xref: /openbmc/linux/fs/ext4/extents.c (revision 6a108a14)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46 
47 static int ext4_ext_truncate_extend_restart(handle_t *handle,
48 					    struct inode *inode,
49 					    int needed)
50 {
51 	int err;
52 
53 	if (!ext4_handle_valid(handle))
54 		return 0;
55 	if (handle->h_buffer_credits > needed)
56 		return 0;
57 	err = ext4_journal_extend(handle, needed);
58 	if (err <= 0)
59 		return err;
60 	err = ext4_truncate_restart_trans(handle, inode, needed);
61 	if (err == 0)
62 		err = -EAGAIN;
63 
64 	return err;
65 }
66 
67 /*
68  * could return:
69  *  - EROFS
70  *  - ENOMEM
71  */
72 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
73 				struct ext4_ext_path *path)
74 {
75 	if (path->p_bh) {
76 		/* path points to block */
77 		return ext4_journal_get_write_access(handle, path->p_bh);
78 	}
79 	/* path points to leaf/index in inode body */
80 	/* we use in-core data, no need to protect them */
81 	return 0;
82 }
83 
84 /*
85  * could return:
86  *  - EROFS
87  *  - ENOMEM
88  *  - EIO
89  */
90 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
91 				struct ext4_ext_path *path)
92 {
93 	int err;
94 	if (path->p_bh) {
95 		/* path points to block */
96 		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
97 	} else {
98 		/* path points to leaf/index in inode body */
99 		err = ext4_mark_inode_dirty(handle, inode);
100 	}
101 	return err;
102 }
103 
104 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
105 			      struct ext4_ext_path *path,
106 			      ext4_lblk_t block)
107 {
108 	struct ext4_inode_info *ei = EXT4_I(inode);
109 	ext4_fsblk_t bg_start;
110 	ext4_fsblk_t last_block;
111 	ext4_grpblk_t colour;
112 	ext4_group_t block_group;
113 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
114 	int depth;
115 
116 	if (path) {
117 		struct ext4_extent *ex;
118 		depth = path->p_depth;
119 
120 		/*
121 		 * Try to predict block placement assuming that we are
122 		 * filling in a file which will eventually be
123 		 * non-sparse --- i.e., in the case of libbfd writing
124 		 * an ELF object sections out-of-order but in a way
125 		 * the eventually results in a contiguous object or
126 		 * executable file, or some database extending a table
127 		 * space file.  However, this is actually somewhat
128 		 * non-ideal if we are writing a sparse file such as
129 		 * qemu or KVM writing a raw image file that is going
130 		 * to stay fairly sparse, since it will end up
131 		 * fragmenting the file system's free space.  Maybe we
132 		 * should have some hueristics or some way to allow
133 		 * userspace to pass a hint to file system,
134 		 * especiially if the latter case turns out to be
135 		 * common.
136 		 */
137 		ex = path[depth].p_ext;
138 		if (ex) {
139 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
140 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
141 
142 			if (block > ext_block)
143 				return ext_pblk + (block - ext_block);
144 			else
145 				return ext_pblk - (ext_block - block);
146 		}
147 
148 		/* it looks like index is empty;
149 		 * try to find starting block from index itself */
150 		if (path[depth].p_bh)
151 			return path[depth].p_bh->b_blocknr;
152 	}
153 
154 	/* OK. use inode's group */
155 	block_group = ei->i_block_group;
156 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
157 		/*
158 		 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
159 		 * block groups per flexgroup, reserve the first block
160 		 * group for directories and special files.  Regular
161 		 * files will start at the second block group.  This
162 		 * tends to speed up directory access and improves
163 		 * fsck times.
164 		 */
165 		block_group &= ~(flex_size-1);
166 		if (S_ISREG(inode->i_mode))
167 			block_group++;
168 	}
169 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
170 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
171 
172 	/*
173 	 * If we are doing delayed allocation, we don't need take
174 	 * colour into account.
175 	 */
176 	if (test_opt(inode->i_sb, DELALLOC))
177 		return bg_start;
178 
179 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
180 		colour = (current->pid % 16) *
181 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
182 	else
183 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
184 	return bg_start + colour + block;
185 }
186 
187 /*
188  * Allocation for a meta data block
189  */
190 static ext4_fsblk_t
191 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
192 			struct ext4_ext_path *path,
193 			struct ext4_extent *ex, int *err)
194 {
195 	ext4_fsblk_t goal, newblock;
196 
197 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
198 	newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
199 	return newblock;
200 }
201 
202 static inline int ext4_ext_space_block(struct inode *inode, int check)
203 {
204 	int size;
205 
206 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
207 			/ sizeof(struct ext4_extent);
208 	if (!check) {
209 #ifdef AGGRESSIVE_TEST
210 		if (size > 6)
211 			size = 6;
212 #endif
213 	}
214 	return size;
215 }
216 
217 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
218 {
219 	int size;
220 
221 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
222 			/ sizeof(struct ext4_extent_idx);
223 	if (!check) {
224 #ifdef AGGRESSIVE_TEST
225 		if (size > 5)
226 			size = 5;
227 #endif
228 	}
229 	return size;
230 }
231 
232 static inline int ext4_ext_space_root(struct inode *inode, int check)
233 {
234 	int size;
235 
236 	size = sizeof(EXT4_I(inode)->i_data);
237 	size -= sizeof(struct ext4_extent_header);
238 	size /= sizeof(struct ext4_extent);
239 	if (!check) {
240 #ifdef AGGRESSIVE_TEST
241 		if (size > 3)
242 			size = 3;
243 #endif
244 	}
245 	return size;
246 }
247 
248 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
249 {
250 	int size;
251 
252 	size = sizeof(EXT4_I(inode)->i_data);
253 	size -= sizeof(struct ext4_extent_header);
254 	size /= sizeof(struct ext4_extent_idx);
255 	if (!check) {
256 #ifdef AGGRESSIVE_TEST
257 		if (size > 4)
258 			size = 4;
259 #endif
260 	}
261 	return size;
262 }
263 
264 /*
265  * Calculate the number of metadata blocks needed
266  * to allocate @blocks
267  * Worse case is one block per extent
268  */
269 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
270 {
271 	struct ext4_inode_info *ei = EXT4_I(inode);
272 	int idxs, num = 0;
273 
274 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
275 		/ sizeof(struct ext4_extent_idx));
276 
277 	/*
278 	 * If the new delayed allocation block is contiguous with the
279 	 * previous da block, it can share index blocks with the
280 	 * previous block, so we only need to allocate a new index
281 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
282 	 * an additional index block, and at ldxs**3 blocks, yet
283 	 * another index blocks.
284 	 */
285 	if (ei->i_da_metadata_calc_len &&
286 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
287 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
288 			num++;
289 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
290 			num++;
291 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
292 			num++;
293 			ei->i_da_metadata_calc_len = 0;
294 		} else
295 			ei->i_da_metadata_calc_len++;
296 		ei->i_da_metadata_calc_last_lblock++;
297 		return num;
298 	}
299 
300 	/*
301 	 * In the worst case we need a new set of index blocks at
302 	 * every level of the inode's extent tree.
303 	 */
304 	ei->i_da_metadata_calc_len = 1;
305 	ei->i_da_metadata_calc_last_lblock = lblock;
306 	return ext_depth(inode) + 1;
307 }
308 
309 static int
310 ext4_ext_max_entries(struct inode *inode, int depth)
311 {
312 	int max;
313 
314 	if (depth == ext_depth(inode)) {
315 		if (depth == 0)
316 			max = ext4_ext_space_root(inode, 1);
317 		else
318 			max = ext4_ext_space_root_idx(inode, 1);
319 	} else {
320 		if (depth == 0)
321 			max = ext4_ext_space_block(inode, 1);
322 		else
323 			max = ext4_ext_space_block_idx(inode, 1);
324 	}
325 
326 	return max;
327 }
328 
329 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
330 {
331 	ext4_fsblk_t block = ext4_ext_pblock(ext);
332 	int len = ext4_ext_get_actual_len(ext);
333 
334 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
335 }
336 
337 static int ext4_valid_extent_idx(struct inode *inode,
338 				struct ext4_extent_idx *ext_idx)
339 {
340 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
341 
342 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
343 }
344 
345 static int ext4_valid_extent_entries(struct inode *inode,
346 				struct ext4_extent_header *eh,
347 				int depth)
348 {
349 	struct ext4_extent *ext;
350 	struct ext4_extent_idx *ext_idx;
351 	unsigned short entries;
352 	if (eh->eh_entries == 0)
353 		return 1;
354 
355 	entries = le16_to_cpu(eh->eh_entries);
356 
357 	if (depth == 0) {
358 		/* leaf entries */
359 		ext = EXT_FIRST_EXTENT(eh);
360 		while (entries) {
361 			if (!ext4_valid_extent(inode, ext))
362 				return 0;
363 			ext++;
364 			entries--;
365 		}
366 	} else {
367 		ext_idx = EXT_FIRST_INDEX(eh);
368 		while (entries) {
369 			if (!ext4_valid_extent_idx(inode, ext_idx))
370 				return 0;
371 			ext_idx++;
372 			entries--;
373 		}
374 	}
375 	return 1;
376 }
377 
378 static int __ext4_ext_check(const char *function, unsigned int line,
379 			    struct inode *inode, struct ext4_extent_header *eh,
380 			    int depth)
381 {
382 	const char *error_msg;
383 	int max = 0;
384 
385 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
386 		error_msg = "invalid magic";
387 		goto corrupted;
388 	}
389 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
390 		error_msg = "unexpected eh_depth";
391 		goto corrupted;
392 	}
393 	if (unlikely(eh->eh_max == 0)) {
394 		error_msg = "invalid eh_max";
395 		goto corrupted;
396 	}
397 	max = ext4_ext_max_entries(inode, depth);
398 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
399 		error_msg = "too large eh_max";
400 		goto corrupted;
401 	}
402 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
403 		error_msg = "invalid eh_entries";
404 		goto corrupted;
405 	}
406 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
407 		error_msg = "invalid extent entries";
408 		goto corrupted;
409 	}
410 	return 0;
411 
412 corrupted:
413 	ext4_error_inode(inode, function, line, 0,
414 			"bad header/extent: %s - magic %x, "
415 			"entries %u, max %u(%u), depth %u(%u)",
416 			error_msg, le16_to_cpu(eh->eh_magic),
417 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
418 			max, le16_to_cpu(eh->eh_depth), depth);
419 
420 	return -EIO;
421 }
422 
423 #define ext4_ext_check(inode, eh, depth)	\
424 	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
425 
426 int ext4_ext_check_inode(struct inode *inode)
427 {
428 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
429 }
430 
431 #ifdef EXT_DEBUG
432 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
433 {
434 	int k, l = path->p_depth;
435 
436 	ext_debug("path:");
437 	for (k = 0; k <= l; k++, path++) {
438 		if (path->p_idx) {
439 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
440 			    ext4_idx_pblock(path->p_idx));
441 		} else if (path->p_ext) {
442 			ext_debug("  %d:[%d]%d:%llu ",
443 				  le32_to_cpu(path->p_ext->ee_block),
444 				  ext4_ext_is_uninitialized(path->p_ext),
445 				  ext4_ext_get_actual_len(path->p_ext),
446 				  ext4_ext_pblock(path->p_ext));
447 		} else
448 			ext_debug("  []");
449 	}
450 	ext_debug("\n");
451 }
452 
453 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
454 {
455 	int depth = ext_depth(inode);
456 	struct ext4_extent_header *eh;
457 	struct ext4_extent *ex;
458 	int i;
459 
460 	if (!path)
461 		return;
462 
463 	eh = path[depth].p_hdr;
464 	ex = EXT_FIRST_EXTENT(eh);
465 
466 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
467 
468 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
469 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
470 			  ext4_ext_is_uninitialized(ex),
471 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
472 	}
473 	ext_debug("\n");
474 }
475 #else
476 #define ext4_ext_show_path(inode, path)
477 #define ext4_ext_show_leaf(inode, path)
478 #endif
479 
480 void ext4_ext_drop_refs(struct ext4_ext_path *path)
481 {
482 	int depth = path->p_depth;
483 	int i;
484 
485 	for (i = 0; i <= depth; i++, path++)
486 		if (path->p_bh) {
487 			brelse(path->p_bh);
488 			path->p_bh = NULL;
489 		}
490 }
491 
492 /*
493  * ext4_ext_binsearch_idx:
494  * binary search for the closest index of the given block
495  * the header must be checked before calling this
496  */
497 static void
498 ext4_ext_binsearch_idx(struct inode *inode,
499 			struct ext4_ext_path *path, ext4_lblk_t block)
500 {
501 	struct ext4_extent_header *eh = path->p_hdr;
502 	struct ext4_extent_idx *r, *l, *m;
503 
504 
505 	ext_debug("binsearch for %u(idx):  ", block);
506 
507 	l = EXT_FIRST_INDEX(eh) + 1;
508 	r = EXT_LAST_INDEX(eh);
509 	while (l <= r) {
510 		m = l + (r - l) / 2;
511 		if (block < le32_to_cpu(m->ei_block))
512 			r = m - 1;
513 		else
514 			l = m + 1;
515 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
516 				m, le32_to_cpu(m->ei_block),
517 				r, le32_to_cpu(r->ei_block));
518 	}
519 
520 	path->p_idx = l - 1;
521 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
522 		  ext4_idx_pblock(path->p_idx));
523 
524 #ifdef CHECK_BINSEARCH
525 	{
526 		struct ext4_extent_idx *chix, *ix;
527 		int k;
528 
529 		chix = ix = EXT_FIRST_INDEX(eh);
530 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
531 		  if (k != 0 &&
532 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
533 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
534 				       "first=0x%p\n", k,
535 				       ix, EXT_FIRST_INDEX(eh));
536 				printk(KERN_DEBUG "%u <= %u\n",
537 				       le32_to_cpu(ix->ei_block),
538 				       le32_to_cpu(ix[-1].ei_block));
539 			}
540 			BUG_ON(k && le32_to_cpu(ix->ei_block)
541 					   <= le32_to_cpu(ix[-1].ei_block));
542 			if (block < le32_to_cpu(ix->ei_block))
543 				break;
544 			chix = ix;
545 		}
546 		BUG_ON(chix != path->p_idx);
547 	}
548 #endif
549 
550 }
551 
552 /*
553  * ext4_ext_binsearch:
554  * binary search for closest extent of the given block
555  * the header must be checked before calling this
556  */
557 static void
558 ext4_ext_binsearch(struct inode *inode,
559 		struct ext4_ext_path *path, ext4_lblk_t block)
560 {
561 	struct ext4_extent_header *eh = path->p_hdr;
562 	struct ext4_extent *r, *l, *m;
563 
564 	if (eh->eh_entries == 0) {
565 		/*
566 		 * this leaf is empty:
567 		 * we get such a leaf in split/add case
568 		 */
569 		return;
570 	}
571 
572 	ext_debug("binsearch for %u:  ", block);
573 
574 	l = EXT_FIRST_EXTENT(eh) + 1;
575 	r = EXT_LAST_EXTENT(eh);
576 
577 	while (l <= r) {
578 		m = l + (r - l) / 2;
579 		if (block < le32_to_cpu(m->ee_block))
580 			r = m - 1;
581 		else
582 			l = m + 1;
583 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
584 				m, le32_to_cpu(m->ee_block),
585 				r, le32_to_cpu(r->ee_block));
586 	}
587 
588 	path->p_ext = l - 1;
589 	ext_debug("  -> %d:%llu:[%d]%d ",
590 			le32_to_cpu(path->p_ext->ee_block),
591 			ext4_ext_pblock(path->p_ext),
592 			ext4_ext_is_uninitialized(path->p_ext),
593 			ext4_ext_get_actual_len(path->p_ext));
594 
595 #ifdef CHECK_BINSEARCH
596 	{
597 		struct ext4_extent *chex, *ex;
598 		int k;
599 
600 		chex = ex = EXT_FIRST_EXTENT(eh);
601 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
602 			BUG_ON(k && le32_to_cpu(ex->ee_block)
603 					  <= le32_to_cpu(ex[-1].ee_block));
604 			if (block < le32_to_cpu(ex->ee_block))
605 				break;
606 			chex = ex;
607 		}
608 		BUG_ON(chex != path->p_ext);
609 	}
610 #endif
611 
612 }
613 
614 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
615 {
616 	struct ext4_extent_header *eh;
617 
618 	eh = ext_inode_hdr(inode);
619 	eh->eh_depth = 0;
620 	eh->eh_entries = 0;
621 	eh->eh_magic = EXT4_EXT_MAGIC;
622 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
623 	ext4_mark_inode_dirty(handle, inode);
624 	ext4_ext_invalidate_cache(inode);
625 	return 0;
626 }
627 
628 struct ext4_ext_path *
629 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
630 					struct ext4_ext_path *path)
631 {
632 	struct ext4_extent_header *eh;
633 	struct buffer_head *bh;
634 	short int depth, i, ppos = 0, alloc = 0;
635 
636 	eh = ext_inode_hdr(inode);
637 	depth = ext_depth(inode);
638 
639 	/* account possible depth increase */
640 	if (!path) {
641 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
642 				GFP_NOFS);
643 		if (!path)
644 			return ERR_PTR(-ENOMEM);
645 		alloc = 1;
646 	}
647 	path[0].p_hdr = eh;
648 	path[0].p_bh = NULL;
649 
650 	i = depth;
651 	/* walk through the tree */
652 	while (i) {
653 		int need_to_validate = 0;
654 
655 		ext_debug("depth %d: num %d, max %d\n",
656 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
657 
658 		ext4_ext_binsearch_idx(inode, path + ppos, block);
659 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
660 		path[ppos].p_depth = i;
661 		path[ppos].p_ext = NULL;
662 
663 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
664 		if (unlikely(!bh))
665 			goto err;
666 		if (!bh_uptodate_or_lock(bh)) {
667 			if (bh_submit_read(bh) < 0) {
668 				put_bh(bh);
669 				goto err;
670 			}
671 			/* validate the extent entries */
672 			need_to_validate = 1;
673 		}
674 		eh = ext_block_hdr(bh);
675 		ppos++;
676 		if (unlikely(ppos > depth)) {
677 			put_bh(bh);
678 			EXT4_ERROR_INODE(inode,
679 					 "ppos %d > depth %d", ppos, depth);
680 			goto err;
681 		}
682 		path[ppos].p_bh = bh;
683 		path[ppos].p_hdr = eh;
684 		i--;
685 
686 		if (need_to_validate && ext4_ext_check(inode, eh, i))
687 			goto err;
688 	}
689 
690 	path[ppos].p_depth = i;
691 	path[ppos].p_ext = NULL;
692 	path[ppos].p_idx = NULL;
693 
694 	/* find extent */
695 	ext4_ext_binsearch(inode, path + ppos, block);
696 	/* if not an empty leaf */
697 	if (path[ppos].p_ext)
698 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
699 
700 	ext4_ext_show_path(inode, path);
701 
702 	return path;
703 
704 err:
705 	ext4_ext_drop_refs(path);
706 	if (alloc)
707 		kfree(path);
708 	return ERR_PTR(-EIO);
709 }
710 
711 /*
712  * ext4_ext_insert_index:
713  * insert new index [@logical;@ptr] into the block at @curp;
714  * check where to insert: before @curp or after @curp
715  */
716 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
717 				 struct ext4_ext_path *curp,
718 				 int logical, ext4_fsblk_t ptr)
719 {
720 	struct ext4_extent_idx *ix;
721 	int len, err;
722 
723 	err = ext4_ext_get_access(handle, inode, curp);
724 	if (err)
725 		return err;
726 
727 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
728 		EXT4_ERROR_INODE(inode,
729 				 "logical %d == ei_block %d!",
730 				 logical, le32_to_cpu(curp->p_idx->ei_block));
731 		return -EIO;
732 	}
733 	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
734 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
735 		/* insert after */
736 		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
737 			len = (len - 1) * sizeof(struct ext4_extent_idx);
738 			len = len < 0 ? 0 : len;
739 			ext_debug("insert new index %d after: %llu. "
740 					"move %d from 0x%p to 0x%p\n",
741 					logical, ptr, len,
742 					(curp->p_idx + 1), (curp->p_idx + 2));
743 			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
744 		}
745 		ix = curp->p_idx + 1;
746 	} else {
747 		/* insert before */
748 		len = len * sizeof(struct ext4_extent_idx);
749 		len = len < 0 ? 0 : len;
750 		ext_debug("insert new index %d before: %llu. "
751 				"move %d from 0x%p to 0x%p\n",
752 				logical, ptr, len,
753 				curp->p_idx, (curp->p_idx + 1));
754 		memmove(curp->p_idx + 1, curp->p_idx, len);
755 		ix = curp->p_idx;
756 	}
757 
758 	ix->ei_block = cpu_to_le32(logical);
759 	ext4_idx_store_pblock(ix, ptr);
760 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
761 
762 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
763 			     > le16_to_cpu(curp->p_hdr->eh_max))) {
764 		EXT4_ERROR_INODE(inode,
765 				 "logical %d == ei_block %d!",
766 				 logical, le32_to_cpu(curp->p_idx->ei_block));
767 		return -EIO;
768 	}
769 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
770 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
771 		return -EIO;
772 	}
773 
774 	err = ext4_ext_dirty(handle, inode, curp);
775 	ext4_std_error(inode->i_sb, err);
776 
777 	return err;
778 }
779 
780 /*
781  * ext4_ext_split:
782  * inserts new subtree into the path, using free index entry
783  * at depth @at:
784  * - allocates all needed blocks (new leaf and all intermediate index blocks)
785  * - makes decision where to split
786  * - moves remaining extents and index entries (right to the split point)
787  *   into the newly allocated blocks
788  * - initializes subtree
789  */
790 static int ext4_ext_split(handle_t *handle, struct inode *inode,
791 				struct ext4_ext_path *path,
792 				struct ext4_extent *newext, int at)
793 {
794 	struct buffer_head *bh = NULL;
795 	int depth = ext_depth(inode);
796 	struct ext4_extent_header *neh;
797 	struct ext4_extent_idx *fidx;
798 	struct ext4_extent *ex;
799 	int i = at, k, m, a;
800 	ext4_fsblk_t newblock, oldblock;
801 	__le32 border;
802 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
803 	int err = 0;
804 
805 	/* make decision: where to split? */
806 	/* FIXME: now decision is simplest: at current extent */
807 
808 	/* if current leaf will be split, then we should use
809 	 * border from split point */
810 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
811 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
812 		return -EIO;
813 	}
814 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
815 		border = path[depth].p_ext[1].ee_block;
816 		ext_debug("leaf will be split."
817 				" next leaf starts at %d\n",
818 				  le32_to_cpu(border));
819 	} else {
820 		border = newext->ee_block;
821 		ext_debug("leaf will be added."
822 				" next leaf starts at %d\n",
823 				le32_to_cpu(border));
824 	}
825 
826 	/*
827 	 * If error occurs, then we break processing
828 	 * and mark filesystem read-only. index won't
829 	 * be inserted and tree will be in consistent
830 	 * state. Next mount will repair buffers too.
831 	 */
832 
833 	/*
834 	 * Get array to track all allocated blocks.
835 	 * We need this to handle errors and free blocks
836 	 * upon them.
837 	 */
838 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
839 	if (!ablocks)
840 		return -ENOMEM;
841 
842 	/* allocate all needed blocks */
843 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
844 	for (a = 0; a < depth - at; a++) {
845 		newblock = ext4_ext_new_meta_block(handle, inode, path,
846 						   newext, &err);
847 		if (newblock == 0)
848 			goto cleanup;
849 		ablocks[a] = newblock;
850 	}
851 
852 	/* initialize new leaf */
853 	newblock = ablocks[--a];
854 	if (unlikely(newblock == 0)) {
855 		EXT4_ERROR_INODE(inode, "newblock == 0!");
856 		err = -EIO;
857 		goto cleanup;
858 	}
859 	bh = sb_getblk(inode->i_sb, newblock);
860 	if (!bh) {
861 		err = -EIO;
862 		goto cleanup;
863 	}
864 	lock_buffer(bh);
865 
866 	err = ext4_journal_get_create_access(handle, bh);
867 	if (err)
868 		goto cleanup;
869 
870 	neh = ext_block_hdr(bh);
871 	neh->eh_entries = 0;
872 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
873 	neh->eh_magic = EXT4_EXT_MAGIC;
874 	neh->eh_depth = 0;
875 	ex = EXT_FIRST_EXTENT(neh);
876 
877 	/* move remainder of path[depth] to the new leaf */
878 	if (unlikely(path[depth].p_hdr->eh_entries !=
879 		     path[depth].p_hdr->eh_max)) {
880 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
881 				 path[depth].p_hdr->eh_entries,
882 				 path[depth].p_hdr->eh_max);
883 		err = -EIO;
884 		goto cleanup;
885 	}
886 	/* start copy from next extent */
887 	/* TODO: we could do it by single memmove */
888 	m = 0;
889 	path[depth].p_ext++;
890 	while (path[depth].p_ext <=
891 			EXT_MAX_EXTENT(path[depth].p_hdr)) {
892 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
893 				le32_to_cpu(path[depth].p_ext->ee_block),
894 				ext4_ext_pblock(path[depth].p_ext),
895 				ext4_ext_is_uninitialized(path[depth].p_ext),
896 				ext4_ext_get_actual_len(path[depth].p_ext),
897 				newblock);
898 		/*memmove(ex++, path[depth].p_ext++,
899 				sizeof(struct ext4_extent));
900 		neh->eh_entries++;*/
901 		path[depth].p_ext++;
902 		m++;
903 	}
904 	if (m) {
905 		memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
906 		le16_add_cpu(&neh->eh_entries, m);
907 	}
908 
909 	set_buffer_uptodate(bh);
910 	unlock_buffer(bh);
911 
912 	err = ext4_handle_dirty_metadata(handle, inode, bh);
913 	if (err)
914 		goto cleanup;
915 	brelse(bh);
916 	bh = NULL;
917 
918 	/* correct old leaf */
919 	if (m) {
920 		err = ext4_ext_get_access(handle, inode, path + depth);
921 		if (err)
922 			goto cleanup;
923 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
924 		err = ext4_ext_dirty(handle, inode, path + depth);
925 		if (err)
926 			goto cleanup;
927 
928 	}
929 
930 	/* create intermediate indexes */
931 	k = depth - at - 1;
932 	if (unlikely(k < 0)) {
933 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
934 		err = -EIO;
935 		goto cleanup;
936 	}
937 	if (k)
938 		ext_debug("create %d intermediate indices\n", k);
939 	/* insert new index into current index block */
940 	/* current depth stored in i var */
941 	i = depth - 1;
942 	while (k--) {
943 		oldblock = newblock;
944 		newblock = ablocks[--a];
945 		bh = sb_getblk(inode->i_sb, newblock);
946 		if (!bh) {
947 			err = -EIO;
948 			goto cleanup;
949 		}
950 		lock_buffer(bh);
951 
952 		err = ext4_journal_get_create_access(handle, bh);
953 		if (err)
954 			goto cleanup;
955 
956 		neh = ext_block_hdr(bh);
957 		neh->eh_entries = cpu_to_le16(1);
958 		neh->eh_magic = EXT4_EXT_MAGIC;
959 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
960 		neh->eh_depth = cpu_to_le16(depth - i);
961 		fidx = EXT_FIRST_INDEX(neh);
962 		fidx->ei_block = border;
963 		ext4_idx_store_pblock(fidx, oldblock);
964 
965 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
966 				i, newblock, le32_to_cpu(border), oldblock);
967 		/* copy indexes */
968 		m = 0;
969 		path[i].p_idx++;
970 
971 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
972 				EXT_MAX_INDEX(path[i].p_hdr));
973 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
974 					EXT_LAST_INDEX(path[i].p_hdr))) {
975 			EXT4_ERROR_INODE(inode,
976 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
977 					 le32_to_cpu(path[i].p_ext->ee_block));
978 			err = -EIO;
979 			goto cleanup;
980 		}
981 		while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
982 			ext_debug("%d: move %d:%llu in new index %llu\n", i,
983 					le32_to_cpu(path[i].p_idx->ei_block),
984 					ext4_idx_pblock(path[i].p_idx),
985 					newblock);
986 			/*memmove(++fidx, path[i].p_idx++,
987 					sizeof(struct ext4_extent_idx));
988 			neh->eh_entries++;
989 			BUG_ON(neh->eh_entries > neh->eh_max);*/
990 			path[i].p_idx++;
991 			m++;
992 		}
993 		if (m) {
994 			memmove(++fidx, path[i].p_idx - m,
995 				sizeof(struct ext4_extent_idx) * m);
996 			le16_add_cpu(&neh->eh_entries, m);
997 		}
998 		set_buffer_uptodate(bh);
999 		unlock_buffer(bh);
1000 
1001 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1002 		if (err)
1003 			goto cleanup;
1004 		brelse(bh);
1005 		bh = NULL;
1006 
1007 		/* correct old index */
1008 		if (m) {
1009 			err = ext4_ext_get_access(handle, inode, path + i);
1010 			if (err)
1011 				goto cleanup;
1012 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1013 			err = ext4_ext_dirty(handle, inode, path + i);
1014 			if (err)
1015 				goto cleanup;
1016 		}
1017 
1018 		i--;
1019 	}
1020 
1021 	/* insert new index */
1022 	err = ext4_ext_insert_index(handle, inode, path + at,
1023 				    le32_to_cpu(border), newblock);
1024 
1025 cleanup:
1026 	if (bh) {
1027 		if (buffer_locked(bh))
1028 			unlock_buffer(bh);
1029 		brelse(bh);
1030 	}
1031 
1032 	if (err) {
1033 		/* free all allocated blocks in error case */
1034 		for (i = 0; i < depth; i++) {
1035 			if (!ablocks[i])
1036 				continue;
1037 			ext4_free_blocks(handle, inode, 0, ablocks[i], 1,
1038 					 EXT4_FREE_BLOCKS_METADATA);
1039 		}
1040 	}
1041 	kfree(ablocks);
1042 
1043 	return err;
1044 }
1045 
1046 /*
1047  * ext4_ext_grow_indepth:
1048  * implements tree growing procedure:
1049  * - allocates new block
1050  * - moves top-level data (index block or leaf) into the new block
1051  * - initializes new top-level, creating index that points to the
1052  *   just created block
1053  */
1054 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1055 					struct ext4_ext_path *path,
1056 					struct ext4_extent *newext)
1057 {
1058 	struct ext4_ext_path *curp = path;
1059 	struct ext4_extent_header *neh;
1060 	struct buffer_head *bh;
1061 	ext4_fsblk_t newblock;
1062 	int err = 0;
1063 
1064 	newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1065 	if (newblock == 0)
1066 		return err;
1067 
1068 	bh = sb_getblk(inode->i_sb, newblock);
1069 	if (!bh) {
1070 		err = -EIO;
1071 		ext4_std_error(inode->i_sb, err);
1072 		return err;
1073 	}
1074 	lock_buffer(bh);
1075 
1076 	err = ext4_journal_get_create_access(handle, bh);
1077 	if (err) {
1078 		unlock_buffer(bh);
1079 		goto out;
1080 	}
1081 
1082 	/* move top-level index/leaf into new block */
1083 	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1084 
1085 	/* set size of new block */
1086 	neh = ext_block_hdr(bh);
1087 	/* old root could have indexes or leaves
1088 	 * so calculate e_max right way */
1089 	if (ext_depth(inode))
1090 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1091 	else
1092 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1093 	neh->eh_magic = EXT4_EXT_MAGIC;
1094 	set_buffer_uptodate(bh);
1095 	unlock_buffer(bh);
1096 
1097 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1098 	if (err)
1099 		goto out;
1100 
1101 	/* create index in new top-level index: num,max,pointer */
1102 	err = ext4_ext_get_access(handle, inode, curp);
1103 	if (err)
1104 		goto out;
1105 
1106 	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1107 	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1108 	curp->p_hdr->eh_entries = cpu_to_le16(1);
1109 	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1110 
1111 	if (path[0].p_hdr->eh_depth)
1112 		curp->p_idx->ei_block =
1113 			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1114 	else
1115 		curp->p_idx->ei_block =
1116 			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1117 	ext4_idx_store_pblock(curp->p_idx, newblock);
1118 
1119 	neh = ext_inode_hdr(inode);
1120 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1121 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1122 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1123 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1124 
1125 	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1126 	err = ext4_ext_dirty(handle, inode, curp);
1127 out:
1128 	brelse(bh);
1129 
1130 	return err;
1131 }
1132 
1133 /*
1134  * ext4_ext_create_new_leaf:
1135  * finds empty index and adds new leaf.
1136  * if no free index is found, then it requests in-depth growing.
1137  */
1138 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1139 					struct ext4_ext_path *path,
1140 					struct ext4_extent *newext)
1141 {
1142 	struct ext4_ext_path *curp;
1143 	int depth, i, err = 0;
1144 
1145 repeat:
1146 	i = depth = ext_depth(inode);
1147 
1148 	/* walk up to the tree and look for free index entry */
1149 	curp = path + depth;
1150 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1151 		i--;
1152 		curp--;
1153 	}
1154 
1155 	/* we use already allocated block for index block,
1156 	 * so subsequent data blocks should be contiguous */
1157 	if (EXT_HAS_FREE_INDEX(curp)) {
1158 		/* if we found index with free entry, then use that
1159 		 * entry: create all needed subtree and add new leaf */
1160 		err = ext4_ext_split(handle, inode, path, newext, i);
1161 		if (err)
1162 			goto out;
1163 
1164 		/* refill path */
1165 		ext4_ext_drop_refs(path);
1166 		path = ext4_ext_find_extent(inode,
1167 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1168 				    path);
1169 		if (IS_ERR(path))
1170 			err = PTR_ERR(path);
1171 	} else {
1172 		/* tree is full, time to grow in depth */
1173 		err = ext4_ext_grow_indepth(handle, inode, path, newext);
1174 		if (err)
1175 			goto out;
1176 
1177 		/* refill path */
1178 		ext4_ext_drop_refs(path);
1179 		path = ext4_ext_find_extent(inode,
1180 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1181 				    path);
1182 		if (IS_ERR(path)) {
1183 			err = PTR_ERR(path);
1184 			goto out;
1185 		}
1186 
1187 		/*
1188 		 * only first (depth 0 -> 1) produces free space;
1189 		 * in all other cases we have to split the grown tree
1190 		 */
1191 		depth = ext_depth(inode);
1192 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1193 			/* now we need to split */
1194 			goto repeat;
1195 		}
1196 	}
1197 
1198 out:
1199 	return err;
1200 }
1201 
1202 /*
1203  * search the closest allocated block to the left for *logical
1204  * and returns it at @logical + it's physical address at @phys
1205  * if *logical is the smallest allocated block, the function
1206  * returns 0 at @phys
1207  * return value contains 0 (success) or error code
1208  */
1209 static int ext4_ext_search_left(struct inode *inode,
1210 				struct ext4_ext_path *path,
1211 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1212 {
1213 	struct ext4_extent_idx *ix;
1214 	struct ext4_extent *ex;
1215 	int depth, ee_len;
1216 
1217 	if (unlikely(path == NULL)) {
1218 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1219 		return -EIO;
1220 	}
1221 	depth = path->p_depth;
1222 	*phys = 0;
1223 
1224 	if (depth == 0 && path->p_ext == NULL)
1225 		return 0;
1226 
1227 	/* usually extent in the path covers blocks smaller
1228 	 * then *logical, but it can be that extent is the
1229 	 * first one in the file */
1230 
1231 	ex = path[depth].p_ext;
1232 	ee_len = ext4_ext_get_actual_len(ex);
1233 	if (*logical < le32_to_cpu(ex->ee_block)) {
1234 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1235 			EXT4_ERROR_INODE(inode,
1236 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1237 					 *logical, le32_to_cpu(ex->ee_block));
1238 			return -EIO;
1239 		}
1240 		while (--depth >= 0) {
1241 			ix = path[depth].p_idx;
1242 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1243 				EXT4_ERROR_INODE(inode,
1244 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1245 				  ix != NULL ? ix->ei_block : 0,
1246 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1247 				    EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1248 				  depth);
1249 				return -EIO;
1250 			}
1251 		}
1252 		return 0;
1253 	}
1254 
1255 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1256 		EXT4_ERROR_INODE(inode,
1257 				 "logical %d < ee_block %d + ee_len %d!",
1258 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1259 		return -EIO;
1260 	}
1261 
1262 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1263 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1264 	return 0;
1265 }
1266 
1267 /*
1268  * search the closest allocated block to the right for *logical
1269  * and returns it at @logical + it's physical address at @phys
1270  * if *logical is the smallest allocated block, the function
1271  * returns 0 at @phys
1272  * return value contains 0 (success) or error code
1273  */
1274 static int ext4_ext_search_right(struct inode *inode,
1275 				 struct ext4_ext_path *path,
1276 				 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1277 {
1278 	struct buffer_head *bh = NULL;
1279 	struct ext4_extent_header *eh;
1280 	struct ext4_extent_idx *ix;
1281 	struct ext4_extent *ex;
1282 	ext4_fsblk_t block;
1283 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1284 	int ee_len;
1285 
1286 	if (unlikely(path == NULL)) {
1287 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1288 		return -EIO;
1289 	}
1290 	depth = path->p_depth;
1291 	*phys = 0;
1292 
1293 	if (depth == 0 && path->p_ext == NULL)
1294 		return 0;
1295 
1296 	/* usually extent in the path covers blocks smaller
1297 	 * then *logical, but it can be that extent is the
1298 	 * first one in the file */
1299 
1300 	ex = path[depth].p_ext;
1301 	ee_len = ext4_ext_get_actual_len(ex);
1302 	if (*logical < le32_to_cpu(ex->ee_block)) {
1303 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1304 			EXT4_ERROR_INODE(inode,
1305 					 "first_extent(path[%d].p_hdr) != ex",
1306 					 depth);
1307 			return -EIO;
1308 		}
1309 		while (--depth >= 0) {
1310 			ix = path[depth].p_idx;
1311 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1312 				EXT4_ERROR_INODE(inode,
1313 						 "ix != EXT_FIRST_INDEX *logical %d!",
1314 						 *logical);
1315 				return -EIO;
1316 			}
1317 		}
1318 		*logical = le32_to_cpu(ex->ee_block);
1319 		*phys = ext4_ext_pblock(ex);
1320 		return 0;
1321 	}
1322 
1323 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1324 		EXT4_ERROR_INODE(inode,
1325 				 "logical %d < ee_block %d + ee_len %d!",
1326 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1327 		return -EIO;
1328 	}
1329 
1330 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1331 		/* next allocated block in this leaf */
1332 		ex++;
1333 		*logical = le32_to_cpu(ex->ee_block);
1334 		*phys = ext4_ext_pblock(ex);
1335 		return 0;
1336 	}
1337 
1338 	/* go up and search for index to the right */
1339 	while (--depth >= 0) {
1340 		ix = path[depth].p_idx;
1341 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1342 			goto got_index;
1343 	}
1344 
1345 	/* we've gone up to the root and found no index to the right */
1346 	return 0;
1347 
1348 got_index:
1349 	/* we've found index to the right, let's
1350 	 * follow it and find the closest allocated
1351 	 * block to the right */
1352 	ix++;
1353 	block = ext4_idx_pblock(ix);
1354 	while (++depth < path->p_depth) {
1355 		bh = sb_bread(inode->i_sb, block);
1356 		if (bh == NULL)
1357 			return -EIO;
1358 		eh = ext_block_hdr(bh);
1359 		/* subtract from p_depth to get proper eh_depth */
1360 		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1361 			put_bh(bh);
1362 			return -EIO;
1363 		}
1364 		ix = EXT_FIRST_INDEX(eh);
1365 		block = ext4_idx_pblock(ix);
1366 		put_bh(bh);
1367 	}
1368 
1369 	bh = sb_bread(inode->i_sb, block);
1370 	if (bh == NULL)
1371 		return -EIO;
1372 	eh = ext_block_hdr(bh);
1373 	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1374 		put_bh(bh);
1375 		return -EIO;
1376 	}
1377 	ex = EXT_FIRST_EXTENT(eh);
1378 	*logical = le32_to_cpu(ex->ee_block);
1379 	*phys = ext4_ext_pblock(ex);
1380 	put_bh(bh);
1381 	return 0;
1382 }
1383 
1384 /*
1385  * ext4_ext_next_allocated_block:
1386  * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1387  * NOTE: it considers block number from index entry as
1388  * allocated block. Thus, index entries have to be consistent
1389  * with leaves.
1390  */
1391 static ext4_lblk_t
1392 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1393 {
1394 	int depth;
1395 
1396 	BUG_ON(path == NULL);
1397 	depth = path->p_depth;
1398 
1399 	if (depth == 0 && path->p_ext == NULL)
1400 		return EXT_MAX_BLOCK;
1401 
1402 	while (depth >= 0) {
1403 		if (depth == path->p_depth) {
1404 			/* leaf */
1405 			if (path[depth].p_ext !=
1406 					EXT_LAST_EXTENT(path[depth].p_hdr))
1407 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1408 		} else {
1409 			/* index */
1410 			if (path[depth].p_idx !=
1411 					EXT_LAST_INDEX(path[depth].p_hdr))
1412 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1413 		}
1414 		depth--;
1415 	}
1416 
1417 	return EXT_MAX_BLOCK;
1418 }
1419 
1420 /*
1421  * ext4_ext_next_leaf_block:
1422  * returns first allocated block from next leaf or EXT_MAX_BLOCK
1423  */
1424 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1425 					struct ext4_ext_path *path)
1426 {
1427 	int depth;
1428 
1429 	BUG_ON(path == NULL);
1430 	depth = path->p_depth;
1431 
1432 	/* zero-tree has no leaf blocks at all */
1433 	if (depth == 0)
1434 		return EXT_MAX_BLOCK;
1435 
1436 	/* go to index block */
1437 	depth--;
1438 
1439 	while (depth >= 0) {
1440 		if (path[depth].p_idx !=
1441 				EXT_LAST_INDEX(path[depth].p_hdr))
1442 			return (ext4_lblk_t)
1443 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1444 		depth--;
1445 	}
1446 
1447 	return EXT_MAX_BLOCK;
1448 }
1449 
1450 /*
1451  * ext4_ext_correct_indexes:
1452  * if leaf gets modified and modified extent is first in the leaf,
1453  * then we have to correct all indexes above.
1454  * TODO: do we need to correct tree in all cases?
1455  */
1456 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1457 				struct ext4_ext_path *path)
1458 {
1459 	struct ext4_extent_header *eh;
1460 	int depth = ext_depth(inode);
1461 	struct ext4_extent *ex;
1462 	__le32 border;
1463 	int k, err = 0;
1464 
1465 	eh = path[depth].p_hdr;
1466 	ex = path[depth].p_ext;
1467 
1468 	if (unlikely(ex == NULL || eh == NULL)) {
1469 		EXT4_ERROR_INODE(inode,
1470 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1471 		return -EIO;
1472 	}
1473 
1474 	if (depth == 0) {
1475 		/* there is no tree at all */
1476 		return 0;
1477 	}
1478 
1479 	if (ex != EXT_FIRST_EXTENT(eh)) {
1480 		/* we correct tree if first leaf got modified only */
1481 		return 0;
1482 	}
1483 
1484 	/*
1485 	 * TODO: we need correction if border is smaller than current one
1486 	 */
1487 	k = depth - 1;
1488 	border = path[depth].p_ext->ee_block;
1489 	err = ext4_ext_get_access(handle, inode, path + k);
1490 	if (err)
1491 		return err;
1492 	path[k].p_idx->ei_block = border;
1493 	err = ext4_ext_dirty(handle, inode, path + k);
1494 	if (err)
1495 		return err;
1496 
1497 	while (k--) {
1498 		/* change all left-side indexes */
1499 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1500 			break;
1501 		err = ext4_ext_get_access(handle, inode, path + k);
1502 		if (err)
1503 			break;
1504 		path[k].p_idx->ei_block = border;
1505 		err = ext4_ext_dirty(handle, inode, path + k);
1506 		if (err)
1507 			break;
1508 	}
1509 
1510 	return err;
1511 }
1512 
1513 int
1514 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1515 				struct ext4_extent *ex2)
1516 {
1517 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1518 
1519 	/*
1520 	 * Make sure that either both extents are uninitialized, or
1521 	 * both are _not_.
1522 	 */
1523 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1524 		return 0;
1525 
1526 	if (ext4_ext_is_uninitialized(ex1))
1527 		max_len = EXT_UNINIT_MAX_LEN;
1528 	else
1529 		max_len = EXT_INIT_MAX_LEN;
1530 
1531 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1532 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1533 
1534 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1535 			le32_to_cpu(ex2->ee_block))
1536 		return 0;
1537 
1538 	/*
1539 	 * To allow future support for preallocated extents to be added
1540 	 * as an RO_COMPAT feature, refuse to merge to extents if
1541 	 * this can result in the top bit of ee_len being set.
1542 	 */
1543 	if (ext1_ee_len + ext2_ee_len > max_len)
1544 		return 0;
1545 #ifdef AGGRESSIVE_TEST
1546 	if (ext1_ee_len >= 4)
1547 		return 0;
1548 #endif
1549 
1550 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1551 		return 1;
1552 	return 0;
1553 }
1554 
1555 /*
1556  * This function tries to merge the "ex" extent to the next extent in the tree.
1557  * It always tries to merge towards right. If you want to merge towards
1558  * left, pass "ex - 1" as argument instead of "ex".
1559  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1560  * 1 if they got merged.
1561  */
1562 static int ext4_ext_try_to_merge(struct inode *inode,
1563 				 struct ext4_ext_path *path,
1564 				 struct ext4_extent *ex)
1565 {
1566 	struct ext4_extent_header *eh;
1567 	unsigned int depth, len;
1568 	int merge_done = 0;
1569 	int uninitialized = 0;
1570 
1571 	depth = ext_depth(inode);
1572 	BUG_ON(path[depth].p_hdr == NULL);
1573 	eh = path[depth].p_hdr;
1574 
1575 	while (ex < EXT_LAST_EXTENT(eh)) {
1576 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1577 			break;
1578 		/* merge with next extent! */
1579 		if (ext4_ext_is_uninitialized(ex))
1580 			uninitialized = 1;
1581 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1582 				+ ext4_ext_get_actual_len(ex + 1));
1583 		if (uninitialized)
1584 			ext4_ext_mark_uninitialized(ex);
1585 
1586 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1587 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1588 				* sizeof(struct ext4_extent);
1589 			memmove(ex + 1, ex + 2, len);
1590 		}
1591 		le16_add_cpu(&eh->eh_entries, -1);
1592 		merge_done = 1;
1593 		WARN_ON(eh->eh_entries == 0);
1594 		if (!eh->eh_entries)
1595 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1596 	}
1597 
1598 	return merge_done;
1599 }
1600 
1601 /*
1602  * check if a portion of the "newext" extent overlaps with an
1603  * existing extent.
1604  *
1605  * If there is an overlap discovered, it updates the length of the newext
1606  * such that there will be no overlap, and then returns 1.
1607  * If there is no overlap found, it returns 0.
1608  */
1609 static unsigned int ext4_ext_check_overlap(struct inode *inode,
1610 					   struct ext4_extent *newext,
1611 					   struct ext4_ext_path *path)
1612 {
1613 	ext4_lblk_t b1, b2;
1614 	unsigned int depth, len1;
1615 	unsigned int ret = 0;
1616 
1617 	b1 = le32_to_cpu(newext->ee_block);
1618 	len1 = ext4_ext_get_actual_len(newext);
1619 	depth = ext_depth(inode);
1620 	if (!path[depth].p_ext)
1621 		goto out;
1622 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1623 
1624 	/*
1625 	 * get the next allocated block if the extent in the path
1626 	 * is before the requested block(s)
1627 	 */
1628 	if (b2 < b1) {
1629 		b2 = ext4_ext_next_allocated_block(path);
1630 		if (b2 == EXT_MAX_BLOCK)
1631 			goto out;
1632 	}
1633 
1634 	/* check for wrap through zero on extent logical start block*/
1635 	if (b1 + len1 < b1) {
1636 		len1 = EXT_MAX_BLOCK - b1;
1637 		newext->ee_len = cpu_to_le16(len1);
1638 		ret = 1;
1639 	}
1640 
1641 	/* check for overlap */
1642 	if (b1 + len1 > b2) {
1643 		newext->ee_len = cpu_to_le16(b2 - b1);
1644 		ret = 1;
1645 	}
1646 out:
1647 	return ret;
1648 }
1649 
1650 /*
1651  * ext4_ext_insert_extent:
1652  * tries to merge requsted extent into the existing extent or
1653  * inserts requested extent as new one into the tree,
1654  * creating new leaf in the no-space case.
1655  */
1656 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1657 				struct ext4_ext_path *path,
1658 				struct ext4_extent *newext, int flag)
1659 {
1660 	struct ext4_extent_header *eh;
1661 	struct ext4_extent *ex, *fex;
1662 	struct ext4_extent *nearex; /* nearest extent */
1663 	struct ext4_ext_path *npath = NULL;
1664 	int depth, len, err;
1665 	ext4_lblk_t next;
1666 	unsigned uninitialized = 0;
1667 
1668 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1669 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1670 		return -EIO;
1671 	}
1672 	depth = ext_depth(inode);
1673 	ex = path[depth].p_ext;
1674 	if (unlikely(path[depth].p_hdr == NULL)) {
1675 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1676 		return -EIO;
1677 	}
1678 
1679 	/* try to insert block into found extent and return */
1680 	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1681 		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1682 		ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1683 			  ext4_ext_is_uninitialized(newext),
1684 			  ext4_ext_get_actual_len(newext),
1685 			  le32_to_cpu(ex->ee_block),
1686 			  ext4_ext_is_uninitialized(ex),
1687 			  ext4_ext_get_actual_len(ex),
1688 			  ext4_ext_pblock(ex));
1689 		err = ext4_ext_get_access(handle, inode, path + depth);
1690 		if (err)
1691 			return err;
1692 
1693 		/*
1694 		 * ext4_can_extents_be_merged should have checked that either
1695 		 * both extents are uninitialized, or both aren't. Thus we
1696 		 * need to check only one of them here.
1697 		 */
1698 		if (ext4_ext_is_uninitialized(ex))
1699 			uninitialized = 1;
1700 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1701 					+ ext4_ext_get_actual_len(newext));
1702 		if (uninitialized)
1703 			ext4_ext_mark_uninitialized(ex);
1704 		eh = path[depth].p_hdr;
1705 		nearex = ex;
1706 		goto merge;
1707 	}
1708 
1709 repeat:
1710 	depth = ext_depth(inode);
1711 	eh = path[depth].p_hdr;
1712 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1713 		goto has_space;
1714 
1715 	/* probably next leaf has space for us? */
1716 	fex = EXT_LAST_EXTENT(eh);
1717 	next = ext4_ext_next_leaf_block(inode, path);
1718 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1719 	    && next != EXT_MAX_BLOCK) {
1720 		ext_debug("next leaf block - %d\n", next);
1721 		BUG_ON(npath != NULL);
1722 		npath = ext4_ext_find_extent(inode, next, NULL);
1723 		if (IS_ERR(npath))
1724 			return PTR_ERR(npath);
1725 		BUG_ON(npath->p_depth != path->p_depth);
1726 		eh = npath[depth].p_hdr;
1727 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1728 			ext_debug("next leaf isnt full(%d)\n",
1729 				  le16_to_cpu(eh->eh_entries));
1730 			path = npath;
1731 			goto repeat;
1732 		}
1733 		ext_debug("next leaf has no free space(%d,%d)\n",
1734 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1735 	}
1736 
1737 	/*
1738 	 * There is no free space in the found leaf.
1739 	 * We're gonna add a new leaf in the tree.
1740 	 */
1741 	err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1742 	if (err)
1743 		goto cleanup;
1744 	depth = ext_depth(inode);
1745 	eh = path[depth].p_hdr;
1746 
1747 has_space:
1748 	nearex = path[depth].p_ext;
1749 
1750 	err = ext4_ext_get_access(handle, inode, path + depth);
1751 	if (err)
1752 		goto cleanup;
1753 
1754 	if (!nearex) {
1755 		/* there is no extent in this leaf, create first one */
1756 		ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1757 				le32_to_cpu(newext->ee_block),
1758 				ext4_ext_pblock(newext),
1759 				ext4_ext_is_uninitialized(newext),
1760 				ext4_ext_get_actual_len(newext));
1761 		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1762 	} else if (le32_to_cpu(newext->ee_block)
1763 			   > le32_to_cpu(nearex->ee_block)) {
1764 /*		BUG_ON(newext->ee_block == nearex->ee_block); */
1765 		if (nearex != EXT_LAST_EXTENT(eh)) {
1766 			len = EXT_MAX_EXTENT(eh) - nearex;
1767 			len = (len - 1) * sizeof(struct ext4_extent);
1768 			len = len < 0 ? 0 : len;
1769 			ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1770 					"move %d from 0x%p to 0x%p\n",
1771 					le32_to_cpu(newext->ee_block),
1772 					ext4_ext_pblock(newext),
1773 					ext4_ext_is_uninitialized(newext),
1774 					ext4_ext_get_actual_len(newext),
1775 					nearex, len, nearex + 1, nearex + 2);
1776 			memmove(nearex + 2, nearex + 1, len);
1777 		}
1778 		path[depth].p_ext = nearex + 1;
1779 	} else {
1780 		BUG_ON(newext->ee_block == nearex->ee_block);
1781 		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1782 		len = len < 0 ? 0 : len;
1783 		ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1784 				"move %d from 0x%p to 0x%p\n",
1785 				le32_to_cpu(newext->ee_block),
1786 				ext4_ext_pblock(newext),
1787 				ext4_ext_is_uninitialized(newext),
1788 				ext4_ext_get_actual_len(newext),
1789 				nearex, len, nearex + 1, nearex + 2);
1790 		memmove(nearex + 1, nearex, len);
1791 		path[depth].p_ext = nearex;
1792 	}
1793 
1794 	le16_add_cpu(&eh->eh_entries, 1);
1795 	nearex = path[depth].p_ext;
1796 	nearex->ee_block = newext->ee_block;
1797 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1798 	nearex->ee_len = newext->ee_len;
1799 
1800 merge:
1801 	/* try to merge extents to the right */
1802 	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1803 		ext4_ext_try_to_merge(inode, path, nearex);
1804 
1805 	/* try to merge extents to the left */
1806 
1807 	/* time to correct all indexes above */
1808 	err = ext4_ext_correct_indexes(handle, inode, path);
1809 	if (err)
1810 		goto cleanup;
1811 
1812 	err = ext4_ext_dirty(handle, inode, path + depth);
1813 
1814 cleanup:
1815 	if (npath) {
1816 		ext4_ext_drop_refs(npath);
1817 		kfree(npath);
1818 	}
1819 	ext4_ext_invalidate_cache(inode);
1820 	return err;
1821 }
1822 
1823 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1824 			       ext4_lblk_t num, ext_prepare_callback func,
1825 			       void *cbdata)
1826 {
1827 	struct ext4_ext_path *path = NULL;
1828 	struct ext4_ext_cache cbex;
1829 	struct ext4_extent *ex;
1830 	ext4_lblk_t next, start = 0, end = 0;
1831 	ext4_lblk_t last = block + num;
1832 	int depth, exists, err = 0;
1833 
1834 	BUG_ON(func == NULL);
1835 	BUG_ON(inode == NULL);
1836 
1837 	while (block < last && block != EXT_MAX_BLOCK) {
1838 		num = last - block;
1839 		/* find extent for this block */
1840 		down_read(&EXT4_I(inode)->i_data_sem);
1841 		path = ext4_ext_find_extent(inode, block, path);
1842 		up_read(&EXT4_I(inode)->i_data_sem);
1843 		if (IS_ERR(path)) {
1844 			err = PTR_ERR(path);
1845 			path = NULL;
1846 			break;
1847 		}
1848 
1849 		depth = ext_depth(inode);
1850 		if (unlikely(path[depth].p_hdr == NULL)) {
1851 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1852 			err = -EIO;
1853 			break;
1854 		}
1855 		ex = path[depth].p_ext;
1856 		next = ext4_ext_next_allocated_block(path);
1857 
1858 		exists = 0;
1859 		if (!ex) {
1860 			/* there is no extent yet, so try to allocate
1861 			 * all requested space */
1862 			start = block;
1863 			end = block + num;
1864 		} else if (le32_to_cpu(ex->ee_block) > block) {
1865 			/* need to allocate space before found extent */
1866 			start = block;
1867 			end = le32_to_cpu(ex->ee_block);
1868 			if (block + num < end)
1869 				end = block + num;
1870 		} else if (block >= le32_to_cpu(ex->ee_block)
1871 					+ ext4_ext_get_actual_len(ex)) {
1872 			/* need to allocate space after found extent */
1873 			start = block;
1874 			end = block + num;
1875 			if (end >= next)
1876 				end = next;
1877 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1878 			/*
1879 			 * some part of requested space is covered
1880 			 * by found extent
1881 			 */
1882 			start = block;
1883 			end = le32_to_cpu(ex->ee_block)
1884 				+ ext4_ext_get_actual_len(ex);
1885 			if (block + num < end)
1886 				end = block + num;
1887 			exists = 1;
1888 		} else {
1889 			BUG();
1890 		}
1891 		BUG_ON(end <= start);
1892 
1893 		if (!exists) {
1894 			cbex.ec_block = start;
1895 			cbex.ec_len = end - start;
1896 			cbex.ec_start = 0;
1897 		} else {
1898 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1899 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1900 			cbex.ec_start = ext4_ext_pblock(ex);
1901 		}
1902 
1903 		if (unlikely(cbex.ec_len == 0)) {
1904 			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1905 			err = -EIO;
1906 			break;
1907 		}
1908 		err = func(inode, path, &cbex, ex, cbdata);
1909 		ext4_ext_drop_refs(path);
1910 
1911 		if (err < 0)
1912 			break;
1913 
1914 		if (err == EXT_REPEAT)
1915 			continue;
1916 		else if (err == EXT_BREAK) {
1917 			err = 0;
1918 			break;
1919 		}
1920 
1921 		if (ext_depth(inode) != depth) {
1922 			/* depth was changed. we have to realloc path */
1923 			kfree(path);
1924 			path = NULL;
1925 		}
1926 
1927 		block = cbex.ec_block + cbex.ec_len;
1928 	}
1929 
1930 	if (path) {
1931 		ext4_ext_drop_refs(path);
1932 		kfree(path);
1933 	}
1934 
1935 	return err;
1936 }
1937 
1938 static void
1939 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1940 			__u32 len, ext4_fsblk_t start)
1941 {
1942 	struct ext4_ext_cache *cex;
1943 	BUG_ON(len == 0);
1944 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1945 	cex = &EXT4_I(inode)->i_cached_extent;
1946 	cex->ec_block = block;
1947 	cex->ec_len = len;
1948 	cex->ec_start = start;
1949 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1950 }
1951 
1952 /*
1953  * ext4_ext_put_gap_in_cache:
1954  * calculate boundaries of the gap that the requested block fits into
1955  * and cache this gap
1956  */
1957 static void
1958 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1959 				ext4_lblk_t block)
1960 {
1961 	int depth = ext_depth(inode);
1962 	unsigned long len;
1963 	ext4_lblk_t lblock;
1964 	struct ext4_extent *ex;
1965 
1966 	ex = path[depth].p_ext;
1967 	if (ex == NULL) {
1968 		/* there is no extent yet, so gap is [0;-] */
1969 		lblock = 0;
1970 		len = EXT_MAX_BLOCK;
1971 		ext_debug("cache gap(whole file):");
1972 	} else if (block < le32_to_cpu(ex->ee_block)) {
1973 		lblock = block;
1974 		len = le32_to_cpu(ex->ee_block) - block;
1975 		ext_debug("cache gap(before): %u [%u:%u]",
1976 				block,
1977 				le32_to_cpu(ex->ee_block),
1978 				 ext4_ext_get_actual_len(ex));
1979 	} else if (block >= le32_to_cpu(ex->ee_block)
1980 			+ ext4_ext_get_actual_len(ex)) {
1981 		ext4_lblk_t next;
1982 		lblock = le32_to_cpu(ex->ee_block)
1983 			+ ext4_ext_get_actual_len(ex);
1984 
1985 		next = ext4_ext_next_allocated_block(path);
1986 		ext_debug("cache gap(after): [%u:%u] %u",
1987 				le32_to_cpu(ex->ee_block),
1988 				ext4_ext_get_actual_len(ex),
1989 				block);
1990 		BUG_ON(next == lblock);
1991 		len = next - lblock;
1992 	} else {
1993 		lblock = len = 0;
1994 		BUG();
1995 	}
1996 
1997 	ext_debug(" -> %u:%lu\n", lblock, len);
1998 	ext4_ext_put_in_cache(inode, lblock, len, 0);
1999 }
2000 
2001 /*
2002  * Return 0 if cache is invalid; 1 if the cache is valid
2003  */
2004 static int
2005 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2006 			struct ext4_extent *ex)
2007 {
2008 	struct ext4_ext_cache *cex;
2009 	int ret = 0;
2010 
2011 	/*
2012 	 * We borrow i_block_reservation_lock to protect i_cached_extent
2013 	 */
2014 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2015 	cex = &EXT4_I(inode)->i_cached_extent;
2016 
2017 	/* has cache valid data? */
2018 	if (cex->ec_len == 0)
2019 		goto errout;
2020 
2021 	if (in_range(block, cex->ec_block, cex->ec_len)) {
2022 		ex->ee_block = cpu_to_le32(cex->ec_block);
2023 		ext4_ext_store_pblock(ex, cex->ec_start);
2024 		ex->ee_len = cpu_to_le16(cex->ec_len);
2025 		ext_debug("%u cached by %u:%u:%llu\n",
2026 				block,
2027 				cex->ec_block, cex->ec_len, cex->ec_start);
2028 		ret = 1;
2029 	}
2030 errout:
2031 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2032 	return ret;
2033 }
2034 
2035 /*
2036  * ext4_ext_rm_idx:
2037  * removes index from the index block.
2038  * It's used in truncate case only, thus all requests are for
2039  * last index in the block only.
2040  */
2041 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2042 			struct ext4_ext_path *path)
2043 {
2044 	int err;
2045 	ext4_fsblk_t leaf;
2046 
2047 	/* free index block */
2048 	path--;
2049 	leaf = ext4_idx_pblock(path->p_idx);
2050 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2051 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2052 		return -EIO;
2053 	}
2054 	err = ext4_ext_get_access(handle, inode, path);
2055 	if (err)
2056 		return err;
2057 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2058 	err = ext4_ext_dirty(handle, inode, path);
2059 	if (err)
2060 		return err;
2061 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2062 	ext4_free_blocks(handle, inode, 0, leaf, 1,
2063 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2064 	return err;
2065 }
2066 
2067 /*
2068  * ext4_ext_calc_credits_for_single_extent:
2069  * This routine returns max. credits that needed to insert an extent
2070  * to the extent tree.
2071  * When pass the actual path, the caller should calculate credits
2072  * under i_data_sem.
2073  */
2074 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2075 						struct ext4_ext_path *path)
2076 {
2077 	if (path) {
2078 		int depth = ext_depth(inode);
2079 		int ret = 0;
2080 
2081 		/* probably there is space in leaf? */
2082 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2083 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2084 
2085 			/*
2086 			 *  There are some space in the leaf tree, no
2087 			 *  need to account for leaf block credit
2088 			 *
2089 			 *  bitmaps and block group descriptor blocks
2090 			 *  and other metadat blocks still need to be
2091 			 *  accounted.
2092 			 */
2093 			/* 1 bitmap, 1 block group descriptor */
2094 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2095 			return ret;
2096 		}
2097 	}
2098 
2099 	return ext4_chunk_trans_blocks(inode, nrblocks);
2100 }
2101 
2102 /*
2103  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2104  *
2105  * if nrblocks are fit in a single extent (chunk flag is 1), then
2106  * in the worse case, each tree level index/leaf need to be changed
2107  * if the tree split due to insert a new extent, then the old tree
2108  * index/leaf need to be updated too
2109  *
2110  * If the nrblocks are discontiguous, they could cause
2111  * the whole tree split more than once, but this is really rare.
2112  */
2113 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2114 {
2115 	int index;
2116 	int depth = ext_depth(inode);
2117 
2118 	if (chunk)
2119 		index = depth * 2;
2120 	else
2121 		index = depth * 3;
2122 
2123 	return index;
2124 }
2125 
2126 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2127 				struct ext4_extent *ex,
2128 				ext4_lblk_t from, ext4_lblk_t to)
2129 {
2130 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2131 	int flags = EXT4_FREE_BLOCKS_FORGET;
2132 
2133 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2134 		flags |= EXT4_FREE_BLOCKS_METADATA;
2135 #ifdef EXTENTS_STATS
2136 	{
2137 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2138 		spin_lock(&sbi->s_ext_stats_lock);
2139 		sbi->s_ext_blocks += ee_len;
2140 		sbi->s_ext_extents++;
2141 		if (ee_len < sbi->s_ext_min)
2142 			sbi->s_ext_min = ee_len;
2143 		if (ee_len > sbi->s_ext_max)
2144 			sbi->s_ext_max = ee_len;
2145 		if (ext_depth(inode) > sbi->s_depth_max)
2146 			sbi->s_depth_max = ext_depth(inode);
2147 		spin_unlock(&sbi->s_ext_stats_lock);
2148 	}
2149 #endif
2150 	if (from >= le32_to_cpu(ex->ee_block)
2151 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2152 		/* tail removal */
2153 		ext4_lblk_t num;
2154 		ext4_fsblk_t start;
2155 
2156 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2157 		start = ext4_ext_pblock(ex) + ee_len - num;
2158 		ext_debug("free last %u blocks starting %llu\n", num, start);
2159 		ext4_free_blocks(handle, inode, 0, start, num, flags);
2160 	} else if (from == le32_to_cpu(ex->ee_block)
2161 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2162 		printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2163 			from, to, le32_to_cpu(ex->ee_block), ee_len);
2164 	} else {
2165 		printk(KERN_INFO "strange request: removal(2) "
2166 				"%u-%u from %u:%u\n",
2167 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2168 	}
2169 	return 0;
2170 }
2171 
2172 static int
2173 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2174 		struct ext4_ext_path *path, ext4_lblk_t start)
2175 {
2176 	int err = 0, correct_index = 0;
2177 	int depth = ext_depth(inode), credits;
2178 	struct ext4_extent_header *eh;
2179 	ext4_lblk_t a, b, block;
2180 	unsigned num;
2181 	ext4_lblk_t ex_ee_block;
2182 	unsigned short ex_ee_len;
2183 	unsigned uninitialized = 0;
2184 	struct ext4_extent *ex;
2185 
2186 	/* the header must be checked already in ext4_ext_remove_space() */
2187 	ext_debug("truncate since %u in leaf\n", start);
2188 	if (!path[depth].p_hdr)
2189 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2190 	eh = path[depth].p_hdr;
2191 	if (unlikely(path[depth].p_hdr == NULL)) {
2192 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2193 		return -EIO;
2194 	}
2195 	/* find where to start removing */
2196 	ex = EXT_LAST_EXTENT(eh);
2197 
2198 	ex_ee_block = le32_to_cpu(ex->ee_block);
2199 	ex_ee_len = ext4_ext_get_actual_len(ex);
2200 
2201 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2202 			ex_ee_block + ex_ee_len > start) {
2203 
2204 		if (ext4_ext_is_uninitialized(ex))
2205 			uninitialized = 1;
2206 		else
2207 			uninitialized = 0;
2208 
2209 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2210 			 uninitialized, ex_ee_len);
2211 		path[depth].p_ext = ex;
2212 
2213 		a = ex_ee_block > start ? ex_ee_block : start;
2214 		b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2215 			ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2216 
2217 		ext_debug("  border %u:%u\n", a, b);
2218 
2219 		if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2220 			block = 0;
2221 			num = 0;
2222 			BUG();
2223 		} else if (a != ex_ee_block) {
2224 			/* remove tail of the extent */
2225 			block = ex_ee_block;
2226 			num = a - block;
2227 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2228 			/* remove head of the extent */
2229 			block = a;
2230 			num = b - a;
2231 			/* there is no "make a hole" API yet */
2232 			BUG();
2233 		} else {
2234 			/* remove whole extent: excellent! */
2235 			block = ex_ee_block;
2236 			num = 0;
2237 			BUG_ON(a != ex_ee_block);
2238 			BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2239 		}
2240 
2241 		/*
2242 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2243 		 * descriptor) for each block group; assume two block
2244 		 * groups plus ex_ee_len/blocks_per_block_group for
2245 		 * the worst case
2246 		 */
2247 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2248 		if (ex == EXT_FIRST_EXTENT(eh)) {
2249 			correct_index = 1;
2250 			credits += (ext_depth(inode)) + 1;
2251 		}
2252 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2253 
2254 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2255 		if (err)
2256 			goto out;
2257 
2258 		err = ext4_ext_get_access(handle, inode, path + depth);
2259 		if (err)
2260 			goto out;
2261 
2262 		err = ext4_remove_blocks(handle, inode, ex, a, b);
2263 		if (err)
2264 			goto out;
2265 
2266 		if (num == 0) {
2267 			/* this extent is removed; mark slot entirely unused */
2268 			ext4_ext_store_pblock(ex, 0);
2269 			le16_add_cpu(&eh->eh_entries, -1);
2270 		}
2271 
2272 		ex->ee_block = cpu_to_le32(block);
2273 		ex->ee_len = cpu_to_le16(num);
2274 		/*
2275 		 * Do not mark uninitialized if all the blocks in the
2276 		 * extent have been removed.
2277 		 */
2278 		if (uninitialized && num)
2279 			ext4_ext_mark_uninitialized(ex);
2280 
2281 		err = ext4_ext_dirty(handle, inode, path + depth);
2282 		if (err)
2283 			goto out;
2284 
2285 		ext_debug("new extent: %u:%u:%llu\n", block, num,
2286 				ext4_ext_pblock(ex));
2287 		ex--;
2288 		ex_ee_block = le32_to_cpu(ex->ee_block);
2289 		ex_ee_len = ext4_ext_get_actual_len(ex);
2290 	}
2291 
2292 	if (correct_index && eh->eh_entries)
2293 		err = ext4_ext_correct_indexes(handle, inode, path);
2294 
2295 	/* if this leaf is free, then we should
2296 	 * remove it from index block above */
2297 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2298 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2299 
2300 out:
2301 	return err;
2302 }
2303 
2304 /*
2305  * ext4_ext_more_to_rm:
2306  * returns 1 if current index has to be freed (even partial)
2307  */
2308 static int
2309 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2310 {
2311 	BUG_ON(path->p_idx == NULL);
2312 
2313 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2314 		return 0;
2315 
2316 	/*
2317 	 * if truncate on deeper level happened, it wasn't partial,
2318 	 * so we have to consider current index for truncation
2319 	 */
2320 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2321 		return 0;
2322 	return 1;
2323 }
2324 
2325 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2326 {
2327 	struct super_block *sb = inode->i_sb;
2328 	int depth = ext_depth(inode);
2329 	struct ext4_ext_path *path;
2330 	handle_t *handle;
2331 	int i, err;
2332 
2333 	ext_debug("truncate since %u\n", start);
2334 
2335 	/* probably first extent we're gonna free will be last in block */
2336 	handle = ext4_journal_start(inode, depth + 1);
2337 	if (IS_ERR(handle))
2338 		return PTR_ERR(handle);
2339 
2340 again:
2341 	ext4_ext_invalidate_cache(inode);
2342 
2343 	/*
2344 	 * We start scanning from right side, freeing all the blocks
2345 	 * after i_size and walking into the tree depth-wise.
2346 	 */
2347 	depth = ext_depth(inode);
2348 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2349 	if (path == NULL) {
2350 		ext4_journal_stop(handle);
2351 		return -ENOMEM;
2352 	}
2353 	path[0].p_depth = depth;
2354 	path[0].p_hdr = ext_inode_hdr(inode);
2355 	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2356 		err = -EIO;
2357 		goto out;
2358 	}
2359 	i = err = 0;
2360 
2361 	while (i >= 0 && err == 0) {
2362 		if (i == depth) {
2363 			/* this is leaf block */
2364 			err = ext4_ext_rm_leaf(handle, inode, path, start);
2365 			/* root level has p_bh == NULL, brelse() eats this */
2366 			brelse(path[i].p_bh);
2367 			path[i].p_bh = NULL;
2368 			i--;
2369 			continue;
2370 		}
2371 
2372 		/* this is index block */
2373 		if (!path[i].p_hdr) {
2374 			ext_debug("initialize header\n");
2375 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2376 		}
2377 
2378 		if (!path[i].p_idx) {
2379 			/* this level hasn't been touched yet */
2380 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2381 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2382 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2383 				  path[i].p_hdr,
2384 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2385 		} else {
2386 			/* we were already here, see at next index */
2387 			path[i].p_idx--;
2388 		}
2389 
2390 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2391 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2392 				path[i].p_idx);
2393 		if (ext4_ext_more_to_rm(path + i)) {
2394 			struct buffer_head *bh;
2395 			/* go to the next level */
2396 			ext_debug("move to level %d (block %llu)\n",
2397 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2398 			memset(path + i + 1, 0, sizeof(*path));
2399 			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2400 			if (!bh) {
2401 				/* should we reset i_size? */
2402 				err = -EIO;
2403 				break;
2404 			}
2405 			if (WARN_ON(i + 1 > depth)) {
2406 				err = -EIO;
2407 				break;
2408 			}
2409 			if (ext4_ext_check(inode, ext_block_hdr(bh),
2410 							depth - i - 1)) {
2411 				err = -EIO;
2412 				break;
2413 			}
2414 			path[i + 1].p_bh = bh;
2415 
2416 			/* save actual number of indexes since this
2417 			 * number is changed at the next iteration */
2418 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2419 			i++;
2420 		} else {
2421 			/* we finished processing this index, go up */
2422 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2423 				/* index is empty, remove it;
2424 				 * handle must be already prepared by the
2425 				 * truncatei_leaf() */
2426 				err = ext4_ext_rm_idx(handle, inode, path + i);
2427 			}
2428 			/* root level has p_bh == NULL, brelse() eats this */
2429 			brelse(path[i].p_bh);
2430 			path[i].p_bh = NULL;
2431 			i--;
2432 			ext_debug("return to level %d\n", i);
2433 		}
2434 	}
2435 
2436 	/* TODO: flexible tree reduction should be here */
2437 	if (path->p_hdr->eh_entries == 0) {
2438 		/*
2439 		 * truncate to zero freed all the tree,
2440 		 * so we need to correct eh_depth
2441 		 */
2442 		err = ext4_ext_get_access(handle, inode, path);
2443 		if (err == 0) {
2444 			ext_inode_hdr(inode)->eh_depth = 0;
2445 			ext_inode_hdr(inode)->eh_max =
2446 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2447 			err = ext4_ext_dirty(handle, inode, path);
2448 		}
2449 	}
2450 out:
2451 	ext4_ext_drop_refs(path);
2452 	kfree(path);
2453 	if (err == -EAGAIN)
2454 		goto again;
2455 	ext4_journal_stop(handle);
2456 
2457 	return err;
2458 }
2459 
2460 /*
2461  * called at mount time
2462  */
2463 void ext4_ext_init(struct super_block *sb)
2464 {
2465 	/*
2466 	 * possible initialization would be here
2467 	 */
2468 
2469 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2470 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2471 		printk(KERN_INFO "EXT4-fs: file extents enabled");
2472 #ifdef AGGRESSIVE_TEST
2473 		printk(", aggressive tests");
2474 #endif
2475 #ifdef CHECK_BINSEARCH
2476 		printk(", check binsearch");
2477 #endif
2478 #ifdef EXTENTS_STATS
2479 		printk(", stats");
2480 #endif
2481 		printk("\n");
2482 #endif
2483 #ifdef EXTENTS_STATS
2484 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2485 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2486 		EXT4_SB(sb)->s_ext_max = 0;
2487 #endif
2488 	}
2489 }
2490 
2491 /*
2492  * called at umount time
2493  */
2494 void ext4_ext_release(struct super_block *sb)
2495 {
2496 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2497 		return;
2498 
2499 #ifdef EXTENTS_STATS
2500 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2501 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2502 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2503 			sbi->s_ext_blocks, sbi->s_ext_extents,
2504 			sbi->s_ext_blocks / sbi->s_ext_extents);
2505 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2506 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2507 	}
2508 #endif
2509 }
2510 
2511 /* FIXME!! we need to try to merge to left or right after zero-out  */
2512 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2513 {
2514 	ext4_fsblk_t ee_pblock;
2515 	unsigned int ee_len;
2516 	int ret;
2517 
2518 	ee_len    = ext4_ext_get_actual_len(ex);
2519 	ee_pblock = ext4_ext_pblock(ex);
2520 
2521 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2522 	if (ret > 0)
2523 		ret = 0;
2524 
2525 	return ret;
2526 }
2527 
2528 #define EXT4_EXT_ZERO_LEN 7
2529 /*
2530  * This function is called by ext4_ext_map_blocks() if someone tries to write
2531  * to an uninitialized extent. It may result in splitting the uninitialized
2532  * extent into multiple extents (upto three - one initialized and two
2533  * uninitialized).
2534  * There are three possibilities:
2535  *   a> There is no split required: Entire extent should be initialized
2536  *   b> Splits in two extents: Write is happening at either end of the extent
2537  *   c> Splits in three extents: Somone is writing in middle of the extent
2538  */
2539 static int ext4_ext_convert_to_initialized(handle_t *handle,
2540 					   struct inode *inode,
2541 					   struct ext4_map_blocks *map,
2542 					   struct ext4_ext_path *path)
2543 {
2544 	struct ext4_extent *ex, newex, orig_ex;
2545 	struct ext4_extent *ex1 = NULL;
2546 	struct ext4_extent *ex2 = NULL;
2547 	struct ext4_extent *ex3 = NULL;
2548 	struct ext4_extent_header *eh;
2549 	ext4_lblk_t ee_block, eof_block;
2550 	unsigned int allocated, ee_len, depth;
2551 	ext4_fsblk_t newblock;
2552 	int err = 0;
2553 	int ret = 0;
2554 	int may_zeroout;
2555 
2556 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2557 		"block %llu, max_blocks %u\n", inode->i_ino,
2558 		(unsigned long long)map->m_lblk, map->m_len);
2559 
2560 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2561 		inode->i_sb->s_blocksize_bits;
2562 	if (eof_block < map->m_lblk + map->m_len)
2563 		eof_block = map->m_lblk + map->m_len;
2564 
2565 	depth = ext_depth(inode);
2566 	eh = path[depth].p_hdr;
2567 	ex = path[depth].p_ext;
2568 	ee_block = le32_to_cpu(ex->ee_block);
2569 	ee_len = ext4_ext_get_actual_len(ex);
2570 	allocated = ee_len - (map->m_lblk - ee_block);
2571 	newblock = map->m_lblk - ee_block + ext4_ext_pblock(ex);
2572 
2573 	ex2 = ex;
2574 	orig_ex.ee_block = ex->ee_block;
2575 	orig_ex.ee_len   = cpu_to_le16(ee_len);
2576 	ext4_ext_store_pblock(&orig_ex, ext4_ext_pblock(ex));
2577 
2578 	/*
2579 	 * It is safe to convert extent to initialized via explicit
2580 	 * zeroout only if extent is fully insde i_size or new_size.
2581 	 */
2582 	may_zeroout = ee_block + ee_len <= eof_block;
2583 
2584 	err = ext4_ext_get_access(handle, inode, path + depth);
2585 	if (err)
2586 		goto out;
2587 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2588 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN && may_zeroout) {
2589 		err =  ext4_ext_zeroout(inode, &orig_ex);
2590 		if (err)
2591 			goto fix_extent_len;
2592 		/* update the extent length and mark as initialized */
2593 		ex->ee_block = orig_ex.ee_block;
2594 		ex->ee_len   = orig_ex.ee_len;
2595 		ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2596 		ext4_ext_dirty(handle, inode, path + depth);
2597 		/* zeroed the full extent */
2598 		return allocated;
2599 	}
2600 
2601 	/* ex1: ee_block to map->m_lblk - 1 : uninitialized */
2602 	if (map->m_lblk > ee_block) {
2603 		ex1 = ex;
2604 		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2605 		ext4_ext_mark_uninitialized(ex1);
2606 		ex2 = &newex;
2607 	}
2608 	/*
2609 	 * for sanity, update the length of the ex2 extent before
2610 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2611 	 * overlap of blocks.
2612 	 */
2613 	if (!ex1 && allocated > map->m_len)
2614 		ex2->ee_len = cpu_to_le16(map->m_len);
2615 	/* ex3: to ee_block + ee_len : uninitialised */
2616 	if (allocated > map->m_len) {
2617 		unsigned int newdepth;
2618 		/* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2619 		if (allocated <= EXT4_EXT_ZERO_LEN && may_zeroout) {
2620 			/*
2621 			 * map->m_lblk == ee_block is handled by the zerouout
2622 			 * at the beginning.
2623 			 * Mark first half uninitialized.
2624 			 * Mark second half initialized and zero out the
2625 			 * initialized extent
2626 			 */
2627 			ex->ee_block = orig_ex.ee_block;
2628 			ex->ee_len   = cpu_to_le16(ee_len - allocated);
2629 			ext4_ext_mark_uninitialized(ex);
2630 			ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2631 			ext4_ext_dirty(handle, inode, path + depth);
2632 
2633 			ex3 = &newex;
2634 			ex3->ee_block = cpu_to_le32(map->m_lblk);
2635 			ext4_ext_store_pblock(ex3, newblock);
2636 			ex3->ee_len = cpu_to_le16(allocated);
2637 			err = ext4_ext_insert_extent(handle, inode, path,
2638 							ex3, 0);
2639 			if (err == -ENOSPC) {
2640 				err =  ext4_ext_zeroout(inode, &orig_ex);
2641 				if (err)
2642 					goto fix_extent_len;
2643 				ex->ee_block = orig_ex.ee_block;
2644 				ex->ee_len   = orig_ex.ee_len;
2645 				ext4_ext_store_pblock(ex,
2646 					ext4_ext_pblock(&orig_ex));
2647 				ext4_ext_dirty(handle, inode, path + depth);
2648 				/* blocks available from map->m_lblk */
2649 				return allocated;
2650 
2651 			} else if (err)
2652 				goto fix_extent_len;
2653 
2654 			/*
2655 			 * We need to zero out the second half because
2656 			 * an fallocate request can update file size and
2657 			 * converting the second half to initialized extent
2658 			 * implies that we can leak some junk data to user
2659 			 * space.
2660 			 */
2661 			err =  ext4_ext_zeroout(inode, ex3);
2662 			if (err) {
2663 				/*
2664 				 * We should actually mark the
2665 				 * second half as uninit and return error
2666 				 * Insert would have changed the extent
2667 				 */
2668 				depth = ext_depth(inode);
2669 				ext4_ext_drop_refs(path);
2670 				path = ext4_ext_find_extent(inode, map->m_lblk,
2671 							    path);
2672 				if (IS_ERR(path)) {
2673 					err = PTR_ERR(path);
2674 					return err;
2675 				}
2676 				/* get the second half extent details */
2677 				ex = path[depth].p_ext;
2678 				err = ext4_ext_get_access(handle, inode,
2679 								path + depth);
2680 				if (err)
2681 					return err;
2682 				ext4_ext_mark_uninitialized(ex);
2683 				ext4_ext_dirty(handle, inode, path + depth);
2684 				return err;
2685 			}
2686 
2687 			/* zeroed the second half */
2688 			return allocated;
2689 		}
2690 		ex3 = &newex;
2691 		ex3->ee_block = cpu_to_le32(map->m_lblk + map->m_len);
2692 		ext4_ext_store_pblock(ex3, newblock + map->m_len);
2693 		ex3->ee_len = cpu_to_le16(allocated - map->m_len);
2694 		ext4_ext_mark_uninitialized(ex3);
2695 		err = ext4_ext_insert_extent(handle, inode, path, ex3, 0);
2696 		if (err == -ENOSPC && may_zeroout) {
2697 			err =  ext4_ext_zeroout(inode, &orig_ex);
2698 			if (err)
2699 				goto fix_extent_len;
2700 			/* update the extent length and mark as initialized */
2701 			ex->ee_block = orig_ex.ee_block;
2702 			ex->ee_len   = orig_ex.ee_len;
2703 			ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2704 			ext4_ext_dirty(handle, inode, path + depth);
2705 			/* zeroed the full extent */
2706 			/* blocks available from map->m_lblk */
2707 			return allocated;
2708 
2709 		} else if (err)
2710 			goto fix_extent_len;
2711 		/*
2712 		 * The depth, and hence eh & ex might change
2713 		 * as part of the insert above.
2714 		 */
2715 		newdepth = ext_depth(inode);
2716 		/*
2717 		 * update the extent length after successful insert of the
2718 		 * split extent
2719 		 */
2720 		ee_len -= ext4_ext_get_actual_len(ex3);
2721 		orig_ex.ee_len = cpu_to_le16(ee_len);
2722 		may_zeroout = ee_block + ee_len <= eof_block;
2723 
2724 		depth = newdepth;
2725 		ext4_ext_drop_refs(path);
2726 		path = ext4_ext_find_extent(inode, map->m_lblk, path);
2727 		if (IS_ERR(path)) {
2728 			err = PTR_ERR(path);
2729 			goto out;
2730 		}
2731 		eh = path[depth].p_hdr;
2732 		ex = path[depth].p_ext;
2733 		if (ex2 != &newex)
2734 			ex2 = ex;
2735 
2736 		err = ext4_ext_get_access(handle, inode, path + depth);
2737 		if (err)
2738 			goto out;
2739 
2740 		allocated = map->m_len;
2741 
2742 		/* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2743 		 * to insert a extent in the middle zerout directly
2744 		 * otherwise give the extent a chance to merge to left
2745 		 */
2746 		if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2747 			map->m_lblk != ee_block && may_zeroout) {
2748 			err =  ext4_ext_zeroout(inode, &orig_ex);
2749 			if (err)
2750 				goto fix_extent_len;
2751 			/* update the extent length and mark as initialized */
2752 			ex->ee_block = orig_ex.ee_block;
2753 			ex->ee_len   = orig_ex.ee_len;
2754 			ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2755 			ext4_ext_dirty(handle, inode, path + depth);
2756 			/* zero out the first half */
2757 			/* blocks available from map->m_lblk */
2758 			return allocated;
2759 		}
2760 	}
2761 	/*
2762 	 * If there was a change of depth as part of the
2763 	 * insertion of ex3 above, we need to update the length
2764 	 * of the ex1 extent again here
2765 	 */
2766 	if (ex1 && ex1 != ex) {
2767 		ex1 = ex;
2768 		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2769 		ext4_ext_mark_uninitialized(ex1);
2770 		ex2 = &newex;
2771 	}
2772 	/* ex2: map->m_lblk to map->m_lblk + maxblocks-1 : initialised */
2773 	ex2->ee_block = cpu_to_le32(map->m_lblk);
2774 	ext4_ext_store_pblock(ex2, newblock);
2775 	ex2->ee_len = cpu_to_le16(allocated);
2776 	if (ex2 != ex)
2777 		goto insert;
2778 	/*
2779 	 * New (initialized) extent starts from the first block
2780 	 * in the current extent. i.e., ex2 == ex
2781 	 * We have to see if it can be merged with the extent
2782 	 * on the left.
2783 	 */
2784 	if (ex2 > EXT_FIRST_EXTENT(eh)) {
2785 		/*
2786 		 * To merge left, pass "ex2 - 1" to try_to_merge(),
2787 		 * since it merges towards right _only_.
2788 		 */
2789 		ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2790 		if (ret) {
2791 			err = ext4_ext_correct_indexes(handle, inode, path);
2792 			if (err)
2793 				goto out;
2794 			depth = ext_depth(inode);
2795 			ex2--;
2796 		}
2797 	}
2798 	/*
2799 	 * Try to Merge towards right. This might be required
2800 	 * only when the whole extent is being written to.
2801 	 * i.e. ex2 == ex and ex3 == NULL.
2802 	 */
2803 	if (!ex3) {
2804 		ret = ext4_ext_try_to_merge(inode, path, ex2);
2805 		if (ret) {
2806 			err = ext4_ext_correct_indexes(handle, inode, path);
2807 			if (err)
2808 				goto out;
2809 		}
2810 	}
2811 	/* Mark modified extent as dirty */
2812 	err = ext4_ext_dirty(handle, inode, path + depth);
2813 	goto out;
2814 insert:
2815 	err = ext4_ext_insert_extent(handle, inode, path, &newex, 0);
2816 	if (err == -ENOSPC && may_zeroout) {
2817 		err =  ext4_ext_zeroout(inode, &orig_ex);
2818 		if (err)
2819 			goto fix_extent_len;
2820 		/* update the extent length and mark as initialized */
2821 		ex->ee_block = orig_ex.ee_block;
2822 		ex->ee_len   = orig_ex.ee_len;
2823 		ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2824 		ext4_ext_dirty(handle, inode, path + depth);
2825 		/* zero out the first half */
2826 		return allocated;
2827 	} else if (err)
2828 		goto fix_extent_len;
2829 out:
2830 	ext4_ext_show_leaf(inode, path);
2831 	return err ? err : allocated;
2832 
2833 fix_extent_len:
2834 	ex->ee_block = orig_ex.ee_block;
2835 	ex->ee_len   = orig_ex.ee_len;
2836 	ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2837 	ext4_ext_mark_uninitialized(ex);
2838 	ext4_ext_dirty(handle, inode, path + depth);
2839 	return err;
2840 }
2841 
2842 /*
2843  * This function is called by ext4_ext_map_blocks() from
2844  * ext4_get_blocks_dio_write() when DIO to write
2845  * to an uninitialized extent.
2846  *
2847  * Writing to an uninitized extent may result in splitting the uninitialized
2848  * extent into multiple /initialized uninitialized extents (up to three)
2849  * There are three possibilities:
2850  *   a> There is no split required: Entire extent should be uninitialized
2851  *   b> Splits in two extents: Write is happening at either end of the extent
2852  *   c> Splits in three extents: Somone is writing in middle of the extent
2853  *
2854  * One of more index blocks maybe needed if the extent tree grow after
2855  * the uninitialized extent split. To prevent ENOSPC occur at the IO
2856  * complete, we need to split the uninitialized extent before DIO submit
2857  * the IO. The uninitialized extent called at this time will be split
2858  * into three uninitialized extent(at most). After IO complete, the part
2859  * being filled will be convert to initialized by the end_io callback function
2860  * via ext4_convert_unwritten_extents().
2861  *
2862  * Returns the size of uninitialized extent to be written on success.
2863  */
2864 static int ext4_split_unwritten_extents(handle_t *handle,
2865 					struct inode *inode,
2866 					struct ext4_map_blocks *map,
2867 					struct ext4_ext_path *path,
2868 					int flags)
2869 {
2870 	struct ext4_extent *ex, newex, orig_ex;
2871 	struct ext4_extent *ex1 = NULL;
2872 	struct ext4_extent *ex2 = NULL;
2873 	struct ext4_extent *ex3 = NULL;
2874 	ext4_lblk_t ee_block, eof_block;
2875 	unsigned int allocated, ee_len, depth;
2876 	ext4_fsblk_t newblock;
2877 	int err = 0;
2878 	int may_zeroout;
2879 
2880 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
2881 		"block %llu, max_blocks %u\n", inode->i_ino,
2882 		(unsigned long long)map->m_lblk, map->m_len);
2883 
2884 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2885 		inode->i_sb->s_blocksize_bits;
2886 	if (eof_block < map->m_lblk + map->m_len)
2887 		eof_block = map->m_lblk + map->m_len;
2888 
2889 	depth = ext_depth(inode);
2890 	ex = path[depth].p_ext;
2891 	ee_block = le32_to_cpu(ex->ee_block);
2892 	ee_len = ext4_ext_get_actual_len(ex);
2893 	allocated = ee_len - (map->m_lblk - ee_block);
2894 	newblock = map->m_lblk - ee_block + ext4_ext_pblock(ex);
2895 
2896 	ex2 = ex;
2897 	orig_ex.ee_block = ex->ee_block;
2898 	orig_ex.ee_len   = cpu_to_le16(ee_len);
2899 	ext4_ext_store_pblock(&orig_ex, ext4_ext_pblock(ex));
2900 
2901 	/*
2902 	 * It is safe to convert extent to initialized via explicit
2903 	 * zeroout only if extent is fully insde i_size or new_size.
2904 	 */
2905 	may_zeroout = ee_block + ee_len <= eof_block;
2906 
2907 	/*
2908  	 * If the uninitialized extent begins at the same logical
2909  	 * block where the write begins, and the write completely
2910  	 * covers the extent, then we don't need to split it.
2911  	 */
2912 	if ((map->m_lblk == ee_block) && (allocated <= map->m_len))
2913 		return allocated;
2914 
2915 	err = ext4_ext_get_access(handle, inode, path + depth);
2916 	if (err)
2917 		goto out;
2918 	/* ex1: ee_block to map->m_lblk - 1 : uninitialized */
2919 	if (map->m_lblk > ee_block) {
2920 		ex1 = ex;
2921 		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2922 		ext4_ext_mark_uninitialized(ex1);
2923 		ex2 = &newex;
2924 	}
2925 	/*
2926 	 * for sanity, update the length of the ex2 extent before
2927 	 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2928 	 * overlap of blocks.
2929 	 */
2930 	if (!ex1 && allocated > map->m_len)
2931 		ex2->ee_len = cpu_to_le16(map->m_len);
2932 	/* ex3: to ee_block + ee_len : uninitialised */
2933 	if (allocated > map->m_len) {
2934 		unsigned int newdepth;
2935 		ex3 = &newex;
2936 		ex3->ee_block = cpu_to_le32(map->m_lblk + map->m_len);
2937 		ext4_ext_store_pblock(ex3, newblock + map->m_len);
2938 		ex3->ee_len = cpu_to_le16(allocated - map->m_len);
2939 		ext4_ext_mark_uninitialized(ex3);
2940 		err = ext4_ext_insert_extent(handle, inode, path, ex3, flags);
2941 		if (err == -ENOSPC && may_zeroout) {
2942 			err =  ext4_ext_zeroout(inode, &orig_ex);
2943 			if (err)
2944 				goto fix_extent_len;
2945 			/* update the extent length and mark as initialized */
2946 			ex->ee_block = orig_ex.ee_block;
2947 			ex->ee_len   = orig_ex.ee_len;
2948 			ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2949 			ext4_ext_dirty(handle, inode, path + depth);
2950 			/* zeroed the full extent */
2951 			/* blocks available from map->m_lblk */
2952 			return allocated;
2953 
2954 		} else if (err)
2955 			goto fix_extent_len;
2956 		/*
2957 		 * The depth, and hence eh & ex might change
2958 		 * as part of the insert above.
2959 		 */
2960 		newdepth = ext_depth(inode);
2961 		/*
2962 		 * update the extent length after successful insert of the
2963 		 * split extent
2964 		 */
2965 		ee_len -= ext4_ext_get_actual_len(ex3);
2966 		orig_ex.ee_len = cpu_to_le16(ee_len);
2967 		may_zeroout = ee_block + ee_len <= eof_block;
2968 
2969 		depth = newdepth;
2970 		ext4_ext_drop_refs(path);
2971 		path = ext4_ext_find_extent(inode, map->m_lblk, path);
2972 		if (IS_ERR(path)) {
2973 			err = PTR_ERR(path);
2974 			goto out;
2975 		}
2976 		ex = path[depth].p_ext;
2977 		if (ex2 != &newex)
2978 			ex2 = ex;
2979 
2980 		err = ext4_ext_get_access(handle, inode, path + depth);
2981 		if (err)
2982 			goto out;
2983 
2984 		allocated = map->m_len;
2985 	}
2986 	/*
2987 	 * If there was a change of depth as part of the
2988 	 * insertion of ex3 above, we need to update the length
2989 	 * of the ex1 extent again here
2990 	 */
2991 	if (ex1 && ex1 != ex) {
2992 		ex1 = ex;
2993 		ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2994 		ext4_ext_mark_uninitialized(ex1);
2995 		ex2 = &newex;
2996 	}
2997 	/*
2998 	 * ex2: map->m_lblk to map->m_lblk + map->m_len-1 : to be written
2999 	 * using direct I/O, uninitialised still.
3000 	 */
3001 	ex2->ee_block = cpu_to_le32(map->m_lblk);
3002 	ext4_ext_store_pblock(ex2, newblock);
3003 	ex2->ee_len = cpu_to_le16(allocated);
3004 	ext4_ext_mark_uninitialized(ex2);
3005 	if (ex2 != ex)
3006 		goto insert;
3007 	/* Mark modified extent as dirty */
3008 	err = ext4_ext_dirty(handle, inode, path + depth);
3009 	ext_debug("out here\n");
3010 	goto out;
3011 insert:
3012 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3013 	if (err == -ENOSPC && may_zeroout) {
3014 		err =  ext4_ext_zeroout(inode, &orig_ex);
3015 		if (err)
3016 			goto fix_extent_len;
3017 		/* update the extent length and mark as initialized */
3018 		ex->ee_block = orig_ex.ee_block;
3019 		ex->ee_len   = orig_ex.ee_len;
3020 		ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
3021 		ext4_ext_dirty(handle, inode, path + depth);
3022 		/* zero out the first half */
3023 		return allocated;
3024 	} else if (err)
3025 		goto fix_extent_len;
3026 out:
3027 	ext4_ext_show_leaf(inode, path);
3028 	return err ? err : allocated;
3029 
3030 fix_extent_len:
3031 	ex->ee_block = orig_ex.ee_block;
3032 	ex->ee_len   = orig_ex.ee_len;
3033 	ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
3034 	ext4_ext_mark_uninitialized(ex);
3035 	ext4_ext_dirty(handle, inode, path + depth);
3036 	return err;
3037 }
3038 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3039 					      struct inode *inode,
3040 					      struct ext4_ext_path *path)
3041 {
3042 	struct ext4_extent *ex;
3043 	struct ext4_extent_header *eh;
3044 	int depth;
3045 	int err = 0;
3046 	int ret = 0;
3047 
3048 	depth = ext_depth(inode);
3049 	eh = path[depth].p_hdr;
3050 	ex = path[depth].p_ext;
3051 
3052 	err = ext4_ext_get_access(handle, inode, path + depth);
3053 	if (err)
3054 		goto out;
3055 	/* first mark the extent as initialized */
3056 	ext4_ext_mark_initialized(ex);
3057 
3058 	/*
3059 	 * We have to see if it can be merged with the extent
3060 	 * on the left.
3061 	 */
3062 	if (ex > EXT_FIRST_EXTENT(eh)) {
3063 		/*
3064 		 * To merge left, pass "ex - 1" to try_to_merge(),
3065 		 * since it merges towards right _only_.
3066 		 */
3067 		ret = ext4_ext_try_to_merge(inode, path, ex - 1);
3068 		if (ret) {
3069 			err = ext4_ext_correct_indexes(handle, inode, path);
3070 			if (err)
3071 				goto out;
3072 			depth = ext_depth(inode);
3073 			ex--;
3074 		}
3075 	}
3076 	/*
3077 	 * Try to Merge towards right.
3078 	 */
3079 	ret = ext4_ext_try_to_merge(inode, path, ex);
3080 	if (ret) {
3081 		err = ext4_ext_correct_indexes(handle, inode, path);
3082 		if (err)
3083 			goto out;
3084 		depth = ext_depth(inode);
3085 	}
3086 	/* Mark modified extent as dirty */
3087 	err = ext4_ext_dirty(handle, inode, path + depth);
3088 out:
3089 	ext4_ext_show_leaf(inode, path);
3090 	return err;
3091 }
3092 
3093 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3094 			sector_t block, int count)
3095 {
3096 	int i;
3097 	for (i = 0; i < count; i++)
3098                 unmap_underlying_metadata(bdev, block + i);
3099 }
3100 
3101 /*
3102  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3103  */
3104 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3105 			      ext4_lblk_t lblk,
3106 			      struct ext4_ext_path *path,
3107 			      unsigned int len)
3108 {
3109 	int i, depth;
3110 	struct ext4_extent_header *eh;
3111 	struct ext4_extent *ex, *last_ex;
3112 
3113 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3114 		return 0;
3115 
3116 	depth = ext_depth(inode);
3117 	eh = path[depth].p_hdr;
3118 	ex = path[depth].p_ext;
3119 
3120 	if (unlikely(!eh->eh_entries)) {
3121 		EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3122 				 "EOFBLOCKS_FL set");
3123 		return -EIO;
3124 	}
3125 	last_ex = EXT_LAST_EXTENT(eh);
3126 	/*
3127 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3128 	 * last block in the last extent in the file.  We test this by
3129 	 * first checking to see if the caller to
3130 	 * ext4_ext_get_blocks() was interested in the last block (or
3131 	 * a block beyond the last block) in the current extent.  If
3132 	 * this turns out to be false, we can bail out from this
3133 	 * function immediately.
3134 	 */
3135 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3136 	    ext4_ext_get_actual_len(last_ex))
3137 		return 0;
3138 	/*
3139 	 * If the caller does appear to be planning to write at or
3140 	 * beyond the end of the current extent, we then test to see
3141 	 * if the current extent is the last extent in the file, by
3142 	 * checking to make sure it was reached via the rightmost node
3143 	 * at each level of the tree.
3144 	 */
3145 	for (i = depth-1; i >= 0; i--)
3146 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3147 			return 0;
3148 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3149 	return ext4_mark_inode_dirty(handle, inode);
3150 }
3151 
3152 static int
3153 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3154 			struct ext4_map_blocks *map,
3155 			struct ext4_ext_path *path, int flags,
3156 			unsigned int allocated, ext4_fsblk_t newblock)
3157 {
3158 	int ret = 0;
3159 	int err = 0;
3160 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3161 
3162 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3163 		  "block %llu, max_blocks %u, flags %d, allocated %u",
3164 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3165 		  flags, allocated);
3166 	ext4_ext_show_leaf(inode, path);
3167 
3168 	/* get_block() before submit the IO, split the extent */
3169 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3170 		ret = ext4_split_unwritten_extents(handle, inode, map,
3171 						   path, flags);
3172 		/*
3173 		 * Flag the inode(non aio case) or end_io struct (aio case)
3174 		 * that this IO needs to convertion to written when IO is
3175 		 * completed
3176 		 */
3177 		if (io)
3178 			io->flag = EXT4_IO_END_UNWRITTEN;
3179 		else
3180 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3181 		if (ext4_should_dioread_nolock(inode))
3182 			map->m_flags |= EXT4_MAP_UNINIT;
3183 		goto out;
3184 	}
3185 	/* IO end_io complete, convert the filled extent to written */
3186 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3187 		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3188 							path);
3189 		if (ret >= 0) {
3190 			ext4_update_inode_fsync_trans(handle, inode, 1);
3191 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3192 						 path, map->m_len);
3193 		} else
3194 			err = ret;
3195 		goto out2;
3196 	}
3197 	/* buffered IO case */
3198 	/*
3199 	 * repeat fallocate creation request
3200 	 * we already have an unwritten extent
3201 	 */
3202 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3203 		goto map_out;
3204 
3205 	/* buffered READ or buffered write_begin() lookup */
3206 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3207 		/*
3208 		 * We have blocks reserved already.  We
3209 		 * return allocated blocks so that delalloc
3210 		 * won't do block reservation for us.  But
3211 		 * the buffer head will be unmapped so that
3212 		 * a read from the block returns 0s.
3213 		 */
3214 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3215 		goto out1;
3216 	}
3217 
3218 	/* buffered write, writepage time, convert*/
3219 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3220 	if (ret >= 0) {
3221 		ext4_update_inode_fsync_trans(handle, inode, 1);
3222 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3223 					 map->m_len);
3224 		if (err < 0)
3225 			goto out2;
3226 	}
3227 
3228 out:
3229 	if (ret <= 0) {
3230 		err = ret;
3231 		goto out2;
3232 	} else
3233 		allocated = ret;
3234 	map->m_flags |= EXT4_MAP_NEW;
3235 	/*
3236 	 * if we allocated more blocks than requested
3237 	 * we need to make sure we unmap the extra block
3238 	 * allocated. The actual needed block will get
3239 	 * unmapped later when we find the buffer_head marked
3240 	 * new.
3241 	 */
3242 	if (allocated > map->m_len) {
3243 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3244 					newblock + map->m_len,
3245 					allocated - map->m_len);
3246 		allocated = map->m_len;
3247 	}
3248 
3249 	/*
3250 	 * If we have done fallocate with the offset that is already
3251 	 * delayed allocated, we would have block reservation
3252 	 * and quota reservation done in the delayed write path.
3253 	 * But fallocate would have already updated quota and block
3254 	 * count for this offset. So cancel these reservation
3255 	 */
3256 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3257 		ext4_da_update_reserve_space(inode, allocated, 0);
3258 
3259 map_out:
3260 	map->m_flags |= EXT4_MAP_MAPPED;
3261 out1:
3262 	if (allocated > map->m_len)
3263 		allocated = map->m_len;
3264 	ext4_ext_show_leaf(inode, path);
3265 	map->m_pblk = newblock;
3266 	map->m_len = allocated;
3267 out2:
3268 	if (path) {
3269 		ext4_ext_drop_refs(path);
3270 		kfree(path);
3271 	}
3272 	return err ? err : allocated;
3273 }
3274 
3275 /*
3276  * Block allocation/map/preallocation routine for extents based files
3277  *
3278  *
3279  * Need to be called with
3280  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3281  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3282  *
3283  * return > 0, number of of blocks already mapped/allocated
3284  *          if create == 0 and these are pre-allocated blocks
3285  *          	buffer head is unmapped
3286  *          otherwise blocks are mapped
3287  *
3288  * return = 0, if plain look up failed (blocks have not been allocated)
3289  *          buffer head is unmapped
3290  *
3291  * return < 0, error case.
3292  */
3293 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3294 			struct ext4_map_blocks *map, int flags)
3295 {
3296 	struct ext4_ext_path *path = NULL;
3297 	struct ext4_extent_header *eh;
3298 	struct ext4_extent newex, *ex;
3299 	ext4_fsblk_t newblock;
3300 	int err = 0, depth, ret;
3301 	unsigned int allocated = 0;
3302 	struct ext4_allocation_request ar;
3303 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3304 
3305 	ext_debug("blocks %u/%u requested for inode %lu\n",
3306 		  map->m_lblk, map->m_len, inode->i_ino);
3307 
3308 	/* check in cache */
3309 	if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3310 		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3311 			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3312 				/*
3313 				 * block isn't allocated yet and
3314 				 * user doesn't want to allocate it
3315 				 */
3316 				goto out2;
3317 			}
3318 			/* we should allocate requested block */
3319 		} else {
3320 			/* block is already allocated */
3321 			newblock = map->m_lblk
3322 				   - le32_to_cpu(newex.ee_block)
3323 				   + ext4_ext_pblock(&newex);
3324 			/* number of remaining blocks in the extent */
3325 			allocated = ext4_ext_get_actual_len(&newex) -
3326 				(map->m_lblk - le32_to_cpu(newex.ee_block));
3327 			goto out;
3328 		}
3329 	}
3330 
3331 	/* find extent for this block */
3332 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3333 	if (IS_ERR(path)) {
3334 		err = PTR_ERR(path);
3335 		path = NULL;
3336 		goto out2;
3337 	}
3338 
3339 	depth = ext_depth(inode);
3340 
3341 	/*
3342 	 * consistent leaf must not be empty;
3343 	 * this situation is possible, though, _during_ tree modification;
3344 	 * this is why assert can't be put in ext4_ext_find_extent()
3345 	 */
3346 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3347 		EXT4_ERROR_INODE(inode, "bad extent address "
3348 				 "lblock: %lu, depth: %d pblock %lld",
3349 				 (unsigned long) map->m_lblk, depth,
3350 				 path[depth].p_block);
3351 		err = -EIO;
3352 		goto out2;
3353 	}
3354 	eh = path[depth].p_hdr;
3355 
3356 	ex = path[depth].p_ext;
3357 	if (ex) {
3358 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3359 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3360 		unsigned short ee_len;
3361 
3362 		/*
3363 		 * Uninitialized extents are treated as holes, except that
3364 		 * we split out initialized portions during a write.
3365 		 */
3366 		ee_len = ext4_ext_get_actual_len(ex);
3367 		/* if found extent covers block, simply return it */
3368 		if (in_range(map->m_lblk, ee_block, ee_len)) {
3369 			newblock = map->m_lblk - ee_block + ee_start;
3370 			/* number of remaining blocks in the extent */
3371 			allocated = ee_len - (map->m_lblk - ee_block);
3372 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3373 				  ee_block, ee_len, newblock);
3374 
3375 			/* Do not put uninitialized extent in the cache */
3376 			if (!ext4_ext_is_uninitialized(ex)) {
3377 				ext4_ext_put_in_cache(inode, ee_block,
3378 							ee_len, ee_start);
3379 				goto out;
3380 			}
3381 			ret = ext4_ext_handle_uninitialized_extents(handle,
3382 					inode, map, path, flags, allocated,
3383 					newblock);
3384 			return ret;
3385 		}
3386 	}
3387 
3388 	/*
3389 	 * requested block isn't allocated yet;
3390 	 * we couldn't try to create block if create flag is zero
3391 	 */
3392 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3393 		/*
3394 		 * put just found gap into cache to speed up
3395 		 * subsequent requests
3396 		 */
3397 		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3398 		goto out2;
3399 	}
3400 	/*
3401 	 * Okay, we need to do block allocation.
3402 	 */
3403 
3404 	/* find neighbour allocated blocks */
3405 	ar.lleft = map->m_lblk;
3406 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3407 	if (err)
3408 		goto out2;
3409 	ar.lright = map->m_lblk;
3410 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3411 	if (err)
3412 		goto out2;
3413 
3414 	/*
3415 	 * See if request is beyond maximum number of blocks we can have in
3416 	 * a single extent. For an initialized extent this limit is
3417 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3418 	 * EXT_UNINIT_MAX_LEN.
3419 	 */
3420 	if (map->m_len > EXT_INIT_MAX_LEN &&
3421 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3422 		map->m_len = EXT_INIT_MAX_LEN;
3423 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3424 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3425 		map->m_len = EXT_UNINIT_MAX_LEN;
3426 
3427 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3428 	newex.ee_block = cpu_to_le32(map->m_lblk);
3429 	newex.ee_len = cpu_to_le16(map->m_len);
3430 	err = ext4_ext_check_overlap(inode, &newex, path);
3431 	if (err)
3432 		allocated = ext4_ext_get_actual_len(&newex);
3433 	else
3434 		allocated = map->m_len;
3435 
3436 	/* allocate new block */
3437 	ar.inode = inode;
3438 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3439 	ar.logical = map->m_lblk;
3440 	ar.len = allocated;
3441 	if (S_ISREG(inode->i_mode))
3442 		ar.flags = EXT4_MB_HINT_DATA;
3443 	else
3444 		/* disable in-core preallocation for non-regular files */
3445 		ar.flags = 0;
3446 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
3447 	if (!newblock)
3448 		goto out2;
3449 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3450 		  ar.goal, newblock, allocated);
3451 
3452 	/* try to insert new extent into found leaf and return */
3453 	ext4_ext_store_pblock(&newex, newblock);
3454 	newex.ee_len = cpu_to_le16(ar.len);
3455 	/* Mark uninitialized */
3456 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3457 		ext4_ext_mark_uninitialized(&newex);
3458 		/*
3459 		 * io_end structure was created for every IO write to an
3460 		 * uninitialized extent. To avoid unecessary conversion,
3461 		 * here we flag the IO that really needs the conversion.
3462 		 * For non asycn direct IO case, flag the inode state
3463 		 * that we need to perform convertion when IO is done.
3464 		 */
3465 		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3466 			if (io)
3467 				io->flag = EXT4_IO_END_UNWRITTEN;
3468 			else
3469 				ext4_set_inode_state(inode,
3470 						     EXT4_STATE_DIO_UNWRITTEN);
3471 		}
3472 		if (ext4_should_dioread_nolock(inode))
3473 			map->m_flags |= EXT4_MAP_UNINIT;
3474 	}
3475 
3476 	err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
3477 	if (err)
3478 		goto out2;
3479 
3480 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3481 	if (err) {
3482 		/* free data blocks we just allocated */
3483 		/* not a good idea to call discard here directly,
3484 		 * but otherwise we'd need to call it every free() */
3485 		ext4_discard_preallocations(inode);
3486 		ext4_free_blocks(handle, inode, 0, ext4_ext_pblock(&newex),
3487 				 ext4_ext_get_actual_len(&newex), 0);
3488 		goto out2;
3489 	}
3490 
3491 	/* previous routine could use block we allocated */
3492 	newblock = ext4_ext_pblock(&newex);
3493 	allocated = ext4_ext_get_actual_len(&newex);
3494 	if (allocated > map->m_len)
3495 		allocated = map->m_len;
3496 	map->m_flags |= EXT4_MAP_NEW;
3497 
3498 	/*
3499 	 * Update reserved blocks/metadata blocks after successful
3500 	 * block allocation which had been deferred till now.
3501 	 */
3502 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3503 		ext4_da_update_reserve_space(inode, allocated, 1);
3504 
3505 	/*
3506 	 * Cache the extent and update transaction to commit on fdatasync only
3507 	 * when it is _not_ an uninitialized extent.
3508 	 */
3509 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3510 		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3511 		ext4_update_inode_fsync_trans(handle, inode, 1);
3512 	} else
3513 		ext4_update_inode_fsync_trans(handle, inode, 0);
3514 out:
3515 	if (allocated > map->m_len)
3516 		allocated = map->m_len;
3517 	ext4_ext_show_leaf(inode, path);
3518 	map->m_flags |= EXT4_MAP_MAPPED;
3519 	map->m_pblk = newblock;
3520 	map->m_len = allocated;
3521 out2:
3522 	if (path) {
3523 		ext4_ext_drop_refs(path);
3524 		kfree(path);
3525 	}
3526 	return err ? err : allocated;
3527 }
3528 
3529 void ext4_ext_truncate(struct inode *inode)
3530 {
3531 	struct address_space *mapping = inode->i_mapping;
3532 	struct super_block *sb = inode->i_sb;
3533 	ext4_lblk_t last_block;
3534 	handle_t *handle;
3535 	int err = 0;
3536 
3537 	/*
3538 	 * finish any pending end_io work so we won't run the risk of
3539 	 * converting any truncated blocks to initialized later
3540 	 */
3541 	ext4_flush_completed_IO(inode);
3542 
3543 	/*
3544 	 * probably first extent we're gonna free will be last in block
3545 	 */
3546 	err = ext4_writepage_trans_blocks(inode);
3547 	handle = ext4_journal_start(inode, err);
3548 	if (IS_ERR(handle))
3549 		return;
3550 
3551 	if (inode->i_size & (sb->s_blocksize - 1))
3552 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3553 
3554 	if (ext4_orphan_add(handle, inode))
3555 		goto out_stop;
3556 
3557 	down_write(&EXT4_I(inode)->i_data_sem);
3558 	ext4_ext_invalidate_cache(inode);
3559 
3560 	ext4_discard_preallocations(inode);
3561 
3562 	/*
3563 	 * TODO: optimization is possible here.
3564 	 * Probably we need not scan at all,
3565 	 * because page truncation is enough.
3566 	 */
3567 
3568 	/* we have to know where to truncate from in crash case */
3569 	EXT4_I(inode)->i_disksize = inode->i_size;
3570 	ext4_mark_inode_dirty(handle, inode);
3571 
3572 	last_block = (inode->i_size + sb->s_blocksize - 1)
3573 			>> EXT4_BLOCK_SIZE_BITS(sb);
3574 	err = ext4_ext_remove_space(inode, last_block);
3575 
3576 	/* In a multi-transaction truncate, we only make the final
3577 	 * transaction synchronous.
3578 	 */
3579 	if (IS_SYNC(inode))
3580 		ext4_handle_sync(handle);
3581 
3582 out_stop:
3583 	up_write(&EXT4_I(inode)->i_data_sem);
3584 	/*
3585 	 * If this was a simple ftruncate() and the file will remain alive,
3586 	 * then we need to clear up the orphan record which we created above.
3587 	 * However, if this was a real unlink then we were called by
3588 	 * ext4_delete_inode(), and we allow that function to clean up the
3589 	 * orphan info for us.
3590 	 */
3591 	if (inode->i_nlink)
3592 		ext4_orphan_del(handle, inode);
3593 
3594 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3595 	ext4_mark_inode_dirty(handle, inode);
3596 	ext4_journal_stop(handle);
3597 }
3598 
3599 static void ext4_falloc_update_inode(struct inode *inode,
3600 				int mode, loff_t new_size, int update_ctime)
3601 {
3602 	struct timespec now;
3603 
3604 	if (update_ctime) {
3605 		now = current_fs_time(inode->i_sb);
3606 		if (!timespec_equal(&inode->i_ctime, &now))
3607 			inode->i_ctime = now;
3608 	}
3609 	/*
3610 	 * Update only when preallocation was requested beyond
3611 	 * the file size.
3612 	 */
3613 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3614 		if (new_size > i_size_read(inode))
3615 			i_size_write(inode, new_size);
3616 		if (new_size > EXT4_I(inode)->i_disksize)
3617 			ext4_update_i_disksize(inode, new_size);
3618 	} else {
3619 		/*
3620 		 * Mark that we allocate beyond EOF so the subsequent truncate
3621 		 * can proceed even if the new size is the same as i_size.
3622 		 */
3623 		if (new_size > i_size_read(inode))
3624 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3625 	}
3626 
3627 }
3628 
3629 /*
3630  * preallocate space for a file. This implements ext4's fallocate file
3631  * operation, which gets called from sys_fallocate system call.
3632  * For block-mapped files, posix_fallocate should fall back to the method
3633  * of writing zeroes to the required new blocks (the same behavior which is
3634  * expected for file systems which do not support fallocate() system call).
3635  */
3636 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
3637 {
3638 	struct inode *inode = file->f_path.dentry->d_inode;
3639 	handle_t *handle;
3640 	loff_t new_size;
3641 	unsigned int max_blocks;
3642 	int ret = 0;
3643 	int ret2 = 0;
3644 	int retries = 0;
3645 	struct ext4_map_blocks map;
3646 	unsigned int credits, blkbits = inode->i_blkbits;
3647 
3648 	/* We only support the FALLOC_FL_KEEP_SIZE mode */
3649 	if (mode & ~FALLOC_FL_KEEP_SIZE)
3650 		return -EOPNOTSUPP;
3651 
3652 	/*
3653 	 * currently supporting (pre)allocate mode for extent-based
3654 	 * files _only_
3655 	 */
3656 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3657 		return -EOPNOTSUPP;
3658 
3659 	map.m_lblk = offset >> blkbits;
3660 	/*
3661 	 * We can't just convert len to max_blocks because
3662 	 * If blocksize = 4096 offset = 3072 and len = 2048
3663 	 */
3664 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3665 		- map.m_lblk;
3666 	/*
3667 	 * credits to insert 1 extent into extent tree
3668 	 */
3669 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3670 	mutex_lock(&inode->i_mutex);
3671 	ret = inode_newsize_ok(inode, (len + offset));
3672 	if (ret) {
3673 		mutex_unlock(&inode->i_mutex);
3674 		return ret;
3675 	}
3676 retry:
3677 	while (ret >= 0 && ret < max_blocks) {
3678 		map.m_lblk = map.m_lblk + ret;
3679 		map.m_len = max_blocks = max_blocks - ret;
3680 		handle = ext4_journal_start(inode, credits);
3681 		if (IS_ERR(handle)) {
3682 			ret = PTR_ERR(handle);
3683 			break;
3684 		}
3685 		ret = ext4_map_blocks(handle, inode, &map,
3686 				      EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
3687 		if (ret <= 0) {
3688 #ifdef EXT4FS_DEBUG
3689 			WARN_ON(ret <= 0);
3690 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3691 				    "returned error inode#%lu, block=%u, "
3692 				    "max_blocks=%u", __func__,
3693 				    inode->i_ino, map.m_lblk, max_blocks);
3694 #endif
3695 			ext4_mark_inode_dirty(handle, inode);
3696 			ret2 = ext4_journal_stop(handle);
3697 			break;
3698 		}
3699 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3700 						blkbits) >> blkbits))
3701 			new_size = offset + len;
3702 		else
3703 			new_size = (map.m_lblk + ret) << blkbits;
3704 
3705 		ext4_falloc_update_inode(inode, mode, new_size,
3706 					 (map.m_flags & EXT4_MAP_NEW));
3707 		ext4_mark_inode_dirty(handle, inode);
3708 		ret2 = ext4_journal_stop(handle);
3709 		if (ret2)
3710 			break;
3711 	}
3712 	if (ret == -ENOSPC &&
3713 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3714 		ret = 0;
3715 		goto retry;
3716 	}
3717 	mutex_unlock(&inode->i_mutex);
3718 	return ret > 0 ? ret2 : ret;
3719 }
3720 
3721 /*
3722  * This function convert a range of blocks to written extents
3723  * The caller of this function will pass the start offset and the size.
3724  * all unwritten extents within this range will be converted to
3725  * written extents.
3726  *
3727  * This function is called from the direct IO end io call back
3728  * function, to convert the fallocated extents after IO is completed.
3729  * Returns 0 on success.
3730  */
3731 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3732 				    ssize_t len)
3733 {
3734 	handle_t *handle;
3735 	unsigned int max_blocks;
3736 	int ret = 0;
3737 	int ret2 = 0;
3738 	struct ext4_map_blocks map;
3739 	unsigned int credits, blkbits = inode->i_blkbits;
3740 
3741 	map.m_lblk = offset >> blkbits;
3742 	/*
3743 	 * We can't just convert len to max_blocks because
3744 	 * If blocksize = 4096 offset = 3072 and len = 2048
3745 	 */
3746 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3747 		      map.m_lblk);
3748 	/*
3749 	 * credits to insert 1 extent into extent tree
3750 	 */
3751 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3752 	while (ret >= 0 && ret < max_blocks) {
3753 		map.m_lblk += ret;
3754 		map.m_len = (max_blocks -= ret);
3755 		handle = ext4_journal_start(inode, credits);
3756 		if (IS_ERR(handle)) {
3757 			ret = PTR_ERR(handle);
3758 			break;
3759 		}
3760 		ret = ext4_map_blocks(handle, inode, &map,
3761 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3762 		if (ret <= 0) {
3763 			WARN_ON(ret <= 0);
3764 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3765 				    "returned error inode#%lu, block=%u, "
3766 				    "max_blocks=%u", __func__,
3767 				    inode->i_ino, map.m_lblk, map.m_len);
3768 		}
3769 		ext4_mark_inode_dirty(handle, inode);
3770 		ret2 = ext4_journal_stop(handle);
3771 		if (ret <= 0 || ret2 )
3772 			break;
3773 	}
3774 	return ret > 0 ? ret2 : ret;
3775 }
3776 /*
3777  * Callback function called for each extent to gather FIEMAP information.
3778  */
3779 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3780 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3781 		       void *data)
3782 {
3783 	struct fiemap_extent_info *fieinfo = data;
3784 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
3785 	__u64	logical;
3786 	__u64	physical;
3787 	__u64	length;
3788 	__u32	flags = 0;
3789 	int	error;
3790 
3791 	logical =  (__u64)newex->ec_block << blksize_bits;
3792 
3793 	if (newex->ec_start == 0) {
3794 		pgoff_t offset;
3795 		struct page *page;
3796 		struct buffer_head *bh = NULL;
3797 
3798 		offset = logical >> PAGE_SHIFT;
3799 		page = find_get_page(inode->i_mapping, offset);
3800 		if (!page || !page_has_buffers(page))
3801 			return EXT_CONTINUE;
3802 
3803 		bh = page_buffers(page);
3804 
3805 		if (!bh)
3806 			return EXT_CONTINUE;
3807 
3808 		if (buffer_delay(bh)) {
3809 			flags |= FIEMAP_EXTENT_DELALLOC;
3810 			page_cache_release(page);
3811 		} else {
3812 			page_cache_release(page);
3813 			return EXT_CONTINUE;
3814 		}
3815 	}
3816 
3817 	physical = (__u64)newex->ec_start << blksize_bits;
3818 	length =   (__u64)newex->ec_len << blksize_bits;
3819 
3820 	if (ex && ext4_ext_is_uninitialized(ex))
3821 		flags |= FIEMAP_EXTENT_UNWRITTEN;
3822 
3823 	/*
3824 	 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3825 	 *
3826 	 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3827 	 * this also indicates no more allocated blocks.
3828 	 *
3829 	 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3830 	 */
3831 	if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK ||
3832 	    newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) {
3833 		loff_t size = i_size_read(inode);
3834 		loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb);
3835 
3836 		flags |= FIEMAP_EXTENT_LAST;
3837 		if ((flags & FIEMAP_EXTENT_DELALLOC) &&
3838 		    logical+length > size)
3839 			length = (size - logical + bs - 1) & ~(bs-1);
3840 	}
3841 
3842 	error = fiemap_fill_next_extent(fieinfo, logical, physical,
3843 					length, flags);
3844 	if (error < 0)
3845 		return error;
3846 	if (error == 1)
3847 		return EXT_BREAK;
3848 
3849 	return EXT_CONTINUE;
3850 }
3851 
3852 /* fiemap flags we can handle specified here */
3853 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3854 
3855 static int ext4_xattr_fiemap(struct inode *inode,
3856 				struct fiemap_extent_info *fieinfo)
3857 {
3858 	__u64 physical = 0;
3859 	__u64 length;
3860 	__u32 flags = FIEMAP_EXTENT_LAST;
3861 	int blockbits = inode->i_sb->s_blocksize_bits;
3862 	int error = 0;
3863 
3864 	/* in-inode? */
3865 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
3866 		struct ext4_iloc iloc;
3867 		int offset;	/* offset of xattr in inode */
3868 
3869 		error = ext4_get_inode_loc(inode, &iloc);
3870 		if (error)
3871 			return error;
3872 		physical = iloc.bh->b_blocknr << blockbits;
3873 		offset = EXT4_GOOD_OLD_INODE_SIZE +
3874 				EXT4_I(inode)->i_extra_isize;
3875 		physical += offset;
3876 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3877 		flags |= FIEMAP_EXTENT_DATA_INLINE;
3878 		brelse(iloc.bh);
3879 	} else { /* external block */
3880 		physical = EXT4_I(inode)->i_file_acl << blockbits;
3881 		length = inode->i_sb->s_blocksize;
3882 	}
3883 
3884 	if (physical)
3885 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
3886 						length, flags);
3887 	return (error < 0 ? error : 0);
3888 }
3889 
3890 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3891 		__u64 start, __u64 len)
3892 {
3893 	ext4_lblk_t start_blk;
3894 	int error = 0;
3895 
3896 	/* fallback to generic here if not in extents fmt */
3897 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3898 		return generic_block_fiemap(inode, fieinfo, start, len,
3899 			ext4_get_block);
3900 
3901 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3902 		return -EBADR;
3903 
3904 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3905 		error = ext4_xattr_fiemap(inode, fieinfo);
3906 	} else {
3907 		ext4_lblk_t len_blks;
3908 		__u64 last_blk;
3909 
3910 		start_blk = start >> inode->i_sb->s_blocksize_bits;
3911 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
3912 		if (last_blk >= EXT_MAX_BLOCK)
3913 			last_blk = EXT_MAX_BLOCK-1;
3914 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
3915 
3916 		/*
3917 		 * Walk the extent tree gathering extent information.
3918 		 * ext4_ext_fiemap_cb will push extents back to user.
3919 		 */
3920 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
3921 					  ext4_ext_fiemap_cb, fieinfo);
3922 	}
3923 
3924 	return error;
3925 }
3926 
3927