xref: /openbmc/linux/fs/ext4/extents.c (revision 7caf62de)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46 
47 #include <trace/events/ext4.h>
48 
49 /*
50  * used by extent splitting.
51  */
52 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
53 					due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
56 
57 #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
59 
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 				     struct ext4_extent_header *eh)
62 {
63 	struct ext4_inode_info *ei = EXT4_I(inode);
64 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 	__u32 csum;
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 			   EXT4_EXTENT_TAIL_OFFSET(eh));
69 	return cpu_to_le32(csum);
70 }
71 
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 					 struct ext4_extent_header *eh)
74 {
75 	struct ext4_extent_tail *et;
76 
77 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 		return 1;
80 
81 	et = find_ext4_extent_tail(eh);
82 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 		return 0;
84 	return 1;
85 }
86 
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 				       struct ext4_extent_header *eh)
89 {
90 	struct ext4_extent_tail *et;
91 
92 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 		return;
95 
96 	et = find_ext4_extent_tail(eh);
97 	et->et_checksum = ext4_extent_block_csum(inode, eh);
98 }
99 
100 static int ext4_split_extent(handle_t *handle,
101 				struct inode *inode,
102 				struct ext4_ext_path *path,
103 				struct ext4_map_blocks *map,
104 				int split_flag,
105 				int flags);
106 
107 static int ext4_split_extent_at(handle_t *handle,
108 			     struct inode *inode,
109 			     struct ext4_ext_path *path,
110 			     ext4_lblk_t split,
111 			     int split_flag,
112 			     int flags);
113 
114 static int ext4_find_delayed_extent(struct inode *inode,
115 				    struct extent_status *newes);
116 
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 					    struct inode *inode,
119 					    int needed)
120 {
121 	int err;
122 
123 	if (!ext4_handle_valid(handle))
124 		return 0;
125 	if (handle->h_buffer_credits > needed)
126 		return 0;
127 	err = ext4_journal_extend(handle, needed);
128 	if (err <= 0)
129 		return err;
130 	err = ext4_truncate_restart_trans(handle, inode, needed);
131 	if (err == 0)
132 		err = -EAGAIN;
133 
134 	return err;
135 }
136 
137 /*
138  * could return:
139  *  - EROFS
140  *  - ENOMEM
141  */
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 				struct ext4_ext_path *path)
144 {
145 	if (path->p_bh) {
146 		/* path points to block */
147 		return ext4_journal_get_write_access(handle, path->p_bh);
148 	}
149 	/* path points to leaf/index in inode body */
150 	/* we use in-core data, no need to protect them */
151 	return 0;
152 }
153 
154 /*
155  * could return:
156  *  - EROFS
157  *  - ENOMEM
158  *  - EIO
159  */
160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161 		     struct inode *inode, struct ext4_ext_path *path)
162 {
163 	int err;
164 	if (path->p_bh) {
165 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166 		/* path points to block */
167 		err = __ext4_handle_dirty_metadata(where, line, handle,
168 						   inode, path->p_bh);
169 	} else {
170 		/* path points to leaf/index in inode body */
171 		err = ext4_mark_inode_dirty(handle, inode);
172 	}
173 	return err;
174 }
175 
176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177 			      struct ext4_ext_path *path,
178 			      ext4_lblk_t block)
179 {
180 	if (path) {
181 		int depth = path->p_depth;
182 		struct ext4_extent *ex;
183 
184 		/*
185 		 * Try to predict block placement assuming that we are
186 		 * filling in a file which will eventually be
187 		 * non-sparse --- i.e., in the case of libbfd writing
188 		 * an ELF object sections out-of-order but in a way
189 		 * the eventually results in a contiguous object or
190 		 * executable file, or some database extending a table
191 		 * space file.  However, this is actually somewhat
192 		 * non-ideal if we are writing a sparse file such as
193 		 * qemu or KVM writing a raw image file that is going
194 		 * to stay fairly sparse, since it will end up
195 		 * fragmenting the file system's free space.  Maybe we
196 		 * should have some hueristics or some way to allow
197 		 * userspace to pass a hint to file system,
198 		 * especially if the latter case turns out to be
199 		 * common.
200 		 */
201 		ex = path[depth].p_ext;
202 		if (ex) {
203 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
205 
206 			if (block > ext_block)
207 				return ext_pblk + (block - ext_block);
208 			else
209 				return ext_pblk - (ext_block - block);
210 		}
211 
212 		/* it looks like index is empty;
213 		 * try to find starting block from index itself */
214 		if (path[depth].p_bh)
215 			return path[depth].p_bh->b_blocknr;
216 	}
217 
218 	/* OK. use inode's group */
219 	return ext4_inode_to_goal_block(inode);
220 }
221 
222 /*
223  * Allocation for a meta data block
224  */
225 static ext4_fsblk_t
226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227 			struct ext4_ext_path *path,
228 			struct ext4_extent *ex, int *err, unsigned int flags)
229 {
230 	ext4_fsblk_t goal, newblock;
231 
232 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234 					NULL, err);
235 	return newblock;
236 }
237 
238 static inline int ext4_ext_space_block(struct inode *inode, int check)
239 {
240 	int size;
241 
242 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243 			/ sizeof(struct ext4_extent);
244 #ifdef AGGRESSIVE_TEST
245 	if (!check && size > 6)
246 		size = 6;
247 #endif
248 	return size;
249 }
250 
251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
252 {
253 	int size;
254 
255 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256 			/ sizeof(struct ext4_extent_idx);
257 #ifdef AGGRESSIVE_TEST
258 	if (!check && size > 5)
259 		size = 5;
260 #endif
261 	return size;
262 }
263 
264 static inline int ext4_ext_space_root(struct inode *inode, int check)
265 {
266 	int size;
267 
268 	size = sizeof(EXT4_I(inode)->i_data);
269 	size -= sizeof(struct ext4_extent_header);
270 	size /= sizeof(struct ext4_extent);
271 #ifdef AGGRESSIVE_TEST
272 	if (!check && size > 3)
273 		size = 3;
274 #endif
275 	return size;
276 }
277 
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279 {
280 	int size;
281 
282 	size = sizeof(EXT4_I(inode)->i_data);
283 	size -= sizeof(struct ext4_extent_header);
284 	size /= sizeof(struct ext4_extent_idx);
285 #ifdef AGGRESSIVE_TEST
286 	if (!check && size > 4)
287 		size = 4;
288 #endif
289 	return size;
290 }
291 
292 /*
293  * Calculate the number of metadata blocks needed
294  * to allocate @blocks
295  * Worse case is one block per extent
296  */
297 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
298 {
299 	struct ext4_inode_info *ei = EXT4_I(inode);
300 	int idxs;
301 
302 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
303 		/ sizeof(struct ext4_extent_idx));
304 
305 	/*
306 	 * If the new delayed allocation block is contiguous with the
307 	 * previous da block, it can share index blocks with the
308 	 * previous block, so we only need to allocate a new index
309 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
310 	 * an additional index block, and at ldxs**3 blocks, yet
311 	 * another index blocks.
312 	 */
313 	if (ei->i_da_metadata_calc_len &&
314 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
315 		int num = 0;
316 
317 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
318 			num++;
319 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
320 			num++;
321 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
322 			num++;
323 			ei->i_da_metadata_calc_len = 0;
324 		} else
325 			ei->i_da_metadata_calc_len++;
326 		ei->i_da_metadata_calc_last_lblock++;
327 		return num;
328 	}
329 
330 	/*
331 	 * In the worst case we need a new set of index blocks at
332 	 * every level of the inode's extent tree.
333 	 */
334 	ei->i_da_metadata_calc_len = 1;
335 	ei->i_da_metadata_calc_last_lblock = lblock;
336 	return ext_depth(inode) + 1;
337 }
338 
339 static int
340 ext4_ext_max_entries(struct inode *inode, int depth)
341 {
342 	int max;
343 
344 	if (depth == ext_depth(inode)) {
345 		if (depth == 0)
346 			max = ext4_ext_space_root(inode, 1);
347 		else
348 			max = ext4_ext_space_root_idx(inode, 1);
349 	} else {
350 		if (depth == 0)
351 			max = ext4_ext_space_block(inode, 1);
352 		else
353 			max = ext4_ext_space_block_idx(inode, 1);
354 	}
355 
356 	return max;
357 }
358 
359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
360 {
361 	ext4_fsblk_t block = ext4_ext_pblock(ext);
362 	int len = ext4_ext_get_actual_len(ext);
363 	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
364 	ext4_lblk_t last = lblock + len - 1;
365 
366 	if (lblock > last)
367 		return 0;
368 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
369 }
370 
371 static int ext4_valid_extent_idx(struct inode *inode,
372 				struct ext4_extent_idx *ext_idx)
373 {
374 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
375 
376 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
377 }
378 
379 static int ext4_valid_extent_entries(struct inode *inode,
380 				struct ext4_extent_header *eh,
381 				int depth)
382 {
383 	unsigned short entries;
384 	if (eh->eh_entries == 0)
385 		return 1;
386 
387 	entries = le16_to_cpu(eh->eh_entries);
388 
389 	if (depth == 0) {
390 		/* leaf entries */
391 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
392 		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
393 		ext4_fsblk_t pblock = 0;
394 		ext4_lblk_t lblock = 0;
395 		ext4_lblk_t prev = 0;
396 		int len = 0;
397 		while (entries) {
398 			if (!ext4_valid_extent(inode, ext))
399 				return 0;
400 
401 			/* Check for overlapping extents */
402 			lblock = le32_to_cpu(ext->ee_block);
403 			len = ext4_ext_get_actual_len(ext);
404 			if ((lblock <= prev) && prev) {
405 				pblock = ext4_ext_pblock(ext);
406 				es->s_last_error_block = cpu_to_le64(pblock);
407 				return 0;
408 			}
409 			ext++;
410 			entries--;
411 			prev = lblock + len - 1;
412 		}
413 	} else {
414 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
415 		while (entries) {
416 			if (!ext4_valid_extent_idx(inode, ext_idx))
417 				return 0;
418 			ext_idx++;
419 			entries--;
420 		}
421 	}
422 	return 1;
423 }
424 
425 static int __ext4_ext_check(const char *function, unsigned int line,
426 			    struct inode *inode, struct ext4_extent_header *eh,
427 			    int depth, ext4_fsblk_t pblk)
428 {
429 	const char *error_msg;
430 	int max = 0;
431 
432 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
433 		error_msg = "invalid magic";
434 		goto corrupted;
435 	}
436 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
437 		error_msg = "unexpected eh_depth";
438 		goto corrupted;
439 	}
440 	if (unlikely(eh->eh_max == 0)) {
441 		error_msg = "invalid eh_max";
442 		goto corrupted;
443 	}
444 	max = ext4_ext_max_entries(inode, depth);
445 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
446 		error_msg = "too large eh_max";
447 		goto corrupted;
448 	}
449 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
450 		error_msg = "invalid eh_entries";
451 		goto corrupted;
452 	}
453 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
454 		error_msg = "invalid extent entries";
455 		goto corrupted;
456 	}
457 	/* Verify checksum on non-root extent tree nodes */
458 	if (ext_depth(inode) != depth &&
459 	    !ext4_extent_block_csum_verify(inode, eh)) {
460 		error_msg = "extent tree corrupted";
461 		goto corrupted;
462 	}
463 	return 0;
464 
465 corrupted:
466 	ext4_error_inode(inode, function, line, 0,
467 			 "pblk %llu bad header/extent: %s - magic %x, "
468 			 "entries %u, max %u(%u), depth %u(%u)",
469 			 (unsigned long long) pblk, error_msg,
470 			 le16_to_cpu(eh->eh_magic),
471 			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
472 			 max, le16_to_cpu(eh->eh_depth), depth);
473 	return -EIO;
474 }
475 
476 #define ext4_ext_check(inode, eh, depth, pblk)			\
477 	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
478 
479 int ext4_ext_check_inode(struct inode *inode)
480 {
481 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
482 }
483 
484 static struct buffer_head *
485 __read_extent_tree_block(const char *function, unsigned int line,
486 			 struct inode *inode, ext4_fsblk_t pblk, int depth,
487 			 int flags)
488 {
489 	struct buffer_head		*bh;
490 	int				err;
491 
492 	bh = sb_getblk(inode->i_sb, pblk);
493 	if (unlikely(!bh))
494 		return ERR_PTR(-ENOMEM);
495 
496 	if (!bh_uptodate_or_lock(bh)) {
497 		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
498 		err = bh_submit_read(bh);
499 		if (err < 0)
500 			goto errout;
501 	}
502 	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
503 		return bh;
504 	err = __ext4_ext_check(function, line, inode,
505 			       ext_block_hdr(bh), depth, pblk);
506 	if (err)
507 		goto errout;
508 	set_buffer_verified(bh);
509 	/*
510 	 * If this is a leaf block, cache all of its entries
511 	 */
512 	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
513 		struct ext4_extent_header *eh = ext_block_hdr(bh);
514 		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
515 		ext4_lblk_t prev = 0;
516 		int i;
517 
518 		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
519 			unsigned int status = EXTENT_STATUS_WRITTEN;
520 			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
521 			int len = ext4_ext_get_actual_len(ex);
522 
523 			if (prev && (prev != lblk))
524 				ext4_es_cache_extent(inode, prev,
525 						     lblk - prev, ~0,
526 						     EXTENT_STATUS_HOLE);
527 
528 			if (ext4_ext_is_uninitialized(ex))
529 				status = EXTENT_STATUS_UNWRITTEN;
530 			ext4_es_cache_extent(inode, lblk, len,
531 					     ext4_ext_pblock(ex), status);
532 			prev = lblk + len;
533 		}
534 	}
535 	return bh;
536 errout:
537 	put_bh(bh);
538 	return ERR_PTR(err);
539 
540 }
541 
542 #define read_extent_tree_block(inode, pblk, depth, flags)		\
543 	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
544 				 (depth), (flags))
545 
546 /*
547  * This function is called to cache a file's extent information in the
548  * extent status tree
549  */
550 int ext4_ext_precache(struct inode *inode)
551 {
552 	struct ext4_inode_info *ei = EXT4_I(inode);
553 	struct ext4_ext_path *path = NULL;
554 	struct buffer_head *bh;
555 	int i = 0, depth, ret = 0;
556 
557 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
558 		return 0;	/* not an extent-mapped inode */
559 
560 	down_read(&ei->i_data_sem);
561 	depth = ext_depth(inode);
562 
563 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
564 		       GFP_NOFS);
565 	if (path == NULL) {
566 		up_read(&ei->i_data_sem);
567 		return -ENOMEM;
568 	}
569 
570 	/* Don't cache anything if there are no external extent blocks */
571 	if (depth == 0)
572 		goto out;
573 	path[0].p_hdr = ext_inode_hdr(inode);
574 	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
575 	if (ret)
576 		goto out;
577 	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
578 	while (i >= 0) {
579 		/*
580 		 * If this is a leaf block or we've reached the end of
581 		 * the index block, go up
582 		 */
583 		if ((i == depth) ||
584 		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
585 			brelse(path[i].p_bh);
586 			path[i].p_bh = NULL;
587 			i--;
588 			continue;
589 		}
590 		bh = read_extent_tree_block(inode,
591 					    ext4_idx_pblock(path[i].p_idx++),
592 					    depth - i - 1,
593 					    EXT4_EX_FORCE_CACHE);
594 		if (IS_ERR(bh)) {
595 			ret = PTR_ERR(bh);
596 			break;
597 		}
598 		i++;
599 		path[i].p_bh = bh;
600 		path[i].p_hdr = ext_block_hdr(bh);
601 		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
602 	}
603 	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
604 out:
605 	up_read(&ei->i_data_sem);
606 	ext4_ext_drop_refs(path);
607 	kfree(path);
608 	return ret;
609 }
610 
611 #ifdef EXT_DEBUG
612 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
613 {
614 	int k, l = path->p_depth;
615 
616 	ext_debug("path:");
617 	for (k = 0; k <= l; k++, path++) {
618 		if (path->p_idx) {
619 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
620 			    ext4_idx_pblock(path->p_idx));
621 		} else if (path->p_ext) {
622 			ext_debug("  %d:[%d]%d:%llu ",
623 				  le32_to_cpu(path->p_ext->ee_block),
624 				  ext4_ext_is_uninitialized(path->p_ext),
625 				  ext4_ext_get_actual_len(path->p_ext),
626 				  ext4_ext_pblock(path->p_ext));
627 		} else
628 			ext_debug("  []");
629 	}
630 	ext_debug("\n");
631 }
632 
633 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
634 {
635 	int depth = ext_depth(inode);
636 	struct ext4_extent_header *eh;
637 	struct ext4_extent *ex;
638 	int i;
639 
640 	if (!path)
641 		return;
642 
643 	eh = path[depth].p_hdr;
644 	ex = EXT_FIRST_EXTENT(eh);
645 
646 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
647 
648 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
649 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
650 			  ext4_ext_is_uninitialized(ex),
651 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
652 	}
653 	ext_debug("\n");
654 }
655 
656 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
657 			ext4_fsblk_t newblock, int level)
658 {
659 	int depth = ext_depth(inode);
660 	struct ext4_extent *ex;
661 
662 	if (depth != level) {
663 		struct ext4_extent_idx *idx;
664 		idx = path[level].p_idx;
665 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
666 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
667 					le32_to_cpu(idx->ei_block),
668 					ext4_idx_pblock(idx),
669 					newblock);
670 			idx++;
671 		}
672 
673 		return;
674 	}
675 
676 	ex = path[depth].p_ext;
677 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
678 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
679 				le32_to_cpu(ex->ee_block),
680 				ext4_ext_pblock(ex),
681 				ext4_ext_is_uninitialized(ex),
682 				ext4_ext_get_actual_len(ex),
683 				newblock);
684 		ex++;
685 	}
686 }
687 
688 #else
689 #define ext4_ext_show_path(inode, path)
690 #define ext4_ext_show_leaf(inode, path)
691 #define ext4_ext_show_move(inode, path, newblock, level)
692 #endif
693 
694 void ext4_ext_drop_refs(struct ext4_ext_path *path)
695 {
696 	int depth = path->p_depth;
697 	int i;
698 
699 	for (i = 0; i <= depth; i++, path++)
700 		if (path->p_bh) {
701 			brelse(path->p_bh);
702 			path->p_bh = NULL;
703 		}
704 }
705 
706 /*
707  * ext4_ext_binsearch_idx:
708  * binary search for the closest index of the given block
709  * the header must be checked before calling this
710  */
711 static void
712 ext4_ext_binsearch_idx(struct inode *inode,
713 			struct ext4_ext_path *path, ext4_lblk_t block)
714 {
715 	struct ext4_extent_header *eh = path->p_hdr;
716 	struct ext4_extent_idx *r, *l, *m;
717 
718 
719 	ext_debug("binsearch for %u(idx):  ", block);
720 
721 	l = EXT_FIRST_INDEX(eh) + 1;
722 	r = EXT_LAST_INDEX(eh);
723 	while (l <= r) {
724 		m = l + (r - l) / 2;
725 		if (block < le32_to_cpu(m->ei_block))
726 			r = m - 1;
727 		else
728 			l = m + 1;
729 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
730 				m, le32_to_cpu(m->ei_block),
731 				r, le32_to_cpu(r->ei_block));
732 	}
733 
734 	path->p_idx = l - 1;
735 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
736 		  ext4_idx_pblock(path->p_idx));
737 
738 #ifdef CHECK_BINSEARCH
739 	{
740 		struct ext4_extent_idx *chix, *ix;
741 		int k;
742 
743 		chix = ix = EXT_FIRST_INDEX(eh);
744 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
745 		  if (k != 0 &&
746 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
747 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
748 				       "first=0x%p\n", k,
749 				       ix, EXT_FIRST_INDEX(eh));
750 				printk(KERN_DEBUG "%u <= %u\n",
751 				       le32_to_cpu(ix->ei_block),
752 				       le32_to_cpu(ix[-1].ei_block));
753 			}
754 			BUG_ON(k && le32_to_cpu(ix->ei_block)
755 					   <= le32_to_cpu(ix[-1].ei_block));
756 			if (block < le32_to_cpu(ix->ei_block))
757 				break;
758 			chix = ix;
759 		}
760 		BUG_ON(chix != path->p_idx);
761 	}
762 #endif
763 
764 }
765 
766 /*
767  * ext4_ext_binsearch:
768  * binary search for closest extent of the given block
769  * the header must be checked before calling this
770  */
771 static void
772 ext4_ext_binsearch(struct inode *inode,
773 		struct ext4_ext_path *path, ext4_lblk_t block)
774 {
775 	struct ext4_extent_header *eh = path->p_hdr;
776 	struct ext4_extent *r, *l, *m;
777 
778 	if (eh->eh_entries == 0) {
779 		/*
780 		 * this leaf is empty:
781 		 * we get such a leaf in split/add case
782 		 */
783 		return;
784 	}
785 
786 	ext_debug("binsearch for %u:  ", block);
787 
788 	l = EXT_FIRST_EXTENT(eh) + 1;
789 	r = EXT_LAST_EXTENT(eh);
790 
791 	while (l <= r) {
792 		m = l + (r - l) / 2;
793 		if (block < le32_to_cpu(m->ee_block))
794 			r = m - 1;
795 		else
796 			l = m + 1;
797 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
798 				m, le32_to_cpu(m->ee_block),
799 				r, le32_to_cpu(r->ee_block));
800 	}
801 
802 	path->p_ext = l - 1;
803 	ext_debug("  -> %d:%llu:[%d]%d ",
804 			le32_to_cpu(path->p_ext->ee_block),
805 			ext4_ext_pblock(path->p_ext),
806 			ext4_ext_is_uninitialized(path->p_ext),
807 			ext4_ext_get_actual_len(path->p_ext));
808 
809 #ifdef CHECK_BINSEARCH
810 	{
811 		struct ext4_extent *chex, *ex;
812 		int k;
813 
814 		chex = ex = EXT_FIRST_EXTENT(eh);
815 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
816 			BUG_ON(k && le32_to_cpu(ex->ee_block)
817 					  <= le32_to_cpu(ex[-1].ee_block));
818 			if (block < le32_to_cpu(ex->ee_block))
819 				break;
820 			chex = ex;
821 		}
822 		BUG_ON(chex != path->p_ext);
823 	}
824 #endif
825 
826 }
827 
828 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
829 {
830 	struct ext4_extent_header *eh;
831 
832 	eh = ext_inode_hdr(inode);
833 	eh->eh_depth = 0;
834 	eh->eh_entries = 0;
835 	eh->eh_magic = EXT4_EXT_MAGIC;
836 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
837 	ext4_mark_inode_dirty(handle, inode);
838 	return 0;
839 }
840 
841 struct ext4_ext_path *
842 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
843 		     struct ext4_ext_path *path, int flags)
844 {
845 	struct ext4_extent_header *eh;
846 	struct buffer_head *bh;
847 	short int depth, i, ppos = 0, alloc = 0;
848 	int ret;
849 
850 	eh = ext_inode_hdr(inode);
851 	depth = ext_depth(inode);
852 
853 	/* account possible depth increase */
854 	if (!path) {
855 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
856 				GFP_NOFS);
857 		if (!path)
858 			return ERR_PTR(-ENOMEM);
859 		alloc = 1;
860 	}
861 	path[0].p_hdr = eh;
862 	path[0].p_bh = NULL;
863 
864 	i = depth;
865 	/* walk through the tree */
866 	while (i) {
867 		ext_debug("depth %d: num %d, max %d\n",
868 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
869 
870 		ext4_ext_binsearch_idx(inode, path + ppos, block);
871 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
872 		path[ppos].p_depth = i;
873 		path[ppos].p_ext = NULL;
874 
875 		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
876 					    flags);
877 		if (IS_ERR(bh)) {
878 			ret = PTR_ERR(bh);
879 			goto err;
880 		}
881 
882 		eh = ext_block_hdr(bh);
883 		ppos++;
884 		if (unlikely(ppos > depth)) {
885 			put_bh(bh);
886 			EXT4_ERROR_INODE(inode,
887 					 "ppos %d > depth %d", ppos, depth);
888 			ret = -EIO;
889 			goto err;
890 		}
891 		path[ppos].p_bh = bh;
892 		path[ppos].p_hdr = eh;
893 	}
894 
895 	path[ppos].p_depth = i;
896 	path[ppos].p_ext = NULL;
897 	path[ppos].p_idx = NULL;
898 
899 	/* find extent */
900 	ext4_ext_binsearch(inode, path + ppos, block);
901 	/* if not an empty leaf */
902 	if (path[ppos].p_ext)
903 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
904 
905 	ext4_ext_show_path(inode, path);
906 
907 	return path;
908 
909 err:
910 	ext4_ext_drop_refs(path);
911 	if (alloc)
912 		kfree(path);
913 	return ERR_PTR(ret);
914 }
915 
916 /*
917  * ext4_ext_insert_index:
918  * insert new index [@logical;@ptr] into the block at @curp;
919  * check where to insert: before @curp or after @curp
920  */
921 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
922 				 struct ext4_ext_path *curp,
923 				 int logical, ext4_fsblk_t ptr)
924 {
925 	struct ext4_extent_idx *ix;
926 	int len, err;
927 
928 	err = ext4_ext_get_access(handle, inode, curp);
929 	if (err)
930 		return err;
931 
932 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
933 		EXT4_ERROR_INODE(inode,
934 				 "logical %d == ei_block %d!",
935 				 logical, le32_to_cpu(curp->p_idx->ei_block));
936 		return -EIO;
937 	}
938 
939 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
940 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
941 		EXT4_ERROR_INODE(inode,
942 				 "eh_entries %d >= eh_max %d!",
943 				 le16_to_cpu(curp->p_hdr->eh_entries),
944 				 le16_to_cpu(curp->p_hdr->eh_max));
945 		return -EIO;
946 	}
947 
948 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
949 		/* insert after */
950 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
951 		ix = curp->p_idx + 1;
952 	} else {
953 		/* insert before */
954 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
955 		ix = curp->p_idx;
956 	}
957 
958 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
959 	BUG_ON(len < 0);
960 	if (len > 0) {
961 		ext_debug("insert new index %d: "
962 				"move %d indices from 0x%p to 0x%p\n",
963 				logical, len, ix, ix + 1);
964 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
965 	}
966 
967 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
968 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
969 		return -EIO;
970 	}
971 
972 	ix->ei_block = cpu_to_le32(logical);
973 	ext4_idx_store_pblock(ix, ptr);
974 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
975 
976 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
977 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
978 		return -EIO;
979 	}
980 
981 	err = ext4_ext_dirty(handle, inode, curp);
982 	ext4_std_error(inode->i_sb, err);
983 
984 	return err;
985 }
986 
987 /*
988  * ext4_ext_split:
989  * inserts new subtree into the path, using free index entry
990  * at depth @at:
991  * - allocates all needed blocks (new leaf and all intermediate index blocks)
992  * - makes decision where to split
993  * - moves remaining extents and index entries (right to the split point)
994  *   into the newly allocated blocks
995  * - initializes subtree
996  */
997 static int ext4_ext_split(handle_t *handle, struct inode *inode,
998 			  unsigned int flags,
999 			  struct ext4_ext_path *path,
1000 			  struct ext4_extent *newext, int at)
1001 {
1002 	struct buffer_head *bh = NULL;
1003 	int depth = ext_depth(inode);
1004 	struct ext4_extent_header *neh;
1005 	struct ext4_extent_idx *fidx;
1006 	int i = at, k, m, a;
1007 	ext4_fsblk_t newblock, oldblock;
1008 	__le32 border;
1009 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1010 	int err = 0;
1011 
1012 	/* make decision: where to split? */
1013 	/* FIXME: now decision is simplest: at current extent */
1014 
1015 	/* if current leaf will be split, then we should use
1016 	 * border from split point */
1017 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1018 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1019 		return -EIO;
1020 	}
1021 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1022 		border = path[depth].p_ext[1].ee_block;
1023 		ext_debug("leaf will be split."
1024 				" next leaf starts at %d\n",
1025 				  le32_to_cpu(border));
1026 	} else {
1027 		border = newext->ee_block;
1028 		ext_debug("leaf will be added."
1029 				" next leaf starts at %d\n",
1030 				le32_to_cpu(border));
1031 	}
1032 
1033 	/*
1034 	 * If error occurs, then we break processing
1035 	 * and mark filesystem read-only. index won't
1036 	 * be inserted and tree will be in consistent
1037 	 * state. Next mount will repair buffers too.
1038 	 */
1039 
1040 	/*
1041 	 * Get array to track all allocated blocks.
1042 	 * We need this to handle errors and free blocks
1043 	 * upon them.
1044 	 */
1045 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1046 	if (!ablocks)
1047 		return -ENOMEM;
1048 
1049 	/* allocate all needed blocks */
1050 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1051 	for (a = 0; a < depth - at; a++) {
1052 		newblock = ext4_ext_new_meta_block(handle, inode, path,
1053 						   newext, &err, flags);
1054 		if (newblock == 0)
1055 			goto cleanup;
1056 		ablocks[a] = newblock;
1057 	}
1058 
1059 	/* initialize new leaf */
1060 	newblock = ablocks[--a];
1061 	if (unlikely(newblock == 0)) {
1062 		EXT4_ERROR_INODE(inode, "newblock == 0!");
1063 		err = -EIO;
1064 		goto cleanup;
1065 	}
1066 	bh = sb_getblk(inode->i_sb, newblock);
1067 	if (unlikely(!bh)) {
1068 		err = -ENOMEM;
1069 		goto cleanup;
1070 	}
1071 	lock_buffer(bh);
1072 
1073 	err = ext4_journal_get_create_access(handle, bh);
1074 	if (err)
1075 		goto cleanup;
1076 
1077 	neh = ext_block_hdr(bh);
1078 	neh->eh_entries = 0;
1079 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1080 	neh->eh_magic = EXT4_EXT_MAGIC;
1081 	neh->eh_depth = 0;
1082 
1083 	/* move remainder of path[depth] to the new leaf */
1084 	if (unlikely(path[depth].p_hdr->eh_entries !=
1085 		     path[depth].p_hdr->eh_max)) {
1086 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1087 				 path[depth].p_hdr->eh_entries,
1088 				 path[depth].p_hdr->eh_max);
1089 		err = -EIO;
1090 		goto cleanup;
1091 	}
1092 	/* start copy from next extent */
1093 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1094 	ext4_ext_show_move(inode, path, newblock, depth);
1095 	if (m) {
1096 		struct ext4_extent *ex;
1097 		ex = EXT_FIRST_EXTENT(neh);
1098 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1099 		le16_add_cpu(&neh->eh_entries, m);
1100 	}
1101 
1102 	ext4_extent_block_csum_set(inode, neh);
1103 	set_buffer_uptodate(bh);
1104 	unlock_buffer(bh);
1105 
1106 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1107 	if (err)
1108 		goto cleanup;
1109 	brelse(bh);
1110 	bh = NULL;
1111 
1112 	/* correct old leaf */
1113 	if (m) {
1114 		err = ext4_ext_get_access(handle, inode, path + depth);
1115 		if (err)
1116 			goto cleanup;
1117 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1118 		err = ext4_ext_dirty(handle, inode, path + depth);
1119 		if (err)
1120 			goto cleanup;
1121 
1122 	}
1123 
1124 	/* create intermediate indexes */
1125 	k = depth - at - 1;
1126 	if (unlikely(k < 0)) {
1127 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1128 		err = -EIO;
1129 		goto cleanup;
1130 	}
1131 	if (k)
1132 		ext_debug("create %d intermediate indices\n", k);
1133 	/* insert new index into current index block */
1134 	/* current depth stored in i var */
1135 	i = depth - 1;
1136 	while (k--) {
1137 		oldblock = newblock;
1138 		newblock = ablocks[--a];
1139 		bh = sb_getblk(inode->i_sb, newblock);
1140 		if (unlikely(!bh)) {
1141 			err = -ENOMEM;
1142 			goto cleanup;
1143 		}
1144 		lock_buffer(bh);
1145 
1146 		err = ext4_journal_get_create_access(handle, bh);
1147 		if (err)
1148 			goto cleanup;
1149 
1150 		neh = ext_block_hdr(bh);
1151 		neh->eh_entries = cpu_to_le16(1);
1152 		neh->eh_magic = EXT4_EXT_MAGIC;
1153 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1154 		neh->eh_depth = cpu_to_le16(depth - i);
1155 		fidx = EXT_FIRST_INDEX(neh);
1156 		fidx->ei_block = border;
1157 		ext4_idx_store_pblock(fidx, oldblock);
1158 
1159 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1160 				i, newblock, le32_to_cpu(border), oldblock);
1161 
1162 		/* move remainder of path[i] to the new index block */
1163 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1164 					EXT_LAST_INDEX(path[i].p_hdr))) {
1165 			EXT4_ERROR_INODE(inode,
1166 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1167 					 le32_to_cpu(path[i].p_ext->ee_block));
1168 			err = -EIO;
1169 			goto cleanup;
1170 		}
1171 		/* start copy indexes */
1172 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1173 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1174 				EXT_MAX_INDEX(path[i].p_hdr));
1175 		ext4_ext_show_move(inode, path, newblock, i);
1176 		if (m) {
1177 			memmove(++fidx, path[i].p_idx,
1178 				sizeof(struct ext4_extent_idx) * m);
1179 			le16_add_cpu(&neh->eh_entries, m);
1180 		}
1181 		ext4_extent_block_csum_set(inode, neh);
1182 		set_buffer_uptodate(bh);
1183 		unlock_buffer(bh);
1184 
1185 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1186 		if (err)
1187 			goto cleanup;
1188 		brelse(bh);
1189 		bh = NULL;
1190 
1191 		/* correct old index */
1192 		if (m) {
1193 			err = ext4_ext_get_access(handle, inode, path + i);
1194 			if (err)
1195 				goto cleanup;
1196 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1197 			err = ext4_ext_dirty(handle, inode, path + i);
1198 			if (err)
1199 				goto cleanup;
1200 		}
1201 
1202 		i--;
1203 	}
1204 
1205 	/* insert new index */
1206 	err = ext4_ext_insert_index(handle, inode, path + at,
1207 				    le32_to_cpu(border), newblock);
1208 
1209 cleanup:
1210 	if (bh) {
1211 		if (buffer_locked(bh))
1212 			unlock_buffer(bh);
1213 		brelse(bh);
1214 	}
1215 
1216 	if (err) {
1217 		/* free all allocated blocks in error case */
1218 		for (i = 0; i < depth; i++) {
1219 			if (!ablocks[i])
1220 				continue;
1221 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1222 					 EXT4_FREE_BLOCKS_METADATA);
1223 		}
1224 	}
1225 	kfree(ablocks);
1226 
1227 	return err;
1228 }
1229 
1230 /*
1231  * ext4_ext_grow_indepth:
1232  * implements tree growing procedure:
1233  * - allocates new block
1234  * - moves top-level data (index block or leaf) into the new block
1235  * - initializes new top-level, creating index that points to the
1236  *   just created block
1237  */
1238 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1239 				 unsigned int flags,
1240 				 struct ext4_extent *newext)
1241 {
1242 	struct ext4_extent_header *neh;
1243 	struct buffer_head *bh;
1244 	ext4_fsblk_t newblock;
1245 	int err = 0;
1246 
1247 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1248 		newext, &err, flags);
1249 	if (newblock == 0)
1250 		return err;
1251 
1252 	bh = sb_getblk(inode->i_sb, newblock);
1253 	if (unlikely(!bh))
1254 		return -ENOMEM;
1255 	lock_buffer(bh);
1256 
1257 	err = ext4_journal_get_create_access(handle, bh);
1258 	if (err) {
1259 		unlock_buffer(bh);
1260 		goto out;
1261 	}
1262 
1263 	/* move top-level index/leaf into new block */
1264 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1265 		sizeof(EXT4_I(inode)->i_data));
1266 
1267 	/* set size of new block */
1268 	neh = ext_block_hdr(bh);
1269 	/* old root could have indexes or leaves
1270 	 * so calculate e_max right way */
1271 	if (ext_depth(inode))
1272 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1273 	else
1274 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1275 	neh->eh_magic = EXT4_EXT_MAGIC;
1276 	ext4_extent_block_csum_set(inode, neh);
1277 	set_buffer_uptodate(bh);
1278 	unlock_buffer(bh);
1279 
1280 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1281 	if (err)
1282 		goto out;
1283 
1284 	/* Update top-level index: num,max,pointer */
1285 	neh = ext_inode_hdr(inode);
1286 	neh->eh_entries = cpu_to_le16(1);
1287 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1288 	if (neh->eh_depth == 0) {
1289 		/* Root extent block becomes index block */
1290 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1291 		EXT_FIRST_INDEX(neh)->ei_block =
1292 			EXT_FIRST_EXTENT(neh)->ee_block;
1293 	}
1294 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1295 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1296 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1297 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1298 
1299 	le16_add_cpu(&neh->eh_depth, 1);
1300 	ext4_mark_inode_dirty(handle, inode);
1301 out:
1302 	brelse(bh);
1303 
1304 	return err;
1305 }
1306 
1307 /*
1308  * ext4_ext_create_new_leaf:
1309  * finds empty index and adds new leaf.
1310  * if no free index is found, then it requests in-depth growing.
1311  */
1312 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1313 				    unsigned int mb_flags,
1314 				    unsigned int gb_flags,
1315 				    struct ext4_ext_path *path,
1316 				    struct ext4_extent *newext)
1317 {
1318 	struct ext4_ext_path *curp;
1319 	int depth, i, err = 0;
1320 
1321 repeat:
1322 	i = depth = ext_depth(inode);
1323 
1324 	/* walk up to the tree and look for free index entry */
1325 	curp = path + depth;
1326 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1327 		i--;
1328 		curp--;
1329 	}
1330 
1331 	/* we use already allocated block for index block,
1332 	 * so subsequent data blocks should be contiguous */
1333 	if (EXT_HAS_FREE_INDEX(curp)) {
1334 		/* if we found index with free entry, then use that
1335 		 * entry: create all needed subtree and add new leaf */
1336 		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1337 		if (err)
1338 			goto out;
1339 
1340 		/* refill path */
1341 		ext4_ext_drop_refs(path);
1342 		path = ext4_ext_find_extent(inode,
1343 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1344 				    path, gb_flags);
1345 		if (IS_ERR(path))
1346 			err = PTR_ERR(path);
1347 	} else {
1348 		/* tree is full, time to grow in depth */
1349 		err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1350 		if (err)
1351 			goto out;
1352 
1353 		/* refill path */
1354 		ext4_ext_drop_refs(path);
1355 		path = ext4_ext_find_extent(inode,
1356 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1357 				    path, gb_flags);
1358 		if (IS_ERR(path)) {
1359 			err = PTR_ERR(path);
1360 			goto out;
1361 		}
1362 
1363 		/*
1364 		 * only first (depth 0 -> 1) produces free space;
1365 		 * in all other cases we have to split the grown tree
1366 		 */
1367 		depth = ext_depth(inode);
1368 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1369 			/* now we need to split */
1370 			goto repeat;
1371 		}
1372 	}
1373 
1374 out:
1375 	return err;
1376 }
1377 
1378 /*
1379  * search the closest allocated block to the left for *logical
1380  * and returns it at @logical + it's physical address at @phys
1381  * if *logical is the smallest allocated block, the function
1382  * returns 0 at @phys
1383  * return value contains 0 (success) or error code
1384  */
1385 static int ext4_ext_search_left(struct inode *inode,
1386 				struct ext4_ext_path *path,
1387 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1388 {
1389 	struct ext4_extent_idx *ix;
1390 	struct ext4_extent *ex;
1391 	int depth, ee_len;
1392 
1393 	if (unlikely(path == NULL)) {
1394 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1395 		return -EIO;
1396 	}
1397 	depth = path->p_depth;
1398 	*phys = 0;
1399 
1400 	if (depth == 0 && path->p_ext == NULL)
1401 		return 0;
1402 
1403 	/* usually extent in the path covers blocks smaller
1404 	 * then *logical, but it can be that extent is the
1405 	 * first one in the file */
1406 
1407 	ex = path[depth].p_ext;
1408 	ee_len = ext4_ext_get_actual_len(ex);
1409 	if (*logical < le32_to_cpu(ex->ee_block)) {
1410 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1411 			EXT4_ERROR_INODE(inode,
1412 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1413 					 *logical, le32_to_cpu(ex->ee_block));
1414 			return -EIO;
1415 		}
1416 		while (--depth >= 0) {
1417 			ix = path[depth].p_idx;
1418 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1419 				EXT4_ERROR_INODE(inode,
1420 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1421 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1422 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1423 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1424 				  depth);
1425 				return -EIO;
1426 			}
1427 		}
1428 		return 0;
1429 	}
1430 
1431 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1432 		EXT4_ERROR_INODE(inode,
1433 				 "logical %d < ee_block %d + ee_len %d!",
1434 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1435 		return -EIO;
1436 	}
1437 
1438 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1439 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1440 	return 0;
1441 }
1442 
1443 /*
1444  * search the closest allocated block to the right for *logical
1445  * and returns it at @logical + it's physical address at @phys
1446  * if *logical is the largest allocated block, the function
1447  * returns 0 at @phys
1448  * return value contains 0 (success) or error code
1449  */
1450 static int ext4_ext_search_right(struct inode *inode,
1451 				 struct ext4_ext_path *path,
1452 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1453 				 struct ext4_extent **ret_ex)
1454 {
1455 	struct buffer_head *bh = NULL;
1456 	struct ext4_extent_header *eh;
1457 	struct ext4_extent_idx *ix;
1458 	struct ext4_extent *ex;
1459 	ext4_fsblk_t block;
1460 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1461 	int ee_len;
1462 
1463 	if (unlikely(path == NULL)) {
1464 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1465 		return -EIO;
1466 	}
1467 	depth = path->p_depth;
1468 	*phys = 0;
1469 
1470 	if (depth == 0 && path->p_ext == NULL)
1471 		return 0;
1472 
1473 	/* usually extent in the path covers blocks smaller
1474 	 * then *logical, but it can be that extent is the
1475 	 * first one in the file */
1476 
1477 	ex = path[depth].p_ext;
1478 	ee_len = ext4_ext_get_actual_len(ex);
1479 	if (*logical < le32_to_cpu(ex->ee_block)) {
1480 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1481 			EXT4_ERROR_INODE(inode,
1482 					 "first_extent(path[%d].p_hdr) != ex",
1483 					 depth);
1484 			return -EIO;
1485 		}
1486 		while (--depth >= 0) {
1487 			ix = path[depth].p_idx;
1488 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1489 				EXT4_ERROR_INODE(inode,
1490 						 "ix != EXT_FIRST_INDEX *logical %d!",
1491 						 *logical);
1492 				return -EIO;
1493 			}
1494 		}
1495 		goto found_extent;
1496 	}
1497 
1498 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1499 		EXT4_ERROR_INODE(inode,
1500 				 "logical %d < ee_block %d + ee_len %d!",
1501 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1502 		return -EIO;
1503 	}
1504 
1505 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1506 		/* next allocated block in this leaf */
1507 		ex++;
1508 		goto found_extent;
1509 	}
1510 
1511 	/* go up and search for index to the right */
1512 	while (--depth >= 0) {
1513 		ix = path[depth].p_idx;
1514 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1515 			goto got_index;
1516 	}
1517 
1518 	/* we've gone up to the root and found no index to the right */
1519 	return 0;
1520 
1521 got_index:
1522 	/* we've found index to the right, let's
1523 	 * follow it and find the closest allocated
1524 	 * block to the right */
1525 	ix++;
1526 	block = ext4_idx_pblock(ix);
1527 	while (++depth < path->p_depth) {
1528 		/* subtract from p_depth to get proper eh_depth */
1529 		bh = read_extent_tree_block(inode, block,
1530 					    path->p_depth - depth, 0);
1531 		if (IS_ERR(bh))
1532 			return PTR_ERR(bh);
1533 		eh = ext_block_hdr(bh);
1534 		ix = EXT_FIRST_INDEX(eh);
1535 		block = ext4_idx_pblock(ix);
1536 		put_bh(bh);
1537 	}
1538 
1539 	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1540 	if (IS_ERR(bh))
1541 		return PTR_ERR(bh);
1542 	eh = ext_block_hdr(bh);
1543 	ex = EXT_FIRST_EXTENT(eh);
1544 found_extent:
1545 	*logical = le32_to_cpu(ex->ee_block);
1546 	*phys = ext4_ext_pblock(ex);
1547 	*ret_ex = ex;
1548 	if (bh)
1549 		put_bh(bh);
1550 	return 0;
1551 }
1552 
1553 /*
1554  * ext4_ext_next_allocated_block:
1555  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1556  * NOTE: it considers block number from index entry as
1557  * allocated block. Thus, index entries have to be consistent
1558  * with leaves.
1559  */
1560 static ext4_lblk_t
1561 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1562 {
1563 	int depth;
1564 
1565 	BUG_ON(path == NULL);
1566 	depth = path->p_depth;
1567 
1568 	if (depth == 0 && path->p_ext == NULL)
1569 		return EXT_MAX_BLOCKS;
1570 
1571 	while (depth >= 0) {
1572 		if (depth == path->p_depth) {
1573 			/* leaf */
1574 			if (path[depth].p_ext &&
1575 				path[depth].p_ext !=
1576 					EXT_LAST_EXTENT(path[depth].p_hdr))
1577 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1578 		} else {
1579 			/* index */
1580 			if (path[depth].p_idx !=
1581 					EXT_LAST_INDEX(path[depth].p_hdr))
1582 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1583 		}
1584 		depth--;
1585 	}
1586 
1587 	return EXT_MAX_BLOCKS;
1588 }
1589 
1590 /*
1591  * ext4_ext_next_leaf_block:
1592  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1593  */
1594 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1595 {
1596 	int depth;
1597 
1598 	BUG_ON(path == NULL);
1599 	depth = path->p_depth;
1600 
1601 	/* zero-tree has no leaf blocks at all */
1602 	if (depth == 0)
1603 		return EXT_MAX_BLOCKS;
1604 
1605 	/* go to index block */
1606 	depth--;
1607 
1608 	while (depth >= 0) {
1609 		if (path[depth].p_idx !=
1610 				EXT_LAST_INDEX(path[depth].p_hdr))
1611 			return (ext4_lblk_t)
1612 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1613 		depth--;
1614 	}
1615 
1616 	return EXT_MAX_BLOCKS;
1617 }
1618 
1619 /*
1620  * ext4_ext_correct_indexes:
1621  * if leaf gets modified and modified extent is first in the leaf,
1622  * then we have to correct all indexes above.
1623  * TODO: do we need to correct tree in all cases?
1624  */
1625 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1626 				struct ext4_ext_path *path)
1627 {
1628 	struct ext4_extent_header *eh;
1629 	int depth = ext_depth(inode);
1630 	struct ext4_extent *ex;
1631 	__le32 border;
1632 	int k, err = 0;
1633 
1634 	eh = path[depth].p_hdr;
1635 	ex = path[depth].p_ext;
1636 
1637 	if (unlikely(ex == NULL || eh == NULL)) {
1638 		EXT4_ERROR_INODE(inode,
1639 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1640 		return -EIO;
1641 	}
1642 
1643 	if (depth == 0) {
1644 		/* there is no tree at all */
1645 		return 0;
1646 	}
1647 
1648 	if (ex != EXT_FIRST_EXTENT(eh)) {
1649 		/* we correct tree if first leaf got modified only */
1650 		return 0;
1651 	}
1652 
1653 	/*
1654 	 * TODO: we need correction if border is smaller than current one
1655 	 */
1656 	k = depth - 1;
1657 	border = path[depth].p_ext->ee_block;
1658 	err = ext4_ext_get_access(handle, inode, path + k);
1659 	if (err)
1660 		return err;
1661 	path[k].p_idx->ei_block = border;
1662 	err = ext4_ext_dirty(handle, inode, path + k);
1663 	if (err)
1664 		return err;
1665 
1666 	while (k--) {
1667 		/* change all left-side indexes */
1668 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1669 			break;
1670 		err = ext4_ext_get_access(handle, inode, path + k);
1671 		if (err)
1672 			break;
1673 		path[k].p_idx->ei_block = border;
1674 		err = ext4_ext_dirty(handle, inode, path + k);
1675 		if (err)
1676 			break;
1677 	}
1678 
1679 	return err;
1680 }
1681 
1682 int
1683 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1684 				struct ext4_extent *ex2)
1685 {
1686 	unsigned short ext1_ee_len, ext2_ee_len;
1687 
1688 	/*
1689 	 * Make sure that both extents are initialized. We don't merge
1690 	 * uninitialized extents so that we can be sure that end_io code has
1691 	 * the extent that was written properly split out and conversion to
1692 	 * initialized is trivial.
1693 	 */
1694 	if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1695 		return 0;
1696 
1697 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1698 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1699 
1700 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1701 			le32_to_cpu(ex2->ee_block))
1702 		return 0;
1703 
1704 	/*
1705 	 * To allow future support for preallocated extents to be added
1706 	 * as an RO_COMPAT feature, refuse to merge to extents if
1707 	 * this can result in the top bit of ee_len being set.
1708 	 */
1709 	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1710 		return 0;
1711 #ifdef AGGRESSIVE_TEST
1712 	if (ext1_ee_len >= 4)
1713 		return 0;
1714 #endif
1715 
1716 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1717 		return 1;
1718 	return 0;
1719 }
1720 
1721 /*
1722  * This function tries to merge the "ex" extent to the next extent in the tree.
1723  * It always tries to merge towards right. If you want to merge towards
1724  * left, pass "ex - 1" as argument instead of "ex".
1725  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1726  * 1 if they got merged.
1727  */
1728 static int ext4_ext_try_to_merge_right(struct inode *inode,
1729 				 struct ext4_ext_path *path,
1730 				 struct ext4_extent *ex)
1731 {
1732 	struct ext4_extent_header *eh;
1733 	unsigned int depth, len;
1734 	int merge_done = 0;
1735 
1736 	depth = ext_depth(inode);
1737 	BUG_ON(path[depth].p_hdr == NULL);
1738 	eh = path[depth].p_hdr;
1739 
1740 	while (ex < EXT_LAST_EXTENT(eh)) {
1741 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1742 			break;
1743 		/* merge with next extent! */
1744 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1745 				+ ext4_ext_get_actual_len(ex + 1));
1746 
1747 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1748 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1749 				* sizeof(struct ext4_extent);
1750 			memmove(ex + 1, ex + 2, len);
1751 		}
1752 		le16_add_cpu(&eh->eh_entries, -1);
1753 		merge_done = 1;
1754 		WARN_ON(eh->eh_entries == 0);
1755 		if (!eh->eh_entries)
1756 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1757 	}
1758 
1759 	return merge_done;
1760 }
1761 
1762 /*
1763  * This function does a very simple check to see if we can collapse
1764  * an extent tree with a single extent tree leaf block into the inode.
1765  */
1766 static void ext4_ext_try_to_merge_up(handle_t *handle,
1767 				     struct inode *inode,
1768 				     struct ext4_ext_path *path)
1769 {
1770 	size_t s;
1771 	unsigned max_root = ext4_ext_space_root(inode, 0);
1772 	ext4_fsblk_t blk;
1773 
1774 	if ((path[0].p_depth != 1) ||
1775 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1776 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1777 		return;
1778 
1779 	/*
1780 	 * We need to modify the block allocation bitmap and the block
1781 	 * group descriptor to release the extent tree block.  If we
1782 	 * can't get the journal credits, give up.
1783 	 */
1784 	if (ext4_journal_extend(handle, 2))
1785 		return;
1786 
1787 	/*
1788 	 * Copy the extent data up to the inode
1789 	 */
1790 	blk = ext4_idx_pblock(path[0].p_idx);
1791 	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1792 		sizeof(struct ext4_extent_idx);
1793 	s += sizeof(struct ext4_extent_header);
1794 
1795 	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1796 	path[0].p_depth = 0;
1797 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1798 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1799 	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1800 
1801 	brelse(path[1].p_bh);
1802 	ext4_free_blocks(handle, inode, NULL, blk, 1,
1803 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET |
1804 			 EXT4_FREE_BLOCKS_RESERVE);
1805 }
1806 
1807 /*
1808  * This function tries to merge the @ex extent to neighbours in the tree.
1809  * return 1 if merge left else 0.
1810  */
1811 static void ext4_ext_try_to_merge(handle_t *handle,
1812 				  struct inode *inode,
1813 				  struct ext4_ext_path *path,
1814 				  struct ext4_extent *ex) {
1815 	struct ext4_extent_header *eh;
1816 	unsigned int depth;
1817 	int merge_done = 0;
1818 
1819 	depth = ext_depth(inode);
1820 	BUG_ON(path[depth].p_hdr == NULL);
1821 	eh = path[depth].p_hdr;
1822 
1823 	if (ex > EXT_FIRST_EXTENT(eh))
1824 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1825 
1826 	if (!merge_done)
1827 		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1828 
1829 	ext4_ext_try_to_merge_up(handle, inode, path);
1830 }
1831 
1832 /*
1833  * check if a portion of the "newext" extent overlaps with an
1834  * existing extent.
1835  *
1836  * If there is an overlap discovered, it updates the length of the newext
1837  * such that there will be no overlap, and then returns 1.
1838  * If there is no overlap found, it returns 0.
1839  */
1840 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1841 					   struct inode *inode,
1842 					   struct ext4_extent *newext,
1843 					   struct ext4_ext_path *path)
1844 {
1845 	ext4_lblk_t b1, b2;
1846 	unsigned int depth, len1;
1847 	unsigned int ret = 0;
1848 
1849 	b1 = le32_to_cpu(newext->ee_block);
1850 	len1 = ext4_ext_get_actual_len(newext);
1851 	depth = ext_depth(inode);
1852 	if (!path[depth].p_ext)
1853 		goto out;
1854 	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1855 
1856 	/*
1857 	 * get the next allocated block if the extent in the path
1858 	 * is before the requested block(s)
1859 	 */
1860 	if (b2 < b1) {
1861 		b2 = ext4_ext_next_allocated_block(path);
1862 		if (b2 == EXT_MAX_BLOCKS)
1863 			goto out;
1864 		b2 = EXT4_LBLK_CMASK(sbi, b2);
1865 	}
1866 
1867 	/* check for wrap through zero on extent logical start block*/
1868 	if (b1 + len1 < b1) {
1869 		len1 = EXT_MAX_BLOCKS - b1;
1870 		newext->ee_len = cpu_to_le16(len1);
1871 		ret = 1;
1872 	}
1873 
1874 	/* check for overlap */
1875 	if (b1 + len1 > b2) {
1876 		newext->ee_len = cpu_to_le16(b2 - b1);
1877 		ret = 1;
1878 	}
1879 out:
1880 	return ret;
1881 }
1882 
1883 /*
1884  * ext4_ext_insert_extent:
1885  * tries to merge requsted extent into the existing extent or
1886  * inserts requested extent as new one into the tree,
1887  * creating new leaf in the no-space case.
1888  */
1889 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1890 				struct ext4_ext_path *path,
1891 				struct ext4_extent *newext, int gb_flags)
1892 {
1893 	struct ext4_extent_header *eh;
1894 	struct ext4_extent *ex, *fex;
1895 	struct ext4_extent *nearex; /* nearest extent */
1896 	struct ext4_ext_path *npath = NULL;
1897 	int depth, len, err;
1898 	ext4_lblk_t next;
1899 	int mb_flags = 0;
1900 
1901 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1902 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1903 		return -EIO;
1904 	}
1905 	depth = ext_depth(inode);
1906 	ex = path[depth].p_ext;
1907 	eh = path[depth].p_hdr;
1908 	if (unlikely(path[depth].p_hdr == NULL)) {
1909 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1910 		return -EIO;
1911 	}
1912 
1913 	/* try to insert block into found extent and return */
1914 	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1915 
1916 		/*
1917 		 * Try to see whether we should rather test the extent on
1918 		 * right from ex, or from the left of ex. This is because
1919 		 * ext4_ext_find_extent() can return either extent on the
1920 		 * left, or on the right from the searched position. This
1921 		 * will make merging more effective.
1922 		 */
1923 		if (ex < EXT_LAST_EXTENT(eh) &&
1924 		    (le32_to_cpu(ex->ee_block) +
1925 		    ext4_ext_get_actual_len(ex) <
1926 		    le32_to_cpu(newext->ee_block))) {
1927 			ex += 1;
1928 			goto prepend;
1929 		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1930 			   (le32_to_cpu(newext->ee_block) +
1931 			   ext4_ext_get_actual_len(newext) <
1932 			   le32_to_cpu(ex->ee_block)))
1933 			ex -= 1;
1934 
1935 		/* Try to append newex to the ex */
1936 		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1937 			ext_debug("append [%d]%d block to %u:[%d]%d"
1938 				  "(from %llu)\n",
1939 				  ext4_ext_is_uninitialized(newext),
1940 				  ext4_ext_get_actual_len(newext),
1941 				  le32_to_cpu(ex->ee_block),
1942 				  ext4_ext_is_uninitialized(ex),
1943 				  ext4_ext_get_actual_len(ex),
1944 				  ext4_ext_pblock(ex));
1945 			err = ext4_ext_get_access(handle, inode,
1946 						  path + depth);
1947 			if (err)
1948 				return err;
1949 
1950 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1951 					+ ext4_ext_get_actual_len(newext));
1952 			eh = path[depth].p_hdr;
1953 			nearex = ex;
1954 			goto merge;
1955 		}
1956 
1957 prepend:
1958 		/* Try to prepend newex to the ex */
1959 		if (ext4_can_extents_be_merged(inode, newext, ex)) {
1960 			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1961 				  "(from %llu)\n",
1962 				  le32_to_cpu(newext->ee_block),
1963 				  ext4_ext_is_uninitialized(newext),
1964 				  ext4_ext_get_actual_len(newext),
1965 				  le32_to_cpu(ex->ee_block),
1966 				  ext4_ext_is_uninitialized(ex),
1967 				  ext4_ext_get_actual_len(ex),
1968 				  ext4_ext_pblock(ex));
1969 			err = ext4_ext_get_access(handle, inode,
1970 						  path + depth);
1971 			if (err)
1972 				return err;
1973 
1974 			ex->ee_block = newext->ee_block;
1975 			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1976 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1977 					+ ext4_ext_get_actual_len(newext));
1978 			eh = path[depth].p_hdr;
1979 			nearex = ex;
1980 			goto merge;
1981 		}
1982 	}
1983 
1984 	depth = ext_depth(inode);
1985 	eh = path[depth].p_hdr;
1986 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1987 		goto has_space;
1988 
1989 	/* probably next leaf has space for us? */
1990 	fex = EXT_LAST_EXTENT(eh);
1991 	next = EXT_MAX_BLOCKS;
1992 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1993 		next = ext4_ext_next_leaf_block(path);
1994 	if (next != EXT_MAX_BLOCKS) {
1995 		ext_debug("next leaf block - %u\n", next);
1996 		BUG_ON(npath != NULL);
1997 		npath = ext4_ext_find_extent(inode, next, NULL, 0);
1998 		if (IS_ERR(npath))
1999 			return PTR_ERR(npath);
2000 		BUG_ON(npath->p_depth != path->p_depth);
2001 		eh = npath[depth].p_hdr;
2002 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2003 			ext_debug("next leaf isn't full(%d)\n",
2004 				  le16_to_cpu(eh->eh_entries));
2005 			path = npath;
2006 			goto has_space;
2007 		}
2008 		ext_debug("next leaf has no free space(%d,%d)\n",
2009 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2010 	}
2011 
2012 	/*
2013 	 * There is no free space in the found leaf.
2014 	 * We're gonna add a new leaf in the tree.
2015 	 */
2016 	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2017 		mb_flags = EXT4_MB_USE_RESERVED;
2018 	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2019 				       path, newext);
2020 	if (err)
2021 		goto cleanup;
2022 	depth = ext_depth(inode);
2023 	eh = path[depth].p_hdr;
2024 
2025 has_space:
2026 	nearex = path[depth].p_ext;
2027 
2028 	err = ext4_ext_get_access(handle, inode, path + depth);
2029 	if (err)
2030 		goto cleanup;
2031 
2032 	if (!nearex) {
2033 		/* there is no extent in this leaf, create first one */
2034 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2035 				le32_to_cpu(newext->ee_block),
2036 				ext4_ext_pblock(newext),
2037 				ext4_ext_is_uninitialized(newext),
2038 				ext4_ext_get_actual_len(newext));
2039 		nearex = EXT_FIRST_EXTENT(eh);
2040 	} else {
2041 		if (le32_to_cpu(newext->ee_block)
2042 			   > le32_to_cpu(nearex->ee_block)) {
2043 			/* Insert after */
2044 			ext_debug("insert %u:%llu:[%d]%d before: "
2045 					"nearest %p\n",
2046 					le32_to_cpu(newext->ee_block),
2047 					ext4_ext_pblock(newext),
2048 					ext4_ext_is_uninitialized(newext),
2049 					ext4_ext_get_actual_len(newext),
2050 					nearex);
2051 			nearex++;
2052 		} else {
2053 			/* Insert before */
2054 			BUG_ON(newext->ee_block == nearex->ee_block);
2055 			ext_debug("insert %u:%llu:[%d]%d after: "
2056 					"nearest %p\n",
2057 					le32_to_cpu(newext->ee_block),
2058 					ext4_ext_pblock(newext),
2059 					ext4_ext_is_uninitialized(newext),
2060 					ext4_ext_get_actual_len(newext),
2061 					nearex);
2062 		}
2063 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2064 		if (len > 0) {
2065 			ext_debug("insert %u:%llu:[%d]%d: "
2066 					"move %d extents from 0x%p to 0x%p\n",
2067 					le32_to_cpu(newext->ee_block),
2068 					ext4_ext_pblock(newext),
2069 					ext4_ext_is_uninitialized(newext),
2070 					ext4_ext_get_actual_len(newext),
2071 					len, nearex, nearex + 1);
2072 			memmove(nearex + 1, nearex,
2073 				len * sizeof(struct ext4_extent));
2074 		}
2075 	}
2076 
2077 	le16_add_cpu(&eh->eh_entries, 1);
2078 	path[depth].p_ext = nearex;
2079 	nearex->ee_block = newext->ee_block;
2080 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2081 	nearex->ee_len = newext->ee_len;
2082 
2083 merge:
2084 	/* try to merge extents */
2085 	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2086 		ext4_ext_try_to_merge(handle, inode, path, nearex);
2087 
2088 
2089 	/* time to correct all indexes above */
2090 	err = ext4_ext_correct_indexes(handle, inode, path);
2091 	if (err)
2092 		goto cleanup;
2093 
2094 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2095 
2096 cleanup:
2097 	if (npath) {
2098 		ext4_ext_drop_refs(npath);
2099 		kfree(npath);
2100 	}
2101 	return err;
2102 }
2103 
2104 static int ext4_fill_fiemap_extents(struct inode *inode,
2105 				    ext4_lblk_t block, ext4_lblk_t num,
2106 				    struct fiemap_extent_info *fieinfo)
2107 {
2108 	struct ext4_ext_path *path = NULL;
2109 	struct ext4_extent *ex;
2110 	struct extent_status es;
2111 	ext4_lblk_t next, next_del, start = 0, end = 0;
2112 	ext4_lblk_t last = block + num;
2113 	int exists, depth = 0, err = 0;
2114 	unsigned int flags = 0;
2115 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2116 
2117 	while (block < last && block != EXT_MAX_BLOCKS) {
2118 		num = last - block;
2119 		/* find extent for this block */
2120 		down_read(&EXT4_I(inode)->i_data_sem);
2121 
2122 		if (path && ext_depth(inode) != depth) {
2123 			/* depth was changed. we have to realloc path */
2124 			kfree(path);
2125 			path = NULL;
2126 		}
2127 
2128 		path = ext4_ext_find_extent(inode, block, path, 0);
2129 		if (IS_ERR(path)) {
2130 			up_read(&EXT4_I(inode)->i_data_sem);
2131 			err = PTR_ERR(path);
2132 			path = NULL;
2133 			break;
2134 		}
2135 
2136 		depth = ext_depth(inode);
2137 		if (unlikely(path[depth].p_hdr == NULL)) {
2138 			up_read(&EXT4_I(inode)->i_data_sem);
2139 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2140 			err = -EIO;
2141 			break;
2142 		}
2143 		ex = path[depth].p_ext;
2144 		next = ext4_ext_next_allocated_block(path);
2145 		ext4_ext_drop_refs(path);
2146 
2147 		flags = 0;
2148 		exists = 0;
2149 		if (!ex) {
2150 			/* there is no extent yet, so try to allocate
2151 			 * all requested space */
2152 			start = block;
2153 			end = block + num;
2154 		} else if (le32_to_cpu(ex->ee_block) > block) {
2155 			/* need to allocate space before found extent */
2156 			start = block;
2157 			end = le32_to_cpu(ex->ee_block);
2158 			if (block + num < end)
2159 				end = block + num;
2160 		} else if (block >= le32_to_cpu(ex->ee_block)
2161 					+ ext4_ext_get_actual_len(ex)) {
2162 			/* need to allocate space after found extent */
2163 			start = block;
2164 			end = block + num;
2165 			if (end >= next)
2166 				end = next;
2167 		} else if (block >= le32_to_cpu(ex->ee_block)) {
2168 			/*
2169 			 * some part of requested space is covered
2170 			 * by found extent
2171 			 */
2172 			start = block;
2173 			end = le32_to_cpu(ex->ee_block)
2174 				+ ext4_ext_get_actual_len(ex);
2175 			if (block + num < end)
2176 				end = block + num;
2177 			exists = 1;
2178 		} else {
2179 			BUG();
2180 		}
2181 		BUG_ON(end <= start);
2182 
2183 		if (!exists) {
2184 			es.es_lblk = start;
2185 			es.es_len = end - start;
2186 			es.es_pblk = 0;
2187 		} else {
2188 			es.es_lblk = le32_to_cpu(ex->ee_block);
2189 			es.es_len = ext4_ext_get_actual_len(ex);
2190 			es.es_pblk = ext4_ext_pblock(ex);
2191 			if (ext4_ext_is_uninitialized(ex))
2192 				flags |= FIEMAP_EXTENT_UNWRITTEN;
2193 		}
2194 
2195 		/*
2196 		 * Find delayed extent and update es accordingly. We call
2197 		 * it even in !exists case to find out whether es is the
2198 		 * last existing extent or not.
2199 		 */
2200 		next_del = ext4_find_delayed_extent(inode, &es);
2201 		if (!exists && next_del) {
2202 			exists = 1;
2203 			flags |= (FIEMAP_EXTENT_DELALLOC |
2204 				  FIEMAP_EXTENT_UNKNOWN);
2205 		}
2206 		up_read(&EXT4_I(inode)->i_data_sem);
2207 
2208 		if (unlikely(es.es_len == 0)) {
2209 			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2210 			err = -EIO;
2211 			break;
2212 		}
2213 
2214 		/*
2215 		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2216 		 * we need to check next == EXT_MAX_BLOCKS because it is
2217 		 * possible that an extent is with unwritten and delayed
2218 		 * status due to when an extent is delayed allocated and
2219 		 * is allocated by fallocate status tree will track both of
2220 		 * them in a extent.
2221 		 *
2222 		 * So we could return a unwritten and delayed extent, and
2223 		 * its block is equal to 'next'.
2224 		 */
2225 		if (next == next_del && next == EXT_MAX_BLOCKS) {
2226 			flags |= FIEMAP_EXTENT_LAST;
2227 			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2228 				     next != EXT_MAX_BLOCKS)) {
2229 				EXT4_ERROR_INODE(inode,
2230 						 "next extent == %u, next "
2231 						 "delalloc extent = %u",
2232 						 next, next_del);
2233 				err = -EIO;
2234 				break;
2235 			}
2236 		}
2237 
2238 		if (exists) {
2239 			err = fiemap_fill_next_extent(fieinfo,
2240 				(__u64)es.es_lblk << blksize_bits,
2241 				(__u64)es.es_pblk << blksize_bits,
2242 				(__u64)es.es_len << blksize_bits,
2243 				flags);
2244 			if (err < 0)
2245 				break;
2246 			if (err == 1) {
2247 				err = 0;
2248 				break;
2249 			}
2250 		}
2251 
2252 		block = es.es_lblk + es.es_len;
2253 	}
2254 
2255 	if (path) {
2256 		ext4_ext_drop_refs(path);
2257 		kfree(path);
2258 	}
2259 
2260 	return err;
2261 }
2262 
2263 /*
2264  * ext4_ext_put_gap_in_cache:
2265  * calculate boundaries of the gap that the requested block fits into
2266  * and cache this gap
2267  */
2268 static void
2269 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2270 				ext4_lblk_t block)
2271 {
2272 	int depth = ext_depth(inode);
2273 	unsigned long len = 0;
2274 	ext4_lblk_t lblock = 0;
2275 	struct ext4_extent *ex;
2276 
2277 	ex = path[depth].p_ext;
2278 	if (ex == NULL) {
2279 		/*
2280 		 * there is no extent yet, so gap is [0;-] and we
2281 		 * don't cache it
2282 		 */
2283 		ext_debug("cache gap(whole file):");
2284 	} else if (block < le32_to_cpu(ex->ee_block)) {
2285 		lblock = block;
2286 		len = le32_to_cpu(ex->ee_block) - block;
2287 		ext_debug("cache gap(before): %u [%u:%u]",
2288 				block,
2289 				le32_to_cpu(ex->ee_block),
2290 				 ext4_ext_get_actual_len(ex));
2291 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2292 			ext4_es_insert_extent(inode, lblock, len, ~0,
2293 					      EXTENT_STATUS_HOLE);
2294 	} else if (block >= le32_to_cpu(ex->ee_block)
2295 			+ ext4_ext_get_actual_len(ex)) {
2296 		ext4_lblk_t next;
2297 		lblock = le32_to_cpu(ex->ee_block)
2298 			+ ext4_ext_get_actual_len(ex);
2299 
2300 		next = ext4_ext_next_allocated_block(path);
2301 		ext_debug("cache gap(after): [%u:%u] %u",
2302 				le32_to_cpu(ex->ee_block),
2303 				ext4_ext_get_actual_len(ex),
2304 				block);
2305 		BUG_ON(next == lblock);
2306 		len = next - lblock;
2307 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2308 			ext4_es_insert_extent(inode, lblock, len, ~0,
2309 					      EXTENT_STATUS_HOLE);
2310 	} else {
2311 		BUG();
2312 	}
2313 
2314 	ext_debug(" -> %u:%lu\n", lblock, len);
2315 }
2316 
2317 /*
2318  * ext4_ext_rm_idx:
2319  * removes index from the index block.
2320  */
2321 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2322 			struct ext4_ext_path *path, int depth)
2323 {
2324 	int err;
2325 	ext4_fsblk_t leaf;
2326 
2327 	/* free index block */
2328 	depth--;
2329 	path = path + depth;
2330 	leaf = ext4_idx_pblock(path->p_idx);
2331 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2332 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2333 		return -EIO;
2334 	}
2335 	err = ext4_ext_get_access(handle, inode, path);
2336 	if (err)
2337 		return err;
2338 
2339 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2340 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2341 		len *= sizeof(struct ext4_extent_idx);
2342 		memmove(path->p_idx, path->p_idx + 1, len);
2343 	}
2344 
2345 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2346 	err = ext4_ext_dirty(handle, inode, path);
2347 	if (err)
2348 		return err;
2349 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2350 	trace_ext4_ext_rm_idx(inode, leaf);
2351 
2352 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2353 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2354 
2355 	while (--depth >= 0) {
2356 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2357 			break;
2358 		path--;
2359 		err = ext4_ext_get_access(handle, inode, path);
2360 		if (err)
2361 			break;
2362 		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2363 		err = ext4_ext_dirty(handle, inode, path);
2364 		if (err)
2365 			break;
2366 	}
2367 	return err;
2368 }
2369 
2370 /*
2371  * ext4_ext_calc_credits_for_single_extent:
2372  * This routine returns max. credits that needed to insert an extent
2373  * to the extent tree.
2374  * When pass the actual path, the caller should calculate credits
2375  * under i_data_sem.
2376  */
2377 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2378 						struct ext4_ext_path *path)
2379 {
2380 	if (path) {
2381 		int depth = ext_depth(inode);
2382 		int ret = 0;
2383 
2384 		/* probably there is space in leaf? */
2385 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2386 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2387 
2388 			/*
2389 			 *  There are some space in the leaf tree, no
2390 			 *  need to account for leaf block credit
2391 			 *
2392 			 *  bitmaps and block group descriptor blocks
2393 			 *  and other metadata blocks still need to be
2394 			 *  accounted.
2395 			 */
2396 			/* 1 bitmap, 1 block group descriptor */
2397 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2398 			return ret;
2399 		}
2400 	}
2401 
2402 	return ext4_chunk_trans_blocks(inode, nrblocks);
2403 }
2404 
2405 /*
2406  * How many index/leaf blocks need to change/allocate to add @extents extents?
2407  *
2408  * If we add a single extent, then in the worse case, each tree level
2409  * index/leaf need to be changed in case of the tree split.
2410  *
2411  * If more extents are inserted, they could cause the whole tree split more
2412  * than once, but this is really rare.
2413  */
2414 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2415 {
2416 	int index;
2417 	int depth;
2418 
2419 	/* If we are converting the inline data, only one is needed here. */
2420 	if (ext4_has_inline_data(inode))
2421 		return 1;
2422 
2423 	depth = ext_depth(inode);
2424 
2425 	if (extents <= 1)
2426 		index = depth * 2;
2427 	else
2428 		index = depth * 3;
2429 
2430 	return index;
2431 }
2432 
2433 static inline int get_default_free_blocks_flags(struct inode *inode)
2434 {
2435 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2436 		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2437 	else if (ext4_should_journal_data(inode))
2438 		return EXT4_FREE_BLOCKS_FORGET;
2439 	return 0;
2440 }
2441 
2442 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2443 			      struct ext4_extent *ex,
2444 			      long long *partial_cluster,
2445 			      ext4_lblk_t from, ext4_lblk_t to)
2446 {
2447 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2448 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2449 	ext4_fsblk_t pblk;
2450 	int flags = get_default_free_blocks_flags(inode);
2451 
2452 	/*
2453 	 * For bigalloc file systems, we never free a partial cluster
2454 	 * at the beginning of the extent.  Instead, we make a note
2455 	 * that we tried freeing the cluster, and check to see if we
2456 	 * need to free it on a subsequent call to ext4_remove_blocks,
2457 	 * or at the end of the ext4_truncate() operation.
2458 	 */
2459 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2460 
2461 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2462 	/*
2463 	 * If we have a partial cluster, and it's different from the
2464 	 * cluster of the last block, we need to explicitly free the
2465 	 * partial cluster here.
2466 	 */
2467 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2468 	if ((*partial_cluster > 0) &&
2469 	    (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2470 		ext4_free_blocks(handle, inode, NULL,
2471 				 EXT4_C2B(sbi, *partial_cluster),
2472 				 sbi->s_cluster_ratio, flags);
2473 		*partial_cluster = 0;
2474 	}
2475 
2476 #ifdef EXTENTS_STATS
2477 	{
2478 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2479 		spin_lock(&sbi->s_ext_stats_lock);
2480 		sbi->s_ext_blocks += ee_len;
2481 		sbi->s_ext_extents++;
2482 		if (ee_len < sbi->s_ext_min)
2483 			sbi->s_ext_min = ee_len;
2484 		if (ee_len > sbi->s_ext_max)
2485 			sbi->s_ext_max = ee_len;
2486 		if (ext_depth(inode) > sbi->s_depth_max)
2487 			sbi->s_depth_max = ext_depth(inode);
2488 		spin_unlock(&sbi->s_ext_stats_lock);
2489 	}
2490 #endif
2491 	if (from >= le32_to_cpu(ex->ee_block)
2492 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2493 		/* tail removal */
2494 		ext4_lblk_t num;
2495 		unsigned int unaligned;
2496 
2497 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2498 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2499 		/*
2500 		 * Usually we want to free partial cluster at the end of the
2501 		 * extent, except for the situation when the cluster is still
2502 		 * used by any other extent (partial_cluster is negative).
2503 		 */
2504 		if (*partial_cluster < 0 &&
2505 		    -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2506 			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2507 
2508 		ext_debug("free last %u blocks starting %llu partial %lld\n",
2509 			  num, pblk, *partial_cluster);
2510 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2511 		/*
2512 		 * If the block range to be freed didn't start at the
2513 		 * beginning of a cluster, and we removed the entire
2514 		 * extent and the cluster is not used by any other extent,
2515 		 * save the partial cluster here, since we might need to
2516 		 * delete if we determine that the truncate operation has
2517 		 * removed all of the blocks in the cluster.
2518 		 *
2519 		 * On the other hand, if we did not manage to free the whole
2520 		 * extent, we have to mark the cluster as used (store negative
2521 		 * cluster number in partial_cluster).
2522 		 */
2523 		unaligned = EXT4_PBLK_COFF(sbi, pblk);
2524 		if (unaligned && (ee_len == num) &&
2525 		    (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2526 			*partial_cluster = EXT4_B2C(sbi, pblk);
2527 		else if (unaligned)
2528 			*partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2529 		else if (*partial_cluster > 0)
2530 			*partial_cluster = 0;
2531 	} else
2532 		ext4_error(sbi->s_sb, "strange request: removal(2) "
2533 			   "%u-%u from %u:%u\n",
2534 			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2535 	return 0;
2536 }
2537 
2538 
2539 /*
2540  * ext4_ext_rm_leaf() Removes the extents associated with the
2541  * blocks appearing between "start" and "end", and splits the extents
2542  * if "start" and "end" appear in the same extent
2543  *
2544  * @handle: The journal handle
2545  * @inode:  The files inode
2546  * @path:   The path to the leaf
2547  * @partial_cluster: The cluster which we'll have to free if all extents
2548  *                   has been released from it. It gets negative in case
2549  *                   that the cluster is still used.
2550  * @start:  The first block to remove
2551  * @end:   The last block to remove
2552  */
2553 static int
2554 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2555 		 struct ext4_ext_path *path,
2556 		 long long *partial_cluster,
2557 		 ext4_lblk_t start, ext4_lblk_t end)
2558 {
2559 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2560 	int err = 0, correct_index = 0;
2561 	int depth = ext_depth(inode), credits;
2562 	struct ext4_extent_header *eh;
2563 	ext4_lblk_t a, b;
2564 	unsigned num;
2565 	ext4_lblk_t ex_ee_block;
2566 	unsigned short ex_ee_len;
2567 	unsigned uninitialized = 0;
2568 	struct ext4_extent *ex;
2569 	ext4_fsblk_t pblk;
2570 
2571 	/* the header must be checked already in ext4_ext_remove_space() */
2572 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2573 	if (!path[depth].p_hdr)
2574 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2575 	eh = path[depth].p_hdr;
2576 	if (unlikely(path[depth].p_hdr == NULL)) {
2577 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2578 		return -EIO;
2579 	}
2580 	/* find where to start removing */
2581 	ex = path[depth].p_ext;
2582 	if (!ex)
2583 		ex = EXT_LAST_EXTENT(eh);
2584 
2585 	ex_ee_block = le32_to_cpu(ex->ee_block);
2586 	ex_ee_len = ext4_ext_get_actual_len(ex);
2587 
2588 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2589 
2590 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2591 			ex_ee_block + ex_ee_len > start) {
2592 
2593 		if (ext4_ext_is_uninitialized(ex))
2594 			uninitialized = 1;
2595 		else
2596 			uninitialized = 0;
2597 
2598 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2599 			 uninitialized, ex_ee_len);
2600 		path[depth].p_ext = ex;
2601 
2602 		a = ex_ee_block > start ? ex_ee_block : start;
2603 		b = ex_ee_block+ex_ee_len - 1 < end ?
2604 			ex_ee_block+ex_ee_len - 1 : end;
2605 
2606 		ext_debug("  border %u:%u\n", a, b);
2607 
2608 		/* If this extent is beyond the end of the hole, skip it */
2609 		if (end < ex_ee_block) {
2610 			/*
2611 			 * We're going to skip this extent and move to another,
2612 			 * so if this extent is not cluster aligned we have
2613 			 * to mark the current cluster as used to avoid
2614 			 * accidentally freeing it later on
2615 			 */
2616 			pblk = ext4_ext_pblock(ex);
2617 			if (EXT4_PBLK_COFF(sbi, pblk))
2618 				*partial_cluster =
2619 					-((long long)EXT4_B2C(sbi, pblk));
2620 			ex--;
2621 			ex_ee_block = le32_to_cpu(ex->ee_block);
2622 			ex_ee_len = ext4_ext_get_actual_len(ex);
2623 			continue;
2624 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2625 			EXT4_ERROR_INODE(inode,
2626 					 "can not handle truncate %u:%u "
2627 					 "on extent %u:%u",
2628 					 start, end, ex_ee_block,
2629 					 ex_ee_block + ex_ee_len - 1);
2630 			err = -EIO;
2631 			goto out;
2632 		} else if (a != ex_ee_block) {
2633 			/* remove tail of the extent */
2634 			num = a - ex_ee_block;
2635 		} else {
2636 			/* remove whole extent: excellent! */
2637 			num = 0;
2638 		}
2639 		/*
2640 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2641 		 * descriptor) for each block group; assume two block
2642 		 * groups plus ex_ee_len/blocks_per_block_group for
2643 		 * the worst case
2644 		 */
2645 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2646 		if (ex == EXT_FIRST_EXTENT(eh)) {
2647 			correct_index = 1;
2648 			credits += (ext_depth(inode)) + 1;
2649 		}
2650 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2651 
2652 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2653 		if (err)
2654 			goto out;
2655 
2656 		err = ext4_ext_get_access(handle, inode, path + depth);
2657 		if (err)
2658 			goto out;
2659 
2660 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2661 					 a, b);
2662 		if (err)
2663 			goto out;
2664 
2665 		if (num == 0)
2666 			/* this extent is removed; mark slot entirely unused */
2667 			ext4_ext_store_pblock(ex, 0);
2668 
2669 		ex->ee_len = cpu_to_le16(num);
2670 		/*
2671 		 * Do not mark uninitialized if all the blocks in the
2672 		 * extent have been removed.
2673 		 */
2674 		if (uninitialized && num)
2675 			ext4_ext_mark_uninitialized(ex);
2676 		/*
2677 		 * If the extent was completely released,
2678 		 * we need to remove it from the leaf
2679 		 */
2680 		if (num == 0) {
2681 			if (end != EXT_MAX_BLOCKS - 1) {
2682 				/*
2683 				 * For hole punching, we need to scoot all the
2684 				 * extents up when an extent is removed so that
2685 				 * we dont have blank extents in the middle
2686 				 */
2687 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2688 					sizeof(struct ext4_extent));
2689 
2690 				/* Now get rid of the one at the end */
2691 				memset(EXT_LAST_EXTENT(eh), 0,
2692 					sizeof(struct ext4_extent));
2693 			}
2694 			le16_add_cpu(&eh->eh_entries, -1);
2695 		} else if (*partial_cluster > 0)
2696 			*partial_cluster = 0;
2697 
2698 		err = ext4_ext_dirty(handle, inode, path + depth);
2699 		if (err)
2700 			goto out;
2701 
2702 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2703 				ext4_ext_pblock(ex));
2704 		ex--;
2705 		ex_ee_block = le32_to_cpu(ex->ee_block);
2706 		ex_ee_len = ext4_ext_get_actual_len(ex);
2707 	}
2708 
2709 	if (correct_index && eh->eh_entries)
2710 		err = ext4_ext_correct_indexes(handle, inode, path);
2711 
2712 	/*
2713 	 * Free the partial cluster only if the current extent does not
2714 	 * reference it. Otherwise we might free used cluster.
2715 	 */
2716 	if (*partial_cluster > 0 &&
2717 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2718 	     *partial_cluster)) {
2719 		int flags = get_default_free_blocks_flags(inode);
2720 
2721 		ext4_free_blocks(handle, inode, NULL,
2722 				 EXT4_C2B(sbi, *partial_cluster),
2723 				 sbi->s_cluster_ratio, flags);
2724 		*partial_cluster = 0;
2725 	}
2726 
2727 	/* if this leaf is free, then we should
2728 	 * remove it from index block above */
2729 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2730 		err = ext4_ext_rm_idx(handle, inode, path, depth);
2731 
2732 out:
2733 	return err;
2734 }
2735 
2736 /*
2737  * ext4_ext_more_to_rm:
2738  * returns 1 if current index has to be freed (even partial)
2739  */
2740 static int
2741 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2742 {
2743 	BUG_ON(path->p_idx == NULL);
2744 
2745 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2746 		return 0;
2747 
2748 	/*
2749 	 * if truncate on deeper level happened, it wasn't partial,
2750 	 * so we have to consider current index for truncation
2751 	 */
2752 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2753 		return 0;
2754 	return 1;
2755 }
2756 
2757 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2758 			  ext4_lblk_t end)
2759 {
2760 	struct super_block *sb = inode->i_sb;
2761 	int depth = ext_depth(inode);
2762 	struct ext4_ext_path *path = NULL;
2763 	long long partial_cluster = 0;
2764 	handle_t *handle;
2765 	int i = 0, err = 0;
2766 
2767 	ext_debug("truncate since %u to %u\n", start, end);
2768 
2769 	/* probably first extent we're gonna free will be last in block */
2770 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2771 	if (IS_ERR(handle))
2772 		return PTR_ERR(handle);
2773 
2774 again:
2775 	trace_ext4_ext_remove_space(inode, start, end, depth);
2776 
2777 	/*
2778 	 * Check if we are removing extents inside the extent tree. If that
2779 	 * is the case, we are going to punch a hole inside the extent tree
2780 	 * so we have to check whether we need to split the extent covering
2781 	 * the last block to remove so we can easily remove the part of it
2782 	 * in ext4_ext_rm_leaf().
2783 	 */
2784 	if (end < EXT_MAX_BLOCKS - 1) {
2785 		struct ext4_extent *ex;
2786 		ext4_lblk_t ee_block;
2787 
2788 		/* find extent for this block */
2789 		path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2790 		if (IS_ERR(path)) {
2791 			ext4_journal_stop(handle);
2792 			return PTR_ERR(path);
2793 		}
2794 		depth = ext_depth(inode);
2795 		/* Leaf not may not exist only if inode has no blocks at all */
2796 		ex = path[depth].p_ext;
2797 		if (!ex) {
2798 			if (depth) {
2799 				EXT4_ERROR_INODE(inode,
2800 						 "path[%d].p_hdr == NULL",
2801 						 depth);
2802 				err = -EIO;
2803 			}
2804 			goto out;
2805 		}
2806 
2807 		ee_block = le32_to_cpu(ex->ee_block);
2808 
2809 		/*
2810 		 * See if the last block is inside the extent, if so split
2811 		 * the extent at 'end' block so we can easily remove the
2812 		 * tail of the first part of the split extent in
2813 		 * ext4_ext_rm_leaf().
2814 		 */
2815 		if (end >= ee_block &&
2816 		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2817 			int split_flag = 0;
2818 
2819 			if (ext4_ext_is_uninitialized(ex))
2820 				split_flag = EXT4_EXT_MARK_UNINIT1 |
2821 					     EXT4_EXT_MARK_UNINIT2;
2822 
2823 			/*
2824 			 * Split the extent in two so that 'end' is the last
2825 			 * block in the first new extent. Also we should not
2826 			 * fail removing space due to ENOSPC so try to use
2827 			 * reserved block if that happens.
2828 			 */
2829 			err = ext4_split_extent_at(handle, inode, path,
2830 					end + 1, split_flag,
2831 					EXT4_EX_NOCACHE |
2832 					EXT4_GET_BLOCKS_PRE_IO |
2833 					EXT4_GET_BLOCKS_METADATA_NOFAIL);
2834 
2835 			if (err < 0)
2836 				goto out;
2837 		}
2838 	}
2839 	/*
2840 	 * We start scanning from right side, freeing all the blocks
2841 	 * after i_size and walking into the tree depth-wise.
2842 	 */
2843 	depth = ext_depth(inode);
2844 	if (path) {
2845 		int k = i = depth;
2846 		while (--k > 0)
2847 			path[k].p_block =
2848 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2849 	} else {
2850 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2851 			       GFP_NOFS);
2852 		if (path == NULL) {
2853 			ext4_journal_stop(handle);
2854 			return -ENOMEM;
2855 		}
2856 		path[0].p_depth = depth;
2857 		path[0].p_hdr = ext_inode_hdr(inode);
2858 		i = 0;
2859 
2860 		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2861 			err = -EIO;
2862 			goto out;
2863 		}
2864 	}
2865 	err = 0;
2866 
2867 	while (i >= 0 && err == 0) {
2868 		if (i == depth) {
2869 			/* this is leaf block */
2870 			err = ext4_ext_rm_leaf(handle, inode, path,
2871 					       &partial_cluster, start,
2872 					       end);
2873 			/* root level has p_bh == NULL, brelse() eats this */
2874 			brelse(path[i].p_bh);
2875 			path[i].p_bh = NULL;
2876 			i--;
2877 			continue;
2878 		}
2879 
2880 		/* this is index block */
2881 		if (!path[i].p_hdr) {
2882 			ext_debug("initialize header\n");
2883 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2884 		}
2885 
2886 		if (!path[i].p_idx) {
2887 			/* this level hasn't been touched yet */
2888 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2889 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2890 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2891 				  path[i].p_hdr,
2892 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2893 		} else {
2894 			/* we were already here, see at next index */
2895 			path[i].p_idx--;
2896 		}
2897 
2898 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2899 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2900 				path[i].p_idx);
2901 		if (ext4_ext_more_to_rm(path + i)) {
2902 			struct buffer_head *bh;
2903 			/* go to the next level */
2904 			ext_debug("move to level %d (block %llu)\n",
2905 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2906 			memset(path + i + 1, 0, sizeof(*path));
2907 			bh = read_extent_tree_block(inode,
2908 				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2909 				EXT4_EX_NOCACHE);
2910 			if (IS_ERR(bh)) {
2911 				/* should we reset i_size? */
2912 				err = PTR_ERR(bh);
2913 				break;
2914 			}
2915 			/* Yield here to deal with large extent trees.
2916 			 * Should be a no-op if we did IO above. */
2917 			cond_resched();
2918 			if (WARN_ON(i + 1 > depth)) {
2919 				err = -EIO;
2920 				break;
2921 			}
2922 			path[i + 1].p_bh = bh;
2923 
2924 			/* save actual number of indexes since this
2925 			 * number is changed at the next iteration */
2926 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2927 			i++;
2928 		} else {
2929 			/* we finished processing this index, go up */
2930 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2931 				/* index is empty, remove it;
2932 				 * handle must be already prepared by the
2933 				 * truncatei_leaf() */
2934 				err = ext4_ext_rm_idx(handle, inode, path, i);
2935 			}
2936 			/* root level has p_bh == NULL, brelse() eats this */
2937 			brelse(path[i].p_bh);
2938 			path[i].p_bh = NULL;
2939 			i--;
2940 			ext_debug("return to level %d\n", i);
2941 		}
2942 	}
2943 
2944 	trace_ext4_ext_remove_space_done(inode, start, end, depth,
2945 			partial_cluster, path->p_hdr->eh_entries);
2946 
2947 	/* If we still have something in the partial cluster and we have removed
2948 	 * even the first extent, then we should free the blocks in the partial
2949 	 * cluster as well. */
2950 	if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2951 		int flags = get_default_free_blocks_flags(inode);
2952 
2953 		ext4_free_blocks(handle, inode, NULL,
2954 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2955 				 EXT4_SB(sb)->s_cluster_ratio, flags);
2956 		partial_cluster = 0;
2957 	}
2958 
2959 	/* TODO: flexible tree reduction should be here */
2960 	if (path->p_hdr->eh_entries == 0) {
2961 		/*
2962 		 * truncate to zero freed all the tree,
2963 		 * so we need to correct eh_depth
2964 		 */
2965 		err = ext4_ext_get_access(handle, inode, path);
2966 		if (err == 0) {
2967 			ext_inode_hdr(inode)->eh_depth = 0;
2968 			ext_inode_hdr(inode)->eh_max =
2969 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2970 			err = ext4_ext_dirty(handle, inode, path);
2971 		}
2972 	}
2973 out:
2974 	ext4_ext_drop_refs(path);
2975 	kfree(path);
2976 	if (err == -EAGAIN) {
2977 		path = NULL;
2978 		goto again;
2979 	}
2980 	ext4_journal_stop(handle);
2981 
2982 	return err;
2983 }
2984 
2985 /*
2986  * called at mount time
2987  */
2988 void ext4_ext_init(struct super_block *sb)
2989 {
2990 	/*
2991 	 * possible initialization would be here
2992 	 */
2993 
2994 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2995 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2996 		printk(KERN_INFO "EXT4-fs: file extents enabled"
2997 #ifdef AGGRESSIVE_TEST
2998 		       ", aggressive tests"
2999 #endif
3000 #ifdef CHECK_BINSEARCH
3001 		       ", check binsearch"
3002 #endif
3003 #ifdef EXTENTS_STATS
3004 		       ", stats"
3005 #endif
3006 		       "\n");
3007 #endif
3008 #ifdef EXTENTS_STATS
3009 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3010 		EXT4_SB(sb)->s_ext_min = 1 << 30;
3011 		EXT4_SB(sb)->s_ext_max = 0;
3012 #endif
3013 	}
3014 }
3015 
3016 /*
3017  * called at umount time
3018  */
3019 void ext4_ext_release(struct super_block *sb)
3020 {
3021 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3022 		return;
3023 
3024 #ifdef EXTENTS_STATS
3025 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3026 		struct ext4_sb_info *sbi = EXT4_SB(sb);
3027 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3028 			sbi->s_ext_blocks, sbi->s_ext_extents,
3029 			sbi->s_ext_blocks / sbi->s_ext_extents);
3030 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3031 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3032 	}
3033 #endif
3034 }
3035 
3036 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3037 {
3038 	ext4_lblk_t  ee_block;
3039 	ext4_fsblk_t ee_pblock;
3040 	unsigned int ee_len;
3041 
3042 	ee_block  = le32_to_cpu(ex->ee_block);
3043 	ee_len    = ext4_ext_get_actual_len(ex);
3044 	ee_pblock = ext4_ext_pblock(ex);
3045 
3046 	if (ee_len == 0)
3047 		return 0;
3048 
3049 	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3050 				     EXTENT_STATUS_WRITTEN);
3051 }
3052 
3053 /* FIXME!! we need to try to merge to left or right after zero-out  */
3054 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3055 {
3056 	ext4_fsblk_t ee_pblock;
3057 	unsigned int ee_len;
3058 	int ret;
3059 
3060 	ee_len    = ext4_ext_get_actual_len(ex);
3061 	ee_pblock = ext4_ext_pblock(ex);
3062 
3063 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3064 	if (ret > 0)
3065 		ret = 0;
3066 
3067 	return ret;
3068 }
3069 
3070 /*
3071  * ext4_split_extent_at() splits an extent at given block.
3072  *
3073  * @handle: the journal handle
3074  * @inode: the file inode
3075  * @path: the path to the extent
3076  * @split: the logical block where the extent is splitted.
3077  * @split_flags: indicates if the extent could be zeroout if split fails, and
3078  *		 the states(init or uninit) of new extents.
3079  * @flags: flags used to insert new extent to extent tree.
3080  *
3081  *
3082  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3083  * of which are deterimined by split_flag.
3084  *
3085  * There are two cases:
3086  *  a> the extent are splitted into two extent.
3087  *  b> split is not needed, and just mark the extent.
3088  *
3089  * return 0 on success.
3090  */
3091 static int ext4_split_extent_at(handle_t *handle,
3092 			     struct inode *inode,
3093 			     struct ext4_ext_path *path,
3094 			     ext4_lblk_t split,
3095 			     int split_flag,
3096 			     int flags)
3097 {
3098 	ext4_fsblk_t newblock;
3099 	ext4_lblk_t ee_block;
3100 	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3101 	struct ext4_extent *ex2 = NULL;
3102 	unsigned int ee_len, depth;
3103 	int err = 0;
3104 
3105 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3106 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3107 
3108 	ext_debug("ext4_split_extents_at: inode %lu, logical"
3109 		"block %llu\n", inode->i_ino, (unsigned long long)split);
3110 
3111 	ext4_ext_show_leaf(inode, path);
3112 
3113 	depth = ext_depth(inode);
3114 	ex = path[depth].p_ext;
3115 	ee_block = le32_to_cpu(ex->ee_block);
3116 	ee_len = ext4_ext_get_actual_len(ex);
3117 	newblock = split - ee_block + ext4_ext_pblock(ex);
3118 
3119 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3120 	BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3121 	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3122 			     EXT4_EXT_MARK_UNINIT1 |
3123 			     EXT4_EXT_MARK_UNINIT2));
3124 
3125 	err = ext4_ext_get_access(handle, inode, path + depth);
3126 	if (err)
3127 		goto out;
3128 
3129 	if (split == ee_block) {
3130 		/*
3131 		 * case b: block @split is the block that the extent begins with
3132 		 * then we just change the state of the extent, and splitting
3133 		 * is not needed.
3134 		 */
3135 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3136 			ext4_ext_mark_uninitialized(ex);
3137 		else
3138 			ext4_ext_mark_initialized(ex);
3139 
3140 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3141 			ext4_ext_try_to_merge(handle, inode, path, ex);
3142 
3143 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3144 		goto out;
3145 	}
3146 
3147 	/* case a */
3148 	memcpy(&orig_ex, ex, sizeof(orig_ex));
3149 	ex->ee_len = cpu_to_le16(split - ee_block);
3150 	if (split_flag & EXT4_EXT_MARK_UNINIT1)
3151 		ext4_ext_mark_uninitialized(ex);
3152 
3153 	/*
3154 	 * path may lead to new leaf, not to original leaf any more
3155 	 * after ext4_ext_insert_extent() returns,
3156 	 */
3157 	err = ext4_ext_dirty(handle, inode, path + depth);
3158 	if (err)
3159 		goto fix_extent_len;
3160 
3161 	ex2 = &newex;
3162 	ex2->ee_block = cpu_to_le32(split);
3163 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3164 	ext4_ext_store_pblock(ex2, newblock);
3165 	if (split_flag & EXT4_EXT_MARK_UNINIT2)
3166 		ext4_ext_mark_uninitialized(ex2);
3167 
3168 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3169 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3170 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3171 			if (split_flag & EXT4_EXT_DATA_VALID1) {
3172 				err = ext4_ext_zeroout(inode, ex2);
3173 				zero_ex.ee_block = ex2->ee_block;
3174 				zero_ex.ee_len = cpu_to_le16(
3175 						ext4_ext_get_actual_len(ex2));
3176 				ext4_ext_store_pblock(&zero_ex,
3177 						      ext4_ext_pblock(ex2));
3178 			} else {
3179 				err = ext4_ext_zeroout(inode, ex);
3180 				zero_ex.ee_block = ex->ee_block;
3181 				zero_ex.ee_len = cpu_to_le16(
3182 						ext4_ext_get_actual_len(ex));
3183 				ext4_ext_store_pblock(&zero_ex,
3184 						      ext4_ext_pblock(ex));
3185 			}
3186 		} else {
3187 			err = ext4_ext_zeroout(inode, &orig_ex);
3188 			zero_ex.ee_block = orig_ex.ee_block;
3189 			zero_ex.ee_len = cpu_to_le16(
3190 						ext4_ext_get_actual_len(&orig_ex));
3191 			ext4_ext_store_pblock(&zero_ex,
3192 					      ext4_ext_pblock(&orig_ex));
3193 		}
3194 
3195 		if (err)
3196 			goto fix_extent_len;
3197 		/* update the extent length and mark as initialized */
3198 		ex->ee_len = cpu_to_le16(ee_len);
3199 		ext4_ext_try_to_merge(handle, inode, path, ex);
3200 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3201 		if (err)
3202 			goto fix_extent_len;
3203 
3204 		/* update extent status tree */
3205 		err = ext4_zeroout_es(inode, &zero_ex);
3206 
3207 		goto out;
3208 	} else if (err)
3209 		goto fix_extent_len;
3210 
3211 out:
3212 	ext4_ext_show_leaf(inode, path);
3213 	return err;
3214 
3215 fix_extent_len:
3216 	ex->ee_len = orig_ex.ee_len;
3217 	ext4_ext_dirty(handle, inode, path + depth);
3218 	return err;
3219 }
3220 
3221 /*
3222  * ext4_split_extents() splits an extent and mark extent which is covered
3223  * by @map as split_flags indicates
3224  *
3225  * It may result in splitting the extent into multiple extents (up to three)
3226  * There are three possibilities:
3227  *   a> There is no split required
3228  *   b> Splits in two extents: Split is happening at either end of the extent
3229  *   c> Splits in three extents: Somone is splitting in middle of the extent
3230  *
3231  */
3232 static int ext4_split_extent(handle_t *handle,
3233 			      struct inode *inode,
3234 			      struct ext4_ext_path *path,
3235 			      struct ext4_map_blocks *map,
3236 			      int split_flag,
3237 			      int flags)
3238 {
3239 	ext4_lblk_t ee_block;
3240 	struct ext4_extent *ex;
3241 	unsigned int ee_len, depth;
3242 	int err = 0;
3243 	int uninitialized;
3244 	int split_flag1, flags1;
3245 	int allocated = map->m_len;
3246 
3247 	depth = ext_depth(inode);
3248 	ex = path[depth].p_ext;
3249 	ee_block = le32_to_cpu(ex->ee_block);
3250 	ee_len = ext4_ext_get_actual_len(ex);
3251 	uninitialized = ext4_ext_is_uninitialized(ex);
3252 
3253 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3254 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3255 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3256 		if (uninitialized)
3257 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3258 				       EXT4_EXT_MARK_UNINIT2;
3259 		if (split_flag & EXT4_EXT_DATA_VALID2)
3260 			split_flag1 |= EXT4_EXT_DATA_VALID1;
3261 		err = ext4_split_extent_at(handle, inode, path,
3262 				map->m_lblk + map->m_len, split_flag1, flags1);
3263 		if (err)
3264 			goto out;
3265 	} else {
3266 		allocated = ee_len - (map->m_lblk - ee_block);
3267 	}
3268 	/*
3269 	 * Update path is required because previous ext4_split_extent_at() may
3270 	 * result in split of original leaf or extent zeroout.
3271 	 */
3272 	ext4_ext_drop_refs(path);
3273 	path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3274 	if (IS_ERR(path))
3275 		return PTR_ERR(path);
3276 	depth = ext_depth(inode);
3277 	ex = path[depth].p_ext;
3278 	uninitialized = ext4_ext_is_uninitialized(ex);
3279 	split_flag1 = 0;
3280 
3281 	if (map->m_lblk >= ee_block) {
3282 		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3283 		if (uninitialized) {
3284 			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3285 			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3286 						     EXT4_EXT_MARK_UNINIT2);
3287 		}
3288 		err = ext4_split_extent_at(handle, inode, path,
3289 				map->m_lblk, split_flag1, flags);
3290 		if (err)
3291 			goto out;
3292 	}
3293 
3294 	ext4_ext_show_leaf(inode, path);
3295 out:
3296 	return err ? err : allocated;
3297 }
3298 
3299 /*
3300  * This function is called by ext4_ext_map_blocks() if someone tries to write
3301  * to an uninitialized extent. It may result in splitting the uninitialized
3302  * extent into multiple extents (up to three - one initialized and two
3303  * uninitialized).
3304  * There are three possibilities:
3305  *   a> There is no split required: Entire extent should be initialized
3306  *   b> Splits in two extents: Write is happening at either end of the extent
3307  *   c> Splits in three extents: Somone is writing in middle of the extent
3308  *
3309  * Pre-conditions:
3310  *  - The extent pointed to by 'path' is uninitialized.
3311  *  - The extent pointed to by 'path' contains a superset
3312  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3313  *
3314  * Post-conditions on success:
3315  *  - the returned value is the number of blocks beyond map->l_lblk
3316  *    that are allocated and initialized.
3317  *    It is guaranteed to be >= map->m_len.
3318  */
3319 static int ext4_ext_convert_to_initialized(handle_t *handle,
3320 					   struct inode *inode,
3321 					   struct ext4_map_blocks *map,
3322 					   struct ext4_ext_path *path,
3323 					   int flags)
3324 {
3325 	struct ext4_sb_info *sbi;
3326 	struct ext4_extent_header *eh;
3327 	struct ext4_map_blocks split_map;
3328 	struct ext4_extent zero_ex;
3329 	struct ext4_extent *ex, *abut_ex;
3330 	ext4_lblk_t ee_block, eof_block;
3331 	unsigned int ee_len, depth, map_len = map->m_len;
3332 	int allocated = 0, max_zeroout = 0;
3333 	int err = 0;
3334 	int split_flag = 0;
3335 
3336 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3337 		"block %llu, max_blocks %u\n", inode->i_ino,
3338 		(unsigned long long)map->m_lblk, map_len);
3339 
3340 	sbi = EXT4_SB(inode->i_sb);
3341 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3342 		inode->i_sb->s_blocksize_bits;
3343 	if (eof_block < map->m_lblk + map_len)
3344 		eof_block = map->m_lblk + map_len;
3345 
3346 	depth = ext_depth(inode);
3347 	eh = path[depth].p_hdr;
3348 	ex = path[depth].p_ext;
3349 	ee_block = le32_to_cpu(ex->ee_block);
3350 	ee_len = ext4_ext_get_actual_len(ex);
3351 	zero_ex.ee_len = 0;
3352 
3353 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3354 
3355 	/* Pre-conditions */
3356 	BUG_ON(!ext4_ext_is_uninitialized(ex));
3357 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3358 
3359 	/*
3360 	 * Attempt to transfer newly initialized blocks from the currently
3361 	 * uninitialized extent to its neighbor. This is much cheaper
3362 	 * than an insertion followed by a merge as those involve costly
3363 	 * memmove() calls. Transferring to the left is the common case in
3364 	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3365 	 * followed by append writes.
3366 	 *
3367 	 * Limitations of the current logic:
3368 	 *  - L1: we do not deal with writes covering the whole extent.
3369 	 *    This would require removing the extent if the transfer
3370 	 *    is possible.
3371 	 *  - L2: we only attempt to merge with an extent stored in the
3372 	 *    same extent tree node.
3373 	 */
3374 	if ((map->m_lblk == ee_block) &&
3375 		/* See if we can merge left */
3376 		(map_len < ee_len) &&		/*L1*/
3377 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3378 		ext4_lblk_t prev_lblk;
3379 		ext4_fsblk_t prev_pblk, ee_pblk;
3380 		unsigned int prev_len;
3381 
3382 		abut_ex = ex - 1;
3383 		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3384 		prev_len = ext4_ext_get_actual_len(abut_ex);
3385 		prev_pblk = ext4_ext_pblock(abut_ex);
3386 		ee_pblk = ext4_ext_pblock(ex);
3387 
3388 		/*
3389 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3390 		 * upon those conditions:
3391 		 * - C1: abut_ex is initialized,
3392 		 * - C2: abut_ex is logically abutting ex,
3393 		 * - C3: abut_ex is physically abutting ex,
3394 		 * - C4: abut_ex can receive the additional blocks without
3395 		 *   overflowing the (initialized) length limit.
3396 		 */
3397 		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3398 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3399 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3400 			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3401 			err = ext4_ext_get_access(handle, inode, path + depth);
3402 			if (err)
3403 				goto out;
3404 
3405 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3406 				map, ex, abut_ex);
3407 
3408 			/* Shift the start of ex by 'map_len' blocks */
3409 			ex->ee_block = cpu_to_le32(ee_block + map_len);
3410 			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3411 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3412 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3413 
3414 			/* Extend abut_ex by 'map_len' blocks */
3415 			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3416 
3417 			/* Result: number of initialized blocks past m_lblk */
3418 			allocated = map_len;
3419 		}
3420 	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3421 		   (map_len < ee_len) &&	/*L1*/
3422 		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3423 		/* See if we can merge right */
3424 		ext4_lblk_t next_lblk;
3425 		ext4_fsblk_t next_pblk, ee_pblk;
3426 		unsigned int next_len;
3427 
3428 		abut_ex = ex + 1;
3429 		next_lblk = le32_to_cpu(abut_ex->ee_block);
3430 		next_len = ext4_ext_get_actual_len(abut_ex);
3431 		next_pblk = ext4_ext_pblock(abut_ex);
3432 		ee_pblk = ext4_ext_pblock(ex);
3433 
3434 		/*
3435 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3436 		 * upon those conditions:
3437 		 * - C1: abut_ex is initialized,
3438 		 * - C2: abut_ex is logically abutting ex,
3439 		 * - C3: abut_ex is physically abutting ex,
3440 		 * - C4: abut_ex can receive the additional blocks without
3441 		 *   overflowing the (initialized) length limit.
3442 		 */
3443 		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3444 		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3445 		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3446 		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3447 			err = ext4_ext_get_access(handle, inode, path + depth);
3448 			if (err)
3449 				goto out;
3450 
3451 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3452 				map, ex, abut_ex);
3453 
3454 			/* Shift the start of abut_ex by 'map_len' blocks */
3455 			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3456 			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3457 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3458 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3459 
3460 			/* Extend abut_ex by 'map_len' blocks */
3461 			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3462 
3463 			/* Result: number of initialized blocks past m_lblk */
3464 			allocated = map_len;
3465 		}
3466 	}
3467 	if (allocated) {
3468 		/* Mark the block containing both extents as dirty */
3469 		ext4_ext_dirty(handle, inode, path + depth);
3470 
3471 		/* Update path to point to the right extent */
3472 		path[depth].p_ext = abut_ex;
3473 		goto out;
3474 	} else
3475 		allocated = ee_len - (map->m_lblk - ee_block);
3476 
3477 	WARN_ON(map->m_lblk < ee_block);
3478 	/*
3479 	 * It is safe to convert extent to initialized via explicit
3480 	 * zeroout only if extent is fully inside i_size or new_size.
3481 	 */
3482 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3483 
3484 	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3485 		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3486 			(inode->i_sb->s_blocksize_bits - 10);
3487 
3488 	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3489 	if (max_zeroout && (ee_len <= max_zeroout)) {
3490 		err = ext4_ext_zeroout(inode, ex);
3491 		if (err)
3492 			goto out;
3493 		zero_ex.ee_block = ex->ee_block;
3494 		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3495 		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3496 
3497 		err = ext4_ext_get_access(handle, inode, path + depth);
3498 		if (err)
3499 			goto out;
3500 		ext4_ext_mark_initialized(ex);
3501 		ext4_ext_try_to_merge(handle, inode, path, ex);
3502 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3503 		goto out;
3504 	}
3505 
3506 	/*
3507 	 * four cases:
3508 	 * 1. split the extent into three extents.
3509 	 * 2. split the extent into two extents, zeroout the first half.
3510 	 * 3. split the extent into two extents, zeroout the second half.
3511 	 * 4. split the extent into two extents with out zeroout.
3512 	 */
3513 	split_map.m_lblk = map->m_lblk;
3514 	split_map.m_len = map->m_len;
3515 
3516 	if (max_zeroout && (allocated > map->m_len)) {
3517 		if (allocated <= max_zeroout) {
3518 			/* case 3 */
3519 			zero_ex.ee_block =
3520 					 cpu_to_le32(map->m_lblk);
3521 			zero_ex.ee_len = cpu_to_le16(allocated);
3522 			ext4_ext_store_pblock(&zero_ex,
3523 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3524 			err = ext4_ext_zeroout(inode, &zero_ex);
3525 			if (err)
3526 				goto out;
3527 			split_map.m_lblk = map->m_lblk;
3528 			split_map.m_len = allocated;
3529 		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3530 			/* case 2 */
3531 			if (map->m_lblk != ee_block) {
3532 				zero_ex.ee_block = ex->ee_block;
3533 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3534 							ee_block);
3535 				ext4_ext_store_pblock(&zero_ex,
3536 						      ext4_ext_pblock(ex));
3537 				err = ext4_ext_zeroout(inode, &zero_ex);
3538 				if (err)
3539 					goto out;
3540 			}
3541 
3542 			split_map.m_lblk = ee_block;
3543 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3544 			allocated = map->m_len;
3545 		}
3546 	}
3547 
3548 	allocated = ext4_split_extent(handle, inode, path,
3549 				      &split_map, split_flag, flags);
3550 	if (allocated < 0)
3551 		err = allocated;
3552 
3553 out:
3554 	/* If we have gotten a failure, don't zero out status tree */
3555 	if (!err)
3556 		err = ext4_zeroout_es(inode, &zero_ex);
3557 	return err ? err : allocated;
3558 }
3559 
3560 /*
3561  * This function is called by ext4_ext_map_blocks() from
3562  * ext4_get_blocks_dio_write() when DIO to write
3563  * to an uninitialized extent.
3564  *
3565  * Writing to an uninitialized extent may result in splitting the uninitialized
3566  * extent into multiple initialized/uninitialized extents (up to three)
3567  * There are three possibilities:
3568  *   a> There is no split required: Entire extent should be uninitialized
3569  *   b> Splits in two extents: Write is happening at either end of the extent
3570  *   c> Splits in three extents: Somone is writing in middle of the extent
3571  *
3572  * One of more index blocks maybe needed if the extent tree grow after
3573  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3574  * complete, we need to split the uninitialized extent before DIO submit
3575  * the IO. The uninitialized extent called at this time will be split
3576  * into three uninitialized extent(at most). After IO complete, the part
3577  * being filled will be convert to initialized by the end_io callback function
3578  * via ext4_convert_unwritten_extents().
3579  *
3580  * Returns the size of uninitialized extent to be written on success.
3581  */
3582 static int ext4_split_unwritten_extents(handle_t *handle,
3583 					struct inode *inode,
3584 					struct ext4_map_blocks *map,
3585 					struct ext4_ext_path *path,
3586 					int flags)
3587 {
3588 	ext4_lblk_t eof_block;
3589 	ext4_lblk_t ee_block;
3590 	struct ext4_extent *ex;
3591 	unsigned int ee_len;
3592 	int split_flag = 0, depth;
3593 
3594 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3595 		"block %llu, max_blocks %u\n", inode->i_ino,
3596 		(unsigned long long)map->m_lblk, map->m_len);
3597 
3598 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3599 		inode->i_sb->s_blocksize_bits;
3600 	if (eof_block < map->m_lblk + map->m_len)
3601 		eof_block = map->m_lblk + map->m_len;
3602 	/*
3603 	 * It is safe to convert extent to initialized via explicit
3604 	 * zeroout only if extent is fully insde i_size or new_size.
3605 	 */
3606 	depth = ext_depth(inode);
3607 	ex = path[depth].p_ext;
3608 	ee_block = le32_to_cpu(ex->ee_block);
3609 	ee_len = ext4_ext_get_actual_len(ex);
3610 
3611 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3612 	split_flag |= EXT4_EXT_MARK_UNINIT2;
3613 	if (flags & EXT4_GET_BLOCKS_CONVERT)
3614 		split_flag |= EXT4_EXT_DATA_VALID2;
3615 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3616 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3617 }
3618 
3619 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3620 						struct inode *inode,
3621 						struct ext4_map_blocks *map,
3622 						struct ext4_ext_path *path)
3623 {
3624 	struct ext4_extent *ex;
3625 	ext4_lblk_t ee_block;
3626 	unsigned int ee_len;
3627 	int depth;
3628 	int err = 0;
3629 
3630 	depth = ext_depth(inode);
3631 	ex = path[depth].p_ext;
3632 	ee_block = le32_to_cpu(ex->ee_block);
3633 	ee_len = ext4_ext_get_actual_len(ex);
3634 
3635 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3636 		"block %llu, max_blocks %u\n", inode->i_ino,
3637 		  (unsigned long long)ee_block, ee_len);
3638 
3639 	/* If extent is larger than requested it is a clear sign that we still
3640 	 * have some extent state machine issues left. So extent_split is still
3641 	 * required.
3642 	 * TODO: Once all related issues will be fixed this situation should be
3643 	 * illegal.
3644 	 */
3645 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3646 #ifdef EXT4_DEBUG
3647 		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3648 			     " len %u; IO logical block %llu, len %u\n",
3649 			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3650 			     (unsigned long long)map->m_lblk, map->m_len);
3651 #endif
3652 		err = ext4_split_unwritten_extents(handle, inode, map, path,
3653 						   EXT4_GET_BLOCKS_CONVERT);
3654 		if (err < 0)
3655 			goto out;
3656 		ext4_ext_drop_refs(path);
3657 		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3658 		if (IS_ERR(path)) {
3659 			err = PTR_ERR(path);
3660 			goto out;
3661 		}
3662 		depth = ext_depth(inode);
3663 		ex = path[depth].p_ext;
3664 	}
3665 
3666 	err = ext4_ext_get_access(handle, inode, path + depth);
3667 	if (err)
3668 		goto out;
3669 	/* first mark the extent as initialized */
3670 	ext4_ext_mark_initialized(ex);
3671 
3672 	/* note: ext4_ext_correct_indexes() isn't needed here because
3673 	 * borders are not changed
3674 	 */
3675 	ext4_ext_try_to_merge(handle, inode, path, ex);
3676 
3677 	/* Mark modified extent as dirty */
3678 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3679 out:
3680 	ext4_ext_show_leaf(inode, path);
3681 	return err;
3682 }
3683 
3684 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3685 			sector_t block, int count)
3686 {
3687 	int i;
3688 	for (i = 0; i < count; i++)
3689                 unmap_underlying_metadata(bdev, block + i);
3690 }
3691 
3692 /*
3693  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3694  */
3695 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3696 			      ext4_lblk_t lblk,
3697 			      struct ext4_ext_path *path,
3698 			      unsigned int len)
3699 {
3700 	int i, depth;
3701 	struct ext4_extent_header *eh;
3702 	struct ext4_extent *last_ex;
3703 
3704 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3705 		return 0;
3706 
3707 	depth = ext_depth(inode);
3708 	eh = path[depth].p_hdr;
3709 
3710 	/*
3711 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3712 	 * do not care for this case anymore. Simply remove the flag
3713 	 * if there are no extents.
3714 	 */
3715 	if (unlikely(!eh->eh_entries))
3716 		goto out;
3717 	last_ex = EXT_LAST_EXTENT(eh);
3718 	/*
3719 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3720 	 * last block in the last extent in the file.  We test this by
3721 	 * first checking to see if the caller to
3722 	 * ext4_ext_get_blocks() was interested in the last block (or
3723 	 * a block beyond the last block) in the current extent.  If
3724 	 * this turns out to be false, we can bail out from this
3725 	 * function immediately.
3726 	 */
3727 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3728 	    ext4_ext_get_actual_len(last_ex))
3729 		return 0;
3730 	/*
3731 	 * If the caller does appear to be planning to write at or
3732 	 * beyond the end of the current extent, we then test to see
3733 	 * if the current extent is the last extent in the file, by
3734 	 * checking to make sure it was reached via the rightmost node
3735 	 * at each level of the tree.
3736 	 */
3737 	for (i = depth-1; i >= 0; i--)
3738 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3739 			return 0;
3740 out:
3741 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3742 	return ext4_mark_inode_dirty(handle, inode);
3743 }
3744 
3745 /**
3746  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3747  *
3748  * Return 1 if there is a delalloc block in the range, otherwise 0.
3749  */
3750 int ext4_find_delalloc_range(struct inode *inode,
3751 			     ext4_lblk_t lblk_start,
3752 			     ext4_lblk_t lblk_end)
3753 {
3754 	struct extent_status es;
3755 
3756 	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3757 	if (es.es_len == 0)
3758 		return 0; /* there is no delay extent in this tree */
3759 	else if (es.es_lblk <= lblk_start &&
3760 		 lblk_start < es.es_lblk + es.es_len)
3761 		return 1;
3762 	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3763 		return 1;
3764 	else
3765 		return 0;
3766 }
3767 
3768 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3769 {
3770 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3771 	ext4_lblk_t lblk_start, lblk_end;
3772 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3773 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3774 
3775 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3776 }
3777 
3778 /**
3779  * Determines how many complete clusters (out of those specified by the 'map')
3780  * are under delalloc and were reserved quota for.
3781  * This function is called when we are writing out the blocks that were
3782  * originally written with their allocation delayed, but then the space was
3783  * allocated using fallocate() before the delayed allocation could be resolved.
3784  * The cases to look for are:
3785  * ('=' indicated delayed allocated blocks
3786  *  '-' indicates non-delayed allocated blocks)
3787  * (a) partial clusters towards beginning and/or end outside of allocated range
3788  *     are not delalloc'ed.
3789  *	Ex:
3790  *	|----c---=|====c====|====c====|===-c----|
3791  *	         |++++++ allocated ++++++|
3792  *	==> 4 complete clusters in above example
3793  *
3794  * (b) partial cluster (outside of allocated range) towards either end is
3795  *     marked for delayed allocation. In this case, we will exclude that
3796  *     cluster.
3797  *	Ex:
3798  *	|----====c========|========c========|
3799  *	     |++++++ allocated ++++++|
3800  *	==> 1 complete clusters in above example
3801  *
3802  *	Ex:
3803  *	|================c================|
3804  *            |++++++ allocated ++++++|
3805  *	==> 0 complete clusters in above example
3806  *
3807  * The ext4_da_update_reserve_space will be called only if we
3808  * determine here that there were some "entire" clusters that span
3809  * this 'allocated' range.
3810  * In the non-bigalloc case, this function will just end up returning num_blks
3811  * without ever calling ext4_find_delalloc_range.
3812  */
3813 static unsigned int
3814 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3815 			   unsigned int num_blks)
3816 {
3817 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3818 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3819 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3820 	unsigned int allocated_clusters = 0;
3821 
3822 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3823 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3824 
3825 	/* max possible clusters for this allocation */
3826 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3827 
3828 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3829 
3830 	/* Check towards left side */
3831 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3832 	if (c_offset) {
3833 		lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3834 		lblk_to = lblk_from + c_offset - 1;
3835 
3836 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3837 			allocated_clusters--;
3838 	}
3839 
3840 	/* Now check towards right. */
3841 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3842 	if (allocated_clusters && c_offset) {
3843 		lblk_from = lblk_start + num_blks;
3844 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3845 
3846 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3847 			allocated_clusters--;
3848 	}
3849 
3850 	return allocated_clusters;
3851 }
3852 
3853 static int
3854 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3855 			struct ext4_map_blocks *map,
3856 			struct ext4_ext_path *path, int flags,
3857 			unsigned int allocated, ext4_fsblk_t newblock)
3858 {
3859 	int ret = 0;
3860 	int err = 0;
3861 	ext4_io_end_t *io = ext4_inode_aio(inode);
3862 
3863 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3864 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3865 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3866 		  flags, allocated);
3867 	ext4_ext_show_leaf(inode, path);
3868 
3869 	/*
3870 	 * When writing into uninitialized space, we should not fail to
3871 	 * allocate metadata blocks for the new extent block if needed.
3872 	 */
3873 	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3874 
3875 	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3876 						    allocated, newblock);
3877 
3878 	/* get_block() before submit the IO, split the extent */
3879 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3880 		ret = ext4_split_unwritten_extents(handle, inode, map,
3881 						   path, flags);
3882 		if (ret <= 0)
3883 			goto out;
3884 		/*
3885 		 * Flag the inode(non aio case) or end_io struct (aio case)
3886 		 * that this IO needs to conversion to written when IO is
3887 		 * completed
3888 		 */
3889 		if (io)
3890 			ext4_set_io_unwritten_flag(inode, io);
3891 		else
3892 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3893 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3894 		if (ext4_should_dioread_nolock(inode))
3895 			map->m_flags |= EXT4_MAP_UNINIT;
3896 		goto out;
3897 	}
3898 	/* IO end_io complete, convert the filled extent to written */
3899 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3900 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3901 							path);
3902 		if (ret >= 0) {
3903 			ext4_update_inode_fsync_trans(handle, inode, 1);
3904 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3905 						 path, map->m_len);
3906 		} else
3907 			err = ret;
3908 		map->m_flags |= EXT4_MAP_MAPPED;
3909 		map->m_pblk = newblock;
3910 		if (allocated > map->m_len)
3911 			allocated = map->m_len;
3912 		map->m_len = allocated;
3913 		goto out2;
3914 	}
3915 	/* buffered IO case */
3916 	/*
3917 	 * repeat fallocate creation request
3918 	 * we already have an unwritten extent
3919 	 */
3920 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3921 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3922 		goto map_out;
3923 	}
3924 
3925 	/* buffered READ or buffered write_begin() lookup */
3926 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3927 		/*
3928 		 * We have blocks reserved already.  We
3929 		 * return allocated blocks so that delalloc
3930 		 * won't do block reservation for us.  But
3931 		 * the buffer head will be unmapped so that
3932 		 * a read from the block returns 0s.
3933 		 */
3934 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3935 		goto out1;
3936 	}
3937 
3938 	/* buffered write, writepage time, convert*/
3939 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
3940 	if (ret >= 0)
3941 		ext4_update_inode_fsync_trans(handle, inode, 1);
3942 out:
3943 	if (ret <= 0) {
3944 		err = ret;
3945 		goto out2;
3946 	} else
3947 		allocated = ret;
3948 	map->m_flags |= EXT4_MAP_NEW;
3949 	/*
3950 	 * if we allocated more blocks than requested
3951 	 * we need to make sure we unmap the extra block
3952 	 * allocated. The actual needed block will get
3953 	 * unmapped later when we find the buffer_head marked
3954 	 * new.
3955 	 */
3956 	if (allocated > map->m_len) {
3957 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3958 					newblock + map->m_len,
3959 					allocated - map->m_len);
3960 		allocated = map->m_len;
3961 	}
3962 	map->m_len = allocated;
3963 
3964 	/*
3965 	 * If we have done fallocate with the offset that is already
3966 	 * delayed allocated, we would have block reservation
3967 	 * and quota reservation done in the delayed write path.
3968 	 * But fallocate would have already updated quota and block
3969 	 * count for this offset. So cancel these reservation
3970 	 */
3971 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3972 		unsigned int reserved_clusters;
3973 		reserved_clusters = get_reserved_cluster_alloc(inode,
3974 				map->m_lblk, map->m_len);
3975 		if (reserved_clusters)
3976 			ext4_da_update_reserve_space(inode,
3977 						     reserved_clusters,
3978 						     0);
3979 	}
3980 
3981 map_out:
3982 	map->m_flags |= EXT4_MAP_MAPPED;
3983 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3984 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3985 					 map->m_len);
3986 		if (err < 0)
3987 			goto out2;
3988 	}
3989 out1:
3990 	if (allocated > map->m_len)
3991 		allocated = map->m_len;
3992 	ext4_ext_show_leaf(inode, path);
3993 	map->m_pblk = newblock;
3994 	map->m_len = allocated;
3995 out2:
3996 	if (path) {
3997 		ext4_ext_drop_refs(path);
3998 		kfree(path);
3999 	}
4000 	return err ? err : allocated;
4001 }
4002 
4003 /*
4004  * get_implied_cluster_alloc - check to see if the requested
4005  * allocation (in the map structure) overlaps with a cluster already
4006  * allocated in an extent.
4007  *	@sb	The filesystem superblock structure
4008  *	@map	The requested lblk->pblk mapping
4009  *	@ex	The extent structure which might contain an implied
4010  *			cluster allocation
4011  *
4012  * This function is called by ext4_ext_map_blocks() after we failed to
4013  * find blocks that were already in the inode's extent tree.  Hence,
4014  * we know that the beginning of the requested region cannot overlap
4015  * the extent from the inode's extent tree.  There are three cases we
4016  * want to catch.  The first is this case:
4017  *
4018  *		 |--- cluster # N--|
4019  *    |--- extent ---|	|---- requested region ---|
4020  *			|==========|
4021  *
4022  * The second case that we need to test for is this one:
4023  *
4024  *   |--------- cluster # N ----------------|
4025  *	   |--- requested region --|   |------- extent ----|
4026  *	   |=======================|
4027  *
4028  * The third case is when the requested region lies between two extents
4029  * within the same cluster:
4030  *          |------------- cluster # N-------------|
4031  * |----- ex -----|                  |---- ex_right ----|
4032  *                  |------ requested region ------|
4033  *                  |================|
4034  *
4035  * In each of the above cases, we need to set the map->m_pblk and
4036  * map->m_len so it corresponds to the return the extent labelled as
4037  * "|====|" from cluster #N, since it is already in use for data in
4038  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4039  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4040  * as a new "allocated" block region.  Otherwise, we will return 0 and
4041  * ext4_ext_map_blocks() will then allocate one or more new clusters
4042  * by calling ext4_mb_new_blocks().
4043  */
4044 static int get_implied_cluster_alloc(struct super_block *sb,
4045 				     struct ext4_map_blocks *map,
4046 				     struct ext4_extent *ex,
4047 				     struct ext4_ext_path *path)
4048 {
4049 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4050 	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4051 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4052 	ext4_lblk_t rr_cluster_start;
4053 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4054 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4055 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4056 
4057 	/* The extent passed in that we are trying to match */
4058 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4059 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4060 
4061 	/* The requested region passed into ext4_map_blocks() */
4062 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4063 
4064 	if ((rr_cluster_start == ex_cluster_end) ||
4065 	    (rr_cluster_start == ex_cluster_start)) {
4066 		if (rr_cluster_start == ex_cluster_end)
4067 			ee_start += ee_len - 1;
4068 		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4069 		map->m_len = min(map->m_len,
4070 				 (unsigned) sbi->s_cluster_ratio - c_offset);
4071 		/*
4072 		 * Check for and handle this case:
4073 		 *
4074 		 *   |--------- cluster # N-------------|
4075 		 *		       |------- extent ----|
4076 		 *	   |--- requested region ---|
4077 		 *	   |===========|
4078 		 */
4079 
4080 		if (map->m_lblk < ee_block)
4081 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4082 
4083 		/*
4084 		 * Check for the case where there is already another allocated
4085 		 * block to the right of 'ex' but before the end of the cluster.
4086 		 *
4087 		 *          |------------- cluster # N-------------|
4088 		 * |----- ex -----|                  |---- ex_right ----|
4089 		 *                  |------ requested region ------|
4090 		 *                  |================|
4091 		 */
4092 		if (map->m_lblk > ee_block) {
4093 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4094 			map->m_len = min(map->m_len, next - map->m_lblk);
4095 		}
4096 
4097 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4098 		return 1;
4099 	}
4100 
4101 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4102 	return 0;
4103 }
4104 
4105 
4106 /*
4107  * Block allocation/map/preallocation routine for extents based files
4108  *
4109  *
4110  * Need to be called with
4111  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4112  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4113  *
4114  * return > 0, number of of blocks already mapped/allocated
4115  *          if create == 0 and these are pre-allocated blocks
4116  *          	buffer head is unmapped
4117  *          otherwise blocks are mapped
4118  *
4119  * return = 0, if plain look up failed (blocks have not been allocated)
4120  *          buffer head is unmapped
4121  *
4122  * return < 0, error case.
4123  */
4124 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4125 			struct ext4_map_blocks *map, int flags)
4126 {
4127 	struct ext4_ext_path *path = NULL;
4128 	struct ext4_extent newex, *ex, *ex2;
4129 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4130 	ext4_fsblk_t newblock = 0;
4131 	int free_on_err = 0, err = 0, depth;
4132 	unsigned int allocated = 0, offset = 0;
4133 	unsigned int allocated_clusters = 0;
4134 	struct ext4_allocation_request ar;
4135 	ext4_io_end_t *io = ext4_inode_aio(inode);
4136 	ext4_lblk_t cluster_offset;
4137 	int set_unwritten = 0;
4138 
4139 	ext_debug("blocks %u/%u requested for inode %lu\n",
4140 		  map->m_lblk, map->m_len, inode->i_ino);
4141 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4142 
4143 	/* find extent for this block */
4144 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4145 	if (IS_ERR(path)) {
4146 		err = PTR_ERR(path);
4147 		path = NULL;
4148 		goto out2;
4149 	}
4150 
4151 	depth = ext_depth(inode);
4152 
4153 	/*
4154 	 * consistent leaf must not be empty;
4155 	 * this situation is possible, though, _during_ tree modification;
4156 	 * this is why assert can't be put in ext4_ext_find_extent()
4157 	 */
4158 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4159 		EXT4_ERROR_INODE(inode, "bad extent address "
4160 				 "lblock: %lu, depth: %d pblock %lld",
4161 				 (unsigned long) map->m_lblk, depth,
4162 				 path[depth].p_block);
4163 		err = -EIO;
4164 		goto out2;
4165 	}
4166 
4167 	ex = path[depth].p_ext;
4168 	if (ex) {
4169 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4170 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4171 		unsigned short ee_len;
4172 
4173 		/*
4174 		 * Uninitialized extents are treated as holes, except that
4175 		 * we split out initialized portions during a write.
4176 		 */
4177 		ee_len = ext4_ext_get_actual_len(ex);
4178 
4179 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4180 
4181 		/* if found extent covers block, simply return it */
4182 		if (in_range(map->m_lblk, ee_block, ee_len)) {
4183 			newblock = map->m_lblk - ee_block + ee_start;
4184 			/* number of remaining blocks in the extent */
4185 			allocated = ee_len - (map->m_lblk - ee_block);
4186 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4187 				  ee_block, ee_len, newblock);
4188 
4189 			if (!ext4_ext_is_uninitialized(ex))
4190 				goto out;
4191 
4192 			allocated = ext4_ext_handle_uninitialized_extents(
4193 				handle, inode, map, path, flags,
4194 				allocated, newblock);
4195 			goto out3;
4196 		}
4197 	}
4198 
4199 	if ((sbi->s_cluster_ratio > 1) &&
4200 	    ext4_find_delalloc_cluster(inode, map->m_lblk))
4201 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4202 
4203 	/*
4204 	 * requested block isn't allocated yet;
4205 	 * we couldn't try to create block if create flag is zero
4206 	 */
4207 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4208 		/*
4209 		 * put just found gap into cache to speed up
4210 		 * subsequent requests
4211 		 */
4212 		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4213 			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4214 		goto out2;
4215 	}
4216 
4217 	/*
4218 	 * Okay, we need to do block allocation.
4219 	 */
4220 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4221 	newex.ee_block = cpu_to_le32(map->m_lblk);
4222 	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4223 
4224 	/*
4225 	 * If we are doing bigalloc, check to see if the extent returned
4226 	 * by ext4_ext_find_extent() implies a cluster we can use.
4227 	 */
4228 	if (cluster_offset && ex &&
4229 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4230 		ar.len = allocated = map->m_len;
4231 		newblock = map->m_pblk;
4232 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4233 		goto got_allocated_blocks;
4234 	}
4235 
4236 	/* find neighbour allocated blocks */
4237 	ar.lleft = map->m_lblk;
4238 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4239 	if (err)
4240 		goto out2;
4241 	ar.lright = map->m_lblk;
4242 	ex2 = NULL;
4243 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4244 	if (err)
4245 		goto out2;
4246 
4247 	/* Check if the extent after searching to the right implies a
4248 	 * cluster we can use. */
4249 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4250 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4251 		ar.len = allocated = map->m_len;
4252 		newblock = map->m_pblk;
4253 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4254 		goto got_allocated_blocks;
4255 	}
4256 
4257 	/*
4258 	 * See if request is beyond maximum number of blocks we can have in
4259 	 * a single extent. For an initialized extent this limit is
4260 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4261 	 * EXT_UNINIT_MAX_LEN.
4262 	 */
4263 	if (map->m_len > EXT_INIT_MAX_LEN &&
4264 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4265 		map->m_len = EXT_INIT_MAX_LEN;
4266 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4267 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4268 		map->m_len = EXT_UNINIT_MAX_LEN;
4269 
4270 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4271 	newex.ee_len = cpu_to_le16(map->m_len);
4272 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4273 	if (err)
4274 		allocated = ext4_ext_get_actual_len(&newex);
4275 	else
4276 		allocated = map->m_len;
4277 
4278 	/* allocate new block */
4279 	ar.inode = inode;
4280 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4281 	ar.logical = map->m_lblk;
4282 	/*
4283 	 * We calculate the offset from the beginning of the cluster
4284 	 * for the logical block number, since when we allocate a
4285 	 * physical cluster, the physical block should start at the
4286 	 * same offset from the beginning of the cluster.  This is
4287 	 * needed so that future calls to get_implied_cluster_alloc()
4288 	 * work correctly.
4289 	 */
4290 	offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4291 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4292 	ar.goal -= offset;
4293 	ar.logical -= offset;
4294 	if (S_ISREG(inode->i_mode))
4295 		ar.flags = EXT4_MB_HINT_DATA;
4296 	else
4297 		/* disable in-core preallocation for non-regular files */
4298 		ar.flags = 0;
4299 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4300 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4301 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4302 	if (!newblock)
4303 		goto out2;
4304 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4305 		  ar.goal, newblock, allocated);
4306 	free_on_err = 1;
4307 	allocated_clusters = ar.len;
4308 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4309 	if (ar.len > allocated)
4310 		ar.len = allocated;
4311 
4312 got_allocated_blocks:
4313 	/* try to insert new extent into found leaf and return */
4314 	ext4_ext_store_pblock(&newex, newblock + offset);
4315 	newex.ee_len = cpu_to_le16(ar.len);
4316 	/* Mark uninitialized */
4317 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4318 		ext4_ext_mark_uninitialized(&newex);
4319 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4320 		/*
4321 		 * io_end structure was created for every IO write to an
4322 		 * uninitialized extent. To avoid unnecessary conversion,
4323 		 * here we flag the IO that really needs the conversion.
4324 		 * For non asycn direct IO case, flag the inode state
4325 		 * that we need to perform conversion when IO is done.
4326 		 */
4327 		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4328 			set_unwritten = 1;
4329 		if (ext4_should_dioread_nolock(inode))
4330 			map->m_flags |= EXT4_MAP_UNINIT;
4331 	}
4332 
4333 	err = 0;
4334 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4335 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4336 					 path, ar.len);
4337 	if (!err)
4338 		err = ext4_ext_insert_extent(handle, inode, path,
4339 					     &newex, flags);
4340 
4341 	if (!err && set_unwritten) {
4342 		if (io)
4343 			ext4_set_io_unwritten_flag(inode, io);
4344 		else
4345 			ext4_set_inode_state(inode,
4346 					     EXT4_STATE_DIO_UNWRITTEN);
4347 	}
4348 
4349 	if (err && free_on_err) {
4350 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4351 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4352 		/* free data blocks we just allocated */
4353 		/* not a good idea to call discard here directly,
4354 		 * but otherwise we'd need to call it every free() */
4355 		ext4_discard_preallocations(inode);
4356 		ext4_free_blocks(handle, inode, NULL, newblock,
4357 				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4358 		goto out2;
4359 	}
4360 
4361 	/* previous routine could use block we allocated */
4362 	newblock = ext4_ext_pblock(&newex);
4363 	allocated = ext4_ext_get_actual_len(&newex);
4364 	if (allocated > map->m_len)
4365 		allocated = map->m_len;
4366 	map->m_flags |= EXT4_MAP_NEW;
4367 
4368 	/*
4369 	 * Update reserved blocks/metadata blocks after successful
4370 	 * block allocation which had been deferred till now.
4371 	 */
4372 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4373 		unsigned int reserved_clusters;
4374 		/*
4375 		 * Check how many clusters we had reserved this allocated range
4376 		 */
4377 		reserved_clusters = get_reserved_cluster_alloc(inode,
4378 						map->m_lblk, allocated);
4379 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4380 			if (reserved_clusters) {
4381 				/*
4382 				 * We have clusters reserved for this range.
4383 				 * But since we are not doing actual allocation
4384 				 * and are simply using blocks from previously
4385 				 * allocated cluster, we should release the
4386 				 * reservation and not claim quota.
4387 				 */
4388 				ext4_da_update_reserve_space(inode,
4389 						reserved_clusters, 0);
4390 			}
4391 		} else {
4392 			BUG_ON(allocated_clusters < reserved_clusters);
4393 			if (reserved_clusters < allocated_clusters) {
4394 				struct ext4_inode_info *ei = EXT4_I(inode);
4395 				int reservation = allocated_clusters -
4396 						  reserved_clusters;
4397 				/*
4398 				 * It seems we claimed few clusters outside of
4399 				 * the range of this allocation. We should give
4400 				 * it back to the reservation pool. This can
4401 				 * happen in the following case:
4402 				 *
4403 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4404 				 *   cluster has 4 blocks. Thus, the clusters
4405 				 *   are [0-3],[4-7],[8-11]...
4406 				 * * First comes delayed allocation write for
4407 				 *   logical blocks 10 & 11. Since there were no
4408 				 *   previous delayed allocated blocks in the
4409 				 *   range [8-11], we would reserve 1 cluster
4410 				 *   for this write.
4411 				 * * Next comes write for logical blocks 3 to 8.
4412 				 *   In this case, we will reserve 2 clusters
4413 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4414 				 *   that range has a delayed allocated blocks.
4415 				 *   Thus total reserved clusters now becomes 3.
4416 				 * * Now, during the delayed allocation writeout
4417 				 *   time, we will first write blocks [3-8] and
4418 				 *   allocate 3 clusters for writing these
4419 				 *   blocks. Also, we would claim all these
4420 				 *   three clusters above.
4421 				 * * Now when we come here to writeout the
4422 				 *   blocks [10-11], we would expect to claim
4423 				 *   the reservation of 1 cluster we had made
4424 				 *   (and we would claim it since there are no
4425 				 *   more delayed allocated blocks in the range
4426 				 *   [8-11]. But our reserved cluster count had
4427 				 *   already gone to 0.
4428 				 *
4429 				 *   Thus, at the step 4 above when we determine
4430 				 *   that there are still some unwritten delayed
4431 				 *   allocated blocks outside of our current
4432 				 *   block range, we should increment the
4433 				 *   reserved clusters count so that when the
4434 				 *   remaining blocks finally gets written, we
4435 				 *   could claim them.
4436 				 */
4437 				dquot_reserve_block(inode,
4438 						EXT4_C2B(sbi, reservation));
4439 				spin_lock(&ei->i_block_reservation_lock);
4440 				ei->i_reserved_data_blocks += reservation;
4441 				spin_unlock(&ei->i_block_reservation_lock);
4442 			}
4443 			/*
4444 			 * We will claim quota for all newly allocated blocks.
4445 			 * We're updating the reserved space *after* the
4446 			 * correction above so we do not accidentally free
4447 			 * all the metadata reservation because we might
4448 			 * actually need it later on.
4449 			 */
4450 			ext4_da_update_reserve_space(inode, allocated_clusters,
4451 							1);
4452 		}
4453 	}
4454 
4455 	/*
4456 	 * Cache the extent and update transaction to commit on fdatasync only
4457 	 * when it is _not_ an uninitialized extent.
4458 	 */
4459 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4460 		ext4_update_inode_fsync_trans(handle, inode, 1);
4461 	else
4462 		ext4_update_inode_fsync_trans(handle, inode, 0);
4463 out:
4464 	if (allocated > map->m_len)
4465 		allocated = map->m_len;
4466 	ext4_ext_show_leaf(inode, path);
4467 	map->m_flags |= EXT4_MAP_MAPPED;
4468 	map->m_pblk = newblock;
4469 	map->m_len = allocated;
4470 out2:
4471 	if (path) {
4472 		ext4_ext_drop_refs(path);
4473 		kfree(path);
4474 	}
4475 
4476 out3:
4477 	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4478 				       err ? err : allocated);
4479 	ext4_es_lru_add(inode);
4480 	return err ? err : allocated;
4481 }
4482 
4483 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4484 {
4485 	struct super_block *sb = inode->i_sb;
4486 	ext4_lblk_t last_block;
4487 	int err = 0;
4488 
4489 	/*
4490 	 * TODO: optimization is possible here.
4491 	 * Probably we need not scan at all,
4492 	 * because page truncation is enough.
4493 	 */
4494 
4495 	/* we have to know where to truncate from in crash case */
4496 	EXT4_I(inode)->i_disksize = inode->i_size;
4497 	ext4_mark_inode_dirty(handle, inode);
4498 
4499 	last_block = (inode->i_size + sb->s_blocksize - 1)
4500 			>> EXT4_BLOCK_SIZE_BITS(sb);
4501 retry:
4502 	err = ext4_es_remove_extent(inode, last_block,
4503 				    EXT_MAX_BLOCKS - last_block);
4504 	if (err == -ENOMEM) {
4505 		cond_resched();
4506 		congestion_wait(BLK_RW_ASYNC, HZ/50);
4507 		goto retry;
4508 	}
4509 	if (err) {
4510 		ext4_std_error(inode->i_sb, err);
4511 		return;
4512 	}
4513 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4514 	ext4_std_error(inode->i_sb, err);
4515 }
4516 
4517 static void ext4_falloc_update_inode(struct inode *inode,
4518 				int mode, loff_t new_size, int update_ctime)
4519 {
4520 	struct timespec now;
4521 
4522 	if (update_ctime) {
4523 		now = current_fs_time(inode->i_sb);
4524 		if (!timespec_equal(&inode->i_ctime, &now))
4525 			inode->i_ctime = now;
4526 	}
4527 	/*
4528 	 * Update only when preallocation was requested beyond
4529 	 * the file size.
4530 	 */
4531 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4532 		if (new_size > i_size_read(inode))
4533 			i_size_write(inode, new_size);
4534 		if (new_size > EXT4_I(inode)->i_disksize)
4535 			ext4_update_i_disksize(inode, new_size);
4536 	} else {
4537 		/*
4538 		 * Mark that we allocate beyond EOF so the subsequent truncate
4539 		 * can proceed even if the new size is the same as i_size.
4540 		 */
4541 		if (new_size > i_size_read(inode))
4542 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4543 	}
4544 
4545 }
4546 
4547 /*
4548  * preallocate space for a file. This implements ext4's fallocate file
4549  * operation, which gets called from sys_fallocate system call.
4550  * For block-mapped files, posix_fallocate should fall back to the method
4551  * of writing zeroes to the required new blocks (the same behavior which is
4552  * expected for file systems which do not support fallocate() system call).
4553  */
4554 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4555 {
4556 	struct inode *inode = file_inode(file);
4557 	handle_t *handle;
4558 	loff_t new_size;
4559 	unsigned int max_blocks;
4560 	int ret = 0;
4561 	int ret2 = 0;
4562 	int retries = 0;
4563 	int flags;
4564 	struct ext4_map_blocks map;
4565 	unsigned int credits, blkbits = inode->i_blkbits;
4566 
4567 	/* Return error if mode is not supported */
4568 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4569 		return -EOPNOTSUPP;
4570 
4571 	if (mode & FALLOC_FL_PUNCH_HOLE)
4572 		return ext4_punch_hole(inode, offset, len);
4573 
4574 	ret = ext4_convert_inline_data(inode);
4575 	if (ret)
4576 		return ret;
4577 
4578 	/*
4579 	 * currently supporting (pre)allocate mode for extent-based
4580 	 * files _only_
4581 	 */
4582 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4583 		return -EOPNOTSUPP;
4584 
4585 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4586 	map.m_lblk = offset >> blkbits;
4587 	/*
4588 	 * We can't just convert len to max_blocks because
4589 	 * If blocksize = 4096 offset = 3072 and len = 2048
4590 	 */
4591 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4592 		- map.m_lblk;
4593 	/*
4594 	 * credits to insert 1 extent into extent tree
4595 	 */
4596 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4597 	mutex_lock(&inode->i_mutex);
4598 	ret = inode_newsize_ok(inode, (len + offset));
4599 	if (ret) {
4600 		mutex_unlock(&inode->i_mutex);
4601 		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4602 		return ret;
4603 	}
4604 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4605 	if (mode & FALLOC_FL_KEEP_SIZE)
4606 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4607 	/*
4608 	 * Don't normalize the request if it can fit in one extent so
4609 	 * that it doesn't get unnecessarily split into multiple
4610 	 * extents.
4611 	 */
4612 	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4613 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4614 
4615 retry:
4616 	while (ret >= 0 && ret < max_blocks) {
4617 		map.m_lblk = map.m_lblk + ret;
4618 		map.m_len = max_blocks = max_blocks - ret;
4619 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4620 					    credits);
4621 		if (IS_ERR(handle)) {
4622 			ret = PTR_ERR(handle);
4623 			break;
4624 		}
4625 		ret = ext4_map_blocks(handle, inode, &map, flags);
4626 		if (ret <= 0) {
4627 #ifdef EXT4FS_DEBUG
4628 			ext4_warning(inode->i_sb,
4629 				     "inode #%lu: block %u: len %u: "
4630 				     "ext4_ext_map_blocks returned %d",
4631 				     inode->i_ino, map.m_lblk,
4632 				     map.m_len, ret);
4633 #endif
4634 			ext4_mark_inode_dirty(handle, inode);
4635 			ret2 = ext4_journal_stop(handle);
4636 			break;
4637 		}
4638 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4639 						blkbits) >> blkbits))
4640 			new_size = offset + len;
4641 		else
4642 			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4643 
4644 		ext4_falloc_update_inode(inode, mode, new_size,
4645 					 (map.m_flags & EXT4_MAP_NEW));
4646 		ext4_mark_inode_dirty(handle, inode);
4647 		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4648 			ext4_handle_sync(handle);
4649 		ret2 = ext4_journal_stop(handle);
4650 		if (ret2)
4651 			break;
4652 	}
4653 	if (ret == -ENOSPC &&
4654 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4655 		ret = 0;
4656 		goto retry;
4657 	}
4658 	mutex_unlock(&inode->i_mutex);
4659 	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4660 				ret > 0 ? ret2 : ret);
4661 	return ret > 0 ? ret2 : ret;
4662 }
4663 
4664 /*
4665  * This function convert a range of blocks to written extents
4666  * The caller of this function will pass the start offset and the size.
4667  * all unwritten extents within this range will be converted to
4668  * written extents.
4669  *
4670  * This function is called from the direct IO end io call back
4671  * function, to convert the fallocated extents after IO is completed.
4672  * Returns 0 on success.
4673  */
4674 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4675 				   loff_t offset, ssize_t len)
4676 {
4677 	unsigned int max_blocks;
4678 	int ret = 0;
4679 	int ret2 = 0;
4680 	struct ext4_map_blocks map;
4681 	unsigned int credits, blkbits = inode->i_blkbits;
4682 
4683 	map.m_lblk = offset >> blkbits;
4684 	/*
4685 	 * We can't just convert len to max_blocks because
4686 	 * If blocksize = 4096 offset = 3072 and len = 2048
4687 	 */
4688 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4689 		      map.m_lblk);
4690 	/*
4691 	 * This is somewhat ugly but the idea is clear: When transaction is
4692 	 * reserved, everything goes into it. Otherwise we rather start several
4693 	 * smaller transactions for conversion of each extent separately.
4694 	 */
4695 	if (handle) {
4696 		handle = ext4_journal_start_reserved(handle,
4697 						     EXT4_HT_EXT_CONVERT);
4698 		if (IS_ERR(handle))
4699 			return PTR_ERR(handle);
4700 		credits = 0;
4701 	} else {
4702 		/*
4703 		 * credits to insert 1 extent into extent tree
4704 		 */
4705 		credits = ext4_chunk_trans_blocks(inode, max_blocks);
4706 	}
4707 	while (ret >= 0 && ret < max_blocks) {
4708 		map.m_lblk += ret;
4709 		map.m_len = (max_blocks -= ret);
4710 		if (credits) {
4711 			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4712 						    credits);
4713 			if (IS_ERR(handle)) {
4714 				ret = PTR_ERR(handle);
4715 				break;
4716 			}
4717 		}
4718 		ret = ext4_map_blocks(handle, inode, &map,
4719 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4720 		if (ret <= 0)
4721 			ext4_warning(inode->i_sb,
4722 				     "inode #%lu: block %u: len %u: "
4723 				     "ext4_ext_map_blocks returned %d",
4724 				     inode->i_ino, map.m_lblk,
4725 				     map.m_len, ret);
4726 		ext4_mark_inode_dirty(handle, inode);
4727 		if (credits)
4728 			ret2 = ext4_journal_stop(handle);
4729 		if (ret <= 0 || ret2)
4730 			break;
4731 	}
4732 	if (!credits)
4733 		ret2 = ext4_journal_stop(handle);
4734 	return ret > 0 ? ret2 : ret;
4735 }
4736 
4737 /*
4738  * If newes is not existing extent (newes->ec_pblk equals zero) find
4739  * delayed extent at start of newes and update newes accordingly and
4740  * return start of the next delayed extent.
4741  *
4742  * If newes is existing extent (newes->ec_pblk is not equal zero)
4743  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4744  * extent found. Leave newes unmodified.
4745  */
4746 static int ext4_find_delayed_extent(struct inode *inode,
4747 				    struct extent_status *newes)
4748 {
4749 	struct extent_status es;
4750 	ext4_lblk_t block, next_del;
4751 
4752 	if (newes->es_pblk == 0) {
4753 		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
4754 				newes->es_lblk + newes->es_len - 1, &es);
4755 
4756 		/*
4757 		 * No extent in extent-tree contains block @newes->es_pblk,
4758 		 * then the block may stay in 1)a hole or 2)delayed-extent.
4759 		 */
4760 		if (es.es_len == 0)
4761 			/* A hole found. */
4762 			return 0;
4763 
4764 		if (es.es_lblk > newes->es_lblk) {
4765 			/* A hole found. */
4766 			newes->es_len = min(es.es_lblk - newes->es_lblk,
4767 					    newes->es_len);
4768 			return 0;
4769 		}
4770 
4771 		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4772 	}
4773 
4774 	block = newes->es_lblk + newes->es_len;
4775 	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
4776 	if (es.es_len == 0)
4777 		next_del = EXT_MAX_BLOCKS;
4778 	else
4779 		next_del = es.es_lblk;
4780 
4781 	return next_del;
4782 }
4783 /* fiemap flags we can handle specified here */
4784 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4785 
4786 static int ext4_xattr_fiemap(struct inode *inode,
4787 				struct fiemap_extent_info *fieinfo)
4788 {
4789 	__u64 physical = 0;
4790 	__u64 length;
4791 	__u32 flags = FIEMAP_EXTENT_LAST;
4792 	int blockbits = inode->i_sb->s_blocksize_bits;
4793 	int error = 0;
4794 
4795 	/* in-inode? */
4796 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4797 		struct ext4_iloc iloc;
4798 		int offset;	/* offset of xattr in inode */
4799 
4800 		error = ext4_get_inode_loc(inode, &iloc);
4801 		if (error)
4802 			return error;
4803 		physical = (__u64)iloc.bh->b_blocknr << blockbits;
4804 		offset = EXT4_GOOD_OLD_INODE_SIZE +
4805 				EXT4_I(inode)->i_extra_isize;
4806 		physical += offset;
4807 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4808 		flags |= FIEMAP_EXTENT_DATA_INLINE;
4809 		brelse(iloc.bh);
4810 	} else { /* external block */
4811 		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4812 		length = inode->i_sb->s_blocksize;
4813 	}
4814 
4815 	if (physical)
4816 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4817 						length, flags);
4818 	return (error < 0 ? error : 0);
4819 }
4820 
4821 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4822 		__u64 start, __u64 len)
4823 {
4824 	ext4_lblk_t start_blk;
4825 	int error = 0;
4826 
4827 	if (ext4_has_inline_data(inode)) {
4828 		int has_inline = 1;
4829 
4830 		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4831 
4832 		if (has_inline)
4833 			return error;
4834 	}
4835 
4836 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
4837 		error = ext4_ext_precache(inode);
4838 		if (error)
4839 			return error;
4840 	}
4841 
4842 	/* fallback to generic here if not in extents fmt */
4843 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4844 		return generic_block_fiemap(inode, fieinfo, start, len,
4845 			ext4_get_block);
4846 
4847 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4848 		return -EBADR;
4849 
4850 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4851 		error = ext4_xattr_fiemap(inode, fieinfo);
4852 	} else {
4853 		ext4_lblk_t len_blks;
4854 		__u64 last_blk;
4855 
4856 		start_blk = start >> inode->i_sb->s_blocksize_bits;
4857 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4858 		if (last_blk >= EXT_MAX_BLOCKS)
4859 			last_blk = EXT_MAX_BLOCKS-1;
4860 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4861 
4862 		/*
4863 		 * Walk the extent tree gathering extent information
4864 		 * and pushing extents back to the user.
4865 		 */
4866 		error = ext4_fill_fiemap_extents(inode, start_blk,
4867 						 len_blks, fieinfo);
4868 	}
4869 	ext4_es_lru_add(inode);
4870 	return error;
4871 }
4872