xref: /openbmc/linux/fs/ext4/extents.c (revision 78c99ba1)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46 
47 
48 /*
49  * ext_pblock:
50  * combine low and high parts of physical block number into ext4_fsblk_t
51  */
52 static ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
53 {
54 	ext4_fsblk_t block;
55 
56 	block = le32_to_cpu(ex->ee_start_lo);
57 	block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58 	return block;
59 }
60 
61 /*
62  * idx_pblock:
63  * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64  */
65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
66 {
67 	ext4_fsblk_t block;
68 
69 	block = le32_to_cpu(ix->ei_leaf_lo);
70 	block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71 	return block;
72 }
73 
74 /*
75  * ext4_ext_store_pblock:
76  * stores a large physical block number into an extent struct,
77  * breaking it into parts
78  */
79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80 {
81 	ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82 	ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
83 }
84 
85 /*
86  * ext4_idx_store_pblock:
87  * stores a large physical block number into an index struct,
88  * breaking it into parts
89  */
90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91 {
92 	ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93 	ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
94 }
95 
96 static int ext4_ext_journal_restart(handle_t *handle, int needed)
97 {
98 	int err;
99 
100 	if (!ext4_handle_valid(handle))
101 		return 0;
102 	if (handle->h_buffer_credits > needed)
103 		return 0;
104 	err = ext4_journal_extend(handle, needed);
105 	if (err <= 0)
106 		return err;
107 	return ext4_journal_restart(handle, needed);
108 }
109 
110 /*
111  * could return:
112  *  - EROFS
113  *  - ENOMEM
114  */
115 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
116 				struct ext4_ext_path *path)
117 {
118 	if (path->p_bh) {
119 		/* path points to block */
120 		return ext4_journal_get_write_access(handle, path->p_bh);
121 	}
122 	/* path points to leaf/index in inode body */
123 	/* we use in-core data, no need to protect them */
124 	return 0;
125 }
126 
127 /*
128  * could return:
129  *  - EROFS
130  *  - ENOMEM
131  *  - EIO
132  */
133 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
134 				struct ext4_ext_path *path)
135 {
136 	int err;
137 	if (path->p_bh) {
138 		/* path points to block */
139 		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
140 	} else {
141 		/* path points to leaf/index in inode body */
142 		err = ext4_mark_inode_dirty(handle, inode);
143 	}
144 	return err;
145 }
146 
147 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
148 			      struct ext4_ext_path *path,
149 			      ext4_lblk_t block)
150 {
151 	struct ext4_inode_info *ei = EXT4_I(inode);
152 	ext4_fsblk_t bg_start;
153 	ext4_fsblk_t last_block;
154 	ext4_grpblk_t colour;
155 	ext4_group_t block_group;
156 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
157 	int depth;
158 
159 	if (path) {
160 		struct ext4_extent *ex;
161 		depth = path->p_depth;
162 
163 		/* try to predict block placement */
164 		ex = path[depth].p_ext;
165 		if (ex)
166 			return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
167 
168 		/* it looks like index is empty;
169 		 * try to find starting block from index itself */
170 		if (path[depth].p_bh)
171 			return path[depth].p_bh->b_blocknr;
172 	}
173 
174 	/* OK. use inode's group */
175 	block_group = ei->i_block_group;
176 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
177 		/*
178 		 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
179 		 * block groups per flexgroup, reserve the first block
180 		 * group for directories and special files.  Regular
181 		 * files will start at the second block group.  This
182 		 * tends to speed up directory access and improves
183 		 * fsck times.
184 		 */
185 		block_group &= ~(flex_size-1);
186 		if (S_ISREG(inode->i_mode))
187 			block_group++;
188 	}
189 	bg_start = (block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
190 		le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
191 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
192 
193 	/*
194 	 * If we are doing delayed allocation, we don't need take
195 	 * colour into account.
196 	 */
197 	if (test_opt(inode->i_sb, DELALLOC))
198 		return bg_start;
199 
200 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
201 		colour = (current->pid % 16) *
202 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
203 	else
204 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
205 	return bg_start + colour + block;
206 }
207 
208 /*
209  * Allocation for a meta data block
210  */
211 static ext4_fsblk_t
212 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
213 			struct ext4_ext_path *path,
214 			struct ext4_extent *ex, int *err)
215 {
216 	ext4_fsblk_t goal, newblock;
217 
218 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
219 	newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
220 	return newblock;
221 }
222 
223 static int ext4_ext_space_block(struct inode *inode)
224 {
225 	int size;
226 
227 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
228 			/ sizeof(struct ext4_extent);
229 #ifdef AGGRESSIVE_TEST
230 	if (size > 6)
231 		size = 6;
232 #endif
233 	return size;
234 }
235 
236 static int ext4_ext_space_block_idx(struct inode *inode)
237 {
238 	int size;
239 
240 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
241 			/ sizeof(struct ext4_extent_idx);
242 #ifdef AGGRESSIVE_TEST
243 	if (size > 5)
244 		size = 5;
245 #endif
246 	return size;
247 }
248 
249 static int ext4_ext_space_root(struct inode *inode)
250 {
251 	int size;
252 
253 	size = sizeof(EXT4_I(inode)->i_data);
254 	size -= sizeof(struct ext4_extent_header);
255 	size /= sizeof(struct ext4_extent);
256 #ifdef AGGRESSIVE_TEST
257 	if (size > 3)
258 		size = 3;
259 #endif
260 	return size;
261 }
262 
263 static int ext4_ext_space_root_idx(struct inode *inode)
264 {
265 	int size;
266 
267 	size = sizeof(EXT4_I(inode)->i_data);
268 	size -= sizeof(struct ext4_extent_header);
269 	size /= sizeof(struct ext4_extent_idx);
270 #ifdef AGGRESSIVE_TEST
271 	if (size > 4)
272 		size = 4;
273 #endif
274 	return size;
275 }
276 
277 /*
278  * Calculate the number of metadata blocks needed
279  * to allocate @blocks
280  * Worse case is one block per extent
281  */
282 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks)
283 {
284 	int lcap, icap, rcap, leafs, idxs, num;
285 	int newextents = blocks;
286 
287 	rcap = ext4_ext_space_root_idx(inode);
288 	lcap = ext4_ext_space_block(inode);
289 	icap = ext4_ext_space_block_idx(inode);
290 
291 	/* number of new leaf blocks needed */
292 	num = leafs = (newextents + lcap - 1) / lcap;
293 
294 	/*
295 	 * Worse case, we need separate index block(s)
296 	 * to link all new leaf blocks
297 	 */
298 	idxs = (leafs + icap - 1) / icap;
299 	do {
300 		num += idxs;
301 		idxs = (idxs + icap - 1) / icap;
302 	} while (idxs > rcap);
303 
304 	return num;
305 }
306 
307 static int
308 ext4_ext_max_entries(struct inode *inode, int depth)
309 {
310 	int max;
311 
312 	if (depth == ext_depth(inode)) {
313 		if (depth == 0)
314 			max = ext4_ext_space_root(inode);
315 		else
316 			max = ext4_ext_space_root_idx(inode);
317 	} else {
318 		if (depth == 0)
319 			max = ext4_ext_space_block(inode);
320 		else
321 			max = ext4_ext_space_block_idx(inode);
322 	}
323 
324 	return max;
325 }
326 
327 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
328 {
329 	ext4_fsblk_t block = ext_pblock(ext);
330 	int len = ext4_ext_get_actual_len(ext);
331 
332 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
333 }
334 
335 static int ext4_valid_extent_idx(struct inode *inode,
336 				struct ext4_extent_idx *ext_idx)
337 {
338 	ext4_fsblk_t block = idx_pblock(ext_idx);
339 
340 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
341 }
342 
343 static int ext4_valid_extent_entries(struct inode *inode,
344 				struct ext4_extent_header *eh,
345 				int depth)
346 {
347 	struct ext4_extent *ext;
348 	struct ext4_extent_idx *ext_idx;
349 	unsigned short entries;
350 	if (eh->eh_entries == 0)
351 		return 1;
352 
353 	entries = le16_to_cpu(eh->eh_entries);
354 
355 	if (depth == 0) {
356 		/* leaf entries */
357 		ext = EXT_FIRST_EXTENT(eh);
358 		while (entries) {
359 			if (!ext4_valid_extent(inode, ext))
360 				return 0;
361 			ext++;
362 			entries--;
363 		}
364 	} else {
365 		ext_idx = EXT_FIRST_INDEX(eh);
366 		while (entries) {
367 			if (!ext4_valid_extent_idx(inode, ext_idx))
368 				return 0;
369 			ext_idx++;
370 			entries--;
371 		}
372 	}
373 	return 1;
374 }
375 
376 static int __ext4_ext_check(const char *function, struct inode *inode,
377 					struct ext4_extent_header *eh,
378 					int depth)
379 {
380 	const char *error_msg;
381 	int max = 0;
382 
383 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
384 		error_msg = "invalid magic";
385 		goto corrupted;
386 	}
387 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
388 		error_msg = "unexpected eh_depth";
389 		goto corrupted;
390 	}
391 	if (unlikely(eh->eh_max == 0)) {
392 		error_msg = "invalid eh_max";
393 		goto corrupted;
394 	}
395 	max = ext4_ext_max_entries(inode, depth);
396 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
397 		error_msg = "too large eh_max";
398 		goto corrupted;
399 	}
400 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
401 		error_msg = "invalid eh_entries";
402 		goto corrupted;
403 	}
404 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
405 		error_msg = "invalid extent entries";
406 		goto corrupted;
407 	}
408 	return 0;
409 
410 corrupted:
411 	ext4_error(inode->i_sb, function,
412 			"bad header/extent in inode #%lu: %s - magic %x, "
413 			"entries %u, max %u(%u), depth %u(%u)",
414 			inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
415 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
416 			max, le16_to_cpu(eh->eh_depth), depth);
417 
418 	return -EIO;
419 }
420 
421 #define ext4_ext_check(inode, eh, depth)	\
422 	__ext4_ext_check(__func__, inode, eh, depth)
423 
424 int ext4_ext_check_inode(struct inode *inode)
425 {
426 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
427 }
428 
429 #ifdef EXT_DEBUG
430 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
431 {
432 	int k, l = path->p_depth;
433 
434 	ext_debug("path:");
435 	for (k = 0; k <= l; k++, path++) {
436 		if (path->p_idx) {
437 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
438 			    idx_pblock(path->p_idx));
439 		} else if (path->p_ext) {
440 			ext_debug("  %d:%d:%llu ",
441 				  le32_to_cpu(path->p_ext->ee_block),
442 				  ext4_ext_get_actual_len(path->p_ext),
443 				  ext_pblock(path->p_ext));
444 		} else
445 			ext_debug("  []");
446 	}
447 	ext_debug("\n");
448 }
449 
450 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
451 {
452 	int depth = ext_depth(inode);
453 	struct ext4_extent_header *eh;
454 	struct ext4_extent *ex;
455 	int i;
456 
457 	if (!path)
458 		return;
459 
460 	eh = path[depth].p_hdr;
461 	ex = EXT_FIRST_EXTENT(eh);
462 
463 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
464 		ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
465 			  ext4_ext_get_actual_len(ex), ext_pblock(ex));
466 	}
467 	ext_debug("\n");
468 }
469 #else
470 #define ext4_ext_show_path(inode, path)
471 #define ext4_ext_show_leaf(inode, path)
472 #endif
473 
474 void ext4_ext_drop_refs(struct ext4_ext_path *path)
475 {
476 	int depth = path->p_depth;
477 	int i;
478 
479 	for (i = 0; i <= depth; i++, path++)
480 		if (path->p_bh) {
481 			brelse(path->p_bh);
482 			path->p_bh = NULL;
483 		}
484 }
485 
486 /*
487  * ext4_ext_binsearch_idx:
488  * binary search for the closest index of the given block
489  * the header must be checked before calling this
490  */
491 static void
492 ext4_ext_binsearch_idx(struct inode *inode,
493 			struct ext4_ext_path *path, ext4_lblk_t block)
494 {
495 	struct ext4_extent_header *eh = path->p_hdr;
496 	struct ext4_extent_idx *r, *l, *m;
497 
498 
499 	ext_debug("binsearch for %u(idx):  ", block);
500 
501 	l = EXT_FIRST_INDEX(eh) + 1;
502 	r = EXT_LAST_INDEX(eh);
503 	while (l <= r) {
504 		m = l + (r - l) / 2;
505 		if (block < le32_to_cpu(m->ei_block))
506 			r = m - 1;
507 		else
508 			l = m + 1;
509 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
510 				m, le32_to_cpu(m->ei_block),
511 				r, le32_to_cpu(r->ei_block));
512 	}
513 
514 	path->p_idx = l - 1;
515 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
516 		  idx_pblock(path->p_idx));
517 
518 #ifdef CHECK_BINSEARCH
519 	{
520 		struct ext4_extent_idx *chix, *ix;
521 		int k;
522 
523 		chix = ix = EXT_FIRST_INDEX(eh);
524 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
525 		  if (k != 0 &&
526 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
527 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
528 				       "first=0x%p\n", k,
529 				       ix, EXT_FIRST_INDEX(eh));
530 				printk(KERN_DEBUG "%u <= %u\n",
531 				       le32_to_cpu(ix->ei_block),
532 				       le32_to_cpu(ix[-1].ei_block));
533 			}
534 			BUG_ON(k && le32_to_cpu(ix->ei_block)
535 					   <= le32_to_cpu(ix[-1].ei_block));
536 			if (block < le32_to_cpu(ix->ei_block))
537 				break;
538 			chix = ix;
539 		}
540 		BUG_ON(chix != path->p_idx);
541 	}
542 #endif
543 
544 }
545 
546 /*
547  * ext4_ext_binsearch:
548  * binary search for closest extent of the given block
549  * the header must be checked before calling this
550  */
551 static void
552 ext4_ext_binsearch(struct inode *inode,
553 		struct ext4_ext_path *path, ext4_lblk_t block)
554 {
555 	struct ext4_extent_header *eh = path->p_hdr;
556 	struct ext4_extent *r, *l, *m;
557 
558 	if (eh->eh_entries == 0) {
559 		/*
560 		 * this leaf is empty:
561 		 * we get such a leaf in split/add case
562 		 */
563 		return;
564 	}
565 
566 	ext_debug("binsearch for %u:  ", block);
567 
568 	l = EXT_FIRST_EXTENT(eh) + 1;
569 	r = EXT_LAST_EXTENT(eh);
570 
571 	while (l <= r) {
572 		m = l + (r - l) / 2;
573 		if (block < le32_to_cpu(m->ee_block))
574 			r = m - 1;
575 		else
576 			l = m + 1;
577 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
578 				m, le32_to_cpu(m->ee_block),
579 				r, le32_to_cpu(r->ee_block));
580 	}
581 
582 	path->p_ext = l - 1;
583 	ext_debug("  -> %d:%llu:%d ",
584 			le32_to_cpu(path->p_ext->ee_block),
585 			ext_pblock(path->p_ext),
586 			ext4_ext_get_actual_len(path->p_ext));
587 
588 #ifdef CHECK_BINSEARCH
589 	{
590 		struct ext4_extent *chex, *ex;
591 		int k;
592 
593 		chex = ex = EXT_FIRST_EXTENT(eh);
594 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
595 			BUG_ON(k && le32_to_cpu(ex->ee_block)
596 					  <= le32_to_cpu(ex[-1].ee_block));
597 			if (block < le32_to_cpu(ex->ee_block))
598 				break;
599 			chex = ex;
600 		}
601 		BUG_ON(chex != path->p_ext);
602 	}
603 #endif
604 
605 }
606 
607 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
608 {
609 	struct ext4_extent_header *eh;
610 
611 	eh = ext_inode_hdr(inode);
612 	eh->eh_depth = 0;
613 	eh->eh_entries = 0;
614 	eh->eh_magic = EXT4_EXT_MAGIC;
615 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
616 	ext4_mark_inode_dirty(handle, inode);
617 	ext4_ext_invalidate_cache(inode);
618 	return 0;
619 }
620 
621 struct ext4_ext_path *
622 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
623 					struct ext4_ext_path *path)
624 {
625 	struct ext4_extent_header *eh;
626 	struct buffer_head *bh;
627 	short int depth, i, ppos = 0, alloc = 0;
628 
629 	eh = ext_inode_hdr(inode);
630 	depth = ext_depth(inode);
631 
632 	/* account possible depth increase */
633 	if (!path) {
634 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
635 				GFP_NOFS);
636 		if (!path)
637 			return ERR_PTR(-ENOMEM);
638 		alloc = 1;
639 	}
640 	path[0].p_hdr = eh;
641 	path[0].p_bh = NULL;
642 
643 	i = depth;
644 	/* walk through the tree */
645 	while (i) {
646 		int need_to_validate = 0;
647 
648 		ext_debug("depth %d: num %d, max %d\n",
649 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
650 
651 		ext4_ext_binsearch_idx(inode, path + ppos, block);
652 		path[ppos].p_block = idx_pblock(path[ppos].p_idx);
653 		path[ppos].p_depth = i;
654 		path[ppos].p_ext = NULL;
655 
656 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
657 		if (unlikely(!bh))
658 			goto err;
659 		if (!bh_uptodate_or_lock(bh)) {
660 			if (bh_submit_read(bh) < 0) {
661 				put_bh(bh);
662 				goto err;
663 			}
664 			/* validate the extent entries */
665 			need_to_validate = 1;
666 		}
667 		eh = ext_block_hdr(bh);
668 		ppos++;
669 		BUG_ON(ppos > depth);
670 		path[ppos].p_bh = bh;
671 		path[ppos].p_hdr = eh;
672 		i--;
673 
674 		if (need_to_validate && ext4_ext_check(inode, eh, i))
675 			goto err;
676 	}
677 
678 	path[ppos].p_depth = i;
679 	path[ppos].p_ext = NULL;
680 	path[ppos].p_idx = NULL;
681 
682 	/* find extent */
683 	ext4_ext_binsearch(inode, path + ppos, block);
684 	/* if not an empty leaf */
685 	if (path[ppos].p_ext)
686 		path[ppos].p_block = ext_pblock(path[ppos].p_ext);
687 
688 	ext4_ext_show_path(inode, path);
689 
690 	return path;
691 
692 err:
693 	ext4_ext_drop_refs(path);
694 	if (alloc)
695 		kfree(path);
696 	return ERR_PTR(-EIO);
697 }
698 
699 /*
700  * ext4_ext_insert_index:
701  * insert new index [@logical;@ptr] into the block at @curp;
702  * check where to insert: before @curp or after @curp
703  */
704 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
705 				struct ext4_ext_path *curp,
706 				int logical, ext4_fsblk_t ptr)
707 {
708 	struct ext4_extent_idx *ix;
709 	int len, err;
710 
711 	err = ext4_ext_get_access(handle, inode, curp);
712 	if (err)
713 		return err;
714 
715 	BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
716 	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
717 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
718 		/* insert after */
719 		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
720 			len = (len - 1) * sizeof(struct ext4_extent_idx);
721 			len = len < 0 ? 0 : len;
722 			ext_debug("insert new index %d after: %llu. "
723 					"move %d from 0x%p to 0x%p\n",
724 					logical, ptr, len,
725 					(curp->p_idx + 1), (curp->p_idx + 2));
726 			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
727 		}
728 		ix = curp->p_idx + 1;
729 	} else {
730 		/* insert before */
731 		len = len * sizeof(struct ext4_extent_idx);
732 		len = len < 0 ? 0 : len;
733 		ext_debug("insert new index %d before: %llu. "
734 				"move %d from 0x%p to 0x%p\n",
735 				logical, ptr, len,
736 				curp->p_idx, (curp->p_idx + 1));
737 		memmove(curp->p_idx + 1, curp->p_idx, len);
738 		ix = curp->p_idx;
739 	}
740 
741 	ix->ei_block = cpu_to_le32(logical);
742 	ext4_idx_store_pblock(ix, ptr);
743 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
744 
745 	BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
746 			     > le16_to_cpu(curp->p_hdr->eh_max));
747 	BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
748 
749 	err = ext4_ext_dirty(handle, inode, curp);
750 	ext4_std_error(inode->i_sb, err);
751 
752 	return err;
753 }
754 
755 /*
756  * ext4_ext_split:
757  * inserts new subtree into the path, using free index entry
758  * at depth @at:
759  * - allocates all needed blocks (new leaf and all intermediate index blocks)
760  * - makes decision where to split
761  * - moves remaining extents and index entries (right to the split point)
762  *   into the newly allocated blocks
763  * - initializes subtree
764  */
765 static int ext4_ext_split(handle_t *handle, struct inode *inode,
766 				struct ext4_ext_path *path,
767 				struct ext4_extent *newext, int at)
768 {
769 	struct buffer_head *bh = NULL;
770 	int depth = ext_depth(inode);
771 	struct ext4_extent_header *neh;
772 	struct ext4_extent_idx *fidx;
773 	struct ext4_extent *ex;
774 	int i = at, k, m, a;
775 	ext4_fsblk_t newblock, oldblock;
776 	__le32 border;
777 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
778 	int err = 0;
779 
780 	/* make decision: where to split? */
781 	/* FIXME: now decision is simplest: at current extent */
782 
783 	/* if current leaf will be split, then we should use
784 	 * border from split point */
785 	BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
786 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
787 		border = path[depth].p_ext[1].ee_block;
788 		ext_debug("leaf will be split."
789 				" next leaf starts at %d\n",
790 				  le32_to_cpu(border));
791 	} else {
792 		border = newext->ee_block;
793 		ext_debug("leaf will be added."
794 				" next leaf starts at %d\n",
795 				le32_to_cpu(border));
796 	}
797 
798 	/*
799 	 * If error occurs, then we break processing
800 	 * and mark filesystem read-only. index won't
801 	 * be inserted and tree will be in consistent
802 	 * state. Next mount will repair buffers too.
803 	 */
804 
805 	/*
806 	 * Get array to track all allocated blocks.
807 	 * We need this to handle errors and free blocks
808 	 * upon them.
809 	 */
810 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
811 	if (!ablocks)
812 		return -ENOMEM;
813 
814 	/* allocate all needed blocks */
815 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
816 	for (a = 0; a < depth - at; a++) {
817 		newblock = ext4_ext_new_meta_block(handle, inode, path,
818 						   newext, &err);
819 		if (newblock == 0)
820 			goto cleanup;
821 		ablocks[a] = newblock;
822 	}
823 
824 	/* initialize new leaf */
825 	newblock = ablocks[--a];
826 	BUG_ON(newblock == 0);
827 	bh = sb_getblk(inode->i_sb, newblock);
828 	if (!bh) {
829 		err = -EIO;
830 		goto cleanup;
831 	}
832 	lock_buffer(bh);
833 
834 	err = ext4_journal_get_create_access(handle, bh);
835 	if (err)
836 		goto cleanup;
837 
838 	neh = ext_block_hdr(bh);
839 	neh->eh_entries = 0;
840 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
841 	neh->eh_magic = EXT4_EXT_MAGIC;
842 	neh->eh_depth = 0;
843 	ex = EXT_FIRST_EXTENT(neh);
844 
845 	/* move remainder of path[depth] to the new leaf */
846 	BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
847 	/* start copy from next extent */
848 	/* TODO: we could do it by single memmove */
849 	m = 0;
850 	path[depth].p_ext++;
851 	while (path[depth].p_ext <=
852 			EXT_MAX_EXTENT(path[depth].p_hdr)) {
853 		ext_debug("move %d:%llu:%d in new leaf %llu\n",
854 				le32_to_cpu(path[depth].p_ext->ee_block),
855 				ext_pblock(path[depth].p_ext),
856 				ext4_ext_get_actual_len(path[depth].p_ext),
857 				newblock);
858 		/*memmove(ex++, path[depth].p_ext++,
859 				sizeof(struct ext4_extent));
860 		neh->eh_entries++;*/
861 		path[depth].p_ext++;
862 		m++;
863 	}
864 	if (m) {
865 		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
866 		le16_add_cpu(&neh->eh_entries, m);
867 	}
868 
869 	set_buffer_uptodate(bh);
870 	unlock_buffer(bh);
871 
872 	err = ext4_handle_dirty_metadata(handle, inode, bh);
873 	if (err)
874 		goto cleanup;
875 	brelse(bh);
876 	bh = NULL;
877 
878 	/* correct old leaf */
879 	if (m) {
880 		err = ext4_ext_get_access(handle, inode, path + depth);
881 		if (err)
882 			goto cleanup;
883 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
884 		err = ext4_ext_dirty(handle, inode, path + depth);
885 		if (err)
886 			goto cleanup;
887 
888 	}
889 
890 	/* create intermediate indexes */
891 	k = depth - at - 1;
892 	BUG_ON(k < 0);
893 	if (k)
894 		ext_debug("create %d intermediate indices\n", k);
895 	/* insert new index into current index block */
896 	/* current depth stored in i var */
897 	i = depth - 1;
898 	while (k--) {
899 		oldblock = newblock;
900 		newblock = ablocks[--a];
901 		bh = sb_getblk(inode->i_sb, newblock);
902 		if (!bh) {
903 			err = -EIO;
904 			goto cleanup;
905 		}
906 		lock_buffer(bh);
907 
908 		err = ext4_journal_get_create_access(handle, bh);
909 		if (err)
910 			goto cleanup;
911 
912 		neh = ext_block_hdr(bh);
913 		neh->eh_entries = cpu_to_le16(1);
914 		neh->eh_magic = EXT4_EXT_MAGIC;
915 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
916 		neh->eh_depth = cpu_to_le16(depth - i);
917 		fidx = EXT_FIRST_INDEX(neh);
918 		fidx->ei_block = border;
919 		ext4_idx_store_pblock(fidx, oldblock);
920 
921 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
922 				i, newblock, le32_to_cpu(border), oldblock);
923 		/* copy indexes */
924 		m = 0;
925 		path[i].p_idx++;
926 
927 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
928 				EXT_MAX_INDEX(path[i].p_hdr));
929 		BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
930 				EXT_LAST_INDEX(path[i].p_hdr));
931 		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
932 			ext_debug("%d: move %d:%llu in new index %llu\n", i,
933 					le32_to_cpu(path[i].p_idx->ei_block),
934 					idx_pblock(path[i].p_idx),
935 					newblock);
936 			/*memmove(++fidx, path[i].p_idx++,
937 					sizeof(struct ext4_extent_idx));
938 			neh->eh_entries++;
939 			BUG_ON(neh->eh_entries > neh->eh_max);*/
940 			path[i].p_idx++;
941 			m++;
942 		}
943 		if (m) {
944 			memmove(++fidx, path[i].p_idx - m,
945 				sizeof(struct ext4_extent_idx) * m);
946 			le16_add_cpu(&neh->eh_entries, m);
947 		}
948 		set_buffer_uptodate(bh);
949 		unlock_buffer(bh);
950 
951 		err = ext4_handle_dirty_metadata(handle, inode, bh);
952 		if (err)
953 			goto cleanup;
954 		brelse(bh);
955 		bh = NULL;
956 
957 		/* correct old index */
958 		if (m) {
959 			err = ext4_ext_get_access(handle, inode, path + i);
960 			if (err)
961 				goto cleanup;
962 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
963 			err = ext4_ext_dirty(handle, inode, path + i);
964 			if (err)
965 				goto cleanup;
966 		}
967 
968 		i--;
969 	}
970 
971 	/* insert new index */
972 	err = ext4_ext_insert_index(handle, inode, path + at,
973 				    le32_to_cpu(border), newblock);
974 
975 cleanup:
976 	if (bh) {
977 		if (buffer_locked(bh))
978 			unlock_buffer(bh);
979 		brelse(bh);
980 	}
981 
982 	if (err) {
983 		/* free all allocated blocks in error case */
984 		for (i = 0; i < depth; i++) {
985 			if (!ablocks[i])
986 				continue;
987 			ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
988 		}
989 	}
990 	kfree(ablocks);
991 
992 	return err;
993 }
994 
995 /*
996  * ext4_ext_grow_indepth:
997  * implements tree growing procedure:
998  * - allocates new block
999  * - moves top-level data (index block or leaf) into the new block
1000  * - initializes new top-level, creating index that points to the
1001  *   just created block
1002  */
1003 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1004 					struct ext4_ext_path *path,
1005 					struct ext4_extent *newext)
1006 {
1007 	struct ext4_ext_path *curp = path;
1008 	struct ext4_extent_header *neh;
1009 	struct ext4_extent_idx *fidx;
1010 	struct buffer_head *bh;
1011 	ext4_fsblk_t newblock;
1012 	int err = 0;
1013 
1014 	newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1015 	if (newblock == 0)
1016 		return err;
1017 
1018 	bh = sb_getblk(inode->i_sb, newblock);
1019 	if (!bh) {
1020 		err = -EIO;
1021 		ext4_std_error(inode->i_sb, err);
1022 		return err;
1023 	}
1024 	lock_buffer(bh);
1025 
1026 	err = ext4_journal_get_create_access(handle, bh);
1027 	if (err) {
1028 		unlock_buffer(bh);
1029 		goto out;
1030 	}
1031 
1032 	/* move top-level index/leaf into new block */
1033 	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1034 
1035 	/* set size of new block */
1036 	neh = ext_block_hdr(bh);
1037 	/* old root could have indexes or leaves
1038 	 * so calculate e_max right way */
1039 	if (ext_depth(inode))
1040 	  neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
1041 	else
1042 	  neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
1043 	neh->eh_magic = EXT4_EXT_MAGIC;
1044 	set_buffer_uptodate(bh);
1045 	unlock_buffer(bh);
1046 
1047 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1048 	if (err)
1049 		goto out;
1050 
1051 	/* create index in new top-level index: num,max,pointer */
1052 	err = ext4_ext_get_access(handle, inode, curp);
1053 	if (err)
1054 		goto out;
1055 
1056 	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1057 	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
1058 	curp->p_hdr->eh_entries = cpu_to_le16(1);
1059 	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1060 
1061 	if (path[0].p_hdr->eh_depth)
1062 		curp->p_idx->ei_block =
1063 			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1064 	else
1065 		curp->p_idx->ei_block =
1066 			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1067 	ext4_idx_store_pblock(curp->p_idx, newblock);
1068 
1069 	neh = ext_inode_hdr(inode);
1070 	fidx = EXT_FIRST_INDEX(neh);
1071 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1072 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1073 		  le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
1074 
1075 	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1076 	err = ext4_ext_dirty(handle, inode, curp);
1077 out:
1078 	brelse(bh);
1079 
1080 	return err;
1081 }
1082 
1083 /*
1084  * ext4_ext_create_new_leaf:
1085  * finds empty index and adds new leaf.
1086  * if no free index is found, then it requests in-depth growing.
1087  */
1088 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1089 					struct ext4_ext_path *path,
1090 					struct ext4_extent *newext)
1091 {
1092 	struct ext4_ext_path *curp;
1093 	int depth, i, err = 0;
1094 
1095 repeat:
1096 	i = depth = ext_depth(inode);
1097 
1098 	/* walk up to the tree and look for free index entry */
1099 	curp = path + depth;
1100 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1101 		i--;
1102 		curp--;
1103 	}
1104 
1105 	/* we use already allocated block for index block,
1106 	 * so subsequent data blocks should be contiguous */
1107 	if (EXT_HAS_FREE_INDEX(curp)) {
1108 		/* if we found index with free entry, then use that
1109 		 * entry: create all needed subtree and add new leaf */
1110 		err = ext4_ext_split(handle, inode, path, newext, i);
1111 		if (err)
1112 			goto out;
1113 
1114 		/* refill path */
1115 		ext4_ext_drop_refs(path);
1116 		path = ext4_ext_find_extent(inode,
1117 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1118 				    path);
1119 		if (IS_ERR(path))
1120 			err = PTR_ERR(path);
1121 	} else {
1122 		/* tree is full, time to grow in depth */
1123 		err = ext4_ext_grow_indepth(handle, inode, path, newext);
1124 		if (err)
1125 			goto out;
1126 
1127 		/* refill path */
1128 		ext4_ext_drop_refs(path);
1129 		path = ext4_ext_find_extent(inode,
1130 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1131 				    path);
1132 		if (IS_ERR(path)) {
1133 			err = PTR_ERR(path);
1134 			goto out;
1135 		}
1136 
1137 		/*
1138 		 * only first (depth 0 -> 1) produces free space;
1139 		 * in all other cases we have to split the grown tree
1140 		 */
1141 		depth = ext_depth(inode);
1142 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1143 			/* now we need to split */
1144 			goto repeat;
1145 		}
1146 	}
1147 
1148 out:
1149 	return err;
1150 }
1151 
1152 /*
1153  * search the closest allocated block to the left for *logical
1154  * and returns it at @logical + it's physical address at @phys
1155  * if *logical is the smallest allocated block, the function
1156  * returns 0 at @phys
1157  * return value contains 0 (success) or error code
1158  */
1159 int
1160 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1161 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1162 {
1163 	struct ext4_extent_idx *ix;
1164 	struct ext4_extent *ex;
1165 	int depth, ee_len;
1166 
1167 	BUG_ON(path == NULL);
1168 	depth = path->p_depth;
1169 	*phys = 0;
1170 
1171 	if (depth == 0 && path->p_ext == NULL)
1172 		return 0;
1173 
1174 	/* usually extent in the path covers blocks smaller
1175 	 * then *logical, but it can be that extent is the
1176 	 * first one in the file */
1177 
1178 	ex = path[depth].p_ext;
1179 	ee_len = ext4_ext_get_actual_len(ex);
1180 	if (*logical < le32_to_cpu(ex->ee_block)) {
1181 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1182 		while (--depth >= 0) {
1183 			ix = path[depth].p_idx;
1184 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1185 		}
1186 		return 0;
1187 	}
1188 
1189 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1190 
1191 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1192 	*phys = ext_pblock(ex) + ee_len - 1;
1193 	return 0;
1194 }
1195 
1196 /*
1197  * search the closest allocated block to the right for *logical
1198  * and returns it at @logical + it's physical address at @phys
1199  * if *logical is the smallest allocated block, the function
1200  * returns 0 at @phys
1201  * return value contains 0 (success) or error code
1202  */
1203 int
1204 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1205 			ext4_lblk_t *logical, ext4_fsblk_t *phys)
1206 {
1207 	struct buffer_head *bh = NULL;
1208 	struct ext4_extent_header *eh;
1209 	struct ext4_extent_idx *ix;
1210 	struct ext4_extent *ex;
1211 	ext4_fsblk_t block;
1212 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1213 	int ee_len;
1214 
1215 	BUG_ON(path == NULL);
1216 	depth = path->p_depth;
1217 	*phys = 0;
1218 
1219 	if (depth == 0 && path->p_ext == NULL)
1220 		return 0;
1221 
1222 	/* usually extent in the path covers blocks smaller
1223 	 * then *logical, but it can be that extent is the
1224 	 * first one in the file */
1225 
1226 	ex = path[depth].p_ext;
1227 	ee_len = ext4_ext_get_actual_len(ex);
1228 	if (*logical < le32_to_cpu(ex->ee_block)) {
1229 		BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1230 		while (--depth >= 0) {
1231 			ix = path[depth].p_idx;
1232 			BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1233 		}
1234 		*logical = le32_to_cpu(ex->ee_block);
1235 		*phys = ext_pblock(ex);
1236 		return 0;
1237 	}
1238 
1239 	BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1240 
1241 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1242 		/* next allocated block in this leaf */
1243 		ex++;
1244 		*logical = le32_to_cpu(ex->ee_block);
1245 		*phys = ext_pblock(ex);
1246 		return 0;
1247 	}
1248 
1249 	/* go up and search for index to the right */
1250 	while (--depth >= 0) {
1251 		ix = path[depth].p_idx;
1252 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1253 			goto got_index;
1254 	}
1255 
1256 	/* we've gone up to the root and found no index to the right */
1257 	return 0;
1258 
1259 got_index:
1260 	/* we've found index to the right, let's
1261 	 * follow it and find the closest allocated
1262 	 * block to the right */
1263 	ix++;
1264 	block = idx_pblock(ix);
1265 	while (++depth < path->p_depth) {
1266 		bh = sb_bread(inode->i_sb, block);
1267 		if (bh == NULL)
1268 			return -EIO;
1269 		eh = ext_block_hdr(bh);
1270 		/* subtract from p_depth to get proper eh_depth */
1271 		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1272 			put_bh(bh);
1273 			return -EIO;
1274 		}
1275 		ix = EXT_FIRST_INDEX(eh);
1276 		block = idx_pblock(ix);
1277 		put_bh(bh);
1278 	}
1279 
1280 	bh = sb_bread(inode->i_sb, block);
1281 	if (bh == NULL)
1282 		return -EIO;
1283 	eh = ext_block_hdr(bh);
1284 	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1285 		put_bh(bh);
1286 		return -EIO;
1287 	}
1288 	ex = EXT_FIRST_EXTENT(eh);
1289 	*logical = le32_to_cpu(ex->ee_block);
1290 	*phys = ext_pblock(ex);
1291 	put_bh(bh);
1292 	return 0;
1293 }
1294 
1295 /*
1296  * ext4_ext_next_allocated_block:
1297  * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1298  * NOTE: it considers block number from index entry as
1299  * allocated block. Thus, index entries have to be consistent
1300  * with leaves.
1301  */
1302 static ext4_lblk_t
1303 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1304 {
1305 	int depth;
1306 
1307 	BUG_ON(path == NULL);
1308 	depth = path->p_depth;
1309 
1310 	if (depth == 0 && path->p_ext == NULL)
1311 		return EXT_MAX_BLOCK;
1312 
1313 	while (depth >= 0) {
1314 		if (depth == path->p_depth) {
1315 			/* leaf */
1316 			if (path[depth].p_ext !=
1317 					EXT_LAST_EXTENT(path[depth].p_hdr))
1318 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1319 		} else {
1320 			/* index */
1321 			if (path[depth].p_idx !=
1322 					EXT_LAST_INDEX(path[depth].p_hdr))
1323 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1324 		}
1325 		depth--;
1326 	}
1327 
1328 	return EXT_MAX_BLOCK;
1329 }
1330 
1331 /*
1332  * ext4_ext_next_leaf_block:
1333  * returns first allocated block from next leaf or EXT_MAX_BLOCK
1334  */
1335 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1336 					struct ext4_ext_path *path)
1337 {
1338 	int depth;
1339 
1340 	BUG_ON(path == NULL);
1341 	depth = path->p_depth;
1342 
1343 	/* zero-tree has no leaf blocks at all */
1344 	if (depth == 0)
1345 		return EXT_MAX_BLOCK;
1346 
1347 	/* go to index block */
1348 	depth--;
1349 
1350 	while (depth >= 0) {
1351 		if (path[depth].p_idx !=
1352 				EXT_LAST_INDEX(path[depth].p_hdr))
1353 			return (ext4_lblk_t)
1354 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1355 		depth--;
1356 	}
1357 
1358 	return EXT_MAX_BLOCK;
1359 }
1360 
1361 /*
1362  * ext4_ext_correct_indexes:
1363  * if leaf gets modified and modified extent is first in the leaf,
1364  * then we have to correct all indexes above.
1365  * TODO: do we need to correct tree in all cases?
1366  */
1367 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1368 				struct ext4_ext_path *path)
1369 {
1370 	struct ext4_extent_header *eh;
1371 	int depth = ext_depth(inode);
1372 	struct ext4_extent *ex;
1373 	__le32 border;
1374 	int k, err = 0;
1375 
1376 	eh = path[depth].p_hdr;
1377 	ex = path[depth].p_ext;
1378 	BUG_ON(ex == NULL);
1379 	BUG_ON(eh == NULL);
1380 
1381 	if (depth == 0) {
1382 		/* there is no tree at all */
1383 		return 0;
1384 	}
1385 
1386 	if (ex != EXT_FIRST_EXTENT(eh)) {
1387 		/* we correct tree if first leaf got modified only */
1388 		return 0;
1389 	}
1390 
1391 	/*
1392 	 * TODO: we need correction if border is smaller than current one
1393 	 */
1394 	k = depth - 1;
1395 	border = path[depth].p_ext->ee_block;
1396 	err = ext4_ext_get_access(handle, inode, path + k);
1397 	if (err)
1398 		return err;
1399 	path[k].p_idx->ei_block = border;
1400 	err = ext4_ext_dirty(handle, inode, path + k);
1401 	if (err)
1402 		return err;
1403 
1404 	while (k--) {
1405 		/* change all left-side indexes */
1406 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1407 			break;
1408 		err = ext4_ext_get_access(handle, inode, path + k);
1409 		if (err)
1410 			break;
1411 		path[k].p_idx->ei_block = border;
1412 		err = ext4_ext_dirty(handle, inode, path + k);
1413 		if (err)
1414 			break;
1415 	}
1416 
1417 	return err;
1418 }
1419 
1420 static int
1421 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1422 				struct ext4_extent *ex2)
1423 {
1424 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1425 
1426 	/*
1427 	 * Make sure that either both extents are uninitialized, or
1428 	 * both are _not_.
1429 	 */
1430 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1431 		return 0;
1432 
1433 	if (ext4_ext_is_uninitialized(ex1))
1434 		max_len = EXT_UNINIT_MAX_LEN;
1435 	else
1436 		max_len = EXT_INIT_MAX_LEN;
1437 
1438 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1439 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1440 
1441 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1442 			le32_to_cpu(ex2->ee_block))
1443 		return 0;
1444 
1445 	/*
1446 	 * To allow future support for preallocated extents to be added
1447 	 * as an RO_COMPAT feature, refuse to merge to extents if
1448 	 * this can result in the top bit of ee_len being set.
1449 	 */
1450 	if (ext1_ee_len + ext2_ee_len > max_len)
1451 		return 0;
1452 #ifdef AGGRESSIVE_TEST
1453 	if (ext1_ee_len >= 4)
1454 		return 0;
1455 #endif
1456 
1457 	if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1458 		return 1;
1459 	return 0;
1460 }
1461 
1462 /*
1463  * This function tries to merge the "ex" extent to the next extent in the tree.
1464  * It always tries to merge towards right. If you want to merge towards
1465  * left, pass "ex - 1" as argument instead of "ex".
1466  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1467  * 1 if they got merged.
1468  */
1469 int ext4_ext_try_to_merge(struct inode *inode,
1470 			  struct ext4_ext_path *path,
1471 			  struct ext4_extent *ex)
1472 {
1473 	struct ext4_extent_header *eh;
1474 	unsigned int depth, len;
1475 	int merge_done = 0;
1476 	int uninitialized = 0;
1477 
1478 	depth = ext_depth(inode);
1479 	BUG_ON(path[depth].p_hdr == NULL);
1480 	eh = path[depth].p_hdr;
1481 
1482 	while (ex < EXT_LAST_EXTENT(eh)) {
1483 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1484 			break;
1485 		/* merge with next extent! */
1486 		if (ext4_ext_is_uninitialized(ex))
1487 			uninitialized = 1;
1488 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1489 				+ ext4_ext_get_actual_len(ex + 1));
1490 		if (uninitialized)
1491 			ext4_ext_mark_uninitialized(ex);
1492 
1493 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1494 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1495 				* sizeof(struct ext4_extent);
1496 			memmove(ex + 1, ex + 2, len);
1497 		}
1498 		le16_add_cpu(&eh->eh_entries, -1);
1499 		merge_done = 1;
1500 		WARN_ON(eh->eh_entries == 0);
1501 		if (!eh->eh_entries)
1502 			ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1503 			   "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1504 	}
1505 
1506 	return merge_done;
1507 }
1508 
1509 /*
1510  * check if a portion of the "newext" extent overlaps with an
1511  * existing extent.
1512  *
1513  * If there is an overlap discovered, it updates the length of the newext
1514  * such that there will be no overlap, and then returns 1.
1515  * If there is no overlap found, it returns 0.
1516  */
1517 unsigned int ext4_ext_check_overlap(struct inode *inode,
1518 				    struct ext4_extent *newext,
1519 				    struct ext4_ext_path *path)
1520 {
1521 	ext4_lblk_t b1, b2;
1522 	unsigned int depth, len1;
1523 	unsigned int ret = 0;
1524 
1525 	b1 = le32_to_cpu(newext->ee_block);
1526 	len1 = ext4_ext_get_actual_len(newext);
1527 	depth = ext_depth(inode);
1528 	if (!path[depth].p_ext)
1529 		goto out;
1530 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1531 
1532 	/*
1533 	 * get the next allocated block if the extent in the path
1534 	 * is before the requested block(s)
1535 	 */
1536 	if (b2 < b1) {
1537 		b2 = ext4_ext_next_allocated_block(path);
1538 		if (b2 == EXT_MAX_BLOCK)
1539 			goto out;
1540 	}
1541 
1542 	/* check for wrap through zero on extent logical start block*/
1543 	if (b1 + len1 < b1) {
1544 		len1 = EXT_MAX_BLOCK - b1;
1545 		newext->ee_len = cpu_to_le16(len1);
1546 		ret = 1;
1547 	}
1548 
1549 	/* check for overlap */
1550 	if (b1 + len1 > b2) {
1551 		newext->ee_len = cpu_to_le16(b2 - b1);
1552 		ret = 1;
1553 	}
1554 out:
1555 	return ret;
1556 }
1557 
1558 /*
1559  * ext4_ext_insert_extent:
1560  * tries to merge requsted extent into the existing extent or
1561  * inserts requested extent as new one into the tree,
1562  * creating new leaf in the no-space case.
1563  */
1564 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1565 				struct ext4_ext_path *path,
1566 				struct ext4_extent *newext)
1567 {
1568 	struct ext4_extent_header *eh;
1569 	struct ext4_extent *ex, *fex;
1570 	struct ext4_extent *nearex; /* nearest extent */
1571 	struct ext4_ext_path *npath = NULL;
1572 	int depth, len, err;
1573 	ext4_lblk_t next;
1574 	unsigned uninitialized = 0;
1575 
1576 	BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1577 	depth = ext_depth(inode);
1578 	ex = path[depth].p_ext;
1579 	BUG_ON(path[depth].p_hdr == NULL);
1580 
1581 	/* try to insert block into found extent and return */
1582 	if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1583 		ext_debug("append %d block to %d:%d (from %llu)\n",
1584 				ext4_ext_get_actual_len(newext),
1585 				le32_to_cpu(ex->ee_block),
1586 				ext4_ext_get_actual_len(ex), ext_pblock(ex));
1587 		err = ext4_ext_get_access(handle, inode, path + depth);
1588 		if (err)
1589 			return err;
1590 
1591 		/*
1592 		 * ext4_can_extents_be_merged should have checked that either
1593 		 * both extents are uninitialized, or both aren't. Thus we
1594 		 * need to check only one of them here.
1595 		 */
1596 		if (ext4_ext_is_uninitialized(ex))
1597 			uninitialized = 1;
1598 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1599 					+ ext4_ext_get_actual_len(newext));
1600 		if (uninitialized)
1601 			ext4_ext_mark_uninitialized(ex);
1602 		eh = path[depth].p_hdr;
1603 		nearex = ex;
1604 		goto merge;
1605 	}
1606 
1607 repeat:
1608 	depth = ext_depth(inode);
1609 	eh = path[depth].p_hdr;
1610 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1611 		goto has_space;
1612 
1613 	/* probably next leaf has space for us? */
1614 	fex = EXT_LAST_EXTENT(eh);
1615 	next = ext4_ext_next_leaf_block(inode, path);
1616 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1617 	    && next != EXT_MAX_BLOCK) {
1618 		ext_debug("next leaf block - %d\n", next);
1619 		BUG_ON(npath != NULL);
1620 		npath = ext4_ext_find_extent(inode, next, NULL);
1621 		if (IS_ERR(npath))
1622 			return PTR_ERR(npath);
1623 		BUG_ON(npath->p_depth != path->p_depth);
1624 		eh = npath[depth].p_hdr;
1625 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1626 			ext_debug("next leaf isnt full(%d)\n",
1627 				  le16_to_cpu(eh->eh_entries));
1628 			path = npath;
1629 			goto repeat;
1630 		}
1631 		ext_debug("next leaf has no free space(%d,%d)\n",
1632 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1633 	}
1634 
1635 	/*
1636 	 * There is no free space in the found leaf.
1637 	 * We're gonna add a new leaf in the tree.
1638 	 */
1639 	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1640 	if (err)
1641 		goto cleanup;
1642 	depth = ext_depth(inode);
1643 	eh = path[depth].p_hdr;
1644 
1645 has_space:
1646 	nearex = path[depth].p_ext;
1647 
1648 	err = ext4_ext_get_access(handle, inode, path + depth);
1649 	if (err)
1650 		goto cleanup;
1651 
1652 	if (!nearex) {
1653 		/* there is no extent in this leaf, create first one */
1654 		ext_debug("first extent in the leaf: %d:%llu:%d\n",
1655 				le32_to_cpu(newext->ee_block),
1656 				ext_pblock(newext),
1657 				ext4_ext_get_actual_len(newext));
1658 		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1659 	} else if (le32_to_cpu(newext->ee_block)
1660 			   > le32_to_cpu(nearex->ee_block)) {
1661 /*		BUG_ON(newext->ee_block == nearex->ee_block); */
1662 		if (nearex != EXT_LAST_EXTENT(eh)) {
1663 			len = EXT_MAX_EXTENT(eh) - nearex;
1664 			len = (len - 1) * sizeof(struct ext4_extent);
1665 			len = len < 0 ? 0 : len;
1666 			ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1667 					"move %d from 0x%p to 0x%p\n",
1668 					le32_to_cpu(newext->ee_block),
1669 					ext_pblock(newext),
1670 					ext4_ext_get_actual_len(newext),
1671 					nearex, len, nearex + 1, nearex + 2);
1672 			memmove(nearex + 2, nearex + 1, len);
1673 		}
1674 		path[depth].p_ext = nearex + 1;
1675 	} else {
1676 		BUG_ON(newext->ee_block == nearex->ee_block);
1677 		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1678 		len = len < 0 ? 0 : len;
1679 		ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1680 				"move %d from 0x%p to 0x%p\n",
1681 				le32_to_cpu(newext->ee_block),
1682 				ext_pblock(newext),
1683 				ext4_ext_get_actual_len(newext),
1684 				nearex, len, nearex + 1, nearex + 2);
1685 		memmove(nearex + 1, nearex, len);
1686 		path[depth].p_ext = nearex;
1687 	}
1688 
1689 	le16_add_cpu(&eh->eh_entries, 1);
1690 	nearex = path[depth].p_ext;
1691 	nearex->ee_block = newext->ee_block;
1692 	ext4_ext_store_pblock(nearex, ext_pblock(newext));
1693 	nearex->ee_len = newext->ee_len;
1694 
1695 merge:
1696 	/* try to merge extents to the right */
1697 	ext4_ext_try_to_merge(inode, path, nearex);
1698 
1699 	/* try to merge extents to the left */
1700 
1701 	/* time to correct all indexes above */
1702 	err = ext4_ext_correct_indexes(handle, inode, path);
1703 	if (err)
1704 		goto cleanup;
1705 
1706 	err = ext4_ext_dirty(handle, inode, path + depth);
1707 
1708 cleanup:
1709 	if (npath) {
1710 		ext4_ext_drop_refs(npath);
1711 		kfree(npath);
1712 	}
1713 	ext4_ext_invalidate_cache(inode);
1714 	return err;
1715 }
1716 
1717 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1718 			ext4_lblk_t num, ext_prepare_callback func,
1719 			void *cbdata)
1720 {
1721 	struct ext4_ext_path *path = NULL;
1722 	struct ext4_ext_cache cbex;
1723 	struct ext4_extent *ex;
1724 	ext4_lblk_t next, start = 0, end = 0;
1725 	ext4_lblk_t last = block + num;
1726 	int depth, exists, err = 0;
1727 
1728 	BUG_ON(func == NULL);
1729 	BUG_ON(inode == NULL);
1730 
1731 	while (block < last && block != EXT_MAX_BLOCK) {
1732 		num = last - block;
1733 		/* find extent for this block */
1734 		path = ext4_ext_find_extent(inode, block, path);
1735 		if (IS_ERR(path)) {
1736 			err = PTR_ERR(path);
1737 			path = NULL;
1738 			break;
1739 		}
1740 
1741 		depth = ext_depth(inode);
1742 		BUG_ON(path[depth].p_hdr == NULL);
1743 		ex = path[depth].p_ext;
1744 		next = ext4_ext_next_allocated_block(path);
1745 
1746 		exists = 0;
1747 		if (!ex) {
1748 			/* there is no extent yet, so try to allocate
1749 			 * all requested space */
1750 			start = block;
1751 			end = block + num;
1752 		} else if (le32_to_cpu(ex->ee_block) > block) {
1753 			/* need to allocate space before found extent */
1754 			start = block;
1755 			end = le32_to_cpu(ex->ee_block);
1756 			if (block + num < end)
1757 				end = block + num;
1758 		} else if (block >= le32_to_cpu(ex->ee_block)
1759 					+ ext4_ext_get_actual_len(ex)) {
1760 			/* need to allocate space after found extent */
1761 			start = block;
1762 			end = block + num;
1763 			if (end >= next)
1764 				end = next;
1765 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1766 			/*
1767 			 * some part of requested space is covered
1768 			 * by found extent
1769 			 */
1770 			start = block;
1771 			end = le32_to_cpu(ex->ee_block)
1772 				+ ext4_ext_get_actual_len(ex);
1773 			if (block + num < end)
1774 				end = block + num;
1775 			exists = 1;
1776 		} else {
1777 			BUG();
1778 		}
1779 		BUG_ON(end <= start);
1780 
1781 		if (!exists) {
1782 			cbex.ec_block = start;
1783 			cbex.ec_len = end - start;
1784 			cbex.ec_start = 0;
1785 			cbex.ec_type = EXT4_EXT_CACHE_GAP;
1786 		} else {
1787 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1788 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1789 			cbex.ec_start = ext_pblock(ex);
1790 			cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1791 		}
1792 
1793 		BUG_ON(cbex.ec_len == 0);
1794 		err = func(inode, path, &cbex, ex, cbdata);
1795 		ext4_ext_drop_refs(path);
1796 
1797 		if (err < 0)
1798 			break;
1799 
1800 		if (err == EXT_REPEAT)
1801 			continue;
1802 		else if (err == EXT_BREAK) {
1803 			err = 0;
1804 			break;
1805 		}
1806 
1807 		if (ext_depth(inode) != depth) {
1808 			/* depth was changed. we have to realloc path */
1809 			kfree(path);
1810 			path = NULL;
1811 		}
1812 
1813 		block = cbex.ec_block + cbex.ec_len;
1814 	}
1815 
1816 	if (path) {
1817 		ext4_ext_drop_refs(path);
1818 		kfree(path);
1819 	}
1820 
1821 	return err;
1822 }
1823 
1824 static void
1825 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1826 			__u32 len, ext4_fsblk_t start, int type)
1827 {
1828 	struct ext4_ext_cache *cex;
1829 	BUG_ON(len == 0);
1830 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1831 	cex = &EXT4_I(inode)->i_cached_extent;
1832 	cex->ec_type = type;
1833 	cex->ec_block = block;
1834 	cex->ec_len = len;
1835 	cex->ec_start = start;
1836 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1837 }
1838 
1839 /*
1840  * ext4_ext_put_gap_in_cache:
1841  * calculate boundaries of the gap that the requested block fits into
1842  * and cache this gap
1843  */
1844 static void
1845 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1846 				ext4_lblk_t block)
1847 {
1848 	int depth = ext_depth(inode);
1849 	unsigned long len;
1850 	ext4_lblk_t lblock;
1851 	struct ext4_extent *ex;
1852 
1853 	ex = path[depth].p_ext;
1854 	if (ex == NULL) {
1855 		/* there is no extent yet, so gap is [0;-] */
1856 		lblock = 0;
1857 		len = EXT_MAX_BLOCK;
1858 		ext_debug("cache gap(whole file):");
1859 	} else if (block < le32_to_cpu(ex->ee_block)) {
1860 		lblock = block;
1861 		len = le32_to_cpu(ex->ee_block) - block;
1862 		ext_debug("cache gap(before): %u [%u:%u]",
1863 				block,
1864 				le32_to_cpu(ex->ee_block),
1865 				 ext4_ext_get_actual_len(ex));
1866 	} else if (block >= le32_to_cpu(ex->ee_block)
1867 			+ ext4_ext_get_actual_len(ex)) {
1868 		ext4_lblk_t next;
1869 		lblock = le32_to_cpu(ex->ee_block)
1870 			+ ext4_ext_get_actual_len(ex);
1871 
1872 		next = ext4_ext_next_allocated_block(path);
1873 		ext_debug("cache gap(after): [%u:%u] %u",
1874 				le32_to_cpu(ex->ee_block),
1875 				ext4_ext_get_actual_len(ex),
1876 				block);
1877 		BUG_ON(next == lblock);
1878 		len = next - lblock;
1879 	} else {
1880 		lblock = len = 0;
1881 		BUG();
1882 	}
1883 
1884 	ext_debug(" -> %u:%lu\n", lblock, len);
1885 	ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1886 }
1887 
1888 static int
1889 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1890 			struct ext4_extent *ex)
1891 {
1892 	struct ext4_ext_cache *cex;
1893 	int ret = EXT4_EXT_CACHE_NO;
1894 
1895 	/*
1896 	 * We borrow i_block_reservation_lock to protect i_cached_extent
1897 	 */
1898 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1899 	cex = &EXT4_I(inode)->i_cached_extent;
1900 
1901 	/* has cache valid data? */
1902 	if (cex->ec_type == EXT4_EXT_CACHE_NO)
1903 		goto errout;
1904 
1905 	BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1906 			cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1907 	if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1908 		ex->ee_block = cpu_to_le32(cex->ec_block);
1909 		ext4_ext_store_pblock(ex, cex->ec_start);
1910 		ex->ee_len = cpu_to_le16(cex->ec_len);
1911 		ext_debug("%u cached by %u:%u:%llu\n",
1912 				block,
1913 				cex->ec_block, cex->ec_len, cex->ec_start);
1914 		ret = cex->ec_type;
1915 	}
1916 errout:
1917 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1918 	return ret;
1919 }
1920 
1921 /*
1922  * ext4_ext_rm_idx:
1923  * removes index from the index block.
1924  * It's used in truncate case only, thus all requests are for
1925  * last index in the block only.
1926  */
1927 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1928 			struct ext4_ext_path *path)
1929 {
1930 	struct buffer_head *bh;
1931 	int err;
1932 	ext4_fsblk_t leaf;
1933 
1934 	/* free index block */
1935 	path--;
1936 	leaf = idx_pblock(path->p_idx);
1937 	BUG_ON(path->p_hdr->eh_entries == 0);
1938 	err = ext4_ext_get_access(handle, inode, path);
1939 	if (err)
1940 		return err;
1941 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
1942 	err = ext4_ext_dirty(handle, inode, path);
1943 	if (err)
1944 		return err;
1945 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
1946 	bh = sb_find_get_block(inode->i_sb, leaf);
1947 	ext4_forget(handle, 1, inode, bh, leaf);
1948 	ext4_free_blocks(handle, inode, leaf, 1, 1);
1949 	return err;
1950 }
1951 
1952 /*
1953  * ext4_ext_calc_credits_for_single_extent:
1954  * This routine returns max. credits that needed to insert an extent
1955  * to the extent tree.
1956  * When pass the actual path, the caller should calculate credits
1957  * under i_data_sem.
1958  */
1959 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
1960 						struct ext4_ext_path *path)
1961 {
1962 	if (path) {
1963 		int depth = ext_depth(inode);
1964 		int ret = 0;
1965 
1966 		/* probably there is space in leaf? */
1967 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1968 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
1969 
1970 			/*
1971 			 *  There are some space in the leaf tree, no
1972 			 *  need to account for leaf block credit
1973 			 *
1974 			 *  bitmaps and block group descriptor blocks
1975 			 *  and other metadat blocks still need to be
1976 			 *  accounted.
1977 			 */
1978 			/* 1 bitmap, 1 block group descriptor */
1979 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
1980 		}
1981 	}
1982 
1983 	return ext4_chunk_trans_blocks(inode, nrblocks);
1984 }
1985 
1986 /*
1987  * How many index/leaf blocks need to change/allocate to modify nrblocks?
1988  *
1989  * if nrblocks are fit in a single extent (chunk flag is 1), then
1990  * in the worse case, each tree level index/leaf need to be changed
1991  * if the tree split due to insert a new extent, then the old tree
1992  * index/leaf need to be updated too
1993  *
1994  * If the nrblocks are discontiguous, they could cause
1995  * the whole tree split more than once, but this is really rare.
1996  */
1997 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
1998 {
1999 	int index;
2000 	int depth = ext_depth(inode);
2001 
2002 	if (chunk)
2003 		index = depth * 2;
2004 	else
2005 		index = depth * 3;
2006 
2007 	return index;
2008 }
2009 
2010 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2011 				struct ext4_extent *ex,
2012 				ext4_lblk_t from, ext4_lblk_t to)
2013 {
2014 	struct buffer_head *bh;
2015 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2016 	int i, metadata = 0;
2017 
2018 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2019 		metadata = 1;
2020 #ifdef EXTENTS_STATS
2021 	{
2022 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2023 		spin_lock(&sbi->s_ext_stats_lock);
2024 		sbi->s_ext_blocks += ee_len;
2025 		sbi->s_ext_extents++;
2026 		if (ee_len < sbi->s_ext_min)
2027 			sbi->s_ext_min = ee_len;
2028 		if (ee_len > sbi->s_ext_max)
2029 			sbi->s_ext_max = ee_len;
2030 		if (ext_depth(inode) > sbi->s_depth_max)
2031 			sbi->s_depth_max = ext_depth(inode);
2032 		spin_unlock(&sbi->s_ext_stats_lock);
2033 	}
2034 #endif
2035 	if (from >= le32_to_cpu(ex->ee_block)
2036 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2037 		/* tail removal */
2038 		ext4_lblk_t num;
2039 		ext4_fsblk_t start;
2040 
2041 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2042 		start = ext_pblock(ex) + ee_len - num;
2043 		ext_debug("free last %u blocks starting %llu\n", num, start);
2044 		for (i = 0; i < num; i++) {
2045 			bh = sb_find_get_block(inode->i_sb, start + i);
2046 			ext4_forget(handle, 0, inode, bh, start + i);
2047 		}
2048 		ext4_free_blocks(handle, inode, start, num, metadata);
2049 	} else if (from == le32_to_cpu(ex->ee_block)
2050 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2051 		printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2052 			from, to, le32_to_cpu(ex->ee_block), ee_len);
2053 	} else {
2054 		printk(KERN_INFO "strange request: removal(2) "
2055 				"%u-%u from %u:%u\n",
2056 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2057 	}
2058 	return 0;
2059 }
2060 
2061 static int
2062 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2063 		struct ext4_ext_path *path, ext4_lblk_t start)
2064 {
2065 	int err = 0, correct_index = 0;
2066 	int depth = ext_depth(inode), credits;
2067 	struct ext4_extent_header *eh;
2068 	ext4_lblk_t a, b, block;
2069 	unsigned num;
2070 	ext4_lblk_t ex_ee_block;
2071 	unsigned short ex_ee_len;
2072 	unsigned uninitialized = 0;
2073 	struct ext4_extent *ex;
2074 
2075 	/* the header must be checked already in ext4_ext_remove_space() */
2076 	ext_debug("truncate since %u in leaf\n", start);
2077 	if (!path[depth].p_hdr)
2078 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2079 	eh = path[depth].p_hdr;
2080 	BUG_ON(eh == NULL);
2081 
2082 	/* find where to start removing */
2083 	ex = EXT_LAST_EXTENT(eh);
2084 
2085 	ex_ee_block = le32_to_cpu(ex->ee_block);
2086 	ex_ee_len = ext4_ext_get_actual_len(ex);
2087 
2088 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2089 			ex_ee_block + ex_ee_len > start) {
2090 
2091 		if (ext4_ext_is_uninitialized(ex))
2092 			uninitialized = 1;
2093 		else
2094 			uninitialized = 0;
2095 
2096 		ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
2097 		path[depth].p_ext = ex;
2098 
2099 		a = ex_ee_block > start ? ex_ee_block : start;
2100 		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2101 			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2102 
2103 		ext_debug("  border %u:%u\n", a, b);
2104 
2105 		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2106 			block = 0;
2107 			num = 0;
2108 			BUG();
2109 		} else if (a != ex_ee_block) {
2110 			/* remove tail of the extent */
2111 			block = ex_ee_block;
2112 			num = a - block;
2113 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2114 			/* remove head of the extent */
2115 			block = a;
2116 			num = b - a;
2117 			/* there is no "make a hole" API yet */
2118 			BUG();
2119 		} else {
2120 			/* remove whole extent: excellent! */
2121 			block = ex_ee_block;
2122 			num = 0;
2123 			BUG_ON(a != ex_ee_block);
2124 			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2125 		}
2126 
2127 		/*
2128 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2129 		 * descriptor) for each block group; assume two block
2130 		 * groups plus ex_ee_len/blocks_per_block_group for
2131 		 * the worst case
2132 		 */
2133 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2134 		if (ex == EXT_FIRST_EXTENT(eh)) {
2135 			correct_index = 1;
2136 			credits += (ext_depth(inode)) + 1;
2137 		}
2138 		credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2139 
2140 		err = ext4_ext_journal_restart(handle, credits);
2141 		if (err)
2142 			goto out;
2143 
2144 		err = ext4_ext_get_access(handle, inode, path + depth);
2145 		if (err)
2146 			goto out;
2147 
2148 		err = ext4_remove_blocks(handle, inode, ex, a, b);
2149 		if (err)
2150 			goto out;
2151 
2152 		if (num == 0) {
2153 			/* this extent is removed; mark slot entirely unused */
2154 			ext4_ext_store_pblock(ex, 0);
2155 			le16_add_cpu(&eh->eh_entries, -1);
2156 		}
2157 
2158 		ex->ee_block = cpu_to_le32(block);
2159 		ex->ee_len = cpu_to_le16(num);
2160 		/*
2161 		 * Do not mark uninitialized if all the blocks in the
2162 		 * extent have been removed.
2163 		 */
2164 		if (uninitialized && num)
2165 			ext4_ext_mark_uninitialized(ex);
2166 
2167 		err = ext4_ext_dirty(handle, inode, path + depth);
2168 		if (err)
2169 			goto out;
2170 
2171 		ext_debug("new extent: %u:%u:%llu\n", block, num,
2172 				ext_pblock(ex));
2173 		ex--;
2174 		ex_ee_block = le32_to_cpu(ex->ee_block);
2175 		ex_ee_len = ext4_ext_get_actual_len(ex);
2176 	}
2177 
2178 	if (correct_index && eh->eh_entries)
2179 		err = ext4_ext_correct_indexes(handle, inode, path);
2180 
2181 	/* if this leaf is free, then we should
2182 	 * remove it from index block above */
2183 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2184 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2185 
2186 out:
2187 	return err;
2188 }
2189 
2190 /*
2191  * ext4_ext_more_to_rm:
2192  * returns 1 if current index has to be freed (even partial)
2193  */
2194 static int
2195 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2196 {
2197 	BUG_ON(path->p_idx == NULL);
2198 
2199 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2200 		return 0;
2201 
2202 	/*
2203 	 * if truncate on deeper level happened, it wasn't partial,
2204 	 * so we have to consider current index for truncation
2205 	 */
2206 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2207 		return 0;
2208 	return 1;
2209 }
2210 
2211 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2212 {
2213 	struct super_block *sb = inode->i_sb;
2214 	int depth = ext_depth(inode);
2215 	struct ext4_ext_path *path;
2216 	handle_t *handle;
2217 	int i = 0, err = 0;
2218 
2219 	ext_debug("truncate since %u\n", start);
2220 
2221 	/* probably first extent we're gonna free will be last in block */
2222 	handle = ext4_journal_start(inode, depth + 1);
2223 	if (IS_ERR(handle))
2224 		return PTR_ERR(handle);
2225 
2226 	ext4_ext_invalidate_cache(inode);
2227 
2228 	/*
2229 	 * We start scanning from right side, freeing all the blocks
2230 	 * after i_size and walking into the tree depth-wise.
2231 	 */
2232 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2233 	if (path == NULL) {
2234 		ext4_journal_stop(handle);
2235 		return -ENOMEM;
2236 	}
2237 	path[0].p_hdr = ext_inode_hdr(inode);
2238 	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2239 		err = -EIO;
2240 		goto out;
2241 	}
2242 	path[0].p_depth = depth;
2243 
2244 	while (i >= 0 && err == 0) {
2245 		if (i == depth) {
2246 			/* this is leaf block */
2247 			err = ext4_ext_rm_leaf(handle, inode, path, start);
2248 			/* root level has p_bh == NULL, brelse() eats this */
2249 			brelse(path[i].p_bh);
2250 			path[i].p_bh = NULL;
2251 			i--;
2252 			continue;
2253 		}
2254 
2255 		/* this is index block */
2256 		if (!path[i].p_hdr) {
2257 			ext_debug("initialize header\n");
2258 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2259 		}
2260 
2261 		if (!path[i].p_idx) {
2262 			/* this level hasn't been touched yet */
2263 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2264 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2265 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2266 				  path[i].p_hdr,
2267 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2268 		} else {
2269 			/* we were already here, see at next index */
2270 			path[i].p_idx--;
2271 		}
2272 
2273 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2274 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2275 				path[i].p_idx);
2276 		if (ext4_ext_more_to_rm(path + i)) {
2277 			struct buffer_head *bh;
2278 			/* go to the next level */
2279 			ext_debug("move to level %d (block %llu)\n",
2280 				  i + 1, idx_pblock(path[i].p_idx));
2281 			memset(path + i + 1, 0, sizeof(*path));
2282 			bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2283 			if (!bh) {
2284 				/* should we reset i_size? */
2285 				err = -EIO;
2286 				break;
2287 			}
2288 			if (WARN_ON(i + 1 > depth)) {
2289 				err = -EIO;
2290 				break;
2291 			}
2292 			if (ext4_ext_check(inode, ext_block_hdr(bh),
2293 							depth - i - 1)) {
2294 				err = -EIO;
2295 				break;
2296 			}
2297 			path[i + 1].p_bh = bh;
2298 
2299 			/* save actual number of indexes since this
2300 			 * number is changed at the next iteration */
2301 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2302 			i++;
2303 		} else {
2304 			/* we finished processing this index, go up */
2305 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2306 				/* index is empty, remove it;
2307 				 * handle must be already prepared by the
2308 				 * truncatei_leaf() */
2309 				err = ext4_ext_rm_idx(handle, inode, path + i);
2310 			}
2311 			/* root level has p_bh == NULL, brelse() eats this */
2312 			brelse(path[i].p_bh);
2313 			path[i].p_bh = NULL;
2314 			i--;
2315 			ext_debug("return to level %d\n", i);
2316 		}
2317 	}
2318 
2319 	/* TODO: flexible tree reduction should be here */
2320 	if (path->p_hdr->eh_entries == 0) {
2321 		/*
2322 		 * truncate to zero freed all the tree,
2323 		 * so we need to correct eh_depth
2324 		 */
2325 		err = ext4_ext_get_access(handle, inode, path);
2326 		if (err == 0) {
2327 			ext_inode_hdr(inode)->eh_depth = 0;
2328 			ext_inode_hdr(inode)->eh_max =
2329 				cpu_to_le16(ext4_ext_space_root(inode));
2330 			err = ext4_ext_dirty(handle, inode, path);
2331 		}
2332 	}
2333 out:
2334 	ext4_ext_drop_refs(path);
2335 	kfree(path);
2336 	ext4_journal_stop(handle);
2337 
2338 	return err;
2339 }
2340 
2341 /*
2342  * called at mount time
2343  */
2344 void ext4_ext_init(struct super_block *sb)
2345 {
2346 	/*
2347 	 * possible initialization would be here
2348 	 */
2349 
2350 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2351 		printk(KERN_INFO "EXT4-fs: file extents enabled");
2352 #ifdef AGGRESSIVE_TEST
2353 		printk(", aggressive tests");
2354 #endif
2355 #ifdef CHECK_BINSEARCH
2356 		printk(", check binsearch");
2357 #endif
2358 #ifdef EXTENTS_STATS
2359 		printk(", stats");
2360 #endif
2361 		printk("\n");
2362 #ifdef EXTENTS_STATS
2363 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2364 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2365 		EXT4_SB(sb)->s_ext_max = 0;
2366 #endif
2367 	}
2368 }
2369 
2370 /*
2371  * called at umount time
2372  */
2373 void ext4_ext_release(struct super_block *sb)
2374 {
2375 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2376 		return;
2377 
2378 #ifdef EXTENTS_STATS
2379 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2380 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2381 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2382 			sbi->s_ext_blocks, sbi->s_ext_extents,
2383 			sbi->s_ext_blocks / sbi->s_ext_extents);
2384 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2385 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2386 	}
2387 #endif
2388 }
2389 
2390 static void bi_complete(struct bio *bio, int error)
2391 {
2392 	complete((struct completion *)bio->bi_private);
2393 }
2394 
2395 /* FIXME!! we need to try to merge to left or right after zero-out  */
2396 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2397 {
2398 	int ret = -EIO;
2399 	struct bio *bio;
2400 	int blkbits, blocksize;
2401 	sector_t ee_pblock;
2402 	struct completion event;
2403 	unsigned int ee_len, len, done, offset;
2404 
2405 
2406 	blkbits   = inode->i_blkbits;
2407 	blocksize = inode->i_sb->s_blocksize;
2408 	ee_len    = ext4_ext_get_actual_len(ex);
2409 	ee_pblock = ext_pblock(ex);
2410 
2411 	/* convert ee_pblock to 512 byte sectors */
2412 	ee_pblock = ee_pblock << (blkbits - 9);
2413 
2414 	while (ee_len > 0) {
2415 
2416 		if (ee_len > BIO_MAX_PAGES)
2417 			len = BIO_MAX_PAGES;
2418 		else
2419 			len = ee_len;
2420 
2421 		bio = bio_alloc(GFP_NOIO, len);
2422 		bio->bi_sector = ee_pblock;
2423 		bio->bi_bdev   = inode->i_sb->s_bdev;
2424 
2425 		done = 0;
2426 		offset = 0;
2427 		while (done < len) {
2428 			ret = bio_add_page(bio, ZERO_PAGE(0),
2429 							blocksize, offset);
2430 			if (ret != blocksize) {
2431 				/*
2432 				 * We can't add any more pages because of
2433 				 * hardware limitations.  Start a new bio.
2434 				 */
2435 				break;
2436 			}
2437 			done++;
2438 			offset += blocksize;
2439 			if (offset >= PAGE_CACHE_SIZE)
2440 				offset = 0;
2441 		}
2442 
2443 		init_completion(&event);
2444 		bio->bi_private = &event;
2445 		bio->bi_end_io = bi_complete;
2446 		submit_bio(WRITE, bio);
2447 		wait_for_completion(&event);
2448 
2449 		if (test_bit(BIO_UPTODATE, &bio->bi_flags))
2450 			ret = 0;
2451 		else {
2452 			ret = -EIO;
2453 			break;
2454 		}
2455 		bio_put(bio);
2456 		ee_len    -= done;
2457 		ee_pblock += done  << (blkbits - 9);
2458 	}
2459 	return ret;
2460 }
2461 
2462 #define EXT4_EXT_ZERO_LEN 7
2463 
2464 /*
2465  * This function is called by ext4_ext_get_blocks() if someone tries to write
2466  * to an uninitialized extent. It may result in splitting the uninitialized
2467  * extent into multiple extents (upto three - one initialized and two
2468  * uninitialized).
2469  * There are three possibilities:
2470  *   a> There is no split required: Entire extent should be initialized
2471  *   b> Splits in two extents: Write is happening at either end of the extent
2472  *   c> Splits in three extents: Somone is writing in middle of the extent
2473  */
2474 static int ext4_ext_convert_to_initialized(handle_t *handle,
2475 						struct inode *inode,
2476 						struct ext4_ext_path *path,
2477 						ext4_lblk_t iblock,
2478 						unsigned int max_blocks)
2479 {
2480 	struct ext4_extent *ex, newex, orig_ex;
2481 	struct ext4_extent *ex1 = NULL;
2482 	struct ext4_extent *ex2 = NULL;
2483 	struct ext4_extent *ex3 = NULL;
2484 	struct ext4_extent_header *eh;
2485 	ext4_lblk_t ee_block;
2486 	unsigned int allocated, ee_len, depth;
2487 	ext4_fsblk_t newblock;
2488 	int err = 0;
2489 	int ret = 0;
2490 
2491 	depth = ext_depth(inode);
2492 	eh = path[depth].p_hdr;
2493 	ex = path[depth].p_ext;
2494 	ee_block = le32_to_cpu(ex->ee_block);
2495 	ee_len = ext4_ext_get_actual_len(ex);
2496 	allocated = ee_len - (iblock - ee_block);
2497 	newblock = iblock - ee_block + ext_pblock(ex);
2498 	ex2 = ex;
2499 	orig_ex.ee_block = ex->ee_block;
2500 	orig_ex.ee_len   = cpu_to_le16(ee_len);
2501 	ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2502 
2503 	err = ext4_ext_get_access(handle, inode, path + depth);
2504 	if (err)
2505 		goto out;
2506 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2507 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
2508 		err =  ext4_ext_zeroout(inode, &orig_ex);
2509 		if (err)
2510 			goto fix_extent_len;
2511 		/* update the extent length and mark as initialized */
2512 		ex->ee_block = orig_ex.ee_block;
2513 		ex->ee_len   = orig_ex.ee_len;
2514 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2515 		ext4_ext_dirty(handle, inode, path + depth);
2516 		/* zeroed the full extent */
2517 		return allocated;
2518 	}
2519 
2520 	/* ex1: ee_block to iblock - 1 : uninitialized */
2521 	if (iblock > ee_block) {
2522 		ex1 = ex;
2523 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2524 		ext4_ext_mark_uninitialized(ex1);
2525 		ex2 = &newex;
2526 	}
2527 	/*
2528 	 * for sanity, update the length of the ex2 extent before
2529 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2530 	 * overlap of blocks.
2531 	 */
2532 	if (!ex1 && allocated > max_blocks)
2533 		ex2->ee_len = cpu_to_le16(max_blocks);
2534 	/* ex3: to ee_block + ee_len : uninitialised */
2535 	if (allocated > max_blocks) {
2536 		unsigned int newdepth;
2537 		/* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2538 		if (allocated <= EXT4_EXT_ZERO_LEN) {
2539 			/*
2540 			 * iblock == ee_block is handled by the zerouout
2541 			 * at the beginning.
2542 			 * Mark first half uninitialized.
2543 			 * Mark second half initialized and zero out the
2544 			 * initialized extent
2545 			 */
2546 			ex->ee_block = orig_ex.ee_block;
2547 			ex->ee_len   = cpu_to_le16(ee_len - allocated);
2548 			ext4_ext_mark_uninitialized(ex);
2549 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2550 			ext4_ext_dirty(handle, inode, path + depth);
2551 
2552 			ex3 = &newex;
2553 			ex3->ee_block = cpu_to_le32(iblock);
2554 			ext4_ext_store_pblock(ex3, newblock);
2555 			ex3->ee_len = cpu_to_le16(allocated);
2556 			err = ext4_ext_insert_extent(handle, inode, path, ex3);
2557 			if (err == -ENOSPC) {
2558 				err =  ext4_ext_zeroout(inode, &orig_ex);
2559 				if (err)
2560 					goto fix_extent_len;
2561 				ex->ee_block = orig_ex.ee_block;
2562 				ex->ee_len   = orig_ex.ee_len;
2563 				ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2564 				ext4_ext_dirty(handle, inode, path + depth);
2565 				/* blocks available from iblock */
2566 				return allocated;
2567 
2568 			} else if (err)
2569 				goto fix_extent_len;
2570 
2571 			/*
2572 			 * We need to zero out the second half because
2573 			 * an fallocate request can update file size and
2574 			 * converting the second half to initialized extent
2575 			 * implies that we can leak some junk data to user
2576 			 * space.
2577 			 */
2578 			err =  ext4_ext_zeroout(inode, ex3);
2579 			if (err) {
2580 				/*
2581 				 * We should actually mark the
2582 				 * second half as uninit and return error
2583 				 * Insert would have changed the extent
2584 				 */
2585 				depth = ext_depth(inode);
2586 				ext4_ext_drop_refs(path);
2587 				path = ext4_ext_find_extent(inode,
2588 								iblock, path);
2589 				if (IS_ERR(path)) {
2590 					err = PTR_ERR(path);
2591 					return err;
2592 				}
2593 				/* get the second half extent details */
2594 				ex = path[depth].p_ext;
2595 				err = ext4_ext_get_access(handle, inode,
2596 								path + depth);
2597 				if (err)
2598 					return err;
2599 				ext4_ext_mark_uninitialized(ex);
2600 				ext4_ext_dirty(handle, inode, path + depth);
2601 				return err;
2602 			}
2603 
2604 			/* zeroed the second half */
2605 			return allocated;
2606 		}
2607 		ex3 = &newex;
2608 		ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2609 		ext4_ext_store_pblock(ex3, newblock + max_blocks);
2610 		ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2611 		ext4_ext_mark_uninitialized(ex3);
2612 		err = ext4_ext_insert_extent(handle, inode, path, ex3);
2613 		if (err == -ENOSPC) {
2614 			err =  ext4_ext_zeroout(inode, &orig_ex);
2615 			if (err)
2616 				goto fix_extent_len;
2617 			/* update the extent length and mark as initialized */
2618 			ex->ee_block = orig_ex.ee_block;
2619 			ex->ee_len   = orig_ex.ee_len;
2620 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2621 			ext4_ext_dirty(handle, inode, path + depth);
2622 			/* zeroed the full extent */
2623 			/* blocks available from iblock */
2624 			return allocated;
2625 
2626 		} else if (err)
2627 			goto fix_extent_len;
2628 		/*
2629 		 * The depth, and hence eh & ex might change
2630 		 * as part of the insert above.
2631 		 */
2632 		newdepth = ext_depth(inode);
2633 		/*
2634 		 * update the extent length after successful insert of the
2635 		 * split extent
2636 		 */
2637 		orig_ex.ee_len = cpu_to_le16(ee_len -
2638 						ext4_ext_get_actual_len(ex3));
2639 		depth = newdepth;
2640 		ext4_ext_drop_refs(path);
2641 		path = ext4_ext_find_extent(inode, iblock, path);
2642 		if (IS_ERR(path)) {
2643 			err = PTR_ERR(path);
2644 			goto out;
2645 		}
2646 		eh = path[depth].p_hdr;
2647 		ex = path[depth].p_ext;
2648 		if (ex2 != &newex)
2649 			ex2 = ex;
2650 
2651 		err = ext4_ext_get_access(handle, inode, path + depth);
2652 		if (err)
2653 			goto out;
2654 
2655 		allocated = max_blocks;
2656 
2657 		/* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2658 		 * to insert a extent in the middle zerout directly
2659 		 * otherwise give the extent a chance to merge to left
2660 		 */
2661 		if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2662 							iblock != ee_block) {
2663 			err =  ext4_ext_zeroout(inode, &orig_ex);
2664 			if (err)
2665 				goto fix_extent_len;
2666 			/* update the extent length and mark as initialized */
2667 			ex->ee_block = orig_ex.ee_block;
2668 			ex->ee_len   = orig_ex.ee_len;
2669 			ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2670 			ext4_ext_dirty(handle, inode, path + depth);
2671 			/* zero out the first half */
2672 			/* blocks available from iblock */
2673 			return allocated;
2674 		}
2675 	}
2676 	/*
2677 	 * If there was a change of depth as part of the
2678 	 * insertion of ex3 above, we need to update the length
2679 	 * of the ex1 extent again here
2680 	 */
2681 	if (ex1 && ex1 != ex) {
2682 		ex1 = ex;
2683 		ex1->ee_len = cpu_to_le16(iblock - ee_block);
2684 		ext4_ext_mark_uninitialized(ex1);
2685 		ex2 = &newex;
2686 	}
2687 	/* ex2: iblock to iblock + maxblocks-1 : initialised */
2688 	ex2->ee_block = cpu_to_le32(iblock);
2689 	ext4_ext_store_pblock(ex2, newblock);
2690 	ex2->ee_len = cpu_to_le16(allocated);
2691 	if (ex2 != ex)
2692 		goto insert;
2693 	/*
2694 	 * New (initialized) extent starts from the first block
2695 	 * in the current extent. i.e., ex2 == ex
2696 	 * We have to see if it can be merged with the extent
2697 	 * on the left.
2698 	 */
2699 	if (ex2 > EXT_FIRST_EXTENT(eh)) {
2700 		/*
2701 		 * To merge left, pass "ex2 - 1" to try_to_merge(),
2702 		 * since it merges towards right _only_.
2703 		 */
2704 		ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2705 		if (ret) {
2706 			err = ext4_ext_correct_indexes(handle, inode, path);
2707 			if (err)
2708 				goto out;
2709 			depth = ext_depth(inode);
2710 			ex2--;
2711 		}
2712 	}
2713 	/*
2714 	 * Try to Merge towards right. This might be required
2715 	 * only when the whole extent is being written to.
2716 	 * i.e. ex2 == ex and ex3 == NULL.
2717 	 */
2718 	if (!ex3) {
2719 		ret = ext4_ext_try_to_merge(inode, path, ex2);
2720 		if (ret) {
2721 			err = ext4_ext_correct_indexes(handle, inode, path);
2722 			if (err)
2723 				goto out;
2724 		}
2725 	}
2726 	/* Mark modified extent as dirty */
2727 	err = ext4_ext_dirty(handle, inode, path + depth);
2728 	goto out;
2729 insert:
2730 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2731 	if (err == -ENOSPC) {
2732 		err =  ext4_ext_zeroout(inode, &orig_ex);
2733 		if (err)
2734 			goto fix_extent_len;
2735 		/* update the extent length and mark as initialized */
2736 		ex->ee_block = orig_ex.ee_block;
2737 		ex->ee_len   = orig_ex.ee_len;
2738 		ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2739 		ext4_ext_dirty(handle, inode, path + depth);
2740 		/* zero out the first half */
2741 		return allocated;
2742 	} else if (err)
2743 		goto fix_extent_len;
2744 out:
2745 	return err ? err : allocated;
2746 
2747 fix_extent_len:
2748 	ex->ee_block = orig_ex.ee_block;
2749 	ex->ee_len   = orig_ex.ee_len;
2750 	ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2751 	ext4_ext_mark_uninitialized(ex);
2752 	ext4_ext_dirty(handle, inode, path + depth);
2753 	return err;
2754 }
2755 
2756 /*
2757  * Block allocation/map/preallocation routine for extents based files
2758  *
2759  *
2760  * Need to be called with
2761  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
2762  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
2763  *
2764  * return > 0, number of of blocks already mapped/allocated
2765  *          if create == 0 and these are pre-allocated blocks
2766  *          	buffer head is unmapped
2767  *          otherwise blocks are mapped
2768  *
2769  * return = 0, if plain look up failed (blocks have not been allocated)
2770  *          buffer head is unmapped
2771  *
2772  * return < 0, error case.
2773  */
2774 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
2775 			ext4_lblk_t iblock,
2776 			unsigned int max_blocks, struct buffer_head *bh_result,
2777 			int flags)
2778 {
2779 	struct ext4_ext_path *path = NULL;
2780 	struct ext4_extent_header *eh;
2781 	struct ext4_extent newex, *ex;
2782 	ext4_fsblk_t newblock;
2783 	int err = 0, depth, ret, cache_type;
2784 	unsigned int allocated = 0;
2785 	struct ext4_allocation_request ar;
2786 
2787 	__clear_bit(BH_New, &bh_result->b_state);
2788 	ext_debug("blocks %u/%u requested for inode %u\n",
2789 			iblock, max_blocks, inode->i_ino);
2790 
2791 	/* check in cache */
2792 	cache_type = ext4_ext_in_cache(inode, iblock, &newex);
2793 	if (cache_type) {
2794 		if (cache_type == EXT4_EXT_CACHE_GAP) {
2795 			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
2796 				/*
2797 				 * block isn't allocated yet and
2798 				 * user doesn't want to allocate it
2799 				 */
2800 				goto out2;
2801 			}
2802 			/* we should allocate requested block */
2803 		} else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
2804 			/* block is already allocated */
2805 			newblock = iblock
2806 				   - le32_to_cpu(newex.ee_block)
2807 				   + ext_pblock(&newex);
2808 			/* number of remaining blocks in the extent */
2809 			allocated = ext4_ext_get_actual_len(&newex) -
2810 					(iblock - le32_to_cpu(newex.ee_block));
2811 			goto out;
2812 		} else {
2813 			BUG();
2814 		}
2815 	}
2816 
2817 	/* find extent for this block */
2818 	path = ext4_ext_find_extent(inode, iblock, NULL);
2819 	if (IS_ERR(path)) {
2820 		err = PTR_ERR(path);
2821 		path = NULL;
2822 		goto out2;
2823 	}
2824 
2825 	depth = ext_depth(inode);
2826 
2827 	/*
2828 	 * consistent leaf must not be empty;
2829 	 * this situation is possible, though, _during_ tree modification;
2830 	 * this is why assert can't be put in ext4_ext_find_extent()
2831 	 */
2832 	BUG_ON(path[depth].p_ext == NULL && depth != 0);
2833 	eh = path[depth].p_hdr;
2834 
2835 	ex = path[depth].p_ext;
2836 	if (ex) {
2837 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
2838 		ext4_fsblk_t ee_start = ext_pblock(ex);
2839 		unsigned short ee_len;
2840 
2841 		/*
2842 		 * Uninitialized extents are treated as holes, except that
2843 		 * we split out initialized portions during a write.
2844 		 */
2845 		ee_len = ext4_ext_get_actual_len(ex);
2846 		/* if found extent covers block, simply return it */
2847 		if (iblock >= ee_block && iblock < ee_block + ee_len) {
2848 			newblock = iblock - ee_block + ee_start;
2849 			/* number of remaining blocks in the extent */
2850 			allocated = ee_len - (iblock - ee_block);
2851 			ext_debug("%u fit into %lu:%d -> %llu\n", iblock,
2852 					ee_block, ee_len, newblock);
2853 
2854 			/* Do not put uninitialized extent in the cache */
2855 			if (!ext4_ext_is_uninitialized(ex)) {
2856 				ext4_ext_put_in_cache(inode, ee_block,
2857 							ee_len, ee_start,
2858 							EXT4_EXT_CACHE_EXTENT);
2859 				goto out;
2860 			}
2861 			if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
2862 				goto out;
2863 			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
2864 				if (allocated > max_blocks)
2865 					allocated = max_blocks;
2866 				/*
2867 				 * We have blocks reserved already.  We
2868 				 * return allocated blocks so that delalloc
2869 				 * won't do block reservation for us.  But
2870 				 * the buffer head will be unmapped so that
2871 				 * a read from the block returns 0s.
2872 				 */
2873 				set_buffer_unwritten(bh_result);
2874 				bh_result->b_bdev = inode->i_sb->s_bdev;
2875 				bh_result->b_blocknr = newblock;
2876 				goto out2;
2877 			}
2878 
2879 			ret = ext4_ext_convert_to_initialized(handle, inode,
2880 								path, iblock,
2881 								max_blocks);
2882 			if (ret <= 0) {
2883 				err = ret;
2884 				goto out2;
2885 			} else
2886 				allocated = ret;
2887 			goto outnew;
2888 		}
2889 	}
2890 
2891 	/*
2892 	 * requested block isn't allocated yet;
2893 	 * we couldn't try to create block if create flag is zero
2894 	 */
2895 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
2896 		/*
2897 		 * put just found gap into cache to speed up
2898 		 * subsequent requests
2899 		 */
2900 		ext4_ext_put_gap_in_cache(inode, path, iblock);
2901 		goto out2;
2902 	}
2903 	/*
2904 	 * Okay, we need to do block allocation.
2905 	 */
2906 
2907 	/* find neighbour allocated blocks */
2908 	ar.lleft = iblock;
2909 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
2910 	if (err)
2911 		goto out2;
2912 	ar.lright = iblock;
2913 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
2914 	if (err)
2915 		goto out2;
2916 
2917 	/*
2918 	 * See if request is beyond maximum number of blocks we can have in
2919 	 * a single extent. For an initialized extent this limit is
2920 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2921 	 * EXT_UNINIT_MAX_LEN.
2922 	 */
2923 	if (max_blocks > EXT_INIT_MAX_LEN &&
2924 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
2925 		max_blocks = EXT_INIT_MAX_LEN;
2926 	else if (max_blocks > EXT_UNINIT_MAX_LEN &&
2927 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
2928 		max_blocks = EXT_UNINIT_MAX_LEN;
2929 
2930 	/* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2931 	newex.ee_block = cpu_to_le32(iblock);
2932 	newex.ee_len = cpu_to_le16(max_blocks);
2933 	err = ext4_ext_check_overlap(inode, &newex, path);
2934 	if (err)
2935 		allocated = ext4_ext_get_actual_len(&newex);
2936 	else
2937 		allocated = max_blocks;
2938 
2939 	/* allocate new block */
2940 	ar.inode = inode;
2941 	ar.goal = ext4_ext_find_goal(inode, path, iblock);
2942 	ar.logical = iblock;
2943 	ar.len = allocated;
2944 	if (S_ISREG(inode->i_mode))
2945 		ar.flags = EXT4_MB_HINT_DATA;
2946 	else
2947 		/* disable in-core preallocation for non-regular files */
2948 		ar.flags = 0;
2949 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
2950 	if (!newblock)
2951 		goto out2;
2952 	ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2953 		  ar.goal, newblock, allocated);
2954 
2955 	/* try to insert new extent into found leaf and return */
2956 	ext4_ext_store_pblock(&newex, newblock);
2957 	newex.ee_len = cpu_to_le16(ar.len);
2958 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)  /* Mark uninitialized */
2959 		ext4_ext_mark_uninitialized(&newex);
2960 	err = ext4_ext_insert_extent(handle, inode, path, &newex);
2961 	if (err) {
2962 		/* free data blocks we just allocated */
2963 		/* not a good idea to call discard here directly,
2964 		 * but otherwise we'd need to call it every free() */
2965 		ext4_discard_preallocations(inode);
2966 		ext4_free_blocks(handle, inode, ext_pblock(&newex),
2967 					ext4_ext_get_actual_len(&newex), 0);
2968 		goto out2;
2969 	}
2970 
2971 	/* previous routine could use block we allocated */
2972 	newblock = ext_pblock(&newex);
2973 	allocated = ext4_ext_get_actual_len(&newex);
2974 outnew:
2975 	set_buffer_new(bh_result);
2976 
2977 	/* Cache only when it is _not_ an uninitialized extent */
2978 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
2979 		ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2980 						EXT4_EXT_CACHE_EXTENT);
2981 out:
2982 	if (allocated > max_blocks)
2983 		allocated = max_blocks;
2984 	ext4_ext_show_leaf(inode, path);
2985 	set_buffer_mapped(bh_result);
2986 	bh_result->b_bdev = inode->i_sb->s_bdev;
2987 	bh_result->b_blocknr = newblock;
2988 out2:
2989 	if (path) {
2990 		ext4_ext_drop_refs(path);
2991 		kfree(path);
2992 	}
2993 	return err ? err : allocated;
2994 }
2995 
2996 void ext4_ext_truncate(struct inode *inode)
2997 {
2998 	struct address_space *mapping = inode->i_mapping;
2999 	struct super_block *sb = inode->i_sb;
3000 	ext4_lblk_t last_block;
3001 	handle_t *handle;
3002 	int err = 0;
3003 
3004 	/*
3005 	 * probably first extent we're gonna free will be last in block
3006 	 */
3007 	err = ext4_writepage_trans_blocks(inode);
3008 	handle = ext4_journal_start(inode, err);
3009 	if (IS_ERR(handle))
3010 		return;
3011 
3012 	if (inode->i_size & (sb->s_blocksize - 1))
3013 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3014 
3015 	if (ext4_orphan_add(handle, inode))
3016 		goto out_stop;
3017 
3018 	down_write(&EXT4_I(inode)->i_data_sem);
3019 	ext4_ext_invalidate_cache(inode);
3020 
3021 	ext4_discard_preallocations(inode);
3022 
3023 	/*
3024 	 * TODO: optimization is possible here.
3025 	 * Probably we need not scan at all,
3026 	 * because page truncation is enough.
3027 	 */
3028 
3029 	/* we have to know where to truncate from in crash case */
3030 	EXT4_I(inode)->i_disksize = inode->i_size;
3031 	ext4_mark_inode_dirty(handle, inode);
3032 
3033 	last_block = (inode->i_size + sb->s_blocksize - 1)
3034 			>> EXT4_BLOCK_SIZE_BITS(sb);
3035 	err = ext4_ext_remove_space(inode, last_block);
3036 
3037 	/* In a multi-transaction truncate, we only make the final
3038 	 * transaction synchronous.
3039 	 */
3040 	if (IS_SYNC(inode))
3041 		ext4_handle_sync(handle);
3042 
3043 out_stop:
3044 	up_write(&EXT4_I(inode)->i_data_sem);
3045 	/*
3046 	 * If this was a simple ftruncate() and the file will remain alive,
3047 	 * then we need to clear up the orphan record which we created above.
3048 	 * However, if this was a real unlink then we were called by
3049 	 * ext4_delete_inode(), and we allow that function to clean up the
3050 	 * orphan info for us.
3051 	 */
3052 	if (inode->i_nlink)
3053 		ext4_orphan_del(handle, inode);
3054 
3055 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3056 	ext4_mark_inode_dirty(handle, inode);
3057 	ext4_journal_stop(handle);
3058 }
3059 
3060 static void ext4_falloc_update_inode(struct inode *inode,
3061 				int mode, loff_t new_size, int update_ctime)
3062 {
3063 	struct timespec now;
3064 
3065 	if (update_ctime) {
3066 		now = current_fs_time(inode->i_sb);
3067 		if (!timespec_equal(&inode->i_ctime, &now))
3068 			inode->i_ctime = now;
3069 	}
3070 	/*
3071 	 * Update only when preallocation was requested beyond
3072 	 * the file size.
3073 	 */
3074 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3075 		if (new_size > i_size_read(inode))
3076 			i_size_write(inode, new_size);
3077 		if (new_size > EXT4_I(inode)->i_disksize)
3078 			ext4_update_i_disksize(inode, new_size);
3079 	}
3080 
3081 }
3082 
3083 /*
3084  * preallocate space for a file. This implements ext4's fallocate inode
3085  * operation, which gets called from sys_fallocate system call.
3086  * For block-mapped files, posix_fallocate should fall back to the method
3087  * of writing zeroes to the required new blocks (the same behavior which is
3088  * expected for file systems which do not support fallocate() system call).
3089  */
3090 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3091 {
3092 	handle_t *handle;
3093 	ext4_lblk_t block;
3094 	loff_t new_size;
3095 	unsigned int max_blocks;
3096 	int ret = 0;
3097 	int ret2 = 0;
3098 	int retries = 0;
3099 	struct buffer_head map_bh;
3100 	unsigned int credits, blkbits = inode->i_blkbits;
3101 
3102 	/*
3103 	 * currently supporting (pre)allocate mode for extent-based
3104 	 * files _only_
3105 	 */
3106 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3107 		return -EOPNOTSUPP;
3108 
3109 	/* preallocation to directories is currently not supported */
3110 	if (S_ISDIR(inode->i_mode))
3111 		return -ENODEV;
3112 
3113 	block = offset >> blkbits;
3114 	/*
3115 	 * We can't just convert len to max_blocks because
3116 	 * If blocksize = 4096 offset = 3072 and len = 2048
3117 	 */
3118 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3119 							- block;
3120 	/*
3121 	 * credits to insert 1 extent into extent tree
3122 	 */
3123 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3124 	mutex_lock(&inode->i_mutex);
3125 retry:
3126 	while (ret >= 0 && ret < max_blocks) {
3127 		block = block + ret;
3128 		max_blocks = max_blocks - ret;
3129 		handle = ext4_journal_start(inode, credits);
3130 		if (IS_ERR(handle)) {
3131 			ret = PTR_ERR(handle);
3132 			break;
3133 		}
3134 		map_bh.b_state = 0;
3135 		ret = ext4_get_blocks(handle, inode, block,
3136 				      max_blocks, &map_bh,
3137 				      EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
3138 		if (ret <= 0) {
3139 #ifdef EXT4FS_DEBUG
3140 			WARN_ON(ret <= 0);
3141 			printk(KERN_ERR "%s: ext4_ext_get_blocks "
3142 				    "returned error inode#%lu, block=%u, "
3143 				    "max_blocks=%u", __func__,
3144 				    inode->i_ino, block, max_blocks);
3145 #endif
3146 			ext4_mark_inode_dirty(handle, inode);
3147 			ret2 = ext4_journal_stop(handle);
3148 			break;
3149 		}
3150 		if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3151 						blkbits) >> blkbits))
3152 			new_size = offset + len;
3153 		else
3154 			new_size = (block + ret) << blkbits;
3155 
3156 		ext4_falloc_update_inode(inode, mode, new_size,
3157 						buffer_new(&map_bh));
3158 		ext4_mark_inode_dirty(handle, inode);
3159 		ret2 = ext4_journal_stop(handle);
3160 		if (ret2)
3161 			break;
3162 	}
3163 	if (ret == -ENOSPC &&
3164 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3165 		ret = 0;
3166 		goto retry;
3167 	}
3168 	mutex_unlock(&inode->i_mutex);
3169 	return ret > 0 ? ret2 : ret;
3170 }
3171 
3172 /*
3173  * Callback function called for each extent to gather FIEMAP information.
3174  */
3175 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3176 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3177 		       void *data)
3178 {
3179 	struct fiemap_extent_info *fieinfo = data;
3180 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
3181 	__u64	logical;
3182 	__u64	physical;
3183 	__u64	length;
3184 	__u32	flags = 0;
3185 	int	error;
3186 
3187 	logical =  (__u64)newex->ec_block << blksize_bits;
3188 
3189 	if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3190 		pgoff_t offset;
3191 		struct page *page;
3192 		struct buffer_head *bh = NULL;
3193 
3194 		offset = logical >> PAGE_SHIFT;
3195 		page = find_get_page(inode->i_mapping, offset);
3196 		if (!page || !page_has_buffers(page))
3197 			return EXT_CONTINUE;
3198 
3199 		bh = page_buffers(page);
3200 
3201 		if (!bh)
3202 			return EXT_CONTINUE;
3203 
3204 		if (buffer_delay(bh)) {
3205 			flags |= FIEMAP_EXTENT_DELALLOC;
3206 			page_cache_release(page);
3207 		} else {
3208 			page_cache_release(page);
3209 			return EXT_CONTINUE;
3210 		}
3211 	}
3212 
3213 	physical = (__u64)newex->ec_start << blksize_bits;
3214 	length =   (__u64)newex->ec_len << blksize_bits;
3215 
3216 	if (ex && ext4_ext_is_uninitialized(ex))
3217 		flags |= FIEMAP_EXTENT_UNWRITTEN;
3218 
3219 	/*
3220 	 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3221 	 *
3222 	 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3223 	 * this also indicates no more allocated blocks.
3224 	 *
3225 	 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3226 	 */
3227 	if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK ||
3228 	    newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) {
3229 		loff_t size = i_size_read(inode);
3230 		loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb);
3231 
3232 		flags |= FIEMAP_EXTENT_LAST;
3233 		if ((flags & FIEMAP_EXTENT_DELALLOC) &&
3234 		    logical+length > size)
3235 			length = (size - logical + bs - 1) & ~(bs-1);
3236 	}
3237 
3238 	error = fiemap_fill_next_extent(fieinfo, logical, physical,
3239 					length, flags);
3240 	if (error < 0)
3241 		return error;
3242 	if (error == 1)
3243 		return EXT_BREAK;
3244 
3245 	return EXT_CONTINUE;
3246 }
3247 
3248 /* fiemap flags we can handle specified here */
3249 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3250 
3251 static int ext4_xattr_fiemap(struct inode *inode,
3252 				struct fiemap_extent_info *fieinfo)
3253 {
3254 	__u64 physical = 0;
3255 	__u64 length;
3256 	__u32 flags = FIEMAP_EXTENT_LAST;
3257 	int blockbits = inode->i_sb->s_blocksize_bits;
3258 	int error = 0;
3259 
3260 	/* in-inode? */
3261 	if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) {
3262 		struct ext4_iloc iloc;
3263 		int offset;	/* offset of xattr in inode */
3264 
3265 		error = ext4_get_inode_loc(inode, &iloc);
3266 		if (error)
3267 			return error;
3268 		physical = iloc.bh->b_blocknr << blockbits;
3269 		offset = EXT4_GOOD_OLD_INODE_SIZE +
3270 				EXT4_I(inode)->i_extra_isize;
3271 		physical += offset;
3272 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3273 		flags |= FIEMAP_EXTENT_DATA_INLINE;
3274 	} else { /* external block */
3275 		physical = EXT4_I(inode)->i_file_acl << blockbits;
3276 		length = inode->i_sb->s_blocksize;
3277 	}
3278 
3279 	if (physical)
3280 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
3281 						length, flags);
3282 	return (error < 0 ? error : 0);
3283 }
3284 
3285 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3286 		__u64 start, __u64 len)
3287 {
3288 	ext4_lblk_t start_blk;
3289 	ext4_lblk_t len_blks;
3290 	int error = 0;
3291 
3292 	/* fallback to generic here if not in extents fmt */
3293 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3294 		return generic_block_fiemap(inode, fieinfo, start, len,
3295 			ext4_get_block);
3296 
3297 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3298 		return -EBADR;
3299 
3300 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3301 		error = ext4_xattr_fiemap(inode, fieinfo);
3302 	} else {
3303 		start_blk = start >> inode->i_sb->s_blocksize_bits;
3304 		len_blks = len >> inode->i_sb->s_blocksize_bits;
3305 
3306 		/*
3307 		 * Walk the extent tree gathering extent information.
3308 		 * ext4_ext_fiemap_cb will push extents back to user.
3309 		 */
3310 		down_read(&EXT4_I(inode)->i_data_sem);
3311 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
3312 					  ext4_ext_fiemap_cb, fieinfo);
3313 		up_read(&EXT4_I(inode)->i_data_sem);
3314 	}
3315 
3316 	return error;
3317 }
3318 
3319