_ex.ee_len = cpu_to_le16(
3261 						ext4_ext_get_actual_len(&orig_ex));
3262 			ext4_ext_store_pblock(&zero_ex,
3263 					      ext4_ext_pblock(&orig_ex));
3264 		}
3265 
3266 		if (err)
3267 			goto fix_extent_len;
3268 		/* update the extent length and mark as initialized */
3269 		ex->ee_len = cpu_to_le16(ee_len);
3270 		ext4_ext_try_to_merge(handle, inode, path, ex);
3271 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3272 		if (err)
3273 			goto fix_extent_len;
3274 
3275 		/* update extent status tree */
3276 		err = ext4_zeroout_es(inode, &zero_ex);
3277 
3278 		goto out;
3279 	} else if (err)
3280 		goto fix_extent_len;
3281 
3282 out:
3283 	ext4_ext_show_leaf(inode, path);
3284 	return err;
3285 
3286 fix_extent_len:
3287 	ex->ee_len = orig_ex.ee_len;
3288 	ext4_ext_dirty(handle, inode, path + path->p_depth);
3289 	return err;
3290 }
3291 
3292 /*
3293  * ext4_split_extents() splits an extent and mark extent which is covered
3294  * by @map as split_flags indicates
3295  *
3296  * It may result in splitting the extent into multiple extents (up to three)
3297  * There are three possibilities:
3298  *   a> There is no split required
3299  *   b> Splits in two extents: Split is happening at either end of the extent
3300  *   c> Splits in three extents: Somone is splitting in middle of the extent
3301  *
3302  */
3303 static int ext4_split_extent(handle_t *handle,
3304 			      struct inode *inode,
3305 			      struct ext4_ext_path **ppath,
3306 			      struct ext4_map_blocks *map,
3307 			      int split_flag,
3308 			      int flags)
3309 {
3310 	struct ext4_ext_path *path = *ppath;
3311 	ext4_lblk_t ee_block;
3312 	struct ext4_extent *ex;
3313 	unsigned int ee_len, depth;
3314 	int err = 0;
3315 	int unwritten;
3316 	int split_flag1, flags1;
3317 	int allocated = map->m_len;
3318 
3319 	depth = ext_depth(inode);
3320 	ex = path[depth].p_ext;
3321 	ee_block = le32_to_cpu(ex->ee_block);
3322 	ee_len = ext4_ext_get_actual_len(ex);
3323 	unwritten = ext4_ext_is_unwritten(ex);
3324 
3325 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3326 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3327 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3328 		if (unwritten)
3329 			split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3330 				       EXT4_EXT_MARK_UNWRIT2;
3331 		if (split_flag & EXT4_EXT_DATA_VALID2)
3332 			split_flag1 |= EXT4_EXT_DATA_VALID1;
3333 		err = ext4_split_extent_at(handle, inode, ppath,
3334 				map->m_lblk + map->m_len, split_flag1, flags1);
3335 		if (err)
3336 			goto out;
3337 	} else {
3338 		allocated = ee_len - (map->m_lblk - ee_block);
3339 	}
3340 	/*
3341 	 * Update path is required because previous ext4_split_extent_at() may
3342 	 * result in split of original leaf or extent zeroout.
3343 	 */
3344 	path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3345 	if (IS_ERR(path))
3346 		return PTR_ERR(path);
3347 	depth = ext_depth(inode);
3348 	ex = path[depth].p_ext;
3349 	if (!ex) {
3350 		EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3351 				 (unsigned long) map->m_lblk);
3352 		return -EFSCORRUPTED;
3353 	}
3354 	unwritten = ext4_ext_is_unwritten(ex);
3355 	split_flag1 = 0;
3356 
3357 	if (map->m_lblk >= ee_block) {
3358 		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3359 		if (unwritten) {
3360 			split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3361 			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3362 						     EXT4_EXT_MARK_UNWRIT2);
3363 		}
3364 		err = ext4_split_extent_at(handle, inode, ppath,
3365 				map->m_lblk, split_flag1, flags);
3366 		if (err)
3367 			goto out;
3368 	}
3369 
3370 	ext4_ext_show_leaf(inode, path);
3371 out:
3372 	return err ? err : allocated;
3373 }
3374 
3375 /*
3376  * This function is called by ext4_ext_map_blocks() if someone tries to write
3377  * to an unwritten extent. It may result in splitting the unwritten
3378  * extent into multiple extents (up to three - one initialized and two
3379  * unwritten).
3380  * There are three possibilities:
3381  *   a> There is no split required: Entire extent should be initialized
3382  *   b> Splits in two extents: Write is happening at either end of the extent
3383  *   c> Splits in three extents: Somone is writing in middle of the extent
3384  *
3385  * Pre-conditions:
3386  *  - The extent pointed to by 'path' is unwritten.
3387  *  - The extent pointed to by 'path' contains a superset
3388  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3389  *
3390  * Post-conditions on success:
3391  *  - the returned value is the number of blocks beyond map->l_lblk
3392  *    that are allocated and initialized.
3393  *    It is guaranteed to be >= map->m_len.
3394  */
3395 static int ext4_ext_convert_to_initialized(handle_t *handle,
3396 					   struct inode *inode,
3397 					   struct ext4_map_blocks *map,
3398 					   struct ext4_ext_path **ppath,
3399 					   int flags)
3400 {
3401 	struct ext4_ext_path *path = *ppath;
3402 	struct ext4_sb_info *sbi;
3403 	struct ext4_extent_header *eh;
3404 	struct ext4_map_blocks split_map;
3405 	struct ext4_extent zero_ex1, zero_ex2;
3406 	struct ext4_extent *ex, *abut_ex;
3407 	ext4_lblk_t ee_block, eof_block;
3408 	unsigned int ee_len, depth, map_len = map->m_len;
3409 	int allocated = 0, max_zeroout = 0;
3410 	int err = 0;
3411 	int split_flag = EXT4_EXT_DATA_VALID2;
3412 
3413 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3414 		"block %llu, max_blocks %u\n", inode->i_ino,
3415 		(unsigned long long)map->m_lblk, map_len);
3416 
3417 	sbi = EXT4_SB(inode->i_sb);
3418 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3419 		inode->i_sb->s_blocksize_bits;
3420 	if (eof_block < map->m_lblk + map_len)
3421 		eof_block = map->m_lblk + map_len;
3422 
3423 	depth = ext_depth(inode);
3424 	eh = path[depth].p_hdr;
3425 	ex = path[depth].p_ext;
3426 	ee_block = le32_to_cpu(ex->ee_block);
3427 	ee_len = ext4_ext_get_actual_len(ex);
3428 	zero_ex1.ee_len = 0;
3429 	zero_ex2.ee_len = 0;
3430 
3431 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3432 
3433 	/* Pre-conditions */
3434 	BUG_ON(!ext4_ext_is_unwritten(ex));
3435 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3436 
3437 	/*
3438 	 * Attempt to transfer newly initialized blocks from the currently
3439 	 * unwritten extent to its neighbor. This is much cheaper
3440 	 * than an insertion followed by a merge as those involve costly
3441 	 * memmove() calls. Transferring to the left is the common case in
3442 	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3443 	 * followed by append writes.
3444 	 *
3445 	 * Limitations of the current logic:
3446 	 *  - L1: we do not deal with writes covering the whole extent.
3447 	 *    This would require removing the extent if the transfer
3448 	 *    is possible.
3449 	 *  - L2: we only attempt to merge with an extent stored in the
3450 	 *    same extent tree node.
3451 	 */
3452 	if ((map->m_lblk == ee_block) &&
3453 		/* See if we can merge left */
3454 		(map_len < ee_len) &&		/*L1*/
3455 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3456 		ext4_lblk_t prev_lblk;
3457 		ext4_fsblk_t prev_pblk, ee_pblk;
3458 		unsigned int prev_len;
3459 
3460 		abut_ex = ex - 1;
3461 		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3462 		prev_len = ext4_ext_get_actual_len(abut_ex);
3463 		prev_pblk = ext4_ext_pblock(abut_ex);
3464 		ee_pblk = ext4_ext_pblock(ex);
3465 
3466 		/*
3467 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3468 		 * upon those conditions:
3469 		 * - C1: abut_ex is initialized,
3470 		 * - C2: abut_ex is logically abutting ex,
3471 		 * - C3: abut_ex is physically abutting ex,
3472 		 * - C4: abut_ex can receive the additional blocks without
3473 		 *   overflowing the (initialized) length limit.
3474 		 */
3475 		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3476 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3477 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3478 			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3479 			err = ext4_ext_get_access(handle, inode, path + depth);
3480 			if (err)
3481 				goto out;
3482 
3483 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3484 				map, ex, abut_ex);
3485 
3486 			/* Shift the start of ex by 'map_len' blocks */
3487 			ex->ee_block = cpu_to_le32(ee_block + map_len);
3488 			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3489 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3490 			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3491 
3492 			/* Extend abut_ex by 'map_len' blocks */
3493 			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3494 
3495 			/* Result: number of initialized blocks past m_lblk */
3496 			allocated = map_len;
3497 		}
3498 	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3499 		   (map_len < ee_len) &&	/*L1*/
3500 		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3501 		/* See if we can merge right */
3502 		ext4_lblk_t next_lblk;
3503 		ext4_fsblk_t next_pblk, ee_pblk;
3504 		unsigned int next_len;
3505 
3506 		abut_ex = ex + 1;
3507 		next_lblk = le32_to_cpu(abut_ex->ee_block);
3508 		next_len = ext4_ext_get_actual_len(abut_ex);
3509 		next_pblk = ext4_ext_pblock(abut_ex);
3510 		ee_pblk = ext4_ext_pblock(ex);
3511 
3512 		/*
3513 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3514 		 * upon those conditions:
3515 		 * - C1: abut_ex is initialized,
3516 		 * - C2: abut_ex is logically abutting ex,
3517 		 * - C3: abut_ex is physically abutting ex,
3518 		 * - C4: abut_ex can receive the additional blocks without
3519 		 *   overflowing the (initialized) length limit.
3520 		 */
3521 		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3522 		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3523 		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3524 		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3525 			err = ext4_ext_get_access(handle, inode, path + depth);
3526 			if (err)
3527 				goto out;
3528 
3529 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3530 				map, ex, abut_ex);
3531 
3532 			/* Shift the start of abut_ex by 'map_len' blocks */
3533 			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3534 			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3535 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3536 			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3537 
3538 			/* Extend abut_ex by 'map_len' blocks */
3539 			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3540 
3541 			/* Result: number of initialized blocks past m_lblk */
3542 			allocated = map_len;
3543 		}
3544 	}
3545 	if (allocated) {
3546 		/* Mark the block containing both extents as dirty */
3547 		ext4_ext_dirty(handle, inode, path + depth);
3548 
3549 		/* Update path to point to the right extent */
3550 		path[depth].p_ext = abut_ex;
3551 		goto out;
3552 	} else
3553 		allocated = ee_len - (map->m_lblk - ee_block);
3554 
3555 	WARN_ON(map->m_lblk < ee_block);
3556 	/*
3557 	 * It is safe to convert extent to initialized via explicit
3558 	 * zeroout only if extent is fully inside i_size or new_size.
3559 	 */
3560 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3561 
3562 	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3563 		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3564 			(inode->i_sb->s_blocksize_bits - 10);
3565 
3566 	if (ext4_encrypted_inode(inode))
3567 		max_zeroout = 0;
3568 
3569 	/*
3570 	 * five cases:
3571 	 * 1. split the extent into three extents.
3572 	 * 2. split the extent into two extents, zeroout the head of the first
3573 	 *    extent.
3574 	 * 3. split the extent into two extents, zeroout the tail of the second
3575 	 *    extent.
3576 	 * 4. split the extent into two extents with out zeroout.
3577 	 * 5. no splitting needed, just possibly zeroout the head and / or the
3578 	 *    tail of the extent.
3579 	 */
3580 	split_map.m_lblk = map->m_lblk;
3581 	split_map.m_len = map->m_len;
3582 
3583 	if (max_zeroout && (allocated > split_map.m_len)) {
3584 		if (allocated <= max_zeroout) {
3585 			/* case 3 or 5 */
3586 			zero_ex1.ee_block =
3587 				 cpu_to_le32(split_map.m_lblk +
3588 					     split_map.m_len);
3589 			zero_ex1.ee_len =
3590 				cpu_to_le16(allocated - split_map.m_len);
3591 			ext4_ext_store_pblock(&zero_ex1,
3592 				ext4_ext_pblock(ex) + split_map.m_lblk +
3593 				split_map.m_len - ee_block);
3594 			err = ext4_ext_zeroout(inode, &zero_ex1);
3595 			if (err)
3596 				goto out;
3597 			split_map.m_len = allocated;
3598 		}
3599 		if (split_map.m_lblk - ee_block + split_map.m_len <
3600 								max_zeroout) {
3601 			/* case 2 or 5 */
3602 			if (split_map.m_lblk != ee_block) {
3603 				zero_ex2.ee_block = ex->ee_block;
3604 				zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk -
3605 							ee_block);
3606 				ext4_ext_store_pblock(&zero_ex2,
3607 						      ext4_ext_pblock(ex));
3608 				err = ext4_ext_zeroout(inode, &zero_ex2);
3609 				if (err)
3610 					goto out;
3611 			}
3612 
3613 			split_map.m_len += split_map.m_lblk - ee_block;
3614 			split_map.m_lblk = ee_block;
3615 			allocated = map->m_len;
3616 		}
3617 	}
3618 
3619 	err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
3620 				flags);
3621 	if (err > 0)
3622 		err = 0;
3623 out:
3624 	/* If we have gotten a failure, don't zero out status tree */
3625 	if (!err) {
3626 		err = ext4_zeroout_es(inode, &zero_ex1);
3627 		if (!err)
3628 			err = ext4_zeroout_es(inode, &zero_ex2);
3629 	}
3630 	return err ? err : allocated;
3631 }
3632 
3633 /*
3634  * This function is called by ext4_ext_map_blocks() from
3635  * ext4_get_blocks_dio_write() when DIO to write
3636  * to an unwritten extent.
3637  *
3638  * Writing to an unwritten extent may result in splitting the unwritten
3639  * extent into multiple initialized/unwritten extents (up to three)
3640  * There are three possibilities:
3641  *   a> There is no split required: Entire extent should be unwritten
3642  *   b> Splits in two extents: Write is happening at either end of the extent
3643  *   c> Splits in three extents: Somone is writing in middle of the extent
3644  *
3645  * This works the same way in the case of initialized -> unwritten conversion.
3646  *
3647  * One of more index blocks maybe needed if the extent tree grow after
3648  * the unwritten extent split. To prevent ENOSPC occur at the IO
3649  * complete, we need to split the unwritten extent before DIO submit
3650  * the IO. The unwritten extent called at this time will be split
3651  * into three unwritten extent(at most). After IO complete, the part
3652  * being filled will be convert to initialized by the end_io callback function
3653  * via ext4_convert_unwritten_extents().
3654  *
3655  * Returns the size of unwritten extent to be written on success.
3656  */
3657 static int ext4_split_convert_extents(handle_t *handle,
3658 					struct inode *inode,
3659 					struct ext4_map_blocks *map,
3660 					struct ext4_ext_path **ppath,
3661 					int flags)
3662 {
3663 	struct ext4_ext_path *path = *ppath;
3664 	ext4_lblk_t eof_block;
3665 	ext4_lblk_t ee_block;
3666 	struct ext4_extent *ex;
3667 	unsigned int ee_len;
3668 	int split_flag = 0, depth;
3669 
3670 	ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3671 		  __func__, inode->i_ino,
3672 		  (unsigned long long)map->m_lblk, map->m_len);
3673 
3674 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3675 		inode->i_sb->s_blocksize_bits;
3676 	if (eof_block < map->m_lblk + map->m_len)
3677 		eof_block = map->m_lblk + map->m_len;
3678 	/*
3679 	 * It is safe to convert extent to initialized via explicit
3680 	 * zeroout only if extent is fully insde i_size or new_size.
3681 	 */
3682 	depth = ext_depth(inode);
3683 	ex = path[depth].p_ext;
3684 	ee_block = le32_to_cpu(ex->ee_block);
3685 	ee_len = ext4_ext_get_actual_len(ex);
3686 
3687 	/* Convert to unwritten */
3688 	if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3689 		split_flag |= EXT4_EXT_DATA_VALID1;
3690 	/* Convert to initialized */
3691 	} else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3692 		split_flag |= ee_block + ee_len <= eof_block ?
3693 			      EXT4_EXT_MAY_ZEROOUT : 0;
3694 		split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3695 	}
3696 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3697 	return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3698 }
3699 
3700 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3701 						struct inode *inode,
3702 						struct ext4_map_blocks *map,
3703 						struct ext4_ext_path **ppath)
3704 {
3705 	struct ext4_ext_path *path = *ppath;
3706 	struct ext4_extent *ex;
3707 	ext4_lblk_t ee_block;
3708 	unsigned int ee_len;
3709 	int depth;
3710 	int err = 0;
3711 
3712 	depth = ext_depth(inode);
3713 	ex = path[depth].p_ext;
3714 	ee_block = le32_to_cpu(ex->ee_block);
3715 	ee_len = ext4_ext_get_actual_len(ex);
3716 
3717 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3718 		"block %llu, max_blocks %u\n", inode->i_ino,
3719 		  (unsigned long long)ee_block, ee_len);
3720 
3721 	/* If extent is larger than requested it is a clear sign that we still
3722 	 * have some extent state machine issues left. So extent_split is still
3723 	 * required.
3724 	 * TODO: Once all related issues will be fixed this situation should be
3725 	 * illegal.
3726 	 */
3727 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3728 #ifdef EXT4_DEBUG
3729 		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3730 			     " len %u; IO logical block %llu, len %u",
3731 			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3732 			     (unsigned long long)map->m_lblk, map->m_len);
3733 #endif
3734 		err = ext4_split_convert_extents(handle, inode, map, ppath,
3735 						 EXT4_GET_BLOCKS_CONVERT);
3736 		if (err < 0)
3737 			return err;
3738 		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3739 		if (IS_ERR(path))
3740 			return PTR_ERR(path);
3741 		depth = ext_depth(inode);
3742 		ex = path[depth].p_ext;
3743 	}
3744 
3745 	err = ext4_ext_get_access(handle, inode, path + depth);
3746 	if (err)
3747 		goto out;
3748 	/* first mark the extent as initialized */
3749 	ext4_ext_mark_initialized(ex);
3750 
3751 	/* note: ext4_ext_correct_indexes() isn't needed here because
3752 	 * borders are not changed
3753 	 */
3754 	ext4_ext_try_to_merge(handle, inode, path, ex);
3755 
3756 	/* Mark modified extent as dirty */
3757 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3758 out:
3759 	ext4_ext_show_leaf(inode, path);
3760 	return err;
3761 }
3762 
3763 /*
3764  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3765  */
3766 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3767 			      ext4_lblk_t lblk,
3768 			      struct ext4_ext_path *path,
3769 			      unsigned int len)
3770 {
3771 	int i, depth;
3772 	struct ext4_extent_header *eh;
3773 	struct ext4_extent *last_ex;
3774 
3775 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3776 		return 0;
3777 
3778 	depth = ext_depth(inode);
3779 	eh = path[depth].p_hdr;
3780 
3781 	/*
3782 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3783 	 * do not care for this case anymore. Simply remove the flag
3784 	 * if there are no extents.
3785 	 */
3786 	if (unlikely(!eh->eh_entries))
3787 		goto out;
3788 	last_ex = EXT_LAST_EXTENT(eh);
3789 	/*
3790 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3791 	 * last block in the last extent in the file.  We test this by
3792 	 * first checking to see if the caller to
3793 	 * ext4_ext_get_blocks() was interested in the last block (or
3794 	 * a block beyond the last block) in the current extent.  If
3795 	 * this turns out to be false, we can bail out from this
3796 	 * function immediately.
3797 	 */
3798 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3799 	    ext4_ext_get_actual_len(last_ex))
3800 		return 0;
3801 	/*
3802 	 * If the caller does appear to be planning to write at or
3803 	 * beyond the end of the current extent, we then test to see
3804 	 * if the current extent is the last extent in the file, by
3805 	 * checking to make sure it was reached via the rightmost node
3806 	 * at each level of the tree.
3807 	 */
3808 	for (i = depth-1; i >= 0; i--)
3809 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3810 			return 0;
3811 out:
3812 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3813 	return ext4_mark_inode_dirty(handle, inode);
3814 }
3815 
3816 /**
3817  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3818  *
3819  * Return 1 if there is a delalloc block in the range, otherwise 0.
3820  */
3821 int ext4_find_delalloc_range(struct inode *inode,
3822 			     ext4_lblk_t lblk_start,
3823 			     ext4_lblk_t lblk_end)
3824 {
3825 	struct extent_status es;
3826 
3827 	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3828 	if (es.es_len == 0)
3829 		return 0; /* there is no delay extent in this tree */
3830 	else if (es.es_lblk <= lblk_start &&
3831 		 lblk_start < es.es_lblk + es.es_len)
3832 		return 1;
3833 	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3834 		return 1;
3835 	else
3836 		return 0;
3837 }
3838 
3839 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3840 {
3841 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3842 	ext4_lblk_t lblk_start, lblk_end;
3843 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3844 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3845 
3846 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3847 }
3848 
3849 /**
3850  * Determines how many complete clusters (out of those specified by the 'map')
3851  * are under delalloc and were reserved quota for.
3852  * This function is called when we are writing out the blocks that were
3853  * originally written with their allocation delayed, but then the space was
3854  * allocated using fallocate() before the delayed allocation could be resolved.
3855  * The cases to look for are:
3856  * ('=' indicated delayed allocated blocks
3857  *  '-' indicates non-delayed allocated blocks)
3858  * (a) partial clusters towards beginning and/or end outside of allocated range
3859  *     are not delalloc'ed.
3860  *	Ex:
3861  *	|----c---=|====c====|====c====|===-c----|
3862  *	         |++++++ allocated ++++++|
3863  *	==> 4 complete clusters in above example
3864  *
3865  * (b) partial cluster (outside of allocated range) towards either end is
3866  *     marked for delayed allocation. In this case, we will exclude that
3867  *     cluster.
3868  *	Ex:
3869  *	|----====c========|========c========|
3870  *	     |++++++ allocated ++++++|
3871  *	==> 1 complete clusters in above example
3872  *
3873  *	Ex:
3874  *	|================c================|
3875  *            |++++++ allocated ++++++|
3876  *	==> 0 complete clusters in above example
3877  *
3878  * The ext4_da_update_reserve_space will be called only if we
3879  * determine here that there were some "entire" clusters that span
3880  * this 'allocated' range.
3881  * In the non-bigalloc case, this function will just end up returning num_blks
3882  * without ever calling ext4_find_delalloc_range.
3883  */
3884 static unsigned int
3885 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3886 			   unsigned int num_blks)
3887 {
3888 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3889 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3890 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3891 	unsigned int allocated_clusters = 0;
3892 
3893 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3894 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3895 
3896 	/* max possible clusters for this allocation */
3897 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3898 
3899 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3900 
3901 	/* Check towards left side */
3902 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3903 	if (c_offset) {
3904 		lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3905 		lblk_to = lblk_from + c_offset - 1;
3906 
3907 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3908 			allocated_clusters--;
3909 	}
3910 
3911 	/* Now check towards right. */
3912 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3913 	if (allocated_clusters && c_offset) {
3914 		lblk_from = lblk_start + num_blks;
3915 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3916 
3917 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3918 			allocated_clusters--;
3919 	}
3920 
3921 	return allocated_clusters;
3922 }
3923 
3924 static int
3925 convert_initialized_extent(handle_t *handle, struct inode *inode,
3926 			   struct ext4_map_blocks *map,
3927 			   struct ext4_ext_path **ppath,
3928 			   unsigned int allocated)
3929 {
3930 	struct ext4_ext_path *path = *ppath;
3931 	struct ext4_extent *ex;
3932 	ext4_lblk_t ee_block;
3933 	unsigned int ee_len;
3934 	int depth;
3935 	int err = 0;
3936 
3937 	/*
3938 	 * Make sure that the extent is no bigger than we support with
3939 	 * unwritten extent
3940 	 */
3941 	if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3942 		map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3943 
3944 	depth = ext_depth(inode);
3945 	ex = path[depth].p_ext;
3946 	ee_block = le32_to_cpu(ex->ee_block);
3947 	ee_len = ext4_ext_get_actual_len(ex);
3948 
3949 	ext_debug("%s: inode %lu, logical"
3950 		"block %llu, max_blocks %u\n", __func__, inode->i_ino,
3951 		  (unsigned long long)ee_block, ee_len);
3952 
3953 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3954 		err = ext4_split_convert_extents(handle, inode, map, ppath,
3955 				EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3956 		if (err < 0)
3957 			return err;
3958 		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3959 		if (IS_ERR(path))
3960 			return PTR_ERR(path);
3961 		depth = ext_depth(inode);
3962 		ex = path[depth].p_ext;
3963 		if (!ex) {
3964 			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3965 					 (unsigned long) map->m_lblk);
3966 			return -EFSCORRUPTED;
3967 		}
3968 	}
3969 
3970 	err = ext4_ext_get_access(handle, inode, path + depth);
3971 	if (err)
3972 		return err;
3973 	/* first mark the extent as unwritten */
3974 	ext4_ext_mark_unwritten(ex);
3975 
3976 	/* note: ext4_ext_correct_indexes() isn't needed here because
3977 	 * borders are not changed
3978 	 */
3979 	ext4_ext_try_to_merge(handle, inode, path, ex);
3980 
3981 	/* Mark modified extent as dirty */
3982 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3983 	if (err)
3984 		return err;
3985 	ext4_ext_show_leaf(inode, path);
3986 
3987 	ext4_update_inode_fsync_trans(handle, inode, 1);
3988 	err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
3989 	if (err)
3990 		return err;
3991 	map->m_flags |= EXT4_MAP_UNWRITTEN;
3992 	if (allocated > map->m_len)
3993 		allocated = map->m_len;
3994 	map->m_len = allocated;
3995 	return allocated;
3996 }
3997 
3998 static int
3999 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
4000 			struct ext4_map_blocks *map,
4001 			struct ext4_ext_path **ppath, int flags,
4002 			unsigned int allocated, ext4_fsblk_t newblock)
4003 {
4004 	struct ext4_ext_path *path = *ppath;
4005 	int ret = 0;
4006 	int err = 0;
4007 
4008 	ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4009 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
4010 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4011 		  flags, allocated);
4012 	ext4_ext_show_leaf(inode, path);
4013 
4014 	/*
4015 	 * When writing into unwritten space, we should not fail to
4016 	 * allocate metadata blocks for the new extent block if needed.
4017 	 */
4018 	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4019 
4020 	trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4021 						    allocated, newblock);
4022 
4023 	/* get_block() before submit the IO, split the extent */
4024 	if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4025 		ret = ext4_split_convert_extents(handle, inode, map, ppath,
4026 					 flags | EXT4_GET_BLOCKS_CONVERT);
4027 		if (ret <= 0)
4028 			goto out;
4029 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4030 		goto out;
4031 	}
4032 	/* IO end_io complete, convert the filled extent to written */
4033 	if (flags & EXT4_GET_BLOCKS_CONVERT) {
4034 		if (flags & EXT4_GET_BLOCKS_ZERO) {
4035 			if (allocated > map->m_len)
4036 				allocated = map->m_len;
4037 			err = ext4_issue_zeroout(inode, map->m_lblk, newblock,
4038 						 allocated);
4039 			if (err < 0)
4040 				goto out2;
4041 		}
4042 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4043 							   ppath);
4044 		if (ret >= 0) {
4045 			ext4_update_inode_fsync_trans(handle, inode, 1);
4046 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
4047 						 path, map->m_len);
4048 		} else
4049 			err = ret;
4050 		map->m_flags |= EXT4_MAP_MAPPED;
4051 		map->m_pblk = newblock;
4052 		if (allocated > map->m_len)
4053 			allocated = map->m_len;
4054 		map->m_len = allocated;
4055 		goto out2;
4056 	}
4057 	/* buffered IO case */
4058 	/*
4059 	 * repeat fallocate creation request
4060 	 * we already have an unwritten extent
4061 	 */
4062 	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4063 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4064 		goto map_out;
4065 	}
4066 
4067 	/* buffered READ or buffered write_begin() lookup */
4068 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4069 		/*
4070 		 * We have blocks reserved already.  We
4071 		 * return allocated blocks so that delalloc
4072 		 * won't do block reservation for us.  But
4073 		 * the buffer head will be unmapped so that
4074 		 * a read from the block returns 0s.
4075 		 */
4076 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4077 		goto out1;
4078 	}
4079 
4080 	/* buffered write, writepage time, convert*/
4081 	ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
4082 	if (ret >= 0)
4083 		ext4_update_inode_fsync_trans(handle, inode, 1);
4084 out:
4085 	if (ret <= 0) {
4086 		err = ret;
4087 		goto out2;
4088 	} else
4089 		allocated = ret;
4090 	map->m_flags |= EXT4_MAP_NEW;
4091 	/*
4092 	 * if we allocated more blocks than requested
4093 	 * we need to make sure we unmap the extra block
4094 	 * allocated. The actual needed block will get
4095 	 * unmapped later when we find the buffer_head marked
4096 	 * new.
4097 	 */
4098 	if (allocated > map->m_len) {
4099 		clean_bdev_aliases(inode->i_sb->s_bdev, newblock + map->m_len,
4100 				   allocated - map->m_len);
4101 		allocated = map->m_len;
4102 	}
4103 	map->m_len = allocated;
4104 
4105 	/*
4106 	 * If we have done fallocate with the offset that is already
4107 	 * delayed allocated, we would have block reservation
4108 	 * and quota reservation done in the delayed write path.
4109 	 * But fallocate would have already updated quota and block
4110 	 * count for this offset. So cancel these reservation
4111 	 */
4112 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4113 		unsigned int reserved_clusters;
4114 		reserved_clusters = get_reserved_cluster_alloc(inode,
4115 				map->m_lblk, map->m_len);
4116 		if (reserved_clusters)
4117 			ext4_da_update_reserve_space(inode,
4118 						     reserved_clusters,
4119 						     0);
4120 	}
4121 
4122 map_out:
4123 	map->m_flags |= EXT4_MAP_MAPPED;
4124 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4125 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4126 					 map->m_len);
4127 		if (err < 0)
4128 			goto out2;
4129 	}
4130 out1:
4131 	if (allocated > map->m_len)
4132 		allocated = map->m_len;
4133 	ext4_ext_show_leaf(inode, path);
4134 	map->m_pblk = newblock;
4135 	map->m_len = allocated;
4136 out2:
4137 	return err ? err : allocated;
4138 }
4139 
4140 /*
4141  * get_implied_cluster_alloc - check to see if the requested
4142  * allocation (in the map structure) overlaps with a cluster already
4143  * allocated in an extent.
4144  *	@sb	The filesystem superblock structure
4145  *	@map	The requested lblk->pblk mapping
4146  *	@ex	The extent structure which might contain an implied
4147  *			cluster allocation
4148  *
4149  * This function is called by ext4_ext_map_blocks() after we failed to
4150  * find blocks that were already in the inode's extent tree.  Hence,
4151  * we know that the beginning of the requested region cannot overlap
4152  * the extent from the inode's extent tree.  There are three cases we
4153  * want to catch.  The first is this case:
4154  *
4155  *		 |--- cluster # N--|
4156  *    |--- extent ---|	|---- requested region ---|
4157  *			|==========|
4158  *
4159  * The second case that we need to test for is this one:
4160  *
4161  *   |--------- cluster # N ----------------|
4162  *	   |--- requested region --|   |------- extent ----|
4163  *	   |=======================|
4164  *
4165  * The third case is when the requested region lies between two extents
4166  * within the same cluster:
4167  *          |------------- cluster # N-------------|
4168  * |----- ex -----|                  |---- ex_right ----|
4169  *                  |------ requested region ------|
4170  *                  |================|
4171  *
4172  * In each of the above cases, we need to set the map->m_pblk and
4173  * map->m_len so it corresponds to the return the extent labelled as
4174  * "|====|" from cluster #N, since it is already in use for data in
4175  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4176  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4177  * as a new "allocated" block region.  Otherwise, we will return 0 and
4178  * ext4_ext_map_blocks() will then allocate one or more new clusters
4179  * by calling ext4_mb_new_blocks().
4180  */
4181 static int get_implied_cluster_alloc(struct super_block *sb,
4182 				     struct ext4_map_blocks *map,
4183 				     struct ext4_extent *ex,
4184 				     struct ext4_ext_path *path)
4185 {
4186 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4187 	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4188 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4189 	ext4_lblk_t rr_cluster_start;
4190 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4191 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4192 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4193 
4194 	/* The extent passed in that we are trying to match */
4195 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4196 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4197 
4198 	/* The requested region passed into ext4_map_blocks() */
4199 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4200 
4201 	if ((rr_cluster_start == ex_cluster_end) ||
4202 	    (rr_cluster_start == ex_cluster_start)) {
4203 		if (rr_cluster_start == ex_cluster_end)
4204 			ee_start += ee_len - 1;
4205 		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4206 		map->m_len = min(map->m_len,
4207 				 (unsigned) sbi->s_cluster_ratio - c_offset);
4208 		/*
4209 		 * Check for and handle this case:
4210 		 *
4211 		 *   |--------- cluster # N-------------|
4212 		 *		       |------- extent ----|
4213 		 *	   |--- requested region ---|
4214 		 *	   |===========|
4215 		 */
4216 
4217 		if (map->m_lblk < ee_block)
4218 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4219 
4220 		/*
4221 		 * Check for the case where there is already another allocated
4222 		 * block to the right of 'ex' but before the end of the cluster.
4223 		 *
4224 		 *          |------------- cluster # N-------------|
4225 		 * |----- ex -----|                  |---- ex_right ----|
4226 		 *                  |------ requested region ------|
4227 		 *                  |================|
4228 		 */
4229 		if (map->m_lblk > ee_block) {
4230 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4231 			map->m_len = min(map->m_len, next - map->m_lblk);
4232 		}
4233 
4234 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4235 		return 1;
4236 	}
4237 
4238 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4239 	return 0;
4240 }
4241 
4242 
4243 /*
4244  * Block allocation/map/preallocation routine for extents based files
4245  *
4246  *
4247  * Need to be called with
4248  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4249  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4250  *
4251  * return > 0, number of of blocks already mapped/allocated
4252  *          if create == 0 and these are pre-allocated blocks
4253  *          	buffer head is unmapped
4254  *          otherwise blocks are mapped
4255  *
4256  * return = 0, if plain look up failed (blocks have not been allocated)
4257  *          buffer head is unmapped
4258  *
4259  * return < 0, error case.
4260  */
4261 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4262 			struct ext4_map_blocks *map, int flags)
4263 {
4264 	struct ext4_ext_path *path = NULL;
4265 	struct ext4_extent newex, *ex, *ex2;
4266 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4267 	ext4_fsblk_t newblock = 0;
4268 	int free_on_err = 0, err = 0, depth, ret;
4269 	unsigned int allocated = 0, offset = 0;
4270 	unsigned int allocated_clusters = 0;
4271 	struct ext4_allocation_request ar;
4272 	ext4_lblk_t cluster_offset;
4273 	bool map_from_cluster = false;
4274 
4275 	ext_debug("blocks %u/%u requested for inode %lu\n",
4276 		  map->m_lblk, map->m_len, inode->i_ino);
4277 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4278 
4279 	/* find extent for this block */
4280 	path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
4281 	if (IS_ERR(path)) {
4282 		err = PTR_ERR(path);
4283 		path = NULL;
4284 		goto out2;
4285 	}
4286 
4287 	depth = ext_depth(inode);
4288 
4289 	/*
4290 	 * consistent leaf must not be empty;
4291 	 * this situation is possible, though, _during_ tree modification;
4292 	 * this is why assert can't be put in ext4_find_extent()
4293 	 */
4294 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4295 		EXT4_ERROR_INODE(inode, "bad extent address "
4296 				 "lblock: %lu, depth: %d pblock %lld",
4297 				 (unsigned long) map->m_lblk, depth,
4298 				 path[depth].p_block);
4299 		err = -EFSCORRUPTED;
4300 		goto out2;
4301 	}
4302 
4303 	ex = path[depth].p_ext;
4304 	if (ex) {
4305 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4306 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4307 		unsigned short ee_len;
4308 
4309 
4310 		/*
4311 		 * unwritten extents are treated as holes, except that
4312 		 * we split out initialized portions during a write.
4313 		 */
4314 		ee_len = ext4_ext_get_actual_len(ex);
4315 
4316 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4317 
4318 		/* if found extent covers block, simply return it */
4319 		if (in_range(map->m_lblk, ee_block, ee_len)) {
4320 			newblock = map->m_lblk - ee_block + ee_start;
4321 			/* number of remaining blocks in the extent */
4322 			allocated = ee_len - (map->m_lblk - ee_block);
4323 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4324 				  ee_block, ee_len, newblock);
4325 
4326 			/*
4327 			 * If the extent is initialized check whether the
4328 			 * caller wants to convert it to unwritten.
4329 			 */
4330 			if ((!ext4_ext_is_unwritten(ex)) &&
4331 			    (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4332 				allocated = convert_initialized_extent(
4333 						handle, inode, map, &path,
4334 						allocated);
4335 				goto out2;
4336 			} else if (!ext4_ext_is_unwritten(ex))
4337 				goto out;
4338 
4339 			ret = ext4_ext_handle_unwritten_extents(
4340 				handle, inode, map, &path, flags,
4341 				allocated, newblock);
4342 			if (ret < 0)
4343 				err = ret;
4344 			else
4345 				allocated = ret;
4346 			goto out2;
4347 		}
4348 	}
4349 
4350 	/*
4351 	 * requested block isn't allocated yet;
4352 	 * we couldn't try to create block if create flag is zero
4353 	 */
4354 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4355 		ext4_lblk_t hole_start, hole_len;
4356 
4357 		hole_start = map->m_lblk;
4358 		hole_len = ext4_ext_determine_hole(inode, path, &hole_start);
4359 		/*
4360 		 * put just found gap into cache to speed up
4361 		 * subsequent requests
4362 		 */
4363 		ext4_ext_put_gap_in_cache(inode, hole_start, hole_len);
4364 
4365 		/* Update hole_len to reflect hole size after map->m_lblk */
4366 		if (hole_start != map->m_lblk)
4367 			hole_len -= map->m_lblk - hole_start;
4368 		map->m_pblk = 0;
4369 		map->m_len = min_t(unsigned int, map->m_len, hole_len);
4370 
4371 		goto out2;
4372 	}
4373 
4374 	/*
4375 	 * Okay, we need to do block allocation.
4376 	 */
4377 	newex.ee_block = cpu_to_le32(map->m_lblk);
4378 	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4379 
4380 	/*
4381 	 * If we are doing bigalloc, check to see if the extent returned
4382 	 * by ext4_find_extent() implies a cluster we can use.
4383 	 */
4384 	if (cluster_offset && ex &&
4385 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4386 		ar.len = allocated = map->m_len;
4387 		newblock = map->m_pblk;
4388 		map_from_cluster = true;
4389 		goto got_allocated_blocks;
4390 	}
4391 
4392 	/* find neighbour allocated blocks */
4393 	ar.lleft = map->m_lblk;
4394 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4395 	if (err)
4396 		goto out2;
4397 	ar.lright = map->m_lblk;
4398 	ex2 = NULL;
4399 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4400 	if (err)
4401 		goto out2;
4402 
4403 	/* Check if the extent after searching to the right implies a
4404 	 * cluster we can use. */
4405 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4406 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4407 		ar.len = allocated = map->m_len;
4408 		newblock = map->m_pblk;
4409 		map_from_cluster = true;
4410 		goto got_allocated_blocks;
4411 	}
4412 
4413 	/*
4414 	 * See if request is beyond maximum number of blocks we can have in
4415 	 * a single extent. For an initialized extent this limit is
4416 	 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4417 	 * EXT_UNWRITTEN_MAX_LEN.
4418 	 */
4419 	if (map->m_len > EXT_INIT_MAX_LEN &&
4420 	    !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4421 		map->m_len = EXT_INIT_MAX_LEN;
4422 	else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4423 		 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4424 		map->m_len = EXT_UNWRITTEN_MAX_LEN;
4425 
4426 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4427 	newex.ee_len = cpu_to_le16(map->m_len);
4428 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4429 	if (err)
4430 		allocated = ext4_ext_get_actual_len(&newex);
4431 	else
4432 		allocated = map->m_len;
4433 
4434 	/* allocate new block */
4435 	ar.inode = inode;
4436 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4437 	ar.logical = map->m_lblk;
4438 	/*
4439 	 * We calculate the offset from the beginning of the cluster
4440 	 * for the logical block number, since when we allocate a
4441 	 * physical cluster, the physical block should start at the
4442 	 * same offset from the beginning of the cluster.  This is
4443 	 * needed so that future calls to get_implied_cluster_alloc()
4444 	 * work correctly.
4445 	 */
4446 	offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4447 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4448 	ar.goal -= offset;
4449 	ar.logical -= offset;
4450 	if (S_ISREG(inode->i_mode))
4451 		ar.flags = EXT4_MB_HINT_DATA;
4452 	else
4453 		/* disable in-core preallocation for non-regular files */
4454 		ar.flags = 0;
4455 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4456 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4457 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4458 		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
4459 	if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
4460 		ar.flags |= EXT4_MB_USE_RESERVED;
4461 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4462 	if (!newblock)
4463 		goto out2;
4464 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4465 		  ar.goal, newblock, allocated);
4466 	free_on_err = 1;
4467 	allocated_clusters = ar.len;
4468 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4469 	if (ar.len > allocated)
4470 		ar.len = allocated;
4471 
4472 got_allocated_blocks:
4473 	/* try to insert new extent into found leaf and return */
4474 	ext4_ext_store_pblock(&newex, newblock + offset);
4475 	newex.ee_len = cpu_to_le16(ar.len);
4476 	/* Mark unwritten */
4477 	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4478 		ext4_ext_mark_unwritten(&newex);
4479 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4480 	}
4481 
4482 	err = 0;
4483 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4484 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4485 					 path, ar.len);
4486 	if (!err)
4487 		err = ext4_ext_insert_extent(handle, inode, &path,
4488 					     &newex, flags);
4489 
4490 	if (err && free_on_err) {
4491 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4492 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4493 		/* free data blocks we just allocated */
4494 		/* not a good idea to call discard here directly,
4495 		 * but otherwise we'd need to call it every free() */
4496 		ext4_discard_preallocations(inode);
4497 		ext4_free_blocks(handle, inode, NULL, newblock,
4498 				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4499 		goto out2;
4500 	}
4501 
4502 	/* previous routine could use block we allocated */
4503 	newblock = ext4_ext_pblock(&newex);
4504 	allocated = ext4_ext_get_actual_len(&newex);
4505 	if (allocated > map->m_len)
4506 		allocated = map->m_len;
4507 	map->m_flags |= EXT4_MAP_NEW;
4508 
4509 	/*
4510 	 * Update reserved blocks/metadata blocks after successful
4511 	 * block allocation which had been deferred till now.
4512 	 */
4513 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4514 		unsigned int reserved_clusters;
4515 		/*
4516 		 * Check how many clusters we had reserved this allocated range
4517 		 */
4518 		reserved_clusters = get_reserved_cluster_alloc(inode,
4519 						map->m_lblk, allocated);
4520 		if (!map_from_cluster) {
4521 			BUG_ON(allocated_clusters < reserved_clusters);
4522 			if (reserved_clusters < allocated_clusters) {
4523 				struct ext4_inode_info *ei = EXT4_I(inode);
4524 				int reservation = allocated_clusters -
4525 						  reserved_clusters;
4526 				/*
4527 				 * It seems we claimed few clusters outside of
4528 				 * the range of this allocation. We should give
4529 				 * it back to the reservation pool. This can
4530 				 * happen in the following case:
4531 				 *
4532 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4533 				 *   cluster has 4 blocks. Thus, the clusters
4534 				 *   are [0-3],[4-7],[8-11]...
4535 				 * * First comes delayed allocation write for
4536 				 *   logical blocks 10 & 11. Since there were no
4537 				 *   previous delayed allocated blocks in the
4538 				 *   range [8-11], we would reserve 1 cluster
4539 				 *   for this write.
4540 				 * * Next comes write for logical blocks 3 to 8.
4541 				 *   In this case, we will reserve 2 clusters
4542 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4543 				 *   that range has a delayed allocated blocks.
4544 				 *   Thus total reserved clusters now becomes 3.
4545 				 * * Now, during the delayed allocation writeout
4546 				 *   time, we will first write blocks [3-8] and
4547 				 *   allocate 3 clusters for writing these
4548 				 *   blocks. Also, we would claim all these
4549 				 *   three clusters above.
4550 				 * * Now when we come here to writeout the
4551 				 *   blocks [10-11], we would expect to claim
4552 				 *   the reservation of 1 cluster we had made
4553 				 *   (and we would claim it since there are no
4554 				 *   more delayed allocated blocks in the range
4555 				 *   [8-11]. But our reserved cluster count had
4556 				 *   already gone to 0.
4557 				 *
4558 				 *   Thus, at the step 4 above when we determine
4559 				 *   that there are still some unwritten delayed
4560 				 *   allocated blocks outside of our current
4561 				 *   block range, we should increment the
4562 				 *   reserved clusters count so that when the
4563 				 *   remaining blocks finally gets written, we
4564 				 *   could claim them.
4565 				 */
4566 				dquot_reserve_block(inode,
4567 						EXT4_C2B(sbi, reservation));
4568 				spin_lock(&ei->i_block_reservation_lock);
4569 				ei->i_reserved_data_blocks += reservation;
4570 				spin_unlock(&ei->i_block_reservation_lock);
4571 			}
4572 			/*
4573 			 * We will claim quota for all newly allocated blocks.
4574 			 * We're updating the reserved space *after* the
4575 			 * correction above so we do not accidentally free
4576 			 * all the metadata reservation because we might
4577 			 * actually need it later on.
4578 			 */
4579 			ext4_da_update_reserve_space(inode, allocated_clusters,
4580 							1);
4581 		}
4582 	}
4583 
4584 	/*
4585 	 * Cache the extent and update transaction to commit on fdatasync only
4586 	 * when it is _not_ an unwritten extent.
4587 	 */
4588 	if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4589 		ext4_update_inode_fsync_trans(handle, inode, 1);
4590 	else
4591 		ext4_update_inode_fsync_trans(handle, inode, 0);
4592 out:
4593 	if (allocated > map->m_len)
4594 		allocated = map->m_len;
4595 	ext4_ext_show_leaf(inode, path);
4596 	map->m_flags |= EXT4_MAP_MAPPED;
4597 	map->m_pblk = newblock;
4598 	map->m_len = allocated;
4599 out2:
4600 	ext4_ext_drop_refs(path);
4601 	kfree(path);
4602 
4603 	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4604 				       err ? err : allocated);
4605 	return err ? err : allocated;
4606 }
4607 
4608 int ext4_ext_truncate(handle_t *handle, struct inode *inode)
4609 {
4610 	struct super_block *sb = inode->i_sb;
4611 	ext4_lblk_t last_block;
4612 	int err = 0;
4613 
4614 	/*
4615 	 * TODO: optimization is possible here.
4616 	 * Probably we need not scan at all,
4617 	 * because page truncation is enough.
4618 	 */
4619 
4620 	/* we have to know where to truncate from in crash case */
4621 	EXT4_I(inode)->i_disksize = inode->i_size;
4622 	err = ext4_mark_inode_dirty(handle, inode);
4623 	if (err)
4624 		return err;
4625 
4626 	last_block = (inode->i_size + sb->s_blocksize - 1)
4627 			>> EXT4_BLOCK_SIZE_BITS(sb);
4628 retry:
4629 	err = ext4_es_remove_extent(inode, last_block,
4630 				    EXT_MAX_BLOCKS - last_block);
4631 	if (err == -ENOMEM) {
4632 		cond_resched();
4633 		congestion_wait(BLK_RW_ASYNC, HZ/50);
4634 		goto retry;
4635 	}
4636 	if (err)
4637 		return err;
4638 	return ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4639 }
4640 
4641 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4642 				  ext4_lblk_t len, loff_t new_size,
4643 				  int flags)
4644 {
4645 	struct inode *inode = file_inode(file);
4646 	handle_t *handle;
4647 	int ret = 0;
4648 	int ret2 = 0;
4649 	int retries = 0;
4650 	int depth = 0;
4651 	struct ext4_map_blocks map;
4652 	unsigned int credits;
4653 	loff_t epos;
4654 
4655 	BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS));
4656 	map.m_lblk = offset;
4657 	map.m_len = len;
4658 	/*
4659 	 * Don't normalize the request if it can fit in one extent so
4660 	 * that it doesn't get unnecessarily split into multiple
4661 	 * extents.
4662 	 */
4663 	if (len <= EXT_UNWRITTEN_MAX_LEN)
4664 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4665 
4666 	/*
4667 	 * credits to insert 1 extent into extent tree
4668 	 */
4669 	credits = ext4_chunk_trans_blocks(inode, len);
4670 	depth = ext_depth(inode);
4671 
4672 retry:
4673 	while (ret >= 0 && len) {
4674 		/*
4675 		 * Recalculate credits when extent tree depth changes.
4676 		 */
4677 		if (depth != ext_depth(inode)) {
4678 			credits = ext4_chunk_trans_blocks(inode, len);
4679 			depth = ext_depth(inode);
4680 		}
4681 
4682 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4683 					    credits);
4684 		if (IS_ERR(handle)) {
4685 			ret = PTR_ERR(handle);
4686 			break;
4687 		}
4688 		ret = ext4_map_blocks(handle, inode, &map, flags);
4689 		if (ret <= 0) {
4690 			ext4_debug("inode #%lu: block %u: len %u: "
4691 				   "ext4_ext_map_blocks returned %d",
4692 				   inode->i_ino, map.m_lblk,
4693 				   map.m_len, ret);
4694 			ext4_mark_inode_dirty(handle, inode);
4695 			ret2 = ext4_journal_stop(handle);
4696 			break;
4697 		}
4698 		map.m_lblk += ret;
4699 		map.m_len = len = len - ret;
4700 		epos = (loff_t)map.m_lblk << inode->i_blkbits;
4701 		inode->i_ctime = current_time(inode);
4702 		if (new_size) {
4703 			if (epos > new_size)
4704 				epos = new_size;
4705 			if (ext4_update_inode_size(inode, epos) & 0x1)
4706 				inode->i_mtime = inode->i_ctime;
4707 		} else {
4708 			if (epos > inode->i_size)
4709 				ext4_set_inode_flag(inode,
4710 						    EXT4_INODE_EOFBLOCKS);
4711 		}
4712 		ext4_mark_inode_dirty(handle, inode);
4713 		ext4_update_inode_fsync_trans(handle, inode, 1);
4714 		ret2 = ext4_journal_stop(handle);
4715 		if (ret2)
4716 			break;
4717 	}
4718 	if (ret == -ENOSPC &&
4719 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4720 		ret = 0;
4721 		goto retry;
4722 	}
4723 
4724 	return ret > 0 ? ret2 : ret;
4725 }
4726 
4727 static long ext4_zero_range(struct file *file, loff_t offset,
4728 			    loff_t len, int mode)
4729 {
4730 	struct inode *inode = file_inode(file);
4731 	handle_t *handle = NULL;
4732 	unsigned int max_blocks;
4733 	loff_t new_size = 0;
4734 	int ret = 0;
4735 	int flags;
4736 	int credits;
4737 	int partial_begin, partial_end;
4738 	loff_t start, end;
4739 	ext4_lblk_t lblk;
4740 	unsigned int blkbits = inode->i_blkbits;
4741 
4742 	trace_ext4_zero_range(inode, offset, len, mode);
4743 
4744 	if (!S_ISREG(inode->i_mode))
4745 		return -EINVAL;
4746 
4747 	/* Call ext4_force_commit to flush all data in case of data=journal. */
4748 	if (ext4_should_journal_data(inode)) {
4749 		ret = ext4_force_commit(inode->i_sb);
4750 		if (ret)
4751 			return ret;
4752 	}
4753 
4754 	/*
4755 	 * Round up offset. This is not fallocate, we neet to zero out
4756 	 * blocks, so convert interior block aligned part of the range to
4757 	 * unwritten and possibly manually zero out unaligned parts of the
4758 	 * range.
4759 	 */
4760 	start = round_up(offset, 1 << blkbits);
4761 	end = round_down((offset + len), 1 << blkbits);
4762 
4763 	if (start < offset || end > offset + len)
4764 		return -EINVAL;
4765 	partial_begin = offset & ((1 << blkbits) - 1);
4766 	partial_end = (offset + len) & ((1 << blkbits) - 1);
4767 
4768 	lblk = start >> blkbits;
4769 	max_blocks = (end >> blkbits);
4770 	if (max_blocks < lblk)
4771 		max_blocks = 0;
4772 	else
4773 		max_blocks -= lblk;
4774 
4775 	inode_lock(inode);
4776 
4777 	/*
4778 	 * Indirect files do not support unwritten extnets
4779 	 */
4780 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4781 		ret = -EOPNOTSUPP;
4782 		goto out_mutex;
4783 	}
4784 
4785 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4786 	    (offset + len > i_size_read(inode) ||
4787 	     offset + len > EXT4_I(inode)->i_disksize)) {
4788 		new_size = offset + len;
4789 		ret = inode_newsize_ok(inode, new_size);
4790 		if (ret)
4791 			goto out_mutex;
4792 	}
4793 
4794 	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4795 	if (mode & FALLOC_FL_KEEP_SIZE)
4796 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4797 
4798 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4799 	inode_dio_wait(inode);
4800 
4801 	/* Preallocate the range including the unaligned edges */
4802 	if (partial_begin || partial_end) {
4803 		ret = ext4_alloc_file_blocks(file,
4804 				round_down(offset, 1 << blkbits) >> blkbits,
4805 				(round_up((offset + len), 1 << blkbits) -
4806 				 round_down(offset, 1 << blkbits)) >> blkbits,
4807 				new_size, flags);
4808 		if (ret)
4809 			goto out_mutex;
4810 
4811 	}
4812 
4813 	/* Zero range excluding the unaligned edges */
4814 	if (max_blocks > 0) {
4815 		flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4816 			  EXT4_EX_NOCACHE);
4817 
4818 		/*
4819 		 * Prevent page faults from reinstantiating pages we have
4820 		 * released from page cache.
4821 		 */
4822 		down_write(&EXT4_I(inode)->i_mmap_sem);
4823 		ret = ext4_update_disksize_before_punch(inode, offset, len);
4824 		if (ret) {
4825 			up_write(&EXT4_I(inode)->i_mmap_sem);
4826 			goto out_mutex;
4827 		}
4828 		/* Now release the pages and zero block aligned part of pages */
4829 		truncate_pagecache_range(inode, start, end - 1);
4830 		inode->i_mtime = inode->i_ctime = current_time(inode);
4831 
4832 		ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4833 					     flags);
4834 		up_write(&EXT4_I(inode)->i_mmap_sem);
4835 		if (ret)
4836 			goto out_mutex;
4837 	}
4838 	if (!partial_begin && !partial_end)
4839 		goto out_mutex;
4840 
4841 	/*
4842 	 * In worst case we have to writeout two nonadjacent unwritten
4843 	 * blocks and update the inode
4844 	 */
4845 	credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4846 	if (ext4_should_journal_data(inode))
4847 		credits += 2;
4848 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4849 	if (IS_ERR(handle)) {
4850 		ret = PTR_ERR(handle);
4851 		ext4_std_error(inode->i_sb, ret);
4852 		goto out_mutex;
4853 	}
4854 
4855 	inode->i_mtime = inode->i_ctime = current_time(inode);
4856 	if (new_size) {
4857 		ext4_update_inode_size(inode, new_size);
4858 	} else {
4859 		/*
4860 		* Mark that we allocate beyond EOF so the subsequent truncate
4861 		* can proceed even if the new size is the same as i_size.
4862 		*/
4863 		if ((offset + len) > i_size_read(inode))
4864 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4865 	}
4866 	ext4_mark_inode_dirty(handle, inode);
4867 
4868 	/* Zero out partial block at the edges of the range */
4869 	ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4870 	if (ret >= 0)
4871 		ext4_update_inode_fsync_trans(handle, inode, 1);
4872 
4873 	if (file->f_flags & O_SYNC)
4874 		ext4_handle_sync(handle);
4875 
4876 	ext4_journal_stop(handle);
4877 out_mutex:
4878 	inode_unlock(inode);
4879 	return ret;
4880 }
4881 
4882 /*
4883  * preallocate space for a file. This implements ext4's fallocate file
4884  * operation, which gets called from sys_fallocate system call.
4885  * For block-mapped files, posix_fallocate should fall back to the method
4886  * of writing zeroes to the required new blocks (the same behavior which is
4887  * expected for file systems which do not support fallocate() system call).
4888  */
4889 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4890 {
4891 	struct inode *inode = file_inode(file);
4892 	loff_t new_size = 0;
4893 	unsigned int max_blocks;
4894 	int ret = 0;
4895 	int flags;
4896 	ext4_lblk_t lblk;
4897 	unsigned int blkbits = inode->i_blkbits;
4898 
4899 	/*
4900 	 * Encrypted inodes can't handle collapse range or insert
4901 	 * range since we would need to re-encrypt blocks with a
4902 	 * different IV or XTS tweak (which are based on the logical
4903 	 * block number).
4904 	 *
4905 	 * XXX It's not clear why zero range isn't working, but we'll
4906 	 * leave it disabled for encrypted inodes for now.  This is a
4907 	 * bug we should fix....
4908 	 */
4909 	if (ext4_encrypted_inode(inode) &&
4910 	    (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE |
4911 		     FALLOC_FL_ZERO_RANGE)))
4912 		return -EOPNOTSUPP;
4913 
4914 	/* Return error if mode is not supported */
4915 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4916 		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
4917 		     FALLOC_FL_INSERT_RANGE))
4918 		return -EOPNOTSUPP;
4919 
4920 	if (mode & FALLOC_FL_PUNCH_HOLE)
4921 		return ext4_punch_hole(inode, offset, len);
4922 
4923 	ret = ext4_convert_inline_data(inode);
4924 	if (ret)
4925 		return ret;
4926 
4927 	if (mode & FALLOC_FL_COLLAPSE_RANGE)
4928 		return ext4_collapse_range(inode, offset, len);
4929 
4930 	if (mode & FALLOC_FL_INSERT_RANGE)
4931 		return ext4_insert_range(inode, offset, len);
4932 
4933 	if (mode & FALLOC_FL_ZERO_RANGE)
4934 		return ext4_zero_range(file, offset, len, mode);
4935 
4936 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4937 	lblk = offset >> blkbits;
4938 
4939 	max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
4940 	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4941 	if (mode & FALLOC_FL_KEEP_SIZE)
4942 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4943 
4944 	inode_lock(inode);
4945 
4946 	/*
4947 	 * We only support preallocation for extent-based files only
4948 	 */
4949 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4950 		ret = -EOPNOTSUPP;
4951 		goto out;
4952 	}
4953 
4954 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4955 	    (offset + len > i_size_read(inode) ||
4956 	     offset + len > EXT4_I(inode)->i_disksize)) {
4957 		new_size = offset + len;
4958 		ret = inode_newsize_ok(inode, new_size);
4959 		if (ret)
4960 			goto out;
4961 	}
4962 
4963 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4964 	inode_dio_wait(inode);
4965 
4966 	ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags);
4967 	if (ret)
4968 		goto out;
4969 
4970 	if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
4971 		ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
4972 						EXT4_I(inode)->i_sync_tid);
4973 	}
4974 out:
4975 	inode_unlock(inode);
4976 	trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4977 	return ret;
4978 }
4979 
4980 /*
4981  * This function convert a range of blocks to written extents
4982  * The caller of this function will pass the start offset and the size.
4983  * all unwritten extents within this range will be converted to
4984  * written extents.
4985  *
4986  * This function is called from the direct IO end io call back
4987  * function, to convert the fallocated extents after IO is completed.
4988  * Returns 0 on success.
4989  */
4990 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4991 				   loff_t offset, ssize_t len)
4992 {
4993 	unsigned int max_blocks;
4994 	int ret = 0;
4995 	int ret2 = 0;
4996 	struct ext4_map_blocks map;
4997 	unsigned int credits, blkbits = inode->i_blkbits;
4998 
4999 	map.m_lblk = offset >> blkbits;
5000 	max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
5001 
5002 	/*
5003 	 * This is somewhat ugly but the idea is clear: When transaction is
5004 	 * reserved, everything goes into it. Otherwise we rather start several
5005 	 * smaller transactions for conversion of each extent separately.
5006 	 */
5007 	if (handle) {
5008 		handle = ext4_journal_start_reserved(handle,
5009 						     EXT4_HT_EXT_CONVERT);
5010 		if (IS_ERR(handle))
5011 			return PTR_ERR(handle);
5012 		credits = 0;
5013 	} else {
5014 		/*
5015 		 * credits to insert 1 extent into extent tree
5016 		 */
5017 		credits = ext4_chunk_trans_blocks(inode, max_blocks);
5018 	}
5019 	while (ret >= 0 && ret < max_blocks) {
5020 		map.m_lblk += ret;
5021 		map.m_len = (max_blocks -= ret);
5022 		if (credits) {
5023 			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5024 						    credits);
5025 			if (IS_ERR(handle)) {
5026 				ret = PTR_ERR(handle);
5027 				break;
5028 			}
5029 		}
5030 		ret = ext4_map_blocks(handle, inode, &map,
5031 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5032 		if (ret <= 0)
5033 			ext4_warning(inode->i_sb,
5034 				     "inode #%lu: block %u: len %u: "
5035 				     "ext4_ext_map_blocks returned %d",
5036 				     inode->i_ino, map.m_lblk,
5037 				     map.m_len, ret);
5038 		ext4_mark_inode_dirty(handle, inode);
5039 		if (credits)
5040 			ret2 = ext4_journal_stop(handle);
5041 		if (ret <= 0 || ret2)
5042 			break;
5043 	}
5044 	if (!credits)
5045 		ret2 = ext4_journal_stop(handle);
5046 	return ret > 0 ? ret2 : ret;
5047 }
5048 
5049 /*
5050  * If newes is not existing extent (newes->ec_pblk equals zero) find
5051  * delayed extent at start of newes and update newes accordingly and
5052  * return start of the next delayed extent.
5053  *
5054  * If newes is existing extent (newes->ec_pblk is not equal zero)
5055  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5056  * extent found. Leave newes unmodified.
5057  */
5058 static int ext4_find_delayed_extent(struct inode *inode,
5059 				    struct extent_status *newes)
5060 {
5061 	struct extent_status es;
5062 	ext4_lblk_t block, next_del;
5063 
5064 	if (newes->es_pblk == 0) {
5065 		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5066 				newes->es_lblk + newes->es_len - 1, &es);
5067 
5068 		/*
5069 		 * No extent in extent-tree contains block @newes->es_pblk,
5070 		 * then the block may stay in 1)a hole or 2)delayed-extent.
5071 		 */
5072 		if (es.es_len == 0)
5073 			/* A hole found. */
5074 			return 0;
5075 
5076 		if (es.es_lblk > newes->es_lblk) {
5077 			/* A hole found. */
5078 			newes->es_len = min(es.es_lblk - newes->es_lblk,
5079 					    newes->es_len);
5080 			return 0;
5081 		}
5082 
5083 		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5084 	}
5085 
5086 	block = newes->es_lblk + newes->es_len;
5087 	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5088 	if (es.es_len == 0)
5089 		next_del = EXT_MAX_BLOCKS;
5090 	else
5091 		next_del = es.es_lblk;
5092 
5093 	return next_del;
5094 }
5095 /* fiemap flags we can handle specified here */
5096 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5097 
5098 static int ext4_xattr_fiemap(struct inode *inode,
5099 				struct fiemap_extent_info *fieinfo)
5100 {
5101 	__u64 physical = 0;
5102 	__u64 length;
5103 	__u32 flags = FIEMAP_EXTENT_LAST;
5104 	int blockbits = inode->i_sb->s_blocksize_bits;
5105 	int error = 0;
5106 
5107 	/* in-inode? */
5108 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5109 		struct ext4_iloc iloc;
5110 		int offset;	/* offset of xattr in inode */
5111 
5112 		error = ext4_get_inode_loc(inode, &iloc);
5113 		if (error)
5114 			return error;
5115 		physical = (__u64)iloc.bh->b_blocknr << blockbits;
5116 		offset = EXT4_GOOD_OLD_INODE_SIZE +
5117 				EXT4_I(inode)->i_extra_isize;
5118 		physical += offset;
5119 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5120 		flags |= FIEMAP_EXTENT_DATA_INLINE;
5121 		brelse(iloc.bh);
5122 	} else { /* external block */
5123 		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5124 		length = inode->i_sb->s_blocksize;
5125 	}
5126 
5127 	if (physical)
5128 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
5129 						length, flags);
5130 	return (error < 0 ? error : 0);
5131 }
5132 
5133 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5134 		__u64 start, __u64 len)
5135 {
5136 	ext4_lblk_t start_blk;
5137 	int error = 0;
5138 
5139 	if (ext4_has_inline_data(inode)) {
5140 		int has_inline = 1;
5141 
5142 		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline,
5143 						start, len);
5144 
5145 		if (has_inline)
5146 			return error;
5147 	}
5148 
5149 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5150 		error = ext4_ext_precache(inode);
5151 		if (error)
5152 			return error;
5153 	}
5154 
5155 	/* fallback to generic here if not in extents fmt */
5156 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5157 		return generic_block_fiemap(inode, fieinfo, start, len,
5158 			ext4_get_block);
5159 
5160 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5161 		return -EBADR;
5162 
5163 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5164 		error = ext4_xattr_fiemap(inode, fieinfo);
5165 	} else {
5166 		ext4_lblk_t len_blks;
5167 		__u64 last_blk;
5168 
5169 		start_blk = start >> inode->i_sb->s_blocksize_bits;
5170 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5171 		if (last_blk >= EXT_MAX_BLOCKS)
5172 			last_blk = EXT_MAX_BLOCKS-1;
5173 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5174 
5175 		/*
5176 		 * Walk the extent tree gathering extent information
5177 		 * and pushing extents back to the user.
5178 		 */
5179 		error = ext4_fill_fiemap_extents(inode, start_blk,
5180 						 len_blks, fieinfo);
5181 	}
5182 	return error;
5183 }
5184 
5185 /*
5186  * ext4_access_path:
5187  * Function to access the path buffer for marking it dirty.
5188  * It also checks if there are sufficient credits left in the journal handle
5189  * to update path.
5190  */
5191 static int
5192 ext4_access_path(handle_t *handle, struct inode *inode,
5193 		struct ext4_ext_path *path)
5194 {
5195 	int credits, err;
5196 
5197 	if (!ext4_handle_valid(handle))
5198 		return 0;
5199 
5200 	/*
5201 	 * Check if need to extend journal credits
5202 	 * 3 for leaf, sb, and inode plus 2 (bmap and group
5203 	 * descriptor) for each block group; assume two block
5204 	 * groups
5205 	 */
5206 	if (handle->h_buffer_credits < 7) {
5207 		credits = ext4_writepage_trans_blocks(inode);
5208 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5209 		/* EAGAIN is success */
5210 		if (err && err != -EAGAIN)
5211 			return err;
5212 	}
5213 
5214 	err = ext4_ext_get_access(handle, inode, path);
5215 	return err;
5216 }
5217 
5218 /*
5219  * ext4_ext_shift_path_extents:
5220  * Shift the extents of a path structure lying between path[depth].p_ext
5221  * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells
5222  * if it is right shift or left shift operation.
5223  */
5224 static int
5225 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5226 			    struct inode *inode, handle_t *handle,
5227 			    enum SHIFT_DIRECTION SHIFT)
5228 {
5229 	int depth, err = 0;
5230 	struct ext4_extent *ex_start, *ex_last;
5231 	bool update = 0;
5232 	depth = path->p_depth;
5233 
5234 	while (depth >= 0) {
5235 		if (depth == path->p_depth) {
5236 			ex_start = path[depth].p_ext;
5237 			if (!ex_start)
5238 				return -EFSCORRUPTED;
5239 
5240 			ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5241 
5242 			err = ext4_access_path(handle, inode, path + depth);
5243 			if (err)
5244 				goto out;
5245 
5246 			if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5247 				update = 1;
5248 
5249 			while (ex_start <= ex_last) {
5250 				if (SHIFT == SHIFT_LEFT) {
5251 					le32_add_cpu(&ex_start->ee_block,
5252 						-shift);
5253 					/* Try to merge to the left. */
5254 					if ((ex_start >
5255 					    EXT_FIRST_EXTENT(path[depth].p_hdr))
5256 					    &&
5257 					    ext4_ext_try_to_merge_right(inode,
5258 					    path, ex_start - 1))
5259 						ex_last--;
5260 					else
5261 						ex_start++;
5262 				} else {
5263 					le32_add_cpu(&ex_last->ee_block, shift);
5264 					ext4_ext_try_to_merge_right(inode, path,
5265 						ex_last);
5266 					ex_last--;
5267 				}
5268 			}
5269 			err = ext4_ext_dirty(handle, inode, path + depth);
5270 			if (err)
5271 				goto out;
5272 
5273 			if (--depth < 0 || !update)
5274 				break;
5275 		}
5276 
5277 		/* Update index too */
5278 		err = ext4_access_path(handle, inode, path + depth);
5279 		if (err)
5280 			goto out;
5281 
5282 		if (SHIFT == SHIFT_LEFT)
5283 			le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5284 		else
5285 			le32_add_cpu(&path[depth].p_idx->ei_block, shift);
5286 		err = ext4_ext_dirty(handle, inode, path + depth);
5287 		if (err)
5288 			goto out;
5289 
5290 		/* we are done if current index is not a starting index */
5291 		if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5292 			break;
5293 
5294 		depth--;
5295 	}
5296 
5297 out:
5298 	return err;
5299 }
5300 
5301 /*
5302  * ext4_ext_shift_extents:
5303  * All the extents which lies in the range from @start to the last allocated
5304  * block for the @inode are shifted either towards left or right (depending
5305  * upon @SHIFT) by @shift blocks.
5306  * On success, 0 is returned, error otherwise.
5307  */
5308 static int
5309 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5310 		       ext4_lblk_t start, ext4_lblk_t shift,
5311 		       enum SHIFT_DIRECTION SHIFT)
5312 {
5313 	struct ext4_ext_path *path;
5314 	int ret = 0, depth;
5315 	struct ext4_extent *extent;
5316 	ext4_lblk_t stop, *iterator, ex_start, ex_end;
5317 
5318 	/* Let path point to the last extent */
5319 	path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL,
5320 				EXT4_EX_NOCACHE);
5321 	if (IS_ERR(path))
5322 		return PTR_ERR(path);
5323 
5324 	depth = path->p_depth;
5325 	extent = path[depth].p_ext;
5326 	if (!extent)
5327 		goto out;
5328 
5329 	stop = le32_to_cpu(extent->ee_block);
5330 
5331        /*
5332 	 * In case of left shift, Don't start shifting extents until we make
5333 	 * sure the hole is big enough to accommodate the shift.
5334 	*/
5335 	if (SHIFT == SHIFT_LEFT) {
5336 		path = ext4_find_extent(inode, start - 1, &path,
5337 					EXT4_EX_NOCACHE);
5338 		if (IS_ERR(path))
5339 			return PTR_ERR(path);
5340 		depth = path->p_depth;
5341 		extent =  path[depth].p_ext;
5342 		if (extent) {
5343 			ex_start = le32_to_cpu(extent->ee_block);
5344 			ex_end = le32_to_cpu(extent->ee_block) +
5345 				ext4_ext_get_actual_len(extent);
5346 		} else {
5347 			ex_start = 0;
5348 			ex_end = 0;
5349 		}
5350 
5351 		if ((start == ex_start && shift > ex_start) ||
5352 		    (shift > start - ex_end)) {
5353 			ext4_ext_drop_refs(path);
5354 			kfree(path);
5355 			return -EINVAL;
5356 		}
5357 	}
5358 
5359 	/*
5360 	 * In case of left shift, iterator points to start and it is increased
5361 	 * till we reach stop. In case of right shift, iterator points to stop
5362 	 * and it is decreased till we reach start.
5363 	 */
5364 	if (SHIFT == SHIFT_LEFT)
5365 		iterator = &start;
5366 	else
5367 		iterator = &stop;
5368 
5369 	/*
5370 	 * Its safe to start updating extents.  Start and stop are unsigned, so
5371 	 * in case of right shift if extent with 0 block is reached, iterator
5372 	 * becomes NULL to indicate the end of the loop.
5373 	 */
5374 	while (iterator && start <= stop) {
5375 		path = ext4_find_extent(inode, *iterator, &path,
5376 					EXT4_EX_NOCACHE);
5377 		if (IS_ERR(path))
5378 			return PTR_ERR(path);
5379 		depth = path->p_depth;
5380 		extent = path[depth].p_ext;
5381 		if (!extent) {
5382 			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5383 					 (unsigned long) *iterator);
5384 			return -EFSCORRUPTED;
5385 		}
5386 		if (SHIFT == SHIFT_LEFT && *iterator >
5387 		    le32_to_cpu(extent->ee_block)) {
5388 			/* Hole, move to the next extent */
5389 			if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5390 				path[depth].p_ext++;
5391 			} else {
5392 				*iterator = ext4_ext_next_allocated_block(path);
5393 				continue;
5394 			}
5395 		}
5396 
5397 		if (SHIFT == SHIFT_LEFT) {
5398 			extent = EXT_LAST_EXTENT(path[depth].p_hdr);
5399 			*iterator = le32_to_cpu(extent->ee_block) +
5400 					ext4_ext_get_actual_len(extent);
5401 		} else {
5402 			extent = EXT_FIRST_EXTENT(path[depth].p_hdr);
5403 			if (le32_to_cpu(extent->ee_block) > 0)
5404 				*iterator = le32_to_cpu(extent->ee_block) - 1;
5405 			else
5406 				/* Beginning is reached, end of the loop */
5407 				iterator = NULL;
5408 			/* Update path extent in case we need to stop */
5409 			while (le32_to_cpu(extent->ee_block) < start)
5410 				extent++;
5411 			path[depth].p_ext = extent;
5412 		}
5413 		ret = ext4_ext_shift_path_extents(path, shift, inode,
5414 				handle, SHIFT);
5415 		if (ret)
5416 			break;
5417 	}
5418 out:
5419 	ext4_ext_drop_refs(path);
5420 	kfree(path);
5421 	return ret;
5422 }
5423 
5424 /*
5425  * ext4_collapse_range:
5426  * This implements the fallocate's collapse range functionality for ext4
5427  * Returns: 0 and non-zero on error.
5428  */
5429 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5430 {
5431 	struct super_block *sb = inode->i_sb;
5432 	ext4_lblk_t punch_start, punch_stop;
5433 	handle_t *handle;
5434 	unsigned int credits;
5435 	loff_t new_size, ioffset;
5436 	int ret;
5437 
5438 	/*
5439 	 * We need to test this early because xfstests assumes that a
5440 	 * collapse range of (0, 1) will return EOPNOTSUPP if the file
5441 	 * system does not support collapse range.
5442 	 */
5443 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5444 		return -EOPNOTSUPP;
5445 
5446 	/* Collapse range works only on fs block size aligned offsets. */
5447 	if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5448 	    len & (EXT4_CLUSTER_SIZE(sb) - 1))
5449 		return -EINVAL;
5450 
5451 	if (!S_ISREG(inode->i_mode))
5452 		return -EINVAL;
5453 
5454 	trace_ext4_collapse_range(inode, offset, len);
5455 
5456 	punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5457 	punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5458 
5459 	/* Call ext4_force_commit to flush all data in case of data=journal. */
5460 	if (ext4_should_journal_data(inode)) {
5461 		ret = ext4_force_commit(inode->i_sb);
5462 		if (ret)
5463 			return ret;
5464 	}
5465 
5466 	inode_lock(inode);
5467 	/*
5468 	 * There is no need to overlap collapse range with EOF, in which case
5469 	 * it is effectively a truncate operation
5470 	 */
5471 	if (offset + len >= i_size_read(inode)) {
5472 		ret = -EINVAL;
5473 		goto out_mutex;
5474 	}
5475 
5476 	/* Currently just for extent based files */
5477 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5478 		ret = -EOPNOTSUPP;
5479 		goto out_mutex;
5480 	}
5481 
5482 	/* Wait for existing dio to complete */
5483 	inode_dio_wait(inode);
5484 
5485 	/*
5486 	 * Prevent page faults from reinstantiating pages we have released from
5487 	 * page cache.
5488 	 */
5489 	down_write(&EXT4_I(inode)->i_mmap_sem);
5490 	/*
5491 	 * Need to round down offset to be aligned with page size boundary
5492 	 * for page size > block size.
5493 	 */
5494 	ioffset = round_down(offset, PAGE_SIZE);
5495 	/*
5496 	 * Write tail of the last page before removed range since it will get
5497 	 * removed from the page cache below.
5498 	 */
5499 	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset);
5500 	if (ret)
5501 		goto out_mmap;
5502 	/*
5503 	 * Write data that will be shifted to preserve them when discarding
5504 	 * page cache below. We are also protected from pages becoming dirty
5505 	 * by i_mmap_sem.
5506 	 */
5507 	ret = filemap_write_and_wait_range(inode->i_mapping, offset + len,
5508 					   LLONG_MAX);
5509 	if (ret)
5510 		goto out_mmap;
5511 	truncate_pagecache(inode, ioffset);
5512 
5513 	credits = ext4_writepage_trans_blocks(inode);
5514 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5515 	if (IS_ERR(handle)) {
5516 		ret = PTR_ERR(handle);
5517 		goto out_mmap;
5518 	}
5519 
5520 	down_write(&EXT4_I(inode)->i_data_sem);
5521 	ext4_discard_preallocations(inode);
5522 
5523 	ret = ext4_es_remove_extent(inode, punch_start,
5524 				    EXT_MAX_BLOCKS - punch_start);
5525 	if (ret) {
5526 		up_write(&EXT4_I(inode)->i_data_sem);
5527 		goto out_stop;
5528 	}
5529 
5530 	ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5531 	if (ret) {
5532 		up_write(&EXT4_I(inode)->i_data_sem);
5533 		goto out_stop;
5534 	}
5535 	ext4_discard_preallocations(inode);
5536 
5537 	ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5538 				     punch_stop - punch_start, SHIFT_LEFT);
5539 	if (ret) {
5540 		up_write(&EXT4_I(inode)->i_data_sem);
5541 		goto out_stop;
5542 	}
5543 
5544 	new_size = i_size_read(inode) - len;
5545 	i_size_write(inode, new_size);
5546 	EXT4_I(inode)->i_disksize = new_size;
5547 
5548 	up_write(&EXT4_I(inode)->i_data_sem);
5549 	if (IS_SYNC(inode))
5550 		ext4_handle_sync(handle);
5551 	inode->i_mtime = inode->i_ctime = current_time(inode);
5552 	ext4_mark_inode_dirty(handle, inode);
5553 	ext4_update_inode_fsync_trans(handle, inode, 1);
5554 
5555 out_stop:
5556 	ext4_journal_stop(handle);
5557 out_mmap:
5558 	up_write(&EXT4_I(inode)->i_mmap_sem);
5559 out_mutex:
5560 	inode_unlock(inode);
5561 	return ret;
5562 }
5563 
5564 /*
5565  * ext4_insert_range:
5566  * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate.
5567  * The data blocks starting from @offset to the EOF are shifted by @len
5568  * towards right to create a hole in the @inode. Inode size is increased
5569  * by len bytes.
5570  * Returns 0 on success, error otherwise.
5571  */
5572 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len)
5573 {
5574 	struct super_block *sb = inode->i_sb;
5575 	handle_t *handle;
5576 	struct ext4_ext_path *path;
5577 	struct ext4_extent *extent;
5578 	ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0;
5579 	unsigned int credits, ee_len;
5580 	int ret = 0, depth, split_flag = 0;
5581 	loff_t ioffset;
5582 
5583 	/*
5584 	 * We need to test this early because xfstests assumes that an
5585 	 * insert range of (0, 1) will return EOPNOTSUPP if the file
5586 	 * system does not support insert range.
5587 	 */
5588 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5589 		return -EOPNOTSUPP;
5590 
5591 	/* Insert range works only on fs block size aligned offsets. */
5592 	if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5593 			len & (EXT4_CLUSTER_SIZE(sb) - 1))
5594 		return -EINVAL;
5595 
5596 	if (!S_ISREG(inode->i_mode))
5597 		return -EOPNOTSUPP;
5598 
5599 	trace_ext4_insert_range(inode, offset, len);
5600 
5601 	offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5602 	len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb);
5603 
5604 	/* Call ext4_force_commit to flush all data in case of data=journal */
5605 	if (ext4_should_journal_data(inode)) {
5606 		ret = ext4_force_commit(inode->i_sb);
5607 		if (ret)
5608 			return ret;
5609 	}
5610 
5611 	inode_lock(inode);
5612 	/* Currently just for extent based files */
5613 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5614 		ret = -EOPNOTSUPP;
5615 		goto out_mutex;
5616 	}
5617 
5618 	/* Check for wrap through zero */
5619 	if (inode->i_size + len > inode->i_sb->s_maxbytes) {
5620 		ret = -EFBIG;
5621 		goto out_mutex;
5622 	}
5623 
5624 	/* Offset should be less than i_size */
5625 	if (offset >= i_size_read(inode)) {
5626 		ret = -EINVAL;
5627 		goto out_mutex;
5628 	}
5629 
5630 	/* Wait for existing dio to complete */
5631 	inode_dio_wait(inode);
5632 
5633 	/*
5634 	 * Prevent page faults from reinstantiating pages we have released from
5635 	 * page cache.
5636 	 */
5637 	down_write(&EXT4_I(inode)->i_mmap_sem);
5638 	/*
5639 	 * Need to round down to align start offset to page size boundary
5640 	 * for page size > block size.
5641 	 */
5642 	ioffset = round_down(offset, PAGE_SIZE);
5643 	/* Write out all dirty pages */
5644 	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5645 			LLONG_MAX);
5646 	if (ret)
5647 		goto out_mmap;
5648 	truncate_pagecache(inode, ioffset);
5649 
5650 	credits = ext4_writepage_trans_blocks(inode);
5651 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5652 	if (IS_ERR(handle)) {
5653 		ret = PTR_ERR(handle);
5654 		goto out_mmap;
5655 	}
5656 
5657 	/* Expand file to avoid data loss if there is error while shifting */
5658 	inode->i_size += len;
5659 	EXT4_I(inode)->i_disksize += len;
5660 	inode->i_mtime = inode->i_ctime = current_time(inode);
5661 	ret = ext4_mark_inode_dirty(handle, inode);
5662 	if (ret)
5663 		goto out_stop;
5664 
5665 	down_write(&EXT4_I(inode)->i_data_sem);
5666 	ext4_discard_preallocations(inode);
5667 
5668 	path = ext4_find_extent(inode, offset_lblk, NULL, 0);
5669 	if (IS_ERR(path)) {
5670 		up_write(&EXT4_I(inode)->i_data_sem);
5671 		goto out_stop;
5672 	}
5673 
5674 	depth = ext_depth(inode);
5675 	extent = path[depth].p_ext;
5676 	if (extent) {
5677 		ee_start_lblk = le32_to_cpu(extent->ee_block);
5678 		ee_len = ext4_ext_get_actual_len(extent);
5679 
5680 		/*
5681 		 * If offset_lblk is not the starting block of extent, split
5682 		 * the extent @offset_lblk
5683 		 */
5684 		if ((offset_lblk > ee_start_lblk) &&
5685 				(offset_lblk < (ee_start_lblk + ee_len))) {
5686 			if (ext4_ext_is_unwritten(extent))
5687 				split_flag = EXT4_EXT_MARK_UNWRIT1 |
5688 					EXT4_EXT_MARK_UNWRIT2;
5689 			ret = ext4_split_extent_at(handle, inode, &path,
5690 					offset_lblk, split_flag,
5691 					EXT4_EX_NOCACHE |
5692 					EXT4_GET_BLOCKS_PRE_IO |
5693 					EXT4_GET_BLOCKS_METADATA_NOFAIL);
5694 		}
5695 
5696 		ext4_ext_drop_refs(path);
5697 		kfree(path);
5698 		if (ret < 0) {
5699 			up_write(&EXT4_I(inode)->i_data_sem);
5700 			goto out_stop;
5701 		}
5702 	} else {
5703 		ext4_ext_drop_refs(path);
5704 		kfree(path);
5705 	}
5706 
5707 	ret = ext4_es_remove_extent(inode, offset_lblk,
5708 			EXT_MAX_BLOCKS - offset_lblk);
5709 	if (ret) {
5710 		up_write(&EXT4_I(inode)->i_data_sem);
5711 		goto out_stop;
5712 	}
5713 
5714 	/*
5715 	 * if offset_lblk lies in a hole which is at start of file, use
5716 	 * ee_start_lblk to shift extents
5717 	 */
5718 	ret = ext4_ext_shift_extents(inode, handle,
5719 		ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk,
5720 		len_lblk, SHIFT_RIGHT);
5721 
5722 	up_write(&EXT4_I(inode)->i_data_sem);
5723 	if (IS_SYNC(inode))
5724 		ext4_handle_sync(handle);
5725 	if (ret >= 0)
5726 		ext4_update_inode_fsync_trans(handle, inode, 1);
5727 
5728 out_stop:
5729 	ext4_journal_stop(handle);
5730 out_mmap:
5731 	up_write(&EXT4_I(inode)->i_mmap_sem);
5732 out_mutex:
5733 	inode_unlock(inode);
5734 	return ret;
5735 }
5736 
5737 /**
5738  * ext4_swap_extents - Swap extents between two inodes
5739  *
5740  * @inode1:	First inode
5741  * @inode2:	Second inode
5742  * @lblk1:	Start block for first inode
5743  * @lblk2:	Start block for second inode
5744  * @count:	Number of blocks to swap
5745  * @unwritten: Mark second inode's extents as unwritten after swap
5746  * @erp:	Pointer to save error value
5747  *
5748  * This helper routine does exactly what is promise "swap extents". All other
5749  * stuff such as page-cache locking consistency, bh mapping consistency or
5750  * extent's data copying must be performed by caller.
5751  * Locking:
5752  * 		i_mutex is held for both inodes
5753  * 		i_data_sem is locked for write for both inodes
5754  * Assumptions:
5755  *		All pages from requested range are locked for both inodes
5756  */
5757 int
5758 ext4_swap_extents(handle_t *handle, struct inode *inode1,
5759 		  struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5760 		  ext4_lblk_t count, int unwritten, int *erp)
5761 {
5762 	struct ext4_ext_path *path1 = NULL;
5763 	struct ext4_ext_path *path2 = NULL;
5764 	int replaced_count = 0;
5765 
5766 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5767 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5768 	BUG_ON(!inode_is_locked(inode1));
5769 	BUG_ON(!inode_is_locked(inode2));
5770 
5771 	*erp = ext4_es_remove_extent(inode1, lblk1, count);
5772 	if (unlikely(*erp))
5773 		return 0;
5774 	*erp = ext4_es_remove_extent(inode2, lblk2, count);
5775 	if (unlikely(*erp))
5776 		return 0;
5777 
5778 	while (count) {
5779 		struct ext4_extent *ex1, *ex2, tmp_ex;
5780 		ext4_lblk_t e1_blk, e2_blk;
5781 		int e1_len, e2_len, len;
5782 		int split = 0;
5783 
5784 		path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5785 		if (IS_ERR(path1)) {
5786 			*erp = PTR_ERR(path1);
5787 			path1 = NULL;
5788 		finish:
5789 			count = 0;
5790 			goto repeat;
5791 		}
5792 		path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5793 		if (IS_ERR(path2)) {
5794 			*erp = PTR_ERR(path2);
5795 			path2 = NULL;
5796 			goto finish;
5797 		}
5798 		ex1 = path1[path1->p_depth].p_ext;
5799 		ex2 = path2[path2->p_depth].p_ext;
5800 		/* Do we have somthing to swap ? */
5801 		if (unlikely(!ex2 || !ex1))
5802 			goto finish;
5803 
5804 		e1_blk = le32_to_cpu(ex1->ee_block);
5805 		e2_blk = le32_to_cpu(ex2->ee_block);
5806 		e1_len = ext4_ext_get_actual_len(ex1);
5807 		e2_len = ext4_ext_get_actual_len(ex2);
5808 
5809 		/* Hole handling */
5810 		if (!in_range(lblk1, e1_blk, e1_len) ||
5811 		    !in_range(lblk2, e2_blk, e2_len)) {
5812 			ext4_lblk_t next1, next2;
5813 
5814 			/* if hole after extent, then go to next extent */
5815 			next1 = ext4_ext_next_allocated_block(path1);
5816 			next2 = ext4_ext_next_allocated_block(path2);
5817 			/* If hole before extent, then shift to that extent */
5818 			if (e1_blk > lblk1)
5819 				next1 = e1_blk;
5820 			if (e2_blk > lblk2)
5821 				next2 = e2_blk;
5822 			/* Do we have something to swap */
5823 			if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5824 				goto finish;
5825 			/* Move to the rightest boundary */
5826 			len = next1 - lblk1;
5827 			if (len < next2 - lblk2)
5828 				len = next2 - lblk2;
5829 			if (len > count)
5830 				len = count;
5831 			lblk1 += len;
5832 			lblk2 += len;
5833 			count -= len;
5834 			goto repeat;
5835 		}
5836 
5837 		/* Prepare left boundary */
5838 		if (e1_blk < lblk1) {
5839 			split = 1;
5840 			*erp = ext4_force_split_extent_at(handle, inode1,
5841 						&path1, lblk1, 0);
5842 			if (unlikely(*erp))
5843 				goto finish;
5844 		}
5845 		if (e2_blk < lblk2) {
5846 			split = 1;
5847 			*erp = ext4_force_split_extent_at(handle, inode2,
5848 						&path2,  lblk2, 0);
5849 			if (unlikely(*erp))
5850 				goto finish;
5851 		}
5852 		/* ext4_split_extent_at() may result in leaf extent split,
5853 		 * path must to be revalidated. */
5854 		if (split)
5855 			goto repeat;
5856 
5857 		/* Prepare right boundary */
5858 		len = count;
5859 		if (len > e1_blk + e1_len - lblk1)
5860 			len = e1_blk + e1_len - lblk1;
5861 		if (len > e2_blk + e2_len - lblk2)
5862 			len = e2_blk + e2_len - lblk2;
5863 
5864 		if (len != e1_len) {
5865 			split = 1;
5866 			*erp = ext4_force_split_extent_at(handle, inode1,
5867 						&path1, lblk1 + len, 0);
5868 			if (unlikely(*erp))
5869 				goto finish;
5870 		}
5871 		if (len != e2_len) {
5872 			split = 1;
5873 			*erp = ext4_force_split_extent_at(handle, inode2,
5874 						&path2, lblk2 + len, 0);
5875 			if (*erp)
5876 				goto finish;
5877 		}
5878 		/* ext4_split_extent_at() may result in leaf extent split,
5879 		 * path must to be revalidated. */
5880 		if (split)
5881 			goto repeat;
5882 
5883 		BUG_ON(e2_len != e1_len);
5884 		*erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5885 		if (unlikely(*erp))
5886 			goto finish;
5887 		*erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5888 		if (unlikely(*erp))
5889 			goto finish;
5890 
5891 		/* Both extents are fully inside boundaries. Swap it now */
5892 		tmp_ex = *ex1;
5893 		ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5894 		ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5895 		ex1->ee_len = cpu_to_le16(e2_len);
5896 		ex2->ee_len = cpu_to_le16(e1_len);
5897 		if (unwritten)
5898 			ext4_ext_mark_unwritten(ex2);
5899 		if (ext4_ext_is_unwritten(&tmp_ex))
5900 			ext4_ext_mark_unwritten(ex1);
5901 
5902 		ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5903 		ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5904 		*erp = ext4_ext_dirty(handle, inode2, path2 +
5905 				      path2->p_depth);
5906 		if (unlikely(*erp))
5907 			goto finish;
5908 		*erp = ext4_ext_dirty(handle, inode1, path1 +
5909 				      path1->p_depth);
5910 		/*
5911 		 * Looks scarry ah..? second inode already points to new blocks,
5912 		 * and it was successfully dirtied. But luckily error may happen
5913 		 * only due to journal error, so full transaction will be
5914 		 * aborted anyway.
5915 		 */
5916 		if (unlikely(*erp))
5917 			goto finish;
5918 		lblk1 += len;
5919 		lblk2 += len;
5920 		replaced_count += len;
5921 		count -= len;
5922 
5923 	repeat:
5924 		ext4_ext_drop_refs(path1);
5925 		kfree(path1);
5926 		ext4_ext_drop_refs(path2);
5927 		kfree(path2);
5928 		path1 = path2 = NULL;
5929 	}
5930 	return replaced_count;
5931 }
5932