1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <asm/uaccess.h> 41 #include <linux/fiemap.h> 42 #include "ext4_jbd2.h" 43 #include "ext4_extents.h" 44 #include "xattr.h" 45 46 #include <trace/events/ext4.h> 47 48 /* 49 * used by extent splitting. 50 */ 51 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 52 due to ENOSPC */ 53 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 54 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 55 56 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 57 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 58 59 static __le32 ext4_extent_block_csum(struct inode *inode, 60 struct ext4_extent_header *eh) 61 { 62 struct ext4_inode_info *ei = EXT4_I(inode); 63 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 64 __u32 csum; 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 67 EXT4_EXTENT_TAIL_OFFSET(eh)); 68 return cpu_to_le32(csum); 69 } 70 71 static int ext4_extent_block_csum_verify(struct inode *inode, 72 struct ext4_extent_header *eh) 73 { 74 struct ext4_extent_tail *et; 75 76 if (!ext4_has_metadata_csum(inode->i_sb)) 77 return 1; 78 79 et = find_ext4_extent_tail(eh); 80 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 81 return 0; 82 return 1; 83 } 84 85 static void ext4_extent_block_csum_set(struct inode *inode, 86 struct ext4_extent_header *eh) 87 { 88 struct ext4_extent_tail *et; 89 90 if (!ext4_has_metadata_csum(inode->i_sb)) 91 return; 92 93 et = find_ext4_extent_tail(eh); 94 et->et_checksum = ext4_extent_block_csum(inode, eh); 95 } 96 97 static int ext4_split_extent(handle_t *handle, 98 struct inode *inode, 99 struct ext4_ext_path **ppath, 100 struct ext4_map_blocks *map, 101 int split_flag, 102 int flags); 103 104 static int ext4_split_extent_at(handle_t *handle, 105 struct inode *inode, 106 struct ext4_ext_path **ppath, 107 ext4_lblk_t split, 108 int split_flag, 109 int flags); 110 111 static int ext4_find_delayed_extent(struct inode *inode, 112 struct extent_status *newes); 113 114 static int ext4_ext_truncate_extend_restart(handle_t *handle, 115 struct inode *inode, 116 int needed) 117 { 118 int err; 119 120 if (!ext4_handle_valid(handle)) 121 return 0; 122 if (handle->h_buffer_credits > needed) 123 return 0; 124 err = ext4_journal_extend(handle, needed); 125 if (err <= 0) 126 return err; 127 err = ext4_truncate_restart_trans(handle, inode, needed); 128 if (err == 0) 129 err = -EAGAIN; 130 131 return err; 132 } 133 134 /* 135 * could return: 136 * - EROFS 137 * - ENOMEM 138 */ 139 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 140 struct ext4_ext_path *path) 141 { 142 if (path->p_bh) { 143 /* path points to block */ 144 BUFFER_TRACE(path->p_bh, "get_write_access"); 145 return ext4_journal_get_write_access(handle, path->p_bh); 146 } 147 /* path points to leaf/index in inode body */ 148 /* we use in-core data, no need to protect them */ 149 return 0; 150 } 151 152 /* 153 * could return: 154 * - EROFS 155 * - ENOMEM 156 * - EIO 157 */ 158 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 159 struct inode *inode, struct ext4_ext_path *path) 160 { 161 int err; 162 163 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 164 if (path->p_bh) { 165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 166 /* path points to block */ 167 err = __ext4_handle_dirty_metadata(where, line, handle, 168 inode, path->p_bh); 169 } else { 170 /* path points to leaf/index in inode body */ 171 err = ext4_mark_inode_dirty(handle, inode); 172 } 173 return err; 174 } 175 176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 177 struct ext4_ext_path *path, 178 ext4_lblk_t block) 179 { 180 if (path) { 181 int depth = path->p_depth; 182 struct ext4_extent *ex; 183 184 /* 185 * Try to predict block placement assuming that we are 186 * filling in a file which will eventually be 187 * non-sparse --- i.e., in the case of libbfd writing 188 * an ELF object sections out-of-order but in a way 189 * the eventually results in a contiguous object or 190 * executable file, or some database extending a table 191 * space file. However, this is actually somewhat 192 * non-ideal if we are writing a sparse file such as 193 * qemu or KVM writing a raw image file that is going 194 * to stay fairly sparse, since it will end up 195 * fragmenting the file system's free space. Maybe we 196 * should have some hueristics or some way to allow 197 * userspace to pass a hint to file system, 198 * especially if the latter case turns out to be 199 * common. 200 */ 201 ex = path[depth].p_ext; 202 if (ex) { 203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 205 206 if (block > ext_block) 207 return ext_pblk + (block - ext_block); 208 else 209 return ext_pblk - (ext_block - block); 210 } 211 212 /* it looks like index is empty; 213 * try to find starting block from index itself */ 214 if (path[depth].p_bh) 215 return path[depth].p_bh->b_blocknr; 216 } 217 218 /* OK. use inode's group */ 219 return ext4_inode_to_goal_block(inode); 220 } 221 222 /* 223 * Allocation for a meta data block 224 */ 225 static ext4_fsblk_t 226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 227 struct ext4_ext_path *path, 228 struct ext4_extent *ex, int *err, unsigned int flags) 229 { 230 ext4_fsblk_t goal, newblock; 231 232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 234 NULL, err); 235 return newblock; 236 } 237 238 static inline int ext4_ext_space_block(struct inode *inode, int check) 239 { 240 int size; 241 242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 243 / sizeof(struct ext4_extent); 244 #ifdef AGGRESSIVE_TEST 245 if (!check && size > 6) 246 size = 6; 247 #endif 248 return size; 249 } 250 251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 252 { 253 int size; 254 255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 256 / sizeof(struct ext4_extent_idx); 257 #ifdef AGGRESSIVE_TEST 258 if (!check && size > 5) 259 size = 5; 260 #endif 261 return size; 262 } 263 264 static inline int ext4_ext_space_root(struct inode *inode, int check) 265 { 266 int size; 267 268 size = sizeof(EXT4_I(inode)->i_data); 269 size -= sizeof(struct ext4_extent_header); 270 size /= sizeof(struct ext4_extent); 271 #ifdef AGGRESSIVE_TEST 272 if (!check && size > 3) 273 size = 3; 274 #endif 275 return size; 276 } 277 278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 279 { 280 int size; 281 282 size = sizeof(EXT4_I(inode)->i_data); 283 size -= sizeof(struct ext4_extent_header); 284 size /= sizeof(struct ext4_extent_idx); 285 #ifdef AGGRESSIVE_TEST 286 if (!check && size > 4) 287 size = 4; 288 #endif 289 return size; 290 } 291 292 static inline int 293 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 294 struct ext4_ext_path **ppath, ext4_lblk_t lblk, 295 int nofail) 296 { 297 struct ext4_ext_path *path = *ppath; 298 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 299 300 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ? 301 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 302 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO | 303 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0)); 304 } 305 306 /* 307 * Calculate the number of metadata blocks needed 308 * to allocate @blocks 309 * Worse case is one block per extent 310 */ 311 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 312 { 313 struct ext4_inode_info *ei = EXT4_I(inode); 314 int idxs; 315 316 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 317 / sizeof(struct ext4_extent_idx)); 318 319 /* 320 * If the new delayed allocation block is contiguous with the 321 * previous da block, it can share index blocks with the 322 * previous block, so we only need to allocate a new index 323 * block every idxs leaf blocks. At ldxs**2 blocks, we need 324 * an additional index block, and at ldxs**3 blocks, yet 325 * another index blocks. 326 */ 327 if (ei->i_da_metadata_calc_len && 328 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 329 int num = 0; 330 331 if ((ei->i_da_metadata_calc_len % idxs) == 0) 332 num++; 333 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 334 num++; 335 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 336 num++; 337 ei->i_da_metadata_calc_len = 0; 338 } else 339 ei->i_da_metadata_calc_len++; 340 ei->i_da_metadata_calc_last_lblock++; 341 return num; 342 } 343 344 /* 345 * In the worst case we need a new set of index blocks at 346 * every level of the inode's extent tree. 347 */ 348 ei->i_da_metadata_calc_len = 1; 349 ei->i_da_metadata_calc_last_lblock = lblock; 350 return ext_depth(inode) + 1; 351 } 352 353 static int 354 ext4_ext_max_entries(struct inode *inode, int depth) 355 { 356 int max; 357 358 if (depth == ext_depth(inode)) { 359 if (depth == 0) 360 max = ext4_ext_space_root(inode, 1); 361 else 362 max = ext4_ext_space_root_idx(inode, 1); 363 } else { 364 if (depth == 0) 365 max = ext4_ext_space_block(inode, 1); 366 else 367 max = ext4_ext_space_block_idx(inode, 1); 368 } 369 370 return max; 371 } 372 373 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 374 { 375 ext4_fsblk_t block = ext4_ext_pblock(ext); 376 int len = ext4_ext_get_actual_len(ext); 377 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 378 ext4_lblk_t last = lblock + len - 1; 379 380 if (lblock > last) 381 return 0; 382 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 383 } 384 385 static int ext4_valid_extent_idx(struct inode *inode, 386 struct ext4_extent_idx *ext_idx) 387 { 388 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 389 390 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 391 } 392 393 static int ext4_valid_extent_entries(struct inode *inode, 394 struct ext4_extent_header *eh, 395 int depth) 396 { 397 unsigned short entries; 398 if (eh->eh_entries == 0) 399 return 1; 400 401 entries = le16_to_cpu(eh->eh_entries); 402 403 if (depth == 0) { 404 /* leaf entries */ 405 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 406 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 407 ext4_fsblk_t pblock = 0; 408 ext4_lblk_t lblock = 0; 409 ext4_lblk_t prev = 0; 410 int len = 0; 411 while (entries) { 412 if (!ext4_valid_extent(inode, ext)) 413 return 0; 414 415 /* Check for overlapping extents */ 416 lblock = le32_to_cpu(ext->ee_block); 417 len = ext4_ext_get_actual_len(ext); 418 if ((lblock <= prev) && prev) { 419 pblock = ext4_ext_pblock(ext); 420 es->s_last_error_block = cpu_to_le64(pblock); 421 return 0; 422 } 423 ext++; 424 entries--; 425 prev = lblock + len - 1; 426 } 427 } else { 428 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 429 while (entries) { 430 if (!ext4_valid_extent_idx(inode, ext_idx)) 431 return 0; 432 ext_idx++; 433 entries--; 434 } 435 } 436 return 1; 437 } 438 439 static int __ext4_ext_check(const char *function, unsigned int line, 440 struct inode *inode, struct ext4_extent_header *eh, 441 int depth, ext4_fsblk_t pblk) 442 { 443 const char *error_msg; 444 int max = 0; 445 446 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 447 error_msg = "invalid magic"; 448 goto corrupted; 449 } 450 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 451 error_msg = "unexpected eh_depth"; 452 goto corrupted; 453 } 454 if (unlikely(eh->eh_max == 0)) { 455 error_msg = "invalid eh_max"; 456 goto corrupted; 457 } 458 max = ext4_ext_max_entries(inode, depth); 459 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 460 error_msg = "too large eh_max"; 461 goto corrupted; 462 } 463 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 464 error_msg = "invalid eh_entries"; 465 goto corrupted; 466 } 467 if (!ext4_valid_extent_entries(inode, eh, depth)) { 468 error_msg = "invalid extent entries"; 469 goto corrupted; 470 } 471 /* Verify checksum on non-root extent tree nodes */ 472 if (ext_depth(inode) != depth && 473 !ext4_extent_block_csum_verify(inode, eh)) { 474 error_msg = "extent tree corrupted"; 475 goto corrupted; 476 } 477 return 0; 478 479 corrupted: 480 ext4_error_inode(inode, function, line, 0, 481 "pblk %llu bad header/extent: %s - magic %x, " 482 "entries %u, max %u(%u), depth %u(%u)", 483 (unsigned long long) pblk, error_msg, 484 le16_to_cpu(eh->eh_magic), 485 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 486 max, le16_to_cpu(eh->eh_depth), depth); 487 return -EIO; 488 } 489 490 #define ext4_ext_check(inode, eh, depth, pblk) \ 491 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 492 493 int ext4_ext_check_inode(struct inode *inode) 494 { 495 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 496 } 497 498 static struct buffer_head * 499 __read_extent_tree_block(const char *function, unsigned int line, 500 struct inode *inode, ext4_fsblk_t pblk, int depth, 501 int flags) 502 { 503 struct buffer_head *bh; 504 int err; 505 506 bh = sb_getblk(inode->i_sb, pblk); 507 if (unlikely(!bh)) 508 return ERR_PTR(-ENOMEM); 509 510 if (!bh_uptodate_or_lock(bh)) { 511 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 512 err = bh_submit_read(bh); 513 if (err < 0) 514 goto errout; 515 } 516 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 517 return bh; 518 err = __ext4_ext_check(function, line, inode, 519 ext_block_hdr(bh), depth, pblk); 520 if (err) 521 goto errout; 522 set_buffer_verified(bh); 523 /* 524 * If this is a leaf block, cache all of its entries 525 */ 526 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 527 struct ext4_extent_header *eh = ext_block_hdr(bh); 528 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 529 ext4_lblk_t prev = 0; 530 int i; 531 532 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 533 unsigned int status = EXTENT_STATUS_WRITTEN; 534 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 535 int len = ext4_ext_get_actual_len(ex); 536 537 if (prev && (prev != lblk)) 538 ext4_es_cache_extent(inode, prev, 539 lblk - prev, ~0, 540 EXTENT_STATUS_HOLE); 541 542 if (ext4_ext_is_unwritten(ex)) 543 status = EXTENT_STATUS_UNWRITTEN; 544 ext4_es_cache_extent(inode, lblk, len, 545 ext4_ext_pblock(ex), status); 546 prev = lblk + len; 547 } 548 } 549 return bh; 550 errout: 551 put_bh(bh); 552 return ERR_PTR(err); 553 554 } 555 556 #define read_extent_tree_block(inode, pblk, depth, flags) \ 557 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 558 (depth), (flags)) 559 560 /* 561 * This function is called to cache a file's extent information in the 562 * extent status tree 563 */ 564 int ext4_ext_precache(struct inode *inode) 565 { 566 struct ext4_inode_info *ei = EXT4_I(inode); 567 struct ext4_ext_path *path = NULL; 568 struct buffer_head *bh; 569 int i = 0, depth, ret = 0; 570 571 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 572 return 0; /* not an extent-mapped inode */ 573 574 down_read(&ei->i_data_sem); 575 depth = ext_depth(inode); 576 577 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 578 GFP_NOFS); 579 if (path == NULL) { 580 up_read(&ei->i_data_sem); 581 return -ENOMEM; 582 } 583 584 /* Don't cache anything if there are no external extent blocks */ 585 if (depth == 0) 586 goto out; 587 path[0].p_hdr = ext_inode_hdr(inode); 588 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 589 if (ret) 590 goto out; 591 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 592 while (i >= 0) { 593 /* 594 * If this is a leaf block or we've reached the end of 595 * the index block, go up 596 */ 597 if ((i == depth) || 598 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 599 brelse(path[i].p_bh); 600 path[i].p_bh = NULL; 601 i--; 602 continue; 603 } 604 bh = read_extent_tree_block(inode, 605 ext4_idx_pblock(path[i].p_idx++), 606 depth - i - 1, 607 EXT4_EX_FORCE_CACHE); 608 if (IS_ERR(bh)) { 609 ret = PTR_ERR(bh); 610 break; 611 } 612 i++; 613 path[i].p_bh = bh; 614 path[i].p_hdr = ext_block_hdr(bh); 615 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 616 } 617 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 618 out: 619 up_read(&ei->i_data_sem); 620 ext4_ext_drop_refs(path); 621 kfree(path); 622 return ret; 623 } 624 625 #ifdef EXT_DEBUG 626 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 627 { 628 int k, l = path->p_depth; 629 630 ext_debug("path:"); 631 for (k = 0; k <= l; k++, path++) { 632 if (path->p_idx) { 633 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 634 ext4_idx_pblock(path->p_idx)); 635 } else if (path->p_ext) { 636 ext_debug(" %d:[%d]%d:%llu ", 637 le32_to_cpu(path->p_ext->ee_block), 638 ext4_ext_is_unwritten(path->p_ext), 639 ext4_ext_get_actual_len(path->p_ext), 640 ext4_ext_pblock(path->p_ext)); 641 } else 642 ext_debug(" []"); 643 } 644 ext_debug("\n"); 645 } 646 647 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 648 { 649 int depth = ext_depth(inode); 650 struct ext4_extent_header *eh; 651 struct ext4_extent *ex; 652 int i; 653 654 if (!path) 655 return; 656 657 eh = path[depth].p_hdr; 658 ex = EXT_FIRST_EXTENT(eh); 659 660 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 661 662 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 663 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 664 ext4_ext_is_unwritten(ex), 665 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 666 } 667 ext_debug("\n"); 668 } 669 670 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 671 ext4_fsblk_t newblock, int level) 672 { 673 int depth = ext_depth(inode); 674 struct ext4_extent *ex; 675 676 if (depth != level) { 677 struct ext4_extent_idx *idx; 678 idx = path[level].p_idx; 679 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 680 ext_debug("%d: move %d:%llu in new index %llu\n", level, 681 le32_to_cpu(idx->ei_block), 682 ext4_idx_pblock(idx), 683 newblock); 684 idx++; 685 } 686 687 return; 688 } 689 690 ex = path[depth].p_ext; 691 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 692 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 693 le32_to_cpu(ex->ee_block), 694 ext4_ext_pblock(ex), 695 ext4_ext_is_unwritten(ex), 696 ext4_ext_get_actual_len(ex), 697 newblock); 698 ex++; 699 } 700 } 701 702 #else 703 #define ext4_ext_show_path(inode, path) 704 #define ext4_ext_show_leaf(inode, path) 705 #define ext4_ext_show_move(inode, path, newblock, level) 706 #endif 707 708 void ext4_ext_drop_refs(struct ext4_ext_path *path) 709 { 710 int depth, i; 711 712 if (!path) 713 return; 714 depth = path->p_depth; 715 for (i = 0; i <= depth; i++, path++) 716 if (path->p_bh) { 717 brelse(path->p_bh); 718 path->p_bh = NULL; 719 } 720 } 721 722 /* 723 * ext4_ext_binsearch_idx: 724 * binary search for the closest index of the given block 725 * the header must be checked before calling this 726 */ 727 static void 728 ext4_ext_binsearch_idx(struct inode *inode, 729 struct ext4_ext_path *path, ext4_lblk_t block) 730 { 731 struct ext4_extent_header *eh = path->p_hdr; 732 struct ext4_extent_idx *r, *l, *m; 733 734 735 ext_debug("binsearch for %u(idx): ", block); 736 737 l = EXT_FIRST_INDEX(eh) + 1; 738 r = EXT_LAST_INDEX(eh); 739 while (l <= r) { 740 m = l + (r - l) / 2; 741 if (block < le32_to_cpu(m->ei_block)) 742 r = m - 1; 743 else 744 l = m + 1; 745 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 746 m, le32_to_cpu(m->ei_block), 747 r, le32_to_cpu(r->ei_block)); 748 } 749 750 path->p_idx = l - 1; 751 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 752 ext4_idx_pblock(path->p_idx)); 753 754 #ifdef CHECK_BINSEARCH 755 { 756 struct ext4_extent_idx *chix, *ix; 757 int k; 758 759 chix = ix = EXT_FIRST_INDEX(eh); 760 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 761 if (k != 0 && 762 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 763 printk(KERN_DEBUG "k=%d, ix=0x%p, " 764 "first=0x%p\n", k, 765 ix, EXT_FIRST_INDEX(eh)); 766 printk(KERN_DEBUG "%u <= %u\n", 767 le32_to_cpu(ix->ei_block), 768 le32_to_cpu(ix[-1].ei_block)); 769 } 770 BUG_ON(k && le32_to_cpu(ix->ei_block) 771 <= le32_to_cpu(ix[-1].ei_block)); 772 if (block < le32_to_cpu(ix->ei_block)) 773 break; 774 chix = ix; 775 } 776 BUG_ON(chix != path->p_idx); 777 } 778 #endif 779 780 } 781 782 /* 783 * ext4_ext_binsearch: 784 * binary search for closest extent of the given block 785 * the header must be checked before calling this 786 */ 787 static void 788 ext4_ext_binsearch(struct inode *inode, 789 struct ext4_ext_path *path, ext4_lblk_t block) 790 { 791 struct ext4_extent_header *eh = path->p_hdr; 792 struct ext4_extent *r, *l, *m; 793 794 if (eh->eh_entries == 0) { 795 /* 796 * this leaf is empty: 797 * we get such a leaf in split/add case 798 */ 799 return; 800 } 801 802 ext_debug("binsearch for %u: ", block); 803 804 l = EXT_FIRST_EXTENT(eh) + 1; 805 r = EXT_LAST_EXTENT(eh); 806 807 while (l <= r) { 808 m = l + (r - l) / 2; 809 if (block < le32_to_cpu(m->ee_block)) 810 r = m - 1; 811 else 812 l = m + 1; 813 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 814 m, le32_to_cpu(m->ee_block), 815 r, le32_to_cpu(r->ee_block)); 816 } 817 818 path->p_ext = l - 1; 819 ext_debug(" -> %d:%llu:[%d]%d ", 820 le32_to_cpu(path->p_ext->ee_block), 821 ext4_ext_pblock(path->p_ext), 822 ext4_ext_is_unwritten(path->p_ext), 823 ext4_ext_get_actual_len(path->p_ext)); 824 825 #ifdef CHECK_BINSEARCH 826 { 827 struct ext4_extent *chex, *ex; 828 int k; 829 830 chex = ex = EXT_FIRST_EXTENT(eh); 831 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 832 BUG_ON(k && le32_to_cpu(ex->ee_block) 833 <= le32_to_cpu(ex[-1].ee_block)); 834 if (block < le32_to_cpu(ex->ee_block)) 835 break; 836 chex = ex; 837 } 838 BUG_ON(chex != path->p_ext); 839 } 840 #endif 841 842 } 843 844 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 845 { 846 struct ext4_extent_header *eh; 847 848 eh = ext_inode_hdr(inode); 849 eh->eh_depth = 0; 850 eh->eh_entries = 0; 851 eh->eh_magic = EXT4_EXT_MAGIC; 852 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 853 ext4_mark_inode_dirty(handle, inode); 854 return 0; 855 } 856 857 struct ext4_ext_path * 858 ext4_find_extent(struct inode *inode, ext4_lblk_t block, 859 struct ext4_ext_path **orig_path, int flags) 860 { 861 struct ext4_extent_header *eh; 862 struct buffer_head *bh; 863 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 864 short int depth, i, ppos = 0; 865 int ret; 866 867 eh = ext_inode_hdr(inode); 868 depth = ext_depth(inode); 869 870 if (path) { 871 ext4_ext_drop_refs(path); 872 if (depth > path[0].p_maxdepth) { 873 kfree(path); 874 *orig_path = path = NULL; 875 } 876 } 877 if (!path) { 878 /* account possible depth increase */ 879 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 880 GFP_NOFS); 881 if (unlikely(!path)) 882 return ERR_PTR(-ENOMEM); 883 path[0].p_maxdepth = depth + 1; 884 } 885 path[0].p_hdr = eh; 886 path[0].p_bh = NULL; 887 888 i = depth; 889 /* walk through the tree */ 890 while (i) { 891 ext_debug("depth %d: num %d, max %d\n", 892 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 893 894 ext4_ext_binsearch_idx(inode, path + ppos, block); 895 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 896 path[ppos].p_depth = i; 897 path[ppos].p_ext = NULL; 898 899 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 900 flags); 901 if (unlikely(IS_ERR(bh))) { 902 ret = PTR_ERR(bh); 903 goto err; 904 } 905 906 eh = ext_block_hdr(bh); 907 ppos++; 908 if (unlikely(ppos > depth)) { 909 put_bh(bh); 910 EXT4_ERROR_INODE(inode, 911 "ppos %d > depth %d", ppos, depth); 912 ret = -EIO; 913 goto err; 914 } 915 path[ppos].p_bh = bh; 916 path[ppos].p_hdr = eh; 917 } 918 919 path[ppos].p_depth = i; 920 path[ppos].p_ext = NULL; 921 path[ppos].p_idx = NULL; 922 923 /* find extent */ 924 ext4_ext_binsearch(inode, path + ppos, block); 925 /* if not an empty leaf */ 926 if (path[ppos].p_ext) 927 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 928 929 ext4_ext_show_path(inode, path); 930 931 return path; 932 933 err: 934 ext4_ext_drop_refs(path); 935 kfree(path); 936 if (orig_path) 937 *orig_path = NULL; 938 return ERR_PTR(ret); 939 } 940 941 /* 942 * ext4_ext_insert_index: 943 * insert new index [@logical;@ptr] into the block at @curp; 944 * check where to insert: before @curp or after @curp 945 */ 946 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 947 struct ext4_ext_path *curp, 948 int logical, ext4_fsblk_t ptr) 949 { 950 struct ext4_extent_idx *ix; 951 int len, err; 952 953 err = ext4_ext_get_access(handle, inode, curp); 954 if (err) 955 return err; 956 957 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 958 EXT4_ERROR_INODE(inode, 959 "logical %d == ei_block %d!", 960 logical, le32_to_cpu(curp->p_idx->ei_block)); 961 return -EIO; 962 } 963 964 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 965 >= le16_to_cpu(curp->p_hdr->eh_max))) { 966 EXT4_ERROR_INODE(inode, 967 "eh_entries %d >= eh_max %d!", 968 le16_to_cpu(curp->p_hdr->eh_entries), 969 le16_to_cpu(curp->p_hdr->eh_max)); 970 return -EIO; 971 } 972 973 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 974 /* insert after */ 975 ext_debug("insert new index %d after: %llu\n", logical, ptr); 976 ix = curp->p_idx + 1; 977 } else { 978 /* insert before */ 979 ext_debug("insert new index %d before: %llu\n", logical, ptr); 980 ix = curp->p_idx; 981 } 982 983 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 984 BUG_ON(len < 0); 985 if (len > 0) { 986 ext_debug("insert new index %d: " 987 "move %d indices from 0x%p to 0x%p\n", 988 logical, len, ix, ix + 1); 989 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 990 } 991 992 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 993 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 994 return -EIO; 995 } 996 997 ix->ei_block = cpu_to_le32(logical); 998 ext4_idx_store_pblock(ix, ptr); 999 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 1000 1001 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 1002 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 1003 return -EIO; 1004 } 1005 1006 err = ext4_ext_dirty(handle, inode, curp); 1007 ext4_std_error(inode->i_sb, err); 1008 1009 return err; 1010 } 1011 1012 /* 1013 * ext4_ext_split: 1014 * inserts new subtree into the path, using free index entry 1015 * at depth @at: 1016 * - allocates all needed blocks (new leaf and all intermediate index blocks) 1017 * - makes decision where to split 1018 * - moves remaining extents and index entries (right to the split point) 1019 * into the newly allocated blocks 1020 * - initializes subtree 1021 */ 1022 static int ext4_ext_split(handle_t *handle, struct inode *inode, 1023 unsigned int flags, 1024 struct ext4_ext_path *path, 1025 struct ext4_extent *newext, int at) 1026 { 1027 struct buffer_head *bh = NULL; 1028 int depth = ext_depth(inode); 1029 struct ext4_extent_header *neh; 1030 struct ext4_extent_idx *fidx; 1031 int i = at, k, m, a; 1032 ext4_fsblk_t newblock, oldblock; 1033 __le32 border; 1034 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1035 int err = 0; 1036 1037 /* make decision: where to split? */ 1038 /* FIXME: now decision is simplest: at current extent */ 1039 1040 /* if current leaf will be split, then we should use 1041 * border from split point */ 1042 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1043 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1044 return -EIO; 1045 } 1046 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1047 border = path[depth].p_ext[1].ee_block; 1048 ext_debug("leaf will be split." 1049 " next leaf starts at %d\n", 1050 le32_to_cpu(border)); 1051 } else { 1052 border = newext->ee_block; 1053 ext_debug("leaf will be added." 1054 " next leaf starts at %d\n", 1055 le32_to_cpu(border)); 1056 } 1057 1058 /* 1059 * If error occurs, then we break processing 1060 * and mark filesystem read-only. index won't 1061 * be inserted and tree will be in consistent 1062 * state. Next mount will repair buffers too. 1063 */ 1064 1065 /* 1066 * Get array to track all allocated blocks. 1067 * We need this to handle errors and free blocks 1068 * upon them. 1069 */ 1070 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 1071 if (!ablocks) 1072 return -ENOMEM; 1073 1074 /* allocate all needed blocks */ 1075 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1076 for (a = 0; a < depth - at; a++) { 1077 newblock = ext4_ext_new_meta_block(handle, inode, path, 1078 newext, &err, flags); 1079 if (newblock == 0) 1080 goto cleanup; 1081 ablocks[a] = newblock; 1082 } 1083 1084 /* initialize new leaf */ 1085 newblock = ablocks[--a]; 1086 if (unlikely(newblock == 0)) { 1087 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1088 err = -EIO; 1089 goto cleanup; 1090 } 1091 bh = sb_getblk(inode->i_sb, newblock); 1092 if (unlikely(!bh)) { 1093 err = -ENOMEM; 1094 goto cleanup; 1095 } 1096 lock_buffer(bh); 1097 1098 err = ext4_journal_get_create_access(handle, bh); 1099 if (err) 1100 goto cleanup; 1101 1102 neh = ext_block_hdr(bh); 1103 neh->eh_entries = 0; 1104 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1105 neh->eh_magic = EXT4_EXT_MAGIC; 1106 neh->eh_depth = 0; 1107 1108 /* move remainder of path[depth] to the new leaf */ 1109 if (unlikely(path[depth].p_hdr->eh_entries != 1110 path[depth].p_hdr->eh_max)) { 1111 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1112 path[depth].p_hdr->eh_entries, 1113 path[depth].p_hdr->eh_max); 1114 err = -EIO; 1115 goto cleanup; 1116 } 1117 /* start copy from next extent */ 1118 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1119 ext4_ext_show_move(inode, path, newblock, depth); 1120 if (m) { 1121 struct ext4_extent *ex; 1122 ex = EXT_FIRST_EXTENT(neh); 1123 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1124 le16_add_cpu(&neh->eh_entries, m); 1125 } 1126 1127 ext4_extent_block_csum_set(inode, neh); 1128 set_buffer_uptodate(bh); 1129 unlock_buffer(bh); 1130 1131 err = ext4_handle_dirty_metadata(handle, inode, bh); 1132 if (err) 1133 goto cleanup; 1134 brelse(bh); 1135 bh = NULL; 1136 1137 /* correct old leaf */ 1138 if (m) { 1139 err = ext4_ext_get_access(handle, inode, path + depth); 1140 if (err) 1141 goto cleanup; 1142 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1143 err = ext4_ext_dirty(handle, inode, path + depth); 1144 if (err) 1145 goto cleanup; 1146 1147 } 1148 1149 /* create intermediate indexes */ 1150 k = depth - at - 1; 1151 if (unlikely(k < 0)) { 1152 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1153 err = -EIO; 1154 goto cleanup; 1155 } 1156 if (k) 1157 ext_debug("create %d intermediate indices\n", k); 1158 /* insert new index into current index block */ 1159 /* current depth stored in i var */ 1160 i = depth - 1; 1161 while (k--) { 1162 oldblock = newblock; 1163 newblock = ablocks[--a]; 1164 bh = sb_getblk(inode->i_sb, newblock); 1165 if (unlikely(!bh)) { 1166 err = -ENOMEM; 1167 goto cleanup; 1168 } 1169 lock_buffer(bh); 1170 1171 err = ext4_journal_get_create_access(handle, bh); 1172 if (err) 1173 goto cleanup; 1174 1175 neh = ext_block_hdr(bh); 1176 neh->eh_entries = cpu_to_le16(1); 1177 neh->eh_magic = EXT4_EXT_MAGIC; 1178 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1179 neh->eh_depth = cpu_to_le16(depth - i); 1180 fidx = EXT_FIRST_INDEX(neh); 1181 fidx->ei_block = border; 1182 ext4_idx_store_pblock(fidx, oldblock); 1183 1184 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1185 i, newblock, le32_to_cpu(border), oldblock); 1186 1187 /* move remainder of path[i] to the new index block */ 1188 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1189 EXT_LAST_INDEX(path[i].p_hdr))) { 1190 EXT4_ERROR_INODE(inode, 1191 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1192 le32_to_cpu(path[i].p_ext->ee_block)); 1193 err = -EIO; 1194 goto cleanup; 1195 } 1196 /* start copy indexes */ 1197 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1198 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1199 EXT_MAX_INDEX(path[i].p_hdr)); 1200 ext4_ext_show_move(inode, path, newblock, i); 1201 if (m) { 1202 memmove(++fidx, path[i].p_idx, 1203 sizeof(struct ext4_extent_idx) * m); 1204 le16_add_cpu(&neh->eh_entries, m); 1205 } 1206 ext4_extent_block_csum_set(inode, neh); 1207 set_buffer_uptodate(bh); 1208 unlock_buffer(bh); 1209 1210 err = ext4_handle_dirty_metadata(handle, inode, bh); 1211 if (err) 1212 goto cleanup; 1213 brelse(bh); 1214 bh = NULL; 1215 1216 /* correct old index */ 1217 if (m) { 1218 err = ext4_ext_get_access(handle, inode, path + i); 1219 if (err) 1220 goto cleanup; 1221 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1222 err = ext4_ext_dirty(handle, inode, path + i); 1223 if (err) 1224 goto cleanup; 1225 } 1226 1227 i--; 1228 } 1229 1230 /* insert new index */ 1231 err = ext4_ext_insert_index(handle, inode, path + at, 1232 le32_to_cpu(border), newblock); 1233 1234 cleanup: 1235 if (bh) { 1236 if (buffer_locked(bh)) 1237 unlock_buffer(bh); 1238 brelse(bh); 1239 } 1240 1241 if (err) { 1242 /* free all allocated blocks in error case */ 1243 for (i = 0; i < depth; i++) { 1244 if (!ablocks[i]) 1245 continue; 1246 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1247 EXT4_FREE_BLOCKS_METADATA); 1248 } 1249 } 1250 kfree(ablocks); 1251 1252 return err; 1253 } 1254 1255 /* 1256 * ext4_ext_grow_indepth: 1257 * implements tree growing procedure: 1258 * - allocates new block 1259 * - moves top-level data (index block or leaf) into the new block 1260 * - initializes new top-level, creating index that points to the 1261 * just created block 1262 */ 1263 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1264 unsigned int flags) 1265 { 1266 struct ext4_extent_header *neh; 1267 struct buffer_head *bh; 1268 ext4_fsblk_t newblock, goal = 0; 1269 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 1270 int err = 0; 1271 1272 /* Try to prepend new index to old one */ 1273 if (ext_depth(inode)) 1274 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); 1275 if (goal > le32_to_cpu(es->s_first_data_block)) { 1276 flags |= EXT4_MB_HINT_TRY_GOAL; 1277 goal--; 1278 } else 1279 goal = ext4_inode_to_goal_block(inode); 1280 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 1281 NULL, &err); 1282 if (newblock == 0) 1283 return err; 1284 1285 bh = sb_getblk(inode->i_sb, newblock); 1286 if (unlikely(!bh)) 1287 return -ENOMEM; 1288 lock_buffer(bh); 1289 1290 err = ext4_journal_get_create_access(handle, bh); 1291 if (err) { 1292 unlock_buffer(bh); 1293 goto out; 1294 } 1295 1296 /* move top-level index/leaf into new block */ 1297 memmove(bh->b_data, EXT4_I(inode)->i_data, 1298 sizeof(EXT4_I(inode)->i_data)); 1299 1300 /* set size of new block */ 1301 neh = ext_block_hdr(bh); 1302 /* old root could have indexes or leaves 1303 * so calculate e_max right way */ 1304 if (ext_depth(inode)) 1305 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1306 else 1307 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1308 neh->eh_magic = EXT4_EXT_MAGIC; 1309 ext4_extent_block_csum_set(inode, neh); 1310 set_buffer_uptodate(bh); 1311 unlock_buffer(bh); 1312 1313 err = ext4_handle_dirty_metadata(handle, inode, bh); 1314 if (err) 1315 goto out; 1316 1317 /* Update top-level index: num,max,pointer */ 1318 neh = ext_inode_hdr(inode); 1319 neh->eh_entries = cpu_to_le16(1); 1320 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1321 if (neh->eh_depth == 0) { 1322 /* Root extent block becomes index block */ 1323 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1324 EXT_FIRST_INDEX(neh)->ei_block = 1325 EXT_FIRST_EXTENT(neh)->ee_block; 1326 } 1327 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1328 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1329 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1330 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1331 1332 le16_add_cpu(&neh->eh_depth, 1); 1333 ext4_mark_inode_dirty(handle, inode); 1334 out: 1335 brelse(bh); 1336 1337 return err; 1338 } 1339 1340 /* 1341 * ext4_ext_create_new_leaf: 1342 * finds empty index and adds new leaf. 1343 * if no free index is found, then it requests in-depth growing. 1344 */ 1345 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1346 unsigned int mb_flags, 1347 unsigned int gb_flags, 1348 struct ext4_ext_path **ppath, 1349 struct ext4_extent *newext) 1350 { 1351 struct ext4_ext_path *path = *ppath; 1352 struct ext4_ext_path *curp; 1353 int depth, i, err = 0; 1354 1355 repeat: 1356 i = depth = ext_depth(inode); 1357 1358 /* walk up to the tree and look for free index entry */ 1359 curp = path + depth; 1360 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1361 i--; 1362 curp--; 1363 } 1364 1365 /* we use already allocated block for index block, 1366 * so subsequent data blocks should be contiguous */ 1367 if (EXT_HAS_FREE_INDEX(curp)) { 1368 /* if we found index with free entry, then use that 1369 * entry: create all needed subtree and add new leaf */ 1370 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1371 if (err) 1372 goto out; 1373 1374 /* refill path */ 1375 path = ext4_find_extent(inode, 1376 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1377 ppath, gb_flags); 1378 if (IS_ERR(path)) 1379 err = PTR_ERR(path); 1380 } else { 1381 /* tree is full, time to grow in depth */ 1382 err = ext4_ext_grow_indepth(handle, inode, mb_flags); 1383 if (err) 1384 goto out; 1385 1386 /* refill path */ 1387 path = ext4_find_extent(inode, 1388 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1389 ppath, gb_flags); 1390 if (IS_ERR(path)) { 1391 err = PTR_ERR(path); 1392 goto out; 1393 } 1394 1395 /* 1396 * only first (depth 0 -> 1) produces free space; 1397 * in all other cases we have to split the grown tree 1398 */ 1399 depth = ext_depth(inode); 1400 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1401 /* now we need to split */ 1402 goto repeat; 1403 } 1404 } 1405 1406 out: 1407 return err; 1408 } 1409 1410 /* 1411 * search the closest allocated block to the left for *logical 1412 * and returns it at @logical + it's physical address at @phys 1413 * if *logical is the smallest allocated block, the function 1414 * returns 0 at @phys 1415 * return value contains 0 (success) or error code 1416 */ 1417 static int ext4_ext_search_left(struct inode *inode, 1418 struct ext4_ext_path *path, 1419 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1420 { 1421 struct ext4_extent_idx *ix; 1422 struct ext4_extent *ex; 1423 int depth, ee_len; 1424 1425 if (unlikely(path == NULL)) { 1426 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1427 return -EIO; 1428 } 1429 depth = path->p_depth; 1430 *phys = 0; 1431 1432 if (depth == 0 && path->p_ext == NULL) 1433 return 0; 1434 1435 /* usually extent in the path covers blocks smaller 1436 * then *logical, but it can be that extent is the 1437 * first one in the file */ 1438 1439 ex = path[depth].p_ext; 1440 ee_len = ext4_ext_get_actual_len(ex); 1441 if (*logical < le32_to_cpu(ex->ee_block)) { 1442 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1443 EXT4_ERROR_INODE(inode, 1444 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1445 *logical, le32_to_cpu(ex->ee_block)); 1446 return -EIO; 1447 } 1448 while (--depth >= 0) { 1449 ix = path[depth].p_idx; 1450 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1451 EXT4_ERROR_INODE(inode, 1452 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1453 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1454 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1455 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1456 depth); 1457 return -EIO; 1458 } 1459 } 1460 return 0; 1461 } 1462 1463 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1464 EXT4_ERROR_INODE(inode, 1465 "logical %d < ee_block %d + ee_len %d!", 1466 *logical, le32_to_cpu(ex->ee_block), ee_len); 1467 return -EIO; 1468 } 1469 1470 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1471 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1472 return 0; 1473 } 1474 1475 /* 1476 * search the closest allocated block to the right for *logical 1477 * and returns it at @logical + it's physical address at @phys 1478 * if *logical is the largest allocated block, the function 1479 * returns 0 at @phys 1480 * return value contains 0 (success) or error code 1481 */ 1482 static int ext4_ext_search_right(struct inode *inode, 1483 struct ext4_ext_path *path, 1484 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1485 struct ext4_extent **ret_ex) 1486 { 1487 struct buffer_head *bh = NULL; 1488 struct ext4_extent_header *eh; 1489 struct ext4_extent_idx *ix; 1490 struct ext4_extent *ex; 1491 ext4_fsblk_t block; 1492 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1493 int ee_len; 1494 1495 if (unlikely(path == NULL)) { 1496 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1497 return -EIO; 1498 } 1499 depth = path->p_depth; 1500 *phys = 0; 1501 1502 if (depth == 0 && path->p_ext == NULL) 1503 return 0; 1504 1505 /* usually extent in the path covers blocks smaller 1506 * then *logical, but it can be that extent is the 1507 * first one in the file */ 1508 1509 ex = path[depth].p_ext; 1510 ee_len = ext4_ext_get_actual_len(ex); 1511 if (*logical < le32_to_cpu(ex->ee_block)) { 1512 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1513 EXT4_ERROR_INODE(inode, 1514 "first_extent(path[%d].p_hdr) != ex", 1515 depth); 1516 return -EIO; 1517 } 1518 while (--depth >= 0) { 1519 ix = path[depth].p_idx; 1520 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1521 EXT4_ERROR_INODE(inode, 1522 "ix != EXT_FIRST_INDEX *logical %d!", 1523 *logical); 1524 return -EIO; 1525 } 1526 } 1527 goto found_extent; 1528 } 1529 1530 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1531 EXT4_ERROR_INODE(inode, 1532 "logical %d < ee_block %d + ee_len %d!", 1533 *logical, le32_to_cpu(ex->ee_block), ee_len); 1534 return -EIO; 1535 } 1536 1537 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1538 /* next allocated block in this leaf */ 1539 ex++; 1540 goto found_extent; 1541 } 1542 1543 /* go up and search for index to the right */ 1544 while (--depth >= 0) { 1545 ix = path[depth].p_idx; 1546 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1547 goto got_index; 1548 } 1549 1550 /* we've gone up to the root and found no index to the right */ 1551 return 0; 1552 1553 got_index: 1554 /* we've found index to the right, let's 1555 * follow it and find the closest allocated 1556 * block to the right */ 1557 ix++; 1558 block = ext4_idx_pblock(ix); 1559 while (++depth < path->p_depth) { 1560 /* subtract from p_depth to get proper eh_depth */ 1561 bh = read_extent_tree_block(inode, block, 1562 path->p_depth - depth, 0); 1563 if (IS_ERR(bh)) 1564 return PTR_ERR(bh); 1565 eh = ext_block_hdr(bh); 1566 ix = EXT_FIRST_INDEX(eh); 1567 block = ext4_idx_pblock(ix); 1568 put_bh(bh); 1569 } 1570 1571 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1572 if (IS_ERR(bh)) 1573 return PTR_ERR(bh); 1574 eh = ext_block_hdr(bh); 1575 ex = EXT_FIRST_EXTENT(eh); 1576 found_extent: 1577 *logical = le32_to_cpu(ex->ee_block); 1578 *phys = ext4_ext_pblock(ex); 1579 *ret_ex = ex; 1580 if (bh) 1581 put_bh(bh); 1582 return 0; 1583 } 1584 1585 /* 1586 * ext4_ext_next_allocated_block: 1587 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1588 * NOTE: it considers block number from index entry as 1589 * allocated block. Thus, index entries have to be consistent 1590 * with leaves. 1591 */ 1592 ext4_lblk_t 1593 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1594 { 1595 int depth; 1596 1597 BUG_ON(path == NULL); 1598 depth = path->p_depth; 1599 1600 if (depth == 0 && path->p_ext == NULL) 1601 return EXT_MAX_BLOCKS; 1602 1603 while (depth >= 0) { 1604 if (depth == path->p_depth) { 1605 /* leaf */ 1606 if (path[depth].p_ext && 1607 path[depth].p_ext != 1608 EXT_LAST_EXTENT(path[depth].p_hdr)) 1609 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1610 } else { 1611 /* index */ 1612 if (path[depth].p_idx != 1613 EXT_LAST_INDEX(path[depth].p_hdr)) 1614 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1615 } 1616 depth--; 1617 } 1618 1619 return EXT_MAX_BLOCKS; 1620 } 1621 1622 /* 1623 * ext4_ext_next_leaf_block: 1624 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1625 */ 1626 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1627 { 1628 int depth; 1629 1630 BUG_ON(path == NULL); 1631 depth = path->p_depth; 1632 1633 /* zero-tree has no leaf blocks at all */ 1634 if (depth == 0) 1635 return EXT_MAX_BLOCKS; 1636 1637 /* go to index block */ 1638 depth--; 1639 1640 while (depth >= 0) { 1641 if (path[depth].p_idx != 1642 EXT_LAST_INDEX(path[depth].p_hdr)) 1643 return (ext4_lblk_t) 1644 le32_to_cpu(path[depth].p_idx[1].ei_block); 1645 depth--; 1646 } 1647 1648 return EXT_MAX_BLOCKS; 1649 } 1650 1651 /* 1652 * ext4_ext_correct_indexes: 1653 * if leaf gets modified and modified extent is first in the leaf, 1654 * then we have to correct all indexes above. 1655 * TODO: do we need to correct tree in all cases? 1656 */ 1657 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1658 struct ext4_ext_path *path) 1659 { 1660 struct ext4_extent_header *eh; 1661 int depth = ext_depth(inode); 1662 struct ext4_extent *ex; 1663 __le32 border; 1664 int k, err = 0; 1665 1666 eh = path[depth].p_hdr; 1667 ex = path[depth].p_ext; 1668 1669 if (unlikely(ex == NULL || eh == NULL)) { 1670 EXT4_ERROR_INODE(inode, 1671 "ex %p == NULL or eh %p == NULL", ex, eh); 1672 return -EIO; 1673 } 1674 1675 if (depth == 0) { 1676 /* there is no tree at all */ 1677 return 0; 1678 } 1679 1680 if (ex != EXT_FIRST_EXTENT(eh)) { 1681 /* we correct tree if first leaf got modified only */ 1682 return 0; 1683 } 1684 1685 /* 1686 * TODO: we need correction if border is smaller than current one 1687 */ 1688 k = depth - 1; 1689 border = path[depth].p_ext->ee_block; 1690 err = ext4_ext_get_access(handle, inode, path + k); 1691 if (err) 1692 return err; 1693 path[k].p_idx->ei_block = border; 1694 err = ext4_ext_dirty(handle, inode, path + k); 1695 if (err) 1696 return err; 1697 1698 while (k--) { 1699 /* change all left-side indexes */ 1700 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1701 break; 1702 err = ext4_ext_get_access(handle, inode, path + k); 1703 if (err) 1704 break; 1705 path[k].p_idx->ei_block = border; 1706 err = ext4_ext_dirty(handle, inode, path + k); 1707 if (err) 1708 break; 1709 } 1710 1711 return err; 1712 } 1713 1714 int 1715 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1716 struct ext4_extent *ex2) 1717 { 1718 unsigned short ext1_ee_len, ext2_ee_len; 1719 1720 /* 1721 * Make sure that both extents are initialized. We don't merge 1722 * unwritten extents so that we can be sure that end_io code has 1723 * the extent that was written properly split out and conversion to 1724 * initialized is trivial. 1725 */ 1726 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1727 return 0; 1728 1729 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1730 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1731 1732 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1733 le32_to_cpu(ex2->ee_block)) 1734 return 0; 1735 1736 /* 1737 * To allow future support for preallocated extents to be added 1738 * as an RO_COMPAT feature, refuse to merge to extents if 1739 * this can result in the top bit of ee_len being set. 1740 */ 1741 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1742 return 0; 1743 if (ext4_ext_is_unwritten(ex1) && 1744 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) || 1745 atomic_read(&EXT4_I(inode)->i_unwritten) || 1746 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN))) 1747 return 0; 1748 #ifdef AGGRESSIVE_TEST 1749 if (ext1_ee_len >= 4) 1750 return 0; 1751 #endif 1752 1753 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1754 return 1; 1755 return 0; 1756 } 1757 1758 /* 1759 * This function tries to merge the "ex" extent to the next extent in the tree. 1760 * It always tries to merge towards right. If you want to merge towards 1761 * left, pass "ex - 1" as argument instead of "ex". 1762 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1763 * 1 if they got merged. 1764 */ 1765 static int ext4_ext_try_to_merge_right(struct inode *inode, 1766 struct ext4_ext_path *path, 1767 struct ext4_extent *ex) 1768 { 1769 struct ext4_extent_header *eh; 1770 unsigned int depth, len; 1771 int merge_done = 0, unwritten; 1772 1773 depth = ext_depth(inode); 1774 BUG_ON(path[depth].p_hdr == NULL); 1775 eh = path[depth].p_hdr; 1776 1777 while (ex < EXT_LAST_EXTENT(eh)) { 1778 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1779 break; 1780 /* merge with next extent! */ 1781 unwritten = ext4_ext_is_unwritten(ex); 1782 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1783 + ext4_ext_get_actual_len(ex + 1)); 1784 if (unwritten) 1785 ext4_ext_mark_unwritten(ex); 1786 1787 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1788 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1789 * sizeof(struct ext4_extent); 1790 memmove(ex + 1, ex + 2, len); 1791 } 1792 le16_add_cpu(&eh->eh_entries, -1); 1793 merge_done = 1; 1794 WARN_ON(eh->eh_entries == 0); 1795 if (!eh->eh_entries) 1796 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1797 } 1798 1799 return merge_done; 1800 } 1801 1802 /* 1803 * This function does a very simple check to see if we can collapse 1804 * an extent tree with a single extent tree leaf block into the inode. 1805 */ 1806 static void ext4_ext_try_to_merge_up(handle_t *handle, 1807 struct inode *inode, 1808 struct ext4_ext_path *path) 1809 { 1810 size_t s; 1811 unsigned max_root = ext4_ext_space_root(inode, 0); 1812 ext4_fsblk_t blk; 1813 1814 if ((path[0].p_depth != 1) || 1815 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1816 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1817 return; 1818 1819 /* 1820 * We need to modify the block allocation bitmap and the block 1821 * group descriptor to release the extent tree block. If we 1822 * can't get the journal credits, give up. 1823 */ 1824 if (ext4_journal_extend(handle, 2)) 1825 return; 1826 1827 /* 1828 * Copy the extent data up to the inode 1829 */ 1830 blk = ext4_idx_pblock(path[0].p_idx); 1831 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1832 sizeof(struct ext4_extent_idx); 1833 s += sizeof(struct ext4_extent_header); 1834 1835 path[1].p_maxdepth = path[0].p_maxdepth; 1836 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1837 path[0].p_depth = 0; 1838 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1839 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1840 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1841 1842 brelse(path[1].p_bh); 1843 ext4_free_blocks(handle, inode, NULL, blk, 1, 1844 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1845 } 1846 1847 /* 1848 * This function tries to merge the @ex extent to neighbours in the tree. 1849 * return 1 if merge left else 0. 1850 */ 1851 static void ext4_ext_try_to_merge(handle_t *handle, 1852 struct inode *inode, 1853 struct ext4_ext_path *path, 1854 struct ext4_extent *ex) { 1855 struct ext4_extent_header *eh; 1856 unsigned int depth; 1857 int merge_done = 0; 1858 1859 depth = ext_depth(inode); 1860 BUG_ON(path[depth].p_hdr == NULL); 1861 eh = path[depth].p_hdr; 1862 1863 if (ex > EXT_FIRST_EXTENT(eh)) 1864 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1865 1866 if (!merge_done) 1867 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1868 1869 ext4_ext_try_to_merge_up(handle, inode, path); 1870 } 1871 1872 /* 1873 * check if a portion of the "newext" extent overlaps with an 1874 * existing extent. 1875 * 1876 * If there is an overlap discovered, it updates the length of the newext 1877 * such that there will be no overlap, and then returns 1. 1878 * If there is no overlap found, it returns 0. 1879 */ 1880 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1881 struct inode *inode, 1882 struct ext4_extent *newext, 1883 struct ext4_ext_path *path) 1884 { 1885 ext4_lblk_t b1, b2; 1886 unsigned int depth, len1; 1887 unsigned int ret = 0; 1888 1889 b1 = le32_to_cpu(newext->ee_block); 1890 len1 = ext4_ext_get_actual_len(newext); 1891 depth = ext_depth(inode); 1892 if (!path[depth].p_ext) 1893 goto out; 1894 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1895 1896 /* 1897 * get the next allocated block if the extent in the path 1898 * is before the requested block(s) 1899 */ 1900 if (b2 < b1) { 1901 b2 = ext4_ext_next_allocated_block(path); 1902 if (b2 == EXT_MAX_BLOCKS) 1903 goto out; 1904 b2 = EXT4_LBLK_CMASK(sbi, b2); 1905 } 1906 1907 /* check for wrap through zero on extent logical start block*/ 1908 if (b1 + len1 < b1) { 1909 len1 = EXT_MAX_BLOCKS - b1; 1910 newext->ee_len = cpu_to_le16(len1); 1911 ret = 1; 1912 } 1913 1914 /* check for overlap */ 1915 if (b1 + len1 > b2) { 1916 newext->ee_len = cpu_to_le16(b2 - b1); 1917 ret = 1; 1918 } 1919 out: 1920 return ret; 1921 } 1922 1923 /* 1924 * ext4_ext_insert_extent: 1925 * tries to merge requsted extent into the existing extent or 1926 * inserts requested extent as new one into the tree, 1927 * creating new leaf in the no-space case. 1928 */ 1929 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1930 struct ext4_ext_path **ppath, 1931 struct ext4_extent *newext, int gb_flags) 1932 { 1933 struct ext4_ext_path *path = *ppath; 1934 struct ext4_extent_header *eh; 1935 struct ext4_extent *ex, *fex; 1936 struct ext4_extent *nearex; /* nearest extent */ 1937 struct ext4_ext_path *npath = NULL; 1938 int depth, len, err; 1939 ext4_lblk_t next; 1940 int mb_flags = 0, unwritten; 1941 1942 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1943 mb_flags |= EXT4_MB_DELALLOC_RESERVED; 1944 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1945 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1946 return -EIO; 1947 } 1948 depth = ext_depth(inode); 1949 ex = path[depth].p_ext; 1950 eh = path[depth].p_hdr; 1951 if (unlikely(path[depth].p_hdr == NULL)) { 1952 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1953 return -EIO; 1954 } 1955 1956 /* try to insert block into found extent and return */ 1957 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1958 1959 /* 1960 * Try to see whether we should rather test the extent on 1961 * right from ex, or from the left of ex. This is because 1962 * ext4_find_extent() can return either extent on the 1963 * left, or on the right from the searched position. This 1964 * will make merging more effective. 1965 */ 1966 if (ex < EXT_LAST_EXTENT(eh) && 1967 (le32_to_cpu(ex->ee_block) + 1968 ext4_ext_get_actual_len(ex) < 1969 le32_to_cpu(newext->ee_block))) { 1970 ex += 1; 1971 goto prepend; 1972 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1973 (le32_to_cpu(newext->ee_block) + 1974 ext4_ext_get_actual_len(newext) < 1975 le32_to_cpu(ex->ee_block))) 1976 ex -= 1; 1977 1978 /* Try to append newex to the ex */ 1979 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1980 ext_debug("append [%d]%d block to %u:[%d]%d" 1981 "(from %llu)\n", 1982 ext4_ext_is_unwritten(newext), 1983 ext4_ext_get_actual_len(newext), 1984 le32_to_cpu(ex->ee_block), 1985 ext4_ext_is_unwritten(ex), 1986 ext4_ext_get_actual_len(ex), 1987 ext4_ext_pblock(ex)); 1988 err = ext4_ext_get_access(handle, inode, 1989 path + depth); 1990 if (err) 1991 return err; 1992 unwritten = ext4_ext_is_unwritten(ex); 1993 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1994 + ext4_ext_get_actual_len(newext)); 1995 if (unwritten) 1996 ext4_ext_mark_unwritten(ex); 1997 eh = path[depth].p_hdr; 1998 nearex = ex; 1999 goto merge; 2000 } 2001 2002 prepend: 2003 /* Try to prepend newex to the ex */ 2004 if (ext4_can_extents_be_merged(inode, newext, ex)) { 2005 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 2006 "(from %llu)\n", 2007 le32_to_cpu(newext->ee_block), 2008 ext4_ext_is_unwritten(newext), 2009 ext4_ext_get_actual_len(newext), 2010 le32_to_cpu(ex->ee_block), 2011 ext4_ext_is_unwritten(ex), 2012 ext4_ext_get_actual_len(ex), 2013 ext4_ext_pblock(ex)); 2014 err = ext4_ext_get_access(handle, inode, 2015 path + depth); 2016 if (err) 2017 return err; 2018 2019 unwritten = ext4_ext_is_unwritten(ex); 2020 ex->ee_block = newext->ee_block; 2021 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 2022 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2023 + ext4_ext_get_actual_len(newext)); 2024 if (unwritten) 2025 ext4_ext_mark_unwritten(ex); 2026 eh = path[depth].p_hdr; 2027 nearex = ex; 2028 goto merge; 2029 } 2030 } 2031 2032 depth = ext_depth(inode); 2033 eh = path[depth].p_hdr; 2034 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2035 goto has_space; 2036 2037 /* probably next leaf has space for us? */ 2038 fex = EXT_LAST_EXTENT(eh); 2039 next = EXT_MAX_BLOCKS; 2040 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2041 next = ext4_ext_next_leaf_block(path); 2042 if (next != EXT_MAX_BLOCKS) { 2043 ext_debug("next leaf block - %u\n", next); 2044 BUG_ON(npath != NULL); 2045 npath = ext4_find_extent(inode, next, NULL, 0); 2046 if (IS_ERR(npath)) 2047 return PTR_ERR(npath); 2048 BUG_ON(npath->p_depth != path->p_depth); 2049 eh = npath[depth].p_hdr; 2050 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2051 ext_debug("next leaf isn't full(%d)\n", 2052 le16_to_cpu(eh->eh_entries)); 2053 path = npath; 2054 goto has_space; 2055 } 2056 ext_debug("next leaf has no free space(%d,%d)\n", 2057 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2058 } 2059 2060 /* 2061 * There is no free space in the found leaf. 2062 * We're gonna add a new leaf in the tree. 2063 */ 2064 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2065 mb_flags |= EXT4_MB_USE_RESERVED; 2066 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2067 ppath, newext); 2068 if (err) 2069 goto cleanup; 2070 depth = ext_depth(inode); 2071 eh = path[depth].p_hdr; 2072 2073 has_space: 2074 nearex = path[depth].p_ext; 2075 2076 err = ext4_ext_get_access(handle, inode, path + depth); 2077 if (err) 2078 goto cleanup; 2079 2080 if (!nearex) { 2081 /* there is no extent in this leaf, create first one */ 2082 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2083 le32_to_cpu(newext->ee_block), 2084 ext4_ext_pblock(newext), 2085 ext4_ext_is_unwritten(newext), 2086 ext4_ext_get_actual_len(newext)); 2087 nearex = EXT_FIRST_EXTENT(eh); 2088 } else { 2089 if (le32_to_cpu(newext->ee_block) 2090 > le32_to_cpu(nearex->ee_block)) { 2091 /* Insert after */ 2092 ext_debug("insert %u:%llu:[%d]%d before: " 2093 "nearest %p\n", 2094 le32_to_cpu(newext->ee_block), 2095 ext4_ext_pblock(newext), 2096 ext4_ext_is_unwritten(newext), 2097 ext4_ext_get_actual_len(newext), 2098 nearex); 2099 nearex++; 2100 } else { 2101 /* Insert before */ 2102 BUG_ON(newext->ee_block == nearex->ee_block); 2103 ext_debug("insert %u:%llu:[%d]%d after: " 2104 "nearest %p\n", 2105 le32_to_cpu(newext->ee_block), 2106 ext4_ext_pblock(newext), 2107 ext4_ext_is_unwritten(newext), 2108 ext4_ext_get_actual_len(newext), 2109 nearex); 2110 } 2111 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2112 if (len > 0) { 2113 ext_debug("insert %u:%llu:[%d]%d: " 2114 "move %d extents from 0x%p to 0x%p\n", 2115 le32_to_cpu(newext->ee_block), 2116 ext4_ext_pblock(newext), 2117 ext4_ext_is_unwritten(newext), 2118 ext4_ext_get_actual_len(newext), 2119 len, nearex, nearex + 1); 2120 memmove(nearex + 1, nearex, 2121 len * sizeof(struct ext4_extent)); 2122 } 2123 } 2124 2125 le16_add_cpu(&eh->eh_entries, 1); 2126 path[depth].p_ext = nearex; 2127 nearex->ee_block = newext->ee_block; 2128 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2129 nearex->ee_len = newext->ee_len; 2130 2131 merge: 2132 /* try to merge extents */ 2133 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2134 ext4_ext_try_to_merge(handle, inode, path, nearex); 2135 2136 2137 /* time to correct all indexes above */ 2138 err = ext4_ext_correct_indexes(handle, inode, path); 2139 if (err) 2140 goto cleanup; 2141 2142 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2143 2144 cleanup: 2145 ext4_ext_drop_refs(npath); 2146 kfree(npath); 2147 return err; 2148 } 2149 2150 static int ext4_fill_fiemap_extents(struct inode *inode, 2151 ext4_lblk_t block, ext4_lblk_t num, 2152 struct fiemap_extent_info *fieinfo) 2153 { 2154 struct ext4_ext_path *path = NULL; 2155 struct ext4_extent *ex; 2156 struct extent_status es; 2157 ext4_lblk_t next, next_del, start = 0, end = 0; 2158 ext4_lblk_t last = block + num; 2159 int exists, depth = 0, err = 0; 2160 unsigned int flags = 0; 2161 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2162 2163 while (block < last && block != EXT_MAX_BLOCKS) { 2164 num = last - block; 2165 /* find extent for this block */ 2166 down_read(&EXT4_I(inode)->i_data_sem); 2167 2168 path = ext4_find_extent(inode, block, &path, 0); 2169 if (IS_ERR(path)) { 2170 up_read(&EXT4_I(inode)->i_data_sem); 2171 err = PTR_ERR(path); 2172 path = NULL; 2173 break; 2174 } 2175 2176 depth = ext_depth(inode); 2177 if (unlikely(path[depth].p_hdr == NULL)) { 2178 up_read(&EXT4_I(inode)->i_data_sem); 2179 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2180 err = -EIO; 2181 break; 2182 } 2183 ex = path[depth].p_ext; 2184 next = ext4_ext_next_allocated_block(path); 2185 2186 flags = 0; 2187 exists = 0; 2188 if (!ex) { 2189 /* there is no extent yet, so try to allocate 2190 * all requested space */ 2191 start = block; 2192 end = block + num; 2193 } else if (le32_to_cpu(ex->ee_block) > block) { 2194 /* need to allocate space before found extent */ 2195 start = block; 2196 end = le32_to_cpu(ex->ee_block); 2197 if (block + num < end) 2198 end = block + num; 2199 } else if (block >= le32_to_cpu(ex->ee_block) 2200 + ext4_ext_get_actual_len(ex)) { 2201 /* need to allocate space after found extent */ 2202 start = block; 2203 end = block + num; 2204 if (end >= next) 2205 end = next; 2206 } else if (block >= le32_to_cpu(ex->ee_block)) { 2207 /* 2208 * some part of requested space is covered 2209 * by found extent 2210 */ 2211 start = block; 2212 end = le32_to_cpu(ex->ee_block) 2213 + ext4_ext_get_actual_len(ex); 2214 if (block + num < end) 2215 end = block + num; 2216 exists = 1; 2217 } else { 2218 BUG(); 2219 } 2220 BUG_ON(end <= start); 2221 2222 if (!exists) { 2223 es.es_lblk = start; 2224 es.es_len = end - start; 2225 es.es_pblk = 0; 2226 } else { 2227 es.es_lblk = le32_to_cpu(ex->ee_block); 2228 es.es_len = ext4_ext_get_actual_len(ex); 2229 es.es_pblk = ext4_ext_pblock(ex); 2230 if (ext4_ext_is_unwritten(ex)) 2231 flags |= FIEMAP_EXTENT_UNWRITTEN; 2232 } 2233 2234 /* 2235 * Find delayed extent and update es accordingly. We call 2236 * it even in !exists case to find out whether es is the 2237 * last existing extent or not. 2238 */ 2239 next_del = ext4_find_delayed_extent(inode, &es); 2240 if (!exists && next_del) { 2241 exists = 1; 2242 flags |= (FIEMAP_EXTENT_DELALLOC | 2243 FIEMAP_EXTENT_UNKNOWN); 2244 } 2245 up_read(&EXT4_I(inode)->i_data_sem); 2246 2247 if (unlikely(es.es_len == 0)) { 2248 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2249 err = -EIO; 2250 break; 2251 } 2252 2253 /* 2254 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2255 * we need to check next == EXT_MAX_BLOCKS because it is 2256 * possible that an extent is with unwritten and delayed 2257 * status due to when an extent is delayed allocated and 2258 * is allocated by fallocate status tree will track both of 2259 * them in a extent. 2260 * 2261 * So we could return a unwritten and delayed extent, and 2262 * its block is equal to 'next'. 2263 */ 2264 if (next == next_del && next == EXT_MAX_BLOCKS) { 2265 flags |= FIEMAP_EXTENT_LAST; 2266 if (unlikely(next_del != EXT_MAX_BLOCKS || 2267 next != EXT_MAX_BLOCKS)) { 2268 EXT4_ERROR_INODE(inode, 2269 "next extent == %u, next " 2270 "delalloc extent = %u", 2271 next, next_del); 2272 err = -EIO; 2273 break; 2274 } 2275 } 2276 2277 if (exists) { 2278 err = fiemap_fill_next_extent(fieinfo, 2279 (__u64)es.es_lblk << blksize_bits, 2280 (__u64)es.es_pblk << blksize_bits, 2281 (__u64)es.es_len << blksize_bits, 2282 flags); 2283 if (err < 0) 2284 break; 2285 if (err == 1) { 2286 err = 0; 2287 break; 2288 } 2289 } 2290 2291 block = es.es_lblk + es.es_len; 2292 } 2293 2294 ext4_ext_drop_refs(path); 2295 kfree(path); 2296 return err; 2297 } 2298 2299 /* 2300 * ext4_ext_put_gap_in_cache: 2301 * calculate boundaries of the gap that the requested block fits into 2302 * and cache this gap 2303 */ 2304 static void 2305 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2306 ext4_lblk_t block) 2307 { 2308 int depth = ext_depth(inode); 2309 unsigned long len = 0; 2310 ext4_lblk_t lblock = 0; 2311 struct ext4_extent *ex; 2312 2313 ex = path[depth].p_ext; 2314 if (ex == NULL) { 2315 /* 2316 * there is no extent yet, so gap is [0;-] and we 2317 * don't cache it 2318 */ 2319 ext_debug("cache gap(whole file):"); 2320 } else if (block < le32_to_cpu(ex->ee_block)) { 2321 lblock = block; 2322 len = le32_to_cpu(ex->ee_block) - block; 2323 ext_debug("cache gap(before): %u [%u:%u]", 2324 block, 2325 le32_to_cpu(ex->ee_block), 2326 ext4_ext_get_actual_len(ex)); 2327 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2328 ext4_es_insert_extent(inode, lblock, len, ~0, 2329 EXTENT_STATUS_HOLE); 2330 } else if (block >= le32_to_cpu(ex->ee_block) 2331 + ext4_ext_get_actual_len(ex)) { 2332 ext4_lblk_t next; 2333 lblock = le32_to_cpu(ex->ee_block) 2334 + ext4_ext_get_actual_len(ex); 2335 2336 next = ext4_ext_next_allocated_block(path); 2337 ext_debug("cache gap(after): [%u:%u] %u", 2338 le32_to_cpu(ex->ee_block), 2339 ext4_ext_get_actual_len(ex), 2340 block); 2341 BUG_ON(next == lblock); 2342 len = next - lblock; 2343 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2344 ext4_es_insert_extent(inode, lblock, len, ~0, 2345 EXTENT_STATUS_HOLE); 2346 } else { 2347 BUG(); 2348 } 2349 2350 ext_debug(" -> %u:%lu\n", lblock, len); 2351 } 2352 2353 /* 2354 * ext4_ext_rm_idx: 2355 * removes index from the index block. 2356 */ 2357 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2358 struct ext4_ext_path *path, int depth) 2359 { 2360 int err; 2361 ext4_fsblk_t leaf; 2362 2363 /* free index block */ 2364 depth--; 2365 path = path + depth; 2366 leaf = ext4_idx_pblock(path->p_idx); 2367 if (unlikely(path->p_hdr->eh_entries == 0)) { 2368 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2369 return -EIO; 2370 } 2371 err = ext4_ext_get_access(handle, inode, path); 2372 if (err) 2373 return err; 2374 2375 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2376 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2377 len *= sizeof(struct ext4_extent_idx); 2378 memmove(path->p_idx, path->p_idx + 1, len); 2379 } 2380 2381 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2382 err = ext4_ext_dirty(handle, inode, path); 2383 if (err) 2384 return err; 2385 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2386 trace_ext4_ext_rm_idx(inode, leaf); 2387 2388 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2389 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2390 2391 while (--depth >= 0) { 2392 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2393 break; 2394 path--; 2395 err = ext4_ext_get_access(handle, inode, path); 2396 if (err) 2397 break; 2398 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2399 err = ext4_ext_dirty(handle, inode, path); 2400 if (err) 2401 break; 2402 } 2403 return err; 2404 } 2405 2406 /* 2407 * ext4_ext_calc_credits_for_single_extent: 2408 * This routine returns max. credits that needed to insert an extent 2409 * to the extent tree. 2410 * When pass the actual path, the caller should calculate credits 2411 * under i_data_sem. 2412 */ 2413 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2414 struct ext4_ext_path *path) 2415 { 2416 if (path) { 2417 int depth = ext_depth(inode); 2418 int ret = 0; 2419 2420 /* probably there is space in leaf? */ 2421 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2422 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2423 2424 /* 2425 * There are some space in the leaf tree, no 2426 * need to account for leaf block credit 2427 * 2428 * bitmaps and block group descriptor blocks 2429 * and other metadata blocks still need to be 2430 * accounted. 2431 */ 2432 /* 1 bitmap, 1 block group descriptor */ 2433 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2434 return ret; 2435 } 2436 } 2437 2438 return ext4_chunk_trans_blocks(inode, nrblocks); 2439 } 2440 2441 /* 2442 * How many index/leaf blocks need to change/allocate to add @extents extents? 2443 * 2444 * If we add a single extent, then in the worse case, each tree level 2445 * index/leaf need to be changed in case of the tree split. 2446 * 2447 * If more extents are inserted, they could cause the whole tree split more 2448 * than once, but this is really rare. 2449 */ 2450 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2451 { 2452 int index; 2453 int depth; 2454 2455 /* If we are converting the inline data, only one is needed here. */ 2456 if (ext4_has_inline_data(inode)) 2457 return 1; 2458 2459 depth = ext_depth(inode); 2460 2461 if (extents <= 1) 2462 index = depth * 2; 2463 else 2464 index = depth * 3; 2465 2466 return index; 2467 } 2468 2469 static inline int get_default_free_blocks_flags(struct inode *inode) 2470 { 2471 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2472 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2473 else if (ext4_should_journal_data(inode)) 2474 return EXT4_FREE_BLOCKS_FORGET; 2475 return 0; 2476 } 2477 2478 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2479 struct ext4_extent *ex, 2480 long long *partial_cluster, 2481 ext4_lblk_t from, ext4_lblk_t to) 2482 { 2483 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2484 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2485 ext4_fsblk_t pblk; 2486 int flags = get_default_free_blocks_flags(inode); 2487 2488 /* 2489 * For bigalloc file systems, we never free a partial cluster 2490 * at the beginning of the extent. Instead, we make a note 2491 * that we tried freeing the cluster, and check to see if we 2492 * need to free it on a subsequent call to ext4_remove_blocks, 2493 * or at the end of the ext4_truncate() operation. 2494 */ 2495 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2496 2497 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2498 /* 2499 * If we have a partial cluster, and it's different from the 2500 * cluster of the last block, we need to explicitly free the 2501 * partial cluster here. 2502 */ 2503 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2504 if ((*partial_cluster > 0) && 2505 (EXT4_B2C(sbi, pblk) != *partial_cluster)) { 2506 ext4_free_blocks(handle, inode, NULL, 2507 EXT4_C2B(sbi, *partial_cluster), 2508 sbi->s_cluster_ratio, flags); 2509 *partial_cluster = 0; 2510 } 2511 2512 #ifdef EXTENTS_STATS 2513 { 2514 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2515 spin_lock(&sbi->s_ext_stats_lock); 2516 sbi->s_ext_blocks += ee_len; 2517 sbi->s_ext_extents++; 2518 if (ee_len < sbi->s_ext_min) 2519 sbi->s_ext_min = ee_len; 2520 if (ee_len > sbi->s_ext_max) 2521 sbi->s_ext_max = ee_len; 2522 if (ext_depth(inode) > sbi->s_depth_max) 2523 sbi->s_depth_max = ext_depth(inode); 2524 spin_unlock(&sbi->s_ext_stats_lock); 2525 } 2526 #endif 2527 if (from >= le32_to_cpu(ex->ee_block) 2528 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2529 /* tail removal */ 2530 ext4_lblk_t num; 2531 unsigned int unaligned; 2532 2533 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2534 pblk = ext4_ext_pblock(ex) + ee_len - num; 2535 /* 2536 * Usually we want to free partial cluster at the end of the 2537 * extent, except for the situation when the cluster is still 2538 * used by any other extent (partial_cluster is negative). 2539 */ 2540 if (*partial_cluster < 0 && 2541 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1)) 2542 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2543 2544 ext_debug("free last %u blocks starting %llu partial %lld\n", 2545 num, pblk, *partial_cluster); 2546 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2547 /* 2548 * If the block range to be freed didn't start at the 2549 * beginning of a cluster, and we removed the entire 2550 * extent and the cluster is not used by any other extent, 2551 * save the partial cluster here, since we might need to 2552 * delete if we determine that the truncate operation has 2553 * removed all of the blocks in the cluster. 2554 * 2555 * On the other hand, if we did not manage to free the whole 2556 * extent, we have to mark the cluster as used (store negative 2557 * cluster number in partial_cluster). 2558 */ 2559 unaligned = EXT4_PBLK_COFF(sbi, pblk); 2560 if (unaligned && (ee_len == num) && 2561 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk)))) 2562 *partial_cluster = EXT4_B2C(sbi, pblk); 2563 else if (unaligned) 2564 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk)); 2565 else if (*partial_cluster > 0) 2566 *partial_cluster = 0; 2567 } else 2568 ext4_error(sbi->s_sb, "strange request: removal(2) " 2569 "%u-%u from %u:%u\n", 2570 from, to, le32_to_cpu(ex->ee_block), ee_len); 2571 return 0; 2572 } 2573 2574 2575 /* 2576 * ext4_ext_rm_leaf() Removes the extents associated with the 2577 * blocks appearing between "start" and "end", and splits the extents 2578 * if "start" and "end" appear in the same extent 2579 * 2580 * @handle: The journal handle 2581 * @inode: The files inode 2582 * @path: The path to the leaf 2583 * @partial_cluster: The cluster which we'll have to free if all extents 2584 * has been released from it. It gets negative in case 2585 * that the cluster is still used. 2586 * @start: The first block to remove 2587 * @end: The last block to remove 2588 */ 2589 static int 2590 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2591 struct ext4_ext_path *path, 2592 long long *partial_cluster, 2593 ext4_lblk_t start, ext4_lblk_t end) 2594 { 2595 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2596 int err = 0, correct_index = 0; 2597 int depth = ext_depth(inode), credits; 2598 struct ext4_extent_header *eh; 2599 ext4_lblk_t a, b; 2600 unsigned num; 2601 ext4_lblk_t ex_ee_block; 2602 unsigned short ex_ee_len; 2603 unsigned unwritten = 0; 2604 struct ext4_extent *ex; 2605 ext4_fsblk_t pblk; 2606 2607 /* the header must be checked already in ext4_ext_remove_space() */ 2608 ext_debug("truncate since %u in leaf to %u\n", start, end); 2609 if (!path[depth].p_hdr) 2610 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2611 eh = path[depth].p_hdr; 2612 if (unlikely(path[depth].p_hdr == NULL)) { 2613 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2614 return -EIO; 2615 } 2616 /* find where to start removing */ 2617 ex = path[depth].p_ext; 2618 if (!ex) 2619 ex = EXT_LAST_EXTENT(eh); 2620 2621 ex_ee_block = le32_to_cpu(ex->ee_block); 2622 ex_ee_len = ext4_ext_get_actual_len(ex); 2623 2624 /* 2625 * If we're starting with an extent other than the last one in the 2626 * node, we need to see if it shares a cluster with the extent to 2627 * the right (towards the end of the file). If its leftmost cluster 2628 * is this extent's rightmost cluster and it is not cluster aligned, 2629 * we'll mark it as a partial that is not to be deallocated. 2630 */ 2631 2632 if (ex != EXT_LAST_EXTENT(eh)) { 2633 ext4_fsblk_t current_pblk, right_pblk; 2634 long long current_cluster, right_cluster; 2635 2636 current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2637 current_cluster = (long long)EXT4_B2C(sbi, current_pblk); 2638 right_pblk = ext4_ext_pblock(ex + 1); 2639 right_cluster = (long long)EXT4_B2C(sbi, right_pblk); 2640 if (current_cluster == right_cluster && 2641 EXT4_PBLK_COFF(sbi, right_pblk)) 2642 *partial_cluster = -right_cluster; 2643 } 2644 2645 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2646 2647 while (ex >= EXT_FIRST_EXTENT(eh) && 2648 ex_ee_block + ex_ee_len > start) { 2649 2650 if (ext4_ext_is_unwritten(ex)) 2651 unwritten = 1; 2652 else 2653 unwritten = 0; 2654 2655 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2656 unwritten, ex_ee_len); 2657 path[depth].p_ext = ex; 2658 2659 a = ex_ee_block > start ? ex_ee_block : start; 2660 b = ex_ee_block+ex_ee_len - 1 < end ? 2661 ex_ee_block+ex_ee_len - 1 : end; 2662 2663 ext_debug(" border %u:%u\n", a, b); 2664 2665 /* If this extent is beyond the end of the hole, skip it */ 2666 if (end < ex_ee_block) { 2667 /* 2668 * We're going to skip this extent and move to another, 2669 * so if this extent is not cluster aligned we have 2670 * to mark the current cluster as used to avoid 2671 * accidentally freeing it later on 2672 */ 2673 pblk = ext4_ext_pblock(ex); 2674 if (EXT4_PBLK_COFF(sbi, pblk)) 2675 *partial_cluster = 2676 -((long long)EXT4_B2C(sbi, pblk)); 2677 ex--; 2678 ex_ee_block = le32_to_cpu(ex->ee_block); 2679 ex_ee_len = ext4_ext_get_actual_len(ex); 2680 continue; 2681 } else if (b != ex_ee_block + ex_ee_len - 1) { 2682 EXT4_ERROR_INODE(inode, 2683 "can not handle truncate %u:%u " 2684 "on extent %u:%u", 2685 start, end, ex_ee_block, 2686 ex_ee_block + ex_ee_len - 1); 2687 err = -EIO; 2688 goto out; 2689 } else if (a != ex_ee_block) { 2690 /* remove tail of the extent */ 2691 num = a - ex_ee_block; 2692 } else { 2693 /* remove whole extent: excellent! */ 2694 num = 0; 2695 } 2696 /* 2697 * 3 for leaf, sb, and inode plus 2 (bmap and group 2698 * descriptor) for each block group; assume two block 2699 * groups plus ex_ee_len/blocks_per_block_group for 2700 * the worst case 2701 */ 2702 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2703 if (ex == EXT_FIRST_EXTENT(eh)) { 2704 correct_index = 1; 2705 credits += (ext_depth(inode)) + 1; 2706 } 2707 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2708 2709 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2710 if (err) 2711 goto out; 2712 2713 err = ext4_ext_get_access(handle, inode, path + depth); 2714 if (err) 2715 goto out; 2716 2717 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2718 a, b); 2719 if (err) 2720 goto out; 2721 2722 if (num == 0) 2723 /* this extent is removed; mark slot entirely unused */ 2724 ext4_ext_store_pblock(ex, 0); 2725 2726 ex->ee_len = cpu_to_le16(num); 2727 /* 2728 * Do not mark unwritten if all the blocks in the 2729 * extent have been removed. 2730 */ 2731 if (unwritten && num) 2732 ext4_ext_mark_unwritten(ex); 2733 /* 2734 * If the extent was completely released, 2735 * we need to remove it from the leaf 2736 */ 2737 if (num == 0) { 2738 if (end != EXT_MAX_BLOCKS - 1) { 2739 /* 2740 * For hole punching, we need to scoot all the 2741 * extents up when an extent is removed so that 2742 * we dont have blank extents in the middle 2743 */ 2744 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2745 sizeof(struct ext4_extent)); 2746 2747 /* Now get rid of the one at the end */ 2748 memset(EXT_LAST_EXTENT(eh), 0, 2749 sizeof(struct ext4_extent)); 2750 } 2751 le16_add_cpu(&eh->eh_entries, -1); 2752 } else if (*partial_cluster > 0) 2753 *partial_cluster = 0; 2754 2755 err = ext4_ext_dirty(handle, inode, path + depth); 2756 if (err) 2757 goto out; 2758 2759 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2760 ext4_ext_pblock(ex)); 2761 ex--; 2762 ex_ee_block = le32_to_cpu(ex->ee_block); 2763 ex_ee_len = ext4_ext_get_actual_len(ex); 2764 } 2765 2766 if (correct_index && eh->eh_entries) 2767 err = ext4_ext_correct_indexes(handle, inode, path); 2768 2769 /* 2770 * If there's a partial cluster and at least one extent remains in 2771 * the leaf, free the partial cluster if it isn't shared with the 2772 * current extent. If there's a partial cluster and no extents 2773 * remain in the leaf, it can't be freed here. It can only be 2774 * freed when it's possible to determine if it's not shared with 2775 * any other extent - when the next leaf is processed or when space 2776 * removal is complete. 2777 */ 2778 if (*partial_cluster > 0 && eh->eh_entries && 2779 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != 2780 *partial_cluster)) { 2781 int flags = get_default_free_blocks_flags(inode); 2782 2783 ext4_free_blocks(handle, inode, NULL, 2784 EXT4_C2B(sbi, *partial_cluster), 2785 sbi->s_cluster_ratio, flags); 2786 *partial_cluster = 0; 2787 } 2788 2789 /* if this leaf is free, then we should 2790 * remove it from index block above */ 2791 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2792 err = ext4_ext_rm_idx(handle, inode, path, depth); 2793 2794 out: 2795 return err; 2796 } 2797 2798 /* 2799 * ext4_ext_more_to_rm: 2800 * returns 1 if current index has to be freed (even partial) 2801 */ 2802 static int 2803 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2804 { 2805 BUG_ON(path->p_idx == NULL); 2806 2807 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2808 return 0; 2809 2810 /* 2811 * if truncate on deeper level happened, it wasn't partial, 2812 * so we have to consider current index for truncation 2813 */ 2814 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2815 return 0; 2816 return 1; 2817 } 2818 2819 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2820 ext4_lblk_t end) 2821 { 2822 struct super_block *sb = inode->i_sb; 2823 int depth = ext_depth(inode); 2824 struct ext4_ext_path *path = NULL; 2825 long long partial_cluster = 0; 2826 handle_t *handle; 2827 int i = 0, err = 0; 2828 2829 ext_debug("truncate since %u to %u\n", start, end); 2830 2831 /* probably first extent we're gonna free will be last in block */ 2832 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2833 if (IS_ERR(handle)) 2834 return PTR_ERR(handle); 2835 2836 again: 2837 trace_ext4_ext_remove_space(inode, start, end, depth); 2838 2839 /* 2840 * Check if we are removing extents inside the extent tree. If that 2841 * is the case, we are going to punch a hole inside the extent tree 2842 * so we have to check whether we need to split the extent covering 2843 * the last block to remove so we can easily remove the part of it 2844 * in ext4_ext_rm_leaf(). 2845 */ 2846 if (end < EXT_MAX_BLOCKS - 1) { 2847 struct ext4_extent *ex; 2848 ext4_lblk_t ee_block; 2849 2850 /* find extent for this block */ 2851 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2852 if (IS_ERR(path)) { 2853 ext4_journal_stop(handle); 2854 return PTR_ERR(path); 2855 } 2856 depth = ext_depth(inode); 2857 /* Leaf not may not exist only if inode has no blocks at all */ 2858 ex = path[depth].p_ext; 2859 if (!ex) { 2860 if (depth) { 2861 EXT4_ERROR_INODE(inode, 2862 "path[%d].p_hdr == NULL", 2863 depth); 2864 err = -EIO; 2865 } 2866 goto out; 2867 } 2868 2869 ee_block = le32_to_cpu(ex->ee_block); 2870 2871 /* 2872 * See if the last block is inside the extent, if so split 2873 * the extent at 'end' block so we can easily remove the 2874 * tail of the first part of the split extent in 2875 * ext4_ext_rm_leaf(). 2876 */ 2877 if (end >= ee_block && 2878 end < ee_block + ext4_ext_get_actual_len(ex) - 1) { 2879 /* 2880 * Split the extent in two so that 'end' is the last 2881 * block in the first new extent. Also we should not 2882 * fail removing space due to ENOSPC so try to use 2883 * reserved block if that happens. 2884 */ 2885 err = ext4_force_split_extent_at(handle, inode, &path, 2886 end + 1, 1); 2887 if (err < 0) 2888 goto out; 2889 } 2890 } 2891 /* 2892 * We start scanning from right side, freeing all the blocks 2893 * after i_size and walking into the tree depth-wise. 2894 */ 2895 depth = ext_depth(inode); 2896 if (path) { 2897 int k = i = depth; 2898 while (--k > 0) 2899 path[k].p_block = 2900 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2901 } else { 2902 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2903 GFP_NOFS); 2904 if (path == NULL) { 2905 ext4_journal_stop(handle); 2906 return -ENOMEM; 2907 } 2908 path[0].p_maxdepth = path[0].p_depth = depth; 2909 path[0].p_hdr = ext_inode_hdr(inode); 2910 i = 0; 2911 2912 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2913 err = -EIO; 2914 goto out; 2915 } 2916 } 2917 err = 0; 2918 2919 while (i >= 0 && err == 0) { 2920 if (i == depth) { 2921 /* this is leaf block */ 2922 err = ext4_ext_rm_leaf(handle, inode, path, 2923 &partial_cluster, start, 2924 end); 2925 /* root level has p_bh == NULL, brelse() eats this */ 2926 brelse(path[i].p_bh); 2927 path[i].p_bh = NULL; 2928 i--; 2929 continue; 2930 } 2931 2932 /* this is index block */ 2933 if (!path[i].p_hdr) { 2934 ext_debug("initialize header\n"); 2935 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2936 } 2937 2938 if (!path[i].p_idx) { 2939 /* this level hasn't been touched yet */ 2940 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2941 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2942 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2943 path[i].p_hdr, 2944 le16_to_cpu(path[i].p_hdr->eh_entries)); 2945 } else { 2946 /* we were already here, see at next index */ 2947 path[i].p_idx--; 2948 } 2949 2950 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2951 i, EXT_FIRST_INDEX(path[i].p_hdr), 2952 path[i].p_idx); 2953 if (ext4_ext_more_to_rm(path + i)) { 2954 struct buffer_head *bh; 2955 /* go to the next level */ 2956 ext_debug("move to level %d (block %llu)\n", 2957 i + 1, ext4_idx_pblock(path[i].p_idx)); 2958 memset(path + i + 1, 0, sizeof(*path)); 2959 bh = read_extent_tree_block(inode, 2960 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 2961 EXT4_EX_NOCACHE); 2962 if (IS_ERR(bh)) { 2963 /* should we reset i_size? */ 2964 err = PTR_ERR(bh); 2965 break; 2966 } 2967 /* Yield here to deal with large extent trees. 2968 * Should be a no-op if we did IO above. */ 2969 cond_resched(); 2970 if (WARN_ON(i + 1 > depth)) { 2971 err = -EIO; 2972 break; 2973 } 2974 path[i + 1].p_bh = bh; 2975 2976 /* save actual number of indexes since this 2977 * number is changed at the next iteration */ 2978 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2979 i++; 2980 } else { 2981 /* we finished processing this index, go up */ 2982 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2983 /* index is empty, remove it; 2984 * handle must be already prepared by the 2985 * truncatei_leaf() */ 2986 err = ext4_ext_rm_idx(handle, inode, path, i); 2987 } 2988 /* root level has p_bh == NULL, brelse() eats this */ 2989 brelse(path[i].p_bh); 2990 path[i].p_bh = NULL; 2991 i--; 2992 ext_debug("return to level %d\n", i); 2993 } 2994 } 2995 2996 trace_ext4_ext_remove_space_done(inode, start, end, depth, 2997 partial_cluster, path->p_hdr->eh_entries); 2998 2999 /* If we still have something in the partial cluster and we have removed 3000 * even the first extent, then we should free the blocks in the partial 3001 * cluster as well. */ 3002 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) { 3003 int flags = get_default_free_blocks_flags(inode); 3004 3005 ext4_free_blocks(handle, inode, NULL, 3006 EXT4_C2B(EXT4_SB(sb), partial_cluster), 3007 EXT4_SB(sb)->s_cluster_ratio, flags); 3008 partial_cluster = 0; 3009 } 3010 3011 /* TODO: flexible tree reduction should be here */ 3012 if (path->p_hdr->eh_entries == 0) { 3013 /* 3014 * truncate to zero freed all the tree, 3015 * so we need to correct eh_depth 3016 */ 3017 err = ext4_ext_get_access(handle, inode, path); 3018 if (err == 0) { 3019 ext_inode_hdr(inode)->eh_depth = 0; 3020 ext_inode_hdr(inode)->eh_max = 3021 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3022 err = ext4_ext_dirty(handle, inode, path); 3023 } 3024 } 3025 out: 3026 ext4_ext_drop_refs(path); 3027 kfree(path); 3028 path = NULL; 3029 if (err == -EAGAIN) 3030 goto again; 3031 ext4_journal_stop(handle); 3032 3033 return err; 3034 } 3035 3036 /* 3037 * called at mount time 3038 */ 3039 void ext4_ext_init(struct super_block *sb) 3040 { 3041 /* 3042 * possible initialization would be here 3043 */ 3044 3045 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 3046 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3047 printk(KERN_INFO "EXT4-fs: file extents enabled" 3048 #ifdef AGGRESSIVE_TEST 3049 ", aggressive tests" 3050 #endif 3051 #ifdef CHECK_BINSEARCH 3052 ", check binsearch" 3053 #endif 3054 #ifdef EXTENTS_STATS 3055 ", stats" 3056 #endif 3057 "\n"); 3058 #endif 3059 #ifdef EXTENTS_STATS 3060 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3061 EXT4_SB(sb)->s_ext_min = 1 << 30; 3062 EXT4_SB(sb)->s_ext_max = 0; 3063 #endif 3064 } 3065 } 3066 3067 /* 3068 * called at umount time 3069 */ 3070 void ext4_ext_release(struct super_block *sb) 3071 { 3072 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3073 return; 3074 3075 #ifdef EXTENTS_STATS 3076 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3077 struct ext4_sb_info *sbi = EXT4_SB(sb); 3078 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3079 sbi->s_ext_blocks, sbi->s_ext_extents, 3080 sbi->s_ext_blocks / sbi->s_ext_extents); 3081 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3082 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3083 } 3084 #endif 3085 } 3086 3087 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3088 { 3089 ext4_lblk_t ee_block; 3090 ext4_fsblk_t ee_pblock; 3091 unsigned int ee_len; 3092 3093 ee_block = le32_to_cpu(ex->ee_block); 3094 ee_len = ext4_ext_get_actual_len(ex); 3095 ee_pblock = ext4_ext_pblock(ex); 3096 3097 if (ee_len == 0) 3098 return 0; 3099 3100 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3101 EXTENT_STATUS_WRITTEN); 3102 } 3103 3104 /* FIXME!! we need to try to merge to left or right after zero-out */ 3105 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3106 { 3107 ext4_fsblk_t ee_pblock; 3108 unsigned int ee_len; 3109 int ret; 3110 3111 ee_len = ext4_ext_get_actual_len(ex); 3112 ee_pblock = ext4_ext_pblock(ex); 3113 3114 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 3115 if (ret > 0) 3116 ret = 0; 3117 3118 return ret; 3119 } 3120 3121 /* 3122 * ext4_split_extent_at() splits an extent at given block. 3123 * 3124 * @handle: the journal handle 3125 * @inode: the file inode 3126 * @path: the path to the extent 3127 * @split: the logical block where the extent is splitted. 3128 * @split_flags: indicates if the extent could be zeroout if split fails, and 3129 * the states(init or unwritten) of new extents. 3130 * @flags: flags used to insert new extent to extent tree. 3131 * 3132 * 3133 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3134 * of which are deterimined by split_flag. 3135 * 3136 * There are two cases: 3137 * a> the extent are splitted into two extent. 3138 * b> split is not needed, and just mark the extent. 3139 * 3140 * return 0 on success. 3141 */ 3142 static int ext4_split_extent_at(handle_t *handle, 3143 struct inode *inode, 3144 struct ext4_ext_path **ppath, 3145 ext4_lblk_t split, 3146 int split_flag, 3147 int flags) 3148 { 3149 struct ext4_ext_path *path = *ppath; 3150 ext4_fsblk_t newblock; 3151 ext4_lblk_t ee_block; 3152 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3153 struct ext4_extent *ex2 = NULL; 3154 unsigned int ee_len, depth; 3155 int err = 0; 3156 3157 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3158 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3159 3160 ext_debug("ext4_split_extents_at: inode %lu, logical" 3161 "block %llu\n", inode->i_ino, (unsigned long long)split); 3162 3163 ext4_ext_show_leaf(inode, path); 3164 3165 depth = ext_depth(inode); 3166 ex = path[depth].p_ext; 3167 ee_block = le32_to_cpu(ex->ee_block); 3168 ee_len = ext4_ext_get_actual_len(ex); 3169 newblock = split - ee_block + ext4_ext_pblock(ex); 3170 3171 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3172 BUG_ON(!ext4_ext_is_unwritten(ex) && 3173 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3174 EXT4_EXT_MARK_UNWRIT1 | 3175 EXT4_EXT_MARK_UNWRIT2)); 3176 3177 err = ext4_ext_get_access(handle, inode, path + depth); 3178 if (err) 3179 goto out; 3180 3181 if (split == ee_block) { 3182 /* 3183 * case b: block @split is the block that the extent begins with 3184 * then we just change the state of the extent, and splitting 3185 * is not needed. 3186 */ 3187 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3188 ext4_ext_mark_unwritten(ex); 3189 else 3190 ext4_ext_mark_initialized(ex); 3191 3192 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3193 ext4_ext_try_to_merge(handle, inode, path, ex); 3194 3195 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3196 goto out; 3197 } 3198 3199 /* case a */ 3200 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3201 ex->ee_len = cpu_to_le16(split - ee_block); 3202 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3203 ext4_ext_mark_unwritten(ex); 3204 3205 /* 3206 * path may lead to new leaf, not to original leaf any more 3207 * after ext4_ext_insert_extent() returns, 3208 */ 3209 err = ext4_ext_dirty(handle, inode, path + depth); 3210 if (err) 3211 goto fix_extent_len; 3212 3213 ex2 = &newex; 3214 ex2->ee_block = cpu_to_le32(split); 3215 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3216 ext4_ext_store_pblock(ex2, newblock); 3217 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3218 ext4_ext_mark_unwritten(ex2); 3219 3220 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags); 3221 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3222 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3223 if (split_flag & EXT4_EXT_DATA_VALID1) { 3224 err = ext4_ext_zeroout(inode, ex2); 3225 zero_ex.ee_block = ex2->ee_block; 3226 zero_ex.ee_len = cpu_to_le16( 3227 ext4_ext_get_actual_len(ex2)); 3228 ext4_ext_store_pblock(&zero_ex, 3229 ext4_ext_pblock(ex2)); 3230 } else { 3231 err = ext4_ext_zeroout(inode, ex); 3232 zero_ex.ee_block = ex->ee_block; 3233 zero_ex.ee_len = cpu_to_le16( 3234 ext4_ext_get_actual_len(ex)); 3235 ext4_ext_store_pblock(&zero_ex, 3236 ext4_ext_pblock(ex)); 3237 } 3238 } else { 3239 err = ext4_ext_zeroout(inode, &orig_ex); 3240 zero_ex.ee_block = orig_ex.ee_block; 3241 zero_ex.ee_len = cpu_to_le16( 3242 ext4_ext_get_actual_len(&orig_ex)); 3243 ext4_ext_store_pblock(&zero_ex, 3244 ext4_ext_pblock(&orig_ex)); 3245 } 3246 3247 if (err) 3248 goto fix_extent_len; 3249 /* update the extent length and mark as initialized */ 3250 ex->ee_len = cpu_to_le16(ee_len); 3251 ext4_ext_try_to_merge(handle, inode, path, ex); 3252 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3253 if (err) 3254 goto fix_extent_len; 3255 3256 /* update extent status tree */ 3257 err = ext4_zeroout_es(inode, &zero_ex); 3258 3259 goto out; 3260 } else if (err) 3261 goto fix_extent_len; 3262 3263 out: 3264 ext4_ext_show_leaf(inode, path); 3265 return err; 3266 3267 fix_extent_len: 3268 ex->ee_len = orig_ex.ee_len; 3269 ext4_ext_dirty(handle, inode, path + path->p_depth); 3270 return err; 3271 } 3272 3273 /* 3274 * ext4_split_extents() splits an extent and mark extent which is covered 3275 * by @map as split_flags indicates 3276 * 3277 * It may result in splitting the extent into multiple extents (up to three) 3278 * There are three possibilities: 3279 * a> There is no split required 3280 * b> Splits in two extents: Split is happening at either end of the extent 3281 * c> Splits in three extents: Somone is splitting in middle of the extent 3282 * 3283 */ 3284 static int ext4_split_extent(handle_t *handle, 3285 struct inode *inode, 3286 struct ext4_ext_path **ppath, 3287 struct ext4_map_blocks *map, 3288 int split_flag, 3289 int flags) 3290 { 3291 struct ext4_ext_path *path = *ppath; 3292 ext4_lblk_t ee_block; 3293 struct ext4_extent *ex; 3294 unsigned int ee_len, depth; 3295 int err = 0; 3296 int unwritten; 3297 int split_flag1, flags1; 3298 int allocated = map->m_len; 3299 3300 depth = ext_depth(inode); 3301 ex = path[depth].p_ext; 3302 ee_block = le32_to_cpu(ex->ee_block); 3303 ee_len = ext4_ext_get_actual_len(ex); 3304 unwritten = ext4_ext_is_unwritten(ex); 3305 3306 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3307 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3308 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3309 if (unwritten) 3310 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3311 EXT4_EXT_MARK_UNWRIT2; 3312 if (split_flag & EXT4_EXT_DATA_VALID2) 3313 split_flag1 |= EXT4_EXT_DATA_VALID1; 3314 err = ext4_split_extent_at(handle, inode, ppath, 3315 map->m_lblk + map->m_len, split_flag1, flags1); 3316 if (err) 3317 goto out; 3318 } else { 3319 allocated = ee_len - (map->m_lblk - ee_block); 3320 } 3321 /* 3322 * Update path is required because previous ext4_split_extent_at() may 3323 * result in split of original leaf or extent zeroout. 3324 */ 3325 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3326 if (IS_ERR(path)) 3327 return PTR_ERR(path); 3328 depth = ext_depth(inode); 3329 ex = path[depth].p_ext; 3330 if (!ex) { 3331 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3332 (unsigned long) map->m_lblk); 3333 return -EIO; 3334 } 3335 unwritten = ext4_ext_is_unwritten(ex); 3336 split_flag1 = 0; 3337 3338 if (map->m_lblk >= ee_block) { 3339 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3340 if (unwritten) { 3341 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3342 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3343 EXT4_EXT_MARK_UNWRIT2); 3344 } 3345 err = ext4_split_extent_at(handle, inode, ppath, 3346 map->m_lblk, split_flag1, flags); 3347 if (err) 3348 goto out; 3349 } 3350 3351 ext4_ext_show_leaf(inode, path); 3352 out: 3353 return err ? err : allocated; 3354 } 3355 3356 /* 3357 * This function is called by ext4_ext_map_blocks() if someone tries to write 3358 * to an unwritten extent. It may result in splitting the unwritten 3359 * extent into multiple extents (up to three - one initialized and two 3360 * unwritten). 3361 * There are three possibilities: 3362 * a> There is no split required: Entire extent should be initialized 3363 * b> Splits in two extents: Write is happening at either end of the extent 3364 * c> Splits in three extents: Somone is writing in middle of the extent 3365 * 3366 * Pre-conditions: 3367 * - The extent pointed to by 'path' is unwritten. 3368 * - The extent pointed to by 'path' contains a superset 3369 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3370 * 3371 * Post-conditions on success: 3372 * - the returned value is the number of blocks beyond map->l_lblk 3373 * that are allocated and initialized. 3374 * It is guaranteed to be >= map->m_len. 3375 */ 3376 static int ext4_ext_convert_to_initialized(handle_t *handle, 3377 struct inode *inode, 3378 struct ext4_map_blocks *map, 3379 struct ext4_ext_path **ppath, 3380 int flags) 3381 { 3382 struct ext4_ext_path *path = *ppath; 3383 struct ext4_sb_info *sbi; 3384 struct ext4_extent_header *eh; 3385 struct ext4_map_blocks split_map; 3386 struct ext4_extent zero_ex; 3387 struct ext4_extent *ex, *abut_ex; 3388 ext4_lblk_t ee_block, eof_block; 3389 unsigned int ee_len, depth, map_len = map->m_len; 3390 int allocated = 0, max_zeroout = 0; 3391 int err = 0; 3392 int split_flag = 0; 3393 3394 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3395 "block %llu, max_blocks %u\n", inode->i_ino, 3396 (unsigned long long)map->m_lblk, map_len); 3397 3398 sbi = EXT4_SB(inode->i_sb); 3399 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3400 inode->i_sb->s_blocksize_bits; 3401 if (eof_block < map->m_lblk + map_len) 3402 eof_block = map->m_lblk + map_len; 3403 3404 depth = ext_depth(inode); 3405 eh = path[depth].p_hdr; 3406 ex = path[depth].p_ext; 3407 ee_block = le32_to_cpu(ex->ee_block); 3408 ee_len = ext4_ext_get_actual_len(ex); 3409 zero_ex.ee_len = 0; 3410 3411 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3412 3413 /* Pre-conditions */ 3414 BUG_ON(!ext4_ext_is_unwritten(ex)); 3415 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3416 3417 /* 3418 * Attempt to transfer newly initialized blocks from the currently 3419 * unwritten extent to its neighbor. This is much cheaper 3420 * than an insertion followed by a merge as those involve costly 3421 * memmove() calls. Transferring to the left is the common case in 3422 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3423 * followed by append writes. 3424 * 3425 * Limitations of the current logic: 3426 * - L1: we do not deal with writes covering the whole extent. 3427 * This would require removing the extent if the transfer 3428 * is possible. 3429 * - L2: we only attempt to merge with an extent stored in the 3430 * same extent tree node. 3431 */ 3432 if ((map->m_lblk == ee_block) && 3433 /* See if we can merge left */ 3434 (map_len < ee_len) && /*L1*/ 3435 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3436 ext4_lblk_t prev_lblk; 3437 ext4_fsblk_t prev_pblk, ee_pblk; 3438 unsigned int prev_len; 3439 3440 abut_ex = ex - 1; 3441 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3442 prev_len = ext4_ext_get_actual_len(abut_ex); 3443 prev_pblk = ext4_ext_pblock(abut_ex); 3444 ee_pblk = ext4_ext_pblock(ex); 3445 3446 /* 3447 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3448 * upon those conditions: 3449 * - C1: abut_ex is initialized, 3450 * - C2: abut_ex is logically abutting ex, 3451 * - C3: abut_ex is physically abutting ex, 3452 * - C4: abut_ex can receive the additional blocks without 3453 * overflowing the (initialized) length limit. 3454 */ 3455 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3456 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3457 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3458 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3459 err = ext4_ext_get_access(handle, inode, path + depth); 3460 if (err) 3461 goto out; 3462 3463 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3464 map, ex, abut_ex); 3465 3466 /* Shift the start of ex by 'map_len' blocks */ 3467 ex->ee_block = cpu_to_le32(ee_block + map_len); 3468 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3469 ex->ee_len = cpu_to_le16(ee_len - map_len); 3470 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3471 3472 /* Extend abut_ex by 'map_len' blocks */ 3473 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3474 3475 /* Result: number of initialized blocks past m_lblk */ 3476 allocated = map_len; 3477 } 3478 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3479 (map_len < ee_len) && /*L1*/ 3480 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3481 /* See if we can merge right */ 3482 ext4_lblk_t next_lblk; 3483 ext4_fsblk_t next_pblk, ee_pblk; 3484 unsigned int next_len; 3485 3486 abut_ex = ex + 1; 3487 next_lblk = le32_to_cpu(abut_ex->ee_block); 3488 next_len = ext4_ext_get_actual_len(abut_ex); 3489 next_pblk = ext4_ext_pblock(abut_ex); 3490 ee_pblk = ext4_ext_pblock(ex); 3491 3492 /* 3493 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3494 * upon those conditions: 3495 * - C1: abut_ex is initialized, 3496 * - C2: abut_ex is logically abutting ex, 3497 * - C3: abut_ex is physically abutting ex, 3498 * - C4: abut_ex can receive the additional blocks without 3499 * overflowing the (initialized) length limit. 3500 */ 3501 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3502 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3503 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3504 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3505 err = ext4_ext_get_access(handle, inode, path + depth); 3506 if (err) 3507 goto out; 3508 3509 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3510 map, ex, abut_ex); 3511 3512 /* Shift the start of abut_ex by 'map_len' blocks */ 3513 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3514 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3515 ex->ee_len = cpu_to_le16(ee_len - map_len); 3516 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3517 3518 /* Extend abut_ex by 'map_len' blocks */ 3519 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3520 3521 /* Result: number of initialized blocks past m_lblk */ 3522 allocated = map_len; 3523 } 3524 } 3525 if (allocated) { 3526 /* Mark the block containing both extents as dirty */ 3527 ext4_ext_dirty(handle, inode, path + depth); 3528 3529 /* Update path to point to the right extent */ 3530 path[depth].p_ext = abut_ex; 3531 goto out; 3532 } else 3533 allocated = ee_len - (map->m_lblk - ee_block); 3534 3535 WARN_ON(map->m_lblk < ee_block); 3536 /* 3537 * It is safe to convert extent to initialized via explicit 3538 * zeroout only if extent is fully inside i_size or new_size. 3539 */ 3540 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3541 3542 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3543 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3544 (inode->i_sb->s_blocksize_bits - 10); 3545 3546 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3547 if (max_zeroout && (ee_len <= max_zeroout)) { 3548 err = ext4_ext_zeroout(inode, ex); 3549 if (err) 3550 goto out; 3551 zero_ex.ee_block = ex->ee_block; 3552 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)); 3553 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex)); 3554 3555 err = ext4_ext_get_access(handle, inode, path + depth); 3556 if (err) 3557 goto out; 3558 ext4_ext_mark_initialized(ex); 3559 ext4_ext_try_to_merge(handle, inode, path, ex); 3560 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3561 goto out; 3562 } 3563 3564 /* 3565 * four cases: 3566 * 1. split the extent into three extents. 3567 * 2. split the extent into two extents, zeroout the first half. 3568 * 3. split the extent into two extents, zeroout the second half. 3569 * 4. split the extent into two extents with out zeroout. 3570 */ 3571 split_map.m_lblk = map->m_lblk; 3572 split_map.m_len = map->m_len; 3573 3574 if (max_zeroout && (allocated > map->m_len)) { 3575 if (allocated <= max_zeroout) { 3576 /* case 3 */ 3577 zero_ex.ee_block = 3578 cpu_to_le32(map->m_lblk); 3579 zero_ex.ee_len = cpu_to_le16(allocated); 3580 ext4_ext_store_pblock(&zero_ex, 3581 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3582 err = ext4_ext_zeroout(inode, &zero_ex); 3583 if (err) 3584 goto out; 3585 split_map.m_lblk = map->m_lblk; 3586 split_map.m_len = allocated; 3587 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3588 /* case 2 */ 3589 if (map->m_lblk != ee_block) { 3590 zero_ex.ee_block = ex->ee_block; 3591 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3592 ee_block); 3593 ext4_ext_store_pblock(&zero_ex, 3594 ext4_ext_pblock(ex)); 3595 err = ext4_ext_zeroout(inode, &zero_ex); 3596 if (err) 3597 goto out; 3598 } 3599 3600 split_map.m_lblk = ee_block; 3601 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3602 allocated = map->m_len; 3603 } 3604 } 3605 3606 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag, 3607 flags); 3608 if (err > 0) 3609 err = 0; 3610 out: 3611 /* If we have gotten a failure, don't zero out status tree */ 3612 if (!err) 3613 err = ext4_zeroout_es(inode, &zero_ex); 3614 return err ? err : allocated; 3615 } 3616 3617 /* 3618 * This function is called by ext4_ext_map_blocks() from 3619 * ext4_get_blocks_dio_write() when DIO to write 3620 * to an unwritten extent. 3621 * 3622 * Writing to an unwritten extent may result in splitting the unwritten 3623 * extent into multiple initialized/unwritten extents (up to three) 3624 * There are three possibilities: 3625 * a> There is no split required: Entire extent should be unwritten 3626 * b> Splits in two extents: Write is happening at either end of the extent 3627 * c> Splits in three extents: Somone is writing in middle of the extent 3628 * 3629 * This works the same way in the case of initialized -> unwritten conversion. 3630 * 3631 * One of more index blocks maybe needed if the extent tree grow after 3632 * the unwritten extent split. To prevent ENOSPC occur at the IO 3633 * complete, we need to split the unwritten extent before DIO submit 3634 * the IO. The unwritten extent called at this time will be split 3635 * into three unwritten extent(at most). After IO complete, the part 3636 * being filled will be convert to initialized by the end_io callback function 3637 * via ext4_convert_unwritten_extents(). 3638 * 3639 * Returns the size of unwritten extent to be written on success. 3640 */ 3641 static int ext4_split_convert_extents(handle_t *handle, 3642 struct inode *inode, 3643 struct ext4_map_blocks *map, 3644 struct ext4_ext_path **ppath, 3645 int flags) 3646 { 3647 struct ext4_ext_path *path = *ppath; 3648 ext4_lblk_t eof_block; 3649 ext4_lblk_t ee_block; 3650 struct ext4_extent *ex; 3651 unsigned int ee_len; 3652 int split_flag = 0, depth; 3653 3654 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3655 __func__, inode->i_ino, 3656 (unsigned long long)map->m_lblk, map->m_len); 3657 3658 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3659 inode->i_sb->s_blocksize_bits; 3660 if (eof_block < map->m_lblk + map->m_len) 3661 eof_block = map->m_lblk + map->m_len; 3662 /* 3663 * It is safe to convert extent to initialized via explicit 3664 * zeroout only if extent is fully insde i_size or new_size. 3665 */ 3666 depth = ext_depth(inode); 3667 ex = path[depth].p_ext; 3668 ee_block = le32_to_cpu(ex->ee_block); 3669 ee_len = ext4_ext_get_actual_len(ex); 3670 3671 /* Convert to unwritten */ 3672 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3673 split_flag |= EXT4_EXT_DATA_VALID1; 3674 /* Convert to initialized */ 3675 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3676 split_flag |= ee_block + ee_len <= eof_block ? 3677 EXT4_EXT_MAY_ZEROOUT : 0; 3678 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3679 } 3680 flags |= EXT4_GET_BLOCKS_PRE_IO; 3681 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags); 3682 } 3683 3684 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3685 struct inode *inode, 3686 struct ext4_map_blocks *map, 3687 struct ext4_ext_path **ppath) 3688 { 3689 struct ext4_ext_path *path = *ppath; 3690 struct ext4_extent *ex; 3691 ext4_lblk_t ee_block; 3692 unsigned int ee_len; 3693 int depth; 3694 int err = 0; 3695 3696 depth = ext_depth(inode); 3697 ex = path[depth].p_ext; 3698 ee_block = le32_to_cpu(ex->ee_block); 3699 ee_len = ext4_ext_get_actual_len(ex); 3700 3701 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3702 "block %llu, max_blocks %u\n", inode->i_ino, 3703 (unsigned long long)ee_block, ee_len); 3704 3705 /* If extent is larger than requested it is a clear sign that we still 3706 * have some extent state machine issues left. So extent_split is still 3707 * required. 3708 * TODO: Once all related issues will be fixed this situation should be 3709 * illegal. 3710 */ 3711 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3712 #ifdef EXT4_DEBUG 3713 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3714 " len %u; IO logical block %llu, len %u\n", 3715 inode->i_ino, (unsigned long long)ee_block, ee_len, 3716 (unsigned long long)map->m_lblk, map->m_len); 3717 #endif 3718 err = ext4_split_convert_extents(handle, inode, map, ppath, 3719 EXT4_GET_BLOCKS_CONVERT); 3720 if (err < 0) 3721 return err; 3722 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3723 if (IS_ERR(path)) 3724 return PTR_ERR(path); 3725 depth = ext_depth(inode); 3726 ex = path[depth].p_ext; 3727 } 3728 3729 err = ext4_ext_get_access(handle, inode, path + depth); 3730 if (err) 3731 goto out; 3732 /* first mark the extent as initialized */ 3733 ext4_ext_mark_initialized(ex); 3734 3735 /* note: ext4_ext_correct_indexes() isn't needed here because 3736 * borders are not changed 3737 */ 3738 ext4_ext_try_to_merge(handle, inode, path, ex); 3739 3740 /* Mark modified extent as dirty */ 3741 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3742 out: 3743 ext4_ext_show_leaf(inode, path); 3744 return err; 3745 } 3746 3747 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3748 sector_t block, int count) 3749 { 3750 int i; 3751 for (i = 0; i < count; i++) 3752 unmap_underlying_metadata(bdev, block + i); 3753 } 3754 3755 /* 3756 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3757 */ 3758 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3759 ext4_lblk_t lblk, 3760 struct ext4_ext_path *path, 3761 unsigned int len) 3762 { 3763 int i, depth; 3764 struct ext4_extent_header *eh; 3765 struct ext4_extent *last_ex; 3766 3767 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3768 return 0; 3769 3770 depth = ext_depth(inode); 3771 eh = path[depth].p_hdr; 3772 3773 /* 3774 * We're going to remove EOFBLOCKS_FL entirely in future so we 3775 * do not care for this case anymore. Simply remove the flag 3776 * if there are no extents. 3777 */ 3778 if (unlikely(!eh->eh_entries)) 3779 goto out; 3780 last_ex = EXT_LAST_EXTENT(eh); 3781 /* 3782 * We should clear the EOFBLOCKS_FL flag if we are writing the 3783 * last block in the last extent in the file. We test this by 3784 * first checking to see if the caller to 3785 * ext4_ext_get_blocks() was interested in the last block (or 3786 * a block beyond the last block) in the current extent. If 3787 * this turns out to be false, we can bail out from this 3788 * function immediately. 3789 */ 3790 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3791 ext4_ext_get_actual_len(last_ex)) 3792 return 0; 3793 /* 3794 * If the caller does appear to be planning to write at or 3795 * beyond the end of the current extent, we then test to see 3796 * if the current extent is the last extent in the file, by 3797 * checking to make sure it was reached via the rightmost node 3798 * at each level of the tree. 3799 */ 3800 for (i = depth-1; i >= 0; i--) 3801 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3802 return 0; 3803 out: 3804 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3805 return ext4_mark_inode_dirty(handle, inode); 3806 } 3807 3808 /** 3809 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3810 * 3811 * Return 1 if there is a delalloc block in the range, otherwise 0. 3812 */ 3813 int ext4_find_delalloc_range(struct inode *inode, 3814 ext4_lblk_t lblk_start, 3815 ext4_lblk_t lblk_end) 3816 { 3817 struct extent_status es; 3818 3819 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es); 3820 if (es.es_len == 0) 3821 return 0; /* there is no delay extent in this tree */ 3822 else if (es.es_lblk <= lblk_start && 3823 lblk_start < es.es_lblk + es.es_len) 3824 return 1; 3825 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3826 return 1; 3827 else 3828 return 0; 3829 } 3830 3831 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3832 { 3833 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3834 ext4_lblk_t lblk_start, lblk_end; 3835 lblk_start = EXT4_LBLK_CMASK(sbi, lblk); 3836 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3837 3838 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3839 } 3840 3841 /** 3842 * Determines how many complete clusters (out of those specified by the 'map') 3843 * are under delalloc and were reserved quota for. 3844 * This function is called when we are writing out the blocks that were 3845 * originally written with their allocation delayed, but then the space was 3846 * allocated using fallocate() before the delayed allocation could be resolved. 3847 * The cases to look for are: 3848 * ('=' indicated delayed allocated blocks 3849 * '-' indicates non-delayed allocated blocks) 3850 * (a) partial clusters towards beginning and/or end outside of allocated range 3851 * are not delalloc'ed. 3852 * Ex: 3853 * |----c---=|====c====|====c====|===-c----| 3854 * |++++++ allocated ++++++| 3855 * ==> 4 complete clusters in above example 3856 * 3857 * (b) partial cluster (outside of allocated range) towards either end is 3858 * marked for delayed allocation. In this case, we will exclude that 3859 * cluster. 3860 * Ex: 3861 * |----====c========|========c========| 3862 * |++++++ allocated ++++++| 3863 * ==> 1 complete clusters in above example 3864 * 3865 * Ex: 3866 * |================c================| 3867 * |++++++ allocated ++++++| 3868 * ==> 0 complete clusters in above example 3869 * 3870 * The ext4_da_update_reserve_space will be called only if we 3871 * determine here that there were some "entire" clusters that span 3872 * this 'allocated' range. 3873 * In the non-bigalloc case, this function will just end up returning num_blks 3874 * without ever calling ext4_find_delalloc_range. 3875 */ 3876 static unsigned int 3877 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3878 unsigned int num_blks) 3879 { 3880 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3881 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3882 ext4_lblk_t lblk_from, lblk_to, c_offset; 3883 unsigned int allocated_clusters = 0; 3884 3885 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3886 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3887 3888 /* max possible clusters for this allocation */ 3889 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3890 3891 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3892 3893 /* Check towards left side */ 3894 c_offset = EXT4_LBLK_COFF(sbi, lblk_start); 3895 if (c_offset) { 3896 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start); 3897 lblk_to = lblk_from + c_offset - 1; 3898 3899 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3900 allocated_clusters--; 3901 } 3902 3903 /* Now check towards right. */ 3904 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks); 3905 if (allocated_clusters && c_offset) { 3906 lblk_from = lblk_start + num_blks; 3907 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3908 3909 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3910 allocated_clusters--; 3911 } 3912 3913 return allocated_clusters; 3914 } 3915 3916 static int 3917 convert_initialized_extent(handle_t *handle, struct inode *inode, 3918 struct ext4_map_blocks *map, 3919 struct ext4_ext_path **ppath, int flags, 3920 unsigned int allocated, ext4_fsblk_t newblock) 3921 { 3922 struct ext4_ext_path *path = *ppath; 3923 struct ext4_extent *ex; 3924 ext4_lblk_t ee_block; 3925 unsigned int ee_len; 3926 int depth; 3927 int err = 0; 3928 3929 /* 3930 * Make sure that the extent is no bigger than we support with 3931 * unwritten extent 3932 */ 3933 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3934 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3935 3936 depth = ext_depth(inode); 3937 ex = path[depth].p_ext; 3938 ee_block = le32_to_cpu(ex->ee_block); 3939 ee_len = ext4_ext_get_actual_len(ex); 3940 3941 ext_debug("%s: inode %lu, logical" 3942 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3943 (unsigned long long)ee_block, ee_len); 3944 3945 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3946 err = ext4_split_convert_extents(handle, inode, map, ppath, 3947 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3948 if (err < 0) 3949 return err; 3950 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3951 if (IS_ERR(path)) 3952 return PTR_ERR(path); 3953 depth = ext_depth(inode); 3954 ex = path[depth].p_ext; 3955 if (!ex) { 3956 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3957 (unsigned long) map->m_lblk); 3958 return -EIO; 3959 } 3960 } 3961 3962 err = ext4_ext_get_access(handle, inode, path + depth); 3963 if (err) 3964 return err; 3965 /* first mark the extent as unwritten */ 3966 ext4_ext_mark_unwritten(ex); 3967 3968 /* note: ext4_ext_correct_indexes() isn't needed here because 3969 * borders are not changed 3970 */ 3971 ext4_ext_try_to_merge(handle, inode, path, ex); 3972 3973 /* Mark modified extent as dirty */ 3974 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3975 if (err) 3976 return err; 3977 ext4_ext_show_leaf(inode, path); 3978 3979 ext4_update_inode_fsync_trans(handle, inode, 1); 3980 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len); 3981 if (err) 3982 return err; 3983 map->m_flags |= EXT4_MAP_UNWRITTEN; 3984 if (allocated > map->m_len) 3985 allocated = map->m_len; 3986 map->m_len = allocated; 3987 return allocated; 3988 } 3989 3990 static int 3991 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 3992 struct ext4_map_blocks *map, 3993 struct ext4_ext_path **ppath, int flags, 3994 unsigned int allocated, ext4_fsblk_t newblock) 3995 { 3996 struct ext4_ext_path *path = *ppath; 3997 int ret = 0; 3998 int err = 0; 3999 ext4_io_end_t *io = ext4_inode_aio(inode); 4000 4001 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 4002 "block %llu, max_blocks %u, flags %x, allocated %u\n", 4003 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 4004 flags, allocated); 4005 ext4_ext_show_leaf(inode, path); 4006 4007 /* 4008 * When writing into unwritten space, we should not fail to 4009 * allocate metadata blocks for the new extent block if needed. 4010 */ 4011 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 4012 4013 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 4014 allocated, newblock); 4015 4016 /* get_block() before submit the IO, split the extent */ 4017 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 4018 ret = ext4_split_convert_extents(handle, inode, map, ppath, 4019 flags | EXT4_GET_BLOCKS_CONVERT); 4020 if (ret <= 0) 4021 goto out; 4022 /* 4023 * Flag the inode(non aio case) or end_io struct (aio case) 4024 * that this IO needs to conversion to written when IO is 4025 * completed 4026 */ 4027 if (io) 4028 ext4_set_io_unwritten_flag(inode, io); 4029 else 4030 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 4031 map->m_flags |= EXT4_MAP_UNWRITTEN; 4032 goto out; 4033 } 4034 /* IO end_io complete, convert the filled extent to written */ 4035 if (flags & EXT4_GET_BLOCKS_CONVERT) { 4036 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 4037 ppath); 4038 if (ret >= 0) { 4039 ext4_update_inode_fsync_trans(handle, inode, 1); 4040 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4041 path, map->m_len); 4042 } else 4043 err = ret; 4044 map->m_flags |= EXT4_MAP_MAPPED; 4045 map->m_pblk = newblock; 4046 if (allocated > map->m_len) 4047 allocated = map->m_len; 4048 map->m_len = allocated; 4049 goto out2; 4050 } 4051 /* buffered IO case */ 4052 /* 4053 * repeat fallocate creation request 4054 * we already have an unwritten extent 4055 */ 4056 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4057 map->m_flags |= EXT4_MAP_UNWRITTEN; 4058 goto map_out; 4059 } 4060 4061 /* buffered READ or buffered write_begin() lookup */ 4062 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4063 /* 4064 * We have blocks reserved already. We 4065 * return allocated blocks so that delalloc 4066 * won't do block reservation for us. But 4067 * the buffer head will be unmapped so that 4068 * a read from the block returns 0s. 4069 */ 4070 map->m_flags |= EXT4_MAP_UNWRITTEN; 4071 goto out1; 4072 } 4073 4074 /* buffered write, writepage time, convert*/ 4075 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags); 4076 if (ret >= 0) 4077 ext4_update_inode_fsync_trans(handle, inode, 1); 4078 out: 4079 if (ret <= 0) { 4080 err = ret; 4081 goto out2; 4082 } else 4083 allocated = ret; 4084 map->m_flags |= EXT4_MAP_NEW; 4085 /* 4086 * if we allocated more blocks than requested 4087 * we need to make sure we unmap the extra block 4088 * allocated. The actual needed block will get 4089 * unmapped later when we find the buffer_head marked 4090 * new. 4091 */ 4092 if (allocated > map->m_len) { 4093 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 4094 newblock + map->m_len, 4095 allocated - map->m_len); 4096 allocated = map->m_len; 4097 } 4098 map->m_len = allocated; 4099 4100 /* 4101 * If we have done fallocate with the offset that is already 4102 * delayed allocated, we would have block reservation 4103 * and quota reservation done in the delayed write path. 4104 * But fallocate would have already updated quota and block 4105 * count for this offset. So cancel these reservation 4106 */ 4107 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4108 unsigned int reserved_clusters; 4109 reserved_clusters = get_reserved_cluster_alloc(inode, 4110 map->m_lblk, map->m_len); 4111 if (reserved_clusters) 4112 ext4_da_update_reserve_space(inode, 4113 reserved_clusters, 4114 0); 4115 } 4116 4117 map_out: 4118 map->m_flags |= EXT4_MAP_MAPPED; 4119 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 4120 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 4121 map->m_len); 4122 if (err < 0) 4123 goto out2; 4124 } 4125 out1: 4126 if (allocated > map->m_len) 4127 allocated = map->m_len; 4128 ext4_ext_show_leaf(inode, path); 4129 map->m_pblk = newblock; 4130 map->m_len = allocated; 4131 out2: 4132 return err ? err : allocated; 4133 } 4134 4135 /* 4136 * get_implied_cluster_alloc - check to see if the requested 4137 * allocation (in the map structure) overlaps with a cluster already 4138 * allocated in an extent. 4139 * @sb The filesystem superblock structure 4140 * @map The requested lblk->pblk mapping 4141 * @ex The extent structure which might contain an implied 4142 * cluster allocation 4143 * 4144 * This function is called by ext4_ext_map_blocks() after we failed to 4145 * find blocks that were already in the inode's extent tree. Hence, 4146 * we know that the beginning of the requested region cannot overlap 4147 * the extent from the inode's extent tree. There are three cases we 4148 * want to catch. The first is this case: 4149 * 4150 * |--- cluster # N--| 4151 * |--- extent ---| |---- requested region ---| 4152 * |==========| 4153 * 4154 * The second case that we need to test for is this one: 4155 * 4156 * |--------- cluster # N ----------------| 4157 * |--- requested region --| |------- extent ----| 4158 * |=======================| 4159 * 4160 * The third case is when the requested region lies between two extents 4161 * within the same cluster: 4162 * |------------- cluster # N-------------| 4163 * |----- ex -----| |---- ex_right ----| 4164 * |------ requested region ------| 4165 * |================| 4166 * 4167 * In each of the above cases, we need to set the map->m_pblk and 4168 * map->m_len so it corresponds to the return the extent labelled as 4169 * "|====|" from cluster #N, since it is already in use for data in 4170 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 4171 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 4172 * as a new "allocated" block region. Otherwise, we will return 0 and 4173 * ext4_ext_map_blocks() will then allocate one or more new clusters 4174 * by calling ext4_mb_new_blocks(). 4175 */ 4176 static int get_implied_cluster_alloc(struct super_block *sb, 4177 struct ext4_map_blocks *map, 4178 struct ext4_extent *ex, 4179 struct ext4_ext_path *path) 4180 { 4181 struct ext4_sb_info *sbi = EXT4_SB(sb); 4182 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4183 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4184 ext4_lblk_t rr_cluster_start; 4185 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4186 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4187 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4188 4189 /* The extent passed in that we are trying to match */ 4190 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4191 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4192 4193 /* The requested region passed into ext4_map_blocks() */ 4194 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4195 4196 if ((rr_cluster_start == ex_cluster_end) || 4197 (rr_cluster_start == ex_cluster_start)) { 4198 if (rr_cluster_start == ex_cluster_end) 4199 ee_start += ee_len - 1; 4200 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 4201 map->m_len = min(map->m_len, 4202 (unsigned) sbi->s_cluster_ratio - c_offset); 4203 /* 4204 * Check for and handle this case: 4205 * 4206 * |--------- cluster # N-------------| 4207 * |------- extent ----| 4208 * |--- requested region ---| 4209 * |===========| 4210 */ 4211 4212 if (map->m_lblk < ee_block) 4213 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4214 4215 /* 4216 * Check for the case where there is already another allocated 4217 * block to the right of 'ex' but before the end of the cluster. 4218 * 4219 * |------------- cluster # N-------------| 4220 * |----- ex -----| |---- ex_right ----| 4221 * |------ requested region ------| 4222 * |================| 4223 */ 4224 if (map->m_lblk > ee_block) { 4225 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4226 map->m_len = min(map->m_len, next - map->m_lblk); 4227 } 4228 4229 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4230 return 1; 4231 } 4232 4233 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4234 return 0; 4235 } 4236 4237 4238 /* 4239 * Block allocation/map/preallocation routine for extents based files 4240 * 4241 * 4242 * Need to be called with 4243 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4244 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4245 * 4246 * return > 0, number of of blocks already mapped/allocated 4247 * if create == 0 and these are pre-allocated blocks 4248 * buffer head is unmapped 4249 * otherwise blocks are mapped 4250 * 4251 * return = 0, if plain look up failed (blocks have not been allocated) 4252 * buffer head is unmapped 4253 * 4254 * return < 0, error case. 4255 */ 4256 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4257 struct ext4_map_blocks *map, int flags) 4258 { 4259 struct ext4_ext_path *path = NULL; 4260 struct ext4_extent newex, *ex, *ex2; 4261 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4262 ext4_fsblk_t newblock = 0; 4263 int free_on_err = 0, err = 0, depth, ret; 4264 unsigned int allocated = 0, offset = 0; 4265 unsigned int allocated_clusters = 0; 4266 struct ext4_allocation_request ar; 4267 ext4_io_end_t *io = ext4_inode_aio(inode); 4268 ext4_lblk_t cluster_offset; 4269 int set_unwritten = 0; 4270 4271 ext_debug("blocks %u/%u requested for inode %lu\n", 4272 map->m_lblk, map->m_len, inode->i_ino); 4273 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4274 4275 /* find extent for this block */ 4276 path = ext4_find_extent(inode, map->m_lblk, NULL, 0); 4277 if (IS_ERR(path)) { 4278 err = PTR_ERR(path); 4279 path = NULL; 4280 goto out2; 4281 } 4282 4283 depth = ext_depth(inode); 4284 4285 /* 4286 * consistent leaf must not be empty; 4287 * this situation is possible, though, _during_ tree modification; 4288 * this is why assert can't be put in ext4_find_extent() 4289 */ 4290 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4291 EXT4_ERROR_INODE(inode, "bad extent address " 4292 "lblock: %lu, depth: %d pblock %lld", 4293 (unsigned long) map->m_lblk, depth, 4294 path[depth].p_block); 4295 err = -EIO; 4296 goto out2; 4297 } 4298 4299 ex = path[depth].p_ext; 4300 if (ex) { 4301 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4302 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4303 unsigned short ee_len; 4304 4305 4306 /* 4307 * unwritten extents are treated as holes, except that 4308 * we split out initialized portions during a write. 4309 */ 4310 ee_len = ext4_ext_get_actual_len(ex); 4311 4312 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4313 4314 /* if found extent covers block, simply return it */ 4315 if (in_range(map->m_lblk, ee_block, ee_len)) { 4316 newblock = map->m_lblk - ee_block + ee_start; 4317 /* number of remaining blocks in the extent */ 4318 allocated = ee_len - (map->m_lblk - ee_block); 4319 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4320 ee_block, ee_len, newblock); 4321 4322 /* 4323 * If the extent is initialized check whether the 4324 * caller wants to convert it to unwritten. 4325 */ 4326 if ((!ext4_ext_is_unwritten(ex)) && 4327 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4328 allocated = convert_initialized_extent( 4329 handle, inode, map, &path, 4330 flags, allocated, newblock); 4331 goto out2; 4332 } else if (!ext4_ext_is_unwritten(ex)) 4333 goto out; 4334 4335 ret = ext4_ext_handle_unwritten_extents( 4336 handle, inode, map, &path, flags, 4337 allocated, newblock); 4338 if (ret < 0) 4339 err = ret; 4340 else 4341 allocated = ret; 4342 goto out2; 4343 } 4344 } 4345 4346 if ((sbi->s_cluster_ratio > 1) && 4347 ext4_find_delalloc_cluster(inode, map->m_lblk)) 4348 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4349 4350 /* 4351 * requested block isn't allocated yet; 4352 * we couldn't try to create block if create flag is zero 4353 */ 4354 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4355 /* 4356 * put just found gap into cache to speed up 4357 * subsequent requests 4358 */ 4359 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0) 4360 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 4361 goto out2; 4362 } 4363 4364 /* 4365 * Okay, we need to do block allocation. 4366 */ 4367 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 4368 newex.ee_block = cpu_to_le32(map->m_lblk); 4369 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4370 4371 /* 4372 * If we are doing bigalloc, check to see if the extent returned 4373 * by ext4_find_extent() implies a cluster we can use. 4374 */ 4375 if (cluster_offset && ex && 4376 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4377 ar.len = allocated = map->m_len; 4378 newblock = map->m_pblk; 4379 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4380 goto got_allocated_blocks; 4381 } 4382 4383 /* find neighbour allocated blocks */ 4384 ar.lleft = map->m_lblk; 4385 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4386 if (err) 4387 goto out2; 4388 ar.lright = map->m_lblk; 4389 ex2 = NULL; 4390 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4391 if (err) 4392 goto out2; 4393 4394 /* Check if the extent after searching to the right implies a 4395 * cluster we can use. */ 4396 if ((sbi->s_cluster_ratio > 1) && ex2 && 4397 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4398 ar.len = allocated = map->m_len; 4399 newblock = map->m_pblk; 4400 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4401 goto got_allocated_blocks; 4402 } 4403 4404 /* 4405 * See if request is beyond maximum number of blocks we can have in 4406 * a single extent. For an initialized extent this limit is 4407 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4408 * EXT_UNWRITTEN_MAX_LEN. 4409 */ 4410 if (map->m_len > EXT_INIT_MAX_LEN && 4411 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4412 map->m_len = EXT_INIT_MAX_LEN; 4413 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4414 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4415 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4416 4417 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4418 newex.ee_len = cpu_to_le16(map->m_len); 4419 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4420 if (err) 4421 allocated = ext4_ext_get_actual_len(&newex); 4422 else 4423 allocated = map->m_len; 4424 4425 /* allocate new block */ 4426 ar.inode = inode; 4427 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4428 ar.logical = map->m_lblk; 4429 /* 4430 * We calculate the offset from the beginning of the cluster 4431 * for the logical block number, since when we allocate a 4432 * physical cluster, the physical block should start at the 4433 * same offset from the beginning of the cluster. This is 4434 * needed so that future calls to get_implied_cluster_alloc() 4435 * work correctly. 4436 */ 4437 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4438 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4439 ar.goal -= offset; 4440 ar.logical -= offset; 4441 if (S_ISREG(inode->i_mode)) 4442 ar.flags = EXT4_MB_HINT_DATA; 4443 else 4444 /* disable in-core preallocation for non-regular files */ 4445 ar.flags = 0; 4446 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4447 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4448 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4449 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 4450 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4451 if (!newblock) 4452 goto out2; 4453 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4454 ar.goal, newblock, allocated); 4455 free_on_err = 1; 4456 allocated_clusters = ar.len; 4457 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4458 if (ar.len > allocated) 4459 ar.len = allocated; 4460 4461 got_allocated_blocks: 4462 /* try to insert new extent into found leaf and return */ 4463 ext4_ext_store_pblock(&newex, newblock + offset); 4464 newex.ee_len = cpu_to_le16(ar.len); 4465 /* Mark unwritten */ 4466 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){ 4467 ext4_ext_mark_unwritten(&newex); 4468 map->m_flags |= EXT4_MAP_UNWRITTEN; 4469 /* 4470 * io_end structure was created for every IO write to an 4471 * unwritten extent. To avoid unnecessary conversion, 4472 * here we flag the IO that really needs the conversion. 4473 * For non asycn direct IO case, flag the inode state 4474 * that we need to perform conversion when IO is done. 4475 */ 4476 if (flags & EXT4_GET_BLOCKS_PRE_IO) 4477 set_unwritten = 1; 4478 } 4479 4480 err = 0; 4481 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4482 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4483 path, ar.len); 4484 if (!err) 4485 err = ext4_ext_insert_extent(handle, inode, &path, 4486 &newex, flags); 4487 4488 if (!err && set_unwritten) { 4489 if (io) 4490 ext4_set_io_unwritten_flag(inode, io); 4491 else 4492 ext4_set_inode_state(inode, 4493 EXT4_STATE_DIO_UNWRITTEN); 4494 } 4495 4496 if (err && free_on_err) { 4497 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4498 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4499 /* free data blocks we just allocated */ 4500 /* not a good idea to call discard here directly, 4501 * but otherwise we'd need to call it every free() */ 4502 ext4_discard_preallocations(inode); 4503 ext4_free_blocks(handle, inode, NULL, newblock, 4504 EXT4_C2B(sbi, allocated_clusters), fb_flags); 4505 goto out2; 4506 } 4507 4508 /* previous routine could use block we allocated */ 4509 newblock = ext4_ext_pblock(&newex); 4510 allocated = ext4_ext_get_actual_len(&newex); 4511 if (allocated > map->m_len) 4512 allocated = map->m_len; 4513 map->m_flags |= EXT4_MAP_NEW; 4514 4515 /* 4516 * Update reserved blocks/metadata blocks after successful 4517 * block allocation which had been deferred till now. 4518 */ 4519 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4520 unsigned int reserved_clusters; 4521 /* 4522 * Check how many clusters we had reserved this allocated range 4523 */ 4524 reserved_clusters = get_reserved_cluster_alloc(inode, 4525 map->m_lblk, allocated); 4526 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { 4527 if (reserved_clusters) { 4528 /* 4529 * We have clusters reserved for this range. 4530 * But since we are not doing actual allocation 4531 * and are simply using blocks from previously 4532 * allocated cluster, we should release the 4533 * reservation and not claim quota. 4534 */ 4535 ext4_da_update_reserve_space(inode, 4536 reserved_clusters, 0); 4537 } 4538 } else { 4539 BUG_ON(allocated_clusters < reserved_clusters); 4540 if (reserved_clusters < allocated_clusters) { 4541 struct ext4_inode_info *ei = EXT4_I(inode); 4542 int reservation = allocated_clusters - 4543 reserved_clusters; 4544 /* 4545 * It seems we claimed few clusters outside of 4546 * the range of this allocation. We should give 4547 * it back to the reservation pool. This can 4548 * happen in the following case: 4549 * 4550 * * Suppose s_cluster_ratio is 4 (i.e., each 4551 * cluster has 4 blocks. Thus, the clusters 4552 * are [0-3],[4-7],[8-11]... 4553 * * First comes delayed allocation write for 4554 * logical blocks 10 & 11. Since there were no 4555 * previous delayed allocated blocks in the 4556 * range [8-11], we would reserve 1 cluster 4557 * for this write. 4558 * * Next comes write for logical blocks 3 to 8. 4559 * In this case, we will reserve 2 clusters 4560 * (for [0-3] and [4-7]; and not for [8-11] as 4561 * that range has a delayed allocated blocks. 4562 * Thus total reserved clusters now becomes 3. 4563 * * Now, during the delayed allocation writeout 4564 * time, we will first write blocks [3-8] and 4565 * allocate 3 clusters for writing these 4566 * blocks. Also, we would claim all these 4567 * three clusters above. 4568 * * Now when we come here to writeout the 4569 * blocks [10-11], we would expect to claim 4570 * the reservation of 1 cluster we had made 4571 * (and we would claim it since there are no 4572 * more delayed allocated blocks in the range 4573 * [8-11]. But our reserved cluster count had 4574 * already gone to 0. 4575 * 4576 * Thus, at the step 4 above when we determine 4577 * that there are still some unwritten delayed 4578 * allocated blocks outside of our current 4579 * block range, we should increment the 4580 * reserved clusters count so that when the 4581 * remaining blocks finally gets written, we 4582 * could claim them. 4583 */ 4584 dquot_reserve_block(inode, 4585 EXT4_C2B(sbi, reservation)); 4586 spin_lock(&ei->i_block_reservation_lock); 4587 ei->i_reserved_data_blocks += reservation; 4588 spin_unlock(&ei->i_block_reservation_lock); 4589 } 4590 /* 4591 * We will claim quota for all newly allocated blocks. 4592 * We're updating the reserved space *after* the 4593 * correction above so we do not accidentally free 4594 * all the metadata reservation because we might 4595 * actually need it later on. 4596 */ 4597 ext4_da_update_reserve_space(inode, allocated_clusters, 4598 1); 4599 } 4600 } 4601 4602 /* 4603 * Cache the extent and update transaction to commit on fdatasync only 4604 * when it is _not_ an unwritten extent. 4605 */ 4606 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4607 ext4_update_inode_fsync_trans(handle, inode, 1); 4608 else 4609 ext4_update_inode_fsync_trans(handle, inode, 0); 4610 out: 4611 if (allocated > map->m_len) 4612 allocated = map->m_len; 4613 ext4_ext_show_leaf(inode, path); 4614 map->m_flags |= EXT4_MAP_MAPPED; 4615 map->m_pblk = newblock; 4616 map->m_len = allocated; 4617 out2: 4618 ext4_ext_drop_refs(path); 4619 kfree(path); 4620 4621 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4622 err ? err : allocated); 4623 ext4_es_lru_add(inode); 4624 return err ? err : allocated; 4625 } 4626 4627 void ext4_ext_truncate(handle_t *handle, struct inode *inode) 4628 { 4629 struct super_block *sb = inode->i_sb; 4630 ext4_lblk_t last_block; 4631 int err = 0; 4632 4633 /* 4634 * TODO: optimization is possible here. 4635 * Probably we need not scan at all, 4636 * because page truncation is enough. 4637 */ 4638 4639 /* we have to know where to truncate from in crash case */ 4640 EXT4_I(inode)->i_disksize = inode->i_size; 4641 ext4_mark_inode_dirty(handle, inode); 4642 4643 last_block = (inode->i_size + sb->s_blocksize - 1) 4644 >> EXT4_BLOCK_SIZE_BITS(sb); 4645 retry: 4646 err = ext4_es_remove_extent(inode, last_block, 4647 EXT_MAX_BLOCKS - last_block); 4648 if (err == -ENOMEM) { 4649 cond_resched(); 4650 congestion_wait(BLK_RW_ASYNC, HZ/50); 4651 goto retry; 4652 } 4653 if (err) { 4654 ext4_std_error(inode->i_sb, err); 4655 return; 4656 } 4657 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4658 ext4_std_error(inode->i_sb, err); 4659 } 4660 4661 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4662 ext4_lblk_t len, loff_t new_size, 4663 int flags, int mode) 4664 { 4665 struct inode *inode = file_inode(file); 4666 handle_t *handle; 4667 int ret = 0; 4668 int ret2 = 0; 4669 int retries = 0; 4670 struct ext4_map_blocks map; 4671 unsigned int credits; 4672 loff_t epos; 4673 4674 map.m_lblk = offset; 4675 map.m_len = len; 4676 /* 4677 * Don't normalize the request if it can fit in one extent so 4678 * that it doesn't get unnecessarily split into multiple 4679 * extents. 4680 */ 4681 if (len <= EXT_UNWRITTEN_MAX_LEN) 4682 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4683 4684 /* 4685 * credits to insert 1 extent into extent tree 4686 */ 4687 credits = ext4_chunk_trans_blocks(inode, len); 4688 4689 retry: 4690 while (ret >= 0 && len) { 4691 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4692 credits); 4693 if (IS_ERR(handle)) { 4694 ret = PTR_ERR(handle); 4695 break; 4696 } 4697 ret = ext4_map_blocks(handle, inode, &map, flags); 4698 if (ret <= 0) { 4699 ext4_debug("inode #%lu: block %u: len %u: " 4700 "ext4_ext_map_blocks returned %d", 4701 inode->i_ino, map.m_lblk, 4702 map.m_len, ret); 4703 ext4_mark_inode_dirty(handle, inode); 4704 ret2 = ext4_journal_stop(handle); 4705 break; 4706 } 4707 map.m_lblk += ret; 4708 map.m_len = len = len - ret; 4709 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4710 inode->i_ctime = ext4_current_time(inode); 4711 if (new_size) { 4712 if (epos > new_size) 4713 epos = new_size; 4714 if (ext4_update_inode_size(inode, epos) & 0x1) 4715 inode->i_mtime = inode->i_ctime; 4716 } else { 4717 if (epos > inode->i_size) 4718 ext4_set_inode_flag(inode, 4719 EXT4_INODE_EOFBLOCKS); 4720 } 4721 ext4_mark_inode_dirty(handle, inode); 4722 ret2 = ext4_journal_stop(handle); 4723 if (ret2) 4724 break; 4725 } 4726 if (ret == -ENOSPC && 4727 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4728 ret = 0; 4729 goto retry; 4730 } 4731 4732 return ret > 0 ? ret2 : ret; 4733 } 4734 4735 static long ext4_zero_range(struct file *file, loff_t offset, 4736 loff_t len, int mode) 4737 { 4738 struct inode *inode = file_inode(file); 4739 handle_t *handle = NULL; 4740 unsigned int max_blocks; 4741 loff_t new_size = 0; 4742 int ret = 0; 4743 int flags; 4744 int credits; 4745 int partial_begin, partial_end; 4746 loff_t start, end; 4747 ext4_lblk_t lblk; 4748 struct address_space *mapping = inode->i_mapping; 4749 unsigned int blkbits = inode->i_blkbits; 4750 4751 trace_ext4_zero_range(inode, offset, len, mode); 4752 4753 if (!S_ISREG(inode->i_mode)) 4754 return -EINVAL; 4755 4756 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4757 if (ext4_should_journal_data(inode)) { 4758 ret = ext4_force_commit(inode->i_sb); 4759 if (ret) 4760 return ret; 4761 } 4762 4763 /* 4764 * Write out all dirty pages to avoid race conditions 4765 * Then release them. 4766 */ 4767 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4768 ret = filemap_write_and_wait_range(mapping, offset, 4769 offset + len - 1); 4770 if (ret) 4771 return ret; 4772 } 4773 4774 /* 4775 * Round up offset. This is not fallocate, we neet to zero out 4776 * blocks, so convert interior block aligned part of the range to 4777 * unwritten and possibly manually zero out unaligned parts of the 4778 * range. 4779 */ 4780 start = round_up(offset, 1 << blkbits); 4781 end = round_down((offset + len), 1 << blkbits); 4782 4783 if (start < offset || end > offset + len) 4784 return -EINVAL; 4785 partial_begin = offset & ((1 << blkbits) - 1); 4786 partial_end = (offset + len) & ((1 << blkbits) - 1); 4787 4788 lblk = start >> blkbits; 4789 max_blocks = (end >> blkbits); 4790 if (max_blocks < lblk) 4791 max_blocks = 0; 4792 else 4793 max_blocks -= lblk; 4794 4795 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT | 4796 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4797 EXT4_EX_NOCACHE; 4798 if (mode & FALLOC_FL_KEEP_SIZE) 4799 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4800 4801 mutex_lock(&inode->i_mutex); 4802 4803 /* 4804 * Indirect files do not support unwritten extnets 4805 */ 4806 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4807 ret = -EOPNOTSUPP; 4808 goto out_mutex; 4809 } 4810 4811 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4812 offset + len > i_size_read(inode)) { 4813 new_size = offset + len; 4814 ret = inode_newsize_ok(inode, new_size); 4815 if (ret) 4816 goto out_mutex; 4817 /* 4818 * If we have a partial block after EOF we have to allocate 4819 * the entire block. 4820 */ 4821 if (partial_end) 4822 max_blocks += 1; 4823 } 4824 4825 if (max_blocks > 0) { 4826 4827 /* Now release the pages and zero block aligned part of pages*/ 4828 truncate_pagecache_range(inode, start, end - 1); 4829 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4830 4831 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4832 ext4_inode_block_unlocked_dio(inode); 4833 inode_dio_wait(inode); 4834 4835 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4836 flags, mode); 4837 if (ret) 4838 goto out_dio; 4839 /* 4840 * Remove entire range from the extent status tree. 4841 * 4842 * ext4_es_remove_extent(inode, lblk, max_blocks) is 4843 * NOT sufficient. I'm not sure why this is the case, 4844 * but let's be conservative and remove the extent 4845 * status tree for the entire inode. There should be 4846 * no outstanding delalloc extents thanks to the 4847 * filemap_write_and_wait_range() call above. 4848 */ 4849 ret = ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 4850 if (ret) 4851 goto out_dio; 4852 } 4853 if (!partial_begin && !partial_end) 4854 goto out_dio; 4855 4856 /* 4857 * In worst case we have to writeout two nonadjacent unwritten 4858 * blocks and update the inode 4859 */ 4860 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4861 if (ext4_should_journal_data(inode)) 4862 credits += 2; 4863 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4864 if (IS_ERR(handle)) { 4865 ret = PTR_ERR(handle); 4866 ext4_std_error(inode->i_sb, ret); 4867 goto out_dio; 4868 } 4869 4870 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4871 if (new_size) { 4872 ext4_update_inode_size(inode, new_size); 4873 } else { 4874 /* 4875 * Mark that we allocate beyond EOF so the subsequent truncate 4876 * can proceed even if the new size is the same as i_size. 4877 */ 4878 if ((offset + len) > i_size_read(inode)) 4879 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4880 } 4881 ext4_mark_inode_dirty(handle, inode); 4882 4883 /* Zero out partial block at the edges of the range */ 4884 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4885 4886 if (file->f_flags & O_SYNC) 4887 ext4_handle_sync(handle); 4888 4889 ext4_journal_stop(handle); 4890 out_dio: 4891 ext4_inode_resume_unlocked_dio(inode); 4892 out_mutex: 4893 mutex_unlock(&inode->i_mutex); 4894 return ret; 4895 } 4896 4897 /* 4898 * preallocate space for a file. This implements ext4's fallocate file 4899 * operation, which gets called from sys_fallocate system call. 4900 * For block-mapped files, posix_fallocate should fall back to the method 4901 * of writing zeroes to the required new blocks (the same behavior which is 4902 * expected for file systems which do not support fallocate() system call). 4903 */ 4904 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4905 { 4906 struct inode *inode = file_inode(file); 4907 loff_t new_size = 0; 4908 unsigned int max_blocks; 4909 int ret = 0; 4910 int flags; 4911 ext4_lblk_t lblk; 4912 unsigned int blkbits = inode->i_blkbits; 4913 4914 /* Return error if mode is not supported */ 4915 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4916 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE)) 4917 return -EOPNOTSUPP; 4918 4919 if (mode & FALLOC_FL_PUNCH_HOLE) 4920 return ext4_punch_hole(inode, offset, len); 4921 4922 ret = ext4_convert_inline_data(inode); 4923 if (ret) 4924 return ret; 4925 4926 /* 4927 * currently supporting (pre)allocate mode for extent-based 4928 * files _only_ 4929 */ 4930 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4931 return -EOPNOTSUPP; 4932 4933 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4934 return ext4_collapse_range(inode, offset, len); 4935 4936 if (mode & FALLOC_FL_ZERO_RANGE) 4937 return ext4_zero_range(file, offset, len, mode); 4938 4939 trace_ext4_fallocate_enter(inode, offset, len, mode); 4940 lblk = offset >> blkbits; 4941 /* 4942 * We can't just convert len to max_blocks because 4943 * If blocksize = 4096 offset = 3072 and len = 2048 4944 */ 4945 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4946 - lblk; 4947 4948 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4949 if (mode & FALLOC_FL_KEEP_SIZE) 4950 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4951 4952 mutex_lock(&inode->i_mutex); 4953 4954 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4955 offset + len > i_size_read(inode)) { 4956 new_size = offset + len; 4957 ret = inode_newsize_ok(inode, new_size); 4958 if (ret) 4959 goto out; 4960 } 4961 4962 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4963 flags, mode); 4964 if (ret) 4965 goto out; 4966 4967 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 4968 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 4969 EXT4_I(inode)->i_sync_tid); 4970 } 4971 out: 4972 mutex_unlock(&inode->i_mutex); 4973 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4974 return ret; 4975 } 4976 4977 /* 4978 * This function convert a range of blocks to written extents 4979 * The caller of this function will pass the start offset and the size. 4980 * all unwritten extents within this range will be converted to 4981 * written extents. 4982 * 4983 * This function is called from the direct IO end io call back 4984 * function, to convert the fallocated extents after IO is completed. 4985 * Returns 0 on success. 4986 */ 4987 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4988 loff_t offset, ssize_t len) 4989 { 4990 unsigned int max_blocks; 4991 int ret = 0; 4992 int ret2 = 0; 4993 struct ext4_map_blocks map; 4994 unsigned int credits, blkbits = inode->i_blkbits; 4995 4996 map.m_lblk = offset >> blkbits; 4997 /* 4998 * We can't just convert len to max_blocks because 4999 * If blocksize = 4096 offset = 3072 and len = 2048 5000 */ 5001 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 5002 map.m_lblk); 5003 /* 5004 * This is somewhat ugly but the idea is clear: When transaction is 5005 * reserved, everything goes into it. Otherwise we rather start several 5006 * smaller transactions for conversion of each extent separately. 5007 */ 5008 if (handle) { 5009 handle = ext4_journal_start_reserved(handle, 5010 EXT4_HT_EXT_CONVERT); 5011 if (IS_ERR(handle)) 5012 return PTR_ERR(handle); 5013 credits = 0; 5014 } else { 5015 /* 5016 * credits to insert 1 extent into extent tree 5017 */ 5018 credits = ext4_chunk_trans_blocks(inode, max_blocks); 5019 } 5020 while (ret >= 0 && ret < max_blocks) { 5021 map.m_lblk += ret; 5022 map.m_len = (max_blocks -= ret); 5023 if (credits) { 5024 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 5025 credits); 5026 if (IS_ERR(handle)) { 5027 ret = PTR_ERR(handle); 5028 break; 5029 } 5030 } 5031 ret = ext4_map_blocks(handle, inode, &map, 5032 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 5033 if (ret <= 0) 5034 ext4_warning(inode->i_sb, 5035 "inode #%lu: block %u: len %u: " 5036 "ext4_ext_map_blocks returned %d", 5037 inode->i_ino, map.m_lblk, 5038 map.m_len, ret); 5039 ext4_mark_inode_dirty(handle, inode); 5040 if (credits) 5041 ret2 = ext4_journal_stop(handle); 5042 if (ret <= 0 || ret2) 5043 break; 5044 } 5045 if (!credits) 5046 ret2 = ext4_journal_stop(handle); 5047 return ret > 0 ? ret2 : ret; 5048 } 5049 5050 /* 5051 * If newes is not existing extent (newes->ec_pblk equals zero) find 5052 * delayed extent at start of newes and update newes accordingly and 5053 * return start of the next delayed extent. 5054 * 5055 * If newes is existing extent (newes->ec_pblk is not equal zero) 5056 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 5057 * extent found. Leave newes unmodified. 5058 */ 5059 static int ext4_find_delayed_extent(struct inode *inode, 5060 struct extent_status *newes) 5061 { 5062 struct extent_status es; 5063 ext4_lblk_t block, next_del; 5064 5065 if (newes->es_pblk == 0) { 5066 ext4_es_find_delayed_extent_range(inode, newes->es_lblk, 5067 newes->es_lblk + newes->es_len - 1, &es); 5068 5069 /* 5070 * No extent in extent-tree contains block @newes->es_pblk, 5071 * then the block may stay in 1)a hole or 2)delayed-extent. 5072 */ 5073 if (es.es_len == 0) 5074 /* A hole found. */ 5075 return 0; 5076 5077 if (es.es_lblk > newes->es_lblk) { 5078 /* A hole found. */ 5079 newes->es_len = min(es.es_lblk - newes->es_lblk, 5080 newes->es_len); 5081 return 0; 5082 } 5083 5084 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 5085 } 5086 5087 block = newes->es_lblk + newes->es_len; 5088 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es); 5089 if (es.es_len == 0) 5090 next_del = EXT_MAX_BLOCKS; 5091 else 5092 next_del = es.es_lblk; 5093 5094 return next_del; 5095 } 5096 /* fiemap flags we can handle specified here */ 5097 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 5098 5099 static int ext4_xattr_fiemap(struct inode *inode, 5100 struct fiemap_extent_info *fieinfo) 5101 { 5102 __u64 physical = 0; 5103 __u64 length; 5104 __u32 flags = FIEMAP_EXTENT_LAST; 5105 int blockbits = inode->i_sb->s_blocksize_bits; 5106 int error = 0; 5107 5108 /* in-inode? */ 5109 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 5110 struct ext4_iloc iloc; 5111 int offset; /* offset of xattr in inode */ 5112 5113 error = ext4_get_inode_loc(inode, &iloc); 5114 if (error) 5115 return error; 5116 physical = (__u64)iloc.bh->b_blocknr << blockbits; 5117 offset = EXT4_GOOD_OLD_INODE_SIZE + 5118 EXT4_I(inode)->i_extra_isize; 5119 physical += offset; 5120 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 5121 flags |= FIEMAP_EXTENT_DATA_INLINE; 5122 brelse(iloc.bh); 5123 } else { /* external block */ 5124 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 5125 length = inode->i_sb->s_blocksize; 5126 } 5127 5128 if (physical) 5129 error = fiemap_fill_next_extent(fieinfo, 0, physical, 5130 length, flags); 5131 return (error < 0 ? error : 0); 5132 } 5133 5134 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5135 __u64 start, __u64 len) 5136 { 5137 ext4_lblk_t start_blk; 5138 int error = 0; 5139 5140 if (ext4_has_inline_data(inode)) { 5141 int has_inline = 1; 5142 5143 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline); 5144 5145 if (has_inline) 5146 return error; 5147 } 5148 5149 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 5150 error = ext4_ext_precache(inode); 5151 if (error) 5152 return error; 5153 } 5154 5155 /* fallback to generic here if not in extents fmt */ 5156 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5157 return generic_block_fiemap(inode, fieinfo, start, len, 5158 ext4_get_block); 5159 5160 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 5161 return -EBADR; 5162 5163 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 5164 error = ext4_xattr_fiemap(inode, fieinfo); 5165 } else { 5166 ext4_lblk_t len_blks; 5167 __u64 last_blk; 5168 5169 start_blk = start >> inode->i_sb->s_blocksize_bits; 5170 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5171 if (last_blk >= EXT_MAX_BLOCKS) 5172 last_blk = EXT_MAX_BLOCKS-1; 5173 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5174 5175 /* 5176 * Walk the extent tree gathering extent information 5177 * and pushing extents back to the user. 5178 */ 5179 error = ext4_fill_fiemap_extents(inode, start_blk, 5180 len_blks, fieinfo); 5181 } 5182 ext4_es_lru_add(inode); 5183 return error; 5184 } 5185 5186 /* 5187 * ext4_access_path: 5188 * Function to access the path buffer for marking it dirty. 5189 * It also checks if there are sufficient credits left in the journal handle 5190 * to update path. 5191 */ 5192 static int 5193 ext4_access_path(handle_t *handle, struct inode *inode, 5194 struct ext4_ext_path *path) 5195 { 5196 int credits, err; 5197 5198 if (!ext4_handle_valid(handle)) 5199 return 0; 5200 5201 /* 5202 * Check if need to extend journal credits 5203 * 3 for leaf, sb, and inode plus 2 (bmap and group 5204 * descriptor) for each block group; assume two block 5205 * groups 5206 */ 5207 if (handle->h_buffer_credits < 7) { 5208 credits = ext4_writepage_trans_blocks(inode); 5209 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 5210 /* EAGAIN is success */ 5211 if (err && err != -EAGAIN) 5212 return err; 5213 } 5214 5215 err = ext4_ext_get_access(handle, inode, path); 5216 return err; 5217 } 5218 5219 /* 5220 * ext4_ext_shift_path_extents: 5221 * Shift the extents of a path structure lying between path[depth].p_ext 5222 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift 5223 * from starting block for each extent. 5224 */ 5225 static int 5226 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5227 struct inode *inode, handle_t *handle, 5228 ext4_lblk_t *start) 5229 { 5230 int depth, err = 0; 5231 struct ext4_extent *ex_start, *ex_last; 5232 bool update = 0; 5233 depth = path->p_depth; 5234 5235 while (depth >= 0) { 5236 if (depth == path->p_depth) { 5237 ex_start = path[depth].p_ext; 5238 if (!ex_start) 5239 return -EIO; 5240 5241 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5242 if (!ex_last) 5243 return -EIO; 5244 5245 err = ext4_access_path(handle, inode, path + depth); 5246 if (err) 5247 goto out; 5248 5249 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 5250 update = 1; 5251 5252 *start = le32_to_cpu(ex_last->ee_block) + 5253 ext4_ext_get_actual_len(ex_last); 5254 5255 while (ex_start <= ex_last) { 5256 le32_add_cpu(&ex_start->ee_block, -shift); 5257 /* Try to merge to the left. */ 5258 if ((ex_start > 5259 EXT_FIRST_EXTENT(path[depth].p_hdr)) && 5260 ext4_ext_try_to_merge_right(inode, 5261 path, ex_start - 1)) 5262 ex_last--; 5263 else 5264 ex_start++; 5265 } 5266 err = ext4_ext_dirty(handle, inode, path + depth); 5267 if (err) 5268 goto out; 5269 5270 if (--depth < 0 || !update) 5271 break; 5272 } 5273 5274 /* Update index too */ 5275 err = ext4_access_path(handle, inode, path + depth); 5276 if (err) 5277 goto out; 5278 5279 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5280 err = ext4_ext_dirty(handle, inode, path + depth); 5281 if (err) 5282 goto out; 5283 5284 /* we are done if current index is not a starting index */ 5285 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5286 break; 5287 5288 depth--; 5289 } 5290 5291 out: 5292 return err; 5293 } 5294 5295 /* 5296 * ext4_ext_shift_extents: 5297 * All the extents which lies in the range from start to the last allocated 5298 * block for the file are shifted downwards by shift blocks. 5299 * On success, 0 is returned, error otherwise. 5300 */ 5301 static int 5302 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5303 ext4_lblk_t start, ext4_lblk_t shift) 5304 { 5305 struct ext4_ext_path *path; 5306 int ret = 0, depth; 5307 struct ext4_extent *extent; 5308 ext4_lblk_t stop_block; 5309 ext4_lblk_t ex_start, ex_end; 5310 5311 /* Let path point to the last extent */ 5312 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0); 5313 if (IS_ERR(path)) 5314 return PTR_ERR(path); 5315 5316 depth = path->p_depth; 5317 extent = path[depth].p_ext; 5318 if (!extent) 5319 goto out; 5320 5321 stop_block = le32_to_cpu(extent->ee_block) + 5322 ext4_ext_get_actual_len(extent); 5323 5324 /* Nothing to shift, if hole is at the end of file */ 5325 if (start >= stop_block) 5326 goto out; 5327 5328 /* 5329 * Don't start shifting extents until we make sure the hole is big 5330 * enough to accomodate the shift. 5331 */ 5332 path = ext4_find_extent(inode, start - 1, &path, 0); 5333 if (IS_ERR(path)) 5334 return PTR_ERR(path); 5335 depth = path->p_depth; 5336 extent = path[depth].p_ext; 5337 if (extent) { 5338 ex_start = le32_to_cpu(extent->ee_block); 5339 ex_end = le32_to_cpu(extent->ee_block) + 5340 ext4_ext_get_actual_len(extent); 5341 } else { 5342 ex_start = 0; 5343 ex_end = 0; 5344 } 5345 5346 if ((start == ex_start && shift > ex_start) || 5347 (shift > start - ex_end)) 5348 return -EINVAL; 5349 5350 /* Its safe to start updating extents */ 5351 while (start < stop_block) { 5352 path = ext4_find_extent(inode, start, &path, 0); 5353 if (IS_ERR(path)) 5354 return PTR_ERR(path); 5355 depth = path->p_depth; 5356 extent = path[depth].p_ext; 5357 if (!extent) { 5358 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5359 (unsigned long) start); 5360 return -EIO; 5361 } 5362 if (start > le32_to_cpu(extent->ee_block)) { 5363 /* Hole, move to the next extent */ 5364 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5365 path[depth].p_ext++; 5366 } else { 5367 start = ext4_ext_next_allocated_block(path); 5368 continue; 5369 } 5370 } 5371 ret = ext4_ext_shift_path_extents(path, shift, inode, 5372 handle, &start); 5373 if (ret) 5374 break; 5375 } 5376 out: 5377 ext4_ext_drop_refs(path); 5378 kfree(path); 5379 return ret; 5380 } 5381 5382 /* 5383 * ext4_collapse_range: 5384 * This implements the fallocate's collapse range functionality for ext4 5385 * Returns: 0 and non-zero on error. 5386 */ 5387 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5388 { 5389 struct super_block *sb = inode->i_sb; 5390 ext4_lblk_t punch_start, punch_stop; 5391 handle_t *handle; 5392 unsigned int credits; 5393 loff_t new_size, ioffset; 5394 int ret; 5395 5396 /* Collapse range works only on fs block size aligned offsets. */ 5397 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5398 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5399 return -EINVAL; 5400 5401 if (!S_ISREG(inode->i_mode)) 5402 return -EINVAL; 5403 5404 trace_ext4_collapse_range(inode, offset, len); 5405 5406 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5407 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5408 5409 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5410 if (ext4_should_journal_data(inode)) { 5411 ret = ext4_force_commit(inode->i_sb); 5412 if (ret) 5413 return ret; 5414 } 5415 5416 /* 5417 * Need to round down offset to be aligned with page size boundary 5418 * for page size > block size. 5419 */ 5420 ioffset = round_down(offset, PAGE_SIZE); 5421 5422 /* Write out all dirty pages */ 5423 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5424 LLONG_MAX); 5425 if (ret) 5426 return ret; 5427 5428 /* Take mutex lock */ 5429 mutex_lock(&inode->i_mutex); 5430 5431 /* 5432 * There is no need to overlap collapse range with EOF, in which case 5433 * it is effectively a truncate operation 5434 */ 5435 if (offset + len >= i_size_read(inode)) { 5436 ret = -EINVAL; 5437 goto out_mutex; 5438 } 5439 5440 /* Currently just for extent based files */ 5441 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5442 ret = -EOPNOTSUPP; 5443 goto out_mutex; 5444 } 5445 5446 truncate_pagecache(inode, ioffset); 5447 5448 /* Wait for existing dio to complete */ 5449 ext4_inode_block_unlocked_dio(inode); 5450 inode_dio_wait(inode); 5451 5452 credits = ext4_writepage_trans_blocks(inode); 5453 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5454 if (IS_ERR(handle)) { 5455 ret = PTR_ERR(handle); 5456 goto out_dio; 5457 } 5458 5459 down_write(&EXT4_I(inode)->i_data_sem); 5460 ext4_discard_preallocations(inode); 5461 5462 ret = ext4_es_remove_extent(inode, punch_start, 5463 EXT_MAX_BLOCKS - punch_start); 5464 if (ret) { 5465 up_write(&EXT4_I(inode)->i_data_sem); 5466 goto out_stop; 5467 } 5468 5469 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5470 if (ret) { 5471 up_write(&EXT4_I(inode)->i_data_sem); 5472 goto out_stop; 5473 } 5474 ext4_discard_preallocations(inode); 5475 5476 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5477 punch_stop - punch_start); 5478 if (ret) { 5479 up_write(&EXT4_I(inode)->i_data_sem); 5480 goto out_stop; 5481 } 5482 5483 new_size = i_size_read(inode) - len; 5484 i_size_write(inode, new_size); 5485 EXT4_I(inode)->i_disksize = new_size; 5486 5487 up_write(&EXT4_I(inode)->i_data_sem); 5488 if (IS_SYNC(inode)) 5489 ext4_handle_sync(handle); 5490 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 5491 ext4_mark_inode_dirty(handle, inode); 5492 5493 out_stop: 5494 ext4_journal_stop(handle); 5495 out_dio: 5496 ext4_inode_resume_unlocked_dio(inode); 5497 out_mutex: 5498 mutex_unlock(&inode->i_mutex); 5499 return ret; 5500 } 5501 5502 /** 5503 * ext4_swap_extents - Swap extents between two inodes 5504 * 5505 * @inode1: First inode 5506 * @inode2: Second inode 5507 * @lblk1: Start block for first inode 5508 * @lblk2: Start block for second inode 5509 * @count: Number of blocks to swap 5510 * @mark_unwritten: Mark second inode's extents as unwritten after swap 5511 * @erp: Pointer to save error value 5512 * 5513 * This helper routine does exactly what is promise "swap extents". All other 5514 * stuff such as page-cache locking consistency, bh mapping consistency or 5515 * extent's data copying must be performed by caller. 5516 * Locking: 5517 * i_mutex is held for both inodes 5518 * i_data_sem is locked for write for both inodes 5519 * Assumptions: 5520 * All pages from requested range are locked for both inodes 5521 */ 5522 int 5523 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5524 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5525 ext4_lblk_t count, int unwritten, int *erp) 5526 { 5527 struct ext4_ext_path *path1 = NULL; 5528 struct ext4_ext_path *path2 = NULL; 5529 int replaced_count = 0; 5530 5531 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5532 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5533 BUG_ON(!mutex_is_locked(&inode1->i_mutex)); 5534 BUG_ON(!mutex_is_locked(&inode1->i_mutex)); 5535 5536 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5537 if (unlikely(*erp)) 5538 return 0; 5539 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5540 if (unlikely(*erp)) 5541 return 0; 5542 5543 while (count) { 5544 struct ext4_extent *ex1, *ex2, tmp_ex; 5545 ext4_lblk_t e1_blk, e2_blk; 5546 int e1_len, e2_len, len; 5547 int split = 0; 5548 5549 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5550 if (unlikely(IS_ERR(path1))) { 5551 *erp = PTR_ERR(path1); 5552 path1 = NULL; 5553 finish: 5554 count = 0; 5555 goto repeat; 5556 } 5557 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5558 if (unlikely(IS_ERR(path2))) { 5559 *erp = PTR_ERR(path2); 5560 path2 = NULL; 5561 goto finish; 5562 } 5563 ex1 = path1[path1->p_depth].p_ext; 5564 ex2 = path2[path2->p_depth].p_ext; 5565 /* Do we have somthing to swap ? */ 5566 if (unlikely(!ex2 || !ex1)) 5567 goto finish; 5568 5569 e1_blk = le32_to_cpu(ex1->ee_block); 5570 e2_blk = le32_to_cpu(ex2->ee_block); 5571 e1_len = ext4_ext_get_actual_len(ex1); 5572 e2_len = ext4_ext_get_actual_len(ex2); 5573 5574 /* Hole handling */ 5575 if (!in_range(lblk1, e1_blk, e1_len) || 5576 !in_range(lblk2, e2_blk, e2_len)) { 5577 ext4_lblk_t next1, next2; 5578 5579 /* if hole after extent, then go to next extent */ 5580 next1 = ext4_ext_next_allocated_block(path1); 5581 next2 = ext4_ext_next_allocated_block(path2); 5582 /* If hole before extent, then shift to that extent */ 5583 if (e1_blk > lblk1) 5584 next1 = e1_blk; 5585 if (e2_blk > lblk2) 5586 next2 = e1_blk; 5587 /* Do we have something to swap */ 5588 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5589 goto finish; 5590 /* Move to the rightest boundary */ 5591 len = next1 - lblk1; 5592 if (len < next2 - lblk2) 5593 len = next2 - lblk2; 5594 if (len > count) 5595 len = count; 5596 lblk1 += len; 5597 lblk2 += len; 5598 count -= len; 5599 goto repeat; 5600 } 5601 5602 /* Prepare left boundary */ 5603 if (e1_blk < lblk1) { 5604 split = 1; 5605 *erp = ext4_force_split_extent_at(handle, inode1, 5606 &path1, lblk1, 0); 5607 if (unlikely(*erp)) 5608 goto finish; 5609 } 5610 if (e2_blk < lblk2) { 5611 split = 1; 5612 *erp = ext4_force_split_extent_at(handle, inode2, 5613 &path2, lblk2, 0); 5614 if (unlikely(*erp)) 5615 goto finish; 5616 } 5617 /* ext4_split_extent_at() may result in leaf extent split, 5618 * path must to be revalidated. */ 5619 if (split) 5620 goto repeat; 5621 5622 /* Prepare right boundary */ 5623 len = count; 5624 if (len > e1_blk + e1_len - lblk1) 5625 len = e1_blk + e1_len - lblk1; 5626 if (len > e2_blk + e2_len - lblk2) 5627 len = e2_blk + e2_len - lblk2; 5628 5629 if (len != e1_len) { 5630 split = 1; 5631 *erp = ext4_force_split_extent_at(handle, inode1, 5632 &path1, lblk1 + len, 0); 5633 if (unlikely(*erp)) 5634 goto finish; 5635 } 5636 if (len != e2_len) { 5637 split = 1; 5638 *erp = ext4_force_split_extent_at(handle, inode2, 5639 &path2, lblk2 + len, 0); 5640 if (*erp) 5641 goto finish; 5642 } 5643 /* ext4_split_extent_at() may result in leaf extent split, 5644 * path must to be revalidated. */ 5645 if (split) 5646 goto repeat; 5647 5648 BUG_ON(e2_len != e1_len); 5649 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5650 if (unlikely(*erp)) 5651 goto finish; 5652 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5653 if (unlikely(*erp)) 5654 goto finish; 5655 5656 /* Both extents are fully inside boundaries. Swap it now */ 5657 tmp_ex = *ex1; 5658 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5659 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5660 ex1->ee_len = cpu_to_le16(e2_len); 5661 ex2->ee_len = cpu_to_le16(e1_len); 5662 if (unwritten) 5663 ext4_ext_mark_unwritten(ex2); 5664 if (ext4_ext_is_unwritten(&tmp_ex)) 5665 ext4_ext_mark_unwritten(ex1); 5666 5667 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5668 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5669 *erp = ext4_ext_dirty(handle, inode2, path2 + 5670 path2->p_depth); 5671 if (unlikely(*erp)) 5672 goto finish; 5673 *erp = ext4_ext_dirty(handle, inode1, path1 + 5674 path1->p_depth); 5675 /* 5676 * Looks scarry ah..? second inode already points to new blocks, 5677 * and it was successfully dirtied. But luckily error may happen 5678 * only due to journal error, so full transaction will be 5679 * aborted anyway. 5680 */ 5681 if (unlikely(*erp)) 5682 goto finish; 5683 lblk1 += len; 5684 lblk2 += len; 5685 replaced_count += len; 5686 count -= len; 5687 5688 repeat: 5689 ext4_ext_drop_refs(path1); 5690 kfree(path1); 5691 ext4_ext_drop_refs(path2); 5692 kfree(path2); 5693 path1 = path2 = NULL; 5694 } 5695 return replaced_count; 5696 } 5697