xref: /openbmc/linux/fs/ext4/extents.c (revision 7490ca1e)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 
45 #include <trace/events/ext4.h>
46 
47 static int ext4_split_extent(handle_t *handle,
48 				struct inode *inode,
49 				struct ext4_ext_path *path,
50 				struct ext4_map_blocks *map,
51 				int split_flag,
52 				int flags);
53 
54 static int ext4_ext_truncate_extend_restart(handle_t *handle,
55 					    struct inode *inode,
56 					    int needed)
57 {
58 	int err;
59 
60 	if (!ext4_handle_valid(handle))
61 		return 0;
62 	if (handle->h_buffer_credits > needed)
63 		return 0;
64 	err = ext4_journal_extend(handle, needed);
65 	if (err <= 0)
66 		return err;
67 	err = ext4_truncate_restart_trans(handle, inode, needed);
68 	if (err == 0)
69 		err = -EAGAIN;
70 
71 	return err;
72 }
73 
74 /*
75  * could return:
76  *  - EROFS
77  *  - ENOMEM
78  */
79 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
80 				struct ext4_ext_path *path)
81 {
82 	if (path->p_bh) {
83 		/* path points to block */
84 		return ext4_journal_get_write_access(handle, path->p_bh);
85 	}
86 	/* path points to leaf/index in inode body */
87 	/* we use in-core data, no need to protect them */
88 	return 0;
89 }
90 
91 /*
92  * could return:
93  *  - EROFS
94  *  - ENOMEM
95  *  - EIO
96  */
97 #define ext4_ext_dirty(handle, inode, path) \
98 		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
99 static int __ext4_ext_dirty(const char *where, unsigned int line,
100 			    handle_t *handle, struct inode *inode,
101 			    struct ext4_ext_path *path)
102 {
103 	int err;
104 	if (path->p_bh) {
105 		/* path points to block */
106 		err = __ext4_handle_dirty_metadata(where, line, handle,
107 						   inode, path->p_bh);
108 	} else {
109 		/* path points to leaf/index in inode body */
110 		err = ext4_mark_inode_dirty(handle, inode);
111 	}
112 	return err;
113 }
114 
115 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
116 			      struct ext4_ext_path *path,
117 			      ext4_lblk_t block)
118 {
119 	if (path) {
120 		int depth = path->p_depth;
121 		struct ext4_extent *ex;
122 
123 		/*
124 		 * Try to predict block placement assuming that we are
125 		 * filling in a file which will eventually be
126 		 * non-sparse --- i.e., in the case of libbfd writing
127 		 * an ELF object sections out-of-order but in a way
128 		 * the eventually results in a contiguous object or
129 		 * executable file, or some database extending a table
130 		 * space file.  However, this is actually somewhat
131 		 * non-ideal if we are writing a sparse file such as
132 		 * qemu or KVM writing a raw image file that is going
133 		 * to stay fairly sparse, since it will end up
134 		 * fragmenting the file system's free space.  Maybe we
135 		 * should have some hueristics or some way to allow
136 		 * userspace to pass a hint to file system,
137 		 * especially if the latter case turns out to be
138 		 * common.
139 		 */
140 		ex = path[depth].p_ext;
141 		if (ex) {
142 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
143 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
144 
145 			if (block > ext_block)
146 				return ext_pblk + (block - ext_block);
147 			else
148 				return ext_pblk - (ext_block - block);
149 		}
150 
151 		/* it looks like index is empty;
152 		 * try to find starting block from index itself */
153 		if (path[depth].p_bh)
154 			return path[depth].p_bh->b_blocknr;
155 	}
156 
157 	/* OK. use inode's group */
158 	return ext4_inode_to_goal_block(inode);
159 }
160 
161 /*
162  * Allocation for a meta data block
163  */
164 static ext4_fsblk_t
165 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
166 			struct ext4_ext_path *path,
167 			struct ext4_extent *ex, int *err, unsigned int flags)
168 {
169 	ext4_fsblk_t goal, newblock;
170 
171 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
172 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
173 					NULL, err);
174 	return newblock;
175 }
176 
177 static inline int ext4_ext_space_block(struct inode *inode, int check)
178 {
179 	int size;
180 
181 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
182 			/ sizeof(struct ext4_extent);
183 #ifdef AGGRESSIVE_TEST
184 	if (!check && size > 6)
185 		size = 6;
186 #endif
187 	return size;
188 }
189 
190 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
191 {
192 	int size;
193 
194 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
195 			/ sizeof(struct ext4_extent_idx);
196 #ifdef AGGRESSIVE_TEST
197 	if (!check && size > 5)
198 		size = 5;
199 #endif
200 	return size;
201 }
202 
203 static inline int ext4_ext_space_root(struct inode *inode, int check)
204 {
205 	int size;
206 
207 	size = sizeof(EXT4_I(inode)->i_data);
208 	size -= sizeof(struct ext4_extent_header);
209 	size /= sizeof(struct ext4_extent);
210 #ifdef AGGRESSIVE_TEST
211 	if (!check && size > 3)
212 		size = 3;
213 #endif
214 	return size;
215 }
216 
217 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
218 {
219 	int size;
220 
221 	size = sizeof(EXT4_I(inode)->i_data);
222 	size -= sizeof(struct ext4_extent_header);
223 	size /= sizeof(struct ext4_extent_idx);
224 #ifdef AGGRESSIVE_TEST
225 	if (!check && size > 4)
226 		size = 4;
227 #endif
228 	return size;
229 }
230 
231 /*
232  * Calculate the number of metadata blocks needed
233  * to allocate @blocks
234  * Worse case is one block per extent
235  */
236 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
237 {
238 	struct ext4_inode_info *ei = EXT4_I(inode);
239 	int idxs;
240 
241 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
242 		/ sizeof(struct ext4_extent_idx));
243 
244 	/*
245 	 * If the new delayed allocation block is contiguous with the
246 	 * previous da block, it can share index blocks with the
247 	 * previous block, so we only need to allocate a new index
248 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
249 	 * an additional index block, and at ldxs**3 blocks, yet
250 	 * another index blocks.
251 	 */
252 	if (ei->i_da_metadata_calc_len &&
253 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
254 		int num = 0;
255 
256 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
257 			num++;
258 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
259 			num++;
260 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
261 			num++;
262 			ei->i_da_metadata_calc_len = 0;
263 		} else
264 			ei->i_da_metadata_calc_len++;
265 		ei->i_da_metadata_calc_last_lblock++;
266 		return num;
267 	}
268 
269 	/*
270 	 * In the worst case we need a new set of index blocks at
271 	 * every level of the inode's extent tree.
272 	 */
273 	ei->i_da_metadata_calc_len = 1;
274 	ei->i_da_metadata_calc_last_lblock = lblock;
275 	return ext_depth(inode) + 1;
276 }
277 
278 static int
279 ext4_ext_max_entries(struct inode *inode, int depth)
280 {
281 	int max;
282 
283 	if (depth == ext_depth(inode)) {
284 		if (depth == 0)
285 			max = ext4_ext_space_root(inode, 1);
286 		else
287 			max = ext4_ext_space_root_idx(inode, 1);
288 	} else {
289 		if (depth == 0)
290 			max = ext4_ext_space_block(inode, 1);
291 		else
292 			max = ext4_ext_space_block_idx(inode, 1);
293 	}
294 
295 	return max;
296 }
297 
298 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
299 {
300 	ext4_fsblk_t block = ext4_ext_pblock(ext);
301 	int len = ext4_ext_get_actual_len(ext);
302 
303 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
304 }
305 
306 static int ext4_valid_extent_idx(struct inode *inode,
307 				struct ext4_extent_idx *ext_idx)
308 {
309 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
310 
311 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
312 }
313 
314 static int ext4_valid_extent_entries(struct inode *inode,
315 				struct ext4_extent_header *eh,
316 				int depth)
317 {
318 	unsigned short entries;
319 	if (eh->eh_entries == 0)
320 		return 1;
321 
322 	entries = le16_to_cpu(eh->eh_entries);
323 
324 	if (depth == 0) {
325 		/* leaf entries */
326 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
327 		while (entries) {
328 			if (!ext4_valid_extent(inode, ext))
329 				return 0;
330 			ext++;
331 			entries--;
332 		}
333 	} else {
334 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
335 		while (entries) {
336 			if (!ext4_valid_extent_idx(inode, ext_idx))
337 				return 0;
338 			ext_idx++;
339 			entries--;
340 		}
341 	}
342 	return 1;
343 }
344 
345 static int __ext4_ext_check(const char *function, unsigned int line,
346 			    struct inode *inode, struct ext4_extent_header *eh,
347 			    int depth)
348 {
349 	const char *error_msg;
350 	int max = 0;
351 
352 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
353 		error_msg = "invalid magic";
354 		goto corrupted;
355 	}
356 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
357 		error_msg = "unexpected eh_depth";
358 		goto corrupted;
359 	}
360 	if (unlikely(eh->eh_max == 0)) {
361 		error_msg = "invalid eh_max";
362 		goto corrupted;
363 	}
364 	max = ext4_ext_max_entries(inode, depth);
365 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
366 		error_msg = "too large eh_max";
367 		goto corrupted;
368 	}
369 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
370 		error_msg = "invalid eh_entries";
371 		goto corrupted;
372 	}
373 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
374 		error_msg = "invalid extent entries";
375 		goto corrupted;
376 	}
377 	return 0;
378 
379 corrupted:
380 	ext4_error_inode(inode, function, line, 0,
381 			"bad header/extent: %s - magic %x, "
382 			"entries %u, max %u(%u), depth %u(%u)",
383 			error_msg, le16_to_cpu(eh->eh_magic),
384 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
385 			max, le16_to_cpu(eh->eh_depth), depth);
386 
387 	return -EIO;
388 }
389 
390 #define ext4_ext_check(inode, eh, depth)	\
391 	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
392 
393 int ext4_ext_check_inode(struct inode *inode)
394 {
395 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
396 }
397 
398 #ifdef EXT_DEBUG
399 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
400 {
401 	int k, l = path->p_depth;
402 
403 	ext_debug("path:");
404 	for (k = 0; k <= l; k++, path++) {
405 		if (path->p_idx) {
406 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
407 			    ext4_idx_pblock(path->p_idx));
408 		} else if (path->p_ext) {
409 			ext_debug("  %d:[%d]%d:%llu ",
410 				  le32_to_cpu(path->p_ext->ee_block),
411 				  ext4_ext_is_uninitialized(path->p_ext),
412 				  ext4_ext_get_actual_len(path->p_ext),
413 				  ext4_ext_pblock(path->p_ext));
414 		} else
415 			ext_debug("  []");
416 	}
417 	ext_debug("\n");
418 }
419 
420 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
421 {
422 	int depth = ext_depth(inode);
423 	struct ext4_extent_header *eh;
424 	struct ext4_extent *ex;
425 	int i;
426 
427 	if (!path)
428 		return;
429 
430 	eh = path[depth].p_hdr;
431 	ex = EXT_FIRST_EXTENT(eh);
432 
433 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
434 
435 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
436 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
437 			  ext4_ext_is_uninitialized(ex),
438 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
439 	}
440 	ext_debug("\n");
441 }
442 
443 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
444 			ext4_fsblk_t newblock, int level)
445 {
446 	int depth = ext_depth(inode);
447 	struct ext4_extent *ex;
448 
449 	if (depth != level) {
450 		struct ext4_extent_idx *idx;
451 		idx = path[level].p_idx;
452 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
453 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
454 					le32_to_cpu(idx->ei_block),
455 					ext4_idx_pblock(idx),
456 					newblock);
457 			idx++;
458 		}
459 
460 		return;
461 	}
462 
463 	ex = path[depth].p_ext;
464 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
465 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
466 				le32_to_cpu(ex->ee_block),
467 				ext4_ext_pblock(ex),
468 				ext4_ext_is_uninitialized(ex),
469 				ext4_ext_get_actual_len(ex),
470 				newblock);
471 		ex++;
472 	}
473 }
474 
475 #else
476 #define ext4_ext_show_path(inode, path)
477 #define ext4_ext_show_leaf(inode, path)
478 #define ext4_ext_show_move(inode, path, newblock, level)
479 #endif
480 
481 void ext4_ext_drop_refs(struct ext4_ext_path *path)
482 {
483 	int depth = path->p_depth;
484 	int i;
485 
486 	for (i = 0; i <= depth; i++, path++)
487 		if (path->p_bh) {
488 			brelse(path->p_bh);
489 			path->p_bh = NULL;
490 		}
491 }
492 
493 /*
494  * ext4_ext_binsearch_idx:
495  * binary search for the closest index of the given block
496  * the header must be checked before calling this
497  */
498 static void
499 ext4_ext_binsearch_idx(struct inode *inode,
500 			struct ext4_ext_path *path, ext4_lblk_t block)
501 {
502 	struct ext4_extent_header *eh = path->p_hdr;
503 	struct ext4_extent_idx *r, *l, *m;
504 
505 
506 	ext_debug("binsearch for %u(idx):  ", block);
507 
508 	l = EXT_FIRST_INDEX(eh) + 1;
509 	r = EXT_LAST_INDEX(eh);
510 	while (l <= r) {
511 		m = l + (r - l) / 2;
512 		if (block < le32_to_cpu(m->ei_block))
513 			r = m - 1;
514 		else
515 			l = m + 1;
516 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
517 				m, le32_to_cpu(m->ei_block),
518 				r, le32_to_cpu(r->ei_block));
519 	}
520 
521 	path->p_idx = l - 1;
522 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
523 		  ext4_idx_pblock(path->p_idx));
524 
525 #ifdef CHECK_BINSEARCH
526 	{
527 		struct ext4_extent_idx *chix, *ix;
528 		int k;
529 
530 		chix = ix = EXT_FIRST_INDEX(eh);
531 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
532 		  if (k != 0 &&
533 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
534 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
535 				       "first=0x%p\n", k,
536 				       ix, EXT_FIRST_INDEX(eh));
537 				printk(KERN_DEBUG "%u <= %u\n",
538 				       le32_to_cpu(ix->ei_block),
539 				       le32_to_cpu(ix[-1].ei_block));
540 			}
541 			BUG_ON(k && le32_to_cpu(ix->ei_block)
542 					   <= le32_to_cpu(ix[-1].ei_block));
543 			if (block < le32_to_cpu(ix->ei_block))
544 				break;
545 			chix = ix;
546 		}
547 		BUG_ON(chix != path->p_idx);
548 	}
549 #endif
550 
551 }
552 
553 /*
554  * ext4_ext_binsearch:
555  * binary search for closest extent of the given block
556  * the header must be checked before calling this
557  */
558 static void
559 ext4_ext_binsearch(struct inode *inode,
560 		struct ext4_ext_path *path, ext4_lblk_t block)
561 {
562 	struct ext4_extent_header *eh = path->p_hdr;
563 	struct ext4_extent *r, *l, *m;
564 
565 	if (eh->eh_entries == 0) {
566 		/*
567 		 * this leaf is empty:
568 		 * we get such a leaf in split/add case
569 		 */
570 		return;
571 	}
572 
573 	ext_debug("binsearch for %u:  ", block);
574 
575 	l = EXT_FIRST_EXTENT(eh) + 1;
576 	r = EXT_LAST_EXTENT(eh);
577 
578 	while (l <= r) {
579 		m = l + (r - l) / 2;
580 		if (block < le32_to_cpu(m->ee_block))
581 			r = m - 1;
582 		else
583 			l = m + 1;
584 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
585 				m, le32_to_cpu(m->ee_block),
586 				r, le32_to_cpu(r->ee_block));
587 	}
588 
589 	path->p_ext = l - 1;
590 	ext_debug("  -> %d:%llu:[%d]%d ",
591 			le32_to_cpu(path->p_ext->ee_block),
592 			ext4_ext_pblock(path->p_ext),
593 			ext4_ext_is_uninitialized(path->p_ext),
594 			ext4_ext_get_actual_len(path->p_ext));
595 
596 #ifdef CHECK_BINSEARCH
597 	{
598 		struct ext4_extent *chex, *ex;
599 		int k;
600 
601 		chex = ex = EXT_FIRST_EXTENT(eh);
602 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
603 			BUG_ON(k && le32_to_cpu(ex->ee_block)
604 					  <= le32_to_cpu(ex[-1].ee_block));
605 			if (block < le32_to_cpu(ex->ee_block))
606 				break;
607 			chex = ex;
608 		}
609 		BUG_ON(chex != path->p_ext);
610 	}
611 #endif
612 
613 }
614 
615 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
616 {
617 	struct ext4_extent_header *eh;
618 
619 	eh = ext_inode_hdr(inode);
620 	eh->eh_depth = 0;
621 	eh->eh_entries = 0;
622 	eh->eh_magic = EXT4_EXT_MAGIC;
623 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
624 	ext4_mark_inode_dirty(handle, inode);
625 	ext4_ext_invalidate_cache(inode);
626 	return 0;
627 }
628 
629 struct ext4_ext_path *
630 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
631 					struct ext4_ext_path *path)
632 {
633 	struct ext4_extent_header *eh;
634 	struct buffer_head *bh;
635 	short int depth, i, ppos = 0, alloc = 0;
636 
637 	eh = ext_inode_hdr(inode);
638 	depth = ext_depth(inode);
639 
640 	/* account possible depth increase */
641 	if (!path) {
642 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
643 				GFP_NOFS);
644 		if (!path)
645 			return ERR_PTR(-ENOMEM);
646 		alloc = 1;
647 	}
648 	path[0].p_hdr = eh;
649 	path[0].p_bh = NULL;
650 
651 	i = depth;
652 	/* walk through the tree */
653 	while (i) {
654 		int need_to_validate = 0;
655 
656 		ext_debug("depth %d: num %d, max %d\n",
657 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
658 
659 		ext4_ext_binsearch_idx(inode, path + ppos, block);
660 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
661 		path[ppos].p_depth = i;
662 		path[ppos].p_ext = NULL;
663 
664 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
665 		if (unlikely(!bh))
666 			goto err;
667 		if (!bh_uptodate_or_lock(bh)) {
668 			trace_ext4_ext_load_extent(inode, block,
669 						path[ppos].p_block);
670 			if (bh_submit_read(bh) < 0) {
671 				put_bh(bh);
672 				goto err;
673 			}
674 			/* validate the extent entries */
675 			need_to_validate = 1;
676 		}
677 		eh = ext_block_hdr(bh);
678 		ppos++;
679 		if (unlikely(ppos > depth)) {
680 			put_bh(bh);
681 			EXT4_ERROR_INODE(inode,
682 					 "ppos %d > depth %d", ppos, depth);
683 			goto err;
684 		}
685 		path[ppos].p_bh = bh;
686 		path[ppos].p_hdr = eh;
687 		i--;
688 
689 		if (need_to_validate && ext4_ext_check(inode, eh, i))
690 			goto err;
691 	}
692 
693 	path[ppos].p_depth = i;
694 	path[ppos].p_ext = NULL;
695 	path[ppos].p_idx = NULL;
696 
697 	/* find extent */
698 	ext4_ext_binsearch(inode, path + ppos, block);
699 	/* if not an empty leaf */
700 	if (path[ppos].p_ext)
701 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
702 
703 	ext4_ext_show_path(inode, path);
704 
705 	return path;
706 
707 err:
708 	ext4_ext_drop_refs(path);
709 	if (alloc)
710 		kfree(path);
711 	return ERR_PTR(-EIO);
712 }
713 
714 /*
715  * ext4_ext_insert_index:
716  * insert new index [@logical;@ptr] into the block at @curp;
717  * check where to insert: before @curp or after @curp
718  */
719 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
720 				 struct ext4_ext_path *curp,
721 				 int logical, ext4_fsblk_t ptr)
722 {
723 	struct ext4_extent_idx *ix;
724 	int len, err;
725 
726 	err = ext4_ext_get_access(handle, inode, curp);
727 	if (err)
728 		return err;
729 
730 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
731 		EXT4_ERROR_INODE(inode,
732 				 "logical %d == ei_block %d!",
733 				 logical, le32_to_cpu(curp->p_idx->ei_block));
734 		return -EIO;
735 	}
736 
737 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
738 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
739 		EXT4_ERROR_INODE(inode,
740 				 "eh_entries %d >= eh_max %d!",
741 				 le16_to_cpu(curp->p_hdr->eh_entries),
742 				 le16_to_cpu(curp->p_hdr->eh_max));
743 		return -EIO;
744 	}
745 
746 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
747 		/* insert after */
748 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
749 		ix = curp->p_idx + 1;
750 	} else {
751 		/* insert before */
752 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
753 		ix = curp->p_idx;
754 	}
755 
756 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
757 	BUG_ON(len < 0);
758 	if (len > 0) {
759 		ext_debug("insert new index %d: "
760 				"move %d indices from 0x%p to 0x%p\n",
761 				logical, len, ix, ix + 1);
762 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
763 	}
764 
765 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
766 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
767 		return -EIO;
768 	}
769 
770 	ix->ei_block = cpu_to_le32(logical);
771 	ext4_idx_store_pblock(ix, ptr);
772 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
773 
774 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
775 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
776 		return -EIO;
777 	}
778 
779 	err = ext4_ext_dirty(handle, inode, curp);
780 	ext4_std_error(inode->i_sb, err);
781 
782 	return err;
783 }
784 
785 /*
786  * ext4_ext_split:
787  * inserts new subtree into the path, using free index entry
788  * at depth @at:
789  * - allocates all needed blocks (new leaf and all intermediate index blocks)
790  * - makes decision where to split
791  * - moves remaining extents and index entries (right to the split point)
792  *   into the newly allocated blocks
793  * - initializes subtree
794  */
795 static int ext4_ext_split(handle_t *handle, struct inode *inode,
796 			  unsigned int flags,
797 			  struct ext4_ext_path *path,
798 			  struct ext4_extent *newext, int at)
799 {
800 	struct buffer_head *bh = NULL;
801 	int depth = ext_depth(inode);
802 	struct ext4_extent_header *neh;
803 	struct ext4_extent_idx *fidx;
804 	int i = at, k, m, a;
805 	ext4_fsblk_t newblock, oldblock;
806 	__le32 border;
807 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
808 	int err = 0;
809 
810 	/* make decision: where to split? */
811 	/* FIXME: now decision is simplest: at current extent */
812 
813 	/* if current leaf will be split, then we should use
814 	 * border from split point */
815 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
816 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
817 		return -EIO;
818 	}
819 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
820 		border = path[depth].p_ext[1].ee_block;
821 		ext_debug("leaf will be split."
822 				" next leaf starts at %d\n",
823 				  le32_to_cpu(border));
824 	} else {
825 		border = newext->ee_block;
826 		ext_debug("leaf will be added."
827 				" next leaf starts at %d\n",
828 				le32_to_cpu(border));
829 	}
830 
831 	/*
832 	 * If error occurs, then we break processing
833 	 * and mark filesystem read-only. index won't
834 	 * be inserted and tree will be in consistent
835 	 * state. Next mount will repair buffers too.
836 	 */
837 
838 	/*
839 	 * Get array to track all allocated blocks.
840 	 * We need this to handle errors and free blocks
841 	 * upon them.
842 	 */
843 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
844 	if (!ablocks)
845 		return -ENOMEM;
846 
847 	/* allocate all needed blocks */
848 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
849 	for (a = 0; a < depth - at; a++) {
850 		newblock = ext4_ext_new_meta_block(handle, inode, path,
851 						   newext, &err, flags);
852 		if (newblock == 0)
853 			goto cleanup;
854 		ablocks[a] = newblock;
855 	}
856 
857 	/* initialize new leaf */
858 	newblock = ablocks[--a];
859 	if (unlikely(newblock == 0)) {
860 		EXT4_ERROR_INODE(inode, "newblock == 0!");
861 		err = -EIO;
862 		goto cleanup;
863 	}
864 	bh = sb_getblk(inode->i_sb, newblock);
865 	if (!bh) {
866 		err = -EIO;
867 		goto cleanup;
868 	}
869 	lock_buffer(bh);
870 
871 	err = ext4_journal_get_create_access(handle, bh);
872 	if (err)
873 		goto cleanup;
874 
875 	neh = ext_block_hdr(bh);
876 	neh->eh_entries = 0;
877 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
878 	neh->eh_magic = EXT4_EXT_MAGIC;
879 	neh->eh_depth = 0;
880 
881 	/* move remainder of path[depth] to the new leaf */
882 	if (unlikely(path[depth].p_hdr->eh_entries !=
883 		     path[depth].p_hdr->eh_max)) {
884 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
885 				 path[depth].p_hdr->eh_entries,
886 				 path[depth].p_hdr->eh_max);
887 		err = -EIO;
888 		goto cleanup;
889 	}
890 	/* start copy from next extent */
891 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
892 	ext4_ext_show_move(inode, path, newblock, depth);
893 	if (m) {
894 		struct ext4_extent *ex;
895 		ex = EXT_FIRST_EXTENT(neh);
896 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
897 		le16_add_cpu(&neh->eh_entries, m);
898 	}
899 
900 	set_buffer_uptodate(bh);
901 	unlock_buffer(bh);
902 
903 	err = ext4_handle_dirty_metadata(handle, inode, bh);
904 	if (err)
905 		goto cleanup;
906 	brelse(bh);
907 	bh = NULL;
908 
909 	/* correct old leaf */
910 	if (m) {
911 		err = ext4_ext_get_access(handle, inode, path + depth);
912 		if (err)
913 			goto cleanup;
914 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
915 		err = ext4_ext_dirty(handle, inode, path + depth);
916 		if (err)
917 			goto cleanup;
918 
919 	}
920 
921 	/* create intermediate indexes */
922 	k = depth - at - 1;
923 	if (unlikely(k < 0)) {
924 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
925 		err = -EIO;
926 		goto cleanup;
927 	}
928 	if (k)
929 		ext_debug("create %d intermediate indices\n", k);
930 	/* insert new index into current index block */
931 	/* current depth stored in i var */
932 	i = depth - 1;
933 	while (k--) {
934 		oldblock = newblock;
935 		newblock = ablocks[--a];
936 		bh = sb_getblk(inode->i_sb, newblock);
937 		if (!bh) {
938 			err = -EIO;
939 			goto cleanup;
940 		}
941 		lock_buffer(bh);
942 
943 		err = ext4_journal_get_create_access(handle, bh);
944 		if (err)
945 			goto cleanup;
946 
947 		neh = ext_block_hdr(bh);
948 		neh->eh_entries = cpu_to_le16(1);
949 		neh->eh_magic = EXT4_EXT_MAGIC;
950 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
951 		neh->eh_depth = cpu_to_le16(depth - i);
952 		fidx = EXT_FIRST_INDEX(neh);
953 		fidx->ei_block = border;
954 		ext4_idx_store_pblock(fidx, oldblock);
955 
956 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
957 				i, newblock, le32_to_cpu(border), oldblock);
958 
959 		/* move remainder of path[i] to the new index block */
960 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
961 					EXT_LAST_INDEX(path[i].p_hdr))) {
962 			EXT4_ERROR_INODE(inode,
963 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
964 					 le32_to_cpu(path[i].p_ext->ee_block));
965 			err = -EIO;
966 			goto cleanup;
967 		}
968 		/* start copy indexes */
969 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
970 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
971 				EXT_MAX_INDEX(path[i].p_hdr));
972 		ext4_ext_show_move(inode, path, newblock, i);
973 		if (m) {
974 			memmove(++fidx, path[i].p_idx,
975 				sizeof(struct ext4_extent_idx) * m);
976 			le16_add_cpu(&neh->eh_entries, m);
977 		}
978 		set_buffer_uptodate(bh);
979 		unlock_buffer(bh);
980 
981 		err = ext4_handle_dirty_metadata(handle, inode, bh);
982 		if (err)
983 			goto cleanup;
984 		brelse(bh);
985 		bh = NULL;
986 
987 		/* correct old index */
988 		if (m) {
989 			err = ext4_ext_get_access(handle, inode, path + i);
990 			if (err)
991 				goto cleanup;
992 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
993 			err = ext4_ext_dirty(handle, inode, path + i);
994 			if (err)
995 				goto cleanup;
996 		}
997 
998 		i--;
999 	}
1000 
1001 	/* insert new index */
1002 	err = ext4_ext_insert_index(handle, inode, path + at,
1003 				    le32_to_cpu(border), newblock);
1004 
1005 cleanup:
1006 	if (bh) {
1007 		if (buffer_locked(bh))
1008 			unlock_buffer(bh);
1009 		brelse(bh);
1010 	}
1011 
1012 	if (err) {
1013 		/* free all allocated blocks in error case */
1014 		for (i = 0; i < depth; i++) {
1015 			if (!ablocks[i])
1016 				continue;
1017 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1018 					 EXT4_FREE_BLOCKS_METADATA);
1019 		}
1020 	}
1021 	kfree(ablocks);
1022 
1023 	return err;
1024 }
1025 
1026 /*
1027  * ext4_ext_grow_indepth:
1028  * implements tree growing procedure:
1029  * - allocates new block
1030  * - moves top-level data (index block or leaf) into the new block
1031  * - initializes new top-level, creating index that points to the
1032  *   just created block
1033  */
1034 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1035 				 unsigned int flags,
1036 				 struct ext4_extent *newext)
1037 {
1038 	struct ext4_extent_header *neh;
1039 	struct buffer_head *bh;
1040 	ext4_fsblk_t newblock;
1041 	int err = 0;
1042 
1043 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1044 		newext, &err, flags);
1045 	if (newblock == 0)
1046 		return err;
1047 
1048 	bh = sb_getblk(inode->i_sb, newblock);
1049 	if (!bh) {
1050 		err = -EIO;
1051 		ext4_std_error(inode->i_sb, err);
1052 		return err;
1053 	}
1054 	lock_buffer(bh);
1055 
1056 	err = ext4_journal_get_create_access(handle, bh);
1057 	if (err) {
1058 		unlock_buffer(bh);
1059 		goto out;
1060 	}
1061 
1062 	/* move top-level index/leaf into new block */
1063 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1064 		sizeof(EXT4_I(inode)->i_data));
1065 
1066 	/* set size of new block */
1067 	neh = ext_block_hdr(bh);
1068 	/* old root could have indexes or leaves
1069 	 * so calculate e_max right way */
1070 	if (ext_depth(inode))
1071 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1072 	else
1073 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1074 	neh->eh_magic = EXT4_EXT_MAGIC;
1075 	set_buffer_uptodate(bh);
1076 	unlock_buffer(bh);
1077 
1078 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1079 	if (err)
1080 		goto out;
1081 
1082 	/* Update top-level index: num,max,pointer */
1083 	neh = ext_inode_hdr(inode);
1084 	neh->eh_entries = cpu_to_le16(1);
1085 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1086 	if (neh->eh_depth == 0) {
1087 		/* Root extent block becomes index block */
1088 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1089 		EXT_FIRST_INDEX(neh)->ei_block =
1090 			EXT_FIRST_EXTENT(neh)->ee_block;
1091 	}
1092 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1093 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1094 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1095 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1096 
1097 	neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1098 	ext4_mark_inode_dirty(handle, inode);
1099 out:
1100 	brelse(bh);
1101 
1102 	return err;
1103 }
1104 
1105 /*
1106  * ext4_ext_create_new_leaf:
1107  * finds empty index and adds new leaf.
1108  * if no free index is found, then it requests in-depth growing.
1109  */
1110 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1111 				    unsigned int flags,
1112 				    struct ext4_ext_path *path,
1113 				    struct ext4_extent *newext)
1114 {
1115 	struct ext4_ext_path *curp;
1116 	int depth, i, err = 0;
1117 
1118 repeat:
1119 	i = depth = ext_depth(inode);
1120 
1121 	/* walk up to the tree and look for free index entry */
1122 	curp = path + depth;
1123 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1124 		i--;
1125 		curp--;
1126 	}
1127 
1128 	/* we use already allocated block for index block,
1129 	 * so subsequent data blocks should be contiguous */
1130 	if (EXT_HAS_FREE_INDEX(curp)) {
1131 		/* if we found index with free entry, then use that
1132 		 * entry: create all needed subtree and add new leaf */
1133 		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1134 		if (err)
1135 			goto out;
1136 
1137 		/* refill path */
1138 		ext4_ext_drop_refs(path);
1139 		path = ext4_ext_find_extent(inode,
1140 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1141 				    path);
1142 		if (IS_ERR(path))
1143 			err = PTR_ERR(path);
1144 	} else {
1145 		/* tree is full, time to grow in depth */
1146 		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1147 		if (err)
1148 			goto out;
1149 
1150 		/* refill path */
1151 		ext4_ext_drop_refs(path);
1152 		path = ext4_ext_find_extent(inode,
1153 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1154 				    path);
1155 		if (IS_ERR(path)) {
1156 			err = PTR_ERR(path);
1157 			goto out;
1158 		}
1159 
1160 		/*
1161 		 * only first (depth 0 -> 1) produces free space;
1162 		 * in all other cases we have to split the grown tree
1163 		 */
1164 		depth = ext_depth(inode);
1165 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1166 			/* now we need to split */
1167 			goto repeat;
1168 		}
1169 	}
1170 
1171 out:
1172 	return err;
1173 }
1174 
1175 /*
1176  * search the closest allocated block to the left for *logical
1177  * and returns it at @logical + it's physical address at @phys
1178  * if *logical is the smallest allocated block, the function
1179  * returns 0 at @phys
1180  * return value contains 0 (success) or error code
1181  */
1182 static int ext4_ext_search_left(struct inode *inode,
1183 				struct ext4_ext_path *path,
1184 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1185 {
1186 	struct ext4_extent_idx *ix;
1187 	struct ext4_extent *ex;
1188 	int depth, ee_len;
1189 
1190 	if (unlikely(path == NULL)) {
1191 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1192 		return -EIO;
1193 	}
1194 	depth = path->p_depth;
1195 	*phys = 0;
1196 
1197 	if (depth == 0 && path->p_ext == NULL)
1198 		return 0;
1199 
1200 	/* usually extent in the path covers blocks smaller
1201 	 * then *logical, but it can be that extent is the
1202 	 * first one in the file */
1203 
1204 	ex = path[depth].p_ext;
1205 	ee_len = ext4_ext_get_actual_len(ex);
1206 	if (*logical < le32_to_cpu(ex->ee_block)) {
1207 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1208 			EXT4_ERROR_INODE(inode,
1209 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1210 					 *logical, le32_to_cpu(ex->ee_block));
1211 			return -EIO;
1212 		}
1213 		while (--depth >= 0) {
1214 			ix = path[depth].p_idx;
1215 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1216 				EXT4_ERROR_INODE(inode,
1217 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1218 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1219 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1220 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1221 				  depth);
1222 				return -EIO;
1223 			}
1224 		}
1225 		return 0;
1226 	}
1227 
1228 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1229 		EXT4_ERROR_INODE(inode,
1230 				 "logical %d < ee_block %d + ee_len %d!",
1231 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1232 		return -EIO;
1233 	}
1234 
1235 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1236 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1237 	return 0;
1238 }
1239 
1240 /*
1241  * search the closest allocated block to the right for *logical
1242  * and returns it at @logical + it's physical address at @phys
1243  * if *logical is the largest allocated block, the function
1244  * returns 0 at @phys
1245  * return value contains 0 (success) or error code
1246  */
1247 static int ext4_ext_search_right(struct inode *inode,
1248 				 struct ext4_ext_path *path,
1249 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1250 				 struct ext4_extent **ret_ex)
1251 {
1252 	struct buffer_head *bh = NULL;
1253 	struct ext4_extent_header *eh;
1254 	struct ext4_extent_idx *ix;
1255 	struct ext4_extent *ex;
1256 	ext4_fsblk_t block;
1257 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1258 	int ee_len;
1259 
1260 	if (unlikely(path == NULL)) {
1261 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1262 		return -EIO;
1263 	}
1264 	depth = path->p_depth;
1265 	*phys = 0;
1266 
1267 	if (depth == 0 && path->p_ext == NULL)
1268 		return 0;
1269 
1270 	/* usually extent in the path covers blocks smaller
1271 	 * then *logical, but it can be that extent is the
1272 	 * first one in the file */
1273 
1274 	ex = path[depth].p_ext;
1275 	ee_len = ext4_ext_get_actual_len(ex);
1276 	if (*logical < le32_to_cpu(ex->ee_block)) {
1277 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1278 			EXT4_ERROR_INODE(inode,
1279 					 "first_extent(path[%d].p_hdr) != ex",
1280 					 depth);
1281 			return -EIO;
1282 		}
1283 		while (--depth >= 0) {
1284 			ix = path[depth].p_idx;
1285 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1286 				EXT4_ERROR_INODE(inode,
1287 						 "ix != EXT_FIRST_INDEX *logical %d!",
1288 						 *logical);
1289 				return -EIO;
1290 			}
1291 		}
1292 		goto found_extent;
1293 	}
1294 
1295 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1296 		EXT4_ERROR_INODE(inode,
1297 				 "logical %d < ee_block %d + ee_len %d!",
1298 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1299 		return -EIO;
1300 	}
1301 
1302 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1303 		/* next allocated block in this leaf */
1304 		ex++;
1305 		goto found_extent;
1306 	}
1307 
1308 	/* go up and search for index to the right */
1309 	while (--depth >= 0) {
1310 		ix = path[depth].p_idx;
1311 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1312 			goto got_index;
1313 	}
1314 
1315 	/* we've gone up to the root and found no index to the right */
1316 	return 0;
1317 
1318 got_index:
1319 	/* we've found index to the right, let's
1320 	 * follow it and find the closest allocated
1321 	 * block to the right */
1322 	ix++;
1323 	block = ext4_idx_pblock(ix);
1324 	while (++depth < path->p_depth) {
1325 		bh = sb_bread(inode->i_sb, block);
1326 		if (bh == NULL)
1327 			return -EIO;
1328 		eh = ext_block_hdr(bh);
1329 		/* subtract from p_depth to get proper eh_depth */
1330 		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1331 			put_bh(bh);
1332 			return -EIO;
1333 		}
1334 		ix = EXT_FIRST_INDEX(eh);
1335 		block = ext4_idx_pblock(ix);
1336 		put_bh(bh);
1337 	}
1338 
1339 	bh = sb_bread(inode->i_sb, block);
1340 	if (bh == NULL)
1341 		return -EIO;
1342 	eh = ext_block_hdr(bh);
1343 	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1344 		put_bh(bh);
1345 		return -EIO;
1346 	}
1347 	ex = EXT_FIRST_EXTENT(eh);
1348 found_extent:
1349 	*logical = le32_to_cpu(ex->ee_block);
1350 	*phys = ext4_ext_pblock(ex);
1351 	*ret_ex = ex;
1352 	if (bh)
1353 		put_bh(bh);
1354 	return 0;
1355 }
1356 
1357 /*
1358  * ext4_ext_next_allocated_block:
1359  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1360  * NOTE: it considers block number from index entry as
1361  * allocated block. Thus, index entries have to be consistent
1362  * with leaves.
1363  */
1364 static ext4_lblk_t
1365 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1366 {
1367 	int depth;
1368 
1369 	BUG_ON(path == NULL);
1370 	depth = path->p_depth;
1371 
1372 	if (depth == 0 && path->p_ext == NULL)
1373 		return EXT_MAX_BLOCKS;
1374 
1375 	while (depth >= 0) {
1376 		if (depth == path->p_depth) {
1377 			/* leaf */
1378 			if (path[depth].p_ext &&
1379 				path[depth].p_ext !=
1380 					EXT_LAST_EXTENT(path[depth].p_hdr))
1381 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1382 		} else {
1383 			/* index */
1384 			if (path[depth].p_idx !=
1385 					EXT_LAST_INDEX(path[depth].p_hdr))
1386 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1387 		}
1388 		depth--;
1389 	}
1390 
1391 	return EXT_MAX_BLOCKS;
1392 }
1393 
1394 /*
1395  * ext4_ext_next_leaf_block:
1396  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1397  */
1398 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1399 {
1400 	int depth;
1401 
1402 	BUG_ON(path == NULL);
1403 	depth = path->p_depth;
1404 
1405 	/* zero-tree has no leaf blocks at all */
1406 	if (depth == 0)
1407 		return EXT_MAX_BLOCKS;
1408 
1409 	/* go to index block */
1410 	depth--;
1411 
1412 	while (depth >= 0) {
1413 		if (path[depth].p_idx !=
1414 				EXT_LAST_INDEX(path[depth].p_hdr))
1415 			return (ext4_lblk_t)
1416 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1417 		depth--;
1418 	}
1419 
1420 	return EXT_MAX_BLOCKS;
1421 }
1422 
1423 /*
1424  * ext4_ext_correct_indexes:
1425  * if leaf gets modified and modified extent is first in the leaf,
1426  * then we have to correct all indexes above.
1427  * TODO: do we need to correct tree in all cases?
1428  */
1429 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1430 				struct ext4_ext_path *path)
1431 {
1432 	struct ext4_extent_header *eh;
1433 	int depth = ext_depth(inode);
1434 	struct ext4_extent *ex;
1435 	__le32 border;
1436 	int k, err = 0;
1437 
1438 	eh = path[depth].p_hdr;
1439 	ex = path[depth].p_ext;
1440 
1441 	if (unlikely(ex == NULL || eh == NULL)) {
1442 		EXT4_ERROR_INODE(inode,
1443 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1444 		return -EIO;
1445 	}
1446 
1447 	if (depth == 0) {
1448 		/* there is no tree at all */
1449 		return 0;
1450 	}
1451 
1452 	if (ex != EXT_FIRST_EXTENT(eh)) {
1453 		/* we correct tree if first leaf got modified only */
1454 		return 0;
1455 	}
1456 
1457 	/*
1458 	 * TODO: we need correction if border is smaller than current one
1459 	 */
1460 	k = depth - 1;
1461 	border = path[depth].p_ext->ee_block;
1462 	err = ext4_ext_get_access(handle, inode, path + k);
1463 	if (err)
1464 		return err;
1465 	path[k].p_idx->ei_block = border;
1466 	err = ext4_ext_dirty(handle, inode, path + k);
1467 	if (err)
1468 		return err;
1469 
1470 	while (k--) {
1471 		/* change all left-side indexes */
1472 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1473 			break;
1474 		err = ext4_ext_get_access(handle, inode, path + k);
1475 		if (err)
1476 			break;
1477 		path[k].p_idx->ei_block = border;
1478 		err = ext4_ext_dirty(handle, inode, path + k);
1479 		if (err)
1480 			break;
1481 	}
1482 
1483 	return err;
1484 }
1485 
1486 int
1487 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1488 				struct ext4_extent *ex2)
1489 {
1490 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1491 
1492 	/*
1493 	 * Make sure that either both extents are uninitialized, or
1494 	 * both are _not_.
1495 	 */
1496 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1497 		return 0;
1498 
1499 	if (ext4_ext_is_uninitialized(ex1))
1500 		max_len = EXT_UNINIT_MAX_LEN;
1501 	else
1502 		max_len = EXT_INIT_MAX_LEN;
1503 
1504 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1505 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1506 
1507 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1508 			le32_to_cpu(ex2->ee_block))
1509 		return 0;
1510 
1511 	/*
1512 	 * To allow future support for preallocated extents to be added
1513 	 * as an RO_COMPAT feature, refuse to merge to extents if
1514 	 * this can result in the top bit of ee_len being set.
1515 	 */
1516 	if (ext1_ee_len + ext2_ee_len > max_len)
1517 		return 0;
1518 #ifdef AGGRESSIVE_TEST
1519 	if (ext1_ee_len >= 4)
1520 		return 0;
1521 #endif
1522 
1523 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1524 		return 1;
1525 	return 0;
1526 }
1527 
1528 /*
1529  * This function tries to merge the "ex" extent to the next extent in the tree.
1530  * It always tries to merge towards right. If you want to merge towards
1531  * left, pass "ex - 1" as argument instead of "ex".
1532  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1533  * 1 if they got merged.
1534  */
1535 static int ext4_ext_try_to_merge_right(struct inode *inode,
1536 				 struct ext4_ext_path *path,
1537 				 struct ext4_extent *ex)
1538 {
1539 	struct ext4_extent_header *eh;
1540 	unsigned int depth, len;
1541 	int merge_done = 0;
1542 	int uninitialized = 0;
1543 
1544 	depth = ext_depth(inode);
1545 	BUG_ON(path[depth].p_hdr == NULL);
1546 	eh = path[depth].p_hdr;
1547 
1548 	while (ex < EXT_LAST_EXTENT(eh)) {
1549 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1550 			break;
1551 		/* merge with next extent! */
1552 		if (ext4_ext_is_uninitialized(ex))
1553 			uninitialized = 1;
1554 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1555 				+ ext4_ext_get_actual_len(ex + 1));
1556 		if (uninitialized)
1557 			ext4_ext_mark_uninitialized(ex);
1558 
1559 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1560 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1561 				* sizeof(struct ext4_extent);
1562 			memmove(ex + 1, ex + 2, len);
1563 		}
1564 		le16_add_cpu(&eh->eh_entries, -1);
1565 		merge_done = 1;
1566 		WARN_ON(eh->eh_entries == 0);
1567 		if (!eh->eh_entries)
1568 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1569 	}
1570 
1571 	return merge_done;
1572 }
1573 
1574 /*
1575  * This function tries to merge the @ex extent to neighbours in the tree.
1576  * return 1 if merge left else 0.
1577  */
1578 static int ext4_ext_try_to_merge(struct inode *inode,
1579 				  struct ext4_ext_path *path,
1580 				  struct ext4_extent *ex) {
1581 	struct ext4_extent_header *eh;
1582 	unsigned int depth;
1583 	int merge_done = 0;
1584 	int ret = 0;
1585 
1586 	depth = ext_depth(inode);
1587 	BUG_ON(path[depth].p_hdr == NULL);
1588 	eh = path[depth].p_hdr;
1589 
1590 	if (ex > EXT_FIRST_EXTENT(eh))
1591 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1592 
1593 	if (!merge_done)
1594 		ret = ext4_ext_try_to_merge_right(inode, path, ex);
1595 
1596 	return ret;
1597 }
1598 
1599 /*
1600  * check if a portion of the "newext" extent overlaps with an
1601  * existing extent.
1602  *
1603  * If there is an overlap discovered, it updates the length of the newext
1604  * such that there will be no overlap, and then returns 1.
1605  * If there is no overlap found, it returns 0.
1606  */
1607 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1608 					   struct inode *inode,
1609 					   struct ext4_extent *newext,
1610 					   struct ext4_ext_path *path)
1611 {
1612 	ext4_lblk_t b1, b2;
1613 	unsigned int depth, len1;
1614 	unsigned int ret = 0;
1615 
1616 	b1 = le32_to_cpu(newext->ee_block);
1617 	len1 = ext4_ext_get_actual_len(newext);
1618 	depth = ext_depth(inode);
1619 	if (!path[depth].p_ext)
1620 		goto out;
1621 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1622 	b2 &= ~(sbi->s_cluster_ratio - 1);
1623 
1624 	/*
1625 	 * get the next allocated block if the extent in the path
1626 	 * is before the requested block(s)
1627 	 */
1628 	if (b2 < b1) {
1629 		b2 = ext4_ext_next_allocated_block(path);
1630 		if (b2 == EXT_MAX_BLOCKS)
1631 			goto out;
1632 		b2 &= ~(sbi->s_cluster_ratio - 1);
1633 	}
1634 
1635 	/* check for wrap through zero on extent logical start block*/
1636 	if (b1 + len1 < b1) {
1637 		len1 = EXT_MAX_BLOCKS - b1;
1638 		newext->ee_len = cpu_to_le16(len1);
1639 		ret = 1;
1640 	}
1641 
1642 	/* check for overlap */
1643 	if (b1 + len1 > b2) {
1644 		newext->ee_len = cpu_to_le16(b2 - b1);
1645 		ret = 1;
1646 	}
1647 out:
1648 	return ret;
1649 }
1650 
1651 /*
1652  * ext4_ext_insert_extent:
1653  * tries to merge requsted extent into the existing extent or
1654  * inserts requested extent as new one into the tree,
1655  * creating new leaf in the no-space case.
1656  */
1657 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1658 				struct ext4_ext_path *path,
1659 				struct ext4_extent *newext, int flag)
1660 {
1661 	struct ext4_extent_header *eh;
1662 	struct ext4_extent *ex, *fex;
1663 	struct ext4_extent *nearex; /* nearest extent */
1664 	struct ext4_ext_path *npath = NULL;
1665 	int depth, len, err;
1666 	ext4_lblk_t next;
1667 	unsigned uninitialized = 0;
1668 	int flags = 0;
1669 
1670 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1671 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1672 		return -EIO;
1673 	}
1674 	depth = ext_depth(inode);
1675 	ex = path[depth].p_ext;
1676 	if (unlikely(path[depth].p_hdr == NULL)) {
1677 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1678 		return -EIO;
1679 	}
1680 
1681 	/* try to insert block into found extent and return */
1682 	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1683 		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1684 		ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1685 			  ext4_ext_is_uninitialized(newext),
1686 			  ext4_ext_get_actual_len(newext),
1687 			  le32_to_cpu(ex->ee_block),
1688 			  ext4_ext_is_uninitialized(ex),
1689 			  ext4_ext_get_actual_len(ex),
1690 			  ext4_ext_pblock(ex));
1691 		err = ext4_ext_get_access(handle, inode, path + depth);
1692 		if (err)
1693 			return err;
1694 
1695 		/*
1696 		 * ext4_can_extents_be_merged should have checked that either
1697 		 * both extents are uninitialized, or both aren't. Thus we
1698 		 * need to check only one of them here.
1699 		 */
1700 		if (ext4_ext_is_uninitialized(ex))
1701 			uninitialized = 1;
1702 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1703 					+ ext4_ext_get_actual_len(newext));
1704 		if (uninitialized)
1705 			ext4_ext_mark_uninitialized(ex);
1706 		eh = path[depth].p_hdr;
1707 		nearex = ex;
1708 		goto merge;
1709 	}
1710 
1711 	depth = ext_depth(inode);
1712 	eh = path[depth].p_hdr;
1713 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1714 		goto has_space;
1715 
1716 	/* probably next leaf has space for us? */
1717 	fex = EXT_LAST_EXTENT(eh);
1718 	next = EXT_MAX_BLOCKS;
1719 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1720 		next = ext4_ext_next_leaf_block(path);
1721 	if (next != EXT_MAX_BLOCKS) {
1722 		ext_debug("next leaf block - %u\n", next);
1723 		BUG_ON(npath != NULL);
1724 		npath = ext4_ext_find_extent(inode, next, NULL);
1725 		if (IS_ERR(npath))
1726 			return PTR_ERR(npath);
1727 		BUG_ON(npath->p_depth != path->p_depth);
1728 		eh = npath[depth].p_hdr;
1729 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1730 			ext_debug("next leaf isn't full(%d)\n",
1731 				  le16_to_cpu(eh->eh_entries));
1732 			path = npath;
1733 			goto has_space;
1734 		}
1735 		ext_debug("next leaf has no free space(%d,%d)\n",
1736 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1737 	}
1738 
1739 	/*
1740 	 * There is no free space in the found leaf.
1741 	 * We're gonna add a new leaf in the tree.
1742 	 */
1743 	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1744 		flags = EXT4_MB_USE_ROOT_BLOCKS;
1745 	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1746 	if (err)
1747 		goto cleanup;
1748 	depth = ext_depth(inode);
1749 	eh = path[depth].p_hdr;
1750 
1751 has_space:
1752 	nearex = path[depth].p_ext;
1753 
1754 	err = ext4_ext_get_access(handle, inode, path + depth);
1755 	if (err)
1756 		goto cleanup;
1757 
1758 	if (!nearex) {
1759 		/* there is no extent in this leaf, create first one */
1760 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1761 				le32_to_cpu(newext->ee_block),
1762 				ext4_ext_pblock(newext),
1763 				ext4_ext_is_uninitialized(newext),
1764 				ext4_ext_get_actual_len(newext));
1765 		nearex = EXT_FIRST_EXTENT(eh);
1766 	} else {
1767 		if (le32_to_cpu(newext->ee_block)
1768 			   > le32_to_cpu(nearex->ee_block)) {
1769 			/* Insert after */
1770 			ext_debug("insert %u:%llu:[%d]%d before: "
1771 					"nearest %p\n",
1772 					le32_to_cpu(newext->ee_block),
1773 					ext4_ext_pblock(newext),
1774 					ext4_ext_is_uninitialized(newext),
1775 					ext4_ext_get_actual_len(newext),
1776 					nearex);
1777 			nearex++;
1778 		} else {
1779 			/* Insert before */
1780 			BUG_ON(newext->ee_block == nearex->ee_block);
1781 			ext_debug("insert %u:%llu:[%d]%d after: "
1782 					"nearest %p\n",
1783 					le32_to_cpu(newext->ee_block),
1784 					ext4_ext_pblock(newext),
1785 					ext4_ext_is_uninitialized(newext),
1786 					ext4_ext_get_actual_len(newext),
1787 					nearex);
1788 		}
1789 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1790 		if (len > 0) {
1791 			ext_debug("insert %u:%llu:[%d]%d: "
1792 					"move %d extents from 0x%p to 0x%p\n",
1793 					le32_to_cpu(newext->ee_block),
1794 					ext4_ext_pblock(newext),
1795 					ext4_ext_is_uninitialized(newext),
1796 					ext4_ext_get_actual_len(newext),
1797 					len, nearex, nearex + 1);
1798 			memmove(nearex + 1, nearex,
1799 				len * sizeof(struct ext4_extent));
1800 		}
1801 	}
1802 
1803 	le16_add_cpu(&eh->eh_entries, 1);
1804 	path[depth].p_ext = nearex;
1805 	nearex->ee_block = newext->ee_block;
1806 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1807 	nearex->ee_len = newext->ee_len;
1808 
1809 merge:
1810 	/* try to merge extents to the right */
1811 	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1812 		ext4_ext_try_to_merge(inode, path, nearex);
1813 
1814 	/* try to merge extents to the left */
1815 
1816 	/* time to correct all indexes above */
1817 	err = ext4_ext_correct_indexes(handle, inode, path);
1818 	if (err)
1819 		goto cleanup;
1820 
1821 	err = ext4_ext_dirty(handle, inode, path + depth);
1822 
1823 cleanup:
1824 	if (npath) {
1825 		ext4_ext_drop_refs(npath);
1826 		kfree(npath);
1827 	}
1828 	ext4_ext_invalidate_cache(inode);
1829 	return err;
1830 }
1831 
1832 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1833 			       ext4_lblk_t num, ext_prepare_callback func,
1834 			       void *cbdata)
1835 {
1836 	struct ext4_ext_path *path = NULL;
1837 	struct ext4_ext_cache cbex;
1838 	struct ext4_extent *ex;
1839 	ext4_lblk_t next, start = 0, end = 0;
1840 	ext4_lblk_t last = block + num;
1841 	int depth, exists, err = 0;
1842 
1843 	BUG_ON(func == NULL);
1844 	BUG_ON(inode == NULL);
1845 
1846 	while (block < last && block != EXT_MAX_BLOCKS) {
1847 		num = last - block;
1848 		/* find extent for this block */
1849 		down_read(&EXT4_I(inode)->i_data_sem);
1850 		path = ext4_ext_find_extent(inode, block, path);
1851 		up_read(&EXT4_I(inode)->i_data_sem);
1852 		if (IS_ERR(path)) {
1853 			err = PTR_ERR(path);
1854 			path = NULL;
1855 			break;
1856 		}
1857 
1858 		depth = ext_depth(inode);
1859 		if (unlikely(path[depth].p_hdr == NULL)) {
1860 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1861 			err = -EIO;
1862 			break;
1863 		}
1864 		ex = path[depth].p_ext;
1865 		next = ext4_ext_next_allocated_block(path);
1866 
1867 		exists = 0;
1868 		if (!ex) {
1869 			/* there is no extent yet, so try to allocate
1870 			 * all requested space */
1871 			start = block;
1872 			end = block + num;
1873 		} else if (le32_to_cpu(ex->ee_block) > block) {
1874 			/* need to allocate space before found extent */
1875 			start = block;
1876 			end = le32_to_cpu(ex->ee_block);
1877 			if (block + num < end)
1878 				end = block + num;
1879 		} else if (block >= le32_to_cpu(ex->ee_block)
1880 					+ ext4_ext_get_actual_len(ex)) {
1881 			/* need to allocate space after found extent */
1882 			start = block;
1883 			end = block + num;
1884 			if (end >= next)
1885 				end = next;
1886 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1887 			/*
1888 			 * some part of requested space is covered
1889 			 * by found extent
1890 			 */
1891 			start = block;
1892 			end = le32_to_cpu(ex->ee_block)
1893 				+ ext4_ext_get_actual_len(ex);
1894 			if (block + num < end)
1895 				end = block + num;
1896 			exists = 1;
1897 		} else {
1898 			BUG();
1899 		}
1900 		BUG_ON(end <= start);
1901 
1902 		if (!exists) {
1903 			cbex.ec_block = start;
1904 			cbex.ec_len = end - start;
1905 			cbex.ec_start = 0;
1906 		} else {
1907 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1908 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1909 			cbex.ec_start = ext4_ext_pblock(ex);
1910 		}
1911 
1912 		if (unlikely(cbex.ec_len == 0)) {
1913 			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1914 			err = -EIO;
1915 			break;
1916 		}
1917 		err = func(inode, next, &cbex, ex, cbdata);
1918 		ext4_ext_drop_refs(path);
1919 
1920 		if (err < 0)
1921 			break;
1922 
1923 		if (err == EXT_REPEAT)
1924 			continue;
1925 		else if (err == EXT_BREAK) {
1926 			err = 0;
1927 			break;
1928 		}
1929 
1930 		if (ext_depth(inode) != depth) {
1931 			/* depth was changed. we have to realloc path */
1932 			kfree(path);
1933 			path = NULL;
1934 		}
1935 
1936 		block = cbex.ec_block + cbex.ec_len;
1937 	}
1938 
1939 	if (path) {
1940 		ext4_ext_drop_refs(path);
1941 		kfree(path);
1942 	}
1943 
1944 	return err;
1945 }
1946 
1947 static void
1948 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1949 			__u32 len, ext4_fsblk_t start)
1950 {
1951 	struct ext4_ext_cache *cex;
1952 	BUG_ON(len == 0);
1953 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1954 	trace_ext4_ext_put_in_cache(inode, block, len, start);
1955 	cex = &EXT4_I(inode)->i_cached_extent;
1956 	cex->ec_block = block;
1957 	cex->ec_len = len;
1958 	cex->ec_start = start;
1959 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1960 }
1961 
1962 /*
1963  * ext4_ext_put_gap_in_cache:
1964  * calculate boundaries of the gap that the requested block fits into
1965  * and cache this gap
1966  */
1967 static void
1968 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1969 				ext4_lblk_t block)
1970 {
1971 	int depth = ext_depth(inode);
1972 	unsigned long len;
1973 	ext4_lblk_t lblock;
1974 	struct ext4_extent *ex;
1975 
1976 	ex = path[depth].p_ext;
1977 	if (ex == NULL) {
1978 		/* there is no extent yet, so gap is [0;-] */
1979 		lblock = 0;
1980 		len = EXT_MAX_BLOCKS;
1981 		ext_debug("cache gap(whole file):");
1982 	} else if (block < le32_to_cpu(ex->ee_block)) {
1983 		lblock = block;
1984 		len = le32_to_cpu(ex->ee_block) - block;
1985 		ext_debug("cache gap(before): %u [%u:%u]",
1986 				block,
1987 				le32_to_cpu(ex->ee_block),
1988 				 ext4_ext_get_actual_len(ex));
1989 	} else if (block >= le32_to_cpu(ex->ee_block)
1990 			+ ext4_ext_get_actual_len(ex)) {
1991 		ext4_lblk_t next;
1992 		lblock = le32_to_cpu(ex->ee_block)
1993 			+ ext4_ext_get_actual_len(ex);
1994 
1995 		next = ext4_ext_next_allocated_block(path);
1996 		ext_debug("cache gap(after): [%u:%u] %u",
1997 				le32_to_cpu(ex->ee_block),
1998 				ext4_ext_get_actual_len(ex),
1999 				block);
2000 		BUG_ON(next == lblock);
2001 		len = next - lblock;
2002 	} else {
2003 		lblock = len = 0;
2004 		BUG();
2005 	}
2006 
2007 	ext_debug(" -> %u:%lu\n", lblock, len);
2008 	ext4_ext_put_in_cache(inode, lblock, len, 0);
2009 }
2010 
2011 /*
2012  * ext4_ext_check_cache()
2013  * Checks to see if the given block is in the cache.
2014  * If it is, the cached extent is stored in the given
2015  * cache extent pointer.  If the cached extent is a hole,
2016  * this routine should be used instead of
2017  * ext4_ext_in_cache if the calling function needs to
2018  * know the size of the hole.
2019  *
2020  * @inode: The files inode
2021  * @block: The block to look for in the cache
2022  * @ex:    Pointer where the cached extent will be stored
2023  *         if it contains block
2024  *
2025  * Return 0 if cache is invalid; 1 if the cache is valid
2026  */
2027 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2028 	struct ext4_ext_cache *ex){
2029 	struct ext4_ext_cache *cex;
2030 	struct ext4_sb_info *sbi;
2031 	int ret = 0;
2032 
2033 	/*
2034 	 * We borrow i_block_reservation_lock to protect i_cached_extent
2035 	 */
2036 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2037 	cex = &EXT4_I(inode)->i_cached_extent;
2038 	sbi = EXT4_SB(inode->i_sb);
2039 
2040 	/* has cache valid data? */
2041 	if (cex->ec_len == 0)
2042 		goto errout;
2043 
2044 	if (in_range(block, cex->ec_block, cex->ec_len)) {
2045 		memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2046 		ext_debug("%u cached by %u:%u:%llu\n",
2047 				block,
2048 				cex->ec_block, cex->ec_len, cex->ec_start);
2049 		ret = 1;
2050 	}
2051 errout:
2052 	if (!ret)
2053 		sbi->extent_cache_misses++;
2054 	else
2055 		sbi->extent_cache_hits++;
2056 	trace_ext4_ext_in_cache(inode, block, ret);
2057 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2058 	return ret;
2059 }
2060 
2061 /*
2062  * ext4_ext_in_cache()
2063  * Checks to see if the given block is in the cache.
2064  * If it is, the cached extent is stored in the given
2065  * extent pointer.
2066  *
2067  * @inode: The files inode
2068  * @block: The block to look for in the cache
2069  * @ex:    Pointer where the cached extent will be stored
2070  *         if it contains block
2071  *
2072  * Return 0 if cache is invalid; 1 if the cache is valid
2073  */
2074 static int
2075 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2076 			struct ext4_extent *ex)
2077 {
2078 	struct ext4_ext_cache cex;
2079 	int ret = 0;
2080 
2081 	if (ext4_ext_check_cache(inode, block, &cex)) {
2082 		ex->ee_block = cpu_to_le32(cex.ec_block);
2083 		ext4_ext_store_pblock(ex, cex.ec_start);
2084 		ex->ee_len = cpu_to_le16(cex.ec_len);
2085 		ret = 1;
2086 	}
2087 
2088 	return ret;
2089 }
2090 
2091 
2092 /*
2093  * ext4_ext_rm_idx:
2094  * removes index from the index block.
2095  */
2096 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2097 			struct ext4_ext_path *path)
2098 {
2099 	int err;
2100 	ext4_fsblk_t leaf;
2101 
2102 	/* free index block */
2103 	path--;
2104 	leaf = ext4_idx_pblock(path->p_idx);
2105 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2106 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2107 		return -EIO;
2108 	}
2109 	err = ext4_ext_get_access(handle, inode, path);
2110 	if (err)
2111 		return err;
2112 
2113 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2114 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2115 		len *= sizeof(struct ext4_extent_idx);
2116 		memmove(path->p_idx, path->p_idx + 1, len);
2117 	}
2118 
2119 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2120 	err = ext4_ext_dirty(handle, inode, path);
2121 	if (err)
2122 		return err;
2123 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2124 	trace_ext4_ext_rm_idx(inode, leaf);
2125 
2126 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2127 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2128 	return err;
2129 }
2130 
2131 /*
2132  * ext4_ext_calc_credits_for_single_extent:
2133  * This routine returns max. credits that needed to insert an extent
2134  * to the extent tree.
2135  * When pass the actual path, the caller should calculate credits
2136  * under i_data_sem.
2137  */
2138 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2139 						struct ext4_ext_path *path)
2140 {
2141 	if (path) {
2142 		int depth = ext_depth(inode);
2143 		int ret = 0;
2144 
2145 		/* probably there is space in leaf? */
2146 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2147 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2148 
2149 			/*
2150 			 *  There are some space in the leaf tree, no
2151 			 *  need to account for leaf block credit
2152 			 *
2153 			 *  bitmaps and block group descriptor blocks
2154 			 *  and other metadata blocks still need to be
2155 			 *  accounted.
2156 			 */
2157 			/* 1 bitmap, 1 block group descriptor */
2158 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2159 			return ret;
2160 		}
2161 	}
2162 
2163 	return ext4_chunk_trans_blocks(inode, nrblocks);
2164 }
2165 
2166 /*
2167  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2168  *
2169  * if nrblocks are fit in a single extent (chunk flag is 1), then
2170  * in the worse case, each tree level index/leaf need to be changed
2171  * if the tree split due to insert a new extent, then the old tree
2172  * index/leaf need to be updated too
2173  *
2174  * If the nrblocks are discontiguous, they could cause
2175  * the whole tree split more than once, but this is really rare.
2176  */
2177 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2178 {
2179 	int index;
2180 	int depth = ext_depth(inode);
2181 
2182 	if (chunk)
2183 		index = depth * 2;
2184 	else
2185 		index = depth * 3;
2186 
2187 	return index;
2188 }
2189 
2190 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2191 			      struct ext4_extent *ex,
2192 			      ext4_fsblk_t *partial_cluster,
2193 			      ext4_lblk_t from, ext4_lblk_t to)
2194 {
2195 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2196 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2197 	ext4_fsblk_t pblk;
2198 	int flags = EXT4_FREE_BLOCKS_FORGET;
2199 
2200 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2201 		flags |= EXT4_FREE_BLOCKS_METADATA;
2202 	/*
2203 	 * For bigalloc file systems, we never free a partial cluster
2204 	 * at the beginning of the extent.  Instead, we make a note
2205 	 * that we tried freeing the cluster, and check to see if we
2206 	 * need to free it on a subsequent call to ext4_remove_blocks,
2207 	 * or at the end of the ext4_truncate() operation.
2208 	 */
2209 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2210 
2211 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2212 	/*
2213 	 * If we have a partial cluster, and it's different from the
2214 	 * cluster of the last block, we need to explicitly free the
2215 	 * partial cluster here.
2216 	 */
2217 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2218 	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2219 		ext4_free_blocks(handle, inode, NULL,
2220 				 EXT4_C2B(sbi, *partial_cluster),
2221 				 sbi->s_cluster_ratio, flags);
2222 		*partial_cluster = 0;
2223 	}
2224 
2225 #ifdef EXTENTS_STATS
2226 	{
2227 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2228 		spin_lock(&sbi->s_ext_stats_lock);
2229 		sbi->s_ext_blocks += ee_len;
2230 		sbi->s_ext_extents++;
2231 		if (ee_len < sbi->s_ext_min)
2232 			sbi->s_ext_min = ee_len;
2233 		if (ee_len > sbi->s_ext_max)
2234 			sbi->s_ext_max = ee_len;
2235 		if (ext_depth(inode) > sbi->s_depth_max)
2236 			sbi->s_depth_max = ext_depth(inode);
2237 		spin_unlock(&sbi->s_ext_stats_lock);
2238 	}
2239 #endif
2240 	if (from >= le32_to_cpu(ex->ee_block)
2241 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2242 		/* tail removal */
2243 		ext4_lblk_t num;
2244 
2245 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2246 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2247 		ext_debug("free last %u blocks starting %llu\n", num, pblk);
2248 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2249 		/*
2250 		 * If the block range to be freed didn't start at the
2251 		 * beginning of a cluster, and we removed the entire
2252 		 * extent, save the partial cluster here, since we
2253 		 * might need to delete if we determine that the
2254 		 * truncate operation has removed all of the blocks in
2255 		 * the cluster.
2256 		 */
2257 		if (pblk & (sbi->s_cluster_ratio - 1) &&
2258 		    (ee_len == num))
2259 			*partial_cluster = EXT4_B2C(sbi, pblk);
2260 		else
2261 			*partial_cluster = 0;
2262 	} else if (from == le32_to_cpu(ex->ee_block)
2263 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2264 		/* head removal */
2265 		ext4_lblk_t num;
2266 		ext4_fsblk_t start;
2267 
2268 		num = to - from;
2269 		start = ext4_ext_pblock(ex);
2270 
2271 		ext_debug("free first %u blocks starting %llu\n", num, start);
2272 		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2273 
2274 	} else {
2275 		printk(KERN_INFO "strange request: removal(2) "
2276 				"%u-%u from %u:%u\n",
2277 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2278 	}
2279 	return 0;
2280 }
2281 
2282 
2283 /*
2284  * ext4_ext_rm_leaf() Removes the extents associated with the
2285  * blocks appearing between "start" and "end", and splits the extents
2286  * if "start" and "end" appear in the same extent
2287  *
2288  * @handle: The journal handle
2289  * @inode:  The files inode
2290  * @path:   The path to the leaf
2291  * @start:  The first block to remove
2292  * @end:   The last block to remove
2293  */
2294 static int
2295 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2296 		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2297 		 ext4_lblk_t start, ext4_lblk_t end)
2298 {
2299 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2300 	int err = 0, correct_index = 0;
2301 	int depth = ext_depth(inode), credits;
2302 	struct ext4_extent_header *eh;
2303 	ext4_lblk_t a, b;
2304 	unsigned num;
2305 	ext4_lblk_t ex_ee_block;
2306 	unsigned short ex_ee_len;
2307 	unsigned uninitialized = 0;
2308 	struct ext4_extent *ex;
2309 
2310 	/* the header must be checked already in ext4_ext_remove_space() */
2311 	ext_debug("truncate since %u in leaf\n", start);
2312 	if (!path[depth].p_hdr)
2313 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2314 	eh = path[depth].p_hdr;
2315 	if (unlikely(path[depth].p_hdr == NULL)) {
2316 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2317 		return -EIO;
2318 	}
2319 	/* find where to start removing */
2320 	ex = EXT_LAST_EXTENT(eh);
2321 
2322 	ex_ee_block = le32_to_cpu(ex->ee_block);
2323 	ex_ee_len = ext4_ext_get_actual_len(ex);
2324 
2325 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2326 
2327 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2328 			ex_ee_block + ex_ee_len > start) {
2329 
2330 		if (ext4_ext_is_uninitialized(ex))
2331 			uninitialized = 1;
2332 		else
2333 			uninitialized = 0;
2334 
2335 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2336 			 uninitialized, ex_ee_len);
2337 		path[depth].p_ext = ex;
2338 
2339 		a = ex_ee_block > start ? ex_ee_block : start;
2340 		b = ex_ee_block+ex_ee_len - 1 < end ?
2341 			ex_ee_block+ex_ee_len - 1 : end;
2342 
2343 		ext_debug("  border %u:%u\n", a, b);
2344 
2345 		/* If this extent is beyond the end of the hole, skip it */
2346 		if (end <= ex_ee_block) {
2347 			ex--;
2348 			ex_ee_block = le32_to_cpu(ex->ee_block);
2349 			ex_ee_len = ext4_ext_get_actual_len(ex);
2350 			continue;
2351 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2352 			EXT4_ERROR_INODE(inode,"  bad truncate %u:%u\n",
2353 					 start, end);
2354 			err = -EIO;
2355 			goto out;
2356 		} else if (a != ex_ee_block) {
2357 			/* remove tail of the extent */
2358 			num = a - ex_ee_block;
2359 		} else {
2360 			/* remove whole extent: excellent! */
2361 			num = 0;
2362 		}
2363 		/*
2364 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2365 		 * descriptor) for each block group; assume two block
2366 		 * groups plus ex_ee_len/blocks_per_block_group for
2367 		 * the worst case
2368 		 */
2369 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2370 		if (ex == EXT_FIRST_EXTENT(eh)) {
2371 			correct_index = 1;
2372 			credits += (ext_depth(inode)) + 1;
2373 		}
2374 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2375 
2376 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2377 		if (err)
2378 			goto out;
2379 
2380 		err = ext4_ext_get_access(handle, inode, path + depth);
2381 		if (err)
2382 			goto out;
2383 
2384 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2385 					 a, b);
2386 		if (err)
2387 			goto out;
2388 
2389 		if (num == 0)
2390 			/* this extent is removed; mark slot entirely unused */
2391 			ext4_ext_store_pblock(ex, 0);
2392 
2393 		ex->ee_len = cpu_to_le16(num);
2394 		/*
2395 		 * Do not mark uninitialized if all the blocks in the
2396 		 * extent have been removed.
2397 		 */
2398 		if (uninitialized && num)
2399 			ext4_ext_mark_uninitialized(ex);
2400 		/*
2401 		 * If the extent was completely released,
2402 		 * we need to remove it from the leaf
2403 		 */
2404 		if (num == 0) {
2405 			if (end != EXT_MAX_BLOCKS - 1) {
2406 				/*
2407 				 * For hole punching, we need to scoot all the
2408 				 * extents up when an extent is removed so that
2409 				 * we dont have blank extents in the middle
2410 				 */
2411 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2412 					sizeof(struct ext4_extent));
2413 
2414 				/* Now get rid of the one at the end */
2415 				memset(EXT_LAST_EXTENT(eh), 0,
2416 					sizeof(struct ext4_extent));
2417 			}
2418 			le16_add_cpu(&eh->eh_entries, -1);
2419 		} else
2420 			*partial_cluster = 0;
2421 
2422 		err = ext4_ext_dirty(handle, inode, path + depth);
2423 		if (err)
2424 			goto out;
2425 
2426 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2427 				ext4_ext_pblock(ex));
2428 		ex--;
2429 		ex_ee_block = le32_to_cpu(ex->ee_block);
2430 		ex_ee_len = ext4_ext_get_actual_len(ex);
2431 	}
2432 
2433 	if (correct_index && eh->eh_entries)
2434 		err = ext4_ext_correct_indexes(handle, inode, path);
2435 
2436 	/*
2437 	 * If there is still a entry in the leaf node, check to see if
2438 	 * it references the partial cluster.  This is the only place
2439 	 * where it could; if it doesn't, we can free the cluster.
2440 	 */
2441 	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2442 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2443 	     *partial_cluster)) {
2444 		int flags = EXT4_FREE_BLOCKS_FORGET;
2445 
2446 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2447 			flags |= EXT4_FREE_BLOCKS_METADATA;
2448 
2449 		ext4_free_blocks(handle, inode, NULL,
2450 				 EXT4_C2B(sbi, *partial_cluster),
2451 				 sbi->s_cluster_ratio, flags);
2452 		*partial_cluster = 0;
2453 	}
2454 
2455 	/* if this leaf is free, then we should
2456 	 * remove it from index block above */
2457 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2458 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2459 
2460 out:
2461 	return err;
2462 }
2463 
2464 /*
2465  * ext4_ext_more_to_rm:
2466  * returns 1 if current index has to be freed (even partial)
2467  */
2468 static int
2469 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2470 {
2471 	BUG_ON(path->p_idx == NULL);
2472 
2473 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2474 		return 0;
2475 
2476 	/*
2477 	 * if truncate on deeper level happened, it wasn't partial,
2478 	 * so we have to consider current index for truncation
2479 	 */
2480 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2481 		return 0;
2482 	return 1;
2483 }
2484 
2485 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2486 {
2487 	struct super_block *sb = inode->i_sb;
2488 	int depth = ext_depth(inode);
2489 	struct ext4_ext_path *path;
2490 	ext4_fsblk_t partial_cluster = 0;
2491 	handle_t *handle;
2492 	int i, err;
2493 
2494 	ext_debug("truncate since %u\n", start);
2495 
2496 	/* probably first extent we're gonna free will be last in block */
2497 	handle = ext4_journal_start(inode, depth + 1);
2498 	if (IS_ERR(handle))
2499 		return PTR_ERR(handle);
2500 
2501 again:
2502 	ext4_ext_invalidate_cache(inode);
2503 
2504 	trace_ext4_ext_remove_space(inode, start, depth);
2505 
2506 	/*
2507 	 * We start scanning from right side, freeing all the blocks
2508 	 * after i_size and walking into the tree depth-wise.
2509 	 */
2510 	depth = ext_depth(inode);
2511 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2512 	if (path == NULL) {
2513 		ext4_journal_stop(handle);
2514 		return -ENOMEM;
2515 	}
2516 	path[0].p_depth = depth;
2517 	path[0].p_hdr = ext_inode_hdr(inode);
2518 	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2519 		err = -EIO;
2520 		goto out;
2521 	}
2522 	i = err = 0;
2523 
2524 	while (i >= 0 && err == 0) {
2525 		if (i == depth) {
2526 			/* this is leaf block */
2527 			err = ext4_ext_rm_leaf(handle, inode, path,
2528 					       &partial_cluster, start,
2529 					       EXT_MAX_BLOCKS - 1);
2530 			/* root level has p_bh == NULL, brelse() eats this */
2531 			brelse(path[i].p_bh);
2532 			path[i].p_bh = NULL;
2533 			i--;
2534 			continue;
2535 		}
2536 
2537 		/* this is index block */
2538 		if (!path[i].p_hdr) {
2539 			ext_debug("initialize header\n");
2540 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2541 		}
2542 
2543 		if (!path[i].p_idx) {
2544 			/* this level hasn't been touched yet */
2545 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2546 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2547 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2548 				  path[i].p_hdr,
2549 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2550 		} else {
2551 			/* we were already here, see at next index */
2552 			path[i].p_idx--;
2553 		}
2554 
2555 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2556 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2557 				path[i].p_idx);
2558 		if (ext4_ext_more_to_rm(path + i)) {
2559 			struct buffer_head *bh;
2560 			/* go to the next level */
2561 			ext_debug("move to level %d (block %llu)\n",
2562 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2563 			memset(path + i + 1, 0, sizeof(*path));
2564 			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2565 			if (!bh) {
2566 				/* should we reset i_size? */
2567 				err = -EIO;
2568 				break;
2569 			}
2570 			if (WARN_ON(i + 1 > depth)) {
2571 				err = -EIO;
2572 				break;
2573 			}
2574 			if (ext4_ext_check(inode, ext_block_hdr(bh),
2575 							depth - i - 1)) {
2576 				err = -EIO;
2577 				break;
2578 			}
2579 			path[i + 1].p_bh = bh;
2580 
2581 			/* save actual number of indexes since this
2582 			 * number is changed at the next iteration */
2583 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2584 			i++;
2585 		} else {
2586 			/* we finished processing this index, go up */
2587 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2588 				/* index is empty, remove it;
2589 				 * handle must be already prepared by the
2590 				 * truncatei_leaf() */
2591 				err = ext4_ext_rm_idx(handle, inode, path + i);
2592 			}
2593 			/* root level has p_bh == NULL, brelse() eats this */
2594 			brelse(path[i].p_bh);
2595 			path[i].p_bh = NULL;
2596 			i--;
2597 			ext_debug("return to level %d\n", i);
2598 		}
2599 	}
2600 
2601 	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2602 			path->p_hdr->eh_entries);
2603 
2604 	/* If we still have something in the partial cluster and we have removed
2605 	 * even the first extent, then we should free the blocks in the partial
2606 	 * cluster as well. */
2607 	if (partial_cluster && path->p_hdr->eh_entries == 0) {
2608 		int flags = EXT4_FREE_BLOCKS_FORGET;
2609 
2610 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2611 			flags |= EXT4_FREE_BLOCKS_METADATA;
2612 
2613 		ext4_free_blocks(handle, inode, NULL,
2614 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2615 				 EXT4_SB(sb)->s_cluster_ratio, flags);
2616 		partial_cluster = 0;
2617 	}
2618 
2619 	/* TODO: flexible tree reduction should be here */
2620 	if (path->p_hdr->eh_entries == 0) {
2621 		/*
2622 		 * truncate to zero freed all the tree,
2623 		 * so we need to correct eh_depth
2624 		 */
2625 		err = ext4_ext_get_access(handle, inode, path);
2626 		if (err == 0) {
2627 			ext_inode_hdr(inode)->eh_depth = 0;
2628 			ext_inode_hdr(inode)->eh_max =
2629 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2630 			err = ext4_ext_dirty(handle, inode, path);
2631 		}
2632 	}
2633 out:
2634 	ext4_ext_drop_refs(path);
2635 	kfree(path);
2636 	if (err == -EAGAIN)
2637 		goto again;
2638 	ext4_journal_stop(handle);
2639 
2640 	return err;
2641 }
2642 
2643 /*
2644  * called at mount time
2645  */
2646 void ext4_ext_init(struct super_block *sb)
2647 {
2648 	/*
2649 	 * possible initialization would be here
2650 	 */
2651 
2652 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2653 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2654 		printk(KERN_INFO "EXT4-fs: file extents enabled");
2655 #ifdef AGGRESSIVE_TEST
2656 		printk(", aggressive tests");
2657 #endif
2658 #ifdef CHECK_BINSEARCH
2659 		printk(", check binsearch");
2660 #endif
2661 #ifdef EXTENTS_STATS
2662 		printk(", stats");
2663 #endif
2664 		printk("\n");
2665 #endif
2666 #ifdef EXTENTS_STATS
2667 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2668 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2669 		EXT4_SB(sb)->s_ext_max = 0;
2670 #endif
2671 	}
2672 }
2673 
2674 /*
2675  * called at umount time
2676  */
2677 void ext4_ext_release(struct super_block *sb)
2678 {
2679 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2680 		return;
2681 
2682 #ifdef EXTENTS_STATS
2683 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2684 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2685 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2686 			sbi->s_ext_blocks, sbi->s_ext_extents,
2687 			sbi->s_ext_blocks / sbi->s_ext_extents);
2688 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2689 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2690 	}
2691 #endif
2692 }
2693 
2694 /* FIXME!! we need to try to merge to left or right after zero-out  */
2695 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2696 {
2697 	ext4_fsblk_t ee_pblock;
2698 	unsigned int ee_len;
2699 	int ret;
2700 
2701 	ee_len    = ext4_ext_get_actual_len(ex);
2702 	ee_pblock = ext4_ext_pblock(ex);
2703 
2704 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2705 	if (ret > 0)
2706 		ret = 0;
2707 
2708 	return ret;
2709 }
2710 
2711 /*
2712  * used by extent splitting.
2713  */
2714 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
2715 					due to ENOSPC */
2716 #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
2717 #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
2718 
2719 /*
2720  * ext4_split_extent_at() splits an extent at given block.
2721  *
2722  * @handle: the journal handle
2723  * @inode: the file inode
2724  * @path: the path to the extent
2725  * @split: the logical block where the extent is splitted.
2726  * @split_flags: indicates if the extent could be zeroout if split fails, and
2727  *		 the states(init or uninit) of new extents.
2728  * @flags: flags used to insert new extent to extent tree.
2729  *
2730  *
2731  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2732  * of which are deterimined by split_flag.
2733  *
2734  * There are two cases:
2735  *  a> the extent are splitted into two extent.
2736  *  b> split is not needed, and just mark the extent.
2737  *
2738  * return 0 on success.
2739  */
2740 static int ext4_split_extent_at(handle_t *handle,
2741 			     struct inode *inode,
2742 			     struct ext4_ext_path *path,
2743 			     ext4_lblk_t split,
2744 			     int split_flag,
2745 			     int flags)
2746 {
2747 	ext4_fsblk_t newblock;
2748 	ext4_lblk_t ee_block;
2749 	struct ext4_extent *ex, newex, orig_ex;
2750 	struct ext4_extent *ex2 = NULL;
2751 	unsigned int ee_len, depth;
2752 	int err = 0;
2753 
2754 	ext_debug("ext4_split_extents_at: inode %lu, logical"
2755 		"block %llu\n", inode->i_ino, (unsigned long long)split);
2756 
2757 	ext4_ext_show_leaf(inode, path);
2758 
2759 	depth = ext_depth(inode);
2760 	ex = path[depth].p_ext;
2761 	ee_block = le32_to_cpu(ex->ee_block);
2762 	ee_len = ext4_ext_get_actual_len(ex);
2763 	newblock = split - ee_block + ext4_ext_pblock(ex);
2764 
2765 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2766 
2767 	err = ext4_ext_get_access(handle, inode, path + depth);
2768 	if (err)
2769 		goto out;
2770 
2771 	if (split == ee_block) {
2772 		/*
2773 		 * case b: block @split is the block that the extent begins with
2774 		 * then we just change the state of the extent, and splitting
2775 		 * is not needed.
2776 		 */
2777 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2778 			ext4_ext_mark_uninitialized(ex);
2779 		else
2780 			ext4_ext_mark_initialized(ex);
2781 
2782 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2783 			ext4_ext_try_to_merge(inode, path, ex);
2784 
2785 		err = ext4_ext_dirty(handle, inode, path + depth);
2786 		goto out;
2787 	}
2788 
2789 	/* case a */
2790 	memcpy(&orig_ex, ex, sizeof(orig_ex));
2791 	ex->ee_len = cpu_to_le16(split - ee_block);
2792 	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2793 		ext4_ext_mark_uninitialized(ex);
2794 
2795 	/*
2796 	 * path may lead to new leaf, not to original leaf any more
2797 	 * after ext4_ext_insert_extent() returns,
2798 	 */
2799 	err = ext4_ext_dirty(handle, inode, path + depth);
2800 	if (err)
2801 		goto fix_extent_len;
2802 
2803 	ex2 = &newex;
2804 	ex2->ee_block = cpu_to_le32(split);
2805 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2806 	ext4_ext_store_pblock(ex2, newblock);
2807 	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2808 		ext4_ext_mark_uninitialized(ex2);
2809 
2810 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2811 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2812 		err = ext4_ext_zeroout(inode, &orig_ex);
2813 		if (err)
2814 			goto fix_extent_len;
2815 		/* update the extent length and mark as initialized */
2816 		ex->ee_len = cpu_to_le32(ee_len);
2817 		ext4_ext_try_to_merge(inode, path, ex);
2818 		err = ext4_ext_dirty(handle, inode, path + depth);
2819 		goto out;
2820 	} else if (err)
2821 		goto fix_extent_len;
2822 
2823 out:
2824 	ext4_ext_show_leaf(inode, path);
2825 	return err;
2826 
2827 fix_extent_len:
2828 	ex->ee_len = orig_ex.ee_len;
2829 	ext4_ext_dirty(handle, inode, path + depth);
2830 	return err;
2831 }
2832 
2833 /*
2834  * ext4_split_extents() splits an extent and mark extent which is covered
2835  * by @map as split_flags indicates
2836  *
2837  * It may result in splitting the extent into multiple extents (upto three)
2838  * There are three possibilities:
2839  *   a> There is no split required
2840  *   b> Splits in two extents: Split is happening at either end of the extent
2841  *   c> Splits in three extents: Somone is splitting in middle of the extent
2842  *
2843  */
2844 static int ext4_split_extent(handle_t *handle,
2845 			      struct inode *inode,
2846 			      struct ext4_ext_path *path,
2847 			      struct ext4_map_blocks *map,
2848 			      int split_flag,
2849 			      int flags)
2850 {
2851 	ext4_lblk_t ee_block;
2852 	struct ext4_extent *ex;
2853 	unsigned int ee_len, depth;
2854 	int err = 0;
2855 	int uninitialized;
2856 	int split_flag1, flags1;
2857 
2858 	depth = ext_depth(inode);
2859 	ex = path[depth].p_ext;
2860 	ee_block = le32_to_cpu(ex->ee_block);
2861 	ee_len = ext4_ext_get_actual_len(ex);
2862 	uninitialized = ext4_ext_is_uninitialized(ex);
2863 
2864 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
2865 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2866 			      EXT4_EXT_MAY_ZEROOUT : 0;
2867 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2868 		if (uninitialized)
2869 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2870 				       EXT4_EXT_MARK_UNINIT2;
2871 		err = ext4_split_extent_at(handle, inode, path,
2872 				map->m_lblk + map->m_len, split_flag1, flags1);
2873 		if (err)
2874 			goto out;
2875 	}
2876 
2877 	ext4_ext_drop_refs(path);
2878 	path = ext4_ext_find_extent(inode, map->m_lblk, path);
2879 	if (IS_ERR(path))
2880 		return PTR_ERR(path);
2881 
2882 	if (map->m_lblk >= ee_block) {
2883 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2884 			      EXT4_EXT_MAY_ZEROOUT : 0;
2885 		if (uninitialized)
2886 			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2887 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2888 			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2889 		err = ext4_split_extent_at(handle, inode, path,
2890 				map->m_lblk, split_flag1, flags);
2891 		if (err)
2892 			goto out;
2893 	}
2894 
2895 	ext4_ext_show_leaf(inode, path);
2896 out:
2897 	return err ? err : map->m_len;
2898 }
2899 
2900 #define EXT4_EXT_ZERO_LEN 7
2901 /*
2902  * This function is called by ext4_ext_map_blocks() if someone tries to write
2903  * to an uninitialized extent. It may result in splitting the uninitialized
2904  * extent into multiple extents (up to three - one initialized and two
2905  * uninitialized).
2906  * There are three possibilities:
2907  *   a> There is no split required: Entire extent should be initialized
2908  *   b> Splits in two extents: Write is happening at either end of the extent
2909  *   c> Splits in three extents: Somone is writing in middle of the extent
2910  *
2911  * Pre-conditions:
2912  *  - The extent pointed to by 'path' is uninitialized.
2913  *  - The extent pointed to by 'path' contains a superset
2914  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
2915  *
2916  * Post-conditions on success:
2917  *  - the returned value is the number of blocks beyond map->l_lblk
2918  *    that are allocated and initialized.
2919  *    It is guaranteed to be >= map->m_len.
2920  */
2921 static int ext4_ext_convert_to_initialized(handle_t *handle,
2922 					   struct inode *inode,
2923 					   struct ext4_map_blocks *map,
2924 					   struct ext4_ext_path *path)
2925 {
2926 	struct ext4_extent_header *eh;
2927 	struct ext4_map_blocks split_map;
2928 	struct ext4_extent zero_ex;
2929 	struct ext4_extent *ex;
2930 	ext4_lblk_t ee_block, eof_block;
2931 	unsigned int ee_len, depth;
2932 	int allocated;
2933 	int err = 0;
2934 	int split_flag = 0;
2935 
2936 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2937 		"block %llu, max_blocks %u\n", inode->i_ino,
2938 		(unsigned long long)map->m_lblk, map->m_len);
2939 
2940 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2941 		inode->i_sb->s_blocksize_bits;
2942 	if (eof_block < map->m_lblk + map->m_len)
2943 		eof_block = map->m_lblk + map->m_len;
2944 
2945 	depth = ext_depth(inode);
2946 	eh = path[depth].p_hdr;
2947 	ex = path[depth].p_ext;
2948 	ee_block = le32_to_cpu(ex->ee_block);
2949 	ee_len = ext4_ext_get_actual_len(ex);
2950 	allocated = ee_len - (map->m_lblk - ee_block);
2951 
2952 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
2953 
2954 	/* Pre-conditions */
2955 	BUG_ON(!ext4_ext_is_uninitialized(ex));
2956 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
2957 
2958 	/*
2959 	 * Attempt to transfer newly initialized blocks from the currently
2960 	 * uninitialized extent to its left neighbor. This is much cheaper
2961 	 * than an insertion followed by a merge as those involve costly
2962 	 * memmove() calls. This is the common case in steady state for
2963 	 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
2964 	 * writes.
2965 	 *
2966 	 * Limitations of the current logic:
2967 	 *  - L1: we only deal with writes at the start of the extent.
2968 	 *    The approach could be extended to writes at the end
2969 	 *    of the extent but this scenario was deemed less common.
2970 	 *  - L2: we do not deal with writes covering the whole extent.
2971 	 *    This would require removing the extent if the transfer
2972 	 *    is possible.
2973 	 *  - L3: we only attempt to merge with an extent stored in the
2974 	 *    same extent tree node.
2975 	 */
2976 	if ((map->m_lblk == ee_block) &&	/*L1*/
2977 		(map->m_len < ee_len) &&	/*L2*/
2978 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/
2979 		struct ext4_extent *prev_ex;
2980 		ext4_lblk_t prev_lblk;
2981 		ext4_fsblk_t prev_pblk, ee_pblk;
2982 		unsigned int prev_len, write_len;
2983 
2984 		prev_ex = ex - 1;
2985 		prev_lblk = le32_to_cpu(prev_ex->ee_block);
2986 		prev_len = ext4_ext_get_actual_len(prev_ex);
2987 		prev_pblk = ext4_ext_pblock(prev_ex);
2988 		ee_pblk = ext4_ext_pblock(ex);
2989 		write_len = map->m_len;
2990 
2991 		/*
2992 		 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
2993 		 * upon those conditions:
2994 		 * - C1: prev_ex is initialized,
2995 		 * - C2: prev_ex is logically abutting ex,
2996 		 * - C3: prev_ex is physically abutting ex,
2997 		 * - C4: prev_ex can receive the additional blocks without
2998 		 *   overflowing the (initialized) length limit.
2999 		 */
3000 		if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/
3001 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3002 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3003 			(prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/
3004 			err = ext4_ext_get_access(handle, inode, path + depth);
3005 			if (err)
3006 				goto out;
3007 
3008 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3009 				map, ex, prev_ex);
3010 
3011 			/* Shift the start of ex by 'write_len' blocks */
3012 			ex->ee_block = cpu_to_le32(ee_block + write_len);
3013 			ext4_ext_store_pblock(ex, ee_pblk + write_len);
3014 			ex->ee_len = cpu_to_le16(ee_len - write_len);
3015 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3016 
3017 			/* Extend prev_ex by 'write_len' blocks */
3018 			prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3019 
3020 			/* Mark the block containing both extents as dirty */
3021 			ext4_ext_dirty(handle, inode, path + depth);
3022 
3023 			/* Update path to point to the right extent */
3024 			path[depth].p_ext = prev_ex;
3025 
3026 			/* Result: number of initialized blocks past m_lblk */
3027 			allocated = write_len;
3028 			goto out;
3029 		}
3030 	}
3031 
3032 	WARN_ON(map->m_lblk < ee_block);
3033 	/*
3034 	 * It is safe to convert extent to initialized via explicit
3035 	 * zeroout only if extent is fully insde i_size or new_size.
3036 	 */
3037 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3038 
3039 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3040 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3041 	    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3042 		err = ext4_ext_zeroout(inode, ex);
3043 		if (err)
3044 			goto out;
3045 
3046 		err = ext4_ext_get_access(handle, inode, path + depth);
3047 		if (err)
3048 			goto out;
3049 		ext4_ext_mark_initialized(ex);
3050 		ext4_ext_try_to_merge(inode, path, ex);
3051 		err = ext4_ext_dirty(handle, inode, path + depth);
3052 		goto out;
3053 	}
3054 
3055 	/*
3056 	 * four cases:
3057 	 * 1. split the extent into three extents.
3058 	 * 2. split the extent into two extents, zeroout the first half.
3059 	 * 3. split the extent into two extents, zeroout the second half.
3060 	 * 4. split the extent into two extents with out zeroout.
3061 	 */
3062 	split_map.m_lblk = map->m_lblk;
3063 	split_map.m_len = map->m_len;
3064 
3065 	if (allocated > map->m_len) {
3066 		if (allocated <= EXT4_EXT_ZERO_LEN &&
3067 		    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3068 			/* case 3 */
3069 			zero_ex.ee_block =
3070 					 cpu_to_le32(map->m_lblk);
3071 			zero_ex.ee_len = cpu_to_le16(allocated);
3072 			ext4_ext_store_pblock(&zero_ex,
3073 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3074 			err = ext4_ext_zeroout(inode, &zero_ex);
3075 			if (err)
3076 				goto out;
3077 			split_map.m_lblk = map->m_lblk;
3078 			split_map.m_len = allocated;
3079 		} else if ((map->m_lblk - ee_block + map->m_len <
3080 			   EXT4_EXT_ZERO_LEN) &&
3081 			   (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3082 			/* case 2 */
3083 			if (map->m_lblk != ee_block) {
3084 				zero_ex.ee_block = ex->ee_block;
3085 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3086 							ee_block);
3087 				ext4_ext_store_pblock(&zero_ex,
3088 						      ext4_ext_pblock(ex));
3089 				err = ext4_ext_zeroout(inode, &zero_ex);
3090 				if (err)
3091 					goto out;
3092 			}
3093 
3094 			split_map.m_lblk = ee_block;
3095 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3096 			allocated = map->m_len;
3097 		}
3098 	}
3099 
3100 	allocated = ext4_split_extent(handle, inode, path,
3101 				       &split_map, split_flag, 0);
3102 	if (allocated < 0)
3103 		err = allocated;
3104 
3105 out:
3106 	return err ? err : allocated;
3107 }
3108 
3109 /*
3110  * This function is called by ext4_ext_map_blocks() from
3111  * ext4_get_blocks_dio_write() when DIO to write
3112  * to an uninitialized extent.
3113  *
3114  * Writing to an uninitialized extent may result in splitting the uninitialized
3115  * extent into multiple /initialized uninitialized extents (up to three)
3116  * There are three possibilities:
3117  *   a> There is no split required: Entire extent should be uninitialized
3118  *   b> Splits in two extents: Write is happening at either end of the extent
3119  *   c> Splits in three extents: Somone is writing in middle of the extent
3120  *
3121  * One of more index blocks maybe needed if the extent tree grow after
3122  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3123  * complete, we need to split the uninitialized extent before DIO submit
3124  * the IO. The uninitialized extent called at this time will be split
3125  * into three uninitialized extent(at most). After IO complete, the part
3126  * being filled will be convert to initialized by the end_io callback function
3127  * via ext4_convert_unwritten_extents().
3128  *
3129  * Returns the size of uninitialized extent to be written on success.
3130  */
3131 static int ext4_split_unwritten_extents(handle_t *handle,
3132 					struct inode *inode,
3133 					struct ext4_map_blocks *map,
3134 					struct ext4_ext_path *path,
3135 					int flags)
3136 {
3137 	ext4_lblk_t eof_block;
3138 	ext4_lblk_t ee_block;
3139 	struct ext4_extent *ex;
3140 	unsigned int ee_len;
3141 	int split_flag = 0, depth;
3142 
3143 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3144 		"block %llu, max_blocks %u\n", inode->i_ino,
3145 		(unsigned long long)map->m_lblk, map->m_len);
3146 
3147 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3148 		inode->i_sb->s_blocksize_bits;
3149 	if (eof_block < map->m_lblk + map->m_len)
3150 		eof_block = map->m_lblk + map->m_len;
3151 	/*
3152 	 * It is safe to convert extent to initialized via explicit
3153 	 * zeroout only if extent is fully insde i_size or new_size.
3154 	 */
3155 	depth = ext_depth(inode);
3156 	ex = path[depth].p_ext;
3157 	ee_block = le32_to_cpu(ex->ee_block);
3158 	ee_len = ext4_ext_get_actual_len(ex);
3159 
3160 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3161 	split_flag |= EXT4_EXT_MARK_UNINIT2;
3162 
3163 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3164 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3165 }
3166 
3167 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3168 					      struct inode *inode,
3169 					      struct ext4_ext_path *path)
3170 {
3171 	struct ext4_extent *ex;
3172 	int depth;
3173 	int err = 0;
3174 
3175 	depth = ext_depth(inode);
3176 	ex = path[depth].p_ext;
3177 
3178 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3179 		"block %llu, max_blocks %u\n", inode->i_ino,
3180 		(unsigned long long)le32_to_cpu(ex->ee_block),
3181 		ext4_ext_get_actual_len(ex));
3182 
3183 	err = ext4_ext_get_access(handle, inode, path + depth);
3184 	if (err)
3185 		goto out;
3186 	/* first mark the extent as initialized */
3187 	ext4_ext_mark_initialized(ex);
3188 
3189 	/* note: ext4_ext_correct_indexes() isn't needed here because
3190 	 * borders are not changed
3191 	 */
3192 	ext4_ext_try_to_merge(inode, path, ex);
3193 
3194 	/* Mark modified extent as dirty */
3195 	err = ext4_ext_dirty(handle, inode, path + depth);
3196 out:
3197 	ext4_ext_show_leaf(inode, path);
3198 	return err;
3199 }
3200 
3201 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3202 			sector_t block, int count)
3203 {
3204 	int i;
3205 	for (i = 0; i < count; i++)
3206                 unmap_underlying_metadata(bdev, block + i);
3207 }
3208 
3209 /*
3210  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3211  */
3212 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3213 			      ext4_lblk_t lblk,
3214 			      struct ext4_ext_path *path,
3215 			      unsigned int len)
3216 {
3217 	int i, depth;
3218 	struct ext4_extent_header *eh;
3219 	struct ext4_extent *last_ex;
3220 
3221 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3222 		return 0;
3223 
3224 	depth = ext_depth(inode);
3225 	eh = path[depth].p_hdr;
3226 
3227 	if (unlikely(!eh->eh_entries)) {
3228 		EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3229 				 "EOFBLOCKS_FL set");
3230 		return -EIO;
3231 	}
3232 	last_ex = EXT_LAST_EXTENT(eh);
3233 	/*
3234 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3235 	 * last block in the last extent in the file.  We test this by
3236 	 * first checking to see if the caller to
3237 	 * ext4_ext_get_blocks() was interested in the last block (or
3238 	 * a block beyond the last block) in the current extent.  If
3239 	 * this turns out to be false, we can bail out from this
3240 	 * function immediately.
3241 	 */
3242 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3243 	    ext4_ext_get_actual_len(last_ex))
3244 		return 0;
3245 	/*
3246 	 * If the caller does appear to be planning to write at or
3247 	 * beyond the end of the current extent, we then test to see
3248 	 * if the current extent is the last extent in the file, by
3249 	 * checking to make sure it was reached via the rightmost node
3250 	 * at each level of the tree.
3251 	 */
3252 	for (i = depth-1; i >= 0; i--)
3253 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3254 			return 0;
3255 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3256 	return ext4_mark_inode_dirty(handle, inode);
3257 }
3258 
3259 /**
3260  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3261  *
3262  * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3263  * whether there are any buffers marked for delayed allocation. It returns '1'
3264  * on the first delalloc'ed buffer head found. If no buffer head in the given
3265  * range is marked for delalloc, it returns 0.
3266  * lblk_start should always be <= lblk_end.
3267  * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3268  * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3269  * block sooner). This is useful when blocks are truncated sequentially from
3270  * lblk_start towards lblk_end.
3271  */
3272 static int ext4_find_delalloc_range(struct inode *inode,
3273 				    ext4_lblk_t lblk_start,
3274 				    ext4_lblk_t lblk_end,
3275 				    int search_hint_reverse)
3276 {
3277 	struct address_space *mapping = inode->i_mapping;
3278 	struct buffer_head *head, *bh = NULL;
3279 	struct page *page;
3280 	ext4_lblk_t i, pg_lblk;
3281 	pgoff_t index;
3282 
3283 	if (!test_opt(inode->i_sb, DELALLOC))
3284 		return 0;
3285 
3286 	/* reverse search wont work if fs block size is less than page size */
3287 	if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3288 		search_hint_reverse = 0;
3289 
3290 	if (search_hint_reverse)
3291 		i = lblk_end;
3292 	else
3293 		i = lblk_start;
3294 
3295 	index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3296 
3297 	while ((i >= lblk_start) && (i <= lblk_end)) {
3298 		page = find_get_page(mapping, index);
3299 		if (!page)
3300 			goto nextpage;
3301 
3302 		if (!page_has_buffers(page))
3303 			goto nextpage;
3304 
3305 		head = page_buffers(page);
3306 		if (!head)
3307 			goto nextpage;
3308 
3309 		bh = head;
3310 		pg_lblk = index << (PAGE_CACHE_SHIFT -
3311 						inode->i_blkbits);
3312 		do {
3313 			if (unlikely(pg_lblk < lblk_start)) {
3314 				/*
3315 				 * This is possible when fs block size is less
3316 				 * than page size and our cluster starts/ends in
3317 				 * middle of the page. So we need to skip the
3318 				 * initial few blocks till we reach the 'lblk'
3319 				 */
3320 				pg_lblk++;
3321 				continue;
3322 			}
3323 
3324 			/* Check if the buffer is delayed allocated and that it
3325 			 * is not yet mapped. (when da-buffers are mapped during
3326 			 * their writeout, their da_mapped bit is set.)
3327 			 */
3328 			if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3329 				page_cache_release(page);
3330 				trace_ext4_find_delalloc_range(inode,
3331 						lblk_start, lblk_end,
3332 						search_hint_reverse,
3333 						1, i);
3334 				return 1;
3335 			}
3336 			if (search_hint_reverse)
3337 				i--;
3338 			else
3339 				i++;
3340 		} while ((i >= lblk_start) && (i <= lblk_end) &&
3341 				((bh = bh->b_this_page) != head));
3342 nextpage:
3343 		if (page)
3344 			page_cache_release(page);
3345 		/*
3346 		 * Move to next page. 'i' will be the first lblk in the next
3347 		 * page.
3348 		 */
3349 		if (search_hint_reverse)
3350 			index--;
3351 		else
3352 			index++;
3353 		i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3354 	}
3355 
3356 	trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3357 					search_hint_reverse, 0, 0);
3358 	return 0;
3359 }
3360 
3361 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3362 			       int search_hint_reverse)
3363 {
3364 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3365 	ext4_lblk_t lblk_start, lblk_end;
3366 	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3367 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3368 
3369 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3370 					search_hint_reverse);
3371 }
3372 
3373 /**
3374  * Determines how many complete clusters (out of those specified by the 'map')
3375  * are under delalloc and were reserved quota for.
3376  * This function is called when we are writing out the blocks that were
3377  * originally written with their allocation delayed, but then the space was
3378  * allocated using fallocate() before the delayed allocation could be resolved.
3379  * The cases to look for are:
3380  * ('=' indicated delayed allocated blocks
3381  *  '-' indicates non-delayed allocated blocks)
3382  * (a) partial clusters towards beginning and/or end outside of allocated range
3383  *     are not delalloc'ed.
3384  *	Ex:
3385  *	|----c---=|====c====|====c====|===-c----|
3386  *	         |++++++ allocated ++++++|
3387  *	==> 4 complete clusters in above example
3388  *
3389  * (b) partial cluster (outside of allocated range) towards either end is
3390  *     marked for delayed allocation. In this case, we will exclude that
3391  *     cluster.
3392  *	Ex:
3393  *	|----====c========|========c========|
3394  *	     |++++++ allocated ++++++|
3395  *	==> 1 complete clusters in above example
3396  *
3397  *	Ex:
3398  *	|================c================|
3399  *            |++++++ allocated ++++++|
3400  *	==> 0 complete clusters in above example
3401  *
3402  * The ext4_da_update_reserve_space will be called only if we
3403  * determine here that there were some "entire" clusters that span
3404  * this 'allocated' range.
3405  * In the non-bigalloc case, this function will just end up returning num_blks
3406  * without ever calling ext4_find_delalloc_range.
3407  */
3408 static unsigned int
3409 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3410 			   unsigned int num_blks)
3411 {
3412 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3413 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3414 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3415 	unsigned int allocated_clusters = 0;
3416 
3417 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3418 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3419 
3420 	/* max possible clusters for this allocation */
3421 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3422 
3423 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3424 
3425 	/* Check towards left side */
3426 	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3427 	if (c_offset) {
3428 		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3429 		lblk_to = lblk_from + c_offset - 1;
3430 
3431 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3432 			allocated_clusters--;
3433 	}
3434 
3435 	/* Now check towards right. */
3436 	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3437 	if (allocated_clusters && c_offset) {
3438 		lblk_from = lblk_start + num_blks;
3439 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3440 
3441 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3442 			allocated_clusters--;
3443 	}
3444 
3445 	return allocated_clusters;
3446 }
3447 
3448 static int
3449 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3450 			struct ext4_map_blocks *map,
3451 			struct ext4_ext_path *path, int flags,
3452 			unsigned int allocated, ext4_fsblk_t newblock)
3453 {
3454 	int ret = 0;
3455 	int err = 0;
3456 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3457 
3458 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3459 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3460 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3461 		  flags, allocated);
3462 	ext4_ext_show_leaf(inode, path);
3463 
3464 	trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3465 						    newblock);
3466 
3467 	/* get_block() before submit the IO, split the extent */
3468 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3469 		ret = ext4_split_unwritten_extents(handle, inode, map,
3470 						   path, flags);
3471 		/*
3472 		 * Flag the inode(non aio case) or end_io struct (aio case)
3473 		 * that this IO needs to conversion to written when IO is
3474 		 * completed
3475 		 */
3476 		if (io)
3477 			ext4_set_io_unwritten_flag(inode, io);
3478 		else
3479 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3480 		if (ext4_should_dioread_nolock(inode))
3481 			map->m_flags |= EXT4_MAP_UNINIT;
3482 		goto out;
3483 	}
3484 	/* IO end_io complete, convert the filled extent to written */
3485 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3486 		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3487 							path);
3488 		if (ret >= 0) {
3489 			ext4_update_inode_fsync_trans(handle, inode, 1);
3490 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3491 						 path, map->m_len);
3492 		} else
3493 			err = ret;
3494 		goto out2;
3495 	}
3496 	/* buffered IO case */
3497 	/*
3498 	 * repeat fallocate creation request
3499 	 * we already have an unwritten extent
3500 	 */
3501 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3502 		goto map_out;
3503 
3504 	/* buffered READ or buffered write_begin() lookup */
3505 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3506 		/*
3507 		 * We have blocks reserved already.  We
3508 		 * return allocated blocks so that delalloc
3509 		 * won't do block reservation for us.  But
3510 		 * the buffer head will be unmapped so that
3511 		 * a read from the block returns 0s.
3512 		 */
3513 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3514 		goto out1;
3515 	}
3516 
3517 	/* buffered write, writepage time, convert*/
3518 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3519 	if (ret >= 0)
3520 		ext4_update_inode_fsync_trans(handle, inode, 1);
3521 out:
3522 	if (ret <= 0) {
3523 		err = ret;
3524 		goto out2;
3525 	} else
3526 		allocated = ret;
3527 	map->m_flags |= EXT4_MAP_NEW;
3528 	/*
3529 	 * if we allocated more blocks than requested
3530 	 * we need to make sure we unmap the extra block
3531 	 * allocated. The actual needed block will get
3532 	 * unmapped later when we find the buffer_head marked
3533 	 * new.
3534 	 */
3535 	if (allocated > map->m_len) {
3536 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3537 					newblock + map->m_len,
3538 					allocated - map->m_len);
3539 		allocated = map->m_len;
3540 	}
3541 
3542 	/*
3543 	 * If we have done fallocate with the offset that is already
3544 	 * delayed allocated, we would have block reservation
3545 	 * and quota reservation done in the delayed write path.
3546 	 * But fallocate would have already updated quota and block
3547 	 * count for this offset. So cancel these reservation
3548 	 */
3549 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3550 		unsigned int reserved_clusters;
3551 		reserved_clusters = get_reserved_cluster_alloc(inode,
3552 				map->m_lblk, map->m_len);
3553 		if (reserved_clusters)
3554 			ext4_da_update_reserve_space(inode,
3555 						     reserved_clusters,
3556 						     0);
3557 	}
3558 
3559 map_out:
3560 	map->m_flags |= EXT4_MAP_MAPPED;
3561 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3562 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3563 					 map->m_len);
3564 		if (err < 0)
3565 			goto out2;
3566 	}
3567 out1:
3568 	if (allocated > map->m_len)
3569 		allocated = map->m_len;
3570 	ext4_ext_show_leaf(inode, path);
3571 	map->m_pblk = newblock;
3572 	map->m_len = allocated;
3573 out2:
3574 	if (path) {
3575 		ext4_ext_drop_refs(path);
3576 		kfree(path);
3577 	}
3578 	return err ? err : allocated;
3579 }
3580 
3581 /*
3582  * get_implied_cluster_alloc - check to see if the requested
3583  * allocation (in the map structure) overlaps with a cluster already
3584  * allocated in an extent.
3585  *	@sb	The filesystem superblock structure
3586  *	@map	The requested lblk->pblk mapping
3587  *	@ex	The extent structure which might contain an implied
3588  *			cluster allocation
3589  *
3590  * This function is called by ext4_ext_map_blocks() after we failed to
3591  * find blocks that were already in the inode's extent tree.  Hence,
3592  * we know that the beginning of the requested region cannot overlap
3593  * the extent from the inode's extent tree.  There are three cases we
3594  * want to catch.  The first is this case:
3595  *
3596  *		 |--- cluster # N--|
3597  *    |--- extent ---|	|---- requested region ---|
3598  *			|==========|
3599  *
3600  * The second case that we need to test for is this one:
3601  *
3602  *   |--------- cluster # N ----------------|
3603  *	   |--- requested region --|   |------- extent ----|
3604  *	   |=======================|
3605  *
3606  * The third case is when the requested region lies between two extents
3607  * within the same cluster:
3608  *          |------------- cluster # N-------------|
3609  * |----- ex -----|                  |---- ex_right ----|
3610  *                  |------ requested region ------|
3611  *                  |================|
3612  *
3613  * In each of the above cases, we need to set the map->m_pblk and
3614  * map->m_len so it corresponds to the return the extent labelled as
3615  * "|====|" from cluster #N, since it is already in use for data in
3616  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3617  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3618  * as a new "allocated" block region.  Otherwise, we will return 0 and
3619  * ext4_ext_map_blocks() will then allocate one or more new clusters
3620  * by calling ext4_mb_new_blocks().
3621  */
3622 static int get_implied_cluster_alloc(struct super_block *sb,
3623 				     struct ext4_map_blocks *map,
3624 				     struct ext4_extent *ex,
3625 				     struct ext4_ext_path *path)
3626 {
3627 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3628 	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3629 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3630 	ext4_lblk_t rr_cluster_start;
3631 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3632 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3633 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3634 
3635 	/* The extent passed in that we are trying to match */
3636 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3637 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3638 
3639 	/* The requested region passed into ext4_map_blocks() */
3640 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3641 
3642 	if ((rr_cluster_start == ex_cluster_end) ||
3643 	    (rr_cluster_start == ex_cluster_start)) {
3644 		if (rr_cluster_start == ex_cluster_end)
3645 			ee_start += ee_len - 1;
3646 		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3647 			c_offset;
3648 		map->m_len = min(map->m_len,
3649 				 (unsigned) sbi->s_cluster_ratio - c_offset);
3650 		/*
3651 		 * Check for and handle this case:
3652 		 *
3653 		 *   |--------- cluster # N-------------|
3654 		 *		       |------- extent ----|
3655 		 *	   |--- requested region ---|
3656 		 *	   |===========|
3657 		 */
3658 
3659 		if (map->m_lblk < ee_block)
3660 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3661 
3662 		/*
3663 		 * Check for the case where there is already another allocated
3664 		 * block to the right of 'ex' but before the end of the cluster.
3665 		 *
3666 		 *          |------------- cluster # N-------------|
3667 		 * |----- ex -----|                  |---- ex_right ----|
3668 		 *                  |------ requested region ------|
3669 		 *                  |================|
3670 		 */
3671 		if (map->m_lblk > ee_block) {
3672 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3673 			map->m_len = min(map->m_len, next - map->m_lblk);
3674 		}
3675 
3676 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3677 		return 1;
3678 	}
3679 
3680 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3681 	return 0;
3682 }
3683 
3684 
3685 /*
3686  * Block allocation/map/preallocation routine for extents based files
3687  *
3688  *
3689  * Need to be called with
3690  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3691  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3692  *
3693  * return > 0, number of of blocks already mapped/allocated
3694  *          if create == 0 and these are pre-allocated blocks
3695  *          	buffer head is unmapped
3696  *          otherwise blocks are mapped
3697  *
3698  * return = 0, if plain look up failed (blocks have not been allocated)
3699  *          buffer head is unmapped
3700  *
3701  * return < 0, error case.
3702  */
3703 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3704 			struct ext4_map_blocks *map, int flags)
3705 {
3706 	struct ext4_ext_path *path = NULL;
3707 	struct ext4_extent newex, *ex, *ex2;
3708 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3709 	ext4_fsblk_t newblock = 0;
3710 	int free_on_err = 0, err = 0, depth, ret;
3711 	unsigned int allocated = 0, offset = 0;
3712 	unsigned int allocated_clusters = 0;
3713 	unsigned int punched_out = 0;
3714 	unsigned int result = 0;
3715 	struct ext4_allocation_request ar;
3716 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3717 	ext4_lblk_t cluster_offset;
3718 
3719 	ext_debug("blocks %u/%u requested for inode %lu\n",
3720 		  map->m_lblk, map->m_len, inode->i_ino);
3721 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3722 
3723 	/* check in cache */
3724 	if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3725 		ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3726 		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3727 			if ((sbi->s_cluster_ratio > 1) &&
3728 			    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3729 				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3730 
3731 			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3732 				/*
3733 				 * block isn't allocated yet and
3734 				 * user doesn't want to allocate it
3735 				 */
3736 				goto out2;
3737 			}
3738 			/* we should allocate requested block */
3739 		} else {
3740 			/* block is already allocated */
3741 			if (sbi->s_cluster_ratio > 1)
3742 				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3743 			newblock = map->m_lblk
3744 				   - le32_to_cpu(newex.ee_block)
3745 				   + ext4_ext_pblock(&newex);
3746 			/* number of remaining blocks in the extent */
3747 			allocated = ext4_ext_get_actual_len(&newex) -
3748 				(map->m_lblk - le32_to_cpu(newex.ee_block));
3749 			goto out;
3750 		}
3751 	}
3752 
3753 	/* find extent for this block */
3754 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3755 	if (IS_ERR(path)) {
3756 		err = PTR_ERR(path);
3757 		path = NULL;
3758 		goto out2;
3759 	}
3760 
3761 	depth = ext_depth(inode);
3762 
3763 	/*
3764 	 * consistent leaf must not be empty;
3765 	 * this situation is possible, though, _during_ tree modification;
3766 	 * this is why assert can't be put in ext4_ext_find_extent()
3767 	 */
3768 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3769 		EXT4_ERROR_INODE(inode, "bad extent address "
3770 				 "lblock: %lu, depth: %d pblock %lld",
3771 				 (unsigned long) map->m_lblk, depth,
3772 				 path[depth].p_block);
3773 		err = -EIO;
3774 		goto out2;
3775 	}
3776 
3777 	ex = path[depth].p_ext;
3778 	if (ex) {
3779 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3780 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3781 		unsigned short ee_len;
3782 
3783 		/*
3784 		 * Uninitialized extents are treated as holes, except that
3785 		 * we split out initialized portions during a write.
3786 		 */
3787 		ee_len = ext4_ext_get_actual_len(ex);
3788 
3789 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3790 
3791 		/* if found extent covers block, simply return it */
3792 		if (in_range(map->m_lblk, ee_block, ee_len)) {
3793 			struct ext4_map_blocks punch_map;
3794 			ext4_fsblk_t partial_cluster = 0;
3795 
3796 			newblock = map->m_lblk - ee_block + ee_start;
3797 			/* number of remaining blocks in the extent */
3798 			allocated = ee_len - (map->m_lblk - ee_block);
3799 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3800 				  ee_block, ee_len, newblock);
3801 
3802 			if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3803 				/*
3804 				 * Do not put uninitialized extent
3805 				 * in the cache
3806 				 */
3807 				if (!ext4_ext_is_uninitialized(ex)) {
3808 					ext4_ext_put_in_cache(inode, ee_block,
3809 						ee_len, ee_start);
3810 					goto out;
3811 				}
3812 				ret = ext4_ext_handle_uninitialized_extents(
3813 					handle, inode, map, path, flags,
3814 					allocated, newblock);
3815 				return ret;
3816 			}
3817 
3818 			/*
3819 			 * Punch out the map length, but only to the
3820 			 * end of the extent
3821 			 */
3822 			punched_out = allocated < map->m_len ?
3823 				allocated : map->m_len;
3824 
3825 			/*
3826 			 * Sense extents need to be converted to
3827 			 * uninitialized, they must fit in an
3828 			 * uninitialized extent
3829 			 */
3830 			if (punched_out > EXT_UNINIT_MAX_LEN)
3831 				punched_out = EXT_UNINIT_MAX_LEN;
3832 
3833 			punch_map.m_lblk = map->m_lblk;
3834 			punch_map.m_pblk = newblock;
3835 			punch_map.m_len = punched_out;
3836 			punch_map.m_flags = 0;
3837 
3838 			/* Check to see if the extent needs to be split */
3839 			if (punch_map.m_len != ee_len ||
3840 				punch_map.m_lblk != ee_block) {
3841 
3842 				ret = ext4_split_extent(handle, inode,
3843 				path, &punch_map, 0,
3844 				EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3845 				EXT4_GET_BLOCKS_PRE_IO);
3846 
3847 				if (ret < 0) {
3848 					err = ret;
3849 					goto out2;
3850 				}
3851 				/*
3852 				 * find extent for the block at
3853 				 * the start of the hole
3854 				 */
3855 				ext4_ext_drop_refs(path);
3856 				kfree(path);
3857 
3858 				path = ext4_ext_find_extent(inode,
3859 				map->m_lblk, NULL);
3860 				if (IS_ERR(path)) {
3861 					err = PTR_ERR(path);
3862 					path = NULL;
3863 					goto out2;
3864 				}
3865 
3866 				depth = ext_depth(inode);
3867 				ex = path[depth].p_ext;
3868 				ee_len = ext4_ext_get_actual_len(ex);
3869 				ee_block = le32_to_cpu(ex->ee_block);
3870 				ee_start = ext4_ext_pblock(ex);
3871 
3872 			}
3873 
3874 			ext4_ext_mark_uninitialized(ex);
3875 
3876 			ext4_ext_invalidate_cache(inode);
3877 
3878 			err = ext4_ext_rm_leaf(handle, inode, path,
3879 					       &partial_cluster, map->m_lblk,
3880 					       map->m_lblk + punched_out);
3881 
3882 			if (!err && path->p_hdr->eh_entries == 0) {
3883 				/*
3884 				 * Punch hole freed all of this sub tree,
3885 				 * so we need to correct eh_depth
3886 				 */
3887 				err = ext4_ext_get_access(handle, inode, path);
3888 				if (err == 0) {
3889 					ext_inode_hdr(inode)->eh_depth = 0;
3890 					ext_inode_hdr(inode)->eh_max =
3891 					cpu_to_le16(ext4_ext_space_root(
3892 						inode, 0));
3893 
3894 					err = ext4_ext_dirty(
3895 						handle, inode, path);
3896 				}
3897 			}
3898 
3899 			goto out2;
3900 		}
3901 	}
3902 
3903 	if ((sbi->s_cluster_ratio > 1) &&
3904 	    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3905 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3906 
3907 	/*
3908 	 * requested block isn't allocated yet;
3909 	 * we couldn't try to create block if create flag is zero
3910 	 */
3911 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3912 		/*
3913 		 * put just found gap into cache to speed up
3914 		 * subsequent requests
3915 		 */
3916 		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3917 		goto out2;
3918 	}
3919 
3920 	/*
3921 	 * Okay, we need to do block allocation.
3922 	 */
3923 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3924 	newex.ee_block = cpu_to_le32(map->m_lblk);
3925 	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3926 
3927 	/*
3928 	 * If we are doing bigalloc, check to see if the extent returned
3929 	 * by ext4_ext_find_extent() implies a cluster we can use.
3930 	 */
3931 	if (cluster_offset && ex &&
3932 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3933 		ar.len = allocated = map->m_len;
3934 		newblock = map->m_pblk;
3935 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3936 		goto got_allocated_blocks;
3937 	}
3938 
3939 	/* find neighbour allocated blocks */
3940 	ar.lleft = map->m_lblk;
3941 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3942 	if (err)
3943 		goto out2;
3944 	ar.lright = map->m_lblk;
3945 	ex2 = NULL;
3946 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3947 	if (err)
3948 		goto out2;
3949 
3950 	/* Check if the extent after searching to the right implies a
3951 	 * cluster we can use. */
3952 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
3953 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
3954 		ar.len = allocated = map->m_len;
3955 		newblock = map->m_pblk;
3956 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3957 		goto got_allocated_blocks;
3958 	}
3959 
3960 	/*
3961 	 * See if request is beyond maximum number of blocks we can have in
3962 	 * a single extent. For an initialized extent this limit is
3963 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3964 	 * EXT_UNINIT_MAX_LEN.
3965 	 */
3966 	if (map->m_len > EXT_INIT_MAX_LEN &&
3967 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3968 		map->m_len = EXT_INIT_MAX_LEN;
3969 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3970 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3971 		map->m_len = EXT_UNINIT_MAX_LEN;
3972 
3973 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3974 	newex.ee_len = cpu_to_le16(map->m_len);
3975 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
3976 	if (err)
3977 		allocated = ext4_ext_get_actual_len(&newex);
3978 	else
3979 		allocated = map->m_len;
3980 
3981 	/* allocate new block */
3982 	ar.inode = inode;
3983 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3984 	ar.logical = map->m_lblk;
3985 	/*
3986 	 * We calculate the offset from the beginning of the cluster
3987 	 * for the logical block number, since when we allocate a
3988 	 * physical cluster, the physical block should start at the
3989 	 * same offset from the beginning of the cluster.  This is
3990 	 * needed so that future calls to get_implied_cluster_alloc()
3991 	 * work correctly.
3992 	 */
3993 	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
3994 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
3995 	ar.goal -= offset;
3996 	ar.logical -= offset;
3997 	if (S_ISREG(inode->i_mode))
3998 		ar.flags = EXT4_MB_HINT_DATA;
3999 	else
4000 		/* disable in-core preallocation for non-regular files */
4001 		ar.flags = 0;
4002 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4003 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4004 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4005 	if (!newblock)
4006 		goto out2;
4007 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4008 		  ar.goal, newblock, allocated);
4009 	free_on_err = 1;
4010 	allocated_clusters = ar.len;
4011 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4012 	if (ar.len > allocated)
4013 		ar.len = allocated;
4014 
4015 got_allocated_blocks:
4016 	/* try to insert new extent into found leaf and return */
4017 	ext4_ext_store_pblock(&newex, newblock + offset);
4018 	newex.ee_len = cpu_to_le16(ar.len);
4019 	/* Mark uninitialized */
4020 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4021 		ext4_ext_mark_uninitialized(&newex);
4022 		/*
4023 		 * io_end structure was created for every IO write to an
4024 		 * uninitialized extent. To avoid unnecessary conversion,
4025 		 * here we flag the IO that really needs the conversion.
4026 		 * For non asycn direct IO case, flag the inode state
4027 		 * that we need to perform conversion when IO is done.
4028 		 */
4029 		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4030 			if (io)
4031 				ext4_set_io_unwritten_flag(inode, io);
4032 			else
4033 				ext4_set_inode_state(inode,
4034 						     EXT4_STATE_DIO_UNWRITTEN);
4035 		}
4036 		if (ext4_should_dioread_nolock(inode))
4037 			map->m_flags |= EXT4_MAP_UNINIT;
4038 	}
4039 
4040 	err = 0;
4041 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4042 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4043 					 path, ar.len);
4044 	if (!err)
4045 		err = ext4_ext_insert_extent(handle, inode, path,
4046 					     &newex, flags);
4047 	if (err && free_on_err) {
4048 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4049 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4050 		/* free data blocks we just allocated */
4051 		/* not a good idea to call discard here directly,
4052 		 * but otherwise we'd need to call it every free() */
4053 		ext4_discard_preallocations(inode);
4054 		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4055 				 ext4_ext_get_actual_len(&newex), fb_flags);
4056 		goto out2;
4057 	}
4058 
4059 	/* previous routine could use block we allocated */
4060 	newblock = ext4_ext_pblock(&newex);
4061 	allocated = ext4_ext_get_actual_len(&newex);
4062 	if (allocated > map->m_len)
4063 		allocated = map->m_len;
4064 	map->m_flags |= EXT4_MAP_NEW;
4065 
4066 	/*
4067 	 * Update reserved blocks/metadata blocks after successful
4068 	 * block allocation which had been deferred till now.
4069 	 */
4070 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4071 		unsigned int reserved_clusters;
4072 		/*
4073 		 * Check how many clusters we had reserved this allocated range
4074 		 */
4075 		reserved_clusters = get_reserved_cluster_alloc(inode,
4076 						map->m_lblk, allocated);
4077 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4078 			if (reserved_clusters) {
4079 				/*
4080 				 * We have clusters reserved for this range.
4081 				 * But since we are not doing actual allocation
4082 				 * and are simply using blocks from previously
4083 				 * allocated cluster, we should release the
4084 				 * reservation and not claim quota.
4085 				 */
4086 				ext4_da_update_reserve_space(inode,
4087 						reserved_clusters, 0);
4088 			}
4089 		} else {
4090 			BUG_ON(allocated_clusters < reserved_clusters);
4091 			/* We will claim quota for all newly allocated blocks.*/
4092 			ext4_da_update_reserve_space(inode, allocated_clusters,
4093 							1);
4094 			if (reserved_clusters < allocated_clusters) {
4095 				struct ext4_inode_info *ei = EXT4_I(inode);
4096 				int reservation = allocated_clusters -
4097 						  reserved_clusters;
4098 				/*
4099 				 * It seems we claimed few clusters outside of
4100 				 * the range of this allocation. We should give
4101 				 * it back to the reservation pool. This can
4102 				 * happen in the following case:
4103 				 *
4104 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4105 				 *   cluster has 4 blocks. Thus, the clusters
4106 				 *   are [0-3],[4-7],[8-11]...
4107 				 * * First comes delayed allocation write for
4108 				 *   logical blocks 10 & 11. Since there were no
4109 				 *   previous delayed allocated blocks in the
4110 				 *   range [8-11], we would reserve 1 cluster
4111 				 *   for this write.
4112 				 * * Next comes write for logical blocks 3 to 8.
4113 				 *   In this case, we will reserve 2 clusters
4114 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4115 				 *   that range has a delayed allocated blocks.
4116 				 *   Thus total reserved clusters now becomes 3.
4117 				 * * Now, during the delayed allocation writeout
4118 				 *   time, we will first write blocks [3-8] and
4119 				 *   allocate 3 clusters for writing these
4120 				 *   blocks. Also, we would claim all these
4121 				 *   three clusters above.
4122 				 * * Now when we come here to writeout the
4123 				 *   blocks [10-11], we would expect to claim
4124 				 *   the reservation of 1 cluster we had made
4125 				 *   (and we would claim it since there are no
4126 				 *   more delayed allocated blocks in the range
4127 				 *   [8-11]. But our reserved cluster count had
4128 				 *   already gone to 0.
4129 				 *
4130 				 *   Thus, at the step 4 above when we determine
4131 				 *   that there are still some unwritten delayed
4132 				 *   allocated blocks outside of our current
4133 				 *   block range, we should increment the
4134 				 *   reserved clusters count so that when the
4135 				 *   remaining blocks finally gets written, we
4136 				 *   could claim them.
4137 				 */
4138 				dquot_reserve_block(inode,
4139 						EXT4_C2B(sbi, reservation));
4140 				spin_lock(&ei->i_block_reservation_lock);
4141 				ei->i_reserved_data_blocks += reservation;
4142 				spin_unlock(&ei->i_block_reservation_lock);
4143 			}
4144 		}
4145 	}
4146 
4147 	/*
4148 	 * Cache the extent and update transaction to commit on fdatasync only
4149 	 * when it is _not_ an uninitialized extent.
4150 	 */
4151 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4152 		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4153 		ext4_update_inode_fsync_trans(handle, inode, 1);
4154 	} else
4155 		ext4_update_inode_fsync_trans(handle, inode, 0);
4156 out:
4157 	if (allocated > map->m_len)
4158 		allocated = map->m_len;
4159 	ext4_ext_show_leaf(inode, path);
4160 	map->m_flags |= EXT4_MAP_MAPPED;
4161 	map->m_pblk = newblock;
4162 	map->m_len = allocated;
4163 out2:
4164 	if (path) {
4165 		ext4_ext_drop_refs(path);
4166 		kfree(path);
4167 	}
4168 	result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
4169 			punched_out : allocated;
4170 
4171 	trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4172 		newblock, map->m_len, err ? err : result);
4173 
4174 	return err ? err : result;
4175 }
4176 
4177 void ext4_ext_truncate(struct inode *inode)
4178 {
4179 	struct address_space *mapping = inode->i_mapping;
4180 	struct super_block *sb = inode->i_sb;
4181 	ext4_lblk_t last_block;
4182 	handle_t *handle;
4183 	loff_t page_len;
4184 	int err = 0;
4185 
4186 	/*
4187 	 * finish any pending end_io work so we won't run the risk of
4188 	 * converting any truncated blocks to initialized later
4189 	 */
4190 	ext4_flush_completed_IO(inode);
4191 
4192 	/*
4193 	 * probably first extent we're gonna free will be last in block
4194 	 */
4195 	err = ext4_writepage_trans_blocks(inode);
4196 	handle = ext4_journal_start(inode, err);
4197 	if (IS_ERR(handle))
4198 		return;
4199 
4200 	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4201 		page_len = PAGE_CACHE_SIZE -
4202 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4203 
4204 		err = ext4_discard_partial_page_buffers(handle,
4205 			mapping, inode->i_size, page_len, 0);
4206 
4207 		if (err)
4208 			goto out_stop;
4209 	}
4210 
4211 	if (ext4_orphan_add(handle, inode))
4212 		goto out_stop;
4213 
4214 	down_write(&EXT4_I(inode)->i_data_sem);
4215 	ext4_ext_invalidate_cache(inode);
4216 
4217 	ext4_discard_preallocations(inode);
4218 
4219 	/*
4220 	 * TODO: optimization is possible here.
4221 	 * Probably we need not scan at all,
4222 	 * because page truncation is enough.
4223 	 */
4224 
4225 	/* we have to know where to truncate from in crash case */
4226 	EXT4_I(inode)->i_disksize = inode->i_size;
4227 	ext4_mark_inode_dirty(handle, inode);
4228 
4229 	last_block = (inode->i_size + sb->s_blocksize - 1)
4230 			>> EXT4_BLOCK_SIZE_BITS(sb);
4231 	err = ext4_ext_remove_space(inode, last_block);
4232 
4233 	/* In a multi-transaction truncate, we only make the final
4234 	 * transaction synchronous.
4235 	 */
4236 	if (IS_SYNC(inode))
4237 		ext4_handle_sync(handle);
4238 
4239 	up_write(&EXT4_I(inode)->i_data_sem);
4240 
4241 out_stop:
4242 	/*
4243 	 * If this was a simple ftruncate() and the file will remain alive,
4244 	 * then we need to clear up the orphan record which we created above.
4245 	 * However, if this was a real unlink then we were called by
4246 	 * ext4_delete_inode(), and we allow that function to clean up the
4247 	 * orphan info for us.
4248 	 */
4249 	if (inode->i_nlink)
4250 		ext4_orphan_del(handle, inode);
4251 
4252 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4253 	ext4_mark_inode_dirty(handle, inode);
4254 	ext4_journal_stop(handle);
4255 }
4256 
4257 static void ext4_falloc_update_inode(struct inode *inode,
4258 				int mode, loff_t new_size, int update_ctime)
4259 {
4260 	struct timespec now;
4261 
4262 	if (update_ctime) {
4263 		now = current_fs_time(inode->i_sb);
4264 		if (!timespec_equal(&inode->i_ctime, &now))
4265 			inode->i_ctime = now;
4266 	}
4267 	/*
4268 	 * Update only when preallocation was requested beyond
4269 	 * the file size.
4270 	 */
4271 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4272 		if (new_size > i_size_read(inode))
4273 			i_size_write(inode, new_size);
4274 		if (new_size > EXT4_I(inode)->i_disksize)
4275 			ext4_update_i_disksize(inode, new_size);
4276 	} else {
4277 		/*
4278 		 * Mark that we allocate beyond EOF so the subsequent truncate
4279 		 * can proceed even if the new size is the same as i_size.
4280 		 */
4281 		if (new_size > i_size_read(inode))
4282 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4283 	}
4284 
4285 }
4286 
4287 /*
4288  * preallocate space for a file. This implements ext4's fallocate file
4289  * operation, which gets called from sys_fallocate system call.
4290  * For block-mapped files, posix_fallocate should fall back to the method
4291  * of writing zeroes to the required new blocks (the same behavior which is
4292  * expected for file systems which do not support fallocate() system call).
4293  */
4294 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4295 {
4296 	struct inode *inode = file->f_path.dentry->d_inode;
4297 	handle_t *handle;
4298 	loff_t new_size;
4299 	unsigned int max_blocks;
4300 	int ret = 0;
4301 	int ret2 = 0;
4302 	int retries = 0;
4303 	int flags;
4304 	struct ext4_map_blocks map;
4305 	unsigned int credits, blkbits = inode->i_blkbits;
4306 
4307 	/*
4308 	 * currently supporting (pre)allocate mode for extent-based
4309 	 * files _only_
4310 	 */
4311 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4312 		return -EOPNOTSUPP;
4313 
4314 	/* Return error if mode is not supported */
4315 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4316 		return -EOPNOTSUPP;
4317 
4318 	if (mode & FALLOC_FL_PUNCH_HOLE)
4319 		return ext4_punch_hole(file, offset, len);
4320 
4321 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4322 	map.m_lblk = offset >> blkbits;
4323 	/*
4324 	 * We can't just convert len to max_blocks because
4325 	 * If blocksize = 4096 offset = 3072 and len = 2048
4326 	 */
4327 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4328 		- map.m_lblk;
4329 	/*
4330 	 * credits to insert 1 extent into extent tree
4331 	 */
4332 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4333 	mutex_lock(&inode->i_mutex);
4334 	ret = inode_newsize_ok(inode, (len + offset));
4335 	if (ret) {
4336 		mutex_unlock(&inode->i_mutex);
4337 		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4338 		return ret;
4339 	}
4340 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4341 	if (mode & FALLOC_FL_KEEP_SIZE)
4342 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4343 	/*
4344 	 * Don't normalize the request if it can fit in one extent so
4345 	 * that it doesn't get unnecessarily split into multiple
4346 	 * extents.
4347 	 */
4348 	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4349 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4350 retry:
4351 	while (ret >= 0 && ret < max_blocks) {
4352 		map.m_lblk = map.m_lblk + ret;
4353 		map.m_len = max_blocks = max_blocks - ret;
4354 		handle = ext4_journal_start(inode, credits);
4355 		if (IS_ERR(handle)) {
4356 			ret = PTR_ERR(handle);
4357 			break;
4358 		}
4359 		ret = ext4_map_blocks(handle, inode, &map, flags);
4360 		if (ret <= 0) {
4361 #ifdef EXT4FS_DEBUG
4362 			WARN_ON(ret <= 0);
4363 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
4364 				    "returned error inode#%lu, block=%u, "
4365 				    "max_blocks=%u", __func__,
4366 				    inode->i_ino, map.m_lblk, max_blocks);
4367 #endif
4368 			ext4_mark_inode_dirty(handle, inode);
4369 			ret2 = ext4_journal_stop(handle);
4370 			break;
4371 		}
4372 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4373 						blkbits) >> blkbits))
4374 			new_size = offset + len;
4375 		else
4376 			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4377 
4378 		ext4_falloc_update_inode(inode, mode, new_size,
4379 					 (map.m_flags & EXT4_MAP_NEW));
4380 		ext4_mark_inode_dirty(handle, inode);
4381 		ret2 = ext4_journal_stop(handle);
4382 		if (ret2)
4383 			break;
4384 	}
4385 	if (ret == -ENOSPC &&
4386 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4387 		ret = 0;
4388 		goto retry;
4389 	}
4390 	mutex_unlock(&inode->i_mutex);
4391 	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4392 				ret > 0 ? ret2 : ret);
4393 	return ret > 0 ? ret2 : ret;
4394 }
4395 
4396 /*
4397  * This function convert a range of blocks to written extents
4398  * The caller of this function will pass the start offset and the size.
4399  * all unwritten extents within this range will be converted to
4400  * written extents.
4401  *
4402  * This function is called from the direct IO end io call back
4403  * function, to convert the fallocated extents after IO is completed.
4404  * Returns 0 on success.
4405  */
4406 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4407 				    ssize_t len)
4408 {
4409 	handle_t *handle;
4410 	unsigned int max_blocks;
4411 	int ret = 0;
4412 	int ret2 = 0;
4413 	struct ext4_map_blocks map;
4414 	unsigned int credits, blkbits = inode->i_blkbits;
4415 
4416 	map.m_lblk = offset >> blkbits;
4417 	/*
4418 	 * We can't just convert len to max_blocks because
4419 	 * If blocksize = 4096 offset = 3072 and len = 2048
4420 	 */
4421 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4422 		      map.m_lblk);
4423 	/*
4424 	 * credits to insert 1 extent into extent tree
4425 	 */
4426 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4427 	while (ret >= 0 && ret < max_blocks) {
4428 		map.m_lblk += ret;
4429 		map.m_len = (max_blocks -= ret);
4430 		handle = ext4_journal_start(inode, credits);
4431 		if (IS_ERR(handle)) {
4432 			ret = PTR_ERR(handle);
4433 			break;
4434 		}
4435 		ret = ext4_map_blocks(handle, inode, &map,
4436 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4437 		if (ret <= 0) {
4438 			WARN_ON(ret <= 0);
4439 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
4440 				    "returned error inode#%lu, block=%u, "
4441 				    "max_blocks=%u", __func__,
4442 				    inode->i_ino, map.m_lblk, map.m_len);
4443 		}
4444 		ext4_mark_inode_dirty(handle, inode);
4445 		ret2 = ext4_journal_stop(handle);
4446 		if (ret <= 0 || ret2 )
4447 			break;
4448 	}
4449 	return ret > 0 ? ret2 : ret;
4450 }
4451 
4452 /*
4453  * Callback function called for each extent to gather FIEMAP information.
4454  */
4455 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4456 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
4457 		       void *data)
4458 {
4459 	__u64	logical;
4460 	__u64	physical;
4461 	__u64	length;
4462 	__u32	flags = 0;
4463 	int		ret = 0;
4464 	struct fiemap_extent_info *fieinfo = data;
4465 	unsigned char blksize_bits;
4466 
4467 	blksize_bits = inode->i_sb->s_blocksize_bits;
4468 	logical = (__u64)newex->ec_block << blksize_bits;
4469 
4470 	if (newex->ec_start == 0) {
4471 		/*
4472 		 * No extent in extent-tree contains block @newex->ec_start,
4473 		 * then the block may stay in 1)a hole or 2)delayed-extent.
4474 		 *
4475 		 * Holes or delayed-extents are processed as follows.
4476 		 * 1. lookup dirty pages with specified range in pagecache.
4477 		 *    If no page is got, then there is no delayed-extent and
4478 		 *    return with EXT_CONTINUE.
4479 		 * 2. find the 1st mapped buffer,
4480 		 * 3. check if the mapped buffer is both in the request range
4481 		 *    and a delayed buffer. If not, there is no delayed-extent,
4482 		 *    then return.
4483 		 * 4. a delayed-extent is found, the extent will be collected.
4484 		 */
4485 		ext4_lblk_t	end = 0;
4486 		pgoff_t		last_offset;
4487 		pgoff_t		offset;
4488 		pgoff_t		index;
4489 		pgoff_t		start_index = 0;
4490 		struct page	**pages = NULL;
4491 		struct buffer_head *bh = NULL;
4492 		struct buffer_head *head = NULL;
4493 		unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4494 
4495 		pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4496 		if (pages == NULL)
4497 			return -ENOMEM;
4498 
4499 		offset = logical >> PAGE_SHIFT;
4500 repeat:
4501 		last_offset = offset;
4502 		head = NULL;
4503 		ret = find_get_pages_tag(inode->i_mapping, &offset,
4504 					PAGECACHE_TAG_DIRTY, nr_pages, pages);
4505 
4506 		if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4507 			/* First time, try to find a mapped buffer. */
4508 			if (ret == 0) {
4509 out:
4510 				for (index = 0; index < ret; index++)
4511 					page_cache_release(pages[index]);
4512 				/* just a hole. */
4513 				kfree(pages);
4514 				return EXT_CONTINUE;
4515 			}
4516 			index = 0;
4517 
4518 next_page:
4519 			/* Try to find the 1st mapped buffer. */
4520 			end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4521 				  blksize_bits;
4522 			if (!page_has_buffers(pages[index]))
4523 				goto out;
4524 			head = page_buffers(pages[index]);
4525 			if (!head)
4526 				goto out;
4527 
4528 			index++;
4529 			bh = head;
4530 			do {
4531 				if (end >= newex->ec_block +
4532 					newex->ec_len)
4533 					/* The buffer is out of
4534 					 * the request range.
4535 					 */
4536 					goto out;
4537 
4538 				if (buffer_mapped(bh) &&
4539 				    end >= newex->ec_block) {
4540 					start_index = index - 1;
4541 					/* get the 1st mapped buffer. */
4542 					goto found_mapped_buffer;
4543 				}
4544 
4545 				bh = bh->b_this_page;
4546 				end++;
4547 			} while (bh != head);
4548 
4549 			/* No mapped buffer in the range found in this page,
4550 			 * We need to look up next page.
4551 			 */
4552 			if (index >= ret) {
4553 				/* There is no page left, but we need to limit
4554 				 * newex->ec_len.
4555 				 */
4556 				newex->ec_len = end - newex->ec_block;
4557 				goto out;
4558 			}
4559 			goto next_page;
4560 		} else {
4561 			/*Find contiguous delayed buffers. */
4562 			if (ret > 0 && pages[0]->index == last_offset)
4563 				head = page_buffers(pages[0]);
4564 			bh = head;
4565 			index = 1;
4566 			start_index = 0;
4567 		}
4568 
4569 found_mapped_buffer:
4570 		if (bh != NULL && buffer_delay(bh)) {
4571 			/* 1st or contiguous delayed buffer found. */
4572 			if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4573 				/*
4574 				 * 1st delayed buffer found, record
4575 				 * the start of extent.
4576 				 */
4577 				flags |= FIEMAP_EXTENT_DELALLOC;
4578 				newex->ec_block = end;
4579 				logical = (__u64)end << blksize_bits;
4580 			}
4581 			/* Find contiguous delayed buffers. */
4582 			do {
4583 				if (!buffer_delay(bh))
4584 					goto found_delayed_extent;
4585 				bh = bh->b_this_page;
4586 				end++;
4587 			} while (bh != head);
4588 
4589 			for (; index < ret; index++) {
4590 				if (!page_has_buffers(pages[index])) {
4591 					bh = NULL;
4592 					break;
4593 				}
4594 				head = page_buffers(pages[index]);
4595 				if (!head) {
4596 					bh = NULL;
4597 					break;
4598 				}
4599 
4600 				if (pages[index]->index !=
4601 				    pages[start_index]->index + index
4602 				    - start_index) {
4603 					/* Blocks are not contiguous. */
4604 					bh = NULL;
4605 					break;
4606 				}
4607 				bh = head;
4608 				do {
4609 					if (!buffer_delay(bh))
4610 						/* Delayed-extent ends. */
4611 						goto found_delayed_extent;
4612 					bh = bh->b_this_page;
4613 					end++;
4614 				} while (bh != head);
4615 			}
4616 		} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4617 			/* a hole found. */
4618 			goto out;
4619 
4620 found_delayed_extent:
4621 		newex->ec_len = min(end - newex->ec_block,
4622 						(ext4_lblk_t)EXT_INIT_MAX_LEN);
4623 		if (ret == nr_pages && bh != NULL &&
4624 			newex->ec_len < EXT_INIT_MAX_LEN &&
4625 			buffer_delay(bh)) {
4626 			/* Have not collected an extent and continue. */
4627 			for (index = 0; index < ret; index++)
4628 				page_cache_release(pages[index]);
4629 			goto repeat;
4630 		}
4631 
4632 		for (index = 0; index < ret; index++)
4633 			page_cache_release(pages[index]);
4634 		kfree(pages);
4635 	}
4636 
4637 	physical = (__u64)newex->ec_start << blksize_bits;
4638 	length =   (__u64)newex->ec_len << blksize_bits;
4639 
4640 	if (ex && ext4_ext_is_uninitialized(ex))
4641 		flags |= FIEMAP_EXTENT_UNWRITTEN;
4642 
4643 	if (next == EXT_MAX_BLOCKS)
4644 		flags |= FIEMAP_EXTENT_LAST;
4645 
4646 	ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4647 					length, flags);
4648 	if (ret < 0)
4649 		return ret;
4650 	if (ret == 1)
4651 		return EXT_BREAK;
4652 	return EXT_CONTINUE;
4653 }
4654 /* fiemap flags we can handle specified here */
4655 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4656 
4657 static int ext4_xattr_fiemap(struct inode *inode,
4658 				struct fiemap_extent_info *fieinfo)
4659 {
4660 	__u64 physical = 0;
4661 	__u64 length;
4662 	__u32 flags = FIEMAP_EXTENT_LAST;
4663 	int blockbits = inode->i_sb->s_blocksize_bits;
4664 	int error = 0;
4665 
4666 	/* in-inode? */
4667 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4668 		struct ext4_iloc iloc;
4669 		int offset;	/* offset of xattr in inode */
4670 
4671 		error = ext4_get_inode_loc(inode, &iloc);
4672 		if (error)
4673 			return error;
4674 		physical = iloc.bh->b_blocknr << blockbits;
4675 		offset = EXT4_GOOD_OLD_INODE_SIZE +
4676 				EXT4_I(inode)->i_extra_isize;
4677 		physical += offset;
4678 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4679 		flags |= FIEMAP_EXTENT_DATA_INLINE;
4680 		brelse(iloc.bh);
4681 	} else { /* external block */
4682 		physical = EXT4_I(inode)->i_file_acl << blockbits;
4683 		length = inode->i_sb->s_blocksize;
4684 	}
4685 
4686 	if (physical)
4687 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4688 						length, flags);
4689 	return (error < 0 ? error : 0);
4690 }
4691 
4692 /*
4693  * ext4_ext_punch_hole
4694  *
4695  * Punches a hole of "length" bytes in a file starting
4696  * at byte "offset"
4697  *
4698  * @inode:  The inode of the file to punch a hole in
4699  * @offset: The starting byte offset of the hole
4700  * @length: The length of the hole
4701  *
4702  * Returns the number of blocks removed or negative on err
4703  */
4704 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4705 {
4706 	struct inode *inode = file->f_path.dentry->d_inode;
4707 	struct super_block *sb = inode->i_sb;
4708 	struct ext4_ext_cache cache_ex;
4709 	ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4710 	struct address_space *mapping = inode->i_mapping;
4711 	struct ext4_map_blocks map;
4712 	handle_t *handle;
4713 	loff_t first_page, last_page, page_len;
4714 	loff_t first_page_offset, last_page_offset;
4715 	int ret, credits, blocks_released, err = 0;
4716 
4717 	/* No need to punch hole beyond i_size */
4718 	if (offset >= inode->i_size)
4719 		return 0;
4720 
4721 	/*
4722 	 * If the hole extends beyond i_size, set the hole
4723 	 * to end after the page that contains i_size
4724 	 */
4725 	if (offset + length > inode->i_size) {
4726 		length = inode->i_size +
4727 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4728 		   offset;
4729 	}
4730 
4731 	first_block = (offset + sb->s_blocksize - 1) >>
4732 		EXT4_BLOCK_SIZE_BITS(sb);
4733 	last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4734 
4735 	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4736 	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4737 
4738 	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4739 	last_page_offset = last_page << PAGE_CACHE_SHIFT;
4740 
4741 	/*
4742 	 * Write out all dirty pages to avoid race conditions
4743 	 * Then release them.
4744 	 */
4745 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4746 		err = filemap_write_and_wait_range(mapping,
4747 			offset, offset + length - 1);
4748 
4749 		if (err)
4750 			return err;
4751 	}
4752 
4753 	/* Now release the pages */
4754 	if (last_page_offset > first_page_offset) {
4755 		truncate_inode_pages_range(mapping, first_page_offset,
4756 					   last_page_offset-1);
4757 	}
4758 
4759 	/* finish any pending end_io work */
4760 	ext4_flush_completed_IO(inode);
4761 
4762 	credits = ext4_writepage_trans_blocks(inode);
4763 	handle = ext4_journal_start(inode, credits);
4764 	if (IS_ERR(handle))
4765 		return PTR_ERR(handle);
4766 
4767 	err = ext4_orphan_add(handle, inode);
4768 	if (err)
4769 		goto out;
4770 
4771 	/*
4772 	 * Now we need to zero out the non-page-aligned data in the
4773 	 * pages at the start and tail of the hole, and unmap the buffer
4774 	 * heads for the block aligned regions of the page that were
4775 	 * completely zeroed.
4776 	 */
4777 	if (first_page > last_page) {
4778 		/*
4779 		 * If the file space being truncated is contained within a page
4780 		 * just zero out and unmap the middle of that page
4781 		 */
4782 		err = ext4_discard_partial_page_buffers(handle,
4783 			mapping, offset, length, 0);
4784 
4785 		if (err)
4786 			goto out;
4787 	} else {
4788 		/*
4789 		 * zero out and unmap the partial page that contains
4790 		 * the start of the hole
4791 		 */
4792 		page_len  = first_page_offset - offset;
4793 		if (page_len > 0) {
4794 			err = ext4_discard_partial_page_buffers(handle, mapping,
4795 						   offset, page_len, 0);
4796 			if (err)
4797 				goto out;
4798 		}
4799 
4800 		/*
4801 		 * zero out and unmap the partial page that contains
4802 		 * the end of the hole
4803 		 */
4804 		page_len = offset + length - last_page_offset;
4805 		if (page_len > 0) {
4806 			err = ext4_discard_partial_page_buffers(handle, mapping,
4807 					last_page_offset, page_len, 0);
4808 			if (err)
4809 				goto out;
4810 		}
4811 	}
4812 
4813 
4814 	/*
4815 	 * If i_size is contained in the last page, we need to
4816 	 * unmap and zero the partial page after i_size
4817 	 */
4818 	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4819 	   inode->i_size % PAGE_CACHE_SIZE != 0) {
4820 
4821 		page_len = PAGE_CACHE_SIZE -
4822 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4823 
4824 		if (page_len > 0) {
4825 			err = ext4_discard_partial_page_buffers(handle,
4826 			  mapping, inode->i_size, page_len, 0);
4827 
4828 			if (err)
4829 				goto out;
4830 		}
4831 	}
4832 
4833 	/* If there are no blocks to remove, return now */
4834 	if (first_block >= last_block)
4835 		goto out;
4836 
4837 	down_write(&EXT4_I(inode)->i_data_sem);
4838 	ext4_ext_invalidate_cache(inode);
4839 	ext4_discard_preallocations(inode);
4840 
4841 	/*
4842 	 * Loop over all the blocks and identify blocks
4843 	 * that need to be punched out
4844 	 */
4845 	iblock = first_block;
4846 	blocks_released = 0;
4847 	while (iblock < last_block) {
4848 		max_blocks = last_block - iblock;
4849 		num_blocks = 1;
4850 		memset(&map, 0, sizeof(map));
4851 		map.m_lblk = iblock;
4852 		map.m_len = max_blocks;
4853 		ret = ext4_ext_map_blocks(handle, inode, &map,
4854 			EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4855 
4856 		if (ret > 0) {
4857 			blocks_released += ret;
4858 			num_blocks = ret;
4859 		} else if (ret == 0) {
4860 			/*
4861 			 * If map blocks could not find the block,
4862 			 * then it is in a hole.  If the hole was
4863 			 * not already cached, then map blocks should
4864 			 * put it in the cache.  So we can get the hole
4865 			 * out of the cache
4866 			 */
4867 			memset(&cache_ex, 0, sizeof(cache_ex));
4868 			if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4869 				!cache_ex.ec_start) {
4870 
4871 				/* The hole is cached */
4872 				num_blocks = cache_ex.ec_block +
4873 				cache_ex.ec_len - iblock;
4874 
4875 			} else {
4876 				/* The block could not be identified */
4877 				err = -EIO;
4878 				break;
4879 			}
4880 		} else {
4881 			/* Map blocks error */
4882 			err = ret;
4883 			break;
4884 		}
4885 
4886 		if (num_blocks == 0) {
4887 			/* This condition should never happen */
4888 			ext_debug("Block lookup failed");
4889 			err = -EIO;
4890 			break;
4891 		}
4892 
4893 		iblock += num_blocks;
4894 	}
4895 
4896 	if (blocks_released > 0) {
4897 		ext4_ext_invalidate_cache(inode);
4898 		ext4_discard_preallocations(inode);
4899 	}
4900 
4901 	if (IS_SYNC(inode))
4902 		ext4_handle_sync(handle);
4903 
4904 	up_write(&EXT4_I(inode)->i_data_sem);
4905 
4906 out:
4907 	ext4_orphan_del(handle, inode);
4908 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4909 	ext4_mark_inode_dirty(handle, inode);
4910 	ext4_journal_stop(handle);
4911 	return err;
4912 }
4913 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4914 		__u64 start, __u64 len)
4915 {
4916 	ext4_lblk_t start_blk;
4917 	int error = 0;
4918 
4919 	/* fallback to generic here if not in extents fmt */
4920 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4921 		return generic_block_fiemap(inode, fieinfo, start, len,
4922 			ext4_get_block);
4923 
4924 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4925 		return -EBADR;
4926 
4927 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4928 		error = ext4_xattr_fiemap(inode, fieinfo);
4929 	} else {
4930 		ext4_lblk_t len_blks;
4931 		__u64 last_blk;
4932 
4933 		start_blk = start >> inode->i_sb->s_blocksize_bits;
4934 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4935 		if (last_blk >= EXT_MAX_BLOCKS)
4936 			last_blk = EXT_MAX_BLOCKS-1;
4937 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4938 
4939 		/*
4940 		 * Walk the extent tree gathering extent information.
4941 		 * ext4_ext_fiemap_cb will push extents back to user.
4942 		 */
4943 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
4944 					  ext4_ext_fiemap_cb, fieinfo);
4945 	}
4946 
4947 	return error;
4948 }
4949