1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <linux/falloc.h> 41 #include <asm/uaccess.h> 42 #include <linux/fiemap.h> 43 #include "ext4_jbd2.h" 44 45 #include <trace/events/ext4.h> 46 47 /* 48 * used by extent splitting. 49 */ 50 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 51 due to ENOSPC */ 52 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */ 53 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */ 54 55 static int ext4_split_extent(handle_t *handle, 56 struct inode *inode, 57 struct ext4_ext_path *path, 58 struct ext4_map_blocks *map, 59 int split_flag, 60 int flags); 61 62 static int ext4_split_extent_at(handle_t *handle, 63 struct inode *inode, 64 struct ext4_ext_path *path, 65 ext4_lblk_t split, 66 int split_flag, 67 int flags); 68 69 static int ext4_ext_truncate_extend_restart(handle_t *handle, 70 struct inode *inode, 71 int needed) 72 { 73 int err; 74 75 if (!ext4_handle_valid(handle)) 76 return 0; 77 if (handle->h_buffer_credits > needed) 78 return 0; 79 err = ext4_journal_extend(handle, needed); 80 if (err <= 0) 81 return err; 82 err = ext4_truncate_restart_trans(handle, inode, needed); 83 if (err == 0) 84 err = -EAGAIN; 85 86 return err; 87 } 88 89 /* 90 * could return: 91 * - EROFS 92 * - ENOMEM 93 */ 94 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 95 struct ext4_ext_path *path) 96 { 97 if (path->p_bh) { 98 /* path points to block */ 99 return ext4_journal_get_write_access(handle, path->p_bh); 100 } 101 /* path points to leaf/index in inode body */ 102 /* we use in-core data, no need to protect them */ 103 return 0; 104 } 105 106 /* 107 * could return: 108 * - EROFS 109 * - ENOMEM 110 * - EIO 111 */ 112 #define ext4_ext_dirty(handle, inode, path) \ 113 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) 114 static int __ext4_ext_dirty(const char *where, unsigned int line, 115 handle_t *handle, struct inode *inode, 116 struct ext4_ext_path *path) 117 { 118 int err; 119 if (path->p_bh) { 120 /* path points to block */ 121 err = __ext4_handle_dirty_metadata(where, line, handle, 122 inode, path->p_bh); 123 } else { 124 /* path points to leaf/index in inode body */ 125 err = ext4_mark_inode_dirty(handle, inode); 126 } 127 return err; 128 } 129 130 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 131 struct ext4_ext_path *path, 132 ext4_lblk_t block) 133 { 134 if (path) { 135 int depth = path->p_depth; 136 struct ext4_extent *ex; 137 138 /* 139 * Try to predict block placement assuming that we are 140 * filling in a file which will eventually be 141 * non-sparse --- i.e., in the case of libbfd writing 142 * an ELF object sections out-of-order but in a way 143 * the eventually results in a contiguous object or 144 * executable file, or some database extending a table 145 * space file. However, this is actually somewhat 146 * non-ideal if we are writing a sparse file such as 147 * qemu or KVM writing a raw image file that is going 148 * to stay fairly sparse, since it will end up 149 * fragmenting the file system's free space. Maybe we 150 * should have some hueristics or some way to allow 151 * userspace to pass a hint to file system, 152 * especially if the latter case turns out to be 153 * common. 154 */ 155 ex = path[depth].p_ext; 156 if (ex) { 157 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 158 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 159 160 if (block > ext_block) 161 return ext_pblk + (block - ext_block); 162 else 163 return ext_pblk - (ext_block - block); 164 } 165 166 /* it looks like index is empty; 167 * try to find starting block from index itself */ 168 if (path[depth].p_bh) 169 return path[depth].p_bh->b_blocknr; 170 } 171 172 /* OK. use inode's group */ 173 return ext4_inode_to_goal_block(inode); 174 } 175 176 /* 177 * Allocation for a meta data block 178 */ 179 static ext4_fsblk_t 180 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 181 struct ext4_ext_path *path, 182 struct ext4_extent *ex, int *err, unsigned int flags) 183 { 184 ext4_fsblk_t goal, newblock; 185 186 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 187 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 188 NULL, err); 189 return newblock; 190 } 191 192 static inline int ext4_ext_space_block(struct inode *inode, int check) 193 { 194 int size; 195 196 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 197 / sizeof(struct ext4_extent); 198 #ifdef AGGRESSIVE_TEST 199 if (!check && size > 6) 200 size = 6; 201 #endif 202 return size; 203 } 204 205 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 206 { 207 int size; 208 209 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 210 / sizeof(struct ext4_extent_idx); 211 #ifdef AGGRESSIVE_TEST 212 if (!check && size > 5) 213 size = 5; 214 #endif 215 return size; 216 } 217 218 static inline int ext4_ext_space_root(struct inode *inode, int check) 219 { 220 int size; 221 222 size = sizeof(EXT4_I(inode)->i_data); 223 size -= sizeof(struct ext4_extent_header); 224 size /= sizeof(struct ext4_extent); 225 #ifdef AGGRESSIVE_TEST 226 if (!check && size > 3) 227 size = 3; 228 #endif 229 return size; 230 } 231 232 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 233 { 234 int size; 235 236 size = sizeof(EXT4_I(inode)->i_data); 237 size -= sizeof(struct ext4_extent_header); 238 size /= sizeof(struct ext4_extent_idx); 239 #ifdef AGGRESSIVE_TEST 240 if (!check && size > 4) 241 size = 4; 242 #endif 243 return size; 244 } 245 246 /* 247 * Calculate the number of metadata blocks needed 248 * to allocate @blocks 249 * Worse case is one block per extent 250 */ 251 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 252 { 253 struct ext4_inode_info *ei = EXT4_I(inode); 254 int idxs; 255 256 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 257 / sizeof(struct ext4_extent_idx)); 258 259 /* 260 * If the new delayed allocation block is contiguous with the 261 * previous da block, it can share index blocks with the 262 * previous block, so we only need to allocate a new index 263 * block every idxs leaf blocks. At ldxs**2 blocks, we need 264 * an additional index block, and at ldxs**3 blocks, yet 265 * another index blocks. 266 */ 267 if (ei->i_da_metadata_calc_len && 268 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 269 int num = 0; 270 271 if ((ei->i_da_metadata_calc_len % idxs) == 0) 272 num++; 273 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 274 num++; 275 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 276 num++; 277 ei->i_da_metadata_calc_len = 0; 278 } else 279 ei->i_da_metadata_calc_len++; 280 ei->i_da_metadata_calc_last_lblock++; 281 return num; 282 } 283 284 /* 285 * In the worst case we need a new set of index blocks at 286 * every level of the inode's extent tree. 287 */ 288 ei->i_da_metadata_calc_len = 1; 289 ei->i_da_metadata_calc_last_lblock = lblock; 290 return ext_depth(inode) + 1; 291 } 292 293 static int 294 ext4_ext_max_entries(struct inode *inode, int depth) 295 { 296 int max; 297 298 if (depth == ext_depth(inode)) { 299 if (depth == 0) 300 max = ext4_ext_space_root(inode, 1); 301 else 302 max = ext4_ext_space_root_idx(inode, 1); 303 } else { 304 if (depth == 0) 305 max = ext4_ext_space_block(inode, 1); 306 else 307 max = ext4_ext_space_block_idx(inode, 1); 308 } 309 310 return max; 311 } 312 313 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 314 { 315 ext4_fsblk_t block = ext4_ext_pblock(ext); 316 int len = ext4_ext_get_actual_len(ext); 317 318 if (len == 0) 319 return 0; 320 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 321 } 322 323 static int ext4_valid_extent_idx(struct inode *inode, 324 struct ext4_extent_idx *ext_idx) 325 { 326 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 327 328 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 329 } 330 331 static int ext4_valid_extent_entries(struct inode *inode, 332 struct ext4_extent_header *eh, 333 int depth) 334 { 335 unsigned short entries; 336 if (eh->eh_entries == 0) 337 return 1; 338 339 entries = le16_to_cpu(eh->eh_entries); 340 341 if (depth == 0) { 342 /* leaf entries */ 343 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 344 while (entries) { 345 if (!ext4_valid_extent(inode, ext)) 346 return 0; 347 ext++; 348 entries--; 349 } 350 } else { 351 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 352 while (entries) { 353 if (!ext4_valid_extent_idx(inode, ext_idx)) 354 return 0; 355 ext_idx++; 356 entries--; 357 } 358 } 359 return 1; 360 } 361 362 static int __ext4_ext_check(const char *function, unsigned int line, 363 struct inode *inode, struct ext4_extent_header *eh, 364 int depth) 365 { 366 const char *error_msg; 367 int max = 0; 368 369 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 370 error_msg = "invalid magic"; 371 goto corrupted; 372 } 373 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 374 error_msg = "unexpected eh_depth"; 375 goto corrupted; 376 } 377 if (unlikely(eh->eh_max == 0)) { 378 error_msg = "invalid eh_max"; 379 goto corrupted; 380 } 381 max = ext4_ext_max_entries(inode, depth); 382 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 383 error_msg = "too large eh_max"; 384 goto corrupted; 385 } 386 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 387 error_msg = "invalid eh_entries"; 388 goto corrupted; 389 } 390 if (!ext4_valid_extent_entries(inode, eh, depth)) { 391 error_msg = "invalid extent entries"; 392 goto corrupted; 393 } 394 return 0; 395 396 corrupted: 397 ext4_error_inode(inode, function, line, 0, 398 "bad header/extent: %s - magic %x, " 399 "entries %u, max %u(%u), depth %u(%u)", 400 error_msg, le16_to_cpu(eh->eh_magic), 401 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 402 max, le16_to_cpu(eh->eh_depth), depth); 403 404 return -EIO; 405 } 406 407 #define ext4_ext_check(inode, eh, depth) \ 408 __ext4_ext_check(__func__, __LINE__, inode, eh, depth) 409 410 int ext4_ext_check_inode(struct inode *inode) 411 { 412 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); 413 } 414 415 #ifdef EXT_DEBUG 416 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 417 { 418 int k, l = path->p_depth; 419 420 ext_debug("path:"); 421 for (k = 0; k <= l; k++, path++) { 422 if (path->p_idx) { 423 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 424 ext4_idx_pblock(path->p_idx)); 425 } else if (path->p_ext) { 426 ext_debug(" %d:[%d]%d:%llu ", 427 le32_to_cpu(path->p_ext->ee_block), 428 ext4_ext_is_uninitialized(path->p_ext), 429 ext4_ext_get_actual_len(path->p_ext), 430 ext4_ext_pblock(path->p_ext)); 431 } else 432 ext_debug(" []"); 433 } 434 ext_debug("\n"); 435 } 436 437 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 438 { 439 int depth = ext_depth(inode); 440 struct ext4_extent_header *eh; 441 struct ext4_extent *ex; 442 int i; 443 444 if (!path) 445 return; 446 447 eh = path[depth].p_hdr; 448 ex = EXT_FIRST_EXTENT(eh); 449 450 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 451 452 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 453 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 454 ext4_ext_is_uninitialized(ex), 455 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 456 } 457 ext_debug("\n"); 458 } 459 460 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 461 ext4_fsblk_t newblock, int level) 462 { 463 int depth = ext_depth(inode); 464 struct ext4_extent *ex; 465 466 if (depth != level) { 467 struct ext4_extent_idx *idx; 468 idx = path[level].p_idx; 469 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 470 ext_debug("%d: move %d:%llu in new index %llu\n", level, 471 le32_to_cpu(idx->ei_block), 472 ext4_idx_pblock(idx), 473 newblock); 474 idx++; 475 } 476 477 return; 478 } 479 480 ex = path[depth].p_ext; 481 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 482 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 483 le32_to_cpu(ex->ee_block), 484 ext4_ext_pblock(ex), 485 ext4_ext_is_uninitialized(ex), 486 ext4_ext_get_actual_len(ex), 487 newblock); 488 ex++; 489 } 490 } 491 492 #else 493 #define ext4_ext_show_path(inode, path) 494 #define ext4_ext_show_leaf(inode, path) 495 #define ext4_ext_show_move(inode, path, newblock, level) 496 #endif 497 498 void ext4_ext_drop_refs(struct ext4_ext_path *path) 499 { 500 int depth = path->p_depth; 501 int i; 502 503 for (i = 0; i <= depth; i++, path++) 504 if (path->p_bh) { 505 brelse(path->p_bh); 506 path->p_bh = NULL; 507 } 508 } 509 510 /* 511 * ext4_ext_binsearch_idx: 512 * binary search for the closest index of the given block 513 * the header must be checked before calling this 514 */ 515 static void 516 ext4_ext_binsearch_idx(struct inode *inode, 517 struct ext4_ext_path *path, ext4_lblk_t block) 518 { 519 struct ext4_extent_header *eh = path->p_hdr; 520 struct ext4_extent_idx *r, *l, *m; 521 522 523 ext_debug("binsearch for %u(idx): ", block); 524 525 l = EXT_FIRST_INDEX(eh) + 1; 526 r = EXT_LAST_INDEX(eh); 527 while (l <= r) { 528 m = l + (r - l) / 2; 529 if (block < le32_to_cpu(m->ei_block)) 530 r = m - 1; 531 else 532 l = m + 1; 533 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 534 m, le32_to_cpu(m->ei_block), 535 r, le32_to_cpu(r->ei_block)); 536 } 537 538 path->p_idx = l - 1; 539 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block), 540 ext4_idx_pblock(path->p_idx)); 541 542 #ifdef CHECK_BINSEARCH 543 { 544 struct ext4_extent_idx *chix, *ix; 545 int k; 546 547 chix = ix = EXT_FIRST_INDEX(eh); 548 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 549 if (k != 0 && 550 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 551 printk(KERN_DEBUG "k=%d, ix=0x%p, " 552 "first=0x%p\n", k, 553 ix, EXT_FIRST_INDEX(eh)); 554 printk(KERN_DEBUG "%u <= %u\n", 555 le32_to_cpu(ix->ei_block), 556 le32_to_cpu(ix[-1].ei_block)); 557 } 558 BUG_ON(k && le32_to_cpu(ix->ei_block) 559 <= le32_to_cpu(ix[-1].ei_block)); 560 if (block < le32_to_cpu(ix->ei_block)) 561 break; 562 chix = ix; 563 } 564 BUG_ON(chix != path->p_idx); 565 } 566 #endif 567 568 } 569 570 /* 571 * ext4_ext_binsearch: 572 * binary search for closest extent of the given block 573 * the header must be checked before calling this 574 */ 575 static void 576 ext4_ext_binsearch(struct inode *inode, 577 struct ext4_ext_path *path, ext4_lblk_t block) 578 { 579 struct ext4_extent_header *eh = path->p_hdr; 580 struct ext4_extent *r, *l, *m; 581 582 if (eh->eh_entries == 0) { 583 /* 584 * this leaf is empty: 585 * we get such a leaf in split/add case 586 */ 587 return; 588 } 589 590 ext_debug("binsearch for %u: ", block); 591 592 l = EXT_FIRST_EXTENT(eh) + 1; 593 r = EXT_LAST_EXTENT(eh); 594 595 while (l <= r) { 596 m = l + (r - l) / 2; 597 if (block < le32_to_cpu(m->ee_block)) 598 r = m - 1; 599 else 600 l = m + 1; 601 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 602 m, le32_to_cpu(m->ee_block), 603 r, le32_to_cpu(r->ee_block)); 604 } 605 606 path->p_ext = l - 1; 607 ext_debug(" -> %d:%llu:[%d]%d ", 608 le32_to_cpu(path->p_ext->ee_block), 609 ext4_ext_pblock(path->p_ext), 610 ext4_ext_is_uninitialized(path->p_ext), 611 ext4_ext_get_actual_len(path->p_ext)); 612 613 #ifdef CHECK_BINSEARCH 614 { 615 struct ext4_extent *chex, *ex; 616 int k; 617 618 chex = ex = EXT_FIRST_EXTENT(eh); 619 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 620 BUG_ON(k && le32_to_cpu(ex->ee_block) 621 <= le32_to_cpu(ex[-1].ee_block)); 622 if (block < le32_to_cpu(ex->ee_block)) 623 break; 624 chex = ex; 625 } 626 BUG_ON(chex != path->p_ext); 627 } 628 #endif 629 630 } 631 632 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 633 { 634 struct ext4_extent_header *eh; 635 636 eh = ext_inode_hdr(inode); 637 eh->eh_depth = 0; 638 eh->eh_entries = 0; 639 eh->eh_magic = EXT4_EXT_MAGIC; 640 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 641 ext4_mark_inode_dirty(handle, inode); 642 ext4_ext_invalidate_cache(inode); 643 return 0; 644 } 645 646 struct ext4_ext_path * 647 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 648 struct ext4_ext_path *path) 649 { 650 struct ext4_extent_header *eh; 651 struct buffer_head *bh; 652 short int depth, i, ppos = 0, alloc = 0; 653 654 eh = ext_inode_hdr(inode); 655 depth = ext_depth(inode); 656 657 /* account possible depth increase */ 658 if (!path) { 659 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 660 GFP_NOFS); 661 if (!path) 662 return ERR_PTR(-ENOMEM); 663 alloc = 1; 664 } 665 path[0].p_hdr = eh; 666 path[0].p_bh = NULL; 667 668 i = depth; 669 /* walk through the tree */ 670 while (i) { 671 int need_to_validate = 0; 672 673 ext_debug("depth %d: num %d, max %d\n", 674 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 675 676 ext4_ext_binsearch_idx(inode, path + ppos, block); 677 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 678 path[ppos].p_depth = i; 679 path[ppos].p_ext = NULL; 680 681 bh = sb_getblk(inode->i_sb, path[ppos].p_block); 682 if (unlikely(!bh)) 683 goto err; 684 if (!bh_uptodate_or_lock(bh)) { 685 trace_ext4_ext_load_extent(inode, block, 686 path[ppos].p_block); 687 if (bh_submit_read(bh) < 0) { 688 put_bh(bh); 689 goto err; 690 } 691 /* validate the extent entries */ 692 need_to_validate = 1; 693 } 694 eh = ext_block_hdr(bh); 695 ppos++; 696 if (unlikely(ppos > depth)) { 697 put_bh(bh); 698 EXT4_ERROR_INODE(inode, 699 "ppos %d > depth %d", ppos, depth); 700 goto err; 701 } 702 path[ppos].p_bh = bh; 703 path[ppos].p_hdr = eh; 704 i--; 705 706 if (need_to_validate && ext4_ext_check(inode, eh, i)) 707 goto err; 708 } 709 710 path[ppos].p_depth = i; 711 path[ppos].p_ext = NULL; 712 path[ppos].p_idx = NULL; 713 714 /* find extent */ 715 ext4_ext_binsearch(inode, path + ppos, block); 716 /* if not an empty leaf */ 717 if (path[ppos].p_ext) 718 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 719 720 ext4_ext_show_path(inode, path); 721 722 return path; 723 724 err: 725 ext4_ext_drop_refs(path); 726 if (alloc) 727 kfree(path); 728 return ERR_PTR(-EIO); 729 } 730 731 /* 732 * ext4_ext_insert_index: 733 * insert new index [@logical;@ptr] into the block at @curp; 734 * check where to insert: before @curp or after @curp 735 */ 736 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 737 struct ext4_ext_path *curp, 738 int logical, ext4_fsblk_t ptr) 739 { 740 struct ext4_extent_idx *ix; 741 int len, err; 742 743 err = ext4_ext_get_access(handle, inode, curp); 744 if (err) 745 return err; 746 747 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 748 EXT4_ERROR_INODE(inode, 749 "logical %d == ei_block %d!", 750 logical, le32_to_cpu(curp->p_idx->ei_block)); 751 return -EIO; 752 } 753 754 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 755 >= le16_to_cpu(curp->p_hdr->eh_max))) { 756 EXT4_ERROR_INODE(inode, 757 "eh_entries %d >= eh_max %d!", 758 le16_to_cpu(curp->p_hdr->eh_entries), 759 le16_to_cpu(curp->p_hdr->eh_max)); 760 return -EIO; 761 } 762 763 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 764 /* insert after */ 765 ext_debug("insert new index %d after: %llu\n", logical, ptr); 766 ix = curp->p_idx + 1; 767 } else { 768 /* insert before */ 769 ext_debug("insert new index %d before: %llu\n", logical, ptr); 770 ix = curp->p_idx; 771 } 772 773 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 774 BUG_ON(len < 0); 775 if (len > 0) { 776 ext_debug("insert new index %d: " 777 "move %d indices from 0x%p to 0x%p\n", 778 logical, len, ix, ix + 1); 779 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 780 } 781 782 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 783 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 784 return -EIO; 785 } 786 787 ix->ei_block = cpu_to_le32(logical); 788 ext4_idx_store_pblock(ix, ptr); 789 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 790 791 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 792 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 793 return -EIO; 794 } 795 796 err = ext4_ext_dirty(handle, inode, curp); 797 ext4_std_error(inode->i_sb, err); 798 799 return err; 800 } 801 802 /* 803 * ext4_ext_split: 804 * inserts new subtree into the path, using free index entry 805 * at depth @at: 806 * - allocates all needed blocks (new leaf and all intermediate index blocks) 807 * - makes decision where to split 808 * - moves remaining extents and index entries (right to the split point) 809 * into the newly allocated blocks 810 * - initializes subtree 811 */ 812 static int ext4_ext_split(handle_t *handle, struct inode *inode, 813 unsigned int flags, 814 struct ext4_ext_path *path, 815 struct ext4_extent *newext, int at) 816 { 817 struct buffer_head *bh = NULL; 818 int depth = ext_depth(inode); 819 struct ext4_extent_header *neh; 820 struct ext4_extent_idx *fidx; 821 int i = at, k, m, a; 822 ext4_fsblk_t newblock, oldblock; 823 __le32 border; 824 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 825 int err = 0; 826 827 /* make decision: where to split? */ 828 /* FIXME: now decision is simplest: at current extent */ 829 830 /* if current leaf will be split, then we should use 831 * border from split point */ 832 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 833 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 834 return -EIO; 835 } 836 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 837 border = path[depth].p_ext[1].ee_block; 838 ext_debug("leaf will be split." 839 " next leaf starts at %d\n", 840 le32_to_cpu(border)); 841 } else { 842 border = newext->ee_block; 843 ext_debug("leaf will be added." 844 " next leaf starts at %d\n", 845 le32_to_cpu(border)); 846 } 847 848 /* 849 * If error occurs, then we break processing 850 * and mark filesystem read-only. index won't 851 * be inserted and tree will be in consistent 852 * state. Next mount will repair buffers too. 853 */ 854 855 /* 856 * Get array to track all allocated blocks. 857 * We need this to handle errors and free blocks 858 * upon them. 859 */ 860 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 861 if (!ablocks) 862 return -ENOMEM; 863 864 /* allocate all needed blocks */ 865 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 866 for (a = 0; a < depth - at; a++) { 867 newblock = ext4_ext_new_meta_block(handle, inode, path, 868 newext, &err, flags); 869 if (newblock == 0) 870 goto cleanup; 871 ablocks[a] = newblock; 872 } 873 874 /* initialize new leaf */ 875 newblock = ablocks[--a]; 876 if (unlikely(newblock == 0)) { 877 EXT4_ERROR_INODE(inode, "newblock == 0!"); 878 err = -EIO; 879 goto cleanup; 880 } 881 bh = sb_getblk(inode->i_sb, newblock); 882 if (!bh) { 883 err = -EIO; 884 goto cleanup; 885 } 886 lock_buffer(bh); 887 888 err = ext4_journal_get_create_access(handle, bh); 889 if (err) 890 goto cleanup; 891 892 neh = ext_block_hdr(bh); 893 neh->eh_entries = 0; 894 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 895 neh->eh_magic = EXT4_EXT_MAGIC; 896 neh->eh_depth = 0; 897 898 /* move remainder of path[depth] to the new leaf */ 899 if (unlikely(path[depth].p_hdr->eh_entries != 900 path[depth].p_hdr->eh_max)) { 901 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 902 path[depth].p_hdr->eh_entries, 903 path[depth].p_hdr->eh_max); 904 err = -EIO; 905 goto cleanup; 906 } 907 /* start copy from next extent */ 908 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 909 ext4_ext_show_move(inode, path, newblock, depth); 910 if (m) { 911 struct ext4_extent *ex; 912 ex = EXT_FIRST_EXTENT(neh); 913 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 914 le16_add_cpu(&neh->eh_entries, m); 915 } 916 917 set_buffer_uptodate(bh); 918 unlock_buffer(bh); 919 920 err = ext4_handle_dirty_metadata(handle, inode, bh); 921 if (err) 922 goto cleanup; 923 brelse(bh); 924 bh = NULL; 925 926 /* correct old leaf */ 927 if (m) { 928 err = ext4_ext_get_access(handle, inode, path + depth); 929 if (err) 930 goto cleanup; 931 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 932 err = ext4_ext_dirty(handle, inode, path + depth); 933 if (err) 934 goto cleanup; 935 936 } 937 938 /* create intermediate indexes */ 939 k = depth - at - 1; 940 if (unlikely(k < 0)) { 941 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 942 err = -EIO; 943 goto cleanup; 944 } 945 if (k) 946 ext_debug("create %d intermediate indices\n", k); 947 /* insert new index into current index block */ 948 /* current depth stored in i var */ 949 i = depth - 1; 950 while (k--) { 951 oldblock = newblock; 952 newblock = ablocks[--a]; 953 bh = sb_getblk(inode->i_sb, newblock); 954 if (!bh) { 955 err = -EIO; 956 goto cleanup; 957 } 958 lock_buffer(bh); 959 960 err = ext4_journal_get_create_access(handle, bh); 961 if (err) 962 goto cleanup; 963 964 neh = ext_block_hdr(bh); 965 neh->eh_entries = cpu_to_le16(1); 966 neh->eh_magic = EXT4_EXT_MAGIC; 967 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 968 neh->eh_depth = cpu_to_le16(depth - i); 969 fidx = EXT_FIRST_INDEX(neh); 970 fidx->ei_block = border; 971 ext4_idx_store_pblock(fidx, oldblock); 972 973 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 974 i, newblock, le32_to_cpu(border), oldblock); 975 976 /* move remainder of path[i] to the new index block */ 977 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 978 EXT_LAST_INDEX(path[i].p_hdr))) { 979 EXT4_ERROR_INODE(inode, 980 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 981 le32_to_cpu(path[i].p_ext->ee_block)); 982 err = -EIO; 983 goto cleanup; 984 } 985 /* start copy indexes */ 986 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 987 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 988 EXT_MAX_INDEX(path[i].p_hdr)); 989 ext4_ext_show_move(inode, path, newblock, i); 990 if (m) { 991 memmove(++fidx, path[i].p_idx, 992 sizeof(struct ext4_extent_idx) * m); 993 le16_add_cpu(&neh->eh_entries, m); 994 } 995 set_buffer_uptodate(bh); 996 unlock_buffer(bh); 997 998 err = ext4_handle_dirty_metadata(handle, inode, bh); 999 if (err) 1000 goto cleanup; 1001 brelse(bh); 1002 bh = NULL; 1003 1004 /* correct old index */ 1005 if (m) { 1006 err = ext4_ext_get_access(handle, inode, path + i); 1007 if (err) 1008 goto cleanup; 1009 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1010 err = ext4_ext_dirty(handle, inode, path + i); 1011 if (err) 1012 goto cleanup; 1013 } 1014 1015 i--; 1016 } 1017 1018 /* insert new index */ 1019 err = ext4_ext_insert_index(handle, inode, path + at, 1020 le32_to_cpu(border), newblock); 1021 1022 cleanup: 1023 if (bh) { 1024 if (buffer_locked(bh)) 1025 unlock_buffer(bh); 1026 brelse(bh); 1027 } 1028 1029 if (err) { 1030 /* free all allocated blocks in error case */ 1031 for (i = 0; i < depth; i++) { 1032 if (!ablocks[i]) 1033 continue; 1034 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1035 EXT4_FREE_BLOCKS_METADATA); 1036 } 1037 } 1038 kfree(ablocks); 1039 1040 return err; 1041 } 1042 1043 /* 1044 * ext4_ext_grow_indepth: 1045 * implements tree growing procedure: 1046 * - allocates new block 1047 * - moves top-level data (index block or leaf) into the new block 1048 * - initializes new top-level, creating index that points to the 1049 * just created block 1050 */ 1051 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1052 unsigned int flags, 1053 struct ext4_extent *newext) 1054 { 1055 struct ext4_extent_header *neh; 1056 struct buffer_head *bh; 1057 ext4_fsblk_t newblock; 1058 int err = 0; 1059 1060 newblock = ext4_ext_new_meta_block(handle, inode, NULL, 1061 newext, &err, flags); 1062 if (newblock == 0) 1063 return err; 1064 1065 bh = sb_getblk(inode->i_sb, newblock); 1066 if (!bh) { 1067 err = -EIO; 1068 ext4_std_error(inode->i_sb, err); 1069 return err; 1070 } 1071 lock_buffer(bh); 1072 1073 err = ext4_journal_get_create_access(handle, bh); 1074 if (err) { 1075 unlock_buffer(bh); 1076 goto out; 1077 } 1078 1079 /* move top-level index/leaf into new block */ 1080 memmove(bh->b_data, EXT4_I(inode)->i_data, 1081 sizeof(EXT4_I(inode)->i_data)); 1082 1083 /* set size of new block */ 1084 neh = ext_block_hdr(bh); 1085 /* old root could have indexes or leaves 1086 * so calculate e_max right way */ 1087 if (ext_depth(inode)) 1088 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1089 else 1090 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1091 neh->eh_magic = EXT4_EXT_MAGIC; 1092 set_buffer_uptodate(bh); 1093 unlock_buffer(bh); 1094 1095 err = ext4_handle_dirty_metadata(handle, inode, bh); 1096 if (err) 1097 goto out; 1098 1099 /* Update top-level index: num,max,pointer */ 1100 neh = ext_inode_hdr(inode); 1101 neh->eh_entries = cpu_to_le16(1); 1102 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1103 if (neh->eh_depth == 0) { 1104 /* Root extent block becomes index block */ 1105 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1106 EXT_FIRST_INDEX(neh)->ei_block = 1107 EXT_FIRST_EXTENT(neh)->ee_block; 1108 } 1109 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1110 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1111 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1112 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1113 1114 neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1); 1115 ext4_mark_inode_dirty(handle, inode); 1116 out: 1117 brelse(bh); 1118 1119 return err; 1120 } 1121 1122 /* 1123 * ext4_ext_create_new_leaf: 1124 * finds empty index and adds new leaf. 1125 * if no free index is found, then it requests in-depth growing. 1126 */ 1127 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1128 unsigned int flags, 1129 struct ext4_ext_path *path, 1130 struct ext4_extent *newext) 1131 { 1132 struct ext4_ext_path *curp; 1133 int depth, i, err = 0; 1134 1135 repeat: 1136 i = depth = ext_depth(inode); 1137 1138 /* walk up to the tree and look for free index entry */ 1139 curp = path + depth; 1140 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1141 i--; 1142 curp--; 1143 } 1144 1145 /* we use already allocated block for index block, 1146 * so subsequent data blocks should be contiguous */ 1147 if (EXT_HAS_FREE_INDEX(curp)) { 1148 /* if we found index with free entry, then use that 1149 * entry: create all needed subtree and add new leaf */ 1150 err = ext4_ext_split(handle, inode, flags, path, newext, i); 1151 if (err) 1152 goto out; 1153 1154 /* refill path */ 1155 ext4_ext_drop_refs(path); 1156 path = ext4_ext_find_extent(inode, 1157 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1158 path); 1159 if (IS_ERR(path)) 1160 err = PTR_ERR(path); 1161 } else { 1162 /* tree is full, time to grow in depth */ 1163 err = ext4_ext_grow_indepth(handle, inode, flags, newext); 1164 if (err) 1165 goto out; 1166 1167 /* refill path */ 1168 ext4_ext_drop_refs(path); 1169 path = ext4_ext_find_extent(inode, 1170 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1171 path); 1172 if (IS_ERR(path)) { 1173 err = PTR_ERR(path); 1174 goto out; 1175 } 1176 1177 /* 1178 * only first (depth 0 -> 1) produces free space; 1179 * in all other cases we have to split the grown tree 1180 */ 1181 depth = ext_depth(inode); 1182 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1183 /* now we need to split */ 1184 goto repeat; 1185 } 1186 } 1187 1188 out: 1189 return err; 1190 } 1191 1192 /* 1193 * search the closest allocated block to the left for *logical 1194 * and returns it at @logical + it's physical address at @phys 1195 * if *logical is the smallest allocated block, the function 1196 * returns 0 at @phys 1197 * return value contains 0 (success) or error code 1198 */ 1199 static int ext4_ext_search_left(struct inode *inode, 1200 struct ext4_ext_path *path, 1201 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1202 { 1203 struct ext4_extent_idx *ix; 1204 struct ext4_extent *ex; 1205 int depth, ee_len; 1206 1207 if (unlikely(path == NULL)) { 1208 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1209 return -EIO; 1210 } 1211 depth = path->p_depth; 1212 *phys = 0; 1213 1214 if (depth == 0 && path->p_ext == NULL) 1215 return 0; 1216 1217 /* usually extent in the path covers blocks smaller 1218 * then *logical, but it can be that extent is the 1219 * first one in the file */ 1220 1221 ex = path[depth].p_ext; 1222 ee_len = ext4_ext_get_actual_len(ex); 1223 if (*logical < le32_to_cpu(ex->ee_block)) { 1224 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1225 EXT4_ERROR_INODE(inode, 1226 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1227 *logical, le32_to_cpu(ex->ee_block)); 1228 return -EIO; 1229 } 1230 while (--depth >= 0) { 1231 ix = path[depth].p_idx; 1232 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1233 EXT4_ERROR_INODE(inode, 1234 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1235 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1236 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1237 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1238 depth); 1239 return -EIO; 1240 } 1241 } 1242 return 0; 1243 } 1244 1245 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1246 EXT4_ERROR_INODE(inode, 1247 "logical %d < ee_block %d + ee_len %d!", 1248 *logical, le32_to_cpu(ex->ee_block), ee_len); 1249 return -EIO; 1250 } 1251 1252 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1253 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1254 return 0; 1255 } 1256 1257 /* 1258 * search the closest allocated block to the right for *logical 1259 * and returns it at @logical + it's physical address at @phys 1260 * if *logical is the largest allocated block, the function 1261 * returns 0 at @phys 1262 * return value contains 0 (success) or error code 1263 */ 1264 static int ext4_ext_search_right(struct inode *inode, 1265 struct ext4_ext_path *path, 1266 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1267 struct ext4_extent **ret_ex) 1268 { 1269 struct buffer_head *bh = NULL; 1270 struct ext4_extent_header *eh; 1271 struct ext4_extent_idx *ix; 1272 struct ext4_extent *ex; 1273 ext4_fsblk_t block; 1274 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1275 int ee_len; 1276 1277 if (unlikely(path == NULL)) { 1278 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1279 return -EIO; 1280 } 1281 depth = path->p_depth; 1282 *phys = 0; 1283 1284 if (depth == 0 && path->p_ext == NULL) 1285 return 0; 1286 1287 /* usually extent in the path covers blocks smaller 1288 * then *logical, but it can be that extent is the 1289 * first one in the file */ 1290 1291 ex = path[depth].p_ext; 1292 ee_len = ext4_ext_get_actual_len(ex); 1293 if (*logical < le32_to_cpu(ex->ee_block)) { 1294 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1295 EXT4_ERROR_INODE(inode, 1296 "first_extent(path[%d].p_hdr) != ex", 1297 depth); 1298 return -EIO; 1299 } 1300 while (--depth >= 0) { 1301 ix = path[depth].p_idx; 1302 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1303 EXT4_ERROR_INODE(inode, 1304 "ix != EXT_FIRST_INDEX *logical %d!", 1305 *logical); 1306 return -EIO; 1307 } 1308 } 1309 goto found_extent; 1310 } 1311 1312 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1313 EXT4_ERROR_INODE(inode, 1314 "logical %d < ee_block %d + ee_len %d!", 1315 *logical, le32_to_cpu(ex->ee_block), ee_len); 1316 return -EIO; 1317 } 1318 1319 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1320 /* next allocated block in this leaf */ 1321 ex++; 1322 goto found_extent; 1323 } 1324 1325 /* go up and search for index to the right */ 1326 while (--depth >= 0) { 1327 ix = path[depth].p_idx; 1328 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1329 goto got_index; 1330 } 1331 1332 /* we've gone up to the root and found no index to the right */ 1333 return 0; 1334 1335 got_index: 1336 /* we've found index to the right, let's 1337 * follow it and find the closest allocated 1338 * block to the right */ 1339 ix++; 1340 block = ext4_idx_pblock(ix); 1341 while (++depth < path->p_depth) { 1342 bh = sb_bread(inode->i_sb, block); 1343 if (bh == NULL) 1344 return -EIO; 1345 eh = ext_block_hdr(bh); 1346 /* subtract from p_depth to get proper eh_depth */ 1347 if (ext4_ext_check(inode, eh, path->p_depth - depth)) { 1348 put_bh(bh); 1349 return -EIO; 1350 } 1351 ix = EXT_FIRST_INDEX(eh); 1352 block = ext4_idx_pblock(ix); 1353 put_bh(bh); 1354 } 1355 1356 bh = sb_bread(inode->i_sb, block); 1357 if (bh == NULL) 1358 return -EIO; 1359 eh = ext_block_hdr(bh); 1360 if (ext4_ext_check(inode, eh, path->p_depth - depth)) { 1361 put_bh(bh); 1362 return -EIO; 1363 } 1364 ex = EXT_FIRST_EXTENT(eh); 1365 found_extent: 1366 *logical = le32_to_cpu(ex->ee_block); 1367 *phys = ext4_ext_pblock(ex); 1368 *ret_ex = ex; 1369 if (bh) 1370 put_bh(bh); 1371 return 0; 1372 } 1373 1374 /* 1375 * ext4_ext_next_allocated_block: 1376 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1377 * NOTE: it considers block number from index entry as 1378 * allocated block. Thus, index entries have to be consistent 1379 * with leaves. 1380 */ 1381 static ext4_lblk_t 1382 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1383 { 1384 int depth; 1385 1386 BUG_ON(path == NULL); 1387 depth = path->p_depth; 1388 1389 if (depth == 0 && path->p_ext == NULL) 1390 return EXT_MAX_BLOCKS; 1391 1392 while (depth >= 0) { 1393 if (depth == path->p_depth) { 1394 /* leaf */ 1395 if (path[depth].p_ext && 1396 path[depth].p_ext != 1397 EXT_LAST_EXTENT(path[depth].p_hdr)) 1398 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1399 } else { 1400 /* index */ 1401 if (path[depth].p_idx != 1402 EXT_LAST_INDEX(path[depth].p_hdr)) 1403 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1404 } 1405 depth--; 1406 } 1407 1408 return EXT_MAX_BLOCKS; 1409 } 1410 1411 /* 1412 * ext4_ext_next_leaf_block: 1413 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1414 */ 1415 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1416 { 1417 int depth; 1418 1419 BUG_ON(path == NULL); 1420 depth = path->p_depth; 1421 1422 /* zero-tree has no leaf blocks at all */ 1423 if (depth == 0) 1424 return EXT_MAX_BLOCKS; 1425 1426 /* go to index block */ 1427 depth--; 1428 1429 while (depth >= 0) { 1430 if (path[depth].p_idx != 1431 EXT_LAST_INDEX(path[depth].p_hdr)) 1432 return (ext4_lblk_t) 1433 le32_to_cpu(path[depth].p_idx[1].ei_block); 1434 depth--; 1435 } 1436 1437 return EXT_MAX_BLOCKS; 1438 } 1439 1440 /* 1441 * ext4_ext_correct_indexes: 1442 * if leaf gets modified and modified extent is first in the leaf, 1443 * then we have to correct all indexes above. 1444 * TODO: do we need to correct tree in all cases? 1445 */ 1446 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1447 struct ext4_ext_path *path) 1448 { 1449 struct ext4_extent_header *eh; 1450 int depth = ext_depth(inode); 1451 struct ext4_extent *ex; 1452 __le32 border; 1453 int k, err = 0; 1454 1455 eh = path[depth].p_hdr; 1456 ex = path[depth].p_ext; 1457 1458 if (unlikely(ex == NULL || eh == NULL)) { 1459 EXT4_ERROR_INODE(inode, 1460 "ex %p == NULL or eh %p == NULL", ex, eh); 1461 return -EIO; 1462 } 1463 1464 if (depth == 0) { 1465 /* there is no tree at all */ 1466 return 0; 1467 } 1468 1469 if (ex != EXT_FIRST_EXTENT(eh)) { 1470 /* we correct tree if first leaf got modified only */ 1471 return 0; 1472 } 1473 1474 /* 1475 * TODO: we need correction if border is smaller than current one 1476 */ 1477 k = depth - 1; 1478 border = path[depth].p_ext->ee_block; 1479 err = ext4_ext_get_access(handle, inode, path + k); 1480 if (err) 1481 return err; 1482 path[k].p_idx->ei_block = border; 1483 err = ext4_ext_dirty(handle, inode, path + k); 1484 if (err) 1485 return err; 1486 1487 while (k--) { 1488 /* change all left-side indexes */ 1489 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1490 break; 1491 err = ext4_ext_get_access(handle, inode, path + k); 1492 if (err) 1493 break; 1494 path[k].p_idx->ei_block = border; 1495 err = ext4_ext_dirty(handle, inode, path + k); 1496 if (err) 1497 break; 1498 } 1499 1500 return err; 1501 } 1502 1503 int 1504 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1505 struct ext4_extent *ex2) 1506 { 1507 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1508 1509 /* 1510 * Make sure that either both extents are uninitialized, or 1511 * both are _not_. 1512 */ 1513 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2)) 1514 return 0; 1515 1516 if (ext4_ext_is_uninitialized(ex1)) 1517 max_len = EXT_UNINIT_MAX_LEN; 1518 else 1519 max_len = EXT_INIT_MAX_LEN; 1520 1521 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1522 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1523 1524 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1525 le32_to_cpu(ex2->ee_block)) 1526 return 0; 1527 1528 /* 1529 * To allow future support for preallocated extents to be added 1530 * as an RO_COMPAT feature, refuse to merge to extents if 1531 * this can result in the top bit of ee_len being set. 1532 */ 1533 if (ext1_ee_len + ext2_ee_len > max_len) 1534 return 0; 1535 #ifdef AGGRESSIVE_TEST 1536 if (ext1_ee_len >= 4) 1537 return 0; 1538 #endif 1539 1540 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1541 return 1; 1542 return 0; 1543 } 1544 1545 /* 1546 * This function tries to merge the "ex" extent to the next extent in the tree. 1547 * It always tries to merge towards right. If you want to merge towards 1548 * left, pass "ex - 1" as argument instead of "ex". 1549 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1550 * 1 if they got merged. 1551 */ 1552 static int ext4_ext_try_to_merge_right(struct inode *inode, 1553 struct ext4_ext_path *path, 1554 struct ext4_extent *ex) 1555 { 1556 struct ext4_extent_header *eh; 1557 unsigned int depth, len; 1558 int merge_done = 0; 1559 int uninitialized = 0; 1560 1561 depth = ext_depth(inode); 1562 BUG_ON(path[depth].p_hdr == NULL); 1563 eh = path[depth].p_hdr; 1564 1565 while (ex < EXT_LAST_EXTENT(eh)) { 1566 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1567 break; 1568 /* merge with next extent! */ 1569 if (ext4_ext_is_uninitialized(ex)) 1570 uninitialized = 1; 1571 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1572 + ext4_ext_get_actual_len(ex + 1)); 1573 if (uninitialized) 1574 ext4_ext_mark_uninitialized(ex); 1575 1576 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1577 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1578 * sizeof(struct ext4_extent); 1579 memmove(ex + 1, ex + 2, len); 1580 } 1581 le16_add_cpu(&eh->eh_entries, -1); 1582 merge_done = 1; 1583 WARN_ON(eh->eh_entries == 0); 1584 if (!eh->eh_entries) 1585 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1586 } 1587 1588 return merge_done; 1589 } 1590 1591 /* 1592 * This function tries to merge the @ex extent to neighbours in the tree. 1593 * return 1 if merge left else 0. 1594 */ 1595 static int ext4_ext_try_to_merge(struct inode *inode, 1596 struct ext4_ext_path *path, 1597 struct ext4_extent *ex) { 1598 struct ext4_extent_header *eh; 1599 unsigned int depth; 1600 int merge_done = 0; 1601 int ret = 0; 1602 1603 depth = ext_depth(inode); 1604 BUG_ON(path[depth].p_hdr == NULL); 1605 eh = path[depth].p_hdr; 1606 1607 if (ex > EXT_FIRST_EXTENT(eh)) 1608 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1609 1610 if (!merge_done) 1611 ret = ext4_ext_try_to_merge_right(inode, path, ex); 1612 1613 return ret; 1614 } 1615 1616 /* 1617 * check if a portion of the "newext" extent overlaps with an 1618 * existing extent. 1619 * 1620 * If there is an overlap discovered, it updates the length of the newext 1621 * such that there will be no overlap, and then returns 1. 1622 * If there is no overlap found, it returns 0. 1623 */ 1624 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1625 struct inode *inode, 1626 struct ext4_extent *newext, 1627 struct ext4_ext_path *path) 1628 { 1629 ext4_lblk_t b1, b2; 1630 unsigned int depth, len1; 1631 unsigned int ret = 0; 1632 1633 b1 = le32_to_cpu(newext->ee_block); 1634 len1 = ext4_ext_get_actual_len(newext); 1635 depth = ext_depth(inode); 1636 if (!path[depth].p_ext) 1637 goto out; 1638 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1639 b2 &= ~(sbi->s_cluster_ratio - 1); 1640 1641 /* 1642 * get the next allocated block if the extent in the path 1643 * is before the requested block(s) 1644 */ 1645 if (b2 < b1) { 1646 b2 = ext4_ext_next_allocated_block(path); 1647 if (b2 == EXT_MAX_BLOCKS) 1648 goto out; 1649 b2 &= ~(sbi->s_cluster_ratio - 1); 1650 } 1651 1652 /* check for wrap through zero on extent logical start block*/ 1653 if (b1 + len1 < b1) { 1654 len1 = EXT_MAX_BLOCKS - b1; 1655 newext->ee_len = cpu_to_le16(len1); 1656 ret = 1; 1657 } 1658 1659 /* check for overlap */ 1660 if (b1 + len1 > b2) { 1661 newext->ee_len = cpu_to_le16(b2 - b1); 1662 ret = 1; 1663 } 1664 out: 1665 return ret; 1666 } 1667 1668 /* 1669 * ext4_ext_insert_extent: 1670 * tries to merge requsted extent into the existing extent or 1671 * inserts requested extent as new one into the tree, 1672 * creating new leaf in the no-space case. 1673 */ 1674 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1675 struct ext4_ext_path *path, 1676 struct ext4_extent *newext, int flag) 1677 { 1678 struct ext4_extent_header *eh; 1679 struct ext4_extent *ex, *fex; 1680 struct ext4_extent *nearex; /* nearest extent */ 1681 struct ext4_ext_path *npath = NULL; 1682 int depth, len, err; 1683 ext4_lblk_t next; 1684 unsigned uninitialized = 0; 1685 int flags = 0; 1686 1687 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1688 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1689 return -EIO; 1690 } 1691 depth = ext_depth(inode); 1692 ex = path[depth].p_ext; 1693 if (unlikely(path[depth].p_hdr == NULL)) { 1694 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1695 return -EIO; 1696 } 1697 1698 /* try to insert block into found extent and return */ 1699 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO) 1700 && ext4_can_extents_be_merged(inode, ex, newext)) { 1701 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n", 1702 ext4_ext_is_uninitialized(newext), 1703 ext4_ext_get_actual_len(newext), 1704 le32_to_cpu(ex->ee_block), 1705 ext4_ext_is_uninitialized(ex), 1706 ext4_ext_get_actual_len(ex), 1707 ext4_ext_pblock(ex)); 1708 err = ext4_ext_get_access(handle, inode, path + depth); 1709 if (err) 1710 return err; 1711 1712 /* 1713 * ext4_can_extents_be_merged should have checked that either 1714 * both extents are uninitialized, or both aren't. Thus we 1715 * need to check only one of them here. 1716 */ 1717 if (ext4_ext_is_uninitialized(ex)) 1718 uninitialized = 1; 1719 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1720 + ext4_ext_get_actual_len(newext)); 1721 if (uninitialized) 1722 ext4_ext_mark_uninitialized(ex); 1723 eh = path[depth].p_hdr; 1724 nearex = ex; 1725 goto merge; 1726 } 1727 1728 depth = ext_depth(inode); 1729 eh = path[depth].p_hdr; 1730 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1731 goto has_space; 1732 1733 /* probably next leaf has space for us? */ 1734 fex = EXT_LAST_EXTENT(eh); 1735 next = EXT_MAX_BLOCKS; 1736 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 1737 next = ext4_ext_next_leaf_block(path); 1738 if (next != EXT_MAX_BLOCKS) { 1739 ext_debug("next leaf block - %u\n", next); 1740 BUG_ON(npath != NULL); 1741 npath = ext4_ext_find_extent(inode, next, NULL); 1742 if (IS_ERR(npath)) 1743 return PTR_ERR(npath); 1744 BUG_ON(npath->p_depth != path->p_depth); 1745 eh = npath[depth].p_hdr; 1746 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1747 ext_debug("next leaf isn't full(%d)\n", 1748 le16_to_cpu(eh->eh_entries)); 1749 path = npath; 1750 goto has_space; 1751 } 1752 ext_debug("next leaf has no free space(%d,%d)\n", 1753 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1754 } 1755 1756 /* 1757 * There is no free space in the found leaf. 1758 * We're gonna add a new leaf in the tree. 1759 */ 1760 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) 1761 flags = EXT4_MB_USE_ROOT_BLOCKS; 1762 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext); 1763 if (err) 1764 goto cleanup; 1765 depth = ext_depth(inode); 1766 eh = path[depth].p_hdr; 1767 1768 has_space: 1769 nearex = path[depth].p_ext; 1770 1771 err = ext4_ext_get_access(handle, inode, path + depth); 1772 if (err) 1773 goto cleanup; 1774 1775 if (!nearex) { 1776 /* there is no extent in this leaf, create first one */ 1777 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 1778 le32_to_cpu(newext->ee_block), 1779 ext4_ext_pblock(newext), 1780 ext4_ext_is_uninitialized(newext), 1781 ext4_ext_get_actual_len(newext)); 1782 nearex = EXT_FIRST_EXTENT(eh); 1783 } else { 1784 if (le32_to_cpu(newext->ee_block) 1785 > le32_to_cpu(nearex->ee_block)) { 1786 /* Insert after */ 1787 ext_debug("insert %u:%llu:[%d]%d before: " 1788 "nearest %p\n", 1789 le32_to_cpu(newext->ee_block), 1790 ext4_ext_pblock(newext), 1791 ext4_ext_is_uninitialized(newext), 1792 ext4_ext_get_actual_len(newext), 1793 nearex); 1794 nearex++; 1795 } else { 1796 /* Insert before */ 1797 BUG_ON(newext->ee_block == nearex->ee_block); 1798 ext_debug("insert %u:%llu:[%d]%d after: " 1799 "nearest %p\n", 1800 le32_to_cpu(newext->ee_block), 1801 ext4_ext_pblock(newext), 1802 ext4_ext_is_uninitialized(newext), 1803 ext4_ext_get_actual_len(newext), 1804 nearex); 1805 } 1806 len = EXT_LAST_EXTENT(eh) - nearex + 1; 1807 if (len > 0) { 1808 ext_debug("insert %u:%llu:[%d]%d: " 1809 "move %d extents from 0x%p to 0x%p\n", 1810 le32_to_cpu(newext->ee_block), 1811 ext4_ext_pblock(newext), 1812 ext4_ext_is_uninitialized(newext), 1813 ext4_ext_get_actual_len(newext), 1814 len, nearex, nearex + 1); 1815 memmove(nearex + 1, nearex, 1816 len * sizeof(struct ext4_extent)); 1817 } 1818 } 1819 1820 le16_add_cpu(&eh->eh_entries, 1); 1821 path[depth].p_ext = nearex; 1822 nearex->ee_block = newext->ee_block; 1823 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 1824 nearex->ee_len = newext->ee_len; 1825 1826 merge: 1827 /* try to merge extents to the right */ 1828 if (!(flag & EXT4_GET_BLOCKS_PRE_IO)) 1829 ext4_ext_try_to_merge(inode, path, nearex); 1830 1831 /* try to merge extents to the left */ 1832 1833 /* time to correct all indexes above */ 1834 err = ext4_ext_correct_indexes(handle, inode, path); 1835 if (err) 1836 goto cleanup; 1837 1838 err = ext4_ext_dirty(handle, inode, path + depth); 1839 1840 cleanup: 1841 if (npath) { 1842 ext4_ext_drop_refs(npath); 1843 kfree(npath); 1844 } 1845 ext4_ext_invalidate_cache(inode); 1846 return err; 1847 } 1848 1849 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block, 1850 ext4_lblk_t num, ext_prepare_callback func, 1851 void *cbdata) 1852 { 1853 struct ext4_ext_path *path = NULL; 1854 struct ext4_ext_cache cbex; 1855 struct ext4_extent *ex; 1856 ext4_lblk_t next, start = 0, end = 0; 1857 ext4_lblk_t last = block + num; 1858 int depth, exists, err = 0; 1859 1860 BUG_ON(func == NULL); 1861 BUG_ON(inode == NULL); 1862 1863 while (block < last && block != EXT_MAX_BLOCKS) { 1864 num = last - block; 1865 /* find extent for this block */ 1866 down_read(&EXT4_I(inode)->i_data_sem); 1867 path = ext4_ext_find_extent(inode, block, path); 1868 up_read(&EXT4_I(inode)->i_data_sem); 1869 if (IS_ERR(path)) { 1870 err = PTR_ERR(path); 1871 path = NULL; 1872 break; 1873 } 1874 1875 depth = ext_depth(inode); 1876 if (unlikely(path[depth].p_hdr == NULL)) { 1877 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1878 err = -EIO; 1879 break; 1880 } 1881 ex = path[depth].p_ext; 1882 next = ext4_ext_next_allocated_block(path); 1883 1884 exists = 0; 1885 if (!ex) { 1886 /* there is no extent yet, so try to allocate 1887 * all requested space */ 1888 start = block; 1889 end = block + num; 1890 } else if (le32_to_cpu(ex->ee_block) > block) { 1891 /* need to allocate space before found extent */ 1892 start = block; 1893 end = le32_to_cpu(ex->ee_block); 1894 if (block + num < end) 1895 end = block + num; 1896 } else if (block >= le32_to_cpu(ex->ee_block) 1897 + ext4_ext_get_actual_len(ex)) { 1898 /* need to allocate space after found extent */ 1899 start = block; 1900 end = block + num; 1901 if (end >= next) 1902 end = next; 1903 } else if (block >= le32_to_cpu(ex->ee_block)) { 1904 /* 1905 * some part of requested space is covered 1906 * by found extent 1907 */ 1908 start = block; 1909 end = le32_to_cpu(ex->ee_block) 1910 + ext4_ext_get_actual_len(ex); 1911 if (block + num < end) 1912 end = block + num; 1913 exists = 1; 1914 } else { 1915 BUG(); 1916 } 1917 BUG_ON(end <= start); 1918 1919 if (!exists) { 1920 cbex.ec_block = start; 1921 cbex.ec_len = end - start; 1922 cbex.ec_start = 0; 1923 } else { 1924 cbex.ec_block = le32_to_cpu(ex->ee_block); 1925 cbex.ec_len = ext4_ext_get_actual_len(ex); 1926 cbex.ec_start = ext4_ext_pblock(ex); 1927 } 1928 1929 if (unlikely(cbex.ec_len == 0)) { 1930 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0"); 1931 err = -EIO; 1932 break; 1933 } 1934 err = func(inode, next, &cbex, ex, cbdata); 1935 ext4_ext_drop_refs(path); 1936 1937 if (err < 0) 1938 break; 1939 1940 if (err == EXT_REPEAT) 1941 continue; 1942 else if (err == EXT_BREAK) { 1943 err = 0; 1944 break; 1945 } 1946 1947 if (ext_depth(inode) != depth) { 1948 /* depth was changed. we have to realloc path */ 1949 kfree(path); 1950 path = NULL; 1951 } 1952 1953 block = cbex.ec_block + cbex.ec_len; 1954 } 1955 1956 if (path) { 1957 ext4_ext_drop_refs(path); 1958 kfree(path); 1959 } 1960 1961 return err; 1962 } 1963 1964 static void 1965 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block, 1966 __u32 len, ext4_fsblk_t start) 1967 { 1968 struct ext4_ext_cache *cex; 1969 BUG_ON(len == 0); 1970 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1971 trace_ext4_ext_put_in_cache(inode, block, len, start); 1972 cex = &EXT4_I(inode)->i_cached_extent; 1973 cex->ec_block = block; 1974 cex->ec_len = len; 1975 cex->ec_start = start; 1976 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1977 } 1978 1979 /* 1980 * ext4_ext_put_gap_in_cache: 1981 * calculate boundaries of the gap that the requested block fits into 1982 * and cache this gap 1983 */ 1984 static void 1985 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 1986 ext4_lblk_t block) 1987 { 1988 int depth = ext_depth(inode); 1989 unsigned long len; 1990 ext4_lblk_t lblock; 1991 struct ext4_extent *ex; 1992 1993 ex = path[depth].p_ext; 1994 if (ex == NULL) { 1995 /* there is no extent yet, so gap is [0;-] */ 1996 lblock = 0; 1997 len = EXT_MAX_BLOCKS; 1998 ext_debug("cache gap(whole file):"); 1999 } else if (block < le32_to_cpu(ex->ee_block)) { 2000 lblock = block; 2001 len = le32_to_cpu(ex->ee_block) - block; 2002 ext_debug("cache gap(before): %u [%u:%u]", 2003 block, 2004 le32_to_cpu(ex->ee_block), 2005 ext4_ext_get_actual_len(ex)); 2006 } else if (block >= le32_to_cpu(ex->ee_block) 2007 + ext4_ext_get_actual_len(ex)) { 2008 ext4_lblk_t next; 2009 lblock = le32_to_cpu(ex->ee_block) 2010 + ext4_ext_get_actual_len(ex); 2011 2012 next = ext4_ext_next_allocated_block(path); 2013 ext_debug("cache gap(after): [%u:%u] %u", 2014 le32_to_cpu(ex->ee_block), 2015 ext4_ext_get_actual_len(ex), 2016 block); 2017 BUG_ON(next == lblock); 2018 len = next - lblock; 2019 } else { 2020 lblock = len = 0; 2021 BUG(); 2022 } 2023 2024 ext_debug(" -> %u:%lu\n", lblock, len); 2025 ext4_ext_put_in_cache(inode, lblock, len, 0); 2026 } 2027 2028 /* 2029 * ext4_ext_check_cache() 2030 * Checks to see if the given block is in the cache. 2031 * If it is, the cached extent is stored in the given 2032 * cache extent pointer. If the cached extent is a hole, 2033 * this routine should be used instead of 2034 * ext4_ext_in_cache if the calling function needs to 2035 * know the size of the hole. 2036 * 2037 * @inode: The files inode 2038 * @block: The block to look for in the cache 2039 * @ex: Pointer where the cached extent will be stored 2040 * if it contains block 2041 * 2042 * Return 0 if cache is invalid; 1 if the cache is valid 2043 */ 2044 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block, 2045 struct ext4_ext_cache *ex){ 2046 struct ext4_ext_cache *cex; 2047 struct ext4_sb_info *sbi; 2048 int ret = 0; 2049 2050 /* 2051 * We borrow i_block_reservation_lock to protect i_cached_extent 2052 */ 2053 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 2054 cex = &EXT4_I(inode)->i_cached_extent; 2055 sbi = EXT4_SB(inode->i_sb); 2056 2057 /* has cache valid data? */ 2058 if (cex->ec_len == 0) 2059 goto errout; 2060 2061 if (in_range(block, cex->ec_block, cex->ec_len)) { 2062 memcpy(ex, cex, sizeof(struct ext4_ext_cache)); 2063 ext_debug("%u cached by %u:%u:%llu\n", 2064 block, 2065 cex->ec_block, cex->ec_len, cex->ec_start); 2066 ret = 1; 2067 } 2068 errout: 2069 trace_ext4_ext_in_cache(inode, block, ret); 2070 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 2071 return ret; 2072 } 2073 2074 /* 2075 * ext4_ext_in_cache() 2076 * Checks to see if the given block is in the cache. 2077 * If it is, the cached extent is stored in the given 2078 * extent pointer. 2079 * 2080 * @inode: The files inode 2081 * @block: The block to look for in the cache 2082 * @ex: Pointer where the cached extent will be stored 2083 * if it contains block 2084 * 2085 * Return 0 if cache is invalid; 1 if the cache is valid 2086 */ 2087 static int 2088 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block, 2089 struct ext4_extent *ex) 2090 { 2091 struct ext4_ext_cache cex; 2092 int ret = 0; 2093 2094 if (ext4_ext_check_cache(inode, block, &cex)) { 2095 ex->ee_block = cpu_to_le32(cex.ec_block); 2096 ext4_ext_store_pblock(ex, cex.ec_start); 2097 ex->ee_len = cpu_to_le16(cex.ec_len); 2098 ret = 1; 2099 } 2100 2101 return ret; 2102 } 2103 2104 2105 /* 2106 * ext4_ext_rm_idx: 2107 * removes index from the index block. 2108 */ 2109 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2110 struct ext4_ext_path *path) 2111 { 2112 int err; 2113 ext4_fsblk_t leaf; 2114 2115 /* free index block */ 2116 path--; 2117 leaf = ext4_idx_pblock(path->p_idx); 2118 if (unlikely(path->p_hdr->eh_entries == 0)) { 2119 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2120 return -EIO; 2121 } 2122 err = ext4_ext_get_access(handle, inode, path); 2123 if (err) 2124 return err; 2125 2126 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2127 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2128 len *= sizeof(struct ext4_extent_idx); 2129 memmove(path->p_idx, path->p_idx + 1, len); 2130 } 2131 2132 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2133 err = ext4_ext_dirty(handle, inode, path); 2134 if (err) 2135 return err; 2136 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2137 trace_ext4_ext_rm_idx(inode, leaf); 2138 2139 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2140 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2141 return err; 2142 } 2143 2144 /* 2145 * ext4_ext_calc_credits_for_single_extent: 2146 * This routine returns max. credits that needed to insert an extent 2147 * to the extent tree. 2148 * When pass the actual path, the caller should calculate credits 2149 * under i_data_sem. 2150 */ 2151 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2152 struct ext4_ext_path *path) 2153 { 2154 if (path) { 2155 int depth = ext_depth(inode); 2156 int ret = 0; 2157 2158 /* probably there is space in leaf? */ 2159 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2160 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2161 2162 /* 2163 * There are some space in the leaf tree, no 2164 * need to account for leaf block credit 2165 * 2166 * bitmaps and block group descriptor blocks 2167 * and other metadata blocks still need to be 2168 * accounted. 2169 */ 2170 /* 1 bitmap, 1 block group descriptor */ 2171 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2172 return ret; 2173 } 2174 } 2175 2176 return ext4_chunk_trans_blocks(inode, nrblocks); 2177 } 2178 2179 /* 2180 * How many index/leaf blocks need to change/allocate to modify nrblocks? 2181 * 2182 * if nrblocks are fit in a single extent (chunk flag is 1), then 2183 * in the worse case, each tree level index/leaf need to be changed 2184 * if the tree split due to insert a new extent, then the old tree 2185 * index/leaf need to be updated too 2186 * 2187 * If the nrblocks are discontiguous, they could cause 2188 * the whole tree split more than once, but this is really rare. 2189 */ 2190 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 2191 { 2192 int index; 2193 int depth = ext_depth(inode); 2194 2195 if (chunk) 2196 index = depth * 2; 2197 else 2198 index = depth * 3; 2199 2200 return index; 2201 } 2202 2203 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2204 struct ext4_extent *ex, 2205 ext4_fsblk_t *partial_cluster, 2206 ext4_lblk_t from, ext4_lblk_t to) 2207 { 2208 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2209 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2210 ext4_fsblk_t pblk; 2211 int flags = EXT4_FREE_BLOCKS_FORGET; 2212 2213 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2214 flags |= EXT4_FREE_BLOCKS_METADATA; 2215 /* 2216 * For bigalloc file systems, we never free a partial cluster 2217 * at the beginning of the extent. Instead, we make a note 2218 * that we tried freeing the cluster, and check to see if we 2219 * need to free it on a subsequent call to ext4_remove_blocks, 2220 * or at the end of the ext4_truncate() operation. 2221 */ 2222 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2223 2224 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2225 /* 2226 * If we have a partial cluster, and it's different from the 2227 * cluster of the last block, we need to explicitly free the 2228 * partial cluster here. 2229 */ 2230 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2231 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) { 2232 ext4_free_blocks(handle, inode, NULL, 2233 EXT4_C2B(sbi, *partial_cluster), 2234 sbi->s_cluster_ratio, flags); 2235 *partial_cluster = 0; 2236 } 2237 2238 #ifdef EXTENTS_STATS 2239 { 2240 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2241 spin_lock(&sbi->s_ext_stats_lock); 2242 sbi->s_ext_blocks += ee_len; 2243 sbi->s_ext_extents++; 2244 if (ee_len < sbi->s_ext_min) 2245 sbi->s_ext_min = ee_len; 2246 if (ee_len > sbi->s_ext_max) 2247 sbi->s_ext_max = ee_len; 2248 if (ext_depth(inode) > sbi->s_depth_max) 2249 sbi->s_depth_max = ext_depth(inode); 2250 spin_unlock(&sbi->s_ext_stats_lock); 2251 } 2252 #endif 2253 if (from >= le32_to_cpu(ex->ee_block) 2254 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2255 /* tail removal */ 2256 ext4_lblk_t num; 2257 2258 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2259 pblk = ext4_ext_pblock(ex) + ee_len - num; 2260 ext_debug("free last %u blocks starting %llu\n", num, pblk); 2261 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2262 /* 2263 * If the block range to be freed didn't start at the 2264 * beginning of a cluster, and we removed the entire 2265 * extent, save the partial cluster here, since we 2266 * might need to delete if we determine that the 2267 * truncate operation has removed all of the blocks in 2268 * the cluster. 2269 */ 2270 if (pblk & (sbi->s_cluster_ratio - 1) && 2271 (ee_len == num)) 2272 *partial_cluster = EXT4_B2C(sbi, pblk); 2273 else 2274 *partial_cluster = 0; 2275 } else if (from == le32_to_cpu(ex->ee_block) 2276 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { 2277 /* head removal */ 2278 ext4_lblk_t num; 2279 ext4_fsblk_t start; 2280 2281 num = to - from; 2282 start = ext4_ext_pblock(ex); 2283 2284 ext_debug("free first %u blocks starting %llu\n", num, start); 2285 ext4_free_blocks(handle, inode, NULL, start, num, flags); 2286 2287 } else { 2288 printk(KERN_INFO "strange request: removal(2) " 2289 "%u-%u from %u:%u\n", 2290 from, to, le32_to_cpu(ex->ee_block), ee_len); 2291 } 2292 return 0; 2293 } 2294 2295 2296 /* 2297 * ext4_ext_rm_leaf() Removes the extents associated with the 2298 * blocks appearing between "start" and "end", and splits the extents 2299 * if "start" and "end" appear in the same extent 2300 * 2301 * @handle: The journal handle 2302 * @inode: The files inode 2303 * @path: The path to the leaf 2304 * @start: The first block to remove 2305 * @end: The last block to remove 2306 */ 2307 static int 2308 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2309 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster, 2310 ext4_lblk_t start, ext4_lblk_t end) 2311 { 2312 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2313 int err = 0, correct_index = 0; 2314 int depth = ext_depth(inode), credits; 2315 struct ext4_extent_header *eh; 2316 ext4_lblk_t a, b; 2317 unsigned num; 2318 ext4_lblk_t ex_ee_block; 2319 unsigned short ex_ee_len; 2320 unsigned uninitialized = 0; 2321 struct ext4_extent *ex; 2322 2323 /* the header must be checked already in ext4_ext_remove_space() */ 2324 ext_debug("truncate since %u in leaf to %u\n", start, end); 2325 if (!path[depth].p_hdr) 2326 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2327 eh = path[depth].p_hdr; 2328 if (unlikely(path[depth].p_hdr == NULL)) { 2329 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2330 return -EIO; 2331 } 2332 /* find where to start removing */ 2333 ex = EXT_LAST_EXTENT(eh); 2334 2335 ex_ee_block = le32_to_cpu(ex->ee_block); 2336 ex_ee_len = ext4_ext_get_actual_len(ex); 2337 2338 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2339 2340 while (ex >= EXT_FIRST_EXTENT(eh) && 2341 ex_ee_block + ex_ee_len > start) { 2342 2343 if (ext4_ext_is_uninitialized(ex)) 2344 uninitialized = 1; 2345 else 2346 uninitialized = 0; 2347 2348 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2349 uninitialized, ex_ee_len); 2350 path[depth].p_ext = ex; 2351 2352 a = ex_ee_block > start ? ex_ee_block : start; 2353 b = ex_ee_block+ex_ee_len - 1 < end ? 2354 ex_ee_block+ex_ee_len - 1 : end; 2355 2356 ext_debug(" border %u:%u\n", a, b); 2357 2358 /* If this extent is beyond the end of the hole, skip it */ 2359 if (end < ex_ee_block) { 2360 ex--; 2361 ex_ee_block = le32_to_cpu(ex->ee_block); 2362 ex_ee_len = ext4_ext_get_actual_len(ex); 2363 continue; 2364 } else if (b != ex_ee_block + ex_ee_len - 1) { 2365 EXT4_ERROR_INODE(inode, 2366 "can not handle truncate %u:%u " 2367 "on extent %u:%u", 2368 start, end, ex_ee_block, 2369 ex_ee_block + ex_ee_len - 1); 2370 err = -EIO; 2371 goto out; 2372 } else if (a != ex_ee_block) { 2373 /* remove tail of the extent */ 2374 num = a - ex_ee_block; 2375 } else { 2376 /* remove whole extent: excellent! */ 2377 num = 0; 2378 } 2379 /* 2380 * 3 for leaf, sb, and inode plus 2 (bmap and group 2381 * descriptor) for each block group; assume two block 2382 * groups plus ex_ee_len/blocks_per_block_group for 2383 * the worst case 2384 */ 2385 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2386 if (ex == EXT_FIRST_EXTENT(eh)) { 2387 correct_index = 1; 2388 credits += (ext_depth(inode)) + 1; 2389 } 2390 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2391 2392 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2393 if (err) 2394 goto out; 2395 2396 err = ext4_ext_get_access(handle, inode, path + depth); 2397 if (err) 2398 goto out; 2399 2400 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2401 a, b); 2402 if (err) 2403 goto out; 2404 2405 if (num == 0) 2406 /* this extent is removed; mark slot entirely unused */ 2407 ext4_ext_store_pblock(ex, 0); 2408 2409 ex->ee_len = cpu_to_le16(num); 2410 /* 2411 * Do not mark uninitialized if all the blocks in the 2412 * extent have been removed. 2413 */ 2414 if (uninitialized && num) 2415 ext4_ext_mark_uninitialized(ex); 2416 /* 2417 * If the extent was completely released, 2418 * we need to remove it from the leaf 2419 */ 2420 if (num == 0) { 2421 if (end != EXT_MAX_BLOCKS - 1) { 2422 /* 2423 * For hole punching, we need to scoot all the 2424 * extents up when an extent is removed so that 2425 * we dont have blank extents in the middle 2426 */ 2427 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2428 sizeof(struct ext4_extent)); 2429 2430 /* Now get rid of the one at the end */ 2431 memset(EXT_LAST_EXTENT(eh), 0, 2432 sizeof(struct ext4_extent)); 2433 } 2434 le16_add_cpu(&eh->eh_entries, -1); 2435 } else 2436 *partial_cluster = 0; 2437 2438 err = ext4_ext_dirty(handle, inode, path + depth); 2439 if (err) 2440 goto out; 2441 2442 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2443 ext4_ext_pblock(ex)); 2444 ex--; 2445 ex_ee_block = le32_to_cpu(ex->ee_block); 2446 ex_ee_len = ext4_ext_get_actual_len(ex); 2447 } 2448 2449 if (correct_index && eh->eh_entries) 2450 err = ext4_ext_correct_indexes(handle, inode, path); 2451 2452 /* 2453 * If there is still a entry in the leaf node, check to see if 2454 * it references the partial cluster. This is the only place 2455 * where it could; if it doesn't, we can free the cluster. 2456 */ 2457 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) && 2458 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != 2459 *partial_cluster)) { 2460 int flags = EXT4_FREE_BLOCKS_FORGET; 2461 2462 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2463 flags |= EXT4_FREE_BLOCKS_METADATA; 2464 2465 ext4_free_blocks(handle, inode, NULL, 2466 EXT4_C2B(sbi, *partial_cluster), 2467 sbi->s_cluster_ratio, flags); 2468 *partial_cluster = 0; 2469 } 2470 2471 /* if this leaf is free, then we should 2472 * remove it from index block above */ 2473 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2474 err = ext4_ext_rm_idx(handle, inode, path + depth); 2475 2476 out: 2477 return err; 2478 } 2479 2480 /* 2481 * ext4_ext_more_to_rm: 2482 * returns 1 if current index has to be freed (even partial) 2483 */ 2484 static int 2485 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2486 { 2487 BUG_ON(path->p_idx == NULL); 2488 2489 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2490 return 0; 2491 2492 /* 2493 * if truncate on deeper level happened, it wasn't partial, 2494 * so we have to consider current index for truncation 2495 */ 2496 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2497 return 0; 2498 return 1; 2499 } 2500 2501 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2502 ext4_lblk_t end) 2503 { 2504 struct super_block *sb = inode->i_sb; 2505 int depth = ext_depth(inode); 2506 struct ext4_ext_path *path; 2507 ext4_fsblk_t partial_cluster = 0; 2508 handle_t *handle; 2509 int i, err; 2510 2511 ext_debug("truncate since %u to %u\n", start, end); 2512 2513 /* probably first extent we're gonna free will be last in block */ 2514 handle = ext4_journal_start(inode, depth + 1); 2515 if (IS_ERR(handle)) 2516 return PTR_ERR(handle); 2517 2518 again: 2519 ext4_ext_invalidate_cache(inode); 2520 2521 trace_ext4_ext_remove_space(inode, start, depth); 2522 2523 /* 2524 * Check if we are removing extents inside the extent tree. If that 2525 * is the case, we are going to punch a hole inside the extent tree 2526 * so we have to check whether we need to split the extent covering 2527 * the last block to remove so we can easily remove the part of it 2528 * in ext4_ext_rm_leaf(). 2529 */ 2530 if (end < EXT_MAX_BLOCKS - 1) { 2531 struct ext4_extent *ex; 2532 ext4_lblk_t ee_block; 2533 2534 /* find extent for this block */ 2535 path = ext4_ext_find_extent(inode, end, NULL); 2536 if (IS_ERR(path)) { 2537 ext4_journal_stop(handle); 2538 return PTR_ERR(path); 2539 } 2540 depth = ext_depth(inode); 2541 ex = path[depth].p_ext; 2542 if (!ex) 2543 goto cont; 2544 2545 ee_block = le32_to_cpu(ex->ee_block); 2546 2547 /* 2548 * See if the last block is inside the extent, if so split 2549 * the extent at 'end' block so we can easily remove the 2550 * tail of the first part of the split extent in 2551 * ext4_ext_rm_leaf(). 2552 */ 2553 if (end >= ee_block && 2554 end < ee_block + ext4_ext_get_actual_len(ex) - 1) { 2555 int split_flag = 0; 2556 2557 if (ext4_ext_is_uninitialized(ex)) 2558 split_flag = EXT4_EXT_MARK_UNINIT1 | 2559 EXT4_EXT_MARK_UNINIT2; 2560 2561 /* 2562 * Split the extent in two so that 'end' is the last 2563 * block in the first new extent 2564 */ 2565 err = ext4_split_extent_at(handle, inode, path, 2566 end + 1, split_flag, 2567 EXT4_GET_BLOCKS_PRE_IO | 2568 EXT4_GET_BLOCKS_PUNCH_OUT_EXT); 2569 2570 if (err < 0) 2571 goto out; 2572 } 2573 ext4_ext_drop_refs(path); 2574 kfree(path); 2575 } 2576 cont: 2577 2578 /* 2579 * We start scanning from right side, freeing all the blocks 2580 * after i_size and walking into the tree depth-wise. 2581 */ 2582 depth = ext_depth(inode); 2583 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS); 2584 if (path == NULL) { 2585 ext4_journal_stop(handle); 2586 return -ENOMEM; 2587 } 2588 path[0].p_depth = depth; 2589 path[0].p_hdr = ext_inode_hdr(inode); 2590 2591 if (ext4_ext_check(inode, path[0].p_hdr, depth)) { 2592 err = -EIO; 2593 goto out; 2594 } 2595 i = err = 0; 2596 2597 while (i >= 0 && err == 0) { 2598 if (i == depth) { 2599 /* this is leaf block */ 2600 err = ext4_ext_rm_leaf(handle, inode, path, 2601 &partial_cluster, start, 2602 end); 2603 /* root level has p_bh == NULL, brelse() eats this */ 2604 brelse(path[i].p_bh); 2605 path[i].p_bh = NULL; 2606 i--; 2607 continue; 2608 } 2609 2610 /* this is index block */ 2611 if (!path[i].p_hdr) { 2612 ext_debug("initialize header\n"); 2613 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2614 } 2615 2616 if (!path[i].p_idx) { 2617 /* this level hasn't been touched yet */ 2618 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2619 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2620 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2621 path[i].p_hdr, 2622 le16_to_cpu(path[i].p_hdr->eh_entries)); 2623 } else { 2624 /* we were already here, see at next index */ 2625 path[i].p_idx--; 2626 } 2627 2628 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2629 i, EXT_FIRST_INDEX(path[i].p_hdr), 2630 path[i].p_idx); 2631 if (ext4_ext_more_to_rm(path + i)) { 2632 struct buffer_head *bh; 2633 /* go to the next level */ 2634 ext_debug("move to level %d (block %llu)\n", 2635 i + 1, ext4_idx_pblock(path[i].p_idx)); 2636 memset(path + i + 1, 0, sizeof(*path)); 2637 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx)); 2638 if (!bh) { 2639 /* should we reset i_size? */ 2640 err = -EIO; 2641 break; 2642 } 2643 if (WARN_ON(i + 1 > depth)) { 2644 err = -EIO; 2645 break; 2646 } 2647 if (ext4_ext_check(inode, ext_block_hdr(bh), 2648 depth - i - 1)) { 2649 err = -EIO; 2650 break; 2651 } 2652 path[i + 1].p_bh = bh; 2653 2654 /* save actual number of indexes since this 2655 * number is changed at the next iteration */ 2656 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2657 i++; 2658 } else { 2659 /* we finished processing this index, go up */ 2660 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2661 /* index is empty, remove it; 2662 * handle must be already prepared by the 2663 * truncatei_leaf() */ 2664 err = ext4_ext_rm_idx(handle, inode, path + i); 2665 } 2666 /* root level has p_bh == NULL, brelse() eats this */ 2667 brelse(path[i].p_bh); 2668 path[i].p_bh = NULL; 2669 i--; 2670 ext_debug("return to level %d\n", i); 2671 } 2672 } 2673 2674 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster, 2675 path->p_hdr->eh_entries); 2676 2677 /* If we still have something in the partial cluster and we have removed 2678 * even the first extent, then we should free the blocks in the partial 2679 * cluster as well. */ 2680 if (partial_cluster && path->p_hdr->eh_entries == 0) { 2681 int flags = EXT4_FREE_BLOCKS_FORGET; 2682 2683 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2684 flags |= EXT4_FREE_BLOCKS_METADATA; 2685 2686 ext4_free_blocks(handle, inode, NULL, 2687 EXT4_C2B(EXT4_SB(sb), partial_cluster), 2688 EXT4_SB(sb)->s_cluster_ratio, flags); 2689 partial_cluster = 0; 2690 } 2691 2692 /* TODO: flexible tree reduction should be here */ 2693 if (path->p_hdr->eh_entries == 0) { 2694 /* 2695 * truncate to zero freed all the tree, 2696 * so we need to correct eh_depth 2697 */ 2698 err = ext4_ext_get_access(handle, inode, path); 2699 if (err == 0) { 2700 ext_inode_hdr(inode)->eh_depth = 0; 2701 ext_inode_hdr(inode)->eh_max = 2702 cpu_to_le16(ext4_ext_space_root(inode, 0)); 2703 err = ext4_ext_dirty(handle, inode, path); 2704 } 2705 } 2706 out: 2707 ext4_ext_drop_refs(path); 2708 kfree(path); 2709 if (err == -EAGAIN) 2710 goto again; 2711 ext4_journal_stop(handle); 2712 2713 return err; 2714 } 2715 2716 /* 2717 * called at mount time 2718 */ 2719 void ext4_ext_init(struct super_block *sb) 2720 { 2721 /* 2722 * possible initialization would be here 2723 */ 2724 2725 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2726 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 2727 printk(KERN_INFO "EXT4-fs: file extents enabled" 2728 #ifdef AGGRESSIVE_TEST 2729 ", aggressive tests" 2730 #endif 2731 #ifdef CHECK_BINSEARCH 2732 ", check binsearch" 2733 #endif 2734 #ifdef EXTENTS_STATS 2735 ", stats" 2736 #endif 2737 "\n"); 2738 #endif 2739 #ifdef EXTENTS_STATS 2740 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2741 EXT4_SB(sb)->s_ext_min = 1 << 30; 2742 EXT4_SB(sb)->s_ext_max = 0; 2743 #endif 2744 } 2745 } 2746 2747 /* 2748 * called at umount time 2749 */ 2750 void ext4_ext_release(struct super_block *sb) 2751 { 2752 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 2753 return; 2754 2755 #ifdef EXTENTS_STATS 2756 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2757 struct ext4_sb_info *sbi = EXT4_SB(sb); 2758 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2759 sbi->s_ext_blocks, sbi->s_ext_extents, 2760 sbi->s_ext_blocks / sbi->s_ext_extents); 2761 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2762 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2763 } 2764 #endif 2765 } 2766 2767 /* FIXME!! we need to try to merge to left or right after zero-out */ 2768 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 2769 { 2770 ext4_fsblk_t ee_pblock; 2771 unsigned int ee_len; 2772 int ret; 2773 2774 ee_len = ext4_ext_get_actual_len(ex); 2775 ee_pblock = ext4_ext_pblock(ex); 2776 2777 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 2778 if (ret > 0) 2779 ret = 0; 2780 2781 return ret; 2782 } 2783 2784 /* 2785 * ext4_split_extent_at() splits an extent at given block. 2786 * 2787 * @handle: the journal handle 2788 * @inode: the file inode 2789 * @path: the path to the extent 2790 * @split: the logical block where the extent is splitted. 2791 * @split_flags: indicates if the extent could be zeroout if split fails, and 2792 * the states(init or uninit) of new extents. 2793 * @flags: flags used to insert new extent to extent tree. 2794 * 2795 * 2796 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 2797 * of which are deterimined by split_flag. 2798 * 2799 * There are two cases: 2800 * a> the extent are splitted into two extent. 2801 * b> split is not needed, and just mark the extent. 2802 * 2803 * return 0 on success. 2804 */ 2805 static int ext4_split_extent_at(handle_t *handle, 2806 struct inode *inode, 2807 struct ext4_ext_path *path, 2808 ext4_lblk_t split, 2809 int split_flag, 2810 int flags) 2811 { 2812 ext4_fsblk_t newblock; 2813 ext4_lblk_t ee_block; 2814 struct ext4_extent *ex, newex, orig_ex; 2815 struct ext4_extent *ex2 = NULL; 2816 unsigned int ee_len, depth; 2817 int err = 0; 2818 2819 ext_debug("ext4_split_extents_at: inode %lu, logical" 2820 "block %llu\n", inode->i_ino, (unsigned long long)split); 2821 2822 ext4_ext_show_leaf(inode, path); 2823 2824 depth = ext_depth(inode); 2825 ex = path[depth].p_ext; 2826 ee_block = le32_to_cpu(ex->ee_block); 2827 ee_len = ext4_ext_get_actual_len(ex); 2828 newblock = split - ee_block + ext4_ext_pblock(ex); 2829 2830 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 2831 2832 err = ext4_ext_get_access(handle, inode, path + depth); 2833 if (err) 2834 goto out; 2835 2836 if (split == ee_block) { 2837 /* 2838 * case b: block @split is the block that the extent begins with 2839 * then we just change the state of the extent, and splitting 2840 * is not needed. 2841 */ 2842 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2843 ext4_ext_mark_uninitialized(ex); 2844 else 2845 ext4_ext_mark_initialized(ex); 2846 2847 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 2848 ext4_ext_try_to_merge(inode, path, ex); 2849 2850 err = ext4_ext_dirty(handle, inode, path + depth); 2851 goto out; 2852 } 2853 2854 /* case a */ 2855 memcpy(&orig_ex, ex, sizeof(orig_ex)); 2856 ex->ee_len = cpu_to_le16(split - ee_block); 2857 if (split_flag & EXT4_EXT_MARK_UNINIT1) 2858 ext4_ext_mark_uninitialized(ex); 2859 2860 /* 2861 * path may lead to new leaf, not to original leaf any more 2862 * after ext4_ext_insert_extent() returns, 2863 */ 2864 err = ext4_ext_dirty(handle, inode, path + depth); 2865 if (err) 2866 goto fix_extent_len; 2867 2868 ex2 = &newex; 2869 ex2->ee_block = cpu_to_le32(split); 2870 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 2871 ext4_ext_store_pblock(ex2, newblock); 2872 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2873 ext4_ext_mark_uninitialized(ex2); 2874 2875 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 2876 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 2877 err = ext4_ext_zeroout(inode, &orig_ex); 2878 if (err) 2879 goto fix_extent_len; 2880 /* update the extent length and mark as initialized */ 2881 ex->ee_len = cpu_to_le16(ee_len); 2882 ext4_ext_try_to_merge(inode, path, ex); 2883 err = ext4_ext_dirty(handle, inode, path + depth); 2884 goto out; 2885 } else if (err) 2886 goto fix_extent_len; 2887 2888 out: 2889 ext4_ext_show_leaf(inode, path); 2890 return err; 2891 2892 fix_extent_len: 2893 ex->ee_len = orig_ex.ee_len; 2894 ext4_ext_dirty(handle, inode, path + depth); 2895 return err; 2896 } 2897 2898 /* 2899 * ext4_split_extents() splits an extent and mark extent which is covered 2900 * by @map as split_flags indicates 2901 * 2902 * It may result in splitting the extent into multiple extents (upto three) 2903 * There are three possibilities: 2904 * a> There is no split required 2905 * b> Splits in two extents: Split is happening at either end of the extent 2906 * c> Splits in three extents: Somone is splitting in middle of the extent 2907 * 2908 */ 2909 static int ext4_split_extent(handle_t *handle, 2910 struct inode *inode, 2911 struct ext4_ext_path *path, 2912 struct ext4_map_blocks *map, 2913 int split_flag, 2914 int flags) 2915 { 2916 ext4_lblk_t ee_block; 2917 struct ext4_extent *ex; 2918 unsigned int ee_len, depth; 2919 int err = 0; 2920 int uninitialized; 2921 int split_flag1, flags1; 2922 2923 depth = ext_depth(inode); 2924 ex = path[depth].p_ext; 2925 ee_block = le32_to_cpu(ex->ee_block); 2926 ee_len = ext4_ext_get_actual_len(ex); 2927 uninitialized = ext4_ext_is_uninitialized(ex); 2928 2929 if (map->m_lblk + map->m_len < ee_block + ee_len) { 2930 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ? 2931 EXT4_EXT_MAY_ZEROOUT : 0; 2932 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 2933 if (uninitialized) 2934 split_flag1 |= EXT4_EXT_MARK_UNINIT1 | 2935 EXT4_EXT_MARK_UNINIT2; 2936 err = ext4_split_extent_at(handle, inode, path, 2937 map->m_lblk + map->m_len, split_flag1, flags1); 2938 if (err) 2939 goto out; 2940 } 2941 2942 ext4_ext_drop_refs(path); 2943 path = ext4_ext_find_extent(inode, map->m_lblk, path); 2944 if (IS_ERR(path)) 2945 return PTR_ERR(path); 2946 2947 if (map->m_lblk >= ee_block) { 2948 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ? 2949 EXT4_EXT_MAY_ZEROOUT : 0; 2950 if (uninitialized) 2951 split_flag1 |= EXT4_EXT_MARK_UNINIT1; 2952 if (split_flag & EXT4_EXT_MARK_UNINIT2) 2953 split_flag1 |= EXT4_EXT_MARK_UNINIT2; 2954 err = ext4_split_extent_at(handle, inode, path, 2955 map->m_lblk, split_flag1, flags); 2956 if (err) 2957 goto out; 2958 } 2959 2960 ext4_ext_show_leaf(inode, path); 2961 out: 2962 return err ? err : map->m_len; 2963 } 2964 2965 #define EXT4_EXT_ZERO_LEN 7 2966 /* 2967 * This function is called by ext4_ext_map_blocks() if someone tries to write 2968 * to an uninitialized extent. It may result in splitting the uninitialized 2969 * extent into multiple extents (up to three - one initialized and two 2970 * uninitialized). 2971 * There are three possibilities: 2972 * a> There is no split required: Entire extent should be initialized 2973 * b> Splits in two extents: Write is happening at either end of the extent 2974 * c> Splits in three extents: Somone is writing in middle of the extent 2975 * 2976 * Pre-conditions: 2977 * - The extent pointed to by 'path' is uninitialized. 2978 * - The extent pointed to by 'path' contains a superset 2979 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 2980 * 2981 * Post-conditions on success: 2982 * - the returned value is the number of blocks beyond map->l_lblk 2983 * that are allocated and initialized. 2984 * It is guaranteed to be >= map->m_len. 2985 */ 2986 static int ext4_ext_convert_to_initialized(handle_t *handle, 2987 struct inode *inode, 2988 struct ext4_map_blocks *map, 2989 struct ext4_ext_path *path) 2990 { 2991 struct ext4_extent_header *eh; 2992 struct ext4_map_blocks split_map; 2993 struct ext4_extent zero_ex; 2994 struct ext4_extent *ex; 2995 ext4_lblk_t ee_block, eof_block; 2996 unsigned int ee_len, depth; 2997 int allocated; 2998 int err = 0; 2999 int split_flag = 0; 3000 3001 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3002 "block %llu, max_blocks %u\n", inode->i_ino, 3003 (unsigned long long)map->m_lblk, map->m_len); 3004 3005 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3006 inode->i_sb->s_blocksize_bits; 3007 if (eof_block < map->m_lblk + map->m_len) 3008 eof_block = map->m_lblk + map->m_len; 3009 3010 depth = ext_depth(inode); 3011 eh = path[depth].p_hdr; 3012 ex = path[depth].p_ext; 3013 ee_block = le32_to_cpu(ex->ee_block); 3014 ee_len = ext4_ext_get_actual_len(ex); 3015 allocated = ee_len - (map->m_lblk - ee_block); 3016 3017 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3018 3019 /* Pre-conditions */ 3020 BUG_ON(!ext4_ext_is_uninitialized(ex)); 3021 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3022 3023 /* 3024 * Attempt to transfer newly initialized blocks from the currently 3025 * uninitialized extent to its left neighbor. This is much cheaper 3026 * than an insertion followed by a merge as those involve costly 3027 * memmove() calls. This is the common case in steady state for 3028 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append 3029 * writes. 3030 * 3031 * Limitations of the current logic: 3032 * - L1: we only deal with writes at the start of the extent. 3033 * The approach could be extended to writes at the end 3034 * of the extent but this scenario was deemed less common. 3035 * - L2: we do not deal with writes covering the whole extent. 3036 * This would require removing the extent if the transfer 3037 * is possible. 3038 * - L3: we only attempt to merge with an extent stored in the 3039 * same extent tree node. 3040 */ 3041 if ((map->m_lblk == ee_block) && /*L1*/ 3042 (map->m_len < ee_len) && /*L2*/ 3043 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/ 3044 struct ext4_extent *prev_ex; 3045 ext4_lblk_t prev_lblk; 3046 ext4_fsblk_t prev_pblk, ee_pblk; 3047 unsigned int prev_len, write_len; 3048 3049 prev_ex = ex - 1; 3050 prev_lblk = le32_to_cpu(prev_ex->ee_block); 3051 prev_len = ext4_ext_get_actual_len(prev_ex); 3052 prev_pblk = ext4_ext_pblock(prev_ex); 3053 ee_pblk = ext4_ext_pblock(ex); 3054 write_len = map->m_len; 3055 3056 /* 3057 * A transfer of blocks from 'ex' to 'prev_ex' is allowed 3058 * upon those conditions: 3059 * - C1: prev_ex is initialized, 3060 * - C2: prev_ex is logically abutting ex, 3061 * - C3: prev_ex is physically abutting ex, 3062 * - C4: prev_ex can receive the additional blocks without 3063 * overflowing the (initialized) length limit. 3064 */ 3065 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/ 3066 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3067 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3068 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/ 3069 err = ext4_ext_get_access(handle, inode, path + depth); 3070 if (err) 3071 goto out; 3072 3073 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3074 map, ex, prev_ex); 3075 3076 /* Shift the start of ex by 'write_len' blocks */ 3077 ex->ee_block = cpu_to_le32(ee_block + write_len); 3078 ext4_ext_store_pblock(ex, ee_pblk + write_len); 3079 ex->ee_len = cpu_to_le16(ee_len - write_len); 3080 ext4_ext_mark_uninitialized(ex); /* Restore the flag */ 3081 3082 /* Extend prev_ex by 'write_len' blocks */ 3083 prev_ex->ee_len = cpu_to_le16(prev_len + write_len); 3084 3085 /* Mark the block containing both extents as dirty */ 3086 ext4_ext_dirty(handle, inode, path + depth); 3087 3088 /* Update path to point to the right extent */ 3089 path[depth].p_ext = prev_ex; 3090 3091 /* Result: number of initialized blocks past m_lblk */ 3092 allocated = write_len; 3093 goto out; 3094 } 3095 } 3096 3097 WARN_ON(map->m_lblk < ee_block); 3098 /* 3099 * It is safe to convert extent to initialized via explicit 3100 * zeroout only if extent is fully insde i_size or new_size. 3101 */ 3102 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3103 3104 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */ 3105 if (ee_len <= 2*EXT4_EXT_ZERO_LEN && 3106 (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3107 err = ext4_ext_zeroout(inode, ex); 3108 if (err) 3109 goto out; 3110 3111 err = ext4_ext_get_access(handle, inode, path + depth); 3112 if (err) 3113 goto out; 3114 ext4_ext_mark_initialized(ex); 3115 ext4_ext_try_to_merge(inode, path, ex); 3116 err = ext4_ext_dirty(handle, inode, path + depth); 3117 goto out; 3118 } 3119 3120 /* 3121 * four cases: 3122 * 1. split the extent into three extents. 3123 * 2. split the extent into two extents, zeroout the first half. 3124 * 3. split the extent into two extents, zeroout the second half. 3125 * 4. split the extent into two extents with out zeroout. 3126 */ 3127 split_map.m_lblk = map->m_lblk; 3128 split_map.m_len = map->m_len; 3129 3130 if (allocated > map->m_len) { 3131 if (allocated <= EXT4_EXT_ZERO_LEN && 3132 (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3133 /* case 3 */ 3134 zero_ex.ee_block = 3135 cpu_to_le32(map->m_lblk); 3136 zero_ex.ee_len = cpu_to_le16(allocated); 3137 ext4_ext_store_pblock(&zero_ex, 3138 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3139 err = ext4_ext_zeroout(inode, &zero_ex); 3140 if (err) 3141 goto out; 3142 split_map.m_lblk = map->m_lblk; 3143 split_map.m_len = allocated; 3144 } else if ((map->m_lblk - ee_block + map->m_len < 3145 EXT4_EXT_ZERO_LEN) && 3146 (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3147 /* case 2 */ 3148 if (map->m_lblk != ee_block) { 3149 zero_ex.ee_block = ex->ee_block; 3150 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3151 ee_block); 3152 ext4_ext_store_pblock(&zero_ex, 3153 ext4_ext_pblock(ex)); 3154 err = ext4_ext_zeroout(inode, &zero_ex); 3155 if (err) 3156 goto out; 3157 } 3158 3159 split_map.m_lblk = ee_block; 3160 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3161 allocated = map->m_len; 3162 } 3163 } 3164 3165 allocated = ext4_split_extent(handle, inode, path, 3166 &split_map, split_flag, 0); 3167 if (allocated < 0) 3168 err = allocated; 3169 3170 out: 3171 return err ? err : allocated; 3172 } 3173 3174 /* 3175 * This function is called by ext4_ext_map_blocks() from 3176 * ext4_get_blocks_dio_write() when DIO to write 3177 * to an uninitialized extent. 3178 * 3179 * Writing to an uninitialized extent may result in splitting the uninitialized 3180 * extent into multiple /initialized uninitialized extents (up to three) 3181 * There are three possibilities: 3182 * a> There is no split required: Entire extent should be uninitialized 3183 * b> Splits in two extents: Write is happening at either end of the extent 3184 * c> Splits in three extents: Somone is writing in middle of the extent 3185 * 3186 * One of more index blocks maybe needed if the extent tree grow after 3187 * the uninitialized extent split. To prevent ENOSPC occur at the IO 3188 * complete, we need to split the uninitialized extent before DIO submit 3189 * the IO. The uninitialized extent called at this time will be split 3190 * into three uninitialized extent(at most). After IO complete, the part 3191 * being filled will be convert to initialized by the end_io callback function 3192 * via ext4_convert_unwritten_extents(). 3193 * 3194 * Returns the size of uninitialized extent to be written on success. 3195 */ 3196 static int ext4_split_unwritten_extents(handle_t *handle, 3197 struct inode *inode, 3198 struct ext4_map_blocks *map, 3199 struct ext4_ext_path *path, 3200 int flags) 3201 { 3202 ext4_lblk_t eof_block; 3203 ext4_lblk_t ee_block; 3204 struct ext4_extent *ex; 3205 unsigned int ee_len; 3206 int split_flag = 0, depth; 3207 3208 ext_debug("ext4_split_unwritten_extents: inode %lu, logical" 3209 "block %llu, max_blocks %u\n", inode->i_ino, 3210 (unsigned long long)map->m_lblk, map->m_len); 3211 3212 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3213 inode->i_sb->s_blocksize_bits; 3214 if (eof_block < map->m_lblk + map->m_len) 3215 eof_block = map->m_lblk + map->m_len; 3216 /* 3217 * It is safe to convert extent to initialized via explicit 3218 * zeroout only if extent is fully insde i_size or new_size. 3219 */ 3220 depth = ext_depth(inode); 3221 ex = path[depth].p_ext; 3222 ee_block = le32_to_cpu(ex->ee_block); 3223 ee_len = ext4_ext_get_actual_len(ex); 3224 3225 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3226 split_flag |= EXT4_EXT_MARK_UNINIT2; 3227 3228 flags |= EXT4_GET_BLOCKS_PRE_IO; 3229 return ext4_split_extent(handle, inode, path, map, split_flag, flags); 3230 } 3231 3232 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3233 struct inode *inode, 3234 struct ext4_ext_path *path) 3235 { 3236 struct ext4_extent *ex; 3237 int depth; 3238 int err = 0; 3239 3240 depth = ext_depth(inode); 3241 ex = path[depth].p_ext; 3242 3243 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3244 "block %llu, max_blocks %u\n", inode->i_ino, 3245 (unsigned long long)le32_to_cpu(ex->ee_block), 3246 ext4_ext_get_actual_len(ex)); 3247 3248 err = ext4_ext_get_access(handle, inode, path + depth); 3249 if (err) 3250 goto out; 3251 /* first mark the extent as initialized */ 3252 ext4_ext_mark_initialized(ex); 3253 3254 /* note: ext4_ext_correct_indexes() isn't needed here because 3255 * borders are not changed 3256 */ 3257 ext4_ext_try_to_merge(inode, path, ex); 3258 3259 /* Mark modified extent as dirty */ 3260 err = ext4_ext_dirty(handle, inode, path + depth); 3261 out: 3262 ext4_ext_show_leaf(inode, path); 3263 return err; 3264 } 3265 3266 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3267 sector_t block, int count) 3268 { 3269 int i; 3270 for (i = 0; i < count; i++) 3271 unmap_underlying_metadata(bdev, block + i); 3272 } 3273 3274 /* 3275 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3276 */ 3277 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3278 ext4_lblk_t lblk, 3279 struct ext4_ext_path *path, 3280 unsigned int len) 3281 { 3282 int i, depth; 3283 struct ext4_extent_header *eh; 3284 struct ext4_extent *last_ex; 3285 3286 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3287 return 0; 3288 3289 depth = ext_depth(inode); 3290 eh = path[depth].p_hdr; 3291 3292 /* 3293 * We're going to remove EOFBLOCKS_FL entirely in future so we 3294 * do not care for this case anymore. Simply remove the flag 3295 * if there are no extents. 3296 */ 3297 if (unlikely(!eh->eh_entries)) 3298 goto out; 3299 last_ex = EXT_LAST_EXTENT(eh); 3300 /* 3301 * We should clear the EOFBLOCKS_FL flag if we are writing the 3302 * last block in the last extent in the file. We test this by 3303 * first checking to see if the caller to 3304 * ext4_ext_get_blocks() was interested in the last block (or 3305 * a block beyond the last block) in the current extent. If 3306 * this turns out to be false, we can bail out from this 3307 * function immediately. 3308 */ 3309 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3310 ext4_ext_get_actual_len(last_ex)) 3311 return 0; 3312 /* 3313 * If the caller does appear to be planning to write at or 3314 * beyond the end of the current extent, we then test to see 3315 * if the current extent is the last extent in the file, by 3316 * checking to make sure it was reached via the rightmost node 3317 * at each level of the tree. 3318 */ 3319 for (i = depth-1; i >= 0; i--) 3320 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3321 return 0; 3322 out: 3323 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3324 return ext4_mark_inode_dirty(handle, inode); 3325 } 3326 3327 /** 3328 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3329 * 3330 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns 3331 * whether there are any buffers marked for delayed allocation. It returns '1' 3332 * on the first delalloc'ed buffer head found. If no buffer head in the given 3333 * range is marked for delalloc, it returns 0. 3334 * lblk_start should always be <= lblk_end. 3335 * search_hint_reverse is to indicate that searching in reverse from lblk_end to 3336 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed 3337 * block sooner). This is useful when blocks are truncated sequentially from 3338 * lblk_start towards lblk_end. 3339 */ 3340 static int ext4_find_delalloc_range(struct inode *inode, 3341 ext4_lblk_t lblk_start, 3342 ext4_lblk_t lblk_end, 3343 int search_hint_reverse) 3344 { 3345 struct address_space *mapping = inode->i_mapping; 3346 struct buffer_head *head, *bh = NULL; 3347 struct page *page; 3348 ext4_lblk_t i, pg_lblk; 3349 pgoff_t index; 3350 3351 if (!test_opt(inode->i_sb, DELALLOC)) 3352 return 0; 3353 3354 /* reverse search wont work if fs block size is less than page size */ 3355 if (inode->i_blkbits < PAGE_CACHE_SHIFT) 3356 search_hint_reverse = 0; 3357 3358 if (search_hint_reverse) 3359 i = lblk_end; 3360 else 3361 i = lblk_start; 3362 3363 index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 3364 3365 while ((i >= lblk_start) && (i <= lblk_end)) { 3366 page = find_get_page(mapping, index); 3367 if (!page) 3368 goto nextpage; 3369 3370 if (!page_has_buffers(page)) 3371 goto nextpage; 3372 3373 head = page_buffers(page); 3374 if (!head) 3375 goto nextpage; 3376 3377 bh = head; 3378 pg_lblk = index << (PAGE_CACHE_SHIFT - 3379 inode->i_blkbits); 3380 do { 3381 if (unlikely(pg_lblk < lblk_start)) { 3382 /* 3383 * This is possible when fs block size is less 3384 * than page size and our cluster starts/ends in 3385 * middle of the page. So we need to skip the 3386 * initial few blocks till we reach the 'lblk' 3387 */ 3388 pg_lblk++; 3389 continue; 3390 } 3391 3392 /* Check if the buffer is delayed allocated and that it 3393 * is not yet mapped. (when da-buffers are mapped during 3394 * their writeout, their da_mapped bit is set.) 3395 */ 3396 if (buffer_delay(bh) && !buffer_da_mapped(bh)) { 3397 page_cache_release(page); 3398 trace_ext4_find_delalloc_range(inode, 3399 lblk_start, lblk_end, 3400 search_hint_reverse, 3401 1, i); 3402 return 1; 3403 } 3404 if (search_hint_reverse) 3405 i--; 3406 else 3407 i++; 3408 } while ((i >= lblk_start) && (i <= lblk_end) && 3409 ((bh = bh->b_this_page) != head)); 3410 nextpage: 3411 if (page) 3412 page_cache_release(page); 3413 /* 3414 * Move to next page. 'i' will be the first lblk in the next 3415 * page. 3416 */ 3417 if (search_hint_reverse) 3418 index--; 3419 else 3420 index++; 3421 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 3422 } 3423 3424 trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end, 3425 search_hint_reverse, 0, 0); 3426 return 0; 3427 } 3428 3429 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk, 3430 int search_hint_reverse) 3431 { 3432 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3433 ext4_lblk_t lblk_start, lblk_end; 3434 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1)); 3435 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3436 3437 return ext4_find_delalloc_range(inode, lblk_start, lblk_end, 3438 search_hint_reverse); 3439 } 3440 3441 /** 3442 * Determines how many complete clusters (out of those specified by the 'map') 3443 * are under delalloc and were reserved quota for. 3444 * This function is called when we are writing out the blocks that were 3445 * originally written with their allocation delayed, but then the space was 3446 * allocated using fallocate() before the delayed allocation could be resolved. 3447 * The cases to look for are: 3448 * ('=' indicated delayed allocated blocks 3449 * '-' indicates non-delayed allocated blocks) 3450 * (a) partial clusters towards beginning and/or end outside of allocated range 3451 * are not delalloc'ed. 3452 * Ex: 3453 * |----c---=|====c====|====c====|===-c----| 3454 * |++++++ allocated ++++++| 3455 * ==> 4 complete clusters in above example 3456 * 3457 * (b) partial cluster (outside of allocated range) towards either end is 3458 * marked for delayed allocation. In this case, we will exclude that 3459 * cluster. 3460 * Ex: 3461 * |----====c========|========c========| 3462 * |++++++ allocated ++++++| 3463 * ==> 1 complete clusters in above example 3464 * 3465 * Ex: 3466 * |================c================| 3467 * |++++++ allocated ++++++| 3468 * ==> 0 complete clusters in above example 3469 * 3470 * The ext4_da_update_reserve_space will be called only if we 3471 * determine here that there were some "entire" clusters that span 3472 * this 'allocated' range. 3473 * In the non-bigalloc case, this function will just end up returning num_blks 3474 * without ever calling ext4_find_delalloc_range. 3475 */ 3476 static unsigned int 3477 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3478 unsigned int num_blks) 3479 { 3480 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3481 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3482 ext4_lblk_t lblk_from, lblk_to, c_offset; 3483 unsigned int allocated_clusters = 0; 3484 3485 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3486 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3487 3488 /* max possible clusters for this allocation */ 3489 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3490 3491 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3492 3493 /* Check towards left side */ 3494 c_offset = lblk_start & (sbi->s_cluster_ratio - 1); 3495 if (c_offset) { 3496 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1)); 3497 lblk_to = lblk_from + c_offset - 1; 3498 3499 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0)) 3500 allocated_clusters--; 3501 } 3502 3503 /* Now check towards right. */ 3504 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1); 3505 if (allocated_clusters && c_offset) { 3506 lblk_from = lblk_start + num_blks; 3507 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3508 3509 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0)) 3510 allocated_clusters--; 3511 } 3512 3513 return allocated_clusters; 3514 } 3515 3516 static int 3517 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, 3518 struct ext4_map_blocks *map, 3519 struct ext4_ext_path *path, int flags, 3520 unsigned int allocated, ext4_fsblk_t newblock) 3521 { 3522 int ret = 0; 3523 int err = 0; 3524 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio; 3525 3526 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical " 3527 "block %llu, max_blocks %u, flags %x, allocated %u\n", 3528 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3529 flags, allocated); 3530 ext4_ext_show_leaf(inode, path); 3531 3532 trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated, 3533 newblock); 3534 3535 /* get_block() before submit the IO, split the extent */ 3536 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 3537 ret = ext4_split_unwritten_extents(handle, inode, map, 3538 path, flags); 3539 /* 3540 * Flag the inode(non aio case) or end_io struct (aio case) 3541 * that this IO needs to conversion to written when IO is 3542 * completed 3543 */ 3544 if (io) 3545 ext4_set_io_unwritten_flag(inode, io); 3546 else 3547 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3548 if (ext4_should_dioread_nolock(inode)) 3549 map->m_flags |= EXT4_MAP_UNINIT; 3550 goto out; 3551 } 3552 /* IO end_io complete, convert the filled extent to written */ 3553 if ((flags & EXT4_GET_BLOCKS_CONVERT)) { 3554 ret = ext4_convert_unwritten_extents_endio(handle, inode, 3555 path); 3556 if (ret >= 0) { 3557 ext4_update_inode_fsync_trans(handle, inode, 1); 3558 err = check_eofblocks_fl(handle, inode, map->m_lblk, 3559 path, map->m_len); 3560 } else 3561 err = ret; 3562 goto out2; 3563 } 3564 /* buffered IO case */ 3565 /* 3566 * repeat fallocate creation request 3567 * we already have an unwritten extent 3568 */ 3569 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) 3570 goto map_out; 3571 3572 /* buffered READ or buffered write_begin() lookup */ 3573 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3574 /* 3575 * We have blocks reserved already. We 3576 * return allocated blocks so that delalloc 3577 * won't do block reservation for us. But 3578 * the buffer head will be unmapped so that 3579 * a read from the block returns 0s. 3580 */ 3581 map->m_flags |= EXT4_MAP_UNWRITTEN; 3582 goto out1; 3583 } 3584 3585 /* buffered write, writepage time, convert*/ 3586 ret = ext4_ext_convert_to_initialized(handle, inode, map, path); 3587 if (ret >= 0) 3588 ext4_update_inode_fsync_trans(handle, inode, 1); 3589 out: 3590 if (ret <= 0) { 3591 err = ret; 3592 goto out2; 3593 } else 3594 allocated = ret; 3595 map->m_flags |= EXT4_MAP_NEW; 3596 /* 3597 * if we allocated more blocks than requested 3598 * we need to make sure we unmap the extra block 3599 * allocated. The actual needed block will get 3600 * unmapped later when we find the buffer_head marked 3601 * new. 3602 */ 3603 if (allocated > map->m_len) { 3604 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 3605 newblock + map->m_len, 3606 allocated - map->m_len); 3607 allocated = map->m_len; 3608 } 3609 3610 /* 3611 * If we have done fallocate with the offset that is already 3612 * delayed allocated, we would have block reservation 3613 * and quota reservation done in the delayed write path. 3614 * But fallocate would have already updated quota and block 3615 * count for this offset. So cancel these reservation 3616 */ 3617 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 3618 unsigned int reserved_clusters; 3619 reserved_clusters = get_reserved_cluster_alloc(inode, 3620 map->m_lblk, map->m_len); 3621 if (reserved_clusters) 3622 ext4_da_update_reserve_space(inode, 3623 reserved_clusters, 3624 0); 3625 } 3626 3627 map_out: 3628 map->m_flags |= EXT4_MAP_MAPPED; 3629 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 3630 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 3631 map->m_len); 3632 if (err < 0) 3633 goto out2; 3634 } 3635 out1: 3636 if (allocated > map->m_len) 3637 allocated = map->m_len; 3638 ext4_ext_show_leaf(inode, path); 3639 map->m_pblk = newblock; 3640 map->m_len = allocated; 3641 out2: 3642 if (path) { 3643 ext4_ext_drop_refs(path); 3644 kfree(path); 3645 } 3646 return err ? err : allocated; 3647 } 3648 3649 /* 3650 * get_implied_cluster_alloc - check to see if the requested 3651 * allocation (in the map structure) overlaps with a cluster already 3652 * allocated in an extent. 3653 * @sb The filesystem superblock structure 3654 * @map The requested lblk->pblk mapping 3655 * @ex The extent structure which might contain an implied 3656 * cluster allocation 3657 * 3658 * This function is called by ext4_ext_map_blocks() after we failed to 3659 * find blocks that were already in the inode's extent tree. Hence, 3660 * we know that the beginning of the requested region cannot overlap 3661 * the extent from the inode's extent tree. There are three cases we 3662 * want to catch. The first is this case: 3663 * 3664 * |--- cluster # N--| 3665 * |--- extent ---| |---- requested region ---| 3666 * |==========| 3667 * 3668 * The second case that we need to test for is this one: 3669 * 3670 * |--------- cluster # N ----------------| 3671 * |--- requested region --| |------- extent ----| 3672 * |=======================| 3673 * 3674 * The third case is when the requested region lies between two extents 3675 * within the same cluster: 3676 * |------------- cluster # N-------------| 3677 * |----- ex -----| |---- ex_right ----| 3678 * |------ requested region ------| 3679 * |================| 3680 * 3681 * In each of the above cases, we need to set the map->m_pblk and 3682 * map->m_len so it corresponds to the return the extent labelled as 3683 * "|====|" from cluster #N, since it is already in use for data in 3684 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 3685 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 3686 * as a new "allocated" block region. Otherwise, we will return 0 and 3687 * ext4_ext_map_blocks() will then allocate one or more new clusters 3688 * by calling ext4_mb_new_blocks(). 3689 */ 3690 static int get_implied_cluster_alloc(struct super_block *sb, 3691 struct ext4_map_blocks *map, 3692 struct ext4_extent *ex, 3693 struct ext4_ext_path *path) 3694 { 3695 struct ext4_sb_info *sbi = EXT4_SB(sb); 3696 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 3697 ext4_lblk_t ex_cluster_start, ex_cluster_end; 3698 ext4_lblk_t rr_cluster_start; 3699 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3700 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3701 unsigned short ee_len = ext4_ext_get_actual_len(ex); 3702 3703 /* The extent passed in that we are trying to match */ 3704 ex_cluster_start = EXT4_B2C(sbi, ee_block); 3705 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 3706 3707 /* The requested region passed into ext4_map_blocks() */ 3708 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 3709 3710 if ((rr_cluster_start == ex_cluster_end) || 3711 (rr_cluster_start == ex_cluster_start)) { 3712 if (rr_cluster_start == ex_cluster_end) 3713 ee_start += ee_len - 1; 3714 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) + 3715 c_offset; 3716 map->m_len = min(map->m_len, 3717 (unsigned) sbi->s_cluster_ratio - c_offset); 3718 /* 3719 * Check for and handle this case: 3720 * 3721 * |--------- cluster # N-------------| 3722 * |------- extent ----| 3723 * |--- requested region ---| 3724 * |===========| 3725 */ 3726 3727 if (map->m_lblk < ee_block) 3728 map->m_len = min(map->m_len, ee_block - map->m_lblk); 3729 3730 /* 3731 * Check for the case where there is already another allocated 3732 * block to the right of 'ex' but before the end of the cluster. 3733 * 3734 * |------------- cluster # N-------------| 3735 * |----- ex -----| |---- ex_right ----| 3736 * |------ requested region ------| 3737 * |================| 3738 */ 3739 if (map->m_lblk > ee_block) { 3740 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 3741 map->m_len = min(map->m_len, next - map->m_lblk); 3742 } 3743 3744 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 3745 return 1; 3746 } 3747 3748 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 3749 return 0; 3750 } 3751 3752 3753 /* 3754 * Block allocation/map/preallocation routine for extents based files 3755 * 3756 * 3757 * Need to be called with 3758 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 3759 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 3760 * 3761 * return > 0, number of of blocks already mapped/allocated 3762 * if create == 0 and these are pre-allocated blocks 3763 * buffer head is unmapped 3764 * otherwise blocks are mapped 3765 * 3766 * return = 0, if plain look up failed (blocks have not been allocated) 3767 * buffer head is unmapped 3768 * 3769 * return < 0, error case. 3770 */ 3771 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 3772 struct ext4_map_blocks *map, int flags) 3773 { 3774 struct ext4_ext_path *path = NULL; 3775 struct ext4_extent newex, *ex, *ex2; 3776 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3777 ext4_fsblk_t newblock = 0; 3778 int free_on_err = 0, err = 0, depth, ret; 3779 unsigned int allocated = 0, offset = 0; 3780 unsigned int allocated_clusters = 0; 3781 struct ext4_allocation_request ar; 3782 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio; 3783 ext4_lblk_t cluster_offset; 3784 3785 ext_debug("blocks %u/%u requested for inode %lu\n", 3786 map->m_lblk, map->m_len, inode->i_ino); 3787 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 3788 3789 /* check in cache */ 3790 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) { 3791 if (!newex.ee_start_lo && !newex.ee_start_hi) { 3792 if ((sbi->s_cluster_ratio > 1) && 3793 ext4_find_delalloc_cluster(inode, map->m_lblk, 0)) 3794 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3795 3796 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3797 /* 3798 * block isn't allocated yet and 3799 * user doesn't want to allocate it 3800 */ 3801 goto out2; 3802 } 3803 /* we should allocate requested block */ 3804 } else { 3805 /* block is already allocated */ 3806 if (sbi->s_cluster_ratio > 1) 3807 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3808 newblock = map->m_lblk 3809 - le32_to_cpu(newex.ee_block) 3810 + ext4_ext_pblock(&newex); 3811 /* number of remaining blocks in the extent */ 3812 allocated = ext4_ext_get_actual_len(&newex) - 3813 (map->m_lblk - le32_to_cpu(newex.ee_block)); 3814 goto out; 3815 } 3816 } 3817 3818 /* find extent for this block */ 3819 path = ext4_ext_find_extent(inode, map->m_lblk, NULL); 3820 if (IS_ERR(path)) { 3821 err = PTR_ERR(path); 3822 path = NULL; 3823 goto out2; 3824 } 3825 3826 depth = ext_depth(inode); 3827 3828 /* 3829 * consistent leaf must not be empty; 3830 * this situation is possible, though, _during_ tree modification; 3831 * this is why assert can't be put in ext4_ext_find_extent() 3832 */ 3833 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 3834 EXT4_ERROR_INODE(inode, "bad extent address " 3835 "lblock: %lu, depth: %d pblock %lld", 3836 (unsigned long) map->m_lblk, depth, 3837 path[depth].p_block); 3838 err = -EIO; 3839 goto out2; 3840 } 3841 3842 ex = path[depth].p_ext; 3843 if (ex) { 3844 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3845 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3846 unsigned short ee_len; 3847 3848 /* 3849 * Uninitialized extents are treated as holes, except that 3850 * we split out initialized portions during a write. 3851 */ 3852 ee_len = ext4_ext_get_actual_len(ex); 3853 3854 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 3855 3856 /* if found extent covers block, simply return it */ 3857 if (in_range(map->m_lblk, ee_block, ee_len)) { 3858 newblock = map->m_lblk - ee_block + ee_start; 3859 /* number of remaining blocks in the extent */ 3860 allocated = ee_len - (map->m_lblk - ee_block); 3861 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 3862 ee_block, ee_len, newblock); 3863 3864 /* 3865 * Do not put uninitialized extent 3866 * in the cache 3867 */ 3868 if (!ext4_ext_is_uninitialized(ex)) { 3869 ext4_ext_put_in_cache(inode, ee_block, 3870 ee_len, ee_start); 3871 goto out; 3872 } 3873 ret = ext4_ext_handle_uninitialized_extents( 3874 handle, inode, map, path, flags, 3875 allocated, newblock); 3876 return ret; 3877 } 3878 } 3879 3880 if ((sbi->s_cluster_ratio > 1) && 3881 ext4_find_delalloc_cluster(inode, map->m_lblk, 0)) 3882 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3883 3884 /* 3885 * requested block isn't allocated yet; 3886 * we couldn't try to create block if create flag is zero 3887 */ 3888 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3889 /* 3890 * put just found gap into cache to speed up 3891 * subsequent requests 3892 */ 3893 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 3894 goto out2; 3895 } 3896 3897 /* 3898 * Okay, we need to do block allocation. 3899 */ 3900 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 3901 newex.ee_block = cpu_to_le32(map->m_lblk); 3902 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1); 3903 3904 /* 3905 * If we are doing bigalloc, check to see if the extent returned 3906 * by ext4_ext_find_extent() implies a cluster we can use. 3907 */ 3908 if (cluster_offset && ex && 3909 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 3910 ar.len = allocated = map->m_len; 3911 newblock = map->m_pblk; 3912 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3913 goto got_allocated_blocks; 3914 } 3915 3916 /* find neighbour allocated blocks */ 3917 ar.lleft = map->m_lblk; 3918 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 3919 if (err) 3920 goto out2; 3921 ar.lright = map->m_lblk; 3922 ex2 = NULL; 3923 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 3924 if (err) 3925 goto out2; 3926 3927 /* Check if the extent after searching to the right implies a 3928 * cluster we can use. */ 3929 if ((sbi->s_cluster_ratio > 1) && ex2 && 3930 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 3931 ar.len = allocated = map->m_len; 3932 newblock = map->m_pblk; 3933 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 3934 goto got_allocated_blocks; 3935 } 3936 3937 /* 3938 * See if request is beyond maximum number of blocks we can have in 3939 * a single extent. For an initialized extent this limit is 3940 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 3941 * EXT_UNINIT_MAX_LEN. 3942 */ 3943 if (map->m_len > EXT_INIT_MAX_LEN && 3944 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 3945 map->m_len = EXT_INIT_MAX_LEN; 3946 else if (map->m_len > EXT_UNINIT_MAX_LEN && 3947 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) 3948 map->m_len = EXT_UNINIT_MAX_LEN; 3949 3950 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 3951 newex.ee_len = cpu_to_le16(map->m_len); 3952 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 3953 if (err) 3954 allocated = ext4_ext_get_actual_len(&newex); 3955 else 3956 allocated = map->m_len; 3957 3958 /* allocate new block */ 3959 ar.inode = inode; 3960 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 3961 ar.logical = map->m_lblk; 3962 /* 3963 * We calculate the offset from the beginning of the cluster 3964 * for the logical block number, since when we allocate a 3965 * physical cluster, the physical block should start at the 3966 * same offset from the beginning of the cluster. This is 3967 * needed so that future calls to get_implied_cluster_alloc() 3968 * work correctly. 3969 */ 3970 offset = map->m_lblk & (sbi->s_cluster_ratio - 1); 3971 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 3972 ar.goal -= offset; 3973 ar.logical -= offset; 3974 if (S_ISREG(inode->i_mode)) 3975 ar.flags = EXT4_MB_HINT_DATA; 3976 else 3977 /* disable in-core preallocation for non-regular files */ 3978 ar.flags = 0; 3979 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 3980 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 3981 newblock = ext4_mb_new_blocks(handle, &ar, &err); 3982 if (!newblock) 3983 goto out2; 3984 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 3985 ar.goal, newblock, allocated); 3986 free_on_err = 1; 3987 allocated_clusters = ar.len; 3988 ar.len = EXT4_C2B(sbi, ar.len) - offset; 3989 if (ar.len > allocated) 3990 ar.len = allocated; 3991 3992 got_allocated_blocks: 3993 /* try to insert new extent into found leaf and return */ 3994 ext4_ext_store_pblock(&newex, newblock + offset); 3995 newex.ee_len = cpu_to_le16(ar.len); 3996 /* Mark uninitialized */ 3997 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ 3998 ext4_ext_mark_uninitialized(&newex); 3999 /* 4000 * io_end structure was created for every IO write to an 4001 * uninitialized extent. To avoid unnecessary conversion, 4002 * here we flag the IO that really needs the conversion. 4003 * For non asycn direct IO case, flag the inode state 4004 * that we need to perform conversion when IO is done. 4005 */ 4006 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { 4007 if (io) 4008 ext4_set_io_unwritten_flag(inode, io); 4009 else 4010 ext4_set_inode_state(inode, 4011 EXT4_STATE_DIO_UNWRITTEN); 4012 } 4013 if (ext4_should_dioread_nolock(inode)) 4014 map->m_flags |= EXT4_MAP_UNINIT; 4015 } 4016 4017 err = 0; 4018 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4019 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4020 path, ar.len); 4021 if (!err) 4022 err = ext4_ext_insert_extent(handle, inode, path, 4023 &newex, flags); 4024 if (err && free_on_err) { 4025 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4026 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4027 /* free data blocks we just allocated */ 4028 /* not a good idea to call discard here directly, 4029 * but otherwise we'd need to call it every free() */ 4030 ext4_discard_preallocations(inode); 4031 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex), 4032 ext4_ext_get_actual_len(&newex), fb_flags); 4033 goto out2; 4034 } 4035 4036 /* previous routine could use block we allocated */ 4037 newblock = ext4_ext_pblock(&newex); 4038 allocated = ext4_ext_get_actual_len(&newex); 4039 if (allocated > map->m_len) 4040 allocated = map->m_len; 4041 map->m_flags |= EXT4_MAP_NEW; 4042 4043 /* 4044 * Update reserved blocks/metadata blocks after successful 4045 * block allocation which had been deferred till now. 4046 */ 4047 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4048 unsigned int reserved_clusters; 4049 /* 4050 * Check how many clusters we had reserved this allocated range 4051 */ 4052 reserved_clusters = get_reserved_cluster_alloc(inode, 4053 map->m_lblk, allocated); 4054 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { 4055 if (reserved_clusters) { 4056 /* 4057 * We have clusters reserved for this range. 4058 * But since we are not doing actual allocation 4059 * and are simply using blocks from previously 4060 * allocated cluster, we should release the 4061 * reservation and not claim quota. 4062 */ 4063 ext4_da_update_reserve_space(inode, 4064 reserved_clusters, 0); 4065 } 4066 } else { 4067 BUG_ON(allocated_clusters < reserved_clusters); 4068 /* We will claim quota for all newly allocated blocks.*/ 4069 ext4_da_update_reserve_space(inode, allocated_clusters, 4070 1); 4071 if (reserved_clusters < allocated_clusters) { 4072 struct ext4_inode_info *ei = EXT4_I(inode); 4073 int reservation = allocated_clusters - 4074 reserved_clusters; 4075 /* 4076 * It seems we claimed few clusters outside of 4077 * the range of this allocation. We should give 4078 * it back to the reservation pool. This can 4079 * happen in the following case: 4080 * 4081 * * Suppose s_cluster_ratio is 4 (i.e., each 4082 * cluster has 4 blocks. Thus, the clusters 4083 * are [0-3],[4-7],[8-11]... 4084 * * First comes delayed allocation write for 4085 * logical blocks 10 & 11. Since there were no 4086 * previous delayed allocated blocks in the 4087 * range [8-11], we would reserve 1 cluster 4088 * for this write. 4089 * * Next comes write for logical blocks 3 to 8. 4090 * In this case, we will reserve 2 clusters 4091 * (for [0-3] and [4-7]; and not for [8-11] as 4092 * that range has a delayed allocated blocks. 4093 * Thus total reserved clusters now becomes 3. 4094 * * Now, during the delayed allocation writeout 4095 * time, we will first write blocks [3-8] and 4096 * allocate 3 clusters for writing these 4097 * blocks. Also, we would claim all these 4098 * three clusters above. 4099 * * Now when we come here to writeout the 4100 * blocks [10-11], we would expect to claim 4101 * the reservation of 1 cluster we had made 4102 * (and we would claim it since there are no 4103 * more delayed allocated blocks in the range 4104 * [8-11]. But our reserved cluster count had 4105 * already gone to 0. 4106 * 4107 * Thus, at the step 4 above when we determine 4108 * that there are still some unwritten delayed 4109 * allocated blocks outside of our current 4110 * block range, we should increment the 4111 * reserved clusters count so that when the 4112 * remaining blocks finally gets written, we 4113 * could claim them. 4114 */ 4115 dquot_reserve_block(inode, 4116 EXT4_C2B(sbi, reservation)); 4117 spin_lock(&ei->i_block_reservation_lock); 4118 ei->i_reserved_data_blocks += reservation; 4119 spin_unlock(&ei->i_block_reservation_lock); 4120 } 4121 } 4122 } 4123 4124 /* 4125 * Cache the extent and update transaction to commit on fdatasync only 4126 * when it is _not_ an uninitialized extent. 4127 */ 4128 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) { 4129 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock); 4130 ext4_update_inode_fsync_trans(handle, inode, 1); 4131 } else 4132 ext4_update_inode_fsync_trans(handle, inode, 0); 4133 out: 4134 if (allocated > map->m_len) 4135 allocated = map->m_len; 4136 ext4_ext_show_leaf(inode, path); 4137 map->m_flags |= EXT4_MAP_MAPPED; 4138 map->m_pblk = newblock; 4139 map->m_len = allocated; 4140 out2: 4141 if (path) { 4142 ext4_ext_drop_refs(path); 4143 kfree(path); 4144 } 4145 4146 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk, 4147 newblock, map->m_len, err ? err : allocated); 4148 4149 return err ? err : allocated; 4150 } 4151 4152 void ext4_ext_truncate(struct inode *inode) 4153 { 4154 struct address_space *mapping = inode->i_mapping; 4155 struct super_block *sb = inode->i_sb; 4156 ext4_lblk_t last_block; 4157 handle_t *handle; 4158 loff_t page_len; 4159 int err = 0; 4160 4161 /* 4162 * finish any pending end_io work so we won't run the risk of 4163 * converting any truncated blocks to initialized later 4164 */ 4165 ext4_flush_completed_IO(inode); 4166 4167 /* 4168 * probably first extent we're gonna free will be last in block 4169 */ 4170 err = ext4_writepage_trans_blocks(inode); 4171 handle = ext4_journal_start(inode, err); 4172 if (IS_ERR(handle)) 4173 return; 4174 4175 if (inode->i_size % PAGE_CACHE_SIZE != 0) { 4176 page_len = PAGE_CACHE_SIZE - 4177 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4178 4179 err = ext4_discard_partial_page_buffers(handle, 4180 mapping, inode->i_size, page_len, 0); 4181 4182 if (err) 4183 goto out_stop; 4184 } 4185 4186 if (ext4_orphan_add(handle, inode)) 4187 goto out_stop; 4188 4189 down_write(&EXT4_I(inode)->i_data_sem); 4190 ext4_ext_invalidate_cache(inode); 4191 4192 ext4_discard_preallocations(inode); 4193 4194 /* 4195 * TODO: optimization is possible here. 4196 * Probably we need not scan at all, 4197 * because page truncation is enough. 4198 */ 4199 4200 /* we have to know where to truncate from in crash case */ 4201 EXT4_I(inode)->i_disksize = inode->i_size; 4202 ext4_mark_inode_dirty(handle, inode); 4203 4204 last_block = (inode->i_size + sb->s_blocksize - 1) 4205 >> EXT4_BLOCK_SIZE_BITS(sb); 4206 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4207 4208 /* In a multi-transaction truncate, we only make the final 4209 * transaction synchronous. 4210 */ 4211 if (IS_SYNC(inode)) 4212 ext4_handle_sync(handle); 4213 4214 up_write(&EXT4_I(inode)->i_data_sem); 4215 4216 out_stop: 4217 /* 4218 * If this was a simple ftruncate() and the file will remain alive, 4219 * then we need to clear up the orphan record which we created above. 4220 * However, if this was a real unlink then we were called by 4221 * ext4_delete_inode(), and we allow that function to clean up the 4222 * orphan info for us. 4223 */ 4224 if (inode->i_nlink) 4225 ext4_orphan_del(handle, inode); 4226 4227 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4228 ext4_mark_inode_dirty(handle, inode); 4229 ext4_journal_stop(handle); 4230 } 4231 4232 static void ext4_falloc_update_inode(struct inode *inode, 4233 int mode, loff_t new_size, int update_ctime) 4234 { 4235 struct timespec now; 4236 4237 if (update_ctime) { 4238 now = current_fs_time(inode->i_sb); 4239 if (!timespec_equal(&inode->i_ctime, &now)) 4240 inode->i_ctime = now; 4241 } 4242 /* 4243 * Update only when preallocation was requested beyond 4244 * the file size. 4245 */ 4246 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 4247 if (new_size > i_size_read(inode)) 4248 i_size_write(inode, new_size); 4249 if (new_size > EXT4_I(inode)->i_disksize) 4250 ext4_update_i_disksize(inode, new_size); 4251 } else { 4252 /* 4253 * Mark that we allocate beyond EOF so the subsequent truncate 4254 * can proceed even if the new size is the same as i_size. 4255 */ 4256 if (new_size > i_size_read(inode)) 4257 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4258 } 4259 4260 } 4261 4262 /* 4263 * preallocate space for a file. This implements ext4's fallocate file 4264 * operation, which gets called from sys_fallocate system call. 4265 * For block-mapped files, posix_fallocate should fall back to the method 4266 * of writing zeroes to the required new blocks (the same behavior which is 4267 * expected for file systems which do not support fallocate() system call). 4268 */ 4269 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4270 { 4271 struct inode *inode = file->f_path.dentry->d_inode; 4272 handle_t *handle; 4273 loff_t new_size; 4274 unsigned int max_blocks; 4275 int ret = 0; 4276 int ret2 = 0; 4277 int retries = 0; 4278 int flags; 4279 struct ext4_map_blocks map; 4280 unsigned int credits, blkbits = inode->i_blkbits; 4281 4282 /* 4283 * currently supporting (pre)allocate mode for extent-based 4284 * files _only_ 4285 */ 4286 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4287 return -EOPNOTSUPP; 4288 4289 /* Return error if mode is not supported */ 4290 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 4291 return -EOPNOTSUPP; 4292 4293 if (mode & FALLOC_FL_PUNCH_HOLE) 4294 return ext4_punch_hole(file, offset, len); 4295 4296 trace_ext4_fallocate_enter(inode, offset, len, mode); 4297 map.m_lblk = offset >> blkbits; 4298 /* 4299 * We can't just convert len to max_blocks because 4300 * If blocksize = 4096 offset = 3072 and len = 2048 4301 */ 4302 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4303 - map.m_lblk; 4304 /* 4305 * credits to insert 1 extent into extent tree 4306 */ 4307 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4308 mutex_lock(&inode->i_mutex); 4309 ret = inode_newsize_ok(inode, (len + offset)); 4310 if (ret) { 4311 mutex_unlock(&inode->i_mutex); 4312 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4313 return ret; 4314 } 4315 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT; 4316 if (mode & FALLOC_FL_KEEP_SIZE) 4317 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4318 /* 4319 * Don't normalize the request if it can fit in one extent so 4320 * that it doesn't get unnecessarily split into multiple 4321 * extents. 4322 */ 4323 if (len <= EXT_UNINIT_MAX_LEN << blkbits) 4324 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4325 retry: 4326 while (ret >= 0 && ret < max_blocks) { 4327 map.m_lblk = map.m_lblk + ret; 4328 map.m_len = max_blocks = max_blocks - ret; 4329 handle = ext4_journal_start(inode, credits); 4330 if (IS_ERR(handle)) { 4331 ret = PTR_ERR(handle); 4332 break; 4333 } 4334 ret = ext4_map_blocks(handle, inode, &map, flags); 4335 if (ret <= 0) { 4336 #ifdef EXT4FS_DEBUG 4337 WARN_ON(ret <= 0); 4338 printk(KERN_ERR "%s: ext4_ext_map_blocks " 4339 "returned error inode#%lu, block=%u, " 4340 "max_blocks=%u", __func__, 4341 inode->i_ino, map.m_lblk, max_blocks); 4342 #endif 4343 ext4_mark_inode_dirty(handle, inode); 4344 ret2 = ext4_journal_stop(handle); 4345 break; 4346 } 4347 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 4348 blkbits) >> blkbits)) 4349 new_size = offset + len; 4350 else 4351 new_size = ((loff_t) map.m_lblk + ret) << blkbits; 4352 4353 ext4_falloc_update_inode(inode, mode, new_size, 4354 (map.m_flags & EXT4_MAP_NEW)); 4355 ext4_mark_inode_dirty(handle, inode); 4356 ret2 = ext4_journal_stop(handle); 4357 if (ret2) 4358 break; 4359 } 4360 if (ret == -ENOSPC && 4361 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4362 ret = 0; 4363 goto retry; 4364 } 4365 mutex_unlock(&inode->i_mutex); 4366 trace_ext4_fallocate_exit(inode, offset, max_blocks, 4367 ret > 0 ? ret2 : ret); 4368 return ret > 0 ? ret2 : ret; 4369 } 4370 4371 /* 4372 * This function convert a range of blocks to written extents 4373 * The caller of this function will pass the start offset and the size. 4374 * all unwritten extents within this range will be converted to 4375 * written extents. 4376 * 4377 * This function is called from the direct IO end io call back 4378 * function, to convert the fallocated extents after IO is completed. 4379 * Returns 0 on success. 4380 */ 4381 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset, 4382 ssize_t len) 4383 { 4384 handle_t *handle; 4385 unsigned int max_blocks; 4386 int ret = 0; 4387 int ret2 = 0; 4388 struct ext4_map_blocks map; 4389 unsigned int credits, blkbits = inode->i_blkbits; 4390 4391 map.m_lblk = offset >> blkbits; 4392 /* 4393 * We can't just convert len to max_blocks because 4394 * If blocksize = 4096 offset = 3072 and len = 2048 4395 */ 4396 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 4397 map.m_lblk); 4398 /* 4399 * credits to insert 1 extent into extent tree 4400 */ 4401 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4402 while (ret >= 0 && ret < max_blocks) { 4403 map.m_lblk += ret; 4404 map.m_len = (max_blocks -= ret); 4405 handle = ext4_journal_start(inode, credits); 4406 if (IS_ERR(handle)) { 4407 ret = PTR_ERR(handle); 4408 break; 4409 } 4410 ret = ext4_map_blocks(handle, inode, &map, 4411 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4412 if (ret <= 0) { 4413 WARN_ON(ret <= 0); 4414 ext4_msg(inode->i_sb, KERN_ERR, 4415 "%s:%d: inode #%lu: block %u: len %u: " 4416 "ext4_ext_map_blocks returned %d", 4417 __func__, __LINE__, inode->i_ino, map.m_lblk, 4418 map.m_len, ret); 4419 } 4420 ext4_mark_inode_dirty(handle, inode); 4421 ret2 = ext4_journal_stop(handle); 4422 if (ret <= 0 || ret2 ) 4423 break; 4424 } 4425 return ret > 0 ? ret2 : ret; 4426 } 4427 4428 /* 4429 * Callback function called for each extent to gather FIEMAP information. 4430 */ 4431 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next, 4432 struct ext4_ext_cache *newex, struct ext4_extent *ex, 4433 void *data) 4434 { 4435 __u64 logical; 4436 __u64 physical; 4437 __u64 length; 4438 __u32 flags = 0; 4439 int ret = 0; 4440 struct fiemap_extent_info *fieinfo = data; 4441 unsigned char blksize_bits; 4442 4443 blksize_bits = inode->i_sb->s_blocksize_bits; 4444 logical = (__u64)newex->ec_block << blksize_bits; 4445 4446 if (newex->ec_start == 0) { 4447 /* 4448 * No extent in extent-tree contains block @newex->ec_start, 4449 * then the block may stay in 1)a hole or 2)delayed-extent. 4450 * 4451 * Holes or delayed-extents are processed as follows. 4452 * 1. lookup dirty pages with specified range in pagecache. 4453 * If no page is got, then there is no delayed-extent and 4454 * return with EXT_CONTINUE. 4455 * 2. find the 1st mapped buffer, 4456 * 3. check if the mapped buffer is both in the request range 4457 * and a delayed buffer. If not, there is no delayed-extent, 4458 * then return. 4459 * 4. a delayed-extent is found, the extent will be collected. 4460 */ 4461 ext4_lblk_t end = 0; 4462 pgoff_t last_offset; 4463 pgoff_t offset; 4464 pgoff_t index; 4465 pgoff_t start_index = 0; 4466 struct page **pages = NULL; 4467 struct buffer_head *bh = NULL; 4468 struct buffer_head *head = NULL; 4469 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *); 4470 4471 pages = kmalloc(PAGE_SIZE, GFP_KERNEL); 4472 if (pages == NULL) 4473 return -ENOMEM; 4474 4475 offset = logical >> PAGE_SHIFT; 4476 repeat: 4477 last_offset = offset; 4478 head = NULL; 4479 ret = find_get_pages_tag(inode->i_mapping, &offset, 4480 PAGECACHE_TAG_DIRTY, nr_pages, pages); 4481 4482 if (!(flags & FIEMAP_EXTENT_DELALLOC)) { 4483 /* First time, try to find a mapped buffer. */ 4484 if (ret == 0) { 4485 out: 4486 for (index = 0; index < ret; index++) 4487 page_cache_release(pages[index]); 4488 /* just a hole. */ 4489 kfree(pages); 4490 return EXT_CONTINUE; 4491 } 4492 index = 0; 4493 4494 next_page: 4495 /* Try to find the 1st mapped buffer. */ 4496 end = ((__u64)pages[index]->index << PAGE_SHIFT) >> 4497 blksize_bits; 4498 if (!page_has_buffers(pages[index])) 4499 goto out; 4500 head = page_buffers(pages[index]); 4501 if (!head) 4502 goto out; 4503 4504 index++; 4505 bh = head; 4506 do { 4507 if (end >= newex->ec_block + 4508 newex->ec_len) 4509 /* The buffer is out of 4510 * the request range. 4511 */ 4512 goto out; 4513 4514 if (buffer_mapped(bh) && 4515 end >= newex->ec_block) { 4516 start_index = index - 1; 4517 /* get the 1st mapped buffer. */ 4518 goto found_mapped_buffer; 4519 } 4520 4521 bh = bh->b_this_page; 4522 end++; 4523 } while (bh != head); 4524 4525 /* No mapped buffer in the range found in this page, 4526 * We need to look up next page. 4527 */ 4528 if (index >= ret) { 4529 /* There is no page left, but we need to limit 4530 * newex->ec_len. 4531 */ 4532 newex->ec_len = end - newex->ec_block; 4533 goto out; 4534 } 4535 goto next_page; 4536 } else { 4537 /*Find contiguous delayed buffers. */ 4538 if (ret > 0 && pages[0]->index == last_offset) 4539 head = page_buffers(pages[0]); 4540 bh = head; 4541 index = 1; 4542 start_index = 0; 4543 } 4544 4545 found_mapped_buffer: 4546 if (bh != NULL && buffer_delay(bh)) { 4547 /* 1st or contiguous delayed buffer found. */ 4548 if (!(flags & FIEMAP_EXTENT_DELALLOC)) { 4549 /* 4550 * 1st delayed buffer found, record 4551 * the start of extent. 4552 */ 4553 flags |= FIEMAP_EXTENT_DELALLOC; 4554 newex->ec_block = end; 4555 logical = (__u64)end << blksize_bits; 4556 } 4557 /* Find contiguous delayed buffers. */ 4558 do { 4559 if (!buffer_delay(bh)) 4560 goto found_delayed_extent; 4561 bh = bh->b_this_page; 4562 end++; 4563 } while (bh != head); 4564 4565 for (; index < ret; index++) { 4566 if (!page_has_buffers(pages[index])) { 4567 bh = NULL; 4568 break; 4569 } 4570 head = page_buffers(pages[index]); 4571 if (!head) { 4572 bh = NULL; 4573 break; 4574 } 4575 4576 if (pages[index]->index != 4577 pages[start_index]->index + index 4578 - start_index) { 4579 /* Blocks are not contiguous. */ 4580 bh = NULL; 4581 break; 4582 } 4583 bh = head; 4584 do { 4585 if (!buffer_delay(bh)) 4586 /* Delayed-extent ends. */ 4587 goto found_delayed_extent; 4588 bh = bh->b_this_page; 4589 end++; 4590 } while (bh != head); 4591 } 4592 } else if (!(flags & FIEMAP_EXTENT_DELALLOC)) 4593 /* a hole found. */ 4594 goto out; 4595 4596 found_delayed_extent: 4597 newex->ec_len = min(end - newex->ec_block, 4598 (ext4_lblk_t)EXT_INIT_MAX_LEN); 4599 if (ret == nr_pages && bh != NULL && 4600 newex->ec_len < EXT_INIT_MAX_LEN && 4601 buffer_delay(bh)) { 4602 /* Have not collected an extent and continue. */ 4603 for (index = 0; index < ret; index++) 4604 page_cache_release(pages[index]); 4605 goto repeat; 4606 } 4607 4608 for (index = 0; index < ret; index++) 4609 page_cache_release(pages[index]); 4610 kfree(pages); 4611 } 4612 4613 physical = (__u64)newex->ec_start << blksize_bits; 4614 length = (__u64)newex->ec_len << blksize_bits; 4615 4616 if (ex && ext4_ext_is_uninitialized(ex)) 4617 flags |= FIEMAP_EXTENT_UNWRITTEN; 4618 4619 if (next == EXT_MAX_BLOCKS) 4620 flags |= FIEMAP_EXTENT_LAST; 4621 4622 ret = fiemap_fill_next_extent(fieinfo, logical, physical, 4623 length, flags); 4624 if (ret < 0) 4625 return ret; 4626 if (ret == 1) 4627 return EXT_BREAK; 4628 return EXT_CONTINUE; 4629 } 4630 /* fiemap flags we can handle specified here */ 4631 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 4632 4633 static int ext4_xattr_fiemap(struct inode *inode, 4634 struct fiemap_extent_info *fieinfo) 4635 { 4636 __u64 physical = 0; 4637 __u64 length; 4638 __u32 flags = FIEMAP_EXTENT_LAST; 4639 int blockbits = inode->i_sb->s_blocksize_bits; 4640 int error = 0; 4641 4642 /* in-inode? */ 4643 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4644 struct ext4_iloc iloc; 4645 int offset; /* offset of xattr in inode */ 4646 4647 error = ext4_get_inode_loc(inode, &iloc); 4648 if (error) 4649 return error; 4650 physical = iloc.bh->b_blocknr << blockbits; 4651 offset = EXT4_GOOD_OLD_INODE_SIZE + 4652 EXT4_I(inode)->i_extra_isize; 4653 physical += offset; 4654 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4655 flags |= FIEMAP_EXTENT_DATA_INLINE; 4656 brelse(iloc.bh); 4657 } else { /* external block */ 4658 physical = EXT4_I(inode)->i_file_acl << blockbits; 4659 length = inode->i_sb->s_blocksize; 4660 } 4661 4662 if (physical) 4663 error = fiemap_fill_next_extent(fieinfo, 0, physical, 4664 length, flags); 4665 return (error < 0 ? error : 0); 4666 } 4667 4668 /* 4669 * ext4_ext_punch_hole 4670 * 4671 * Punches a hole of "length" bytes in a file starting 4672 * at byte "offset" 4673 * 4674 * @inode: The inode of the file to punch a hole in 4675 * @offset: The starting byte offset of the hole 4676 * @length: The length of the hole 4677 * 4678 * Returns the number of blocks removed or negative on err 4679 */ 4680 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length) 4681 { 4682 struct inode *inode = file->f_path.dentry->d_inode; 4683 struct super_block *sb = inode->i_sb; 4684 ext4_lblk_t first_block, stop_block; 4685 struct address_space *mapping = inode->i_mapping; 4686 handle_t *handle; 4687 loff_t first_page, last_page, page_len; 4688 loff_t first_page_offset, last_page_offset; 4689 int credits, err = 0; 4690 4691 /* No need to punch hole beyond i_size */ 4692 if (offset >= inode->i_size) 4693 return 0; 4694 4695 /* 4696 * If the hole extends beyond i_size, set the hole 4697 * to end after the page that contains i_size 4698 */ 4699 if (offset + length > inode->i_size) { 4700 length = inode->i_size + 4701 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 4702 offset; 4703 } 4704 4705 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 4706 last_page = (offset + length) >> PAGE_CACHE_SHIFT; 4707 4708 first_page_offset = first_page << PAGE_CACHE_SHIFT; 4709 last_page_offset = last_page << PAGE_CACHE_SHIFT; 4710 4711 /* 4712 * Write out all dirty pages to avoid race conditions 4713 * Then release them. 4714 */ 4715 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4716 err = filemap_write_and_wait_range(mapping, 4717 offset, offset + length - 1); 4718 4719 if (err) 4720 return err; 4721 } 4722 4723 /* Now release the pages */ 4724 if (last_page_offset > first_page_offset) { 4725 truncate_inode_pages_range(mapping, first_page_offset, 4726 last_page_offset-1); 4727 } 4728 4729 /* finish any pending end_io work */ 4730 ext4_flush_completed_IO(inode); 4731 4732 credits = ext4_writepage_trans_blocks(inode); 4733 handle = ext4_journal_start(inode, credits); 4734 if (IS_ERR(handle)) 4735 return PTR_ERR(handle); 4736 4737 err = ext4_orphan_add(handle, inode); 4738 if (err) 4739 goto out; 4740 4741 /* 4742 * Now we need to zero out the non-page-aligned data in the 4743 * pages at the start and tail of the hole, and unmap the buffer 4744 * heads for the block aligned regions of the page that were 4745 * completely zeroed. 4746 */ 4747 if (first_page > last_page) { 4748 /* 4749 * If the file space being truncated is contained within a page 4750 * just zero out and unmap the middle of that page 4751 */ 4752 err = ext4_discard_partial_page_buffers(handle, 4753 mapping, offset, length, 0); 4754 4755 if (err) 4756 goto out; 4757 } else { 4758 /* 4759 * zero out and unmap the partial page that contains 4760 * the start of the hole 4761 */ 4762 page_len = first_page_offset - offset; 4763 if (page_len > 0) { 4764 err = ext4_discard_partial_page_buffers(handle, mapping, 4765 offset, page_len, 0); 4766 if (err) 4767 goto out; 4768 } 4769 4770 /* 4771 * zero out and unmap the partial page that contains 4772 * the end of the hole 4773 */ 4774 page_len = offset + length - last_page_offset; 4775 if (page_len > 0) { 4776 err = ext4_discard_partial_page_buffers(handle, mapping, 4777 last_page_offset, page_len, 0); 4778 if (err) 4779 goto out; 4780 } 4781 } 4782 4783 /* 4784 * If i_size is contained in the last page, we need to 4785 * unmap and zero the partial page after i_size 4786 */ 4787 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page && 4788 inode->i_size % PAGE_CACHE_SIZE != 0) { 4789 4790 page_len = PAGE_CACHE_SIZE - 4791 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 4792 4793 if (page_len > 0) { 4794 err = ext4_discard_partial_page_buffers(handle, 4795 mapping, inode->i_size, page_len, 0); 4796 4797 if (err) 4798 goto out; 4799 } 4800 } 4801 4802 first_block = (offset + sb->s_blocksize - 1) >> 4803 EXT4_BLOCK_SIZE_BITS(sb); 4804 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4805 4806 /* If there are no blocks to remove, return now */ 4807 if (first_block >= stop_block) 4808 goto out; 4809 4810 down_write(&EXT4_I(inode)->i_data_sem); 4811 ext4_ext_invalidate_cache(inode); 4812 ext4_discard_preallocations(inode); 4813 4814 err = ext4_ext_remove_space(inode, first_block, stop_block - 1); 4815 4816 ext4_ext_invalidate_cache(inode); 4817 ext4_discard_preallocations(inode); 4818 4819 if (IS_SYNC(inode)) 4820 ext4_handle_sync(handle); 4821 4822 up_write(&EXT4_I(inode)->i_data_sem); 4823 4824 out: 4825 ext4_orphan_del(handle, inode); 4826 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4827 ext4_mark_inode_dirty(handle, inode); 4828 ext4_journal_stop(handle); 4829 return err; 4830 } 4831 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4832 __u64 start, __u64 len) 4833 { 4834 ext4_lblk_t start_blk; 4835 int error = 0; 4836 4837 /* fallback to generic here if not in extents fmt */ 4838 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4839 return generic_block_fiemap(inode, fieinfo, start, len, 4840 ext4_get_block); 4841 4842 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 4843 return -EBADR; 4844 4845 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 4846 error = ext4_xattr_fiemap(inode, fieinfo); 4847 } else { 4848 ext4_lblk_t len_blks; 4849 __u64 last_blk; 4850 4851 start_blk = start >> inode->i_sb->s_blocksize_bits; 4852 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 4853 if (last_blk >= EXT_MAX_BLOCKS) 4854 last_blk = EXT_MAX_BLOCKS-1; 4855 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 4856 4857 /* 4858 * Walk the extent tree gathering extent information. 4859 * ext4_ext_fiemap_cb will push extents back to user. 4860 */ 4861 error = ext4_ext_walk_space(inode, start_blk, len_blks, 4862 ext4_ext_fiemap_cb, fieinfo); 4863 } 4864 4865 return error; 4866 } 4867