1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <asm/uaccess.h> 41 #include <linux/fiemap.h> 42 #include "ext4_jbd2.h" 43 #include "ext4_extents.h" 44 #include "xattr.h" 45 46 #include <trace/events/ext4.h> 47 48 /* 49 * used by extent splitting. 50 */ 51 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 52 due to ENOSPC */ 53 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 54 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 55 56 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 57 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 58 59 static __le32 ext4_extent_block_csum(struct inode *inode, 60 struct ext4_extent_header *eh) 61 { 62 struct ext4_inode_info *ei = EXT4_I(inode); 63 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 64 __u32 csum; 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 67 EXT4_EXTENT_TAIL_OFFSET(eh)); 68 return cpu_to_le32(csum); 69 } 70 71 static int ext4_extent_block_csum_verify(struct inode *inode, 72 struct ext4_extent_header *eh) 73 { 74 struct ext4_extent_tail *et; 75 76 if (!ext4_has_metadata_csum(inode->i_sb)) 77 return 1; 78 79 et = find_ext4_extent_tail(eh); 80 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 81 return 0; 82 return 1; 83 } 84 85 static void ext4_extent_block_csum_set(struct inode *inode, 86 struct ext4_extent_header *eh) 87 { 88 struct ext4_extent_tail *et; 89 90 if (!ext4_has_metadata_csum(inode->i_sb)) 91 return; 92 93 et = find_ext4_extent_tail(eh); 94 et->et_checksum = ext4_extent_block_csum(inode, eh); 95 } 96 97 static int ext4_split_extent(handle_t *handle, 98 struct inode *inode, 99 struct ext4_ext_path **ppath, 100 struct ext4_map_blocks *map, 101 int split_flag, 102 int flags); 103 104 static int ext4_split_extent_at(handle_t *handle, 105 struct inode *inode, 106 struct ext4_ext_path **ppath, 107 ext4_lblk_t split, 108 int split_flag, 109 int flags); 110 111 static int ext4_find_delayed_extent(struct inode *inode, 112 struct extent_status *newes); 113 114 static int ext4_ext_truncate_extend_restart(handle_t *handle, 115 struct inode *inode, 116 int needed) 117 { 118 int err; 119 120 if (!ext4_handle_valid(handle)) 121 return 0; 122 if (handle->h_buffer_credits > needed) 123 return 0; 124 err = ext4_journal_extend(handle, needed); 125 if (err <= 0) 126 return err; 127 err = ext4_truncate_restart_trans(handle, inode, needed); 128 if (err == 0) 129 err = -EAGAIN; 130 131 return err; 132 } 133 134 /* 135 * could return: 136 * - EROFS 137 * - ENOMEM 138 */ 139 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 140 struct ext4_ext_path *path) 141 { 142 if (path->p_bh) { 143 /* path points to block */ 144 BUFFER_TRACE(path->p_bh, "get_write_access"); 145 return ext4_journal_get_write_access(handle, path->p_bh); 146 } 147 /* path points to leaf/index in inode body */ 148 /* we use in-core data, no need to protect them */ 149 return 0; 150 } 151 152 /* 153 * could return: 154 * - EROFS 155 * - ENOMEM 156 * - EIO 157 */ 158 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 159 struct inode *inode, struct ext4_ext_path *path) 160 { 161 int err; 162 163 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 164 if (path->p_bh) { 165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 166 /* path points to block */ 167 err = __ext4_handle_dirty_metadata(where, line, handle, 168 inode, path->p_bh); 169 } else { 170 /* path points to leaf/index in inode body */ 171 err = ext4_mark_inode_dirty(handle, inode); 172 } 173 return err; 174 } 175 176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 177 struct ext4_ext_path *path, 178 ext4_lblk_t block) 179 { 180 if (path) { 181 int depth = path->p_depth; 182 struct ext4_extent *ex; 183 184 /* 185 * Try to predict block placement assuming that we are 186 * filling in a file which will eventually be 187 * non-sparse --- i.e., in the case of libbfd writing 188 * an ELF object sections out-of-order but in a way 189 * the eventually results in a contiguous object or 190 * executable file, or some database extending a table 191 * space file. However, this is actually somewhat 192 * non-ideal if we are writing a sparse file such as 193 * qemu or KVM writing a raw image file that is going 194 * to stay fairly sparse, since it will end up 195 * fragmenting the file system's free space. Maybe we 196 * should have some hueristics or some way to allow 197 * userspace to pass a hint to file system, 198 * especially if the latter case turns out to be 199 * common. 200 */ 201 ex = path[depth].p_ext; 202 if (ex) { 203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 205 206 if (block > ext_block) 207 return ext_pblk + (block - ext_block); 208 else 209 return ext_pblk - (ext_block - block); 210 } 211 212 /* it looks like index is empty; 213 * try to find starting block from index itself */ 214 if (path[depth].p_bh) 215 return path[depth].p_bh->b_blocknr; 216 } 217 218 /* OK. use inode's group */ 219 return ext4_inode_to_goal_block(inode); 220 } 221 222 /* 223 * Allocation for a meta data block 224 */ 225 static ext4_fsblk_t 226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 227 struct ext4_ext_path *path, 228 struct ext4_extent *ex, int *err, unsigned int flags) 229 { 230 ext4_fsblk_t goal, newblock; 231 232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 234 NULL, err); 235 return newblock; 236 } 237 238 static inline int ext4_ext_space_block(struct inode *inode, int check) 239 { 240 int size; 241 242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 243 / sizeof(struct ext4_extent); 244 #ifdef AGGRESSIVE_TEST 245 if (!check && size > 6) 246 size = 6; 247 #endif 248 return size; 249 } 250 251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 252 { 253 int size; 254 255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 256 / sizeof(struct ext4_extent_idx); 257 #ifdef AGGRESSIVE_TEST 258 if (!check && size > 5) 259 size = 5; 260 #endif 261 return size; 262 } 263 264 static inline int ext4_ext_space_root(struct inode *inode, int check) 265 { 266 int size; 267 268 size = sizeof(EXT4_I(inode)->i_data); 269 size -= sizeof(struct ext4_extent_header); 270 size /= sizeof(struct ext4_extent); 271 #ifdef AGGRESSIVE_TEST 272 if (!check && size > 3) 273 size = 3; 274 #endif 275 return size; 276 } 277 278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 279 { 280 int size; 281 282 size = sizeof(EXT4_I(inode)->i_data); 283 size -= sizeof(struct ext4_extent_header); 284 size /= sizeof(struct ext4_extent_idx); 285 #ifdef AGGRESSIVE_TEST 286 if (!check && size > 4) 287 size = 4; 288 #endif 289 return size; 290 } 291 292 static inline int 293 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 294 struct ext4_ext_path **ppath, ext4_lblk_t lblk, 295 int nofail) 296 { 297 struct ext4_ext_path *path = *ppath; 298 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 299 300 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ? 301 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 302 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO | 303 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0)); 304 } 305 306 /* 307 * Calculate the number of metadata blocks needed 308 * to allocate @blocks 309 * Worse case is one block per extent 310 */ 311 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 312 { 313 struct ext4_inode_info *ei = EXT4_I(inode); 314 int idxs; 315 316 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 317 / sizeof(struct ext4_extent_idx)); 318 319 /* 320 * If the new delayed allocation block is contiguous with the 321 * previous da block, it can share index blocks with the 322 * previous block, so we only need to allocate a new index 323 * block every idxs leaf blocks. At ldxs**2 blocks, we need 324 * an additional index block, and at ldxs**3 blocks, yet 325 * another index blocks. 326 */ 327 if (ei->i_da_metadata_calc_len && 328 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 329 int num = 0; 330 331 if ((ei->i_da_metadata_calc_len % idxs) == 0) 332 num++; 333 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 334 num++; 335 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 336 num++; 337 ei->i_da_metadata_calc_len = 0; 338 } else 339 ei->i_da_metadata_calc_len++; 340 ei->i_da_metadata_calc_last_lblock++; 341 return num; 342 } 343 344 /* 345 * In the worst case we need a new set of index blocks at 346 * every level of the inode's extent tree. 347 */ 348 ei->i_da_metadata_calc_len = 1; 349 ei->i_da_metadata_calc_last_lblock = lblock; 350 return ext_depth(inode) + 1; 351 } 352 353 static int 354 ext4_ext_max_entries(struct inode *inode, int depth) 355 { 356 int max; 357 358 if (depth == ext_depth(inode)) { 359 if (depth == 0) 360 max = ext4_ext_space_root(inode, 1); 361 else 362 max = ext4_ext_space_root_idx(inode, 1); 363 } else { 364 if (depth == 0) 365 max = ext4_ext_space_block(inode, 1); 366 else 367 max = ext4_ext_space_block_idx(inode, 1); 368 } 369 370 return max; 371 } 372 373 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 374 { 375 ext4_fsblk_t block = ext4_ext_pblock(ext); 376 int len = ext4_ext_get_actual_len(ext); 377 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 378 ext4_lblk_t last = lblock + len - 1; 379 380 if (len == 0 || lblock > last) 381 return 0; 382 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 383 } 384 385 static int ext4_valid_extent_idx(struct inode *inode, 386 struct ext4_extent_idx *ext_idx) 387 { 388 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 389 390 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 391 } 392 393 static int ext4_valid_extent_entries(struct inode *inode, 394 struct ext4_extent_header *eh, 395 int depth) 396 { 397 unsigned short entries; 398 if (eh->eh_entries == 0) 399 return 1; 400 401 entries = le16_to_cpu(eh->eh_entries); 402 403 if (depth == 0) { 404 /* leaf entries */ 405 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 406 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 407 ext4_fsblk_t pblock = 0; 408 ext4_lblk_t lblock = 0; 409 ext4_lblk_t prev = 0; 410 int len = 0; 411 while (entries) { 412 if (!ext4_valid_extent(inode, ext)) 413 return 0; 414 415 /* Check for overlapping extents */ 416 lblock = le32_to_cpu(ext->ee_block); 417 len = ext4_ext_get_actual_len(ext); 418 if ((lblock <= prev) && prev) { 419 pblock = ext4_ext_pblock(ext); 420 es->s_last_error_block = cpu_to_le64(pblock); 421 return 0; 422 } 423 ext++; 424 entries--; 425 prev = lblock + len - 1; 426 } 427 } else { 428 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 429 while (entries) { 430 if (!ext4_valid_extent_idx(inode, ext_idx)) 431 return 0; 432 ext_idx++; 433 entries--; 434 } 435 } 436 return 1; 437 } 438 439 static int __ext4_ext_check(const char *function, unsigned int line, 440 struct inode *inode, struct ext4_extent_header *eh, 441 int depth, ext4_fsblk_t pblk) 442 { 443 const char *error_msg; 444 int max = 0; 445 446 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 447 error_msg = "invalid magic"; 448 goto corrupted; 449 } 450 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 451 error_msg = "unexpected eh_depth"; 452 goto corrupted; 453 } 454 if (unlikely(eh->eh_max == 0)) { 455 error_msg = "invalid eh_max"; 456 goto corrupted; 457 } 458 max = ext4_ext_max_entries(inode, depth); 459 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 460 error_msg = "too large eh_max"; 461 goto corrupted; 462 } 463 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 464 error_msg = "invalid eh_entries"; 465 goto corrupted; 466 } 467 if (!ext4_valid_extent_entries(inode, eh, depth)) { 468 error_msg = "invalid extent entries"; 469 goto corrupted; 470 } 471 /* Verify checksum on non-root extent tree nodes */ 472 if (ext_depth(inode) != depth && 473 !ext4_extent_block_csum_verify(inode, eh)) { 474 error_msg = "extent tree corrupted"; 475 goto corrupted; 476 } 477 return 0; 478 479 corrupted: 480 ext4_error_inode(inode, function, line, 0, 481 "pblk %llu bad header/extent: %s - magic %x, " 482 "entries %u, max %u(%u), depth %u(%u)", 483 (unsigned long long) pblk, error_msg, 484 le16_to_cpu(eh->eh_magic), 485 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 486 max, le16_to_cpu(eh->eh_depth), depth); 487 return -EIO; 488 } 489 490 #define ext4_ext_check(inode, eh, depth, pblk) \ 491 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 492 493 int ext4_ext_check_inode(struct inode *inode) 494 { 495 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 496 } 497 498 static struct buffer_head * 499 __read_extent_tree_block(const char *function, unsigned int line, 500 struct inode *inode, ext4_fsblk_t pblk, int depth, 501 int flags) 502 { 503 struct buffer_head *bh; 504 int err; 505 506 bh = sb_getblk(inode->i_sb, pblk); 507 if (unlikely(!bh)) 508 return ERR_PTR(-ENOMEM); 509 510 if (!bh_uptodate_or_lock(bh)) { 511 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 512 err = bh_submit_read(bh); 513 if (err < 0) 514 goto errout; 515 } 516 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 517 return bh; 518 err = __ext4_ext_check(function, line, inode, 519 ext_block_hdr(bh), depth, pblk); 520 if (err) 521 goto errout; 522 set_buffer_verified(bh); 523 /* 524 * If this is a leaf block, cache all of its entries 525 */ 526 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 527 struct ext4_extent_header *eh = ext_block_hdr(bh); 528 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 529 ext4_lblk_t prev = 0; 530 int i; 531 532 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 533 unsigned int status = EXTENT_STATUS_WRITTEN; 534 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 535 int len = ext4_ext_get_actual_len(ex); 536 537 if (prev && (prev != lblk)) 538 ext4_es_cache_extent(inode, prev, 539 lblk - prev, ~0, 540 EXTENT_STATUS_HOLE); 541 542 if (ext4_ext_is_unwritten(ex)) 543 status = EXTENT_STATUS_UNWRITTEN; 544 ext4_es_cache_extent(inode, lblk, len, 545 ext4_ext_pblock(ex), status); 546 prev = lblk + len; 547 } 548 } 549 return bh; 550 errout: 551 put_bh(bh); 552 return ERR_PTR(err); 553 554 } 555 556 #define read_extent_tree_block(inode, pblk, depth, flags) \ 557 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 558 (depth), (flags)) 559 560 /* 561 * This function is called to cache a file's extent information in the 562 * extent status tree 563 */ 564 int ext4_ext_precache(struct inode *inode) 565 { 566 struct ext4_inode_info *ei = EXT4_I(inode); 567 struct ext4_ext_path *path = NULL; 568 struct buffer_head *bh; 569 int i = 0, depth, ret = 0; 570 571 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 572 return 0; /* not an extent-mapped inode */ 573 574 down_read(&ei->i_data_sem); 575 depth = ext_depth(inode); 576 577 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 578 GFP_NOFS); 579 if (path == NULL) { 580 up_read(&ei->i_data_sem); 581 return -ENOMEM; 582 } 583 584 /* Don't cache anything if there are no external extent blocks */ 585 if (depth == 0) 586 goto out; 587 path[0].p_hdr = ext_inode_hdr(inode); 588 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 589 if (ret) 590 goto out; 591 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 592 while (i >= 0) { 593 /* 594 * If this is a leaf block or we've reached the end of 595 * the index block, go up 596 */ 597 if ((i == depth) || 598 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 599 brelse(path[i].p_bh); 600 path[i].p_bh = NULL; 601 i--; 602 continue; 603 } 604 bh = read_extent_tree_block(inode, 605 ext4_idx_pblock(path[i].p_idx++), 606 depth - i - 1, 607 EXT4_EX_FORCE_CACHE); 608 if (IS_ERR(bh)) { 609 ret = PTR_ERR(bh); 610 break; 611 } 612 i++; 613 path[i].p_bh = bh; 614 path[i].p_hdr = ext_block_hdr(bh); 615 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 616 } 617 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 618 out: 619 up_read(&ei->i_data_sem); 620 ext4_ext_drop_refs(path); 621 kfree(path); 622 return ret; 623 } 624 625 #ifdef EXT_DEBUG 626 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 627 { 628 int k, l = path->p_depth; 629 630 ext_debug("path:"); 631 for (k = 0; k <= l; k++, path++) { 632 if (path->p_idx) { 633 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 634 ext4_idx_pblock(path->p_idx)); 635 } else if (path->p_ext) { 636 ext_debug(" %d:[%d]%d:%llu ", 637 le32_to_cpu(path->p_ext->ee_block), 638 ext4_ext_is_unwritten(path->p_ext), 639 ext4_ext_get_actual_len(path->p_ext), 640 ext4_ext_pblock(path->p_ext)); 641 } else 642 ext_debug(" []"); 643 } 644 ext_debug("\n"); 645 } 646 647 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 648 { 649 int depth = ext_depth(inode); 650 struct ext4_extent_header *eh; 651 struct ext4_extent *ex; 652 int i; 653 654 if (!path) 655 return; 656 657 eh = path[depth].p_hdr; 658 ex = EXT_FIRST_EXTENT(eh); 659 660 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 661 662 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 663 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 664 ext4_ext_is_unwritten(ex), 665 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 666 } 667 ext_debug("\n"); 668 } 669 670 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 671 ext4_fsblk_t newblock, int level) 672 { 673 int depth = ext_depth(inode); 674 struct ext4_extent *ex; 675 676 if (depth != level) { 677 struct ext4_extent_idx *idx; 678 idx = path[level].p_idx; 679 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 680 ext_debug("%d: move %d:%llu in new index %llu\n", level, 681 le32_to_cpu(idx->ei_block), 682 ext4_idx_pblock(idx), 683 newblock); 684 idx++; 685 } 686 687 return; 688 } 689 690 ex = path[depth].p_ext; 691 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 692 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 693 le32_to_cpu(ex->ee_block), 694 ext4_ext_pblock(ex), 695 ext4_ext_is_unwritten(ex), 696 ext4_ext_get_actual_len(ex), 697 newblock); 698 ex++; 699 } 700 } 701 702 #else 703 #define ext4_ext_show_path(inode, path) 704 #define ext4_ext_show_leaf(inode, path) 705 #define ext4_ext_show_move(inode, path, newblock, level) 706 #endif 707 708 void ext4_ext_drop_refs(struct ext4_ext_path *path) 709 { 710 int depth, i; 711 712 if (!path) 713 return; 714 depth = path->p_depth; 715 for (i = 0; i <= depth; i++, path++) 716 if (path->p_bh) { 717 brelse(path->p_bh); 718 path->p_bh = NULL; 719 } 720 } 721 722 /* 723 * ext4_ext_binsearch_idx: 724 * binary search for the closest index of the given block 725 * the header must be checked before calling this 726 */ 727 static void 728 ext4_ext_binsearch_idx(struct inode *inode, 729 struct ext4_ext_path *path, ext4_lblk_t block) 730 { 731 struct ext4_extent_header *eh = path->p_hdr; 732 struct ext4_extent_idx *r, *l, *m; 733 734 735 ext_debug("binsearch for %u(idx): ", block); 736 737 l = EXT_FIRST_INDEX(eh) + 1; 738 r = EXT_LAST_INDEX(eh); 739 while (l <= r) { 740 m = l + (r - l) / 2; 741 if (block < le32_to_cpu(m->ei_block)) 742 r = m - 1; 743 else 744 l = m + 1; 745 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 746 m, le32_to_cpu(m->ei_block), 747 r, le32_to_cpu(r->ei_block)); 748 } 749 750 path->p_idx = l - 1; 751 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 752 ext4_idx_pblock(path->p_idx)); 753 754 #ifdef CHECK_BINSEARCH 755 { 756 struct ext4_extent_idx *chix, *ix; 757 int k; 758 759 chix = ix = EXT_FIRST_INDEX(eh); 760 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 761 if (k != 0 && 762 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 763 printk(KERN_DEBUG "k=%d, ix=0x%p, " 764 "first=0x%p\n", k, 765 ix, EXT_FIRST_INDEX(eh)); 766 printk(KERN_DEBUG "%u <= %u\n", 767 le32_to_cpu(ix->ei_block), 768 le32_to_cpu(ix[-1].ei_block)); 769 } 770 BUG_ON(k && le32_to_cpu(ix->ei_block) 771 <= le32_to_cpu(ix[-1].ei_block)); 772 if (block < le32_to_cpu(ix->ei_block)) 773 break; 774 chix = ix; 775 } 776 BUG_ON(chix != path->p_idx); 777 } 778 #endif 779 780 } 781 782 /* 783 * ext4_ext_binsearch: 784 * binary search for closest extent of the given block 785 * the header must be checked before calling this 786 */ 787 static void 788 ext4_ext_binsearch(struct inode *inode, 789 struct ext4_ext_path *path, ext4_lblk_t block) 790 { 791 struct ext4_extent_header *eh = path->p_hdr; 792 struct ext4_extent *r, *l, *m; 793 794 if (eh->eh_entries == 0) { 795 /* 796 * this leaf is empty: 797 * we get such a leaf in split/add case 798 */ 799 return; 800 } 801 802 ext_debug("binsearch for %u: ", block); 803 804 l = EXT_FIRST_EXTENT(eh) + 1; 805 r = EXT_LAST_EXTENT(eh); 806 807 while (l <= r) { 808 m = l + (r - l) / 2; 809 if (block < le32_to_cpu(m->ee_block)) 810 r = m - 1; 811 else 812 l = m + 1; 813 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 814 m, le32_to_cpu(m->ee_block), 815 r, le32_to_cpu(r->ee_block)); 816 } 817 818 path->p_ext = l - 1; 819 ext_debug(" -> %d:%llu:[%d]%d ", 820 le32_to_cpu(path->p_ext->ee_block), 821 ext4_ext_pblock(path->p_ext), 822 ext4_ext_is_unwritten(path->p_ext), 823 ext4_ext_get_actual_len(path->p_ext)); 824 825 #ifdef CHECK_BINSEARCH 826 { 827 struct ext4_extent *chex, *ex; 828 int k; 829 830 chex = ex = EXT_FIRST_EXTENT(eh); 831 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 832 BUG_ON(k && le32_to_cpu(ex->ee_block) 833 <= le32_to_cpu(ex[-1].ee_block)); 834 if (block < le32_to_cpu(ex->ee_block)) 835 break; 836 chex = ex; 837 } 838 BUG_ON(chex != path->p_ext); 839 } 840 #endif 841 842 } 843 844 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 845 { 846 struct ext4_extent_header *eh; 847 848 eh = ext_inode_hdr(inode); 849 eh->eh_depth = 0; 850 eh->eh_entries = 0; 851 eh->eh_magic = EXT4_EXT_MAGIC; 852 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 853 ext4_mark_inode_dirty(handle, inode); 854 return 0; 855 } 856 857 struct ext4_ext_path * 858 ext4_find_extent(struct inode *inode, ext4_lblk_t block, 859 struct ext4_ext_path **orig_path, int flags) 860 { 861 struct ext4_extent_header *eh; 862 struct buffer_head *bh; 863 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 864 short int depth, i, ppos = 0; 865 int ret; 866 867 eh = ext_inode_hdr(inode); 868 depth = ext_depth(inode); 869 870 if (path) { 871 ext4_ext_drop_refs(path); 872 if (depth > path[0].p_maxdepth) { 873 kfree(path); 874 *orig_path = path = NULL; 875 } 876 } 877 if (!path) { 878 /* account possible depth increase */ 879 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 880 GFP_NOFS); 881 if (unlikely(!path)) 882 return ERR_PTR(-ENOMEM); 883 path[0].p_maxdepth = depth + 1; 884 } 885 path[0].p_hdr = eh; 886 path[0].p_bh = NULL; 887 888 i = depth; 889 /* walk through the tree */ 890 while (i) { 891 ext_debug("depth %d: num %d, max %d\n", 892 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 893 894 ext4_ext_binsearch_idx(inode, path + ppos, block); 895 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 896 path[ppos].p_depth = i; 897 path[ppos].p_ext = NULL; 898 899 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 900 flags); 901 if (unlikely(IS_ERR(bh))) { 902 ret = PTR_ERR(bh); 903 goto err; 904 } 905 906 eh = ext_block_hdr(bh); 907 ppos++; 908 if (unlikely(ppos > depth)) { 909 put_bh(bh); 910 EXT4_ERROR_INODE(inode, 911 "ppos %d > depth %d", ppos, depth); 912 ret = -EIO; 913 goto err; 914 } 915 path[ppos].p_bh = bh; 916 path[ppos].p_hdr = eh; 917 } 918 919 path[ppos].p_depth = i; 920 path[ppos].p_ext = NULL; 921 path[ppos].p_idx = NULL; 922 923 /* find extent */ 924 ext4_ext_binsearch(inode, path + ppos, block); 925 /* if not an empty leaf */ 926 if (path[ppos].p_ext) 927 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 928 929 ext4_ext_show_path(inode, path); 930 931 return path; 932 933 err: 934 ext4_ext_drop_refs(path); 935 kfree(path); 936 if (orig_path) 937 *orig_path = NULL; 938 return ERR_PTR(ret); 939 } 940 941 /* 942 * ext4_ext_insert_index: 943 * insert new index [@logical;@ptr] into the block at @curp; 944 * check where to insert: before @curp or after @curp 945 */ 946 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 947 struct ext4_ext_path *curp, 948 int logical, ext4_fsblk_t ptr) 949 { 950 struct ext4_extent_idx *ix; 951 int len, err; 952 953 err = ext4_ext_get_access(handle, inode, curp); 954 if (err) 955 return err; 956 957 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 958 EXT4_ERROR_INODE(inode, 959 "logical %d == ei_block %d!", 960 logical, le32_to_cpu(curp->p_idx->ei_block)); 961 return -EIO; 962 } 963 964 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 965 >= le16_to_cpu(curp->p_hdr->eh_max))) { 966 EXT4_ERROR_INODE(inode, 967 "eh_entries %d >= eh_max %d!", 968 le16_to_cpu(curp->p_hdr->eh_entries), 969 le16_to_cpu(curp->p_hdr->eh_max)); 970 return -EIO; 971 } 972 973 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 974 /* insert after */ 975 ext_debug("insert new index %d after: %llu\n", logical, ptr); 976 ix = curp->p_idx + 1; 977 } else { 978 /* insert before */ 979 ext_debug("insert new index %d before: %llu\n", logical, ptr); 980 ix = curp->p_idx; 981 } 982 983 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 984 BUG_ON(len < 0); 985 if (len > 0) { 986 ext_debug("insert new index %d: " 987 "move %d indices from 0x%p to 0x%p\n", 988 logical, len, ix, ix + 1); 989 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 990 } 991 992 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 993 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 994 return -EIO; 995 } 996 997 ix->ei_block = cpu_to_le32(logical); 998 ext4_idx_store_pblock(ix, ptr); 999 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 1000 1001 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 1002 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 1003 return -EIO; 1004 } 1005 1006 err = ext4_ext_dirty(handle, inode, curp); 1007 ext4_std_error(inode->i_sb, err); 1008 1009 return err; 1010 } 1011 1012 /* 1013 * ext4_ext_split: 1014 * inserts new subtree into the path, using free index entry 1015 * at depth @at: 1016 * - allocates all needed blocks (new leaf and all intermediate index blocks) 1017 * - makes decision where to split 1018 * - moves remaining extents and index entries (right to the split point) 1019 * into the newly allocated blocks 1020 * - initializes subtree 1021 */ 1022 static int ext4_ext_split(handle_t *handle, struct inode *inode, 1023 unsigned int flags, 1024 struct ext4_ext_path *path, 1025 struct ext4_extent *newext, int at) 1026 { 1027 struct buffer_head *bh = NULL; 1028 int depth = ext_depth(inode); 1029 struct ext4_extent_header *neh; 1030 struct ext4_extent_idx *fidx; 1031 int i = at, k, m, a; 1032 ext4_fsblk_t newblock, oldblock; 1033 __le32 border; 1034 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1035 int err = 0; 1036 1037 /* make decision: where to split? */ 1038 /* FIXME: now decision is simplest: at current extent */ 1039 1040 /* if current leaf will be split, then we should use 1041 * border from split point */ 1042 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1043 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1044 return -EIO; 1045 } 1046 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1047 border = path[depth].p_ext[1].ee_block; 1048 ext_debug("leaf will be split." 1049 " next leaf starts at %d\n", 1050 le32_to_cpu(border)); 1051 } else { 1052 border = newext->ee_block; 1053 ext_debug("leaf will be added." 1054 " next leaf starts at %d\n", 1055 le32_to_cpu(border)); 1056 } 1057 1058 /* 1059 * If error occurs, then we break processing 1060 * and mark filesystem read-only. index won't 1061 * be inserted and tree will be in consistent 1062 * state. Next mount will repair buffers too. 1063 */ 1064 1065 /* 1066 * Get array to track all allocated blocks. 1067 * We need this to handle errors and free blocks 1068 * upon them. 1069 */ 1070 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 1071 if (!ablocks) 1072 return -ENOMEM; 1073 1074 /* allocate all needed blocks */ 1075 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1076 for (a = 0; a < depth - at; a++) { 1077 newblock = ext4_ext_new_meta_block(handle, inode, path, 1078 newext, &err, flags); 1079 if (newblock == 0) 1080 goto cleanup; 1081 ablocks[a] = newblock; 1082 } 1083 1084 /* initialize new leaf */ 1085 newblock = ablocks[--a]; 1086 if (unlikely(newblock == 0)) { 1087 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1088 err = -EIO; 1089 goto cleanup; 1090 } 1091 bh = sb_getblk(inode->i_sb, newblock); 1092 if (unlikely(!bh)) { 1093 err = -ENOMEM; 1094 goto cleanup; 1095 } 1096 lock_buffer(bh); 1097 1098 err = ext4_journal_get_create_access(handle, bh); 1099 if (err) 1100 goto cleanup; 1101 1102 neh = ext_block_hdr(bh); 1103 neh->eh_entries = 0; 1104 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1105 neh->eh_magic = EXT4_EXT_MAGIC; 1106 neh->eh_depth = 0; 1107 1108 /* move remainder of path[depth] to the new leaf */ 1109 if (unlikely(path[depth].p_hdr->eh_entries != 1110 path[depth].p_hdr->eh_max)) { 1111 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1112 path[depth].p_hdr->eh_entries, 1113 path[depth].p_hdr->eh_max); 1114 err = -EIO; 1115 goto cleanup; 1116 } 1117 /* start copy from next extent */ 1118 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1119 ext4_ext_show_move(inode, path, newblock, depth); 1120 if (m) { 1121 struct ext4_extent *ex; 1122 ex = EXT_FIRST_EXTENT(neh); 1123 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1124 le16_add_cpu(&neh->eh_entries, m); 1125 } 1126 1127 ext4_extent_block_csum_set(inode, neh); 1128 set_buffer_uptodate(bh); 1129 unlock_buffer(bh); 1130 1131 err = ext4_handle_dirty_metadata(handle, inode, bh); 1132 if (err) 1133 goto cleanup; 1134 brelse(bh); 1135 bh = NULL; 1136 1137 /* correct old leaf */ 1138 if (m) { 1139 err = ext4_ext_get_access(handle, inode, path + depth); 1140 if (err) 1141 goto cleanup; 1142 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1143 err = ext4_ext_dirty(handle, inode, path + depth); 1144 if (err) 1145 goto cleanup; 1146 1147 } 1148 1149 /* create intermediate indexes */ 1150 k = depth - at - 1; 1151 if (unlikely(k < 0)) { 1152 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1153 err = -EIO; 1154 goto cleanup; 1155 } 1156 if (k) 1157 ext_debug("create %d intermediate indices\n", k); 1158 /* insert new index into current index block */ 1159 /* current depth stored in i var */ 1160 i = depth - 1; 1161 while (k--) { 1162 oldblock = newblock; 1163 newblock = ablocks[--a]; 1164 bh = sb_getblk(inode->i_sb, newblock); 1165 if (unlikely(!bh)) { 1166 err = -ENOMEM; 1167 goto cleanup; 1168 } 1169 lock_buffer(bh); 1170 1171 err = ext4_journal_get_create_access(handle, bh); 1172 if (err) 1173 goto cleanup; 1174 1175 neh = ext_block_hdr(bh); 1176 neh->eh_entries = cpu_to_le16(1); 1177 neh->eh_magic = EXT4_EXT_MAGIC; 1178 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1179 neh->eh_depth = cpu_to_le16(depth - i); 1180 fidx = EXT_FIRST_INDEX(neh); 1181 fidx->ei_block = border; 1182 ext4_idx_store_pblock(fidx, oldblock); 1183 1184 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1185 i, newblock, le32_to_cpu(border), oldblock); 1186 1187 /* move remainder of path[i] to the new index block */ 1188 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1189 EXT_LAST_INDEX(path[i].p_hdr))) { 1190 EXT4_ERROR_INODE(inode, 1191 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1192 le32_to_cpu(path[i].p_ext->ee_block)); 1193 err = -EIO; 1194 goto cleanup; 1195 } 1196 /* start copy indexes */ 1197 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1198 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1199 EXT_MAX_INDEX(path[i].p_hdr)); 1200 ext4_ext_show_move(inode, path, newblock, i); 1201 if (m) { 1202 memmove(++fidx, path[i].p_idx, 1203 sizeof(struct ext4_extent_idx) * m); 1204 le16_add_cpu(&neh->eh_entries, m); 1205 } 1206 ext4_extent_block_csum_set(inode, neh); 1207 set_buffer_uptodate(bh); 1208 unlock_buffer(bh); 1209 1210 err = ext4_handle_dirty_metadata(handle, inode, bh); 1211 if (err) 1212 goto cleanup; 1213 brelse(bh); 1214 bh = NULL; 1215 1216 /* correct old index */ 1217 if (m) { 1218 err = ext4_ext_get_access(handle, inode, path + i); 1219 if (err) 1220 goto cleanup; 1221 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1222 err = ext4_ext_dirty(handle, inode, path + i); 1223 if (err) 1224 goto cleanup; 1225 } 1226 1227 i--; 1228 } 1229 1230 /* insert new index */ 1231 err = ext4_ext_insert_index(handle, inode, path + at, 1232 le32_to_cpu(border), newblock); 1233 1234 cleanup: 1235 if (bh) { 1236 if (buffer_locked(bh)) 1237 unlock_buffer(bh); 1238 brelse(bh); 1239 } 1240 1241 if (err) { 1242 /* free all allocated blocks in error case */ 1243 for (i = 0; i < depth; i++) { 1244 if (!ablocks[i]) 1245 continue; 1246 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1247 EXT4_FREE_BLOCKS_METADATA); 1248 } 1249 } 1250 kfree(ablocks); 1251 1252 return err; 1253 } 1254 1255 /* 1256 * ext4_ext_grow_indepth: 1257 * implements tree growing procedure: 1258 * - allocates new block 1259 * - moves top-level data (index block or leaf) into the new block 1260 * - initializes new top-level, creating index that points to the 1261 * just created block 1262 */ 1263 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1264 unsigned int flags) 1265 { 1266 struct ext4_extent_header *neh; 1267 struct buffer_head *bh; 1268 ext4_fsblk_t newblock, goal = 0; 1269 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 1270 int err = 0; 1271 1272 /* Try to prepend new index to old one */ 1273 if (ext_depth(inode)) 1274 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); 1275 if (goal > le32_to_cpu(es->s_first_data_block)) { 1276 flags |= EXT4_MB_HINT_TRY_GOAL; 1277 goal--; 1278 } else 1279 goal = ext4_inode_to_goal_block(inode); 1280 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 1281 NULL, &err); 1282 if (newblock == 0) 1283 return err; 1284 1285 bh = sb_getblk(inode->i_sb, newblock); 1286 if (unlikely(!bh)) 1287 return -ENOMEM; 1288 lock_buffer(bh); 1289 1290 err = ext4_journal_get_create_access(handle, bh); 1291 if (err) { 1292 unlock_buffer(bh); 1293 goto out; 1294 } 1295 1296 /* move top-level index/leaf into new block */ 1297 memmove(bh->b_data, EXT4_I(inode)->i_data, 1298 sizeof(EXT4_I(inode)->i_data)); 1299 1300 /* set size of new block */ 1301 neh = ext_block_hdr(bh); 1302 /* old root could have indexes or leaves 1303 * so calculate e_max right way */ 1304 if (ext_depth(inode)) 1305 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1306 else 1307 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1308 neh->eh_magic = EXT4_EXT_MAGIC; 1309 ext4_extent_block_csum_set(inode, neh); 1310 set_buffer_uptodate(bh); 1311 unlock_buffer(bh); 1312 1313 err = ext4_handle_dirty_metadata(handle, inode, bh); 1314 if (err) 1315 goto out; 1316 1317 /* Update top-level index: num,max,pointer */ 1318 neh = ext_inode_hdr(inode); 1319 neh->eh_entries = cpu_to_le16(1); 1320 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1321 if (neh->eh_depth == 0) { 1322 /* Root extent block becomes index block */ 1323 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1324 EXT_FIRST_INDEX(neh)->ei_block = 1325 EXT_FIRST_EXTENT(neh)->ee_block; 1326 } 1327 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1328 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1329 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1330 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1331 1332 le16_add_cpu(&neh->eh_depth, 1); 1333 ext4_mark_inode_dirty(handle, inode); 1334 out: 1335 brelse(bh); 1336 1337 return err; 1338 } 1339 1340 /* 1341 * ext4_ext_create_new_leaf: 1342 * finds empty index and adds new leaf. 1343 * if no free index is found, then it requests in-depth growing. 1344 */ 1345 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1346 unsigned int mb_flags, 1347 unsigned int gb_flags, 1348 struct ext4_ext_path **ppath, 1349 struct ext4_extent *newext) 1350 { 1351 struct ext4_ext_path *path = *ppath; 1352 struct ext4_ext_path *curp; 1353 int depth, i, err = 0; 1354 1355 repeat: 1356 i = depth = ext_depth(inode); 1357 1358 /* walk up to the tree and look for free index entry */ 1359 curp = path + depth; 1360 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1361 i--; 1362 curp--; 1363 } 1364 1365 /* we use already allocated block for index block, 1366 * so subsequent data blocks should be contiguous */ 1367 if (EXT_HAS_FREE_INDEX(curp)) { 1368 /* if we found index with free entry, then use that 1369 * entry: create all needed subtree and add new leaf */ 1370 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1371 if (err) 1372 goto out; 1373 1374 /* refill path */ 1375 path = ext4_find_extent(inode, 1376 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1377 ppath, gb_flags); 1378 if (IS_ERR(path)) 1379 err = PTR_ERR(path); 1380 } else { 1381 /* tree is full, time to grow in depth */ 1382 err = ext4_ext_grow_indepth(handle, inode, mb_flags); 1383 if (err) 1384 goto out; 1385 1386 /* refill path */ 1387 path = ext4_find_extent(inode, 1388 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1389 ppath, gb_flags); 1390 if (IS_ERR(path)) { 1391 err = PTR_ERR(path); 1392 goto out; 1393 } 1394 1395 /* 1396 * only first (depth 0 -> 1) produces free space; 1397 * in all other cases we have to split the grown tree 1398 */ 1399 depth = ext_depth(inode); 1400 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1401 /* now we need to split */ 1402 goto repeat; 1403 } 1404 } 1405 1406 out: 1407 return err; 1408 } 1409 1410 /* 1411 * search the closest allocated block to the left for *logical 1412 * and returns it at @logical + it's physical address at @phys 1413 * if *logical is the smallest allocated block, the function 1414 * returns 0 at @phys 1415 * return value contains 0 (success) or error code 1416 */ 1417 static int ext4_ext_search_left(struct inode *inode, 1418 struct ext4_ext_path *path, 1419 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1420 { 1421 struct ext4_extent_idx *ix; 1422 struct ext4_extent *ex; 1423 int depth, ee_len; 1424 1425 if (unlikely(path == NULL)) { 1426 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1427 return -EIO; 1428 } 1429 depth = path->p_depth; 1430 *phys = 0; 1431 1432 if (depth == 0 && path->p_ext == NULL) 1433 return 0; 1434 1435 /* usually extent in the path covers blocks smaller 1436 * then *logical, but it can be that extent is the 1437 * first one in the file */ 1438 1439 ex = path[depth].p_ext; 1440 ee_len = ext4_ext_get_actual_len(ex); 1441 if (*logical < le32_to_cpu(ex->ee_block)) { 1442 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1443 EXT4_ERROR_INODE(inode, 1444 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1445 *logical, le32_to_cpu(ex->ee_block)); 1446 return -EIO; 1447 } 1448 while (--depth >= 0) { 1449 ix = path[depth].p_idx; 1450 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1451 EXT4_ERROR_INODE(inode, 1452 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1453 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1454 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1455 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1456 depth); 1457 return -EIO; 1458 } 1459 } 1460 return 0; 1461 } 1462 1463 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1464 EXT4_ERROR_INODE(inode, 1465 "logical %d < ee_block %d + ee_len %d!", 1466 *logical, le32_to_cpu(ex->ee_block), ee_len); 1467 return -EIO; 1468 } 1469 1470 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1471 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1472 return 0; 1473 } 1474 1475 /* 1476 * search the closest allocated block to the right for *logical 1477 * and returns it at @logical + it's physical address at @phys 1478 * if *logical is the largest allocated block, the function 1479 * returns 0 at @phys 1480 * return value contains 0 (success) or error code 1481 */ 1482 static int ext4_ext_search_right(struct inode *inode, 1483 struct ext4_ext_path *path, 1484 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1485 struct ext4_extent **ret_ex) 1486 { 1487 struct buffer_head *bh = NULL; 1488 struct ext4_extent_header *eh; 1489 struct ext4_extent_idx *ix; 1490 struct ext4_extent *ex; 1491 ext4_fsblk_t block; 1492 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1493 int ee_len; 1494 1495 if (unlikely(path == NULL)) { 1496 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1497 return -EIO; 1498 } 1499 depth = path->p_depth; 1500 *phys = 0; 1501 1502 if (depth == 0 && path->p_ext == NULL) 1503 return 0; 1504 1505 /* usually extent in the path covers blocks smaller 1506 * then *logical, but it can be that extent is the 1507 * first one in the file */ 1508 1509 ex = path[depth].p_ext; 1510 ee_len = ext4_ext_get_actual_len(ex); 1511 if (*logical < le32_to_cpu(ex->ee_block)) { 1512 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1513 EXT4_ERROR_INODE(inode, 1514 "first_extent(path[%d].p_hdr) != ex", 1515 depth); 1516 return -EIO; 1517 } 1518 while (--depth >= 0) { 1519 ix = path[depth].p_idx; 1520 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1521 EXT4_ERROR_INODE(inode, 1522 "ix != EXT_FIRST_INDEX *logical %d!", 1523 *logical); 1524 return -EIO; 1525 } 1526 } 1527 goto found_extent; 1528 } 1529 1530 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1531 EXT4_ERROR_INODE(inode, 1532 "logical %d < ee_block %d + ee_len %d!", 1533 *logical, le32_to_cpu(ex->ee_block), ee_len); 1534 return -EIO; 1535 } 1536 1537 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1538 /* next allocated block in this leaf */ 1539 ex++; 1540 goto found_extent; 1541 } 1542 1543 /* go up and search for index to the right */ 1544 while (--depth >= 0) { 1545 ix = path[depth].p_idx; 1546 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1547 goto got_index; 1548 } 1549 1550 /* we've gone up to the root and found no index to the right */ 1551 return 0; 1552 1553 got_index: 1554 /* we've found index to the right, let's 1555 * follow it and find the closest allocated 1556 * block to the right */ 1557 ix++; 1558 block = ext4_idx_pblock(ix); 1559 while (++depth < path->p_depth) { 1560 /* subtract from p_depth to get proper eh_depth */ 1561 bh = read_extent_tree_block(inode, block, 1562 path->p_depth - depth, 0); 1563 if (IS_ERR(bh)) 1564 return PTR_ERR(bh); 1565 eh = ext_block_hdr(bh); 1566 ix = EXT_FIRST_INDEX(eh); 1567 block = ext4_idx_pblock(ix); 1568 put_bh(bh); 1569 } 1570 1571 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1572 if (IS_ERR(bh)) 1573 return PTR_ERR(bh); 1574 eh = ext_block_hdr(bh); 1575 ex = EXT_FIRST_EXTENT(eh); 1576 found_extent: 1577 *logical = le32_to_cpu(ex->ee_block); 1578 *phys = ext4_ext_pblock(ex); 1579 *ret_ex = ex; 1580 if (bh) 1581 put_bh(bh); 1582 return 0; 1583 } 1584 1585 /* 1586 * ext4_ext_next_allocated_block: 1587 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1588 * NOTE: it considers block number from index entry as 1589 * allocated block. Thus, index entries have to be consistent 1590 * with leaves. 1591 */ 1592 ext4_lblk_t 1593 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1594 { 1595 int depth; 1596 1597 BUG_ON(path == NULL); 1598 depth = path->p_depth; 1599 1600 if (depth == 0 && path->p_ext == NULL) 1601 return EXT_MAX_BLOCKS; 1602 1603 while (depth >= 0) { 1604 if (depth == path->p_depth) { 1605 /* leaf */ 1606 if (path[depth].p_ext && 1607 path[depth].p_ext != 1608 EXT_LAST_EXTENT(path[depth].p_hdr)) 1609 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1610 } else { 1611 /* index */ 1612 if (path[depth].p_idx != 1613 EXT_LAST_INDEX(path[depth].p_hdr)) 1614 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1615 } 1616 depth--; 1617 } 1618 1619 return EXT_MAX_BLOCKS; 1620 } 1621 1622 /* 1623 * ext4_ext_next_leaf_block: 1624 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1625 */ 1626 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1627 { 1628 int depth; 1629 1630 BUG_ON(path == NULL); 1631 depth = path->p_depth; 1632 1633 /* zero-tree has no leaf blocks at all */ 1634 if (depth == 0) 1635 return EXT_MAX_BLOCKS; 1636 1637 /* go to index block */ 1638 depth--; 1639 1640 while (depth >= 0) { 1641 if (path[depth].p_idx != 1642 EXT_LAST_INDEX(path[depth].p_hdr)) 1643 return (ext4_lblk_t) 1644 le32_to_cpu(path[depth].p_idx[1].ei_block); 1645 depth--; 1646 } 1647 1648 return EXT_MAX_BLOCKS; 1649 } 1650 1651 /* 1652 * ext4_ext_correct_indexes: 1653 * if leaf gets modified and modified extent is first in the leaf, 1654 * then we have to correct all indexes above. 1655 * TODO: do we need to correct tree in all cases? 1656 */ 1657 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1658 struct ext4_ext_path *path) 1659 { 1660 struct ext4_extent_header *eh; 1661 int depth = ext_depth(inode); 1662 struct ext4_extent *ex; 1663 __le32 border; 1664 int k, err = 0; 1665 1666 eh = path[depth].p_hdr; 1667 ex = path[depth].p_ext; 1668 1669 if (unlikely(ex == NULL || eh == NULL)) { 1670 EXT4_ERROR_INODE(inode, 1671 "ex %p == NULL or eh %p == NULL", ex, eh); 1672 return -EIO; 1673 } 1674 1675 if (depth == 0) { 1676 /* there is no tree at all */ 1677 return 0; 1678 } 1679 1680 if (ex != EXT_FIRST_EXTENT(eh)) { 1681 /* we correct tree if first leaf got modified only */ 1682 return 0; 1683 } 1684 1685 /* 1686 * TODO: we need correction if border is smaller than current one 1687 */ 1688 k = depth - 1; 1689 border = path[depth].p_ext->ee_block; 1690 err = ext4_ext_get_access(handle, inode, path + k); 1691 if (err) 1692 return err; 1693 path[k].p_idx->ei_block = border; 1694 err = ext4_ext_dirty(handle, inode, path + k); 1695 if (err) 1696 return err; 1697 1698 while (k--) { 1699 /* change all left-side indexes */ 1700 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1701 break; 1702 err = ext4_ext_get_access(handle, inode, path + k); 1703 if (err) 1704 break; 1705 path[k].p_idx->ei_block = border; 1706 err = ext4_ext_dirty(handle, inode, path + k); 1707 if (err) 1708 break; 1709 } 1710 1711 return err; 1712 } 1713 1714 int 1715 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1716 struct ext4_extent *ex2) 1717 { 1718 unsigned short ext1_ee_len, ext2_ee_len; 1719 1720 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1721 return 0; 1722 1723 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1724 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1725 1726 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1727 le32_to_cpu(ex2->ee_block)) 1728 return 0; 1729 1730 /* 1731 * To allow future support for preallocated extents to be added 1732 * as an RO_COMPAT feature, refuse to merge to extents if 1733 * this can result in the top bit of ee_len being set. 1734 */ 1735 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1736 return 0; 1737 if (ext4_ext_is_unwritten(ex1) && 1738 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) || 1739 atomic_read(&EXT4_I(inode)->i_unwritten) || 1740 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN))) 1741 return 0; 1742 #ifdef AGGRESSIVE_TEST 1743 if (ext1_ee_len >= 4) 1744 return 0; 1745 #endif 1746 1747 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1748 return 1; 1749 return 0; 1750 } 1751 1752 /* 1753 * This function tries to merge the "ex" extent to the next extent in the tree. 1754 * It always tries to merge towards right. If you want to merge towards 1755 * left, pass "ex - 1" as argument instead of "ex". 1756 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1757 * 1 if they got merged. 1758 */ 1759 static int ext4_ext_try_to_merge_right(struct inode *inode, 1760 struct ext4_ext_path *path, 1761 struct ext4_extent *ex) 1762 { 1763 struct ext4_extent_header *eh; 1764 unsigned int depth, len; 1765 int merge_done = 0, unwritten; 1766 1767 depth = ext_depth(inode); 1768 BUG_ON(path[depth].p_hdr == NULL); 1769 eh = path[depth].p_hdr; 1770 1771 while (ex < EXT_LAST_EXTENT(eh)) { 1772 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1773 break; 1774 /* merge with next extent! */ 1775 unwritten = ext4_ext_is_unwritten(ex); 1776 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1777 + ext4_ext_get_actual_len(ex + 1)); 1778 if (unwritten) 1779 ext4_ext_mark_unwritten(ex); 1780 1781 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1782 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1783 * sizeof(struct ext4_extent); 1784 memmove(ex + 1, ex + 2, len); 1785 } 1786 le16_add_cpu(&eh->eh_entries, -1); 1787 merge_done = 1; 1788 WARN_ON(eh->eh_entries == 0); 1789 if (!eh->eh_entries) 1790 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1791 } 1792 1793 return merge_done; 1794 } 1795 1796 /* 1797 * This function does a very simple check to see if we can collapse 1798 * an extent tree with a single extent tree leaf block into the inode. 1799 */ 1800 static void ext4_ext_try_to_merge_up(handle_t *handle, 1801 struct inode *inode, 1802 struct ext4_ext_path *path) 1803 { 1804 size_t s; 1805 unsigned max_root = ext4_ext_space_root(inode, 0); 1806 ext4_fsblk_t blk; 1807 1808 if ((path[0].p_depth != 1) || 1809 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1810 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1811 return; 1812 1813 /* 1814 * We need to modify the block allocation bitmap and the block 1815 * group descriptor to release the extent tree block. If we 1816 * can't get the journal credits, give up. 1817 */ 1818 if (ext4_journal_extend(handle, 2)) 1819 return; 1820 1821 /* 1822 * Copy the extent data up to the inode 1823 */ 1824 blk = ext4_idx_pblock(path[0].p_idx); 1825 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1826 sizeof(struct ext4_extent_idx); 1827 s += sizeof(struct ext4_extent_header); 1828 1829 path[1].p_maxdepth = path[0].p_maxdepth; 1830 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1831 path[0].p_depth = 0; 1832 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1833 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1834 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1835 1836 brelse(path[1].p_bh); 1837 ext4_free_blocks(handle, inode, NULL, blk, 1, 1838 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1839 } 1840 1841 /* 1842 * This function tries to merge the @ex extent to neighbours in the tree. 1843 * return 1 if merge left else 0. 1844 */ 1845 static void ext4_ext_try_to_merge(handle_t *handle, 1846 struct inode *inode, 1847 struct ext4_ext_path *path, 1848 struct ext4_extent *ex) { 1849 struct ext4_extent_header *eh; 1850 unsigned int depth; 1851 int merge_done = 0; 1852 1853 depth = ext_depth(inode); 1854 BUG_ON(path[depth].p_hdr == NULL); 1855 eh = path[depth].p_hdr; 1856 1857 if (ex > EXT_FIRST_EXTENT(eh)) 1858 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1859 1860 if (!merge_done) 1861 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1862 1863 ext4_ext_try_to_merge_up(handle, inode, path); 1864 } 1865 1866 /* 1867 * check if a portion of the "newext" extent overlaps with an 1868 * existing extent. 1869 * 1870 * If there is an overlap discovered, it updates the length of the newext 1871 * such that there will be no overlap, and then returns 1. 1872 * If there is no overlap found, it returns 0. 1873 */ 1874 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1875 struct inode *inode, 1876 struct ext4_extent *newext, 1877 struct ext4_ext_path *path) 1878 { 1879 ext4_lblk_t b1, b2; 1880 unsigned int depth, len1; 1881 unsigned int ret = 0; 1882 1883 b1 = le32_to_cpu(newext->ee_block); 1884 len1 = ext4_ext_get_actual_len(newext); 1885 depth = ext_depth(inode); 1886 if (!path[depth].p_ext) 1887 goto out; 1888 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1889 1890 /* 1891 * get the next allocated block if the extent in the path 1892 * is before the requested block(s) 1893 */ 1894 if (b2 < b1) { 1895 b2 = ext4_ext_next_allocated_block(path); 1896 if (b2 == EXT_MAX_BLOCKS) 1897 goto out; 1898 b2 = EXT4_LBLK_CMASK(sbi, b2); 1899 } 1900 1901 /* check for wrap through zero on extent logical start block*/ 1902 if (b1 + len1 < b1) { 1903 len1 = EXT_MAX_BLOCKS - b1; 1904 newext->ee_len = cpu_to_le16(len1); 1905 ret = 1; 1906 } 1907 1908 /* check for overlap */ 1909 if (b1 + len1 > b2) { 1910 newext->ee_len = cpu_to_le16(b2 - b1); 1911 ret = 1; 1912 } 1913 out: 1914 return ret; 1915 } 1916 1917 /* 1918 * ext4_ext_insert_extent: 1919 * tries to merge requsted extent into the existing extent or 1920 * inserts requested extent as new one into the tree, 1921 * creating new leaf in the no-space case. 1922 */ 1923 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1924 struct ext4_ext_path **ppath, 1925 struct ext4_extent *newext, int gb_flags) 1926 { 1927 struct ext4_ext_path *path = *ppath; 1928 struct ext4_extent_header *eh; 1929 struct ext4_extent *ex, *fex; 1930 struct ext4_extent *nearex; /* nearest extent */ 1931 struct ext4_ext_path *npath = NULL; 1932 int depth, len, err; 1933 ext4_lblk_t next; 1934 int mb_flags = 0, unwritten; 1935 1936 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1937 mb_flags |= EXT4_MB_DELALLOC_RESERVED; 1938 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1939 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1940 return -EIO; 1941 } 1942 depth = ext_depth(inode); 1943 ex = path[depth].p_ext; 1944 eh = path[depth].p_hdr; 1945 if (unlikely(path[depth].p_hdr == NULL)) { 1946 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1947 return -EIO; 1948 } 1949 1950 /* try to insert block into found extent and return */ 1951 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1952 1953 /* 1954 * Try to see whether we should rather test the extent on 1955 * right from ex, or from the left of ex. This is because 1956 * ext4_find_extent() can return either extent on the 1957 * left, or on the right from the searched position. This 1958 * will make merging more effective. 1959 */ 1960 if (ex < EXT_LAST_EXTENT(eh) && 1961 (le32_to_cpu(ex->ee_block) + 1962 ext4_ext_get_actual_len(ex) < 1963 le32_to_cpu(newext->ee_block))) { 1964 ex += 1; 1965 goto prepend; 1966 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1967 (le32_to_cpu(newext->ee_block) + 1968 ext4_ext_get_actual_len(newext) < 1969 le32_to_cpu(ex->ee_block))) 1970 ex -= 1; 1971 1972 /* Try to append newex to the ex */ 1973 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1974 ext_debug("append [%d]%d block to %u:[%d]%d" 1975 "(from %llu)\n", 1976 ext4_ext_is_unwritten(newext), 1977 ext4_ext_get_actual_len(newext), 1978 le32_to_cpu(ex->ee_block), 1979 ext4_ext_is_unwritten(ex), 1980 ext4_ext_get_actual_len(ex), 1981 ext4_ext_pblock(ex)); 1982 err = ext4_ext_get_access(handle, inode, 1983 path + depth); 1984 if (err) 1985 return err; 1986 unwritten = ext4_ext_is_unwritten(ex); 1987 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1988 + ext4_ext_get_actual_len(newext)); 1989 if (unwritten) 1990 ext4_ext_mark_unwritten(ex); 1991 eh = path[depth].p_hdr; 1992 nearex = ex; 1993 goto merge; 1994 } 1995 1996 prepend: 1997 /* Try to prepend newex to the ex */ 1998 if (ext4_can_extents_be_merged(inode, newext, ex)) { 1999 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 2000 "(from %llu)\n", 2001 le32_to_cpu(newext->ee_block), 2002 ext4_ext_is_unwritten(newext), 2003 ext4_ext_get_actual_len(newext), 2004 le32_to_cpu(ex->ee_block), 2005 ext4_ext_is_unwritten(ex), 2006 ext4_ext_get_actual_len(ex), 2007 ext4_ext_pblock(ex)); 2008 err = ext4_ext_get_access(handle, inode, 2009 path + depth); 2010 if (err) 2011 return err; 2012 2013 unwritten = ext4_ext_is_unwritten(ex); 2014 ex->ee_block = newext->ee_block; 2015 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 2016 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2017 + ext4_ext_get_actual_len(newext)); 2018 if (unwritten) 2019 ext4_ext_mark_unwritten(ex); 2020 eh = path[depth].p_hdr; 2021 nearex = ex; 2022 goto merge; 2023 } 2024 } 2025 2026 depth = ext_depth(inode); 2027 eh = path[depth].p_hdr; 2028 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2029 goto has_space; 2030 2031 /* probably next leaf has space for us? */ 2032 fex = EXT_LAST_EXTENT(eh); 2033 next = EXT_MAX_BLOCKS; 2034 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2035 next = ext4_ext_next_leaf_block(path); 2036 if (next != EXT_MAX_BLOCKS) { 2037 ext_debug("next leaf block - %u\n", next); 2038 BUG_ON(npath != NULL); 2039 npath = ext4_find_extent(inode, next, NULL, 0); 2040 if (IS_ERR(npath)) 2041 return PTR_ERR(npath); 2042 BUG_ON(npath->p_depth != path->p_depth); 2043 eh = npath[depth].p_hdr; 2044 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2045 ext_debug("next leaf isn't full(%d)\n", 2046 le16_to_cpu(eh->eh_entries)); 2047 path = npath; 2048 goto has_space; 2049 } 2050 ext_debug("next leaf has no free space(%d,%d)\n", 2051 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2052 } 2053 2054 /* 2055 * There is no free space in the found leaf. 2056 * We're gonna add a new leaf in the tree. 2057 */ 2058 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2059 mb_flags |= EXT4_MB_USE_RESERVED; 2060 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2061 ppath, newext); 2062 if (err) 2063 goto cleanup; 2064 depth = ext_depth(inode); 2065 eh = path[depth].p_hdr; 2066 2067 has_space: 2068 nearex = path[depth].p_ext; 2069 2070 err = ext4_ext_get_access(handle, inode, path + depth); 2071 if (err) 2072 goto cleanup; 2073 2074 if (!nearex) { 2075 /* there is no extent in this leaf, create first one */ 2076 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2077 le32_to_cpu(newext->ee_block), 2078 ext4_ext_pblock(newext), 2079 ext4_ext_is_unwritten(newext), 2080 ext4_ext_get_actual_len(newext)); 2081 nearex = EXT_FIRST_EXTENT(eh); 2082 } else { 2083 if (le32_to_cpu(newext->ee_block) 2084 > le32_to_cpu(nearex->ee_block)) { 2085 /* Insert after */ 2086 ext_debug("insert %u:%llu:[%d]%d before: " 2087 "nearest %p\n", 2088 le32_to_cpu(newext->ee_block), 2089 ext4_ext_pblock(newext), 2090 ext4_ext_is_unwritten(newext), 2091 ext4_ext_get_actual_len(newext), 2092 nearex); 2093 nearex++; 2094 } else { 2095 /* Insert before */ 2096 BUG_ON(newext->ee_block == nearex->ee_block); 2097 ext_debug("insert %u:%llu:[%d]%d after: " 2098 "nearest %p\n", 2099 le32_to_cpu(newext->ee_block), 2100 ext4_ext_pblock(newext), 2101 ext4_ext_is_unwritten(newext), 2102 ext4_ext_get_actual_len(newext), 2103 nearex); 2104 } 2105 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2106 if (len > 0) { 2107 ext_debug("insert %u:%llu:[%d]%d: " 2108 "move %d extents from 0x%p to 0x%p\n", 2109 le32_to_cpu(newext->ee_block), 2110 ext4_ext_pblock(newext), 2111 ext4_ext_is_unwritten(newext), 2112 ext4_ext_get_actual_len(newext), 2113 len, nearex, nearex + 1); 2114 memmove(nearex + 1, nearex, 2115 len * sizeof(struct ext4_extent)); 2116 } 2117 } 2118 2119 le16_add_cpu(&eh->eh_entries, 1); 2120 path[depth].p_ext = nearex; 2121 nearex->ee_block = newext->ee_block; 2122 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2123 nearex->ee_len = newext->ee_len; 2124 2125 merge: 2126 /* try to merge extents */ 2127 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2128 ext4_ext_try_to_merge(handle, inode, path, nearex); 2129 2130 2131 /* time to correct all indexes above */ 2132 err = ext4_ext_correct_indexes(handle, inode, path); 2133 if (err) 2134 goto cleanup; 2135 2136 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2137 2138 cleanup: 2139 ext4_ext_drop_refs(npath); 2140 kfree(npath); 2141 return err; 2142 } 2143 2144 static int ext4_fill_fiemap_extents(struct inode *inode, 2145 ext4_lblk_t block, ext4_lblk_t num, 2146 struct fiemap_extent_info *fieinfo) 2147 { 2148 struct ext4_ext_path *path = NULL; 2149 struct ext4_extent *ex; 2150 struct extent_status es; 2151 ext4_lblk_t next, next_del, start = 0, end = 0; 2152 ext4_lblk_t last = block + num; 2153 int exists, depth = 0, err = 0; 2154 unsigned int flags = 0; 2155 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2156 2157 while (block < last && block != EXT_MAX_BLOCKS) { 2158 num = last - block; 2159 /* find extent for this block */ 2160 down_read(&EXT4_I(inode)->i_data_sem); 2161 2162 path = ext4_find_extent(inode, block, &path, 0); 2163 if (IS_ERR(path)) { 2164 up_read(&EXT4_I(inode)->i_data_sem); 2165 err = PTR_ERR(path); 2166 path = NULL; 2167 break; 2168 } 2169 2170 depth = ext_depth(inode); 2171 if (unlikely(path[depth].p_hdr == NULL)) { 2172 up_read(&EXT4_I(inode)->i_data_sem); 2173 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2174 err = -EIO; 2175 break; 2176 } 2177 ex = path[depth].p_ext; 2178 next = ext4_ext_next_allocated_block(path); 2179 2180 flags = 0; 2181 exists = 0; 2182 if (!ex) { 2183 /* there is no extent yet, so try to allocate 2184 * all requested space */ 2185 start = block; 2186 end = block + num; 2187 } else if (le32_to_cpu(ex->ee_block) > block) { 2188 /* need to allocate space before found extent */ 2189 start = block; 2190 end = le32_to_cpu(ex->ee_block); 2191 if (block + num < end) 2192 end = block + num; 2193 } else if (block >= le32_to_cpu(ex->ee_block) 2194 + ext4_ext_get_actual_len(ex)) { 2195 /* need to allocate space after found extent */ 2196 start = block; 2197 end = block + num; 2198 if (end >= next) 2199 end = next; 2200 } else if (block >= le32_to_cpu(ex->ee_block)) { 2201 /* 2202 * some part of requested space is covered 2203 * by found extent 2204 */ 2205 start = block; 2206 end = le32_to_cpu(ex->ee_block) 2207 + ext4_ext_get_actual_len(ex); 2208 if (block + num < end) 2209 end = block + num; 2210 exists = 1; 2211 } else { 2212 BUG(); 2213 } 2214 BUG_ON(end <= start); 2215 2216 if (!exists) { 2217 es.es_lblk = start; 2218 es.es_len = end - start; 2219 es.es_pblk = 0; 2220 } else { 2221 es.es_lblk = le32_to_cpu(ex->ee_block); 2222 es.es_len = ext4_ext_get_actual_len(ex); 2223 es.es_pblk = ext4_ext_pblock(ex); 2224 if (ext4_ext_is_unwritten(ex)) 2225 flags |= FIEMAP_EXTENT_UNWRITTEN; 2226 } 2227 2228 /* 2229 * Find delayed extent and update es accordingly. We call 2230 * it even in !exists case to find out whether es is the 2231 * last existing extent or not. 2232 */ 2233 next_del = ext4_find_delayed_extent(inode, &es); 2234 if (!exists && next_del) { 2235 exists = 1; 2236 flags |= (FIEMAP_EXTENT_DELALLOC | 2237 FIEMAP_EXTENT_UNKNOWN); 2238 } 2239 up_read(&EXT4_I(inode)->i_data_sem); 2240 2241 if (unlikely(es.es_len == 0)) { 2242 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2243 err = -EIO; 2244 break; 2245 } 2246 2247 /* 2248 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2249 * we need to check next == EXT_MAX_BLOCKS because it is 2250 * possible that an extent is with unwritten and delayed 2251 * status due to when an extent is delayed allocated and 2252 * is allocated by fallocate status tree will track both of 2253 * them in a extent. 2254 * 2255 * So we could return a unwritten and delayed extent, and 2256 * its block is equal to 'next'. 2257 */ 2258 if (next == next_del && next == EXT_MAX_BLOCKS) { 2259 flags |= FIEMAP_EXTENT_LAST; 2260 if (unlikely(next_del != EXT_MAX_BLOCKS || 2261 next != EXT_MAX_BLOCKS)) { 2262 EXT4_ERROR_INODE(inode, 2263 "next extent == %u, next " 2264 "delalloc extent = %u", 2265 next, next_del); 2266 err = -EIO; 2267 break; 2268 } 2269 } 2270 2271 if (exists) { 2272 err = fiemap_fill_next_extent(fieinfo, 2273 (__u64)es.es_lblk << blksize_bits, 2274 (__u64)es.es_pblk << blksize_bits, 2275 (__u64)es.es_len << blksize_bits, 2276 flags); 2277 if (err < 0) 2278 break; 2279 if (err == 1) { 2280 err = 0; 2281 break; 2282 } 2283 } 2284 2285 block = es.es_lblk + es.es_len; 2286 } 2287 2288 ext4_ext_drop_refs(path); 2289 kfree(path); 2290 return err; 2291 } 2292 2293 /* 2294 * ext4_ext_put_gap_in_cache: 2295 * calculate boundaries of the gap that the requested block fits into 2296 * and cache this gap 2297 */ 2298 static void 2299 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2300 ext4_lblk_t block) 2301 { 2302 int depth = ext_depth(inode); 2303 ext4_lblk_t len; 2304 ext4_lblk_t lblock; 2305 struct ext4_extent *ex; 2306 struct extent_status es; 2307 2308 ex = path[depth].p_ext; 2309 if (ex == NULL) { 2310 /* there is no extent yet, so gap is [0;-] */ 2311 lblock = 0; 2312 len = EXT_MAX_BLOCKS; 2313 ext_debug("cache gap(whole file):"); 2314 } else if (block < le32_to_cpu(ex->ee_block)) { 2315 lblock = block; 2316 len = le32_to_cpu(ex->ee_block) - block; 2317 ext_debug("cache gap(before): %u [%u:%u]", 2318 block, 2319 le32_to_cpu(ex->ee_block), 2320 ext4_ext_get_actual_len(ex)); 2321 } else if (block >= le32_to_cpu(ex->ee_block) 2322 + ext4_ext_get_actual_len(ex)) { 2323 ext4_lblk_t next; 2324 lblock = le32_to_cpu(ex->ee_block) 2325 + ext4_ext_get_actual_len(ex); 2326 2327 next = ext4_ext_next_allocated_block(path); 2328 ext_debug("cache gap(after): [%u:%u] %u", 2329 le32_to_cpu(ex->ee_block), 2330 ext4_ext_get_actual_len(ex), 2331 block); 2332 BUG_ON(next == lblock); 2333 len = next - lblock; 2334 } else { 2335 BUG(); 2336 } 2337 2338 ext4_es_find_delayed_extent_range(inode, lblock, lblock + len - 1, &es); 2339 if (es.es_len) { 2340 /* There's delayed extent containing lblock? */ 2341 if (es.es_lblk <= lblock) 2342 return; 2343 len = min(es.es_lblk - lblock, len); 2344 } 2345 ext_debug(" -> %u:%u\n", lblock, len); 2346 ext4_es_insert_extent(inode, lblock, len, ~0, EXTENT_STATUS_HOLE); 2347 } 2348 2349 /* 2350 * ext4_ext_rm_idx: 2351 * removes index from the index block. 2352 */ 2353 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2354 struct ext4_ext_path *path, int depth) 2355 { 2356 int err; 2357 ext4_fsblk_t leaf; 2358 2359 /* free index block */ 2360 depth--; 2361 path = path + depth; 2362 leaf = ext4_idx_pblock(path->p_idx); 2363 if (unlikely(path->p_hdr->eh_entries == 0)) { 2364 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2365 return -EIO; 2366 } 2367 err = ext4_ext_get_access(handle, inode, path); 2368 if (err) 2369 return err; 2370 2371 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2372 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2373 len *= sizeof(struct ext4_extent_idx); 2374 memmove(path->p_idx, path->p_idx + 1, len); 2375 } 2376 2377 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2378 err = ext4_ext_dirty(handle, inode, path); 2379 if (err) 2380 return err; 2381 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2382 trace_ext4_ext_rm_idx(inode, leaf); 2383 2384 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2385 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2386 2387 while (--depth >= 0) { 2388 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2389 break; 2390 path--; 2391 err = ext4_ext_get_access(handle, inode, path); 2392 if (err) 2393 break; 2394 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2395 err = ext4_ext_dirty(handle, inode, path); 2396 if (err) 2397 break; 2398 } 2399 return err; 2400 } 2401 2402 /* 2403 * ext4_ext_calc_credits_for_single_extent: 2404 * This routine returns max. credits that needed to insert an extent 2405 * to the extent tree. 2406 * When pass the actual path, the caller should calculate credits 2407 * under i_data_sem. 2408 */ 2409 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2410 struct ext4_ext_path *path) 2411 { 2412 if (path) { 2413 int depth = ext_depth(inode); 2414 int ret = 0; 2415 2416 /* probably there is space in leaf? */ 2417 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2418 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2419 2420 /* 2421 * There are some space in the leaf tree, no 2422 * need to account for leaf block credit 2423 * 2424 * bitmaps and block group descriptor blocks 2425 * and other metadata blocks still need to be 2426 * accounted. 2427 */ 2428 /* 1 bitmap, 1 block group descriptor */ 2429 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2430 return ret; 2431 } 2432 } 2433 2434 return ext4_chunk_trans_blocks(inode, nrblocks); 2435 } 2436 2437 /* 2438 * How many index/leaf blocks need to change/allocate to add @extents extents? 2439 * 2440 * If we add a single extent, then in the worse case, each tree level 2441 * index/leaf need to be changed in case of the tree split. 2442 * 2443 * If more extents are inserted, they could cause the whole tree split more 2444 * than once, but this is really rare. 2445 */ 2446 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2447 { 2448 int index; 2449 int depth; 2450 2451 /* If we are converting the inline data, only one is needed here. */ 2452 if (ext4_has_inline_data(inode)) 2453 return 1; 2454 2455 depth = ext_depth(inode); 2456 2457 if (extents <= 1) 2458 index = depth * 2; 2459 else 2460 index = depth * 3; 2461 2462 return index; 2463 } 2464 2465 static inline int get_default_free_blocks_flags(struct inode *inode) 2466 { 2467 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2468 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2469 else if (ext4_should_journal_data(inode)) 2470 return EXT4_FREE_BLOCKS_FORGET; 2471 return 0; 2472 } 2473 2474 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2475 struct ext4_extent *ex, 2476 long long *partial_cluster, 2477 ext4_lblk_t from, ext4_lblk_t to) 2478 { 2479 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2480 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2481 ext4_fsblk_t pblk; 2482 int flags = get_default_free_blocks_flags(inode); 2483 2484 /* 2485 * For bigalloc file systems, we never free a partial cluster 2486 * at the beginning of the extent. Instead, we make a note 2487 * that we tried freeing the cluster, and check to see if we 2488 * need to free it on a subsequent call to ext4_remove_blocks, 2489 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. 2490 */ 2491 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2492 2493 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2494 /* 2495 * If we have a partial cluster, and it's different from the 2496 * cluster of the last block, we need to explicitly free the 2497 * partial cluster here. 2498 */ 2499 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2500 if (*partial_cluster > 0 && 2501 *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { 2502 ext4_free_blocks(handle, inode, NULL, 2503 EXT4_C2B(sbi, *partial_cluster), 2504 sbi->s_cluster_ratio, flags); 2505 *partial_cluster = 0; 2506 } 2507 2508 #ifdef EXTENTS_STATS 2509 { 2510 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2511 spin_lock(&sbi->s_ext_stats_lock); 2512 sbi->s_ext_blocks += ee_len; 2513 sbi->s_ext_extents++; 2514 if (ee_len < sbi->s_ext_min) 2515 sbi->s_ext_min = ee_len; 2516 if (ee_len > sbi->s_ext_max) 2517 sbi->s_ext_max = ee_len; 2518 if (ext_depth(inode) > sbi->s_depth_max) 2519 sbi->s_depth_max = ext_depth(inode); 2520 spin_unlock(&sbi->s_ext_stats_lock); 2521 } 2522 #endif 2523 if (from >= le32_to_cpu(ex->ee_block) 2524 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2525 /* tail removal */ 2526 ext4_lblk_t num; 2527 long long first_cluster; 2528 2529 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2530 pblk = ext4_ext_pblock(ex) + ee_len - num; 2531 /* 2532 * Usually we want to free partial cluster at the end of the 2533 * extent, except for the situation when the cluster is still 2534 * used by any other extent (partial_cluster is negative). 2535 */ 2536 if (*partial_cluster < 0 && 2537 *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1)) 2538 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2539 2540 ext_debug("free last %u blocks starting %llu partial %lld\n", 2541 num, pblk, *partial_cluster); 2542 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2543 /* 2544 * If the block range to be freed didn't start at the 2545 * beginning of a cluster, and we removed the entire 2546 * extent and the cluster is not used by any other extent, 2547 * save the partial cluster here, since we might need to 2548 * delete if we determine that the truncate or punch hole 2549 * operation has removed all of the blocks in the cluster. 2550 * If that cluster is used by another extent, preserve its 2551 * negative value so it isn't freed later on. 2552 * 2553 * If the whole extent wasn't freed, we've reached the 2554 * start of the truncated/punched region and have finished 2555 * removing blocks. If there's a partial cluster here it's 2556 * shared with the remainder of the extent and is no longer 2557 * a candidate for removal. 2558 */ 2559 if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) { 2560 first_cluster = (long long) EXT4_B2C(sbi, pblk); 2561 if (first_cluster != -*partial_cluster) 2562 *partial_cluster = first_cluster; 2563 } else { 2564 *partial_cluster = 0; 2565 } 2566 } else 2567 ext4_error(sbi->s_sb, "strange request: removal(2) " 2568 "%u-%u from %u:%u\n", 2569 from, to, le32_to_cpu(ex->ee_block), ee_len); 2570 return 0; 2571 } 2572 2573 2574 /* 2575 * ext4_ext_rm_leaf() Removes the extents associated with the 2576 * blocks appearing between "start" and "end". Both "start" 2577 * and "end" must appear in the same extent or EIO is returned. 2578 * 2579 * @handle: The journal handle 2580 * @inode: The files inode 2581 * @path: The path to the leaf 2582 * @partial_cluster: The cluster which we'll have to free if all extents 2583 * has been released from it. However, if this value is 2584 * negative, it's a cluster just to the right of the 2585 * punched region and it must not be freed. 2586 * @start: The first block to remove 2587 * @end: The last block to remove 2588 */ 2589 static int 2590 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2591 struct ext4_ext_path *path, 2592 long long *partial_cluster, 2593 ext4_lblk_t start, ext4_lblk_t end) 2594 { 2595 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2596 int err = 0, correct_index = 0; 2597 int depth = ext_depth(inode), credits; 2598 struct ext4_extent_header *eh; 2599 ext4_lblk_t a, b; 2600 unsigned num; 2601 ext4_lblk_t ex_ee_block; 2602 unsigned short ex_ee_len; 2603 unsigned unwritten = 0; 2604 struct ext4_extent *ex; 2605 ext4_fsblk_t pblk; 2606 2607 /* the header must be checked already in ext4_ext_remove_space() */ 2608 ext_debug("truncate since %u in leaf to %u\n", start, end); 2609 if (!path[depth].p_hdr) 2610 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2611 eh = path[depth].p_hdr; 2612 if (unlikely(path[depth].p_hdr == NULL)) { 2613 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2614 return -EIO; 2615 } 2616 /* find where to start removing */ 2617 ex = path[depth].p_ext; 2618 if (!ex) 2619 ex = EXT_LAST_EXTENT(eh); 2620 2621 ex_ee_block = le32_to_cpu(ex->ee_block); 2622 ex_ee_len = ext4_ext_get_actual_len(ex); 2623 2624 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2625 2626 while (ex >= EXT_FIRST_EXTENT(eh) && 2627 ex_ee_block + ex_ee_len > start) { 2628 2629 if (ext4_ext_is_unwritten(ex)) 2630 unwritten = 1; 2631 else 2632 unwritten = 0; 2633 2634 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2635 unwritten, ex_ee_len); 2636 path[depth].p_ext = ex; 2637 2638 a = ex_ee_block > start ? ex_ee_block : start; 2639 b = ex_ee_block+ex_ee_len - 1 < end ? 2640 ex_ee_block+ex_ee_len - 1 : end; 2641 2642 ext_debug(" border %u:%u\n", a, b); 2643 2644 /* If this extent is beyond the end of the hole, skip it */ 2645 if (end < ex_ee_block) { 2646 /* 2647 * We're going to skip this extent and move to another, 2648 * so note that its first cluster is in use to avoid 2649 * freeing it when removing blocks. Eventually, the 2650 * right edge of the truncated/punched region will 2651 * be just to the left. 2652 */ 2653 if (sbi->s_cluster_ratio > 1) { 2654 pblk = ext4_ext_pblock(ex); 2655 *partial_cluster = 2656 -(long long) EXT4_B2C(sbi, pblk); 2657 } 2658 ex--; 2659 ex_ee_block = le32_to_cpu(ex->ee_block); 2660 ex_ee_len = ext4_ext_get_actual_len(ex); 2661 continue; 2662 } else if (b != ex_ee_block + ex_ee_len - 1) { 2663 EXT4_ERROR_INODE(inode, 2664 "can not handle truncate %u:%u " 2665 "on extent %u:%u", 2666 start, end, ex_ee_block, 2667 ex_ee_block + ex_ee_len - 1); 2668 err = -EIO; 2669 goto out; 2670 } else if (a != ex_ee_block) { 2671 /* remove tail of the extent */ 2672 num = a - ex_ee_block; 2673 } else { 2674 /* remove whole extent: excellent! */ 2675 num = 0; 2676 } 2677 /* 2678 * 3 for leaf, sb, and inode plus 2 (bmap and group 2679 * descriptor) for each block group; assume two block 2680 * groups plus ex_ee_len/blocks_per_block_group for 2681 * the worst case 2682 */ 2683 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2684 if (ex == EXT_FIRST_EXTENT(eh)) { 2685 correct_index = 1; 2686 credits += (ext_depth(inode)) + 1; 2687 } 2688 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2689 2690 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2691 if (err) 2692 goto out; 2693 2694 err = ext4_ext_get_access(handle, inode, path + depth); 2695 if (err) 2696 goto out; 2697 2698 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2699 a, b); 2700 if (err) 2701 goto out; 2702 2703 if (num == 0) 2704 /* this extent is removed; mark slot entirely unused */ 2705 ext4_ext_store_pblock(ex, 0); 2706 2707 ex->ee_len = cpu_to_le16(num); 2708 /* 2709 * Do not mark unwritten if all the blocks in the 2710 * extent have been removed. 2711 */ 2712 if (unwritten && num) 2713 ext4_ext_mark_unwritten(ex); 2714 /* 2715 * If the extent was completely released, 2716 * we need to remove it from the leaf 2717 */ 2718 if (num == 0) { 2719 if (end != EXT_MAX_BLOCKS - 1) { 2720 /* 2721 * For hole punching, we need to scoot all the 2722 * extents up when an extent is removed so that 2723 * we dont have blank extents in the middle 2724 */ 2725 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2726 sizeof(struct ext4_extent)); 2727 2728 /* Now get rid of the one at the end */ 2729 memset(EXT_LAST_EXTENT(eh), 0, 2730 sizeof(struct ext4_extent)); 2731 } 2732 le16_add_cpu(&eh->eh_entries, -1); 2733 } 2734 2735 err = ext4_ext_dirty(handle, inode, path + depth); 2736 if (err) 2737 goto out; 2738 2739 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2740 ext4_ext_pblock(ex)); 2741 ex--; 2742 ex_ee_block = le32_to_cpu(ex->ee_block); 2743 ex_ee_len = ext4_ext_get_actual_len(ex); 2744 } 2745 2746 if (correct_index && eh->eh_entries) 2747 err = ext4_ext_correct_indexes(handle, inode, path); 2748 2749 /* 2750 * If there's a partial cluster and at least one extent remains in 2751 * the leaf, free the partial cluster if it isn't shared with the 2752 * current extent. If it is shared with the current extent 2753 * we zero partial_cluster because we've reached the start of the 2754 * truncated/punched region and we're done removing blocks. 2755 */ 2756 if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) { 2757 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2758 if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { 2759 ext4_free_blocks(handle, inode, NULL, 2760 EXT4_C2B(sbi, *partial_cluster), 2761 sbi->s_cluster_ratio, 2762 get_default_free_blocks_flags(inode)); 2763 } 2764 *partial_cluster = 0; 2765 } 2766 2767 /* if this leaf is free, then we should 2768 * remove it from index block above */ 2769 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2770 err = ext4_ext_rm_idx(handle, inode, path, depth); 2771 2772 out: 2773 return err; 2774 } 2775 2776 /* 2777 * ext4_ext_more_to_rm: 2778 * returns 1 if current index has to be freed (even partial) 2779 */ 2780 static int 2781 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2782 { 2783 BUG_ON(path->p_idx == NULL); 2784 2785 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2786 return 0; 2787 2788 /* 2789 * if truncate on deeper level happened, it wasn't partial, 2790 * so we have to consider current index for truncation 2791 */ 2792 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2793 return 0; 2794 return 1; 2795 } 2796 2797 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2798 ext4_lblk_t end) 2799 { 2800 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2801 int depth = ext_depth(inode); 2802 struct ext4_ext_path *path = NULL; 2803 long long partial_cluster = 0; 2804 handle_t *handle; 2805 int i = 0, err = 0; 2806 2807 ext_debug("truncate since %u to %u\n", start, end); 2808 2809 /* probably first extent we're gonna free will be last in block */ 2810 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2811 if (IS_ERR(handle)) 2812 return PTR_ERR(handle); 2813 2814 again: 2815 trace_ext4_ext_remove_space(inode, start, end, depth); 2816 2817 /* 2818 * Check if we are removing extents inside the extent tree. If that 2819 * is the case, we are going to punch a hole inside the extent tree 2820 * so we have to check whether we need to split the extent covering 2821 * the last block to remove so we can easily remove the part of it 2822 * in ext4_ext_rm_leaf(). 2823 */ 2824 if (end < EXT_MAX_BLOCKS - 1) { 2825 struct ext4_extent *ex; 2826 ext4_lblk_t ee_block, ex_end, lblk; 2827 ext4_fsblk_t pblk; 2828 2829 /* find extent for or closest extent to this block */ 2830 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2831 if (IS_ERR(path)) { 2832 ext4_journal_stop(handle); 2833 return PTR_ERR(path); 2834 } 2835 depth = ext_depth(inode); 2836 /* Leaf not may not exist only if inode has no blocks at all */ 2837 ex = path[depth].p_ext; 2838 if (!ex) { 2839 if (depth) { 2840 EXT4_ERROR_INODE(inode, 2841 "path[%d].p_hdr == NULL", 2842 depth); 2843 err = -EIO; 2844 } 2845 goto out; 2846 } 2847 2848 ee_block = le32_to_cpu(ex->ee_block); 2849 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1; 2850 2851 /* 2852 * See if the last block is inside the extent, if so split 2853 * the extent at 'end' block so we can easily remove the 2854 * tail of the first part of the split extent in 2855 * ext4_ext_rm_leaf(). 2856 */ 2857 if (end >= ee_block && end < ex_end) { 2858 2859 /* 2860 * If we're going to split the extent, note that 2861 * the cluster containing the block after 'end' is 2862 * in use to avoid freeing it when removing blocks. 2863 */ 2864 if (sbi->s_cluster_ratio > 1) { 2865 pblk = ext4_ext_pblock(ex) + end - ee_block + 2; 2866 partial_cluster = 2867 -(long long) EXT4_B2C(sbi, pblk); 2868 } 2869 2870 /* 2871 * Split the extent in two so that 'end' is the last 2872 * block in the first new extent. Also we should not 2873 * fail removing space due to ENOSPC so try to use 2874 * reserved block if that happens. 2875 */ 2876 err = ext4_force_split_extent_at(handle, inode, &path, 2877 end + 1, 1); 2878 if (err < 0) 2879 goto out; 2880 2881 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end) { 2882 /* 2883 * If there's an extent to the right its first cluster 2884 * contains the immediate right boundary of the 2885 * truncated/punched region. Set partial_cluster to 2886 * its negative value so it won't be freed if shared 2887 * with the current extent. The end < ee_block case 2888 * is handled in ext4_ext_rm_leaf(). 2889 */ 2890 lblk = ex_end + 1; 2891 err = ext4_ext_search_right(inode, path, &lblk, &pblk, 2892 &ex); 2893 if (err) 2894 goto out; 2895 if (pblk) 2896 partial_cluster = 2897 -(long long) EXT4_B2C(sbi, pblk); 2898 } 2899 } 2900 /* 2901 * We start scanning from right side, freeing all the blocks 2902 * after i_size and walking into the tree depth-wise. 2903 */ 2904 depth = ext_depth(inode); 2905 if (path) { 2906 int k = i = depth; 2907 while (--k > 0) 2908 path[k].p_block = 2909 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2910 } else { 2911 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2912 GFP_NOFS); 2913 if (path == NULL) { 2914 ext4_journal_stop(handle); 2915 return -ENOMEM; 2916 } 2917 path[0].p_maxdepth = path[0].p_depth = depth; 2918 path[0].p_hdr = ext_inode_hdr(inode); 2919 i = 0; 2920 2921 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2922 err = -EIO; 2923 goto out; 2924 } 2925 } 2926 err = 0; 2927 2928 while (i >= 0 && err == 0) { 2929 if (i == depth) { 2930 /* this is leaf block */ 2931 err = ext4_ext_rm_leaf(handle, inode, path, 2932 &partial_cluster, start, 2933 end); 2934 /* root level has p_bh == NULL, brelse() eats this */ 2935 brelse(path[i].p_bh); 2936 path[i].p_bh = NULL; 2937 i--; 2938 continue; 2939 } 2940 2941 /* this is index block */ 2942 if (!path[i].p_hdr) { 2943 ext_debug("initialize header\n"); 2944 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2945 } 2946 2947 if (!path[i].p_idx) { 2948 /* this level hasn't been touched yet */ 2949 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2950 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2951 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2952 path[i].p_hdr, 2953 le16_to_cpu(path[i].p_hdr->eh_entries)); 2954 } else { 2955 /* we were already here, see at next index */ 2956 path[i].p_idx--; 2957 } 2958 2959 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2960 i, EXT_FIRST_INDEX(path[i].p_hdr), 2961 path[i].p_idx); 2962 if (ext4_ext_more_to_rm(path + i)) { 2963 struct buffer_head *bh; 2964 /* go to the next level */ 2965 ext_debug("move to level %d (block %llu)\n", 2966 i + 1, ext4_idx_pblock(path[i].p_idx)); 2967 memset(path + i + 1, 0, sizeof(*path)); 2968 bh = read_extent_tree_block(inode, 2969 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 2970 EXT4_EX_NOCACHE); 2971 if (IS_ERR(bh)) { 2972 /* should we reset i_size? */ 2973 err = PTR_ERR(bh); 2974 break; 2975 } 2976 /* Yield here to deal with large extent trees. 2977 * Should be a no-op if we did IO above. */ 2978 cond_resched(); 2979 if (WARN_ON(i + 1 > depth)) { 2980 err = -EIO; 2981 break; 2982 } 2983 path[i + 1].p_bh = bh; 2984 2985 /* save actual number of indexes since this 2986 * number is changed at the next iteration */ 2987 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2988 i++; 2989 } else { 2990 /* we finished processing this index, go up */ 2991 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2992 /* index is empty, remove it; 2993 * handle must be already prepared by the 2994 * truncatei_leaf() */ 2995 err = ext4_ext_rm_idx(handle, inode, path, i); 2996 } 2997 /* root level has p_bh == NULL, brelse() eats this */ 2998 brelse(path[i].p_bh); 2999 path[i].p_bh = NULL; 3000 i--; 3001 ext_debug("return to level %d\n", i); 3002 } 3003 } 3004 3005 trace_ext4_ext_remove_space_done(inode, start, end, depth, 3006 partial_cluster, path->p_hdr->eh_entries); 3007 3008 /* 3009 * If we still have something in the partial cluster and we have removed 3010 * even the first extent, then we should free the blocks in the partial 3011 * cluster as well. (This code will only run when there are no leaves 3012 * to the immediate left of the truncated/punched region.) 3013 */ 3014 if (partial_cluster > 0 && err == 0) { 3015 /* don't zero partial_cluster since it's not used afterwards */ 3016 ext4_free_blocks(handle, inode, NULL, 3017 EXT4_C2B(sbi, partial_cluster), 3018 sbi->s_cluster_ratio, 3019 get_default_free_blocks_flags(inode)); 3020 } 3021 3022 /* TODO: flexible tree reduction should be here */ 3023 if (path->p_hdr->eh_entries == 0) { 3024 /* 3025 * truncate to zero freed all the tree, 3026 * so we need to correct eh_depth 3027 */ 3028 err = ext4_ext_get_access(handle, inode, path); 3029 if (err == 0) { 3030 ext_inode_hdr(inode)->eh_depth = 0; 3031 ext_inode_hdr(inode)->eh_max = 3032 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3033 err = ext4_ext_dirty(handle, inode, path); 3034 } 3035 } 3036 out: 3037 ext4_ext_drop_refs(path); 3038 kfree(path); 3039 path = NULL; 3040 if (err == -EAGAIN) 3041 goto again; 3042 ext4_journal_stop(handle); 3043 3044 return err; 3045 } 3046 3047 /* 3048 * called at mount time 3049 */ 3050 void ext4_ext_init(struct super_block *sb) 3051 { 3052 /* 3053 * possible initialization would be here 3054 */ 3055 3056 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 3057 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3058 printk(KERN_INFO "EXT4-fs: file extents enabled" 3059 #ifdef AGGRESSIVE_TEST 3060 ", aggressive tests" 3061 #endif 3062 #ifdef CHECK_BINSEARCH 3063 ", check binsearch" 3064 #endif 3065 #ifdef EXTENTS_STATS 3066 ", stats" 3067 #endif 3068 "\n"); 3069 #endif 3070 #ifdef EXTENTS_STATS 3071 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3072 EXT4_SB(sb)->s_ext_min = 1 << 30; 3073 EXT4_SB(sb)->s_ext_max = 0; 3074 #endif 3075 } 3076 } 3077 3078 /* 3079 * called at umount time 3080 */ 3081 void ext4_ext_release(struct super_block *sb) 3082 { 3083 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3084 return; 3085 3086 #ifdef EXTENTS_STATS 3087 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3088 struct ext4_sb_info *sbi = EXT4_SB(sb); 3089 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3090 sbi->s_ext_blocks, sbi->s_ext_extents, 3091 sbi->s_ext_blocks / sbi->s_ext_extents); 3092 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3093 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3094 } 3095 #endif 3096 } 3097 3098 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3099 { 3100 ext4_lblk_t ee_block; 3101 ext4_fsblk_t ee_pblock; 3102 unsigned int ee_len; 3103 3104 ee_block = le32_to_cpu(ex->ee_block); 3105 ee_len = ext4_ext_get_actual_len(ex); 3106 ee_pblock = ext4_ext_pblock(ex); 3107 3108 if (ee_len == 0) 3109 return 0; 3110 3111 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3112 EXTENT_STATUS_WRITTEN); 3113 } 3114 3115 /* FIXME!! we need to try to merge to left or right after zero-out */ 3116 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3117 { 3118 ext4_fsblk_t ee_pblock; 3119 unsigned int ee_len; 3120 int ret; 3121 3122 ee_len = ext4_ext_get_actual_len(ex); 3123 ee_pblock = ext4_ext_pblock(ex); 3124 3125 if (ext4_encrypted_inode(inode)) 3126 return ext4_encrypted_zeroout(inode, ex); 3127 3128 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 3129 if (ret > 0) 3130 ret = 0; 3131 3132 return ret; 3133 } 3134 3135 /* 3136 * ext4_split_extent_at() splits an extent at given block. 3137 * 3138 * @handle: the journal handle 3139 * @inode: the file inode 3140 * @path: the path to the extent 3141 * @split: the logical block where the extent is splitted. 3142 * @split_flags: indicates if the extent could be zeroout if split fails, and 3143 * the states(init or unwritten) of new extents. 3144 * @flags: flags used to insert new extent to extent tree. 3145 * 3146 * 3147 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3148 * of which are deterimined by split_flag. 3149 * 3150 * There are two cases: 3151 * a> the extent are splitted into two extent. 3152 * b> split is not needed, and just mark the extent. 3153 * 3154 * return 0 on success. 3155 */ 3156 static int ext4_split_extent_at(handle_t *handle, 3157 struct inode *inode, 3158 struct ext4_ext_path **ppath, 3159 ext4_lblk_t split, 3160 int split_flag, 3161 int flags) 3162 { 3163 struct ext4_ext_path *path = *ppath; 3164 ext4_fsblk_t newblock; 3165 ext4_lblk_t ee_block; 3166 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3167 struct ext4_extent *ex2 = NULL; 3168 unsigned int ee_len, depth; 3169 int err = 0; 3170 3171 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3172 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3173 3174 ext_debug("ext4_split_extents_at: inode %lu, logical" 3175 "block %llu\n", inode->i_ino, (unsigned long long)split); 3176 3177 ext4_ext_show_leaf(inode, path); 3178 3179 depth = ext_depth(inode); 3180 ex = path[depth].p_ext; 3181 ee_block = le32_to_cpu(ex->ee_block); 3182 ee_len = ext4_ext_get_actual_len(ex); 3183 newblock = split - ee_block + ext4_ext_pblock(ex); 3184 3185 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3186 BUG_ON(!ext4_ext_is_unwritten(ex) && 3187 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3188 EXT4_EXT_MARK_UNWRIT1 | 3189 EXT4_EXT_MARK_UNWRIT2)); 3190 3191 err = ext4_ext_get_access(handle, inode, path + depth); 3192 if (err) 3193 goto out; 3194 3195 if (split == ee_block) { 3196 /* 3197 * case b: block @split is the block that the extent begins with 3198 * then we just change the state of the extent, and splitting 3199 * is not needed. 3200 */ 3201 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3202 ext4_ext_mark_unwritten(ex); 3203 else 3204 ext4_ext_mark_initialized(ex); 3205 3206 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3207 ext4_ext_try_to_merge(handle, inode, path, ex); 3208 3209 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3210 goto out; 3211 } 3212 3213 /* case a */ 3214 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3215 ex->ee_len = cpu_to_le16(split - ee_block); 3216 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3217 ext4_ext_mark_unwritten(ex); 3218 3219 /* 3220 * path may lead to new leaf, not to original leaf any more 3221 * after ext4_ext_insert_extent() returns, 3222 */ 3223 err = ext4_ext_dirty(handle, inode, path + depth); 3224 if (err) 3225 goto fix_extent_len; 3226 3227 ex2 = &newex; 3228 ex2->ee_block = cpu_to_le32(split); 3229 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3230 ext4_ext_store_pblock(ex2, newblock); 3231 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3232 ext4_ext_mark_unwritten(ex2); 3233 3234 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags); 3235 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3236 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3237 if (split_flag & EXT4_EXT_DATA_VALID1) { 3238 err = ext4_ext_zeroout(inode, ex2); 3239 zero_ex.ee_block = ex2->ee_block; 3240 zero_ex.ee_len = cpu_to_le16( 3241 ext4_ext_get_actual_len(ex2)); 3242 ext4_ext_store_pblock(&zero_ex, 3243 ext4_ext_pblock(ex2)); 3244 } else { 3245 err = ext4_ext_zeroout(inode, ex); 3246 zero_ex.ee_block = ex->ee_block; 3247 zero_ex.ee_len = cpu_to_le16( 3248 ext4_ext_get_actual_len(ex)); 3249 ext4_ext_store_pblock(&zero_ex, 3250 ext4_ext_pblock(ex)); 3251 } 3252 } else { 3253 err = ext4_ext_zeroout(inode, &orig_ex); 3254 zero_ex.ee_block = orig_ex.ee_block; 3255 zero_ex.ee_len = cpu_to_le16( 3256 ext4_ext_get_actual_len(&orig_ex)); 3257 ext4_ext_store_pblock(&zero_ex, 3258 ext4_ext_pblock(&orig_ex)); 3259 } 3260 3261 if (err) 3262 goto fix_extent_len; 3263 /* update the extent length and mark as initialized */ 3264 ex->ee_len = cpu_to_le16(ee_len); 3265 ext4_ext_try_to_merge(handle, inode, path, ex); 3266 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3267 if (err) 3268 goto fix_extent_len; 3269 3270 /* update extent status tree */ 3271 err = ext4_zeroout_es(inode, &zero_ex); 3272 3273 goto out; 3274 } else if (err) 3275 goto fix_extent_len; 3276 3277 out: 3278 ext4_ext_show_leaf(inode, path); 3279 return err; 3280 3281 fix_extent_len: 3282 ex->ee_len = orig_ex.ee_len; 3283 ext4_ext_dirty(handle, inode, path + path->p_depth); 3284 return err; 3285 } 3286 3287 /* 3288 * ext4_split_extents() splits an extent and mark extent which is covered 3289 * by @map as split_flags indicates 3290 * 3291 * It may result in splitting the extent into multiple extents (up to three) 3292 * There are three possibilities: 3293 * a> There is no split required 3294 * b> Splits in two extents: Split is happening at either end of the extent 3295 * c> Splits in three extents: Somone is splitting in middle of the extent 3296 * 3297 */ 3298 static int ext4_split_extent(handle_t *handle, 3299 struct inode *inode, 3300 struct ext4_ext_path **ppath, 3301 struct ext4_map_blocks *map, 3302 int split_flag, 3303 int flags) 3304 { 3305 struct ext4_ext_path *path = *ppath; 3306 ext4_lblk_t ee_block; 3307 struct ext4_extent *ex; 3308 unsigned int ee_len, depth; 3309 int err = 0; 3310 int unwritten; 3311 int split_flag1, flags1; 3312 int allocated = map->m_len; 3313 3314 depth = ext_depth(inode); 3315 ex = path[depth].p_ext; 3316 ee_block = le32_to_cpu(ex->ee_block); 3317 ee_len = ext4_ext_get_actual_len(ex); 3318 unwritten = ext4_ext_is_unwritten(ex); 3319 3320 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3321 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3322 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3323 if (unwritten) 3324 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3325 EXT4_EXT_MARK_UNWRIT2; 3326 if (split_flag & EXT4_EXT_DATA_VALID2) 3327 split_flag1 |= EXT4_EXT_DATA_VALID1; 3328 err = ext4_split_extent_at(handle, inode, ppath, 3329 map->m_lblk + map->m_len, split_flag1, flags1); 3330 if (err) 3331 goto out; 3332 } else { 3333 allocated = ee_len - (map->m_lblk - ee_block); 3334 } 3335 /* 3336 * Update path is required because previous ext4_split_extent_at() may 3337 * result in split of original leaf or extent zeroout. 3338 */ 3339 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3340 if (IS_ERR(path)) 3341 return PTR_ERR(path); 3342 depth = ext_depth(inode); 3343 ex = path[depth].p_ext; 3344 if (!ex) { 3345 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3346 (unsigned long) map->m_lblk); 3347 return -EIO; 3348 } 3349 unwritten = ext4_ext_is_unwritten(ex); 3350 split_flag1 = 0; 3351 3352 if (map->m_lblk >= ee_block) { 3353 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3354 if (unwritten) { 3355 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3356 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3357 EXT4_EXT_MARK_UNWRIT2); 3358 } 3359 err = ext4_split_extent_at(handle, inode, ppath, 3360 map->m_lblk, split_flag1, flags); 3361 if (err) 3362 goto out; 3363 } 3364 3365 ext4_ext_show_leaf(inode, path); 3366 out: 3367 return err ? err : allocated; 3368 } 3369 3370 /* 3371 * This function is called by ext4_ext_map_blocks() if someone tries to write 3372 * to an unwritten extent. It may result in splitting the unwritten 3373 * extent into multiple extents (up to three - one initialized and two 3374 * unwritten). 3375 * There are three possibilities: 3376 * a> There is no split required: Entire extent should be initialized 3377 * b> Splits in two extents: Write is happening at either end of the extent 3378 * c> Splits in three extents: Somone is writing in middle of the extent 3379 * 3380 * Pre-conditions: 3381 * - The extent pointed to by 'path' is unwritten. 3382 * - The extent pointed to by 'path' contains a superset 3383 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3384 * 3385 * Post-conditions on success: 3386 * - the returned value is the number of blocks beyond map->l_lblk 3387 * that are allocated and initialized. 3388 * It is guaranteed to be >= map->m_len. 3389 */ 3390 static int ext4_ext_convert_to_initialized(handle_t *handle, 3391 struct inode *inode, 3392 struct ext4_map_blocks *map, 3393 struct ext4_ext_path **ppath, 3394 int flags) 3395 { 3396 struct ext4_ext_path *path = *ppath; 3397 struct ext4_sb_info *sbi; 3398 struct ext4_extent_header *eh; 3399 struct ext4_map_blocks split_map; 3400 struct ext4_extent zero_ex; 3401 struct ext4_extent *ex, *abut_ex; 3402 ext4_lblk_t ee_block, eof_block; 3403 unsigned int ee_len, depth, map_len = map->m_len; 3404 int allocated = 0, max_zeroout = 0; 3405 int err = 0; 3406 int split_flag = 0; 3407 3408 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3409 "block %llu, max_blocks %u\n", inode->i_ino, 3410 (unsigned long long)map->m_lblk, map_len); 3411 3412 sbi = EXT4_SB(inode->i_sb); 3413 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3414 inode->i_sb->s_blocksize_bits; 3415 if (eof_block < map->m_lblk + map_len) 3416 eof_block = map->m_lblk + map_len; 3417 3418 depth = ext_depth(inode); 3419 eh = path[depth].p_hdr; 3420 ex = path[depth].p_ext; 3421 ee_block = le32_to_cpu(ex->ee_block); 3422 ee_len = ext4_ext_get_actual_len(ex); 3423 zero_ex.ee_len = 0; 3424 3425 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3426 3427 /* Pre-conditions */ 3428 BUG_ON(!ext4_ext_is_unwritten(ex)); 3429 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3430 3431 /* 3432 * Attempt to transfer newly initialized blocks from the currently 3433 * unwritten extent to its neighbor. This is much cheaper 3434 * than an insertion followed by a merge as those involve costly 3435 * memmove() calls. Transferring to the left is the common case in 3436 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3437 * followed by append writes. 3438 * 3439 * Limitations of the current logic: 3440 * - L1: we do not deal with writes covering the whole extent. 3441 * This would require removing the extent if the transfer 3442 * is possible. 3443 * - L2: we only attempt to merge with an extent stored in the 3444 * same extent tree node. 3445 */ 3446 if ((map->m_lblk == ee_block) && 3447 /* See if we can merge left */ 3448 (map_len < ee_len) && /*L1*/ 3449 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3450 ext4_lblk_t prev_lblk; 3451 ext4_fsblk_t prev_pblk, ee_pblk; 3452 unsigned int prev_len; 3453 3454 abut_ex = ex - 1; 3455 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3456 prev_len = ext4_ext_get_actual_len(abut_ex); 3457 prev_pblk = ext4_ext_pblock(abut_ex); 3458 ee_pblk = ext4_ext_pblock(ex); 3459 3460 /* 3461 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3462 * upon those conditions: 3463 * - C1: abut_ex is initialized, 3464 * - C2: abut_ex is logically abutting ex, 3465 * - C3: abut_ex is physically abutting ex, 3466 * - C4: abut_ex can receive the additional blocks without 3467 * overflowing the (initialized) length limit. 3468 */ 3469 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3470 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3471 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3472 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3473 err = ext4_ext_get_access(handle, inode, path + depth); 3474 if (err) 3475 goto out; 3476 3477 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3478 map, ex, abut_ex); 3479 3480 /* Shift the start of ex by 'map_len' blocks */ 3481 ex->ee_block = cpu_to_le32(ee_block + map_len); 3482 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3483 ex->ee_len = cpu_to_le16(ee_len - map_len); 3484 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3485 3486 /* Extend abut_ex by 'map_len' blocks */ 3487 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3488 3489 /* Result: number of initialized blocks past m_lblk */ 3490 allocated = map_len; 3491 } 3492 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3493 (map_len < ee_len) && /*L1*/ 3494 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3495 /* See if we can merge right */ 3496 ext4_lblk_t next_lblk; 3497 ext4_fsblk_t next_pblk, ee_pblk; 3498 unsigned int next_len; 3499 3500 abut_ex = ex + 1; 3501 next_lblk = le32_to_cpu(abut_ex->ee_block); 3502 next_len = ext4_ext_get_actual_len(abut_ex); 3503 next_pblk = ext4_ext_pblock(abut_ex); 3504 ee_pblk = ext4_ext_pblock(ex); 3505 3506 /* 3507 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3508 * upon those conditions: 3509 * - C1: abut_ex is initialized, 3510 * - C2: abut_ex is logically abutting ex, 3511 * - C3: abut_ex is physically abutting ex, 3512 * - C4: abut_ex can receive the additional blocks without 3513 * overflowing the (initialized) length limit. 3514 */ 3515 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3516 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3517 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3518 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3519 err = ext4_ext_get_access(handle, inode, path + depth); 3520 if (err) 3521 goto out; 3522 3523 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3524 map, ex, abut_ex); 3525 3526 /* Shift the start of abut_ex by 'map_len' blocks */ 3527 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3528 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3529 ex->ee_len = cpu_to_le16(ee_len - map_len); 3530 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3531 3532 /* Extend abut_ex by 'map_len' blocks */ 3533 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3534 3535 /* Result: number of initialized blocks past m_lblk */ 3536 allocated = map_len; 3537 } 3538 } 3539 if (allocated) { 3540 /* Mark the block containing both extents as dirty */ 3541 ext4_ext_dirty(handle, inode, path + depth); 3542 3543 /* Update path to point to the right extent */ 3544 path[depth].p_ext = abut_ex; 3545 goto out; 3546 } else 3547 allocated = ee_len - (map->m_lblk - ee_block); 3548 3549 WARN_ON(map->m_lblk < ee_block); 3550 /* 3551 * It is safe to convert extent to initialized via explicit 3552 * zeroout only if extent is fully inside i_size or new_size. 3553 */ 3554 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3555 3556 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3557 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3558 (inode->i_sb->s_blocksize_bits - 10); 3559 3560 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3561 if (max_zeroout && (ee_len <= max_zeroout)) { 3562 err = ext4_ext_zeroout(inode, ex); 3563 if (err) 3564 goto out; 3565 zero_ex.ee_block = ex->ee_block; 3566 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)); 3567 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex)); 3568 3569 err = ext4_ext_get_access(handle, inode, path + depth); 3570 if (err) 3571 goto out; 3572 ext4_ext_mark_initialized(ex); 3573 ext4_ext_try_to_merge(handle, inode, path, ex); 3574 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3575 goto out; 3576 } 3577 3578 /* 3579 * four cases: 3580 * 1. split the extent into three extents. 3581 * 2. split the extent into two extents, zeroout the first half. 3582 * 3. split the extent into two extents, zeroout the second half. 3583 * 4. split the extent into two extents with out zeroout. 3584 */ 3585 split_map.m_lblk = map->m_lblk; 3586 split_map.m_len = map->m_len; 3587 3588 if (max_zeroout && (allocated > map->m_len)) { 3589 if (allocated <= max_zeroout) { 3590 /* case 3 */ 3591 zero_ex.ee_block = 3592 cpu_to_le32(map->m_lblk); 3593 zero_ex.ee_len = cpu_to_le16(allocated); 3594 ext4_ext_store_pblock(&zero_ex, 3595 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3596 err = ext4_ext_zeroout(inode, &zero_ex); 3597 if (err) 3598 goto out; 3599 split_map.m_lblk = map->m_lblk; 3600 split_map.m_len = allocated; 3601 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3602 /* case 2 */ 3603 if (map->m_lblk != ee_block) { 3604 zero_ex.ee_block = ex->ee_block; 3605 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3606 ee_block); 3607 ext4_ext_store_pblock(&zero_ex, 3608 ext4_ext_pblock(ex)); 3609 err = ext4_ext_zeroout(inode, &zero_ex); 3610 if (err) 3611 goto out; 3612 } 3613 3614 split_map.m_lblk = ee_block; 3615 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3616 allocated = map->m_len; 3617 } 3618 } 3619 3620 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag, 3621 flags); 3622 if (err > 0) 3623 err = 0; 3624 out: 3625 /* If we have gotten a failure, don't zero out status tree */ 3626 if (!err) 3627 err = ext4_zeroout_es(inode, &zero_ex); 3628 return err ? err : allocated; 3629 } 3630 3631 /* 3632 * This function is called by ext4_ext_map_blocks() from 3633 * ext4_get_blocks_dio_write() when DIO to write 3634 * to an unwritten extent. 3635 * 3636 * Writing to an unwritten extent may result in splitting the unwritten 3637 * extent into multiple initialized/unwritten extents (up to three) 3638 * There are three possibilities: 3639 * a> There is no split required: Entire extent should be unwritten 3640 * b> Splits in two extents: Write is happening at either end of the extent 3641 * c> Splits in three extents: Somone is writing in middle of the extent 3642 * 3643 * This works the same way in the case of initialized -> unwritten conversion. 3644 * 3645 * One of more index blocks maybe needed if the extent tree grow after 3646 * the unwritten extent split. To prevent ENOSPC occur at the IO 3647 * complete, we need to split the unwritten extent before DIO submit 3648 * the IO. The unwritten extent called at this time will be split 3649 * into three unwritten extent(at most). After IO complete, the part 3650 * being filled will be convert to initialized by the end_io callback function 3651 * via ext4_convert_unwritten_extents(). 3652 * 3653 * Returns the size of unwritten extent to be written on success. 3654 */ 3655 static int ext4_split_convert_extents(handle_t *handle, 3656 struct inode *inode, 3657 struct ext4_map_blocks *map, 3658 struct ext4_ext_path **ppath, 3659 int flags) 3660 { 3661 struct ext4_ext_path *path = *ppath; 3662 ext4_lblk_t eof_block; 3663 ext4_lblk_t ee_block; 3664 struct ext4_extent *ex; 3665 unsigned int ee_len; 3666 int split_flag = 0, depth; 3667 3668 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3669 __func__, inode->i_ino, 3670 (unsigned long long)map->m_lblk, map->m_len); 3671 3672 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3673 inode->i_sb->s_blocksize_bits; 3674 if (eof_block < map->m_lblk + map->m_len) 3675 eof_block = map->m_lblk + map->m_len; 3676 /* 3677 * It is safe to convert extent to initialized via explicit 3678 * zeroout only if extent is fully insde i_size or new_size. 3679 */ 3680 depth = ext_depth(inode); 3681 ex = path[depth].p_ext; 3682 ee_block = le32_to_cpu(ex->ee_block); 3683 ee_len = ext4_ext_get_actual_len(ex); 3684 3685 /* Convert to unwritten */ 3686 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3687 split_flag |= EXT4_EXT_DATA_VALID1; 3688 /* Convert to initialized */ 3689 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3690 split_flag |= ee_block + ee_len <= eof_block ? 3691 EXT4_EXT_MAY_ZEROOUT : 0; 3692 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3693 } 3694 flags |= EXT4_GET_BLOCKS_PRE_IO; 3695 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags); 3696 } 3697 3698 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3699 struct inode *inode, 3700 struct ext4_map_blocks *map, 3701 struct ext4_ext_path **ppath) 3702 { 3703 struct ext4_ext_path *path = *ppath; 3704 struct ext4_extent *ex; 3705 ext4_lblk_t ee_block; 3706 unsigned int ee_len; 3707 int depth; 3708 int err = 0; 3709 3710 depth = ext_depth(inode); 3711 ex = path[depth].p_ext; 3712 ee_block = le32_to_cpu(ex->ee_block); 3713 ee_len = ext4_ext_get_actual_len(ex); 3714 3715 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3716 "block %llu, max_blocks %u\n", inode->i_ino, 3717 (unsigned long long)ee_block, ee_len); 3718 3719 /* If extent is larger than requested it is a clear sign that we still 3720 * have some extent state machine issues left. So extent_split is still 3721 * required. 3722 * TODO: Once all related issues will be fixed this situation should be 3723 * illegal. 3724 */ 3725 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3726 #ifdef EXT4_DEBUG 3727 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3728 " len %u; IO logical block %llu, len %u\n", 3729 inode->i_ino, (unsigned long long)ee_block, ee_len, 3730 (unsigned long long)map->m_lblk, map->m_len); 3731 #endif 3732 err = ext4_split_convert_extents(handle, inode, map, ppath, 3733 EXT4_GET_BLOCKS_CONVERT); 3734 if (err < 0) 3735 return err; 3736 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3737 if (IS_ERR(path)) 3738 return PTR_ERR(path); 3739 depth = ext_depth(inode); 3740 ex = path[depth].p_ext; 3741 } 3742 3743 err = ext4_ext_get_access(handle, inode, path + depth); 3744 if (err) 3745 goto out; 3746 /* first mark the extent as initialized */ 3747 ext4_ext_mark_initialized(ex); 3748 3749 /* note: ext4_ext_correct_indexes() isn't needed here because 3750 * borders are not changed 3751 */ 3752 ext4_ext_try_to_merge(handle, inode, path, ex); 3753 3754 /* Mark modified extent as dirty */ 3755 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3756 out: 3757 ext4_ext_show_leaf(inode, path); 3758 return err; 3759 } 3760 3761 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3762 sector_t block, int count) 3763 { 3764 int i; 3765 for (i = 0; i < count; i++) 3766 unmap_underlying_metadata(bdev, block + i); 3767 } 3768 3769 /* 3770 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3771 */ 3772 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3773 ext4_lblk_t lblk, 3774 struct ext4_ext_path *path, 3775 unsigned int len) 3776 { 3777 int i, depth; 3778 struct ext4_extent_header *eh; 3779 struct ext4_extent *last_ex; 3780 3781 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3782 return 0; 3783 3784 depth = ext_depth(inode); 3785 eh = path[depth].p_hdr; 3786 3787 /* 3788 * We're going to remove EOFBLOCKS_FL entirely in future so we 3789 * do not care for this case anymore. Simply remove the flag 3790 * if there are no extents. 3791 */ 3792 if (unlikely(!eh->eh_entries)) 3793 goto out; 3794 last_ex = EXT_LAST_EXTENT(eh); 3795 /* 3796 * We should clear the EOFBLOCKS_FL flag if we are writing the 3797 * last block in the last extent in the file. We test this by 3798 * first checking to see if the caller to 3799 * ext4_ext_get_blocks() was interested in the last block (or 3800 * a block beyond the last block) in the current extent. If 3801 * this turns out to be false, we can bail out from this 3802 * function immediately. 3803 */ 3804 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3805 ext4_ext_get_actual_len(last_ex)) 3806 return 0; 3807 /* 3808 * If the caller does appear to be planning to write at or 3809 * beyond the end of the current extent, we then test to see 3810 * if the current extent is the last extent in the file, by 3811 * checking to make sure it was reached via the rightmost node 3812 * at each level of the tree. 3813 */ 3814 for (i = depth-1; i >= 0; i--) 3815 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3816 return 0; 3817 out: 3818 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3819 return ext4_mark_inode_dirty(handle, inode); 3820 } 3821 3822 /** 3823 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3824 * 3825 * Return 1 if there is a delalloc block in the range, otherwise 0. 3826 */ 3827 int ext4_find_delalloc_range(struct inode *inode, 3828 ext4_lblk_t lblk_start, 3829 ext4_lblk_t lblk_end) 3830 { 3831 struct extent_status es; 3832 3833 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es); 3834 if (es.es_len == 0) 3835 return 0; /* there is no delay extent in this tree */ 3836 else if (es.es_lblk <= lblk_start && 3837 lblk_start < es.es_lblk + es.es_len) 3838 return 1; 3839 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3840 return 1; 3841 else 3842 return 0; 3843 } 3844 3845 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3846 { 3847 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3848 ext4_lblk_t lblk_start, lblk_end; 3849 lblk_start = EXT4_LBLK_CMASK(sbi, lblk); 3850 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3851 3852 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3853 } 3854 3855 /** 3856 * Determines how many complete clusters (out of those specified by the 'map') 3857 * are under delalloc and were reserved quota for. 3858 * This function is called when we are writing out the blocks that were 3859 * originally written with their allocation delayed, but then the space was 3860 * allocated using fallocate() before the delayed allocation could be resolved. 3861 * The cases to look for are: 3862 * ('=' indicated delayed allocated blocks 3863 * '-' indicates non-delayed allocated blocks) 3864 * (a) partial clusters towards beginning and/or end outside of allocated range 3865 * are not delalloc'ed. 3866 * Ex: 3867 * |----c---=|====c====|====c====|===-c----| 3868 * |++++++ allocated ++++++| 3869 * ==> 4 complete clusters in above example 3870 * 3871 * (b) partial cluster (outside of allocated range) towards either end is 3872 * marked for delayed allocation. In this case, we will exclude that 3873 * cluster. 3874 * Ex: 3875 * |----====c========|========c========| 3876 * |++++++ allocated ++++++| 3877 * ==> 1 complete clusters in above example 3878 * 3879 * Ex: 3880 * |================c================| 3881 * |++++++ allocated ++++++| 3882 * ==> 0 complete clusters in above example 3883 * 3884 * The ext4_da_update_reserve_space will be called only if we 3885 * determine here that there were some "entire" clusters that span 3886 * this 'allocated' range. 3887 * In the non-bigalloc case, this function will just end up returning num_blks 3888 * without ever calling ext4_find_delalloc_range. 3889 */ 3890 static unsigned int 3891 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3892 unsigned int num_blks) 3893 { 3894 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3895 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3896 ext4_lblk_t lblk_from, lblk_to, c_offset; 3897 unsigned int allocated_clusters = 0; 3898 3899 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3900 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3901 3902 /* max possible clusters for this allocation */ 3903 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3904 3905 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3906 3907 /* Check towards left side */ 3908 c_offset = EXT4_LBLK_COFF(sbi, lblk_start); 3909 if (c_offset) { 3910 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start); 3911 lblk_to = lblk_from + c_offset - 1; 3912 3913 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3914 allocated_clusters--; 3915 } 3916 3917 /* Now check towards right. */ 3918 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks); 3919 if (allocated_clusters && c_offset) { 3920 lblk_from = lblk_start + num_blks; 3921 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3922 3923 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3924 allocated_clusters--; 3925 } 3926 3927 return allocated_clusters; 3928 } 3929 3930 static int 3931 convert_initialized_extent(handle_t *handle, struct inode *inode, 3932 struct ext4_map_blocks *map, 3933 struct ext4_ext_path **ppath, int flags, 3934 unsigned int allocated, ext4_fsblk_t newblock) 3935 { 3936 struct ext4_ext_path *path = *ppath; 3937 struct ext4_extent *ex; 3938 ext4_lblk_t ee_block; 3939 unsigned int ee_len; 3940 int depth; 3941 int err = 0; 3942 3943 /* 3944 * Make sure that the extent is no bigger than we support with 3945 * unwritten extent 3946 */ 3947 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3948 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3949 3950 depth = ext_depth(inode); 3951 ex = path[depth].p_ext; 3952 ee_block = le32_to_cpu(ex->ee_block); 3953 ee_len = ext4_ext_get_actual_len(ex); 3954 3955 ext_debug("%s: inode %lu, logical" 3956 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3957 (unsigned long long)ee_block, ee_len); 3958 3959 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3960 err = ext4_split_convert_extents(handle, inode, map, ppath, 3961 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3962 if (err < 0) 3963 return err; 3964 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3965 if (IS_ERR(path)) 3966 return PTR_ERR(path); 3967 depth = ext_depth(inode); 3968 ex = path[depth].p_ext; 3969 if (!ex) { 3970 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3971 (unsigned long) map->m_lblk); 3972 return -EIO; 3973 } 3974 } 3975 3976 err = ext4_ext_get_access(handle, inode, path + depth); 3977 if (err) 3978 return err; 3979 /* first mark the extent as unwritten */ 3980 ext4_ext_mark_unwritten(ex); 3981 3982 /* note: ext4_ext_correct_indexes() isn't needed here because 3983 * borders are not changed 3984 */ 3985 ext4_ext_try_to_merge(handle, inode, path, ex); 3986 3987 /* Mark modified extent as dirty */ 3988 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3989 if (err) 3990 return err; 3991 ext4_ext_show_leaf(inode, path); 3992 3993 ext4_update_inode_fsync_trans(handle, inode, 1); 3994 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len); 3995 if (err) 3996 return err; 3997 map->m_flags |= EXT4_MAP_UNWRITTEN; 3998 if (allocated > map->m_len) 3999 allocated = map->m_len; 4000 map->m_len = allocated; 4001 return allocated; 4002 } 4003 4004 static int 4005 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 4006 struct ext4_map_blocks *map, 4007 struct ext4_ext_path **ppath, int flags, 4008 unsigned int allocated, ext4_fsblk_t newblock) 4009 { 4010 struct ext4_ext_path *path = *ppath; 4011 int ret = 0; 4012 int err = 0; 4013 ext4_io_end_t *io = ext4_inode_aio(inode); 4014 4015 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 4016 "block %llu, max_blocks %u, flags %x, allocated %u\n", 4017 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 4018 flags, allocated); 4019 ext4_ext_show_leaf(inode, path); 4020 4021 /* 4022 * When writing into unwritten space, we should not fail to 4023 * allocate metadata blocks for the new extent block if needed. 4024 */ 4025 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 4026 4027 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 4028 allocated, newblock); 4029 4030 /* get_block() before submit the IO, split the extent */ 4031 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 4032 ret = ext4_split_convert_extents(handle, inode, map, ppath, 4033 flags | EXT4_GET_BLOCKS_CONVERT); 4034 if (ret <= 0) 4035 goto out; 4036 /* 4037 * Flag the inode(non aio case) or end_io struct (aio case) 4038 * that this IO needs to conversion to written when IO is 4039 * completed 4040 */ 4041 if (io) 4042 ext4_set_io_unwritten_flag(inode, io); 4043 else 4044 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 4045 map->m_flags |= EXT4_MAP_UNWRITTEN; 4046 goto out; 4047 } 4048 /* IO end_io complete, convert the filled extent to written */ 4049 if (flags & EXT4_GET_BLOCKS_CONVERT) { 4050 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 4051 ppath); 4052 if (ret >= 0) { 4053 ext4_update_inode_fsync_trans(handle, inode, 1); 4054 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4055 path, map->m_len); 4056 } else 4057 err = ret; 4058 map->m_flags |= EXT4_MAP_MAPPED; 4059 map->m_pblk = newblock; 4060 if (allocated > map->m_len) 4061 allocated = map->m_len; 4062 map->m_len = allocated; 4063 goto out2; 4064 } 4065 /* buffered IO case */ 4066 /* 4067 * repeat fallocate creation request 4068 * we already have an unwritten extent 4069 */ 4070 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4071 map->m_flags |= EXT4_MAP_UNWRITTEN; 4072 goto map_out; 4073 } 4074 4075 /* buffered READ or buffered write_begin() lookup */ 4076 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4077 /* 4078 * We have blocks reserved already. We 4079 * return allocated blocks so that delalloc 4080 * won't do block reservation for us. But 4081 * the buffer head will be unmapped so that 4082 * a read from the block returns 0s. 4083 */ 4084 map->m_flags |= EXT4_MAP_UNWRITTEN; 4085 goto out1; 4086 } 4087 4088 /* buffered write, writepage time, convert*/ 4089 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags); 4090 if (ret >= 0) 4091 ext4_update_inode_fsync_trans(handle, inode, 1); 4092 out: 4093 if (ret <= 0) { 4094 err = ret; 4095 goto out2; 4096 } else 4097 allocated = ret; 4098 map->m_flags |= EXT4_MAP_NEW; 4099 /* 4100 * if we allocated more blocks than requested 4101 * we need to make sure we unmap the extra block 4102 * allocated. The actual needed block will get 4103 * unmapped later when we find the buffer_head marked 4104 * new. 4105 */ 4106 if (allocated > map->m_len) { 4107 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 4108 newblock + map->m_len, 4109 allocated - map->m_len); 4110 allocated = map->m_len; 4111 } 4112 map->m_len = allocated; 4113 4114 /* 4115 * If we have done fallocate with the offset that is already 4116 * delayed allocated, we would have block reservation 4117 * and quota reservation done in the delayed write path. 4118 * But fallocate would have already updated quota and block 4119 * count for this offset. So cancel these reservation 4120 */ 4121 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4122 unsigned int reserved_clusters; 4123 reserved_clusters = get_reserved_cluster_alloc(inode, 4124 map->m_lblk, map->m_len); 4125 if (reserved_clusters) 4126 ext4_da_update_reserve_space(inode, 4127 reserved_clusters, 4128 0); 4129 } 4130 4131 map_out: 4132 map->m_flags |= EXT4_MAP_MAPPED; 4133 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 4134 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 4135 map->m_len); 4136 if (err < 0) 4137 goto out2; 4138 } 4139 out1: 4140 if (allocated > map->m_len) 4141 allocated = map->m_len; 4142 ext4_ext_show_leaf(inode, path); 4143 map->m_pblk = newblock; 4144 map->m_len = allocated; 4145 out2: 4146 return err ? err : allocated; 4147 } 4148 4149 /* 4150 * get_implied_cluster_alloc - check to see if the requested 4151 * allocation (in the map structure) overlaps with a cluster already 4152 * allocated in an extent. 4153 * @sb The filesystem superblock structure 4154 * @map The requested lblk->pblk mapping 4155 * @ex The extent structure which might contain an implied 4156 * cluster allocation 4157 * 4158 * This function is called by ext4_ext_map_blocks() after we failed to 4159 * find blocks that were already in the inode's extent tree. Hence, 4160 * we know that the beginning of the requested region cannot overlap 4161 * the extent from the inode's extent tree. There are three cases we 4162 * want to catch. The first is this case: 4163 * 4164 * |--- cluster # N--| 4165 * |--- extent ---| |---- requested region ---| 4166 * |==========| 4167 * 4168 * The second case that we need to test for is this one: 4169 * 4170 * |--------- cluster # N ----------------| 4171 * |--- requested region --| |------- extent ----| 4172 * |=======================| 4173 * 4174 * The third case is when the requested region lies between two extents 4175 * within the same cluster: 4176 * |------------- cluster # N-------------| 4177 * |----- ex -----| |---- ex_right ----| 4178 * |------ requested region ------| 4179 * |================| 4180 * 4181 * In each of the above cases, we need to set the map->m_pblk and 4182 * map->m_len so it corresponds to the return the extent labelled as 4183 * "|====|" from cluster #N, since it is already in use for data in 4184 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 4185 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 4186 * as a new "allocated" block region. Otherwise, we will return 0 and 4187 * ext4_ext_map_blocks() will then allocate one or more new clusters 4188 * by calling ext4_mb_new_blocks(). 4189 */ 4190 static int get_implied_cluster_alloc(struct super_block *sb, 4191 struct ext4_map_blocks *map, 4192 struct ext4_extent *ex, 4193 struct ext4_ext_path *path) 4194 { 4195 struct ext4_sb_info *sbi = EXT4_SB(sb); 4196 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4197 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4198 ext4_lblk_t rr_cluster_start; 4199 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4200 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4201 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4202 4203 /* The extent passed in that we are trying to match */ 4204 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4205 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4206 4207 /* The requested region passed into ext4_map_blocks() */ 4208 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4209 4210 if ((rr_cluster_start == ex_cluster_end) || 4211 (rr_cluster_start == ex_cluster_start)) { 4212 if (rr_cluster_start == ex_cluster_end) 4213 ee_start += ee_len - 1; 4214 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 4215 map->m_len = min(map->m_len, 4216 (unsigned) sbi->s_cluster_ratio - c_offset); 4217 /* 4218 * Check for and handle this case: 4219 * 4220 * |--------- cluster # N-------------| 4221 * |------- extent ----| 4222 * |--- requested region ---| 4223 * |===========| 4224 */ 4225 4226 if (map->m_lblk < ee_block) 4227 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4228 4229 /* 4230 * Check for the case where there is already another allocated 4231 * block to the right of 'ex' but before the end of the cluster. 4232 * 4233 * |------------- cluster # N-------------| 4234 * |----- ex -----| |---- ex_right ----| 4235 * |------ requested region ------| 4236 * |================| 4237 */ 4238 if (map->m_lblk > ee_block) { 4239 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4240 map->m_len = min(map->m_len, next - map->m_lblk); 4241 } 4242 4243 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4244 return 1; 4245 } 4246 4247 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4248 return 0; 4249 } 4250 4251 4252 /* 4253 * Block allocation/map/preallocation routine for extents based files 4254 * 4255 * 4256 * Need to be called with 4257 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4258 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4259 * 4260 * return > 0, number of of blocks already mapped/allocated 4261 * if create == 0 and these are pre-allocated blocks 4262 * buffer head is unmapped 4263 * otherwise blocks are mapped 4264 * 4265 * return = 0, if plain look up failed (blocks have not been allocated) 4266 * buffer head is unmapped 4267 * 4268 * return < 0, error case. 4269 */ 4270 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4271 struct ext4_map_blocks *map, int flags) 4272 { 4273 struct ext4_ext_path *path = NULL; 4274 struct ext4_extent newex, *ex, *ex2; 4275 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4276 ext4_fsblk_t newblock = 0; 4277 int free_on_err = 0, err = 0, depth, ret; 4278 unsigned int allocated = 0, offset = 0; 4279 unsigned int allocated_clusters = 0; 4280 struct ext4_allocation_request ar; 4281 ext4_io_end_t *io = ext4_inode_aio(inode); 4282 ext4_lblk_t cluster_offset; 4283 int set_unwritten = 0; 4284 bool map_from_cluster = false; 4285 4286 ext_debug("blocks %u/%u requested for inode %lu\n", 4287 map->m_lblk, map->m_len, inode->i_ino); 4288 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4289 4290 /* find extent for this block */ 4291 path = ext4_find_extent(inode, map->m_lblk, NULL, 0); 4292 if (IS_ERR(path)) { 4293 err = PTR_ERR(path); 4294 path = NULL; 4295 goto out2; 4296 } 4297 4298 depth = ext_depth(inode); 4299 4300 /* 4301 * consistent leaf must not be empty; 4302 * this situation is possible, though, _during_ tree modification; 4303 * this is why assert can't be put in ext4_find_extent() 4304 */ 4305 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4306 EXT4_ERROR_INODE(inode, "bad extent address " 4307 "lblock: %lu, depth: %d pblock %lld", 4308 (unsigned long) map->m_lblk, depth, 4309 path[depth].p_block); 4310 err = -EIO; 4311 goto out2; 4312 } 4313 4314 ex = path[depth].p_ext; 4315 if (ex) { 4316 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4317 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4318 unsigned short ee_len; 4319 4320 4321 /* 4322 * unwritten extents are treated as holes, except that 4323 * we split out initialized portions during a write. 4324 */ 4325 ee_len = ext4_ext_get_actual_len(ex); 4326 4327 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4328 4329 /* if found extent covers block, simply return it */ 4330 if (in_range(map->m_lblk, ee_block, ee_len)) { 4331 newblock = map->m_lblk - ee_block + ee_start; 4332 /* number of remaining blocks in the extent */ 4333 allocated = ee_len - (map->m_lblk - ee_block); 4334 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4335 ee_block, ee_len, newblock); 4336 4337 /* 4338 * If the extent is initialized check whether the 4339 * caller wants to convert it to unwritten. 4340 */ 4341 if ((!ext4_ext_is_unwritten(ex)) && 4342 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4343 allocated = convert_initialized_extent( 4344 handle, inode, map, &path, 4345 flags, allocated, newblock); 4346 goto out2; 4347 } else if (!ext4_ext_is_unwritten(ex)) 4348 goto out; 4349 4350 ret = ext4_ext_handle_unwritten_extents( 4351 handle, inode, map, &path, flags, 4352 allocated, newblock); 4353 if (ret < 0) 4354 err = ret; 4355 else 4356 allocated = ret; 4357 goto out2; 4358 } 4359 } 4360 4361 /* 4362 * requested block isn't allocated yet; 4363 * we couldn't try to create block if create flag is zero 4364 */ 4365 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4366 /* 4367 * put just found gap into cache to speed up 4368 * subsequent requests 4369 */ 4370 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 4371 goto out2; 4372 } 4373 4374 /* 4375 * Okay, we need to do block allocation. 4376 */ 4377 newex.ee_block = cpu_to_le32(map->m_lblk); 4378 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4379 4380 /* 4381 * If we are doing bigalloc, check to see if the extent returned 4382 * by ext4_find_extent() implies a cluster we can use. 4383 */ 4384 if (cluster_offset && ex && 4385 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4386 ar.len = allocated = map->m_len; 4387 newblock = map->m_pblk; 4388 map_from_cluster = true; 4389 goto got_allocated_blocks; 4390 } 4391 4392 /* find neighbour allocated blocks */ 4393 ar.lleft = map->m_lblk; 4394 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4395 if (err) 4396 goto out2; 4397 ar.lright = map->m_lblk; 4398 ex2 = NULL; 4399 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4400 if (err) 4401 goto out2; 4402 4403 /* Check if the extent after searching to the right implies a 4404 * cluster we can use. */ 4405 if ((sbi->s_cluster_ratio > 1) && ex2 && 4406 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4407 ar.len = allocated = map->m_len; 4408 newblock = map->m_pblk; 4409 map_from_cluster = true; 4410 goto got_allocated_blocks; 4411 } 4412 4413 /* 4414 * See if request is beyond maximum number of blocks we can have in 4415 * a single extent. For an initialized extent this limit is 4416 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4417 * EXT_UNWRITTEN_MAX_LEN. 4418 */ 4419 if (map->m_len > EXT_INIT_MAX_LEN && 4420 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4421 map->m_len = EXT_INIT_MAX_LEN; 4422 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4423 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4424 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4425 4426 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4427 newex.ee_len = cpu_to_le16(map->m_len); 4428 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4429 if (err) 4430 allocated = ext4_ext_get_actual_len(&newex); 4431 else 4432 allocated = map->m_len; 4433 4434 /* allocate new block */ 4435 ar.inode = inode; 4436 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4437 ar.logical = map->m_lblk; 4438 /* 4439 * We calculate the offset from the beginning of the cluster 4440 * for the logical block number, since when we allocate a 4441 * physical cluster, the physical block should start at the 4442 * same offset from the beginning of the cluster. This is 4443 * needed so that future calls to get_implied_cluster_alloc() 4444 * work correctly. 4445 */ 4446 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4447 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4448 ar.goal -= offset; 4449 ar.logical -= offset; 4450 if (S_ISREG(inode->i_mode)) 4451 ar.flags = EXT4_MB_HINT_DATA; 4452 else 4453 /* disable in-core preallocation for non-regular files */ 4454 ar.flags = 0; 4455 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4456 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4457 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4458 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 4459 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4460 if (!newblock) 4461 goto out2; 4462 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4463 ar.goal, newblock, allocated); 4464 free_on_err = 1; 4465 allocated_clusters = ar.len; 4466 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4467 if (ar.len > allocated) 4468 ar.len = allocated; 4469 4470 got_allocated_blocks: 4471 /* try to insert new extent into found leaf and return */ 4472 ext4_ext_store_pblock(&newex, newblock + offset); 4473 newex.ee_len = cpu_to_le16(ar.len); 4474 /* Mark unwritten */ 4475 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){ 4476 ext4_ext_mark_unwritten(&newex); 4477 map->m_flags |= EXT4_MAP_UNWRITTEN; 4478 /* 4479 * io_end structure was created for every IO write to an 4480 * unwritten extent. To avoid unnecessary conversion, 4481 * here we flag the IO that really needs the conversion. 4482 * For non asycn direct IO case, flag the inode state 4483 * that we need to perform conversion when IO is done. 4484 */ 4485 if (flags & EXT4_GET_BLOCKS_PRE_IO) 4486 set_unwritten = 1; 4487 } 4488 4489 err = 0; 4490 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4491 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4492 path, ar.len); 4493 if (!err) 4494 err = ext4_ext_insert_extent(handle, inode, &path, 4495 &newex, flags); 4496 4497 if (!err && set_unwritten) { 4498 if (io) 4499 ext4_set_io_unwritten_flag(inode, io); 4500 else 4501 ext4_set_inode_state(inode, 4502 EXT4_STATE_DIO_UNWRITTEN); 4503 } 4504 4505 if (err && free_on_err) { 4506 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4507 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4508 /* free data blocks we just allocated */ 4509 /* not a good idea to call discard here directly, 4510 * but otherwise we'd need to call it every free() */ 4511 ext4_discard_preallocations(inode); 4512 ext4_free_blocks(handle, inode, NULL, newblock, 4513 EXT4_C2B(sbi, allocated_clusters), fb_flags); 4514 goto out2; 4515 } 4516 4517 /* previous routine could use block we allocated */ 4518 newblock = ext4_ext_pblock(&newex); 4519 allocated = ext4_ext_get_actual_len(&newex); 4520 if (allocated > map->m_len) 4521 allocated = map->m_len; 4522 map->m_flags |= EXT4_MAP_NEW; 4523 4524 /* 4525 * Update reserved blocks/metadata blocks after successful 4526 * block allocation which had been deferred till now. 4527 */ 4528 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4529 unsigned int reserved_clusters; 4530 /* 4531 * Check how many clusters we had reserved this allocated range 4532 */ 4533 reserved_clusters = get_reserved_cluster_alloc(inode, 4534 map->m_lblk, allocated); 4535 if (!map_from_cluster) { 4536 BUG_ON(allocated_clusters < reserved_clusters); 4537 if (reserved_clusters < allocated_clusters) { 4538 struct ext4_inode_info *ei = EXT4_I(inode); 4539 int reservation = allocated_clusters - 4540 reserved_clusters; 4541 /* 4542 * It seems we claimed few clusters outside of 4543 * the range of this allocation. We should give 4544 * it back to the reservation pool. This can 4545 * happen in the following case: 4546 * 4547 * * Suppose s_cluster_ratio is 4 (i.e., each 4548 * cluster has 4 blocks. Thus, the clusters 4549 * are [0-3],[4-7],[8-11]... 4550 * * First comes delayed allocation write for 4551 * logical blocks 10 & 11. Since there were no 4552 * previous delayed allocated blocks in the 4553 * range [8-11], we would reserve 1 cluster 4554 * for this write. 4555 * * Next comes write for logical blocks 3 to 8. 4556 * In this case, we will reserve 2 clusters 4557 * (for [0-3] and [4-7]; and not for [8-11] as 4558 * that range has a delayed allocated blocks. 4559 * Thus total reserved clusters now becomes 3. 4560 * * Now, during the delayed allocation writeout 4561 * time, we will first write blocks [3-8] and 4562 * allocate 3 clusters for writing these 4563 * blocks. Also, we would claim all these 4564 * three clusters above. 4565 * * Now when we come here to writeout the 4566 * blocks [10-11], we would expect to claim 4567 * the reservation of 1 cluster we had made 4568 * (and we would claim it since there are no 4569 * more delayed allocated blocks in the range 4570 * [8-11]. But our reserved cluster count had 4571 * already gone to 0. 4572 * 4573 * Thus, at the step 4 above when we determine 4574 * that there are still some unwritten delayed 4575 * allocated blocks outside of our current 4576 * block range, we should increment the 4577 * reserved clusters count so that when the 4578 * remaining blocks finally gets written, we 4579 * could claim them. 4580 */ 4581 dquot_reserve_block(inode, 4582 EXT4_C2B(sbi, reservation)); 4583 spin_lock(&ei->i_block_reservation_lock); 4584 ei->i_reserved_data_blocks += reservation; 4585 spin_unlock(&ei->i_block_reservation_lock); 4586 } 4587 /* 4588 * We will claim quota for all newly allocated blocks. 4589 * We're updating the reserved space *after* the 4590 * correction above so we do not accidentally free 4591 * all the metadata reservation because we might 4592 * actually need it later on. 4593 */ 4594 ext4_da_update_reserve_space(inode, allocated_clusters, 4595 1); 4596 } 4597 } 4598 4599 /* 4600 * Cache the extent and update transaction to commit on fdatasync only 4601 * when it is _not_ an unwritten extent. 4602 */ 4603 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4604 ext4_update_inode_fsync_trans(handle, inode, 1); 4605 else 4606 ext4_update_inode_fsync_trans(handle, inode, 0); 4607 out: 4608 if (allocated > map->m_len) 4609 allocated = map->m_len; 4610 ext4_ext_show_leaf(inode, path); 4611 map->m_flags |= EXT4_MAP_MAPPED; 4612 map->m_pblk = newblock; 4613 map->m_len = allocated; 4614 out2: 4615 ext4_ext_drop_refs(path); 4616 kfree(path); 4617 4618 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4619 err ? err : allocated); 4620 return err ? err : allocated; 4621 } 4622 4623 void ext4_ext_truncate(handle_t *handle, struct inode *inode) 4624 { 4625 struct super_block *sb = inode->i_sb; 4626 ext4_lblk_t last_block; 4627 int err = 0; 4628 4629 /* 4630 * TODO: optimization is possible here. 4631 * Probably we need not scan at all, 4632 * because page truncation is enough. 4633 */ 4634 4635 /* we have to know where to truncate from in crash case */ 4636 EXT4_I(inode)->i_disksize = inode->i_size; 4637 ext4_mark_inode_dirty(handle, inode); 4638 4639 last_block = (inode->i_size + sb->s_blocksize - 1) 4640 >> EXT4_BLOCK_SIZE_BITS(sb); 4641 retry: 4642 err = ext4_es_remove_extent(inode, last_block, 4643 EXT_MAX_BLOCKS - last_block); 4644 if (err == -ENOMEM) { 4645 cond_resched(); 4646 congestion_wait(BLK_RW_ASYNC, HZ/50); 4647 goto retry; 4648 } 4649 if (err) { 4650 ext4_std_error(inode->i_sb, err); 4651 return; 4652 } 4653 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4654 ext4_std_error(inode->i_sb, err); 4655 } 4656 4657 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4658 ext4_lblk_t len, loff_t new_size, 4659 int flags, int mode) 4660 { 4661 struct inode *inode = file_inode(file); 4662 handle_t *handle; 4663 int ret = 0; 4664 int ret2 = 0; 4665 int retries = 0; 4666 struct ext4_map_blocks map; 4667 unsigned int credits; 4668 loff_t epos; 4669 4670 map.m_lblk = offset; 4671 map.m_len = len; 4672 /* 4673 * Don't normalize the request if it can fit in one extent so 4674 * that it doesn't get unnecessarily split into multiple 4675 * extents. 4676 */ 4677 if (len <= EXT_UNWRITTEN_MAX_LEN) 4678 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4679 4680 /* 4681 * credits to insert 1 extent into extent tree 4682 */ 4683 credits = ext4_chunk_trans_blocks(inode, len); 4684 4685 retry: 4686 while (ret >= 0 && len) { 4687 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4688 credits); 4689 if (IS_ERR(handle)) { 4690 ret = PTR_ERR(handle); 4691 break; 4692 } 4693 ret = ext4_map_blocks(handle, inode, &map, flags); 4694 if (ret <= 0) { 4695 ext4_debug("inode #%lu: block %u: len %u: " 4696 "ext4_ext_map_blocks returned %d", 4697 inode->i_ino, map.m_lblk, 4698 map.m_len, ret); 4699 ext4_mark_inode_dirty(handle, inode); 4700 ret2 = ext4_journal_stop(handle); 4701 break; 4702 } 4703 map.m_lblk += ret; 4704 map.m_len = len = len - ret; 4705 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4706 inode->i_ctime = ext4_current_time(inode); 4707 if (new_size) { 4708 if (epos > new_size) 4709 epos = new_size; 4710 if (ext4_update_inode_size(inode, epos) & 0x1) 4711 inode->i_mtime = inode->i_ctime; 4712 } else { 4713 if (epos > inode->i_size) 4714 ext4_set_inode_flag(inode, 4715 EXT4_INODE_EOFBLOCKS); 4716 } 4717 ext4_mark_inode_dirty(handle, inode); 4718 ret2 = ext4_journal_stop(handle); 4719 if (ret2) 4720 break; 4721 } 4722 if (ret == -ENOSPC && 4723 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4724 ret = 0; 4725 goto retry; 4726 } 4727 4728 return ret > 0 ? ret2 : ret; 4729 } 4730 4731 static long ext4_zero_range(struct file *file, loff_t offset, 4732 loff_t len, int mode) 4733 { 4734 struct inode *inode = file_inode(file); 4735 handle_t *handle = NULL; 4736 unsigned int max_blocks; 4737 loff_t new_size = 0; 4738 int ret = 0; 4739 int flags; 4740 int credits; 4741 int partial_begin, partial_end; 4742 loff_t start, end; 4743 ext4_lblk_t lblk; 4744 struct address_space *mapping = inode->i_mapping; 4745 unsigned int blkbits = inode->i_blkbits; 4746 4747 trace_ext4_zero_range(inode, offset, len, mode); 4748 4749 if (!S_ISREG(inode->i_mode)) 4750 return -EINVAL; 4751 4752 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4753 if (ext4_should_journal_data(inode)) { 4754 ret = ext4_force_commit(inode->i_sb); 4755 if (ret) 4756 return ret; 4757 } 4758 4759 /* 4760 * Write out all dirty pages to avoid race conditions 4761 * Then release them. 4762 */ 4763 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4764 ret = filemap_write_and_wait_range(mapping, offset, 4765 offset + len - 1); 4766 if (ret) 4767 return ret; 4768 } 4769 4770 /* 4771 * Round up offset. This is not fallocate, we neet to zero out 4772 * blocks, so convert interior block aligned part of the range to 4773 * unwritten and possibly manually zero out unaligned parts of the 4774 * range. 4775 */ 4776 start = round_up(offset, 1 << blkbits); 4777 end = round_down((offset + len), 1 << blkbits); 4778 4779 if (start < offset || end > offset + len) 4780 return -EINVAL; 4781 partial_begin = offset & ((1 << blkbits) - 1); 4782 partial_end = (offset + len) & ((1 << blkbits) - 1); 4783 4784 lblk = start >> blkbits; 4785 max_blocks = (end >> blkbits); 4786 if (max_blocks < lblk) 4787 max_blocks = 0; 4788 else 4789 max_blocks -= lblk; 4790 4791 mutex_lock(&inode->i_mutex); 4792 4793 /* 4794 * Indirect files do not support unwritten extnets 4795 */ 4796 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4797 ret = -EOPNOTSUPP; 4798 goto out_mutex; 4799 } 4800 4801 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4802 offset + len > i_size_read(inode)) { 4803 new_size = offset + len; 4804 ret = inode_newsize_ok(inode, new_size); 4805 if (ret) 4806 goto out_mutex; 4807 } 4808 4809 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4810 if (mode & FALLOC_FL_KEEP_SIZE) 4811 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4812 4813 /* Preallocate the range including the unaligned edges */ 4814 if (partial_begin || partial_end) { 4815 ret = ext4_alloc_file_blocks(file, 4816 round_down(offset, 1 << blkbits) >> blkbits, 4817 (round_up((offset + len), 1 << blkbits) - 4818 round_down(offset, 1 << blkbits)) >> blkbits, 4819 new_size, flags, mode); 4820 if (ret) 4821 goto out_mutex; 4822 4823 } 4824 4825 /* Zero range excluding the unaligned edges */ 4826 if (max_blocks > 0) { 4827 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4828 EXT4_EX_NOCACHE); 4829 4830 /* Now release the pages and zero block aligned part of pages*/ 4831 truncate_pagecache_range(inode, start, end - 1); 4832 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4833 4834 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4835 ext4_inode_block_unlocked_dio(inode); 4836 inode_dio_wait(inode); 4837 4838 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4839 flags, mode); 4840 if (ret) 4841 goto out_dio; 4842 } 4843 if (!partial_begin && !partial_end) 4844 goto out_dio; 4845 4846 /* 4847 * In worst case we have to writeout two nonadjacent unwritten 4848 * blocks and update the inode 4849 */ 4850 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4851 if (ext4_should_journal_data(inode)) 4852 credits += 2; 4853 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4854 if (IS_ERR(handle)) { 4855 ret = PTR_ERR(handle); 4856 ext4_std_error(inode->i_sb, ret); 4857 goto out_dio; 4858 } 4859 4860 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4861 if (new_size) { 4862 ext4_update_inode_size(inode, new_size); 4863 } else { 4864 /* 4865 * Mark that we allocate beyond EOF so the subsequent truncate 4866 * can proceed even if the new size is the same as i_size. 4867 */ 4868 if ((offset + len) > i_size_read(inode)) 4869 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4870 } 4871 ext4_mark_inode_dirty(handle, inode); 4872 4873 /* Zero out partial block at the edges of the range */ 4874 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4875 4876 if (file->f_flags & O_SYNC) 4877 ext4_handle_sync(handle); 4878 4879 ext4_journal_stop(handle); 4880 out_dio: 4881 ext4_inode_resume_unlocked_dio(inode); 4882 out_mutex: 4883 mutex_unlock(&inode->i_mutex); 4884 return ret; 4885 } 4886 4887 /* 4888 * preallocate space for a file. This implements ext4's fallocate file 4889 * operation, which gets called from sys_fallocate system call. 4890 * For block-mapped files, posix_fallocate should fall back to the method 4891 * of writing zeroes to the required new blocks (the same behavior which is 4892 * expected for file systems which do not support fallocate() system call). 4893 */ 4894 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4895 { 4896 struct inode *inode = file_inode(file); 4897 loff_t new_size = 0; 4898 unsigned int max_blocks; 4899 int ret = 0; 4900 int flags; 4901 ext4_lblk_t lblk; 4902 unsigned int blkbits = inode->i_blkbits; 4903 4904 /* 4905 * Encrypted inodes can't handle collapse range or insert 4906 * range since we would need to re-encrypt blocks with a 4907 * different IV or XTS tweak (which are based on the logical 4908 * block number). 4909 * 4910 * XXX It's not clear why zero range isn't working, but we'll 4911 * leave it disabled for encrypted inodes for now. This is a 4912 * bug we should fix.... 4913 */ 4914 if (ext4_encrypted_inode(inode) && 4915 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))) 4916 return -EOPNOTSUPP; 4917 4918 /* Return error if mode is not supported */ 4919 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4920 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE)) 4921 return -EOPNOTSUPP; 4922 4923 if (mode & FALLOC_FL_PUNCH_HOLE) 4924 return ext4_punch_hole(inode, offset, len); 4925 4926 ret = ext4_convert_inline_data(inode); 4927 if (ret) 4928 return ret; 4929 4930 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4931 return ext4_collapse_range(inode, offset, len); 4932 4933 if (mode & FALLOC_FL_ZERO_RANGE) 4934 return ext4_zero_range(file, offset, len, mode); 4935 4936 trace_ext4_fallocate_enter(inode, offset, len, mode); 4937 lblk = offset >> blkbits; 4938 /* 4939 * We can't just convert len to max_blocks because 4940 * If blocksize = 4096 offset = 3072 and len = 2048 4941 */ 4942 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4943 - lblk; 4944 4945 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4946 if (mode & FALLOC_FL_KEEP_SIZE) 4947 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4948 4949 mutex_lock(&inode->i_mutex); 4950 4951 /* 4952 * We only support preallocation for extent-based files only 4953 */ 4954 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4955 ret = -EOPNOTSUPP; 4956 goto out; 4957 } 4958 4959 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4960 offset + len > i_size_read(inode)) { 4961 new_size = offset + len; 4962 ret = inode_newsize_ok(inode, new_size); 4963 if (ret) 4964 goto out; 4965 } 4966 4967 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4968 flags, mode); 4969 if (ret) 4970 goto out; 4971 4972 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 4973 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 4974 EXT4_I(inode)->i_sync_tid); 4975 } 4976 out: 4977 mutex_unlock(&inode->i_mutex); 4978 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4979 return ret; 4980 } 4981 4982 /* 4983 * This function convert a range of blocks to written extents 4984 * The caller of this function will pass the start offset and the size. 4985 * all unwritten extents within this range will be converted to 4986 * written extents. 4987 * 4988 * This function is called from the direct IO end io call back 4989 * function, to convert the fallocated extents after IO is completed. 4990 * Returns 0 on success. 4991 */ 4992 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4993 loff_t offset, ssize_t len) 4994 { 4995 unsigned int max_blocks; 4996 int ret = 0; 4997 int ret2 = 0; 4998 struct ext4_map_blocks map; 4999 unsigned int credits, blkbits = inode->i_blkbits; 5000 5001 map.m_lblk = offset >> blkbits; 5002 /* 5003 * We can't just convert len to max_blocks because 5004 * If blocksize = 4096 offset = 3072 and len = 2048 5005 */ 5006 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 5007 map.m_lblk); 5008 /* 5009 * This is somewhat ugly but the idea is clear: When transaction is 5010 * reserved, everything goes into it. Otherwise we rather start several 5011 * smaller transactions for conversion of each extent separately. 5012 */ 5013 if (handle) { 5014 handle = ext4_journal_start_reserved(handle, 5015 EXT4_HT_EXT_CONVERT); 5016 if (IS_ERR(handle)) 5017 return PTR_ERR(handle); 5018 credits = 0; 5019 } else { 5020 /* 5021 * credits to insert 1 extent into extent tree 5022 */ 5023 credits = ext4_chunk_trans_blocks(inode, max_blocks); 5024 } 5025 while (ret >= 0 && ret < max_blocks) { 5026 map.m_lblk += ret; 5027 map.m_len = (max_blocks -= ret); 5028 if (credits) { 5029 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 5030 credits); 5031 if (IS_ERR(handle)) { 5032 ret = PTR_ERR(handle); 5033 break; 5034 } 5035 } 5036 ret = ext4_map_blocks(handle, inode, &map, 5037 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 5038 if (ret <= 0) 5039 ext4_warning(inode->i_sb, 5040 "inode #%lu: block %u: len %u: " 5041 "ext4_ext_map_blocks returned %d", 5042 inode->i_ino, map.m_lblk, 5043 map.m_len, ret); 5044 ext4_mark_inode_dirty(handle, inode); 5045 if (credits) 5046 ret2 = ext4_journal_stop(handle); 5047 if (ret <= 0 || ret2) 5048 break; 5049 } 5050 if (!credits) 5051 ret2 = ext4_journal_stop(handle); 5052 return ret > 0 ? ret2 : ret; 5053 } 5054 5055 /* 5056 * If newes is not existing extent (newes->ec_pblk equals zero) find 5057 * delayed extent at start of newes and update newes accordingly and 5058 * return start of the next delayed extent. 5059 * 5060 * If newes is existing extent (newes->ec_pblk is not equal zero) 5061 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 5062 * extent found. Leave newes unmodified. 5063 */ 5064 static int ext4_find_delayed_extent(struct inode *inode, 5065 struct extent_status *newes) 5066 { 5067 struct extent_status es; 5068 ext4_lblk_t block, next_del; 5069 5070 if (newes->es_pblk == 0) { 5071 ext4_es_find_delayed_extent_range(inode, newes->es_lblk, 5072 newes->es_lblk + newes->es_len - 1, &es); 5073 5074 /* 5075 * No extent in extent-tree contains block @newes->es_pblk, 5076 * then the block may stay in 1)a hole or 2)delayed-extent. 5077 */ 5078 if (es.es_len == 0) 5079 /* A hole found. */ 5080 return 0; 5081 5082 if (es.es_lblk > newes->es_lblk) { 5083 /* A hole found. */ 5084 newes->es_len = min(es.es_lblk - newes->es_lblk, 5085 newes->es_len); 5086 return 0; 5087 } 5088 5089 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 5090 } 5091 5092 block = newes->es_lblk + newes->es_len; 5093 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es); 5094 if (es.es_len == 0) 5095 next_del = EXT_MAX_BLOCKS; 5096 else 5097 next_del = es.es_lblk; 5098 5099 return next_del; 5100 } 5101 /* fiemap flags we can handle specified here */ 5102 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 5103 5104 static int ext4_xattr_fiemap(struct inode *inode, 5105 struct fiemap_extent_info *fieinfo) 5106 { 5107 __u64 physical = 0; 5108 __u64 length; 5109 __u32 flags = FIEMAP_EXTENT_LAST; 5110 int blockbits = inode->i_sb->s_blocksize_bits; 5111 int error = 0; 5112 5113 /* in-inode? */ 5114 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 5115 struct ext4_iloc iloc; 5116 int offset; /* offset of xattr in inode */ 5117 5118 error = ext4_get_inode_loc(inode, &iloc); 5119 if (error) 5120 return error; 5121 physical = (__u64)iloc.bh->b_blocknr << blockbits; 5122 offset = EXT4_GOOD_OLD_INODE_SIZE + 5123 EXT4_I(inode)->i_extra_isize; 5124 physical += offset; 5125 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 5126 flags |= FIEMAP_EXTENT_DATA_INLINE; 5127 brelse(iloc.bh); 5128 } else { /* external block */ 5129 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 5130 length = inode->i_sb->s_blocksize; 5131 } 5132 5133 if (physical) 5134 error = fiemap_fill_next_extent(fieinfo, 0, physical, 5135 length, flags); 5136 return (error < 0 ? error : 0); 5137 } 5138 5139 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5140 __u64 start, __u64 len) 5141 { 5142 ext4_lblk_t start_blk; 5143 int error = 0; 5144 5145 if (ext4_has_inline_data(inode)) { 5146 int has_inline = 1; 5147 5148 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline, 5149 start, len); 5150 5151 if (has_inline) 5152 return error; 5153 } 5154 5155 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 5156 error = ext4_ext_precache(inode); 5157 if (error) 5158 return error; 5159 } 5160 5161 /* fallback to generic here if not in extents fmt */ 5162 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5163 return generic_block_fiemap(inode, fieinfo, start, len, 5164 ext4_get_block); 5165 5166 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 5167 return -EBADR; 5168 5169 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 5170 error = ext4_xattr_fiemap(inode, fieinfo); 5171 } else { 5172 ext4_lblk_t len_blks; 5173 __u64 last_blk; 5174 5175 start_blk = start >> inode->i_sb->s_blocksize_bits; 5176 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5177 if (last_blk >= EXT_MAX_BLOCKS) 5178 last_blk = EXT_MAX_BLOCKS-1; 5179 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5180 5181 /* 5182 * Walk the extent tree gathering extent information 5183 * and pushing extents back to the user. 5184 */ 5185 error = ext4_fill_fiemap_extents(inode, start_blk, 5186 len_blks, fieinfo); 5187 } 5188 return error; 5189 } 5190 5191 /* 5192 * ext4_access_path: 5193 * Function to access the path buffer for marking it dirty. 5194 * It also checks if there are sufficient credits left in the journal handle 5195 * to update path. 5196 */ 5197 static int 5198 ext4_access_path(handle_t *handle, struct inode *inode, 5199 struct ext4_ext_path *path) 5200 { 5201 int credits, err; 5202 5203 if (!ext4_handle_valid(handle)) 5204 return 0; 5205 5206 /* 5207 * Check if need to extend journal credits 5208 * 3 for leaf, sb, and inode plus 2 (bmap and group 5209 * descriptor) for each block group; assume two block 5210 * groups 5211 */ 5212 if (handle->h_buffer_credits < 7) { 5213 credits = ext4_writepage_trans_blocks(inode); 5214 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 5215 /* EAGAIN is success */ 5216 if (err && err != -EAGAIN) 5217 return err; 5218 } 5219 5220 err = ext4_ext_get_access(handle, inode, path); 5221 return err; 5222 } 5223 5224 /* 5225 * ext4_ext_shift_path_extents: 5226 * Shift the extents of a path structure lying between path[depth].p_ext 5227 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift 5228 * from starting block for each extent. 5229 */ 5230 static int 5231 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5232 struct inode *inode, handle_t *handle, 5233 ext4_lblk_t *start) 5234 { 5235 int depth, err = 0; 5236 struct ext4_extent *ex_start, *ex_last; 5237 bool update = 0; 5238 depth = path->p_depth; 5239 5240 while (depth >= 0) { 5241 if (depth == path->p_depth) { 5242 ex_start = path[depth].p_ext; 5243 if (!ex_start) 5244 return -EIO; 5245 5246 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5247 5248 err = ext4_access_path(handle, inode, path + depth); 5249 if (err) 5250 goto out; 5251 5252 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 5253 update = 1; 5254 5255 *start = le32_to_cpu(ex_last->ee_block) + 5256 ext4_ext_get_actual_len(ex_last); 5257 5258 while (ex_start <= ex_last) { 5259 le32_add_cpu(&ex_start->ee_block, -shift); 5260 /* Try to merge to the left. */ 5261 if ((ex_start > 5262 EXT_FIRST_EXTENT(path[depth].p_hdr)) && 5263 ext4_ext_try_to_merge_right(inode, 5264 path, ex_start - 1)) 5265 ex_last--; 5266 else 5267 ex_start++; 5268 } 5269 err = ext4_ext_dirty(handle, inode, path + depth); 5270 if (err) 5271 goto out; 5272 5273 if (--depth < 0 || !update) 5274 break; 5275 } 5276 5277 /* Update index too */ 5278 err = ext4_access_path(handle, inode, path + depth); 5279 if (err) 5280 goto out; 5281 5282 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5283 err = ext4_ext_dirty(handle, inode, path + depth); 5284 if (err) 5285 goto out; 5286 5287 /* we are done if current index is not a starting index */ 5288 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5289 break; 5290 5291 depth--; 5292 } 5293 5294 out: 5295 return err; 5296 } 5297 5298 /* 5299 * ext4_ext_shift_extents: 5300 * All the extents which lies in the range from start to the last allocated 5301 * block for the file are shifted downwards by shift blocks. 5302 * On success, 0 is returned, error otherwise. 5303 */ 5304 static int 5305 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5306 ext4_lblk_t start, ext4_lblk_t shift) 5307 { 5308 struct ext4_ext_path *path; 5309 int ret = 0, depth; 5310 struct ext4_extent *extent; 5311 ext4_lblk_t stop_block; 5312 ext4_lblk_t ex_start, ex_end; 5313 5314 /* Let path point to the last extent */ 5315 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0); 5316 if (IS_ERR(path)) 5317 return PTR_ERR(path); 5318 5319 depth = path->p_depth; 5320 extent = path[depth].p_ext; 5321 if (!extent) 5322 goto out; 5323 5324 stop_block = le32_to_cpu(extent->ee_block) + 5325 ext4_ext_get_actual_len(extent); 5326 5327 /* Nothing to shift, if hole is at the end of file */ 5328 if (start >= stop_block) 5329 goto out; 5330 5331 /* 5332 * Don't start shifting extents until we make sure the hole is big 5333 * enough to accomodate the shift. 5334 */ 5335 path = ext4_find_extent(inode, start - 1, &path, 0); 5336 if (IS_ERR(path)) 5337 return PTR_ERR(path); 5338 depth = path->p_depth; 5339 extent = path[depth].p_ext; 5340 if (extent) { 5341 ex_start = le32_to_cpu(extent->ee_block); 5342 ex_end = le32_to_cpu(extent->ee_block) + 5343 ext4_ext_get_actual_len(extent); 5344 } else { 5345 ex_start = 0; 5346 ex_end = 0; 5347 } 5348 5349 if ((start == ex_start && shift > ex_start) || 5350 (shift > start - ex_end)) 5351 return -EINVAL; 5352 5353 /* Its safe to start updating extents */ 5354 while (start < stop_block) { 5355 path = ext4_find_extent(inode, start, &path, 0); 5356 if (IS_ERR(path)) 5357 return PTR_ERR(path); 5358 depth = path->p_depth; 5359 extent = path[depth].p_ext; 5360 if (!extent) { 5361 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5362 (unsigned long) start); 5363 return -EIO; 5364 } 5365 if (start > le32_to_cpu(extent->ee_block)) { 5366 /* Hole, move to the next extent */ 5367 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5368 path[depth].p_ext++; 5369 } else { 5370 start = ext4_ext_next_allocated_block(path); 5371 continue; 5372 } 5373 } 5374 ret = ext4_ext_shift_path_extents(path, shift, inode, 5375 handle, &start); 5376 if (ret) 5377 break; 5378 } 5379 out: 5380 ext4_ext_drop_refs(path); 5381 kfree(path); 5382 return ret; 5383 } 5384 5385 /* 5386 * ext4_collapse_range: 5387 * This implements the fallocate's collapse range functionality for ext4 5388 * Returns: 0 and non-zero on error. 5389 */ 5390 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5391 { 5392 struct super_block *sb = inode->i_sb; 5393 ext4_lblk_t punch_start, punch_stop; 5394 handle_t *handle; 5395 unsigned int credits; 5396 loff_t new_size, ioffset; 5397 int ret; 5398 5399 /* 5400 * We need to test this early because xfstests assumes that a 5401 * collapse range of (0, 1) will return EOPNOTSUPP if the file 5402 * system does not support collapse range. 5403 */ 5404 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5405 return -EOPNOTSUPP; 5406 5407 /* Collapse range works only on fs block size aligned offsets. */ 5408 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5409 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5410 return -EINVAL; 5411 5412 if (!S_ISREG(inode->i_mode)) 5413 return -EINVAL; 5414 5415 trace_ext4_collapse_range(inode, offset, len); 5416 5417 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5418 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5419 5420 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5421 if (ext4_should_journal_data(inode)) { 5422 ret = ext4_force_commit(inode->i_sb); 5423 if (ret) 5424 return ret; 5425 } 5426 5427 /* 5428 * Need to round down offset to be aligned with page size boundary 5429 * for page size > block size. 5430 */ 5431 ioffset = round_down(offset, PAGE_SIZE); 5432 5433 /* Write out all dirty pages */ 5434 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5435 LLONG_MAX); 5436 if (ret) 5437 return ret; 5438 5439 /* Take mutex lock */ 5440 mutex_lock(&inode->i_mutex); 5441 5442 /* 5443 * There is no need to overlap collapse range with EOF, in which case 5444 * it is effectively a truncate operation 5445 */ 5446 if (offset + len >= i_size_read(inode)) { 5447 ret = -EINVAL; 5448 goto out_mutex; 5449 } 5450 5451 /* Currently just for extent based files */ 5452 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5453 ret = -EOPNOTSUPP; 5454 goto out_mutex; 5455 } 5456 5457 truncate_pagecache(inode, ioffset); 5458 5459 /* Wait for existing dio to complete */ 5460 ext4_inode_block_unlocked_dio(inode); 5461 inode_dio_wait(inode); 5462 5463 credits = ext4_writepage_trans_blocks(inode); 5464 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5465 if (IS_ERR(handle)) { 5466 ret = PTR_ERR(handle); 5467 goto out_dio; 5468 } 5469 5470 down_write(&EXT4_I(inode)->i_data_sem); 5471 ext4_discard_preallocations(inode); 5472 5473 ret = ext4_es_remove_extent(inode, punch_start, 5474 EXT_MAX_BLOCKS - punch_start); 5475 if (ret) { 5476 up_write(&EXT4_I(inode)->i_data_sem); 5477 goto out_stop; 5478 } 5479 5480 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5481 if (ret) { 5482 up_write(&EXT4_I(inode)->i_data_sem); 5483 goto out_stop; 5484 } 5485 ext4_discard_preallocations(inode); 5486 5487 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5488 punch_stop - punch_start); 5489 if (ret) { 5490 up_write(&EXT4_I(inode)->i_data_sem); 5491 goto out_stop; 5492 } 5493 5494 new_size = i_size_read(inode) - len; 5495 i_size_write(inode, new_size); 5496 EXT4_I(inode)->i_disksize = new_size; 5497 5498 up_write(&EXT4_I(inode)->i_data_sem); 5499 if (IS_SYNC(inode)) 5500 ext4_handle_sync(handle); 5501 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 5502 ext4_mark_inode_dirty(handle, inode); 5503 5504 out_stop: 5505 ext4_journal_stop(handle); 5506 out_dio: 5507 ext4_inode_resume_unlocked_dio(inode); 5508 out_mutex: 5509 mutex_unlock(&inode->i_mutex); 5510 return ret; 5511 } 5512 5513 /** 5514 * ext4_swap_extents - Swap extents between two inodes 5515 * 5516 * @inode1: First inode 5517 * @inode2: Second inode 5518 * @lblk1: Start block for first inode 5519 * @lblk2: Start block for second inode 5520 * @count: Number of blocks to swap 5521 * @mark_unwritten: Mark second inode's extents as unwritten after swap 5522 * @erp: Pointer to save error value 5523 * 5524 * This helper routine does exactly what is promise "swap extents". All other 5525 * stuff such as page-cache locking consistency, bh mapping consistency or 5526 * extent's data copying must be performed by caller. 5527 * Locking: 5528 * i_mutex is held for both inodes 5529 * i_data_sem is locked for write for both inodes 5530 * Assumptions: 5531 * All pages from requested range are locked for both inodes 5532 */ 5533 int 5534 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5535 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5536 ext4_lblk_t count, int unwritten, int *erp) 5537 { 5538 struct ext4_ext_path *path1 = NULL; 5539 struct ext4_ext_path *path2 = NULL; 5540 int replaced_count = 0; 5541 5542 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5543 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5544 BUG_ON(!mutex_is_locked(&inode1->i_mutex)); 5545 BUG_ON(!mutex_is_locked(&inode1->i_mutex)); 5546 5547 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5548 if (unlikely(*erp)) 5549 return 0; 5550 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5551 if (unlikely(*erp)) 5552 return 0; 5553 5554 while (count) { 5555 struct ext4_extent *ex1, *ex2, tmp_ex; 5556 ext4_lblk_t e1_blk, e2_blk; 5557 int e1_len, e2_len, len; 5558 int split = 0; 5559 5560 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5561 if (unlikely(IS_ERR(path1))) { 5562 *erp = PTR_ERR(path1); 5563 path1 = NULL; 5564 finish: 5565 count = 0; 5566 goto repeat; 5567 } 5568 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5569 if (unlikely(IS_ERR(path2))) { 5570 *erp = PTR_ERR(path2); 5571 path2 = NULL; 5572 goto finish; 5573 } 5574 ex1 = path1[path1->p_depth].p_ext; 5575 ex2 = path2[path2->p_depth].p_ext; 5576 /* Do we have somthing to swap ? */ 5577 if (unlikely(!ex2 || !ex1)) 5578 goto finish; 5579 5580 e1_blk = le32_to_cpu(ex1->ee_block); 5581 e2_blk = le32_to_cpu(ex2->ee_block); 5582 e1_len = ext4_ext_get_actual_len(ex1); 5583 e2_len = ext4_ext_get_actual_len(ex2); 5584 5585 /* Hole handling */ 5586 if (!in_range(lblk1, e1_blk, e1_len) || 5587 !in_range(lblk2, e2_blk, e2_len)) { 5588 ext4_lblk_t next1, next2; 5589 5590 /* if hole after extent, then go to next extent */ 5591 next1 = ext4_ext_next_allocated_block(path1); 5592 next2 = ext4_ext_next_allocated_block(path2); 5593 /* If hole before extent, then shift to that extent */ 5594 if (e1_blk > lblk1) 5595 next1 = e1_blk; 5596 if (e2_blk > lblk2) 5597 next2 = e1_blk; 5598 /* Do we have something to swap */ 5599 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5600 goto finish; 5601 /* Move to the rightest boundary */ 5602 len = next1 - lblk1; 5603 if (len < next2 - lblk2) 5604 len = next2 - lblk2; 5605 if (len > count) 5606 len = count; 5607 lblk1 += len; 5608 lblk2 += len; 5609 count -= len; 5610 goto repeat; 5611 } 5612 5613 /* Prepare left boundary */ 5614 if (e1_blk < lblk1) { 5615 split = 1; 5616 *erp = ext4_force_split_extent_at(handle, inode1, 5617 &path1, lblk1, 0); 5618 if (unlikely(*erp)) 5619 goto finish; 5620 } 5621 if (e2_blk < lblk2) { 5622 split = 1; 5623 *erp = ext4_force_split_extent_at(handle, inode2, 5624 &path2, lblk2, 0); 5625 if (unlikely(*erp)) 5626 goto finish; 5627 } 5628 /* ext4_split_extent_at() may result in leaf extent split, 5629 * path must to be revalidated. */ 5630 if (split) 5631 goto repeat; 5632 5633 /* Prepare right boundary */ 5634 len = count; 5635 if (len > e1_blk + e1_len - lblk1) 5636 len = e1_blk + e1_len - lblk1; 5637 if (len > e2_blk + e2_len - lblk2) 5638 len = e2_blk + e2_len - lblk2; 5639 5640 if (len != e1_len) { 5641 split = 1; 5642 *erp = ext4_force_split_extent_at(handle, inode1, 5643 &path1, lblk1 + len, 0); 5644 if (unlikely(*erp)) 5645 goto finish; 5646 } 5647 if (len != e2_len) { 5648 split = 1; 5649 *erp = ext4_force_split_extent_at(handle, inode2, 5650 &path2, lblk2 + len, 0); 5651 if (*erp) 5652 goto finish; 5653 } 5654 /* ext4_split_extent_at() may result in leaf extent split, 5655 * path must to be revalidated. */ 5656 if (split) 5657 goto repeat; 5658 5659 BUG_ON(e2_len != e1_len); 5660 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5661 if (unlikely(*erp)) 5662 goto finish; 5663 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5664 if (unlikely(*erp)) 5665 goto finish; 5666 5667 /* Both extents are fully inside boundaries. Swap it now */ 5668 tmp_ex = *ex1; 5669 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5670 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5671 ex1->ee_len = cpu_to_le16(e2_len); 5672 ex2->ee_len = cpu_to_le16(e1_len); 5673 if (unwritten) 5674 ext4_ext_mark_unwritten(ex2); 5675 if (ext4_ext_is_unwritten(&tmp_ex)) 5676 ext4_ext_mark_unwritten(ex1); 5677 5678 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5679 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5680 *erp = ext4_ext_dirty(handle, inode2, path2 + 5681 path2->p_depth); 5682 if (unlikely(*erp)) 5683 goto finish; 5684 *erp = ext4_ext_dirty(handle, inode1, path1 + 5685 path1->p_depth); 5686 /* 5687 * Looks scarry ah..? second inode already points to new blocks, 5688 * and it was successfully dirtied. But luckily error may happen 5689 * only due to journal error, so full transaction will be 5690 * aborted anyway. 5691 */ 5692 if (unlikely(*erp)) 5693 goto finish; 5694 lblk1 += len; 5695 lblk2 += len; 5696 replaced_count += len; 5697 count -= len; 5698 5699 repeat: 5700 ext4_ext_drop_refs(path1); 5701 kfree(path1); 5702 ext4_ext_drop_refs(path2); 5703 kfree(path2); 5704 path1 = path2 = NULL; 5705 } 5706 return replaced_count; 5707 } 5708