xref: /openbmc/linux/fs/ext4/extents.c (revision 82ced6fd)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46 
47 
48 /*
49  * ext_pblock:
50  * combine low and high parts of physical block number into ext4_fsblk_t
51  */
52 static ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
53 {
54 	ext4_fsblk_t block;
55 
56 	block = le32_to_cpu(ex->ee_start_lo);
57 	block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58 	return block;
59 }
60 
61 /*
62  * idx_pblock:
63  * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64  */
65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
66 {
67 	ext4_fsblk_t block;
68 
69 	block = le32_to_cpu(ix->ei_leaf_lo);
70 	block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71 	return block;
72 }
73 
74 /*
75  * ext4_ext_store_pblock:
76  * stores a large physical block number into an extent struct,
77  * breaking it into parts
78  */
79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80 {
81 	ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82 	ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
83 }
84 
85 /*
86  * ext4_idx_store_pblock:
87  * stores a large physical block number into an index struct,
88  * breaking it into parts
89  */
90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91 {
92 	ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93 	ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
94 }
95 
96 static int ext4_ext_journal_restart(handle_t *handle, int needed)
97 {
98 	int err;
99 
100 	if (!ext4_handle_valid(handle))
101 		return 0;
102 	if (handle->h_buffer_credits > needed)
103 		return 0;
104 	err = ext4_journal_extend(handle, needed);
105 	if (err <= 0)
106 		return err;
107 	return ext4_journal_restart(handle, needed);
108 }
109 
110 /*
111  * could return:
112  *  - EROFS
113  *  - ENOMEM
114  */
115 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
116 				struct ext4_ext_path *path)
117 {
118 	if (path->p_bh) {
119 		/* path points to block */
120 		return ext4_journal_get_write_access(handle, path->p_bh);
121 	}
122 	/* path points to leaf/index in inode body */
123 	/* we use in-core data, no need to protect them */
124 	return 0;
125 }
126 
127 /*
128  * could return:
129  *  - EROFS
130  *  - ENOMEM
131  *  - EIO
132  */
133 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
134 				struct ext4_ext_path *path)
135 {
136 	int err;
137 	if (path->p_bh) {
138 		/* path points to block */
139 		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
140 	} else {
141 		/* path points to leaf/index in inode body */
142 		err = ext4_mark_inode_dirty(handle, inode);
143 	}
144 	return err;
145 }
146 
147 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
148 			      struct ext4_ext_path *path,
149 			      ext4_lblk_t block)
150 {
151 	struct ext4_inode_info *ei = EXT4_I(inode);
152 	ext4_fsblk_t bg_start;
153 	ext4_fsblk_t last_block;
154 	ext4_grpblk_t colour;
155 	ext4_group_t block_group;
156 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
157 	int depth;
158 
159 	if (path) {
160 		struct ext4_extent *ex;
161 		depth = path->p_depth;
162 
163 		/* try to predict block placement */
164 		ex = path[depth].p_ext;
165 		if (ex)
166 			return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
167 
168 		/* it looks like index is empty;
169 		 * try to find starting block from index itself */
170 		if (path[depth].p_bh)
171 			return path[depth].p_bh->b_blocknr;
172 	}
173 
174 	/* OK. use inode's group */
175 	block_group = ei->i_block_group;
176 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
177 		/*
178 		 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
179 		 * block groups per flexgroup, reserve the first block
180 		 * group for directories and special files.  Regular
181 		 * files will start at the second block group.  This
182 		 * tends to speed up directory access and improves
183 		 * fsck times.
184 		 */
185 		block_group &= ~(flex_size-1);
186 		if (S_ISREG(inode->i_mode))
187 			block_group++;
188 	}
189 	bg_start = (block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
190 		le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
191 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
192 
193 	/*
194 	 * If we are doing delayed allocation, we don't need take
195 	 * colour into account.
196 	 */
197 	if (test_opt(inode->i_sb, DELALLOC))
198 		return bg_start;
199 
200 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
201 		colour = (current->pid % 16) *
202 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
203 	else
204 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
205 	return bg_start + colour + block;
206 }
207 
208 /*
209  * Allocation for a meta data block
210  */
211 static ext4_fsblk_t
212 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
213 			struct ext4_ext_path *path,
214 			struct ext4_extent *ex, int *err)
215 {
216 	ext4_fsblk_t goal, newblock;
217 
218 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
219 	newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
220 	return newblock;
221 }
222 
223 static int ext4_ext_space_block(struct inode *inode)
224 {
225 	int size;
226 
227 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
228 			/ sizeof(struct ext4_extent);
229 #ifdef AGGRESSIVE_TEST
230 	if (size > 6)
231 		size = 6;
232 #endif
233 	return size;
234 }
235 
236 static int ext4_ext_space_block_idx(struct inode *inode)
237 {
238 	int size;
239 
240 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
241 			/ sizeof(struct ext4_extent_idx);
242 #ifdef AGGRESSIVE_TEST
243 	if (size > 5)
244 		size = 5;
245 #endif
246 	return size;
247 }
248 
249 static int ext4_ext_space_root(struct inode *inode)
250 {
251 	int size;
252 
253 	size = sizeof(EXT4_I(inode)->i_data);
254 	size -= sizeof(struct ext4_extent_header);
255 	size /= sizeof(struct ext4_extent);
256 #ifdef AGGRESSIVE_TEST
257 	if (size > 3)
258 		size = 3;
259 #endif
260 	return size;
261 }
262 
263 static int ext4_ext_space_root_idx(struct inode *inode)
264 {
265 	int size;
266 
267 	size = sizeof(EXT4_I(inode)->i_data);
268 	size -= sizeof(struct ext4_extent_header);
269 	size /= sizeof(struct ext4_extent_idx);
270 #ifdef AGGRESSIVE_TEST
271 	if (size > 4)
272 		size = 4;
273 #endif
274 	return size;
275 }
276 
277 /*
278  * Calculate the number of metadata blocks needed
279  * to allocate @blocks
280  * Worse case is one block per extent
281  */
282 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks)
283 {
284 	int lcap, icap, rcap, leafs, idxs, num;
285 	int newextents = blocks;
286 
287 	rcap = ext4_ext_space_root_idx(inode);
288 	lcap = ext4_ext_space_block(inode);
289 	icap = ext4_ext_space_block_idx(inode);
290 
291 	/* number of new leaf blocks needed */
292 	num = leafs = (newextents + lcap - 1) / lcap;
293 
294 	/*
295 	 * Worse case, we need separate index block(s)
296 	 * to link all new leaf blocks
297 	 */
298 	idxs = (leafs + icap - 1) / icap;
299 	do {
300 		num += idxs;
301 		idxs = (idxs + icap - 1) / icap;
302 	} while (idxs > rcap);
303 
304 	return num;
305 }
306 
307 static int
308 ext4_ext_max_entries(struct inode *inode, int depth)
309 {
310 	int max;
311 
312 	if (depth == ext_depth(inode)) {
313 		if (depth == 0)
314 			max = ext4_ext_space_root(inode);
315 		else
316 			max = ext4_ext_space_root_idx(inode);
317 	} else {
318 		if (depth == 0)
319 			max = ext4_ext_space_block(inode);
320 		else
321 			max = ext4_ext_space_block_idx(inode);
322 	}
323 
324 	return max;
325 }
326 
327 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
328 {
329 	ext4_fsblk_t block = ext_pblock(ext), valid_block;
330 	int len = ext4_ext_get_actual_len(ext);
331 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
332 
333 	valid_block = le32_to_cpu(es->s_first_data_block) +
334 		EXT4_SB(inode->i_sb)->s_gdb_count;
335 	if (unlikely(block <= valid_block ||
336 		     ((block + len) > ext4_blocks_count(es))))
337 		return 0;
338 	else
339 		return 1;
340 }
341 
342 static int ext4_valid_extent_idx(struct inode *inode,
343 				struct ext4_extent_idx *ext_idx)
344 {
345 	ext4_fsblk_t block = idx_pblock(ext_idx), valid_block;
346 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
347 
348 	valid_block = le32_to_cpu(es->s_first_data_block) +
349 		EXT4_SB(inode->i_sb)->s_gdb_count;
350 	if (unlikely(block <= valid_block ||
351 		     (block >= ext4_blocks_count(es))))
352 		return 0;
353 	else
354 		return 1;
355 }
356 
357 static int ext4_valid_extent_entries(struct inode *inode,
358 				struct ext4_extent_header *eh,
359 				int depth)
360 {
361 	struct ext4_extent *ext;
362 	struct ext4_extent_idx *ext_idx;
363 	unsigned short entries;
364 	if (eh->eh_entries == 0)
365 		return 1;
366 
367 	entries = le16_to_cpu(eh->eh_entries);
368 
369 	if (depth == 0) {
370 		/* leaf entries */
371 		ext = EXT_FIRST_EXTENT(eh);
372 		while (entries) {
373 			if (!ext4_valid_extent(inode, ext))
374 				return 0;
375 			ext++;
376 			entries--;
377 		}
378 	} else {
379 		ext_idx = EXT_FIRST_INDEX(eh);
380 		while (entries) {
381 			if (!ext4_valid_extent_idx(inode, ext_idx))
382 				return 0;
383 			ext_idx++;
384 			entries--;
385 		}
386 	}
387 	return 1;
388 }
389 
390 static int __ext4_ext_check(const char *function, struct inode *inode,
391 					struct ext4_extent_header *eh,
392 					int depth)
393 {
394 	const char *error_msg;
395 	int max = 0;
396 
397 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
398 		error_msg = "invalid magic";
399 		goto corrupted;
400 	}
401 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
402 		error_msg = "unexpected eh_depth";
403 		goto corrupted;
404 	}
405 	if (unlikely(eh->eh_max == 0)) {
406 		error_msg = "invalid eh_max";
407 		goto corrupted;
408 	}
409 	max = ext4_ext_max_entries(inode, depth);
410 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
411 		error_msg = "too large eh_max";
412 		goto corrupted;
413 	}
414 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
415 		error_msg = "invalid eh_entries";
416 		goto corrupted;
417 	}
418 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
419 		error_msg = "invalid extent entries";
420 		goto corrupted;
421 	}
422 	return 0;
423 
424 corrupted:
425 	ext4_error(inode->i_sb, function,
426 			"bad header/extent in inode #%lu: %s - magic %x, "
427 			"entries %u, max %u(%u), depth %u(%u)",
428 			inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
429 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
430 			max, le16_to_cpu(eh->eh_depth), depth);
431 
432 	return -EIO;
433 }
434 
435 #define ext4_ext_check(inode, eh, depth)	\
436 	__ext4_ext_check(__func__, inode, eh, depth)
437 
438 int ext4_ext_check_inode(struct inode *inode)
439 {
440 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
441 }
442 
443 #ifdef EXT_DEBUG
444 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
445 {
446 	int k, l = path->p_depth;
447 
448 	ext_debug("path:");
449 	for (k = 0; k <= l; k++, path++) {
450 		if (path->p_idx) {
451 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
452 			    idx_pblock(path->p_idx));
453 		} else if (path->p_ext) {
454 			ext_debug("  %d:%d:%llu ",
455 				  le32_to_cpu(path->p_ext->ee_block),
456 				  ext4_ext_get_actual_len(path->p_ext),
457 				  ext_pblock(path->p_ext));
458 		} else
459 			ext_debug("  []");
460 	}
461 	ext_debug("\n");
462 }
463 
464 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
465 {
466 	int depth = ext_depth(inode);
467 	struct ext4_extent_header *eh;
468 	struct ext4_extent *ex;
469 	int i;
470 
471 	if (!path)
472 		return;
473 
474 	eh = path[depth].p_hdr;
475 	ex = EXT_FIRST_EXTENT(eh);
476 
477 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
478 		ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
479 			  ext4_ext_get_actual_len(ex), ext_pblock(ex));
480 	}
481 	ext_debug("\n");
482 }
483 #else
484 #define ext4_ext_show_path(inode, path)
485 #define ext4_ext_show_leaf(inode, path)
486 #endif
487 
488 void ext4_ext_drop_refs(struct ext4_ext_path *path)
489 {
490 	int depth = path->p_depth;
491 	int i;
492 
493 	for (i = 0; i <= depth; i++, path++)
494 		if (path->p_bh) {
495 			brelse(path->p_bh);
496 			path->p_bh = NULL;
497 		}
498 }
499 
500 /*
501  * ext4_ext_binsearch_idx:
502  * binary search for the closest index of the given block
503  * the header must be checked before calling this
504  */
505 static void
506 ext4_ext_binsearch_idx(struct inode *inode,
507 			struct ext4_ext_path *path, ext4_lblk_t block)
508 {
509 	struct ext4_extent_header *eh = path->p_hdr;
510 	struct ext4_extent_idx *r, *l, *m;
511 
512 
513 	ext_debug("binsearch for %u(idx):  ", block);
514 
515 	l = EXT_FIRST_INDEX(eh) + 1;
516 	r = EXT_LAST_INDEX(eh);
517 	while (l <= r) {
518 		m = l + (r - l) / 2;
519 		if (block < le32_to_cpu(m->ei_block))
520 			r = m - 1;
521 		else
522 			l = m + 1;
523 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
524 				m, le32_to_cpu(m->ei_block),
525 				r, le32_to_cpu(r->ei_block));
526 	}
527 
528 	path->p_idx = l - 1;
529 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
530 		  idx_pblock(path->p_idx));
531 
532 #ifdef CHECK_BINSEARCH
533 	{
534 		struct ext4_extent_idx *chix, *ix;
535 		int k;
536 
537 		chix = ix = EXT_FIRST_INDEX(eh);
538 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
539 		  if (k != 0 &&
540 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
541 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
542 				       "first=0x%p\n", k,
543 				       ix, EXT_FIRST_INDEX(eh));
544 				printk(KERN_DEBUG "%u <= %u\n",
545 				       le32_to_cpu(ix->ei_block),
546 				       le32_to_cpu(ix[-1].ei_block));
547 			}
548 			BUG_ON(k && le32_to_cpu(ix->ei_block)
549 					   <= le32_to_cpu(ix[-1].ei_block));
550 			if (block < le32_to_cpu(ix->ei_block))
551 				break;
552 			chix = ix;
553 		}
554 		BUG_ON(chix != path->p_idx);
555 	}
556 #endif
557 
558 }
559 
560 /*
561  * ext4_ext_binsearch:
562  * binary search for closest extent of the given block
563  * the header must be checked before calling this
564  */
565 static void
566 ext4_ext_binsearch(struct inode *inode,
567 		struct ext4_ext_path *path, ext4_lblk_t block)
568 {
569 	struct ext4_extent_header *eh = path->p_hdr;
570 	struct ext4_extent *r, *l, *m;
571 
572 	if (eh->eh_entries == 0) {
573 		/*
574 		 * this leaf is empty:
575 		 * we get such a leaf in split/add case
576 		 */
577 		return;
578 	}
579 
580 	ext_debug("binsearch for %u:  ", block);
581 
582 	l = EXT_FIRST_EXTENT(eh) + 1;
583 	r = EXT_LAST_EXTENT(eh);
584 
585 	while (l <= r) {
586 		m = l + (r - l) / 2;
587 		if (block < le32_to_cpu(m->ee_block))
588 			r = m - 1;
589 		else
590 			l = m + 1;
591 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
592 				m, le32_to_cpu(m->ee_block),
593 				r, le32_to_cpu(r->ee_block));
594 	}
595 
596 	path->p_ext = l - 1;
597 	ext_debug("  -> %d:%llu:%d ",
598 			le32_to_cpu(path->p_ext->ee_block),
599 			ext_pblock(path->p_ext),
600 			ext4_ext_get_actual_len(path->p_ext));
601 
602 #ifdef CHECK_BINSEARCH
603 	{
604 		struct ext4_extent *chex, *ex;
605 		int k;
606 
607 		chex = ex = EXT_FIRST_EXTENT(eh);
608 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
609 			BUG_ON(k && le32_to_cpu(ex->ee_block)
610 					  <= le32_to_cpu(ex[-1].ee_block));
611 			if (block < le32_to_cpu(ex->ee_block))
612 				break;
613 			chex = ex;
614 		}
615 		BUG_ON(chex != path->p_ext);
616 	}
617 #endif
618 
619 }
620 
621 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
622 {
623 	struct ext4_extent_header *eh;
624 
625 	eh = ext_inode_hdr(inode);
626 	eh->eh_depth = 0;
627 	eh->eh_entries = 0;
628 	eh->eh_magic = EXT4_EXT_MAGIC;
629 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
630 	ext4_mark_inode_dirty(handle, inode);
631 	ext4_ext_invalidate_cache(inode);
632 	return 0;
633 }
634 
635 struct ext4_ext_path *
636 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
637 					struct ext4_ext_path *path)
638 {
639 	struct ext4_extent_header *eh;
640 	struct buffer_head *bh;
641 	short int depth, i, ppos = 0, alloc = 0;
642 
643 	eh = ext_inode_hdr(inode);
644 	depth = ext_depth(inode);
645 
646 	/* account possible depth increase */
647 	if (!path) {
648 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
649 				GFP_NOFS);
650 		if (!path)
651 			return ERR_PTR(-ENOMEM);
652 		alloc = 1;
653 	}
654 	path[0].p_hdr = eh;
655 	path[0].p_bh = NULL;
656 
657 	i = depth;
658 	/* walk through the tree */
659 	while (i) {
660 		int need_to_validate = 0;
661 
662 		ext_debug("depth %d: num %d, max %d\n",
663 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
664 
665 		ext4_ext_binsearch_idx(inode, path + ppos, block);
666 		path[ppos].p_block = idx_pblock(path[ppos].p_idx);
667 		path[ppos].p_depth = i;
668 		path[ppos].p_ext = NULL;
669 
670 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
671 		if (unlikely(!bh))
672 			goto err;
673 		if (!bh_uptodate_or_lock(bh)) {
674 			if (bh_submit_read(bh) < 0) {
675 				put_bh(bh);
676 				goto err;
677 			}
678 			/* validate the extent entries */
679 			need_to_validate = 1;
680 		}
681 		eh = ext_block_hdr(bh);
682 		ppos++;
683 		BUG_ON(ppos > depth);
684 		path[ppos].p_bh = bh;
685 		path[ppos].p_hdr = eh;
686 		i--;
687 
688 		if (need_to_validate && ext4_ext_check(inode, eh, i))
689 			goto err;
690 	}
691 
692 	path[ppos].p_depth = i;
693 	path[ppos].p_ext = NULL;
694 	path[ppos].p_idx = NULL;
695 
696 	/* find extent */
697 	ext4_ext_binsearch(inode, path + ppos, block);
698 	/* if not an empty leaf */
699 	if (path[ppos].p_ext)
700 		path[ppos].p_block = ext_pblock(path[ppos].p_ext);
701 
702 	ext4_ext_show_path(inode, path);
703 
704 	return path;
705 
706 err:
707 	ext4_ext_drop_refs(path);
708 	if (alloc)
709 		kfree(path);
710 	return ERR_PTR(-EIO);
711 }
712 
713 /*
714  * ext4_ext_insert_index:
715  * insert new index [@logical;@ptr] into the block at @curp;
716  * check where to insert: before @curp or after @curp
717  */
718 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
719 				struct ext4_ext_path *curp,
720 				int logical, ext4_fsblk_t ptr)
721 {
722 	struct ext4_extent_idx *ix;
723 	int len, err;
724 
725 	err = ext4_ext_get_access(handle, inode, curp);
726 	if (err)
727 		return err;
728 
729 	BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
730 	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
731 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
732 		/* insert after */
733 		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
734 			len = (len - 1) * sizeof(struct ext4_extent_idx);
735 			len = len < 0 ? 0 : len;
736 			ext_debug("insert new index %d after: %llu. "
737 					"move %d from 0x%p to 0x%p\n",
738 					logical, ptr, len,
739 					(curp->p_idx + 1), (curp->p_idx + 2));
740 			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
741 		}
742 		ix = curp->p_idx + 1;
743 	} else {
744 		/* insert before */
745 		len = len * sizeof(struct ext4_extent_idx);
746 		len = len < 0 ? 0 : len;
747 		ext_debug("insert new index %d before: %llu. "
748 				"move %d from 0x%p to 0x%p\n",
749 				logical, ptr, len,
750 				curp->p_idx, (curp->p_idx + 1));
751 		memmove(curp->p_idx + 1, curp->p_idx, len);
752 		ix = curp->p_idx;
753 	}
754 
755 	ix->ei_block = cpu_to_le32(logical);
756 	ext4_idx_store_pblock(ix, ptr);
757 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
758 
759 	BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
760 			     > le16_to_cpu(curp->p_hdr->eh_max));
761 	BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
762 
763 	err = ext4_ext_dirty(handle, inode, curp);
764 	ext4_std_error(inode->i_sb, err);
765 
766 	return err;
767 }
768 
769 /*
770  * ext4_ext_split:
771  * inserts new subtree into the path, using free index entry
772  * at depth @at:
773  * - allocates all needed blocks (new leaf and all intermediate index blocks)
774  * - makes decision where to split
775  * - moves remaining extents and index entries (right to the split point)
776  *   into the newly allocated blocks
777  * - initializes subtree
778  */
779 static int ext4_ext_split(handle_t *handle, struct inode *inode,
780 				struct ext4_ext_path *path,
781 				struct ext4_extent *newext, int at)
782 {
783 	struct buffer_head *bh = NULL;
784 	int depth = ext_depth(inode);
785 	struct ext4_extent_header *neh;
786 	struct ext4_extent_idx *fidx;
787 	struct ext4_extent *ex;
788 	int i = at, k, m, a;
789 	ext4_fsblk_t newblock, oldblock;
790 	__le32 border;
791 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
792 	int err = 0;
793 
794 	/* make decision: where to split? */
795 	/* FIXME: now decision is simplest: at current extent */
796 
797 	/* if current leaf will be split, then we should use
798 	 * border from split point */
799 	BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
800 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
801 		border = path[depth].p_ext[1].ee_block;
802 		ext_debug("leaf will be split."
803 				" next leaf starts at %d\n",
804 				  le32_to_cpu(border));
805 	} else {
806 		border = newext->ee_block;
807 		ext_debug("leaf will be added."
808 				" next leaf starts at %d\n",
809 				le32_to_cpu(border));
810 	}
811 
812 	/*
813 	 * If error occurs, then we break processing
814 	 * and mark filesystem read-only. index won't
815 	 * be inserted and tree will be in consistent
816 	 * state. Next mount will repair buffers too.
817 	 */
818 
819 	/*
820 	 * Get array to track all allocated blocks.
821 	 * We need this to handle errors and free blocks
822 	 * upon them.
823 	 */
824 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
825 	if (!ablocks)
826 		return -ENOMEM;
827 
828 	/* allocate all needed blocks */
829 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
830 	for (a = 0; a < depth - at; a++) {
831 		newblock = ext4_ext_new_meta_block(handle, inode, path,
832 						   newext, &err);
833 		if (newblock == 0)
834 			goto cleanup;
835 		ablocks[a] = newblock;
836 	}
837 
838 	/* initialize new leaf */
839 	newblock = ablocks[--a];
840 	BUG_ON(newblock == 0);
841 	bh = sb_getblk(inode->i_sb, newblock);
842 	if (!bh) {
843 		err = -EIO;
844 		goto cleanup;
845 	}
846 	lock_buffer(bh);
847 
848 	err = ext4_journal_get_create_access(handle, bh);
849 	if (err)
850 		goto cleanup;
851 
852 	neh = ext_block_hdr(bh);
853 	neh->eh_entries = 0;
854 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
855 	neh->eh_magic = EXT4_EXT_MAGIC;
856 	neh->eh_depth = 0;
857 	ex = EXT_FIRST_EXTENT(neh);
858 
859 	/* move remainder of path[depth] to the new leaf */
860 	BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
861 	/* start copy from next extent */
862 	/* TODO: we could do it by single memmove */
863 	m = 0;
864 	path[depth].p_ext++;
865 	while (path[depth].p_ext <=
866 			EXT_MAX_EXTENT(path[depth].p_hdr)) {
867 		ext_debug("move %d:%llu:%d in new leaf %llu\n",
868 				le32_to_cpu(path[depth].p_ext->ee_block),
869 				ext_pblock(path[depth].p_ext),
870 				ext4_ext_get_actual_len(path[depth].p_ext),
871 				newblock);
872 		/*memmove(ex++, path[depth].p_ext++,
873 				sizeof(struct ext4_extent));
874 		neh->eh_entries++;*/
875 		path[depth].p_ext++;
876 		m++;
877 	}
878 	if (m) {
879 		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
880 		le16_add_cpu(&neh->eh_entries, m);
881 	}
882 
883 	set_buffer_uptodate(bh);
884 	unlock_buffer(bh);
885 
886 	err = ext4_handle_dirty_metadata(handle, inode, bh);
887 	if (err)
888 		goto cleanup;
889 	brelse(bh);
890 	bh = NULL;
891 
892 	/* correct old leaf */
893 	if (m) {
894 		err = ext4_ext_get_access(handle, inode, path + depth);
895 		if (err)
896 			goto cleanup;
897 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
898 		err = ext4_ext_dirty(handle, inode, path + depth);
899 		if (err)
900 			goto cleanup;
901 
902 	}
903 
904 	/* create intermediate indexes */
905 	k = depth - at - 1;
906 	BUG_ON(k < 0);
907 	if (k)
908 		ext_debug("create %d intermediate indices\n", k);
909 	/* insert new index into current index block */
910 	/* current depth stored in i var */
911 	i = depth - 1;
912 	while (k--) {
913 		oldblock = newblock;
914 		newblock = ablocks[--a];
915 		bh = sb_getblk(inode->i_sb, newblock);
916 		if (!bh) {
917 			err = -EIO;
918 			goto cleanup;
919 		}
920 		lock_buffer(bh);
921 
922 		err = ext4_journal_get_create_access(handle, bh);
923 		if (err)
924 			goto cleanup;
925 
926 		neh = ext_block_hdr(bh);
927 		neh->eh_entries = cpu_to_le16(1);
928 		neh->eh_magic = EXT4_EXT_MAGIC;
929 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
930 		neh->eh_depth = cpu_to_le16(depth - i);
931 		fidx = EXT_FIRST_INDEX(neh);
932 		fidx->ei_block = border;
933 		ext4_idx_store_pblock(fidx, oldblock);
934 
935 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
936 				i, newblock, le32_to_cpu(border), oldblock);
937 		/* copy indexes */
938 		m = 0;
939 		path[i].p_idx++;
940 
941 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
942 				EXT_MAX_INDEX(path[i].p_hdr));
943 		BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
944 				EXT_LAST_INDEX(path[i].p_hdr));
945 		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
946 			ext_debug("%d: move %d:%llu in new index %llu\n", i,
947 					le32_to_cpu(path[i].p_idx->ei_block),
948 					idx_pblock(path[i].p_idx),
949 					newblock);
950 			/*memmove(++fidx, path[i].p_idx++,
951 					sizeof(struct ext4_extent_idx));
952 			neh->eh_entries++;
953 			BUG_ON(neh->eh_entries > neh->eh_max);*/
954 			path[i].p_idx++;
955 			m++;
956 		}
957 		if (m) {
958 			memmove(++fidx, path[i].p_idx - m,
959 				sizeof(struct ext4_extent_idx) * m);
960 			le16_add_cpu(&neh->eh_entries, m);
961 		}
962 		set_buffer_uptodate(bh);
963 		unlock_buffer(bh);
964 
965 		err = ext4_handle_dirty_metadata(handle, inode, bh);
966 		if (err)
967 			goto cleanup;
968 		brelse(bh);
969 		bh = NULL;
970 
971 		/* correct old index */
972 		if (m) {
973 			err = ext4_ext_get_access(handle, inode, path + i);
974 			if (err)
975 				goto cleanup;
976 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
977 			err = ext4_ext_dirty(handle, inode, path + i);
978 			if (err)
979 				goto cleanup;
980 		}
981 
982 		i--;
983 	}
984 
985 	/* insert new index */
986 	err = ext4_ext_insert_index(handle, inode, path + at,
987 				    le32_to_cpu(border), newblock);
988 
989 cleanup:
990 	if (bh) {
991 		if (buffer_locked(bh))
992 			unlock_buffer(bh);
993 		brelse(bh);
994 	}
995 
996 	if (err) {
997 		/* free all allocated blocks in error case */
998 		for (i = 0; i < depth; i++) {
999 			if (!ablocks[i])
1000 				continue;
1001 			ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
1002 		}
1003 	}
1004 	kfree(ablocks);
1005 
1006 	return err;
1007 }
1008 
1009 /*
1010  * ext4_ext_grow_indepth:
1011  * implements tree growing procedure:
1012  * - allocates new block
1013  * - moves top-level data (index block or leaf) into the new block
1014  * - initializes new top-level, creating index that points to the
1015  *   just created block
1016  */
1017 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1018 					struct ext4_ext_path *path,
1019 					struct ext4_extent *newext)
1020 {
1021 	struct ext4_ext_path *curp = path;
1022 	struct ext4_extent_header *neh;
1023 	struct ext4_extent_idx *fidx;
1024 	struct buffer_head *bh;
1025 	ext4_fsblk_t newblock;
1026 	int err = 0;
1027 
1028 	newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1029 	if (newblock == 0)
1030 		return err;
1031 
1032 	bh = sb_getblk(inode->i_sb, newblock);
1033 	if (!bh) {
1034 		err = -EIO;
1035 		ext4_std_error(inode->i_sb, err);
1036 		return err;
1037 	}
1038 	lock_buffer(bh);
1039 
1040 	err = ext4_journal_get_create_access(handle, bh);
1041 	if (err) {
1042 		unlock_buffer(bh);
1043 		goto out;
1044 	}
1045 
1046 	/* move top-level index/leaf into new block */
1047 	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1048 
1049 	/* set size of new block */
1050 	neh = ext_block_hdr(bh);
1051 	/* old root could have indexes or leaves
1052 	 * so calculate e_max right way */
1053 	if (ext_depth(inode))
1054 	  neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
1055 	else
1056 	  neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
1057 	neh->eh_magic = EXT4_EXT_MAGIC;
1058 	set_buffer_uptodate(bh);
1059 	unlock_buffer(bh);
1060 
1061 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1062 	if (err)
1063 		goto out;
1064 
1065 	/* create index in new top-level index: num,max,pointer */
1066 	err = ext4_ext_get_access(handle, inode, curp);
1067 	if (err)
1068 		goto out;
1069 
1070 	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1071 	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
1072 	curp->p_hdr->eh_entries = cpu_to_le16(1);
1073 	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1074 
1075 	if (path[0].p_hdr->eh_depth)
1076 		curp->p_idx->ei_block =
1077 			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1078 	else
1079 		curp->p_idx->ei_block =
1080 			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1081 	ext4_idx_store_pblock(curp->p_idx, newblock);
1082 
1083 	neh = ext_inode_hdr(inode);
1084 	fidx = EXT_FIRST_INDEX(neh);
1085 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1086 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1087 		  le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
1088 
1089 	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1090 	err = ext4_ext_dirty(handle, inode, curp);
1091 out:
1092 	brelse(bh);
1093 
1094 	return err;
1095 }
1096 
1097 /*
1098  * ext4_ext_create_new_leaf:
1099  * finds empty index and adds new leaf.
1100  * if no free index is found, then it requests in-depth growing.
1101  */
1102 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1103 					struct ext4_ext_path *path,
1104 					struct ext4_extent *newext)
1105 {
1106 	struct ext4_ext_path *curp;
1107 	int depth, i, err = 0;
1108 
1109 repeat:
1110 	i = depth = ext_depth(inode);
1111 
1112 	/* walk up to the tree and look for free index entry */
1113 	curp = path + depth;
1114 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1115 		i--;
1116 		curp--;
1117 	}
1118 
1119 	/* we use already allocated block for index block,
1120 	 * so subsequent data blocks should be contiguous */
1121 	if (EXT_HAS_FREE_INDEX(curp)) {
1122 		/* if we found index with free entry, then use that
1123 		 * entry: create all needed subtree and add new leaf */
1124 		err = ext4_ext_split(handle, inode, path, newext, i);
1125 		if (err)
1126 			goto out;
1127 
1128 		/* refill path */
1129 		ext4_ext_drop_refs(path);
1130 		path = ext4_ext_find_extent(inode,
1131 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1132 				    path);
1133 		if (IS_ERR(path))
1134 			err = PTR_ERR(path);
1135 	} else {
1136 		/* tree is full, time to grow in depth */
1137 		err = ext4_ext_grow_indepth(handle, inode, path, newext);
1138 		if (err)
1139 			goto out;
1140 
1141 		/* refill path */
1142 		ext4_ext_drop_refs(path);
1143 		path = ext4_ext_find_extent(inode,
1144 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1145 				    path);
1146 		if (IS_ERR(path)) {
1147 			err = PTR_ERR(path);
1148 			goto out;
1149 		}
1150 
1151 		/*
1152 		 * only first (depth 0 -> 1) produces free space;
1153 		 * in all other cases we have to split the grown tree
1154 		 */
1155 		depth = ext_depth(inode);
1156 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1157 			/* now we need to split */
1158 			goto repeat;
1159 		}
1160 	}
1161 
1162 out:
1163 	return err;
1164 }
1165 
1166 /*
1167  * search the closest allocated block to the left for *logical
1168  * and returns it at @logical + it's physical address at @phys
1169  * if *logical is the smallest allocated block, the function
1170  * returns 0 at @phys
1171  * return value contains 0 (success) or error code
1172  */
1173 int
1174 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1175 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1176 {
1177 	struct ext4_extent_idx *ix;
1178 	struct ext4_extent *ex;
1179 	int depth, ee_len;
1180 
1181 	BUG_ON(path == NULL);
1182 	depth = path->p_depth;
1183 	*phys = 0;
1184 
1185 	if (depth == 0 && path->p_ext == NULL)
1186 		return 0;
1187 
1188 	/* usually extent in the path covers blocks smaller
1189 	 * then *logical, but it can be that extent is the
1190 	 * first one in the file */
1191 
1192 	ex = path[depth].p_ext;
1193 	ee_len = ext4_ext_get_actual_len(ex);
1194 	if (*logical < le32_to_cpu(ex->ee_block)) {
1195 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1196 		while (--depth >= 0) {
1197 			ix = path[depth].p_idx;
1198 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1199 		}
1200 		return 0;
1201 	}
1202 
1203 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1204 
1205 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1206 	*phys = ext_pblock(ex) + ee_len - 1;
1207 	return 0;
1208 }
1209 
1210 /*
1211  * search the closest allocated block to the right for *logical
1212  * and returns it at @logical + it's physical address at @phys
1213  * if *logical is the smallest allocated block, the function
1214  * returns 0 at @phys
1215  * return value contains 0 (success) or error code
1216  */
1217 int
1218 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1219 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1220 {
1221 	struct buffer_head *bh = NULL;
1222 	struct ext4_extent_header *eh;
1223 	struct ext4_extent_idx *ix;
1224 	struct ext4_extent *ex;
1225 	ext4_fsblk_t block;
1226 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1227 	int ee_len;
1228 
1229 	BUG_ON(path == NULL);
1230 	depth = path->p_depth;
1231 	*phys = 0;
1232 
1233 	if (depth == 0 && path->p_ext == NULL)
1234 		return 0;
1235 
1236 	/* usually extent in the path covers blocks smaller
1237 	 * then *logical, but it can be that extent is the
1238 	 * first one in the file */
1239 
1240 	ex = path[depth].p_ext;
1241 	ee_len = ext4_ext_get_actual_len(ex);
1242 	if (*logical < le32_to_cpu(ex->ee_block)) {
1243 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1244 		while (--depth >= 0) {
1245 			ix = path[depth].p_idx;
1246 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1247 		}
1248 		*logical = le32_to_cpu(ex->ee_block);
1249 		*phys = ext_pblock(ex);
1250 		return 0;
1251 	}
1252 
1253 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1254 
1255 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1256 		/* next allocated block in this leaf */
1257 		ex++;
1258 		*logical = le32_to_cpu(ex->ee_block);
1259 		*phys = ext_pblock(ex);
1260 		return 0;
1261 	}
1262 
1263 	/* go up and search for index to the right */
1264 	while (--depth >= 0) {
1265 		ix = path[depth].p_idx;
1266 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1267 			goto got_index;
1268 	}
1269 
1270 	/* we've gone up to the root and found no index to the right */
1271 	return 0;
1272 
1273 got_index:
1274 	/* we've found index to the right, let's
1275 	 * follow it and find the closest allocated
1276 	 * block to the right */
1277 	ix++;
1278 	block = idx_pblock(ix);
1279 	while (++depth < path->p_depth) {
1280 		bh = sb_bread(inode->i_sb, block);
1281 		if (bh == NULL)
1282 			return -EIO;
1283 		eh = ext_block_hdr(bh);
1284 		/* subtract from p_depth to get proper eh_depth */
1285 		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1286 			put_bh(bh);
1287 			return -EIO;
1288 		}
1289 		ix = EXT_FIRST_INDEX(eh);
1290 		block = idx_pblock(ix);
1291 		put_bh(bh);
1292 	}
1293 
1294 	bh = sb_bread(inode->i_sb, block);
1295 	if (bh == NULL)
1296 		return -EIO;
1297 	eh = ext_block_hdr(bh);
1298 	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1299 		put_bh(bh);
1300 		return -EIO;
1301 	}
1302 	ex = EXT_FIRST_EXTENT(eh);
1303 	*logical = le32_to_cpu(ex->ee_block);
1304 	*phys = ext_pblock(ex);
1305 	put_bh(bh);
1306 	return 0;
1307 }
1308 
1309 /*
1310  * ext4_ext_next_allocated_block:
1311  * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1312  * NOTE: it considers block number from index entry as
1313  * allocated block. Thus, index entries have to be consistent
1314  * with leaves.
1315  */
1316 static ext4_lblk_t
1317 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1318 {
1319 	int depth;
1320 
1321 	BUG_ON(path == NULL);
1322 	depth = path->p_depth;
1323 
1324 	if (depth == 0 && path->p_ext == NULL)
1325 		return EXT_MAX_BLOCK;
1326 
1327 	while (depth >= 0) {
1328 		if (depth == path->p_depth) {
1329 			/* leaf */
1330 			if (path[depth].p_ext !=
1331 					EXT_LAST_EXTENT(path[depth].p_hdr))
1332 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1333 		} else {
1334 			/* index */
1335 			if (path[depth].p_idx !=
1336 					EXT_LAST_INDEX(path[depth].p_hdr))
1337 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1338 		}
1339 		depth--;
1340 	}
1341 
1342 	return EXT_MAX_BLOCK;
1343 }
1344 
1345 /*
1346  * ext4_ext_next_leaf_block:
1347  * returns first allocated block from next leaf or EXT_MAX_BLOCK
1348  */
1349 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1350 					struct ext4_ext_path *path)
1351 {
1352 	int depth;
1353 
1354 	BUG_ON(path == NULL);
1355 	depth = path->p_depth;
1356 
1357 	/* zero-tree has no leaf blocks at all */
1358 	if (depth == 0)
1359 		return EXT_MAX_BLOCK;
1360 
1361 	/* go to index block */
1362 	depth--;
1363 
1364 	while (depth >= 0) {
1365 		if (path[depth].p_idx !=
1366 				EXT_LAST_INDEX(path[depth].p_hdr))
1367 			return (ext4_lblk_t)
1368 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1369 		depth--;
1370 	}
1371 
1372 	return EXT_MAX_BLOCK;
1373 }
1374 
1375 /*
1376  * ext4_ext_correct_indexes:
1377  * if leaf gets modified and modified extent is first in the leaf,
1378  * then we have to correct all indexes above.
1379  * TODO: do we need to correct tree in all cases?
1380  */
1381 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1382 				struct ext4_ext_path *path)
1383 {
1384 	struct ext4_extent_header *eh;
1385 	int depth = ext_depth(inode);
1386 	struct ext4_extent *ex;
1387 	__le32 border;
1388 	int k, err = 0;
1389 
1390 	eh = path[depth].p_hdr;
1391 	ex = path[depth].p_ext;
1392 	BUG_ON(ex == NULL);
1393 	BUG_ON(eh == NULL);
1394 
1395 	if (depth == 0) {
1396 		/* there is no tree at all */
1397 		return 0;
1398 	}
1399 
1400 	if (ex != EXT_FIRST_EXTENT(eh)) {
1401 		/* we correct tree if first leaf got modified only */
1402 		return 0;
1403 	}
1404 
1405 	/*
1406 	 * TODO: we need correction if border is smaller than current one
1407 	 */
1408 	k = depth - 1;
1409 	border = path[depth].p_ext->ee_block;
1410 	err = ext4_ext_get_access(handle, inode, path + k);
1411 	if (err)
1412 		return err;
1413 	path[k].p_idx->ei_block = border;
1414 	err = ext4_ext_dirty(handle, inode, path + k);
1415 	if (err)
1416 		return err;
1417 
1418 	while (k--) {
1419 		/* change all left-side indexes */
1420 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1421 			break;
1422 		err = ext4_ext_get_access(handle, inode, path + k);
1423 		if (err)
1424 			break;
1425 		path[k].p_idx->ei_block = border;
1426 		err = ext4_ext_dirty(handle, inode, path + k);
1427 		if (err)
1428 			break;
1429 	}
1430 
1431 	return err;
1432 }
1433 
1434 static int
1435 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1436 				struct ext4_extent *ex2)
1437 {
1438 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1439 
1440 	/*
1441 	 * Make sure that either both extents are uninitialized, or
1442 	 * both are _not_.
1443 	 */
1444 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1445 		return 0;
1446 
1447 	if (ext4_ext_is_uninitialized(ex1))
1448 		max_len = EXT_UNINIT_MAX_LEN;
1449 	else
1450 		max_len = EXT_INIT_MAX_LEN;
1451 
1452 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1453 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1454 
1455 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1456 			le32_to_cpu(ex2->ee_block))
1457 		return 0;
1458 
1459 	/*
1460 	 * To allow future support for preallocated extents to be added
1461 	 * as an RO_COMPAT feature, refuse to merge to extents if
1462 	 * this can result in the top bit of ee_len being set.
1463 	 */
1464 	if (ext1_ee_len + ext2_ee_len > max_len)
1465 		return 0;
1466 #ifdef AGGRESSIVE_TEST
1467 	if (ext1_ee_len >= 4)
1468 		return 0;
1469 #endif
1470 
1471 	if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1472 		return 1;
1473 	return 0;
1474 }
1475 
1476 /*
1477  * This function tries to merge the "ex" extent to the next extent in the tree.
1478  * It always tries to merge towards right. If you want to merge towards
1479  * left, pass "ex - 1" as argument instead of "ex".
1480  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1481  * 1 if they got merged.
1482  */
1483 int ext4_ext_try_to_merge(struct inode *inode,
1484 			  struct ext4_ext_path *path,
1485 			  struct ext4_extent *ex)
1486 {
1487 	struct ext4_extent_header *eh;
1488 	unsigned int depth, len;
1489 	int merge_done = 0;
1490 	int uninitialized = 0;
1491 
1492 	depth = ext_depth(inode);
1493 	BUG_ON(path[depth].p_hdr == NULL);
1494 	eh = path[depth].p_hdr;
1495 
1496 	while (ex < EXT_LAST_EXTENT(eh)) {
1497 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1498 			break;
1499 		/* merge with next extent! */
1500 		if (ext4_ext_is_uninitialized(ex))
1501 			uninitialized = 1;
1502 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1503 				+ ext4_ext_get_actual_len(ex + 1));
1504 		if (uninitialized)
1505 			ext4_ext_mark_uninitialized(ex);
1506 
1507 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1508 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1509 				* sizeof(struct ext4_extent);
1510 			memmove(ex + 1, ex + 2, len);
1511 		}
1512 		le16_add_cpu(&eh->eh_entries, -1);
1513 		merge_done = 1;
1514 		WARN_ON(eh->eh_entries == 0);
1515 		if (!eh->eh_entries)
1516 			ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1517 			   "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1518 	}
1519 
1520 	return merge_done;
1521 }
1522 
1523 /*
1524  * check if a portion of the "newext" extent overlaps with an
1525  * existing extent.
1526  *
1527  * If there is an overlap discovered, it updates the length of the newext
1528  * such that there will be no overlap, and then returns 1.
1529  * If there is no overlap found, it returns 0.
1530  */
1531 unsigned int ext4_ext_check_overlap(struct inode *inode,
1532 				    struct ext4_extent *newext,
1533 				    struct ext4_ext_path *path)
1534 {
1535 	ext4_lblk_t b1, b2;
1536 	unsigned int depth, len1;
1537 	unsigned int ret = 0;
1538 
1539 	b1 = le32_to_cpu(newext->ee_block);
1540 	len1 = ext4_ext_get_actual_len(newext);
1541 	depth = ext_depth(inode);
1542 	if (!path[depth].p_ext)
1543 		goto out;
1544 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1545 
1546 	/*
1547 	 * get the next allocated block if the extent in the path
1548 	 * is before the requested block(s)
1549 	 */
1550 	if (b2 < b1) {
1551 		b2 = ext4_ext_next_allocated_block(path);
1552 		if (b2 == EXT_MAX_BLOCK)
1553 			goto out;
1554 	}
1555 
1556 	/* check for wrap through zero on extent logical start block*/
1557 	if (b1 + len1 < b1) {
1558 		len1 = EXT_MAX_BLOCK - b1;
1559 		newext->ee_len = cpu_to_le16(len1);
1560 		ret = 1;
1561 	}
1562 
1563 	/* check for overlap */
1564 	if (b1 + len1 > b2) {
1565 		newext->ee_len = cpu_to_le16(b2 - b1);
1566 		ret = 1;
1567 	}
1568 out:
1569 	return ret;
1570 }
1571 
1572 /*
1573  * ext4_ext_insert_extent:
1574  * tries to merge requsted extent into the existing extent or
1575  * inserts requested extent as new one into the tree,
1576  * creating new leaf in the no-space case.
1577  */
1578 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1579 				struct ext4_ext_path *path,
1580 				struct ext4_extent *newext)
1581 {
1582 	struct ext4_extent_header *eh;
1583 	struct ext4_extent *ex, *fex;
1584 	struct ext4_extent *nearex; /* nearest extent */
1585 	struct ext4_ext_path *npath = NULL;
1586 	int depth, len, err;
1587 	ext4_lblk_t next;
1588 	unsigned uninitialized = 0;
1589 
1590 	BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1591 	depth = ext_depth(inode);
1592 	ex = path[depth].p_ext;
1593 	BUG_ON(path[depth].p_hdr == NULL);
1594 
1595 	/* try to insert block into found extent and return */
1596 	if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1597 		ext_debug("append %d block to %d:%d (from %llu)\n",
1598 				ext4_ext_get_actual_len(newext),
1599 				le32_to_cpu(ex->ee_block),
1600 				ext4_ext_get_actual_len(ex), ext_pblock(ex));
1601 		err = ext4_ext_get_access(handle, inode, path + depth);
1602 		if (err)
1603 			return err;
1604 
1605 		/*
1606 		 * ext4_can_extents_be_merged should have checked that either
1607 		 * both extents are uninitialized, or both aren't. Thus we
1608 		 * need to check only one of them here.
1609 		 */
1610 		if (ext4_ext_is_uninitialized(ex))
1611 			uninitialized = 1;
1612 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1613 					+ ext4_ext_get_actual_len(newext));
1614 		if (uninitialized)
1615 			ext4_ext_mark_uninitialized(ex);
1616 		eh = path[depth].p_hdr;
1617 		nearex = ex;
1618 		goto merge;
1619 	}
1620 
1621 repeat:
1622 	depth = ext_depth(inode);
1623 	eh = path[depth].p_hdr;
1624 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1625 		goto has_space;
1626 
1627 	/* probably next leaf has space for us? */
1628 	fex = EXT_LAST_EXTENT(eh);
1629 	next = ext4_ext_next_leaf_block(inode, path);
1630 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1631 	    && next != EXT_MAX_BLOCK) {
1632 		ext_debug("next leaf block - %d\n", next);
1633 		BUG_ON(npath != NULL);
1634 		npath = ext4_ext_find_extent(inode, next, NULL);
1635 		if (IS_ERR(npath))
1636 			return PTR_ERR(npath);
1637 		BUG_ON(npath->p_depth != path->p_depth);
1638 		eh = npath[depth].p_hdr;
1639 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1640 			ext_debug("next leaf isnt full(%d)\n",
1641 				  le16_to_cpu(eh->eh_entries));
1642 			path = npath;
1643 			goto repeat;
1644 		}
1645 		ext_debug("next leaf has no free space(%d,%d)\n",
1646 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1647 	}
1648 
1649 	/*
1650 	 * There is no free space in the found leaf.
1651 	 * We're gonna add a new leaf in the tree.
1652 	 */
1653 	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1654 	if (err)
1655 		goto cleanup;
1656 	depth = ext_depth(inode);
1657 	eh = path[depth].p_hdr;
1658 
1659 has_space:
1660 	nearex = path[depth].p_ext;
1661 
1662 	err = ext4_ext_get_access(handle, inode, path + depth);
1663 	if (err)
1664 		goto cleanup;
1665 
1666 	if (!nearex) {
1667 		/* there is no extent in this leaf, create first one */
1668 		ext_debug("first extent in the leaf: %d:%llu:%d\n",
1669 				le32_to_cpu(newext->ee_block),
1670 				ext_pblock(newext),
1671 				ext4_ext_get_actual_len(newext));
1672 		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1673 	} else if (le32_to_cpu(newext->ee_block)
1674 			   > le32_to_cpu(nearex->ee_block)) {
1675 /*		BUG_ON(newext->ee_block == nearex->ee_block); */
1676 		if (nearex != EXT_LAST_EXTENT(eh)) {
1677 			len = EXT_MAX_EXTENT(eh) - nearex;
1678 			len = (len - 1) * sizeof(struct ext4_extent);
1679 			len = len < 0 ? 0 : len;
1680 			ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1681 					"move %d from 0x%p to 0x%p\n",
1682 					le32_to_cpu(newext->ee_block),
1683 					ext_pblock(newext),
1684 					ext4_ext_get_actual_len(newext),
1685 					nearex, len, nearex + 1, nearex + 2);
1686 			memmove(nearex + 2, nearex + 1, len);
1687 		}
1688 		path[depth].p_ext = nearex + 1;
1689 	} else {
1690 		BUG_ON(newext->ee_block == nearex->ee_block);
1691 		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1692 		len = len < 0 ? 0 : len;
1693 		ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1694 				"move %d from 0x%p to 0x%p\n",
1695 				le32_to_cpu(newext->ee_block),
1696 				ext_pblock(newext),
1697 				ext4_ext_get_actual_len(newext),
1698 				nearex, len, nearex + 1, nearex + 2);
1699 		memmove(nearex + 1, nearex, len);
1700 		path[depth].p_ext = nearex;
1701 	}
1702 
1703 	le16_add_cpu(&eh->eh_entries, 1);
1704 	nearex = path[depth].p_ext;
1705 	nearex->ee_block = newext->ee_block;
1706 	ext4_ext_store_pblock(nearex, ext_pblock(newext));
1707 	nearex->ee_len = newext->ee_len;
1708 
1709 merge:
1710 	/* try to merge extents to the right */
1711 	ext4_ext_try_to_merge(inode, path, nearex);
1712 
1713 	/* try to merge extents to the left */
1714 
1715 	/* time to correct all indexes above */
1716 	err = ext4_ext_correct_indexes(handle, inode, path);
1717 	if (err)
1718 		goto cleanup;
1719 
1720 	err = ext4_ext_dirty(handle, inode, path + depth);
1721 
1722 cleanup:
1723 	if (npath) {
1724 		ext4_ext_drop_refs(npath);
1725 		kfree(npath);
1726 	}
1727 	ext4_ext_invalidate_cache(inode);
1728 	return err;
1729 }
1730 
1731 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1732 			ext4_lblk_t num, ext_prepare_callback func,
1733 			void *cbdata)
1734 {
1735 	struct ext4_ext_path *path = NULL;
1736 	struct ext4_ext_cache cbex;
1737 	struct ext4_extent *ex;
1738 	ext4_lblk_t next, start = 0, end = 0;
1739 	ext4_lblk_t last = block + num;
1740 	int depth, exists, err = 0;
1741 
1742 	BUG_ON(func == NULL);
1743 	BUG_ON(inode == NULL);
1744 
1745 	while (block < last && block != EXT_MAX_BLOCK) {
1746 		num = last - block;
1747 		/* find extent for this block */
1748 		path = ext4_ext_find_extent(inode, block, path);
1749 		if (IS_ERR(path)) {
1750 			err = PTR_ERR(path);
1751 			path = NULL;
1752 			break;
1753 		}
1754 
1755 		depth = ext_depth(inode);
1756 		BUG_ON(path[depth].p_hdr == NULL);
1757 		ex = path[depth].p_ext;
1758 		next = ext4_ext_next_allocated_block(path);
1759 
1760 		exists = 0;
1761 		if (!ex) {
1762 			/* there is no extent yet, so try to allocate
1763 			 * all requested space */
1764 			start = block;
1765 			end = block + num;
1766 		} else if (le32_to_cpu(ex->ee_block) > block) {
1767 			/* need to allocate space before found extent */
1768 			start = block;
1769 			end = le32_to_cpu(ex->ee_block);
1770 			if (block + num < end)
1771 				end = block + num;
1772 		} else if (block >= le32_to_cpu(ex->ee_block)
1773 					+ ext4_ext_get_actual_len(ex)) {
1774 			/* need to allocate space after found extent */
1775 			start = block;
1776 			end = block + num;
1777 			if (end >= next)
1778 				end = next;
1779 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1780 			/*
1781 			 * some part of requested space is covered
1782 			 * by found extent
1783 			 */
1784 			start = block;
1785 			end = le32_to_cpu(ex->ee_block)
1786 				+ ext4_ext_get_actual_len(ex);
1787 			if (block + num < end)
1788 				end = block + num;
1789 			exists = 1;
1790 		} else {
1791 			BUG();
1792 		}
1793 		BUG_ON(end <= start);
1794 
1795 		if (!exists) {
1796 			cbex.ec_block = start;
1797 			cbex.ec_len = end - start;
1798 			cbex.ec_start = 0;
1799 			cbex.ec_type = EXT4_EXT_CACHE_GAP;
1800 		} else {
1801 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1802 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1803 			cbex.ec_start = ext_pblock(ex);
1804 			cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1805 		}
1806 
1807 		BUG_ON(cbex.ec_len == 0);
1808 		err = func(inode, path, &cbex, ex, cbdata);
1809 		ext4_ext_drop_refs(path);
1810 
1811 		if (err < 0)
1812 			break;
1813 
1814 		if (err == EXT_REPEAT)
1815 			continue;
1816 		else if (err == EXT_BREAK) {
1817 			err = 0;
1818 			break;
1819 		}
1820 
1821 		if (ext_depth(inode) != depth) {
1822 			/* depth was changed. we have to realloc path */
1823 			kfree(path);
1824 			path = NULL;
1825 		}
1826 
1827 		block = cbex.ec_block + cbex.ec_len;
1828 	}
1829 
1830 	if (path) {
1831 		ext4_ext_drop_refs(path);
1832 		kfree(path);
1833 	}
1834 
1835 	return err;
1836 }
1837 
1838 static void
1839 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1840 			__u32 len, ext4_fsblk_t start, int type)
1841 {
1842 	struct ext4_ext_cache *cex;
1843 	BUG_ON(len == 0);
1844 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1845 	cex = &EXT4_I(inode)->i_cached_extent;
1846 	cex->ec_type = type;
1847 	cex->ec_block = block;
1848 	cex->ec_len = len;
1849 	cex->ec_start = start;
1850 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1851 }
1852 
1853 /*
1854  * ext4_ext_put_gap_in_cache:
1855  * calculate boundaries of the gap that the requested block fits into
1856  * and cache this gap
1857  */
1858 static void
1859 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1860 				ext4_lblk_t block)
1861 {
1862 	int depth = ext_depth(inode);
1863 	unsigned long len;
1864 	ext4_lblk_t lblock;
1865 	struct ext4_extent *ex;
1866 
1867 	ex = path[depth].p_ext;
1868 	if (ex == NULL) {
1869 		/* there is no extent yet, so gap is [0;-] */
1870 		lblock = 0;
1871 		len = EXT_MAX_BLOCK;
1872 		ext_debug("cache gap(whole file):");
1873 	} else if (block < le32_to_cpu(ex->ee_block)) {
1874 		lblock = block;
1875 		len = le32_to_cpu(ex->ee_block) - block;
1876 		ext_debug("cache gap(before): %u [%u:%u]",
1877 				block,
1878 				le32_to_cpu(ex->ee_block),
1879 				 ext4_ext_get_actual_len(ex));
1880 	} else if (block >= le32_to_cpu(ex->ee_block)
1881 			+ ext4_ext_get_actual_len(ex)) {
1882 		ext4_lblk_t next;
1883 		lblock = le32_to_cpu(ex->ee_block)
1884 			+ ext4_ext_get_actual_len(ex);
1885 
1886 		next = ext4_ext_next_allocated_block(path);
1887 		ext_debug("cache gap(after): [%u:%u] %u",
1888 				le32_to_cpu(ex->ee_block),
1889 				ext4_ext_get_actual_len(ex),
1890 				block);
1891 		BUG_ON(next == lblock);
1892 		len = next - lblock;
1893 	} else {
1894 		lblock = len = 0;
1895 		BUG();
1896 	}
1897 
1898 	ext_debug(" -> %u:%lu\n", lblock, len);
1899 	ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1900 }
1901 
1902 static int
1903 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1904 			struct ext4_extent *ex)
1905 {
1906 	struct ext4_ext_cache *cex;
1907 	int ret = EXT4_EXT_CACHE_NO;
1908 
1909 	/*
1910 	 * We borrow i_block_reservation_lock to protect i_cached_extent
1911 	 */
1912 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1913 	cex = &EXT4_I(inode)->i_cached_extent;
1914 
1915 	/* has cache valid data? */
1916 	if (cex->ec_type == EXT4_EXT_CACHE_NO)
1917 		goto errout;
1918 
1919 	BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1920 			cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1921 	if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1922 		ex->ee_block = cpu_to_le32(cex->ec_block);
1923 		ext4_ext_store_pblock(ex, cex->ec_start);
1924 		ex->ee_len = cpu_to_le16(cex->ec_len);
1925 		ext_debug("%u cached by %u:%u:%llu\n",
1926 				block,
1927 				cex->ec_block, cex->ec_len, cex->ec_start);
1928 		ret = cex->ec_type;
1929 	}
1930 errout:
1931 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1932 	return ret;
1933 }
1934 
1935 /*
1936  * ext4_ext_rm_idx:
1937  * removes index from the index block.
1938  * It's used in truncate case only, thus all requests are for
1939  * last index in the block only.
1940  */
1941 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1942 			struct ext4_ext_path *path)
1943 {
1944 	struct buffer_head *bh;
1945 	int err;
1946 	ext4_fsblk_t leaf;
1947 
1948 	/* free index block */
1949 	path--;
1950 	leaf = idx_pblock(path->p_idx);
1951 	BUG_ON(path->p_hdr->eh_entries == 0);
1952 	err = ext4_ext_get_access(handle, inode, path);
1953 	if (err)
1954 		return err;
1955 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
1956 	err = ext4_ext_dirty(handle, inode, path);
1957 	if (err)
1958 		return err;
1959 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
1960 	bh = sb_find_get_block(inode->i_sb, leaf);
1961 	ext4_forget(handle, 1, inode, bh, leaf);
1962 	ext4_free_blocks(handle, inode, leaf, 1, 1);
1963 	return err;
1964 }
1965 
1966 /*
1967  * ext4_ext_calc_credits_for_single_extent:
1968  * This routine returns max. credits that needed to insert an extent
1969  * to the extent tree.
1970  * When pass the actual path, the caller should calculate credits
1971  * under i_data_sem.
1972  */
1973 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
1974 						struct ext4_ext_path *path)
1975 {
1976 	if (path) {
1977 		int depth = ext_depth(inode);
1978 		int ret = 0;
1979 
1980 		/* probably there is space in leaf? */
1981 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1982 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
1983 
1984 			/*
1985 			 *  There are some space in the leaf tree, no
1986 			 *  need to account for leaf block credit
1987 			 *
1988 			 *  bitmaps and block group descriptor blocks
1989 			 *  and other metadat blocks still need to be
1990 			 *  accounted.
1991 			 */
1992 			/* 1 bitmap, 1 block group descriptor */
1993 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
1994 		}
1995 	}
1996 
1997 	return ext4_chunk_trans_blocks(inode, nrblocks);
1998 }
1999 
2000 /*
2001  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2002  *
2003  * if nrblocks are fit in a single extent (chunk flag is 1), then
2004  * in the worse case, each tree level index/leaf need to be changed
2005  * if the tree split due to insert a new extent, then the old tree
2006  * index/leaf need to be updated too
2007  *
2008  * If the nrblocks are discontiguous, they could cause
2009  * the whole tree split more than once, but this is really rare.
2010  */
2011 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2012 {
2013 	int index;
2014 	int depth = ext_depth(inode);
2015 
2016 	if (chunk)
2017 		index = depth * 2;
2018 	else
2019 		index = depth * 3;
2020 
2021 	return index;
2022 }
2023 
2024 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2025 				struct ext4_extent *ex,
2026 				ext4_lblk_t from, ext4_lblk_t to)
2027 {
2028 	struct buffer_head *bh;
2029 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2030 	int i, metadata = 0;
2031 
2032 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2033 		metadata = 1;
2034 #ifdef EXTENTS_STATS
2035 	{
2036 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2037 		spin_lock(&sbi->s_ext_stats_lock);
2038 		sbi->s_ext_blocks += ee_len;
2039 		sbi->s_ext_extents++;
2040 		if (ee_len < sbi->s_ext_min)
2041 			sbi->s_ext_min = ee_len;
2042 		if (ee_len > sbi->s_ext_max)
2043 			sbi->s_ext_max = ee_len;
2044 		if (ext_depth(inode) > sbi->s_depth_max)
2045 			sbi->s_depth_max = ext_depth(inode);
2046 		spin_unlock(&sbi->s_ext_stats_lock);
2047 	}
2048 #endif
2049 	if (from >= le32_to_cpu(ex->ee_block)
2050 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2051 		/* tail removal */
2052 		ext4_lblk_t num;
2053 		ext4_fsblk_t start;
2054 
2055 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2056 		start = ext_pblock(ex) + ee_len - num;
2057 		ext_debug("free last %u blocks starting %llu\n", num, start);
2058 		for (i = 0; i < num; i++) {
2059 			bh = sb_find_get_block(inode->i_sb, start + i);
2060 			ext4_forget(handle, 0, inode, bh, start + i);
2061 		}
2062 		ext4_free_blocks(handle, inode, start, num, metadata);
2063 	} else if (from == le32_to_cpu(ex->ee_block)
2064 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2065 		printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2066 			from, to, le32_to_cpu(ex->ee_block), ee_len);
2067 	} else {
2068 		printk(KERN_INFO "strange request: removal(2) "
2069 				"%u-%u from %u:%u\n",
2070 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2071 	}
2072 	return 0;
2073 }
2074 
2075 static int
2076 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2077 		struct ext4_ext_path *path, ext4_lblk_t start)
2078 {
2079 	int err = 0, correct_index = 0;
2080 	int depth = ext_depth(inode), credits;
2081 	struct ext4_extent_header *eh;
2082 	ext4_lblk_t a, b, block;
2083 	unsigned num;
2084 	ext4_lblk_t ex_ee_block;
2085 	unsigned short ex_ee_len;
2086 	unsigned uninitialized = 0;
2087 	struct ext4_extent *ex;
2088 
2089 	/* the header must be checked already in ext4_ext_remove_space() */
2090 	ext_debug("truncate since %u in leaf\n", start);
2091 	if (!path[depth].p_hdr)
2092 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2093 	eh = path[depth].p_hdr;
2094 	BUG_ON(eh == NULL);
2095 
2096 	/* find where to start removing */
2097 	ex = EXT_LAST_EXTENT(eh);
2098 
2099 	ex_ee_block = le32_to_cpu(ex->ee_block);
2100 	if (ext4_ext_is_uninitialized(ex))
2101 		uninitialized = 1;
2102 	ex_ee_len = ext4_ext_get_actual_len(ex);
2103 
2104 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2105 			ex_ee_block + ex_ee_len > start) {
2106 		ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
2107 		path[depth].p_ext = ex;
2108 
2109 		a = ex_ee_block > start ? ex_ee_block : start;
2110 		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2111 			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2112 
2113 		ext_debug("  border %u:%u\n", a, b);
2114 
2115 		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2116 			block = 0;
2117 			num = 0;
2118 			BUG();
2119 		} else if (a != ex_ee_block) {
2120 			/* remove tail of the extent */
2121 			block = ex_ee_block;
2122 			num = a - block;
2123 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2124 			/* remove head of the extent */
2125 			block = a;
2126 			num = b - a;
2127 			/* there is no "make a hole" API yet */
2128 			BUG();
2129 		} else {
2130 			/* remove whole extent: excellent! */
2131 			block = ex_ee_block;
2132 			num = 0;
2133 			BUG_ON(a != ex_ee_block);
2134 			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2135 		}
2136 
2137 		/*
2138 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2139 		 * descriptor) for each block group; assume two block
2140 		 * groups plus ex_ee_len/blocks_per_block_group for
2141 		 * the worst case
2142 		 */
2143 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2144 		if (ex == EXT_FIRST_EXTENT(eh)) {
2145 			correct_index = 1;
2146 			credits += (ext_depth(inode)) + 1;
2147 		}
2148 		credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2149 
2150 		err = ext4_ext_journal_restart(handle, credits);
2151 		if (err)
2152 			goto out;
2153 
2154 		err = ext4_ext_get_access(handle, inode, path + depth);
2155 		if (err)
2156 			goto out;
2157 
2158 		err = ext4_remove_blocks(handle, inode, ex, a, b);
2159 		if (err)
2160 			goto out;
2161 
2162 		if (num == 0) {
2163 			/* this extent is removed; mark slot entirely unused */
2164 			ext4_ext_store_pblock(ex, 0);
2165 			le16_add_cpu(&eh->eh_entries, -1);
2166 		}
2167 
2168 		ex->ee_block = cpu_to_le32(block);
2169 		ex->ee_len = cpu_to_le16(num);
2170 		/*
2171 		 * Do not mark uninitialized if all the blocks in the
2172 		 * extent have been removed.
2173 		 */
2174 		if (uninitialized && num)
2175 			ext4_ext_mark_uninitialized(ex);
2176 
2177 		err = ext4_ext_dirty(handle, inode, path + depth);
2178 		if (err)
2179 			goto out;
2180 
2181 		ext_debug("new extent: %u:%u:%llu\n", block, num,
2182 				ext_pblock(ex));
2183 		ex--;
2184 		ex_ee_block = le32_to_cpu(ex->ee_block);
2185 		ex_ee_len = ext4_ext_get_actual_len(ex);
2186 	}
2187 
2188 	if (correct_index && eh->eh_entries)
2189 		err = ext4_ext_correct_indexes(handle, inode, path);
2190 
2191 	/* if this leaf is free, then we should
2192 	 * remove it from index block above */
2193 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2194 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2195 
2196 out:
2197 	return err;
2198 }
2199 
2200 /*
2201  * ext4_ext_more_to_rm:
2202  * returns 1 if current index has to be freed (even partial)
2203  */
2204 static int
2205 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2206 {
2207 	BUG_ON(path->p_idx == NULL);
2208 
2209 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2210 		return 0;
2211 
2212 	/*
2213 	 * if truncate on deeper level happened, it wasn't partial,
2214 	 * so we have to consider current index for truncation
2215 	 */
2216 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2217 		return 0;
2218 	return 1;
2219 }
2220 
2221 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2222 {
2223 	struct super_block *sb = inode->i_sb;
2224 	int depth = ext_depth(inode);
2225 	struct ext4_ext_path *path;
2226 	handle_t *handle;
2227 	int i = 0, err = 0;
2228 
2229 	ext_debug("truncate since %u\n", start);
2230 
2231 	/* probably first extent we're gonna free will be last in block */
2232 	handle = ext4_journal_start(inode, depth + 1);
2233 	if (IS_ERR(handle))
2234 		return PTR_ERR(handle);
2235 
2236 	ext4_ext_invalidate_cache(inode);
2237 
2238 	/*
2239 	 * We start scanning from right side, freeing all the blocks
2240 	 * after i_size and walking into the tree depth-wise.
2241 	 */
2242 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2243 	if (path == NULL) {
2244 		ext4_journal_stop(handle);
2245 		return -ENOMEM;
2246 	}
2247 	path[0].p_hdr = ext_inode_hdr(inode);
2248 	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2249 		err = -EIO;
2250 		goto out;
2251 	}
2252 	path[0].p_depth = depth;
2253 
2254 	while (i >= 0 && err == 0) {
2255 		if (i == depth) {
2256 			/* this is leaf block */
2257 			err = ext4_ext_rm_leaf(handle, inode, path, start);
2258 			/* root level has p_bh == NULL, brelse() eats this */
2259 			brelse(path[i].p_bh);
2260 			path[i].p_bh = NULL;
2261 			i--;
2262 			continue;
2263 		}
2264 
2265 		/* this is index block */
2266 		if (!path[i].p_hdr) {
2267 			ext_debug("initialize header\n");
2268 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2269 		}
2270 
2271 		if (!path[i].p_idx) {
2272 			/* this level hasn't been touched yet */
2273 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2274 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2275 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2276 				  path[i].p_hdr,
2277 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2278 		} else {
2279 			/* we were already here, see at next index */
2280 			path[i].p_idx--;
2281 		}
2282 
2283 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2284 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2285 				path[i].p_idx);
2286 		if (ext4_ext_more_to_rm(path + i)) {
2287 			struct buffer_head *bh;
2288 			/* go to the next level */
2289 			ext_debug("move to level %d (block %llu)\n",
2290 				  i + 1, idx_pblock(path[i].p_idx));
2291 			memset(path + i + 1, 0, sizeof(*path));
2292 			bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2293 			if (!bh) {
2294 				/* should we reset i_size? */
2295 				err = -EIO;
2296 				break;
2297 			}
2298 			if (WARN_ON(i + 1 > depth)) {
2299 				err = -EIO;
2300 				break;
2301 			}
2302 			if (ext4_ext_check(inode, ext_block_hdr(bh),
2303 							depth - i - 1)) {
2304 				err = -EIO;
2305 				break;
2306 			}
2307 			path[i + 1].p_bh = bh;
2308 
2309 			/* save actual number of indexes since this
2310 			 * number is changed at the next iteration */
2311 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2312 			i++;
2313 		} else {
2314 			/* we finished processing this index, go up */
2315 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2316 				/* index is empty, remove it;
2317 				 * handle must be already prepared by the
2318 				 * truncatei_leaf() */
2319 				err = ext4_ext_rm_idx(handle, inode, path + i);
2320 			}
2321 			/* root level has p_bh == NULL, brelse() eats this */
2322 			brelse(path[i].p_bh);
2323 			path[i].p_bh = NULL;
2324 			i--;
2325 			ext_debug("return to level %d\n", i);
2326 		}
2327 	}
2328 
2329 	/* TODO: flexible tree reduction should be here */
2330 	if (path->p_hdr->eh_entries == 0) {
2331 		/*
2332 		 * truncate to zero freed all the tree,
2333 		 * so we need to correct eh_depth
2334 		 */
2335 		err = ext4_ext_get_access(handle, inode, path);
2336 		if (err == 0) {
2337 			ext_inode_hdr(inode)->eh_depth = 0;
2338 			ext_inode_hdr(inode)->eh_max =
2339 				cpu_to_le16(ext4_ext_space_root(inode));
2340 			err = ext4_ext_dirty(handle, inode, path);
2341 		}
2342 	}
2343 out:
2344 	ext4_ext_drop_refs(path);
2345 	kfree(path);
2346 	ext4_journal_stop(handle);
2347 
2348 	return err;
2349 }
2350 
2351 /*
2352  * called at mount time
2353  */
2354 void ext4_ext_init(struct super_block *sb)
2355 {
2356 	/*
2357 	 * possible initialization would be here
2358 	 */
2359 
2360 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2361 		printk(KERN_INFO "EXT4-fs: file extents enabled");
2362 #ifdef AGGRESSIVE_TEST
2363 		printk(", aggressive tests");
2364 #endif
2365 #ifdef CHECK_BINSEARCH
2366 		printk(", check binsearch");
2367 #endif
2368 #ifdef EXTENTS_STATS
2369 		printk(", stats");
2370 #endif
2371 		printk("\n");
2372 #ifdef EXTENTS_STATS
2373 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2374 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2375 		EXT4_SB(sb)->s_ext_max = 0;
2376 #endif
2377 	}
2378 }
2379 
2380 /*
2381  * called at umount time
2382  */
2383 void ext4_ext_release(struct super_block *sb)
2384 {
2385 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2386 		return;
2387 
2388 #ifdef EXTENTS_STATS
2389 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2390 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2391 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2392 			sbi->s_ext_blocks, sbi->s_ext_extents,
2393 			sbi->s_ext_blocks / sbi->s_ext_extents);
2394 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2395 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2396 	}
2397 #endif
2398 }
2399 
2400 static void bi_complete(struct bio *bio, int error)
2401 {
2402 	complete((struct completion *)bio->bi_private);
2403 }
2404 
2405 /* FIXME!! we need to try to merge to left or right after zero-out  */
2406 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2407 {
2408 	int ret = -EIO;
2409 	struct bio *bio;
2410 	int blkbits, blocksize;
2411 	sector_t ee_pblock;
2412 	struct completion event;
2413 	unsigned int ee_len, len, done, offset;
2414 
2415 
2416 	blkbits   = inode->i_blkbits;
2417 	blocksize = inode->i_sb->s_blocksize;
2418 	ee_len    = ext4_ext_get_actual_len(ex);
2419 	ee_pblock = ext_pblock(ex);
2420 
2421 	/* convert ee_pblock to 512 byte sectors */
2422 	ee_pblock = ee_pblock << (blkbits - 9);
2423 
2424 	while (ee_len > 0) {
2425 
2426 		if (ee_len > BIO_MAX_PAGES)
2427 			len = BIO_MAX_PAGES;
2428 		else
2429 			len = ee_len;
2430 
2431 		bio = bio_alloc(GFP_NOIO, len);
2432 		bio->bi_sector = ee_pblock;
2433 		bio->bi_bdev   = inode->i_sb->s_bdev;
2434 
2435 		done = 0;
2436 		offset = 0;
2437 		while (done < len) {
2438 			ret = bio_add_page(bio, ZERO_PAGE(0),
2439 							blocksize, offset);
2440 			if (ret != blocksize) {
2441 				/*
2442 				 * We can't add any more pages because of
2443 				 * hardware limitations.  Start a new bio.
2444 				 */
2445 				break;
2446 			}
2447 			done++;
2448 			offset += blocksize;
2449 			if (offset >= PAGE_CACHE_SIZE)
2450 				offset = 0;
2451 		}
2452 
2453 		init_completion(&event);
2454 		bio->bi_private = &event;
2455 		bio->bi_end_io = bi_complete;
2456 		submit_bio(WRITE, bio);
2457 		wait_for_completion(&event);
2458 
2459 		if (test_bit(BIO_UPTODATE, &bio->bi_flags))
2460 			ret = 0;
2461 		else {
2462 			ret = -EIO;
2463 			break;
2464 		}
2465 		bio_put(bio);
2466 		ee_len    -= done;
2467 		ee_pblock += done  << (blkbits - 9);
2468 	}
2469 	return ret;
2470 }
2471 
2472 #define EXT4_EXT_ZERO_LEN 7
2473 
2474 /*
2475  * This function is called by ext4_ext_get_blocks() if someone tries to write
2476  * to an uninitialized extent. It may result in splitting the uninitialized
2477  * extent into multiple extents (upto three - one initialized and two
2478  * uninitialized).
2479  * There are three possibilities:
2480  *   a> There is no split required: Entire extent should be initialized
2481  *   b> Splits in two extents: Write is happening at either end of the extent
2482  *   c> Splits in three extents: Somone is writing in middle of the extent
2483  */
2484 static int ext4_ext_convert_to_initialized(handle_t *handle,
2485 						struct inode *inode,
2486 						struct ext4_ext_path *path,
2487 						ext4_lblk_t iblock,
2488 						unsigned int max_blocks)
2489 {
2490 	struct ext4_extent *ex, newex, orig_ex;
2491 	struct ext4_extent *ex1 = NULL;
2492 	struct ext4_extent *ex2 = NULL;
2493 	struct ext4_extent *ex3 = NULL;
2494 	struct ext4_extent_header *eh;
2495 	ext4_lblk_t ee_block;
2496 	unsigned int allocated, ee_len, depth;
2497 	ext4_fsblk_t newblock;
2498 	int err = 0;
2499 	int ret = 0;
2500 
2501 	depth = ext_depth(inode);
2502 	eh = path[depth].p_hdr;
2503 	ex = path[depth].p_ext;
2504 	ee_block = le32_to_cpu(ex->ee_block);
2505 	ee_len = ext4_ext_get_actual_len(ex);
2506 	allocated = ee_len - (iblock - ee_block);
2507 	newblock = iblock - ee_block + ext_pblock(ex);
2508 	ex2 = ex;
2509 	orig_ex.ee_block = ex->ee_block;
2510 	orig_ex.ee_len   = cpu_to_le16(ee_len);
2511 	ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2512 
2513 	err = ext4_ext_get_access(handle, inode, path + depth);
2514 	if (err)
2515 		goto out;
2516 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2517 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
2518 		err =  ext4_ext_zeroout(inode, &orig_ex);
2519 		if (err)
2520 			goto fix_extent_len;
2521 		/* update the extent length and mark as initialized */
2522 		ex->ee_block = orig_ex.ee_block;
2523 		ex->ee_len   = orig_ex.ee_len;
2524 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2525 		ext4_ext_dirty(handle, inode, path + depth);
2526 		/* zeroed the full extent */
2527 		return allocated;
2528 	}
2529 
2530 	/* ex1: ee_block to iblock - 1 : uninitialized */
2531 	if (iblock > ee_block) {
2532 		ex1 = ex;
2533 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2534 		ext4_ext_mark_uninitialized(ex1);
2535 		ex2 = &newex;
2536 	}
2537 	/*
2538 	 * for sanity, update the length of the ex2 extent before
2539 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2540 	 * overlap of blocks.
2541 	 */
2542 	if (!ex1 && allocated > max_blocks)
2543 		ex2->ee_len = cpu_to_le16(max_blocks);
2544 	/* ex3: to ee_block + ee_len : uninitialised */
2545 	if (allocated > max_blocks) {
2546 		unsigned int newdepth;
2547 		/* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2548 		if (allocated <= EXT4_EXT_ZERO_LEN) {
2549 			/*
2550 			 * iblock == ee_block is handled by the zerouout
2551 			 * at the beginning.
2552 			 * Mark first half uninitialized.
2553 			 * Mark second half initialized and zero out the
2554 			 * initialized extent
2555 			 */
2556 			ex->ee_block = orig_ex.ee_block;
2557 			ex->ee_len   = cpu_to_le16(ee_len - allocated);
2558 			ext4_ext_mark_uninitialized(ex);
2559 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2560 			ext4_ext_dirty(handle, inode, path + depth);
2561 
2562 			ex3 = &newex;
2563 			ex3->ee_block = cpu_to_le32(iblock);
2564 			ext4_ext_store_pblock(ex3, newblock);
2565 			ex3->ee_len = cpu_to_le16(allocated);
2566 			err = ext4_ext_insert_extent(handle, inode, path, ex3);
2567 			if (err == -ENOSPC) {
2568 				err =  ext4_ext_zeroout(inode, &orig_ex);
2569 				if (err)
2570 					goto fix_extent_len;
2571 				ex->ee_block = orig_ex.ee_block;
2572 				ex->ee_len   = orig_ex.ee_len;
2573 				ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2574 				ext4_ext_dirty(handle, inode, path + depth);
2575 				/* blocks available from iblock */
2576 				return allocated;
2577 
2578 			} else if (err)
2579 				goto fix_extent_len;
2580 
2581 			/*
2582 			 * We need to zero out the second half because
2583 			 * an fallocate request can update file size and
2584 			 * converting the second half to initialized extent
2585 			 * implies that we can leak some junk data to user
2586 			 * space.
2587 			 */
2588 			err =  ext4_ext_zeroout(inode, ex3);
2589 			if (err) {
2590 				/*
2591 				 * We should actually mark the
2592 				 * second half as uninit and return error
2593 				 * Insert would have changed the extent
2594 				 */
2595 				depth = ext_depth(inode);
2596 				ext4_ext_drop_refs(path);
2597 				path = ext4_ext_find_extent(inode,
2598 								iblock, path);
2599 				if (IS_ERR(path)) {
2600 					err = PTR_ERR(path);
2601 					return err;
2602 				}
2603 				/* get the second half extent details */
2604 				ex = path[depth].p_ext;
2605 				err = ext4_ext_get_access(handle, inode,
2606 								path + depth);
2607 				if (err)
2608 					return err;
2609 				ext4_ext_mark_uninitialized(ex);
2610 				ext4_ext_dirty(handle, inode, path + depth);
2611 				return err;
2612 			}
2613 
2614 			/* zeroed the second half */
2615 			return allocated;
2616 		}
2617 		ex3 = &newex;
2618 		ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2619 		ext4_ext_store_pblock(ex3, newblock + max_blocks);
2620 		ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2621 		ext4_ext_mark_uninitialized(ex3);
2622 		err = ext4_ext_insert_extent(handle, inode, path, ex3);
2623 		if (err == -ENOSPC) {
2624 			err =  ext4_ext_zeroout(inode, &orig_ex);
2625 			if (err)
2626 				goto fix_extent_len;
2627 			/* update the extent length and mark as initialized */
2628 			ex->ee_block = orig_ex.ee_block;
2629 			ex->ee_len   = orig_ex.ee_len;
2630 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2631 			ext4_ext_dirty(handle, inode, path + depth);
2632 			/* zeroed the full extent */
2633 			/* blocks available from iblock */
2634 			return allocated;
2635 
2636 		} else if (err)
2637 			goto fix_extent_len;
2638 		/*
2639 		 * The depth, and hence eh & ex might change
2640 		 * as part of the insert above.
2641 		 */
2642 		newdepth = ext_depth(inode);
2643 		/*
2644 		 * update the extent length after successful insert of the
2645 		 * split extent
2646 		 */
2647 		orig_ex.ee_len = cpu_to_le16(ee_len -
2648 						ext4_ext_get_actual_len(ex3));
2649 		depth = newdepth;
2650 		ext4_ext_drop_refs(path);
2651 		path = ext4_ext_find_extent(inode, iblock, path);
2652 		if (IS_ERR(path)) {
2653 			err = PTR_ERR(path);
2654 			goto out;
2655 		}
2656 		eh = path[depth].p_hdr;
2657 		ex = path[depth].p_ext;
2658 		if (ex2 != &newex)
2659 			ex2 = ex;
2660 
2661 		err = ext4_ext_get_access(handle, inode, path + depth);
2662 		if (err)
2663 			goto out;
2664 
2665 		allocated = max_blocks;
2666 
2667 		/* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2668 		 * to insert a extent in the middle zerout directly
2669 		 * otherwise give the extent a chance to merge to left
2670 		 */
2671 		if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2672 							iblock != ee_block) {
2673 			err =  ext4_ext_zeroout(inode, &orig_ex);
2674 			if (err)
2675 				goto fix_extent_len;
2676 			/* update the extent length and mark as initialized */
2677 			ex->ee_block = orig_ex.ee_block;
2678 			ex->ee_len   = orig_ex.ee_len;
2679 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2680 			ext4_ext_dirty(handle, inode, path + depth);
2681 			/* zero out the first half */
2682 			/* blocks available from iblock */
2683 			return allocated;
2684 		}
2685 	}
2686 	/*
2687 	 * If there was a change of depth as part of the
2688 	 * insertion of ex3 above, we need to update the length
2689 	 * of the ex1 extent again here
2690 	 */
2691 	if (ex1 && ex1 != ex) {
2692 		ex1 = ex;
2693 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2694 		ext4_ext_mark_uninitialized(ex1);
2695 		ex2 = &newex;
2696 	}
2697 	/* ex2: iblock to iblock + maxblocks-1 : initialised */
2698 	ex2->ee_block = cpu_to_le32(iblock);
2699 	ext4_ext_store_pblock(ex2, newblock);
2700 	ex2->ee_len = cpu_to_le16(allocated);
2701 	if (ex2 != ex)
2702 		goto insert;
2703 	/*
2704 	 * New (initialized) extent starts from the first block
2705 	 * in the current extent. i.e., ex2 == ex
2706 	 * We have to see if it can be merged with the extent
2707 	 * on the left.
2708 	 */
2709 	if (ex2 > EXT_FIRST_EXTENT(eh)) {
2710 		/*
2711 		 * To merge left, pass "ex2 - 1" to try_to_merge(),
2712 		 * since it merges towards right _only_.
2713 		 */
2714 		ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2715 		if (ret) {
2716 			err = ext4_ext_correct_indexes(handle, inode, path);
2717 			if (err)
2718 				goto out;
2719 			depth = ext_depth(inode);
2720 			ex2--;
2721 		}
2722 	}
2723 	/*
2724 	 * Try to Merge towards right. This might be required
2725 	 * only when the whole extent is being written to.
2726 	 * i.e. ex2 == ex and ex3 == NULL.
2727 	 */
2728 	if (!ex3) {
2729 		ret = ext4_ext_try_to_merge(inode, path, ex2);
2730 		if (ret) {
2731 			err = ext4_ext_correct_indexes(handle, inode, path);
2732 			if (err)
2733 				goto out;
2734 		}
2735 	}
2736 	/* Mark modified extent as dirty */
2737 	err = ext4_ext_dirty(handle, inode, path + depth);
2738 	goto out;
2739 insert:
2740 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2741 	if (err == -ENOSPC) {
2742 		err =  ext4_ext_zeroout(inode, &orig_ex);
2743 		if (err)
2744 			goto fix_extent_len;
2745 		/* update the extent length and mark as initialized */
2746 		ex->ee_block = orig_ex.ee_block;
2747 		ex->ee_len   = orig_ex.ee_len;
2748 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2749 		ext4_ext_dirty(handle, inode, path + depth);
2750 		/* zero out the first half */
2751 		return allocated;
2752 	} else if (err)
2753 		goto fix_extent_len;
2754 out:
2755 	return err ? err : allocated;
2756 
2757 fix_extent_len:
2758 	ex->ee_block = orig_ex.ee_block;
2759 	ex->ee_len   = orig_ex.ee_len;
2760 	ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2761 	ext4_ext_mark_uninitialized(ex);
2762 	ext4_ext_dirty(handle, inode, path + depth);
2763 	return err;
2764 }
2765 
2766 /*
2767  * Block allocation/map/preallocation routine for extents based files
2768  *
2769  *
2770  * Need to be called with
2771  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
2772  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
2773  *
2774  * return > 0, number of of blocks already mapped/allocated
2775  *          if create == 0 and these are pre-allocated blocks
2776  *          	buffer head is unmapped
2777  *          otherwise blocks are mapped
2778  *
2779  * return = 0, if plain look up failed (blocks have not been allocated)
2780  *          buffer head is unmapped
2781  *
2782  * return < 0, error case.
2783  */
2784 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
2785 			ext4_lblk_t iblock,
2786 			unsigned int max_blocks, struct buffer_head *bh_result,
2787 			int create, int extend_disksize)
2788 {
2789 	struct ext4_ext_path *path = NULL;
2790 	struct ext4_extent_header *eh;
2791 	struct ext4_extent newex, *ex;
2792 	ext4_fsblk_t newblock;
2793 	int err = 0, depth, ret, cache_type;
2794 	unsigned int allocated = 0;
2795 	struct ext4_allocation_request ar;
2796 	loff_t disksize;
2797 
2798 	__clear_bit(BH_New, &bh_result->b_state);
2799 	ext_debug("blocks %u/%u requested for inode %u\n",
2800 			iblock, max_blocks, inode->i_ino);
2801 
2802 	/* check in cache */
2803 	cache_type = ext4_ext_in_cache(inode, iblock, &newex);
2804 	if (cache_type) {
2805 		if (cache_type == EXT4_EXT_CACHE_GAP) {
2806 			if (!create) {
2807 				/*
2808 				 * block isn't allocated yet and
2809 				 * user doesn't want to allocate it
2810 				 */
2811 				goto out2;
2812 			}
2813 			/* we should allocate requested block */
2814 		} else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
2815 			/* block is already allocated */
2816 			newblock = iblock
2817 				   - le32_to_cpu(newex.ee_block)
2818 				   + ext_pblock(&newex);
2819 			/* number of remaining blocks in the extent */
2820 			allocated = ext4_ext_get_actual_len(&newex) -
2821 					(iblock - le32_to_cpu(newex.ee_block));
2822 			goto out;
2823 		} else {
2824 			BUG();
2825 		}
2826 	}
2827 
2828 	/* find extent for this block */
2829 	path = ext4_ext_find_extent(inode, iblock, NULL);
2830 	if (IS_ERR(path)) {
2831 		err = PTR_ERR(path);
2832 		path = NULL;
2833 		goto out2;
2834 	}
2835 
2836 	depth = ext_depth(inode);
2837 
2838 	/*
2839 	 * consistent leaf must not be empty;
2840 	 * this situation is possible, though, _during_ tree modification;
2841 	 * this is why assert can't be put in ext4_ext_find_extent()
2842 	 */
2843 	BUG_ON(path[depth].p_ext == NULL && depth != 0);
2844 	eh = path[depth].p_hdr;
2845 
2846 	ex = path[depth].p_ext;
2847 	if (ex) {
2848 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
2849 		ext4_fsblk_t ee_start = ext_pblock(ex);
2850 		unsigned short ee_len;
2851 
2852 		/*
2853 		 * Uninitialized extents are treated as holes, except that
2854 		 * we split out initialized portions during a write.
2855 		 */
2856 		ee_len = ext4_ext_get_actual_len(ex);
2857 		/* if found extent covers block, simply return it */
2858 		if (iblock >= ee_block && iblock < ee_block + ee_len) {
2859 			newblock = iblock - ee_block + ee_start;
2860 			/* number of remaining blocks in the extent */
2861 			allocated = ee_len - (iblock - ee_block);
2862 			ext_debug("%u fit into %lu:%d -> %llu\n", iblock,
2863 					ee_block, ee_len, newblock);
2864 
2865 			/* Do not put uninitialized extent in the cache */
2866 			if (!ext4_ext_is_uninitialized(ex)) {
2867 				ext4_ext_put_in_cache(inode, ee_block,
2868 							ee_len, ee_start,
2869 							EXT4_EXT_CACHE_EXTENT);
2870 				goto out;
2871 			}
2872 			if (create == EXT4_CREATE_UNINITIALIZED_EXT)
2873 				goto out;
2874 			if (!create) {
2875 				/*
2876 				 * We have blocks reserved already.  We
2877 				 * return allocated blocks so that delalloc
2878 				 * won't do block reservation for us.  But
2879 				 * the buffer head will be unmapped so that
2880 				 * a read from the block returns 0s.
2881 				 */
2882 				if (allocated > max_blocks)
2883 					allocated = max_blocks;
2884 				set_buffer_unwritten(bh_result);
2885 				bh_result->b_bdev = inode->i_sb->s_bdev;
2886 				bh_result->b_blocknr = newblock;
2887 				goto out2;
2888 			}
2889 
2890 			ret = ext4_ext_convert_to_initialized(handle, inode,
2891 								path, iblock,
2892 								max_blocks);
2893 			if (ret <= 0) {
2894 				err = ret;
2895 				goto out2;
2896 			} else
2897 				allocated = ret;
2898 			goto outnew;
2899 		}
2900 	}
2901 
2902 	/*
2903 	 * requested block isn't allocated yet;
2904 	 * we couldn't try to create block if create flag is zero
2905 	 */
2906 	if (!create) {
2907 		/*
2908 		 * put just found gap into cache to speed up
2909 		 * subsequent requests
2910 		 */
2911 		ext4_ext_put_gap_in_cache(inode, path, iblock);
2912 		goto out2;
2913 	}
2914 	/*
2915 	 * Okay, we need to do block allocation.
2916 	 */
2917 
2918 	/* find neighbour allocated blocks */
2919 	ar.lleft = iblock;
2920 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
2921 	if (err)
2922 		goto out2;
2923 	ar.lright = iblock;
2924 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
2925 	if (err)
2926 		goto out2;
2927 
2928 	/*
2929 	 * See if request is beyond maximum number of blocks we can have in
2930 	 * a single extent. For an initialized extent this limit is
2931 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2932 	 * EXT_UNINIT_MAX_LEN.
2933 	 */
2934 	if (max_blocks > EXT_INIT_MAX_LEN &&
2935 	    create != EXT4_CREATE_UNINITIALIZED_EXT)
2936 		max_blocks = EXT_INIT_MAX_LEN;
2937 	else if (max_blocks > EXT_UNINIT_MAX_LEN &&
2938 		 create == EXT4_CREATE_UNINITIALIZED_EXT)
2939 		max_blocks = EXT_UNINIT_MAX_LEN;
2940 
2941 	/* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2942 	newex.ee_block = cpu_to_le32(iblock);
2943 	newex.ee_len = cpu_to_le16(max_blocks);
2944 	err = ext4_ext_check_overlap(inode, &newex, path);
2945 	if (err)
2946 		allocated = ext4_ext_get_actual_len(&newex);
2947 	else
2948 		allocated = max_blocks;
2949 
2950 	/* allocate new block */
2951 	ar.inode = inode;
2952 	ar.goal = ext4_ext_find_goal(inode, path, iblock);
2953 	ar.logical = iblock;
2954 	ar.len = allocated;
2955 	if (S_ISREG(inode->i_mode))
2956 		ar.flags = EXT4_MB_HINT_DATA;
2957 	else
2958 		/* disable in-core preallocation for non-regular files */
2959 		ar.flags = 0;
2960 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
2961 	if (!newblock)
2962 		goto out2;
2963 	ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2964 		  ar.goal, newblock, allocated);
2965 
2966 	/* try to insert new extent into found leaf and return */
2967 	ext4_ext_store_pblock(&newex, newblock);
2968 	newex.ee_len = cpu_to_le16(ar.len);
2969 	if (create == EXT4_CREATE_UNINITIALIZED_EXT)  /* Mark uninitialized */
2970 		ext4_ext_mark_uninitialized(&newex);
2971 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2972 	if (err) {
2973 		/* free data blocks we just allocated */
2974 		/* not a good idea to call discard here directly,
2975 		 * but otherwise we'd need to call it every free() */
2976 		ext4_discard_preallocations(inode);
2977 		ext4_free_blocks(handle, inode, ext_pblock(&newex),
2978 					ext4_ext_get_actual_len(&newex), 0);
2979 		goto out2;
2980 	}
2981 
2982 	/* previous routine could use block we allocated */
2983 	newblock = ext_pblock(&newex);
2984 	allocated = ext4_ext_get_actual_len(&newex);
2985 outnew:
2986 	if (extend_disksize) {
2987 		disksize = ((loff_t) iblock + ar.len) << inode->i_blkbits;
2988 		if (disksize > i_size_read(inode))
2989 			disksize = i_size_read(inode);
2990 		if (disksize > EXT4_I(inode)->i_disksize)
2991 			EXT4_I(inode)->i_disksize = disksize;
2992 	}
2993 
2994 	set_buffer_new(bh_result);
2995 
2996 	/* Cache only when it is _not_ an uninitialized extent */
2997 	if (create != EXT4_CREATE_UNINITIALIZED_EXT)
2998 		ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2999 						EXT4_EXT_CACHE_EXTENT);
3000 out:
3001 	if (allocated > max_blocks)
3002 		allocated = max_blocks;
3003 	ext4_ext_show_leaf(inode, path);
3004 	set_buffer_mapped(bh_result);
3005 	bh_result->b_bdev = inode->i_sb->s_bdev;
3006 	bh_result->b_blocknr = newblock;
3007 out2:
3008 	if (path) {
3009 		ext4_ext_drop_refs(path);
3010 		kfree(path);
3011 	}
3012 	return err ? err : allocated;
3013 }
3014 
3015 void ext4_ext_truncate(struct inode *inode)
3016 {
3017 	struct address_space *mapping = inode->i_mapping;
3018 	struct super_block *sb = inode->i_sb;
3019 	ext4_lblk_t last_block;
3020 	handle_t *handle;
3021 	int err = 0;
3022 
3023 	/*
3024 	 * probably first extent we're gonna free will be last in block
3025 	 */
3026 	err = ext4_writepage_trans_blocks(inode);
3027 	handle = ext4_journal_start(inode, err);
3028 	if (IS_ERR(handle))
3029 		return;
3030 
3031 	if (inode->i_size & (sb->s_blocksize - 1))
3032 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3033 
3034 	if (ext4_orphan_add(handle, inode))
3035 		goto out_stop;
3036 
3037 	down_write(&EXT4_I(inode)->i_data_sem);
3038 	ext4_ext_invalidate_cache(inode);
3039 
3040 	ext4_discard_preallocations(inode);
3041 
3042 	/*
3043 	 * TODO: optimization is possible here.
3044 	 * Probably we need not scan at all,
3045 	 * because page truncation is enough.
3046 	 */
3047 
3048 	/* we have to know where to truncate from in crash case */
3049 	EXT4_I(inode)->i_disksize = inode->i_size;
3050 	ext4_mark_inode_dirty(handle, inode);
3051 
3052 	last_block = (inode->i_size + sb->s_blocksize - 1)
3053 			>> EXT4_BLOCK_SIZE_BITS(sb);
3054 	err = ext4_ext_remove_space(inode, last_block);
3055 
3056 	/* In a multi-transaction truncate, we only make the final
3057 	 * transaction synchronous.
3058 	 */
3059 	if (IS_SYNC(inode))
3060 		ext4_handle_sync(handle);
3061 
3062 out_stop:
3063 	up_write(&EXT4_I(inode)->i_data_sem);
3064 	/*
3065 	 * If this was a simple ftruncate() and the file will remain alive,
3066 	 * then we need to clear up the orphan record which we created above.
3067 	 * However, if this was a real unlink then we were called by
3068 	 * ext4_delete_inode(), and we allow that function to clean up the
3069 	 * orphan info for us.
3070 	 */
3071 	if (inode->i_nlink)
3072 		ext4_orphan_del(handle, inode);
3073 
3074 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3075 	ext4_mark_inode_dirty(handle, inode);
3076 	ext4_journal_stop(handle);
3077 }
3078 
3079 static void ext4_falloc_update_inode(struct inode *inode,
3080 				int mode, loff_t new_size, int update_ctime)
3081 {
3082 	struct timespec now;
3083 
3084 	if (update_ctime) {
3085 		now = current_fs_time(inode->i_sb);
3086 		if (!timespec_equal(&inode->i_ctime, &now))
3087 			inode->i_ctime = now;
3088 	}
3089 	/*
3090 	 * Update only when preallocation was requested beyond
3091 	 * the file size.
3092 	 */
3093 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3094 		if (new_size > i_size_read(inode))
3095 			i_size_write(inode, new_size);
3096 		if (new_size > EXT4_I(inode)->i_disksize)
3097 			ext4_update_i_disksize(inode, new_size);
3098 	}
3099 
3100 }
3101 
3102 /*
3103  * preallocate space for a file. This implements ext4's fallocate inode
3104  * operation, which gets called from sys_fallocate system call.
3105  * For block-mapped files, posix_fallocate should fall back to the method
3106  * of writing zeroes to the required new blocks (the same behavior which is
3107  * expected for file systems which do not support fallocate() system call).
3108  */
3109 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3110 {
3111 	handle_t *handle;
3112 	ext4_lblk_t block;
3113 	loff_t new_size;
3114 	unsigned int max_blocks;
3115 	int ret = 0;
3116 	int ret2 = 0;
3117 	int retries = 0;
3118 	struct buffer_head map_bh;
3119 	unsigned int credits, blkbits = inode->i_blkbits;
3120 
3121 	/*
3122 	 * currently supporting (pre)allocate mode for extent-based
3123 	 * files _only_
3124 	 */
3125 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3126 		return -EOPNOTSUPP;
3127 
3128 	/* preallocation to directories is currently not supported */
3129 	if (S_ISDIR(inode->i_mode))
3130 		return -ENODEV;
3131 
3132 	block = offset >> blkbits;
3133 	/*
3134 	 * We can't just convert len to max_blocks because
3135 	 * If blocksize = 4096 offset = 3072 and len = 2048
3136 	 */
3137 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3138 							- block;
3139 	/*
3140 	 * credits to insert 1 extent into extent tree
3141 	 */
3142 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3143 	mutex_lock(&inode->i_mutex);
3144 retry:
3145 	while (ret >= 0 && ret < max_blocks) {
3146 		block = block + ret;
3147 		max_blocks = max_blocks - ret;
3148 		handle = ext4_journal_start(inode, credits);
3149 		if (IS_ERR(handle)) {
3150 			ret = PTR_ERR(handle);
3151 			break;
3152 		}
3153 		ret = ext4_get_blocks_wrap(handle, inode, block,
3154 					  max_blocks, &map_bh,
3155 					  EXT4_CREATE_UNINITIALIZED_EXT, 0, 0);
3156 		if (ret <= 0) {
3157 #ifdef EXT4FS_DEBUG
3158 			WARN_ON(ret <= 0);
3159 			printk(KERN_ERR "%s: ext4_ext_get_blocks "
3160 				    "returned error inode#%lu, block=%u, "
3161 				    "max_blocks=%u", __func__,
3162 				    inode->i_ino, block, max_blocks);
3163 #endif
3164 			ext4_mark_inode_dirty(handle, inode);
3165 			ret2 = ext4_journal_stop(handle);
3166 			break;
3167 		}
3168 		if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3169 						blkbits) >> blkbits))
3170 			new_size = offset + len;
3171 		else
3172 			new_size = (block + ret) << blkbits;
3173 
3174 		ext4_falloc_update_inode(inode, mode, new_size,
3175 						buffer_new(&map_bh));
3176 		ext4_mark_inode_dirty(handle, inode);
3177 		ret2 = ext4_journal_stop(handle);
3178 		if (ret2)
3179 			break;
3180 	}
3181 	if (ret == -ENOSPC &&
3182 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3183 		ret = 0;
3184 		goto retry;
3185 	}
3186 	mutex_unlock(&inode->i_mutex);
3187 	return ret > 0 ? ret2 : ret;
3188 }
3189 
3190 /*
3191  * Callback function called for each extent to gather FIEMAP information.
3192  */
3193 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3194 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3195 		       void *data)
3196 {
3197 	struct fiemap_extent_info *fieinfo = data;
3198 	unsigned long blksize_bits = inode->i_sb->s_blocksize_bits;
3199 	__u64	logical;
3200 	__u64	physical;
3201 	__u64	length;
3202 	__u32	flags = 0;
3203 	int	error;
3204 
3205 	logical =  (__u64)newex->ec_block << blksize_bits;
3206 
3207 	if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3208 		pgoff_t offset;
3209 		struct page *page;
3210 		struct buffer_head *bh = NULL;
3211 
3212 		offset = logical >> PAGE_SHIFT;
3213 		page = find_get_page(inode->i_mapping, offset);
3214 		if (!page || !page_has_buffers(page))
3215 			return EXT_CONTINUE;
3216 
3217 		bh = page_buffers(page);
3218 
3219 		if (!bh)
3220 			return EXT_CONTINUE;
3221 
3222 		if (buffer_delay(bh)) {
3223 			flags |= FIEMAP_EXTENT_DELALLOC;
3224 			page_cache_release(page);
3225 		} else {
3226 			page_cache_release(page);
3227 			return EXT_CONTINUE;
3228 		}
3229 	}
3230 
3231 	physical = (__u64)newex->ec_start << blksize_bits;
3232 	length =   (__u64)newex->ec_len << blksize_bits;
3233 
3234 	if (ex && ext4_ext_is_uninitialized(ex))
3235 		flags |= FIEMAP_EXTENT_UNWRITTEN;
3236 
3237 	/*
3238 	 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3239 	 *
3240 	 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3241 	 * this also indicates no more allocated blocks.
3242 	 *
3243 	 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3244 	 */
3245 	if (logical + length - 1 == EXT_MAX_BLOCK ||
3246 	    ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK)
3247 		flags |= FIEMAP_EXTENT_LAST;
3248 
3249 	error = fiemap_fill_next_extent(fieinfo, logical, physical,
3250 					length, flags);
3251 	if (error < 0)
3252 		return error;
3253 	if (error == 1)
3254 		return EXT_BREAK;
3255 
3256 	return EXT_CONTINUE;
3257 }
3258 
3259 /* fiemap flags we can handle specified here */
3260 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3261 
3262 static int ext4_xattr_fiemap(struct inode *inode,
3263 				struct fiemap_extent_info *fieinfo)
3264 {
3265 	__u64 physical = 0;
3266 	__u64 length;
3267 	__u32 flags = FIEMAP_EXTENT_LAST;
3268 	int blockbits = inode->i_sb->s_blocksize_bits;
3269 	int error = 0;
3270 
3271 	/* in-inode? */
3272 	if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) {
3273 		struct ext4_iloc iloc;
3274 		int offset;	/* offset of xattr in inode */
3275 
3276 		error = ext4_get_inode_loc(inode, &iloc);
3277 		if (error)
3278 			return error;
3279 		physical = iloc.bh->b_blocknr << blockbits;
3280 		offset = EXT4_GOOD_OLD_INODE_SIZE +
3281 				EXT4_I(inode)->i_extra_isize;
3282 		physical += offset;
3283 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3284 		flags |= FIEMAP_EXTENT_DATA_INLINE;
3285 	} else { /* external block */
3286 		physical = EXT4_I(inode)->i_file_acl << blockbits;
3287 		length = inode->i_sb->s_blocksize;
3288 	}
3289 
3290 	if (physical)
3291 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
3292 						length, flags);
3293 	return (error < 0 ? error : 0);
3294 }
3295 
3296 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3297 		__u64 start, __u64 len)
3298 {
3299 	ext4_lblk_t start_blk;
3300 	ext4_lblk_t len_blks;
3301 	int error = 0;
3302 
3303 	/* fallback to generic here if not in extents fmt */
3304 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3305 		return generic_block_fiemap(inode, fieinfo, start, len,
3306 			ext4_get_block);
3307 
3308 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3309 		return -EBADR;
3310 
3311 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3312 		error = ext4_xattr_fiemap(inode, fieinfo);
3313 	} else {
3314 		start_blk = start >> inode->i_sb->s_blocksize_bits;
3315 		len_blks = len >> inode->i_sb->s_blocksize_bits;
3316 
3317 		/*
3318 		 * Walk the extent tree gathering extent information.
3319 		 * ext4_ext_fiemap_cb will push extents back to user.
3320 		 */
3321 		down_write(&EXT4_I(inode)->i_data_sem);
3322 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
3323 					  ext4_ext_fiemap_cb, fieinfo);
3324 		up_write(&EXT4_I(inode)->i_data_sem);
3325 	}
3326 
3327 	return error;
3328 }
3329 
3330