xref: /openbmc/linux/fs/ext4/extents.c (revision 600a711c)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 
45 #include <trace/events/ext4.h>
46 
47 /*
48  * used by extent splitting.
49  */
50 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
51 					due to ENOSPC */
52 #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
54 
55 static __le32 ext4_extent_block_csum(struct inode *inode,
56 				     struct ext4_extent_header *eh)
57 {
58 	struct ext4_inode_info *ei = EXT4_I(inode);
59 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
60 	__u32 csum;
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
63 			   EXT4_EXTENT_TAIL_OFFSET(eh));
64 	return cpu_to_le32(csum);
65 }
66 
67 static int ext4_extent_block_csum_verify(struct inode *inode,
68 					 struct ext4_extent_header *eh)
69 {
70 	struct ext4_extent_tail *et;
71 
72 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
73 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
74 		return 1;
75 
76 	et = find_ext4_extent_tail(eh);
77 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
78 		return 0;
79 	return 1;
80 }
81 
82 static void ext4_extent_block_csum_set(struct inode *inode,
83 				       struct ext4_extent_header *eh)
84 {
85 	struct ext4_extent_tail *et;
86 
87 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
88 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
89 		return;
90 
91 	et = find_ext4_extent_tail(eh);
92 	et->et_checksum = ext4_extent_block_csum(inode, eh);
93 }
94 
95 static int ext4_split_extent(handle_t *handle,
96 				struct inode *inode,
97 				struct ext4_ext_path *path,
98 				struct ext4_map_blocks *map,
99 				int split_flag,
100 				int flags);
101 
102 static int ext4_split_extent_at(handle_t *handle,
103 			     struct inode *inode,
104 			     struct ext4_ext_path *path,
105 			     ext4_lblk_t split,
106 			     int split_flag,
107 			     int flags);
108 
109 static int ext4_ext_truncate_extend_restart(handle_t *handle,
110 					    struct inode *inode,
111 					    int needed)
112 {
113 	int err;
114 
115 	if (!ext4_handle_valid(handle))
116 		return 0;
117 	if (handle->h_buffer_credits > needed)
118 		return 0;
119 	err = ext4_journal_extend(handle, needed);
120 	if (err <= 0)
121 		return err;
122 	err = ext4_truncate_restart_trans(handle, inode, needed);
123 	if (err == 0)
124 		err = -EAGAIN;
125 
126 	return err;
127 }
128 
129 /*
130  * could return:
131  *  - EROFS
132  *  - ENOMEM
133  */
134 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
135 				struct ext4_ext_path *path)
136 {
137 	if (path->p_bh) {
138 		/* path points to block */
139 		return ext4_journal_get_write_access(handle, path->p_bh);
140 	}
141 	/* path points to leaf/index in inode body */
142 	/* we use in-core data, no need to protect them */
143 	return 0;
144 }
145 
146 /*
147  * could return:
148  *  - EROFS
149  *  - ENOMEM
150  *  - EIO
151  */
152 #define ext4_ext_dirty(handle, inode, path) \
153 		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
154 static int __ext4_ext_dirty(const char *where, unsigned int line,
155 			    handle_t *handle, struct inode *inode,
156 			    struct ext4_ext_path *path)
157 {
158 	int err;
159 	if (path->p_bh) {
160 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
161 		/* path points to block */
162 		err = __ext4_handle_dirty_metadata(where, line, handle,
163 						   inode, path->p_bh);
164 	} else {
165 		/* path points to leaf/index in inode body */
166 		err = ext4_mark_inode_dirty(handle, inode);
167 	}
168 	return err;
169 }
170 
171 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
172 			      struct ext4_ext_path *path,
173 			      ext4_lblk_t block)
174 {
175 	if (path) {
176 		int depth = path->p_depth;
177 		struct ext4_extent *ex;
178 
179 		/*
180 		 * Try to predict block placement assuming that we are
181 		 * filling in a file which will eventually be
182 		 * non-sparse --- i.e., in the case of libbfd writing
183 		 * an ELF object sections out-of-order but in a way
184 		 * the eventually results in a contiguous object or
185 		 * executable file, or some database extending a table
186 		 * space file.  However, this is actually somewhat
187 		 * non-ideal if we are writing a sparse file such as
188 		 * qemu or KVM writing a raw image file that is going
189 		 * to stay fairly sparse, since it will end up
190 		 * fragmenting the file system's free space.  Maybe we
191 		 * should have some hueristics or some way to allow
192 		 * userspace to pass a hint to file system,
193 		 * especially if the latter case turns out to be
194 		 * common.
195 		 */
196 		ex = path[depth].p_ext;
197 		if (ex) {
198 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
199 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
200 
201 			if (block > ext_block)
202 				return ext_pblk + (block - ext_block);
203 			else
204 				return ext_pblk - (ext_block - block);
205 		}
206 
207 		/* it looks like index is empty;
208 		 * try to find starting block from index itself */
209 		if (path[depth].p_bh)
210 			return path[depth].p_bh->b_blocknr;
211 	}
212 
213 	/* OK. use inode's group */
214 	return ext4_inode_to_goal_block(inode);
215 }
216 
217 /*
218  * Allocation for a meta data block
219  */
220 static ext4_fsblk_t
221 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
222 			struct ext4_ext_path *path,
223 			struct ext4_extent *ex, int *err, unsigned int flags)
224 {
225 	ext4_fsblk_t goal, newblock;
226 
227 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
228 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
229 					NULL, err);
230 	return newblock;
231 }
232 
233 static inline int ext4_ext_space_block(struct inode *inode, int check)
234 {
235 	int size;
236 
237 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
238 			/ sizeof(struct ext4_extent);
239 #ifdef AGGRESSIVE_TEST
240 	if (!check && size > 6)
241 		size = 6;
242 #endif
243 	return size;
244 }
245 
246 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
247 {
248 	int size;
249 
250 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
251 			/ sizeof(struct ext4_extent_idx);
252 #ifdef AGGRESSIVE_TEST
253 	if (!check && size > 5)
254 		size = 5;
255 #endif
256 	return size;
257 }
258 
259 static inline int ext4_ext_space_root(struct inode *inode, int check)
260 {
261 	int size;
262 
263 	size = sizeof(EXT4_I(inode)->i_data);
264 	size -= sizeof(struct ext4_extent_header);
265 	size /= sizeof(struct ext4_extent);
266 #ifdef AGGRESSIVE_TEST
267 	if (!check && size > 3)
268 		size = 3;
269 #endif
270 	return size;
271 }
272 
273 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
274 {
275 	int size;
276 
277 	size = sizeof(EXT4_I(inode)->i_data);
278 	size -= sizeof(struct ext4_extent_header);
279 	size /= sizeof(struct ext4_extent_idx);
280 #ifdef AGGRESSIVE_TEST
281 	if (!check && size > 4)
282 		size = 4;
283 #endif
284 	return size;
285 }
286 
287 /*
288  * Calculate the number of metadata blocks needed
289  * to allocate @blocks
290  * Worse case is one block per extent
291  */
292 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
293 {
294 	struct ext4_inode_info *ei = EXT4_I(inode);
295 	int idxs;
296 
297 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
298 		/ sizeof(struct ext4_extent_idx));
299 
300 	/*
301 	 * If the new delayed allocation block is contiguous with the
302 	 * previous da block, it can share index blocks with the
303 	 * previous block, so we only need to allocate a new index
304 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
305 	 * an additional index block, and at ldxs**3 blocks, yet
306 	 * another index blocks.
307 	 */
308 	if (ei->i_da_metadata_calc_len &&
309 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
310 		int num = 0;
311 
312 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
313 			num++;
314 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
315 			num++;
316 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
317 			num++;
318 			ei->i_da_metadata_calc_len = 0;
319 		} else
320 			ei->i_da_metadata_calc_len++;
321 		ei->i_da_metadata_calc_last_lblock++;
322 		return num;
323 	}
324 
325 	/*
326 	 * In the worst case we need a new set of index blocks at
327 	 * every level of the inode's extent tree.
328 	 */
329 	ei->i_da_metadata_calc_len = 1;
330 	ei->i_da_metadata_calc_last_lblock = lblock;
331 	return ext_depth(inode) + 1;
332 }
333 
334 static int
335 ext4_ext_max_entries(struct inode *inode, int depth)
336 {
337 	int max;
338 
339 	if (depth == ext_depth(inode)) {
340 		if (depth == 0)
341 			max = ext4_ext_space_root(inode, 1);
342 		else
343 			max = ext4_ext_space_root_idx(inode, 1);
344 	} else {
345 		if (depth == 0)
346 			max = ext4_ext_space_block(inode, 1);
347 		else
348 			max = ext4_ext_space_block_idx(inode, 1);
349 	}
350 
351 	return max;
352 }
353 
354 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
355 {
356 	ext4_fsblk_t block = ext4_ext_pblock(ext);
357 	int len = ext4_ext_get_actual_len(ext);
358 
359 	if (len == 0)
360 		return 0;
361 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
362 }
363 
364 static int ext4_valid_extent_idx(struct inode *inode,
365 				struct ext4_extent_idx *ext_idx)
366 {
367 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
368 
369 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
370 }
371 
372 static int ext4_valid_extent_entries(struct inode *inode,
373 				struct ext4_extent_header *eh,
374 				int depth)
375 {
376 	unsigned short entries;
377 	if (eh->eh_entries == 0)
378 		return 1;
379 
380 	entries = le16_to_cpu(eh->eh_entries);
381 
382 	if (depth == 0) {
383 		/* leaf entries */
384 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
385 		while (entries) {
386 			if (!ext4_valid_extent(inode, ext))
387 				return 0;
388 			ext++;
389 			entries--;
390 		}
391 	} else {
392 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
393 		while (entries) {
394 			if (!ext4_valid_extent_idx(inode, ext_idx))
395 				return 0;
396 			ext_idx++;
397 			entries--;
398 		}
399 	}
400 	return 1;
401 }
402 
403 static int __ext4_ext_check(const char *function, unsigned int line,
404 			    struct inode *inode, struct ext4_extent_header *eh,
405 			    int depth)
406 {
407 	const char *error_msg;
408 	int max = 0;
409 
410 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
411 		error_msg = "invalid magic";
412 		goto corrupted;
413 	}
414 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
415 		error_msg = "unexpected eh_depth";
416 		goto corrupted;
417 	}
418 	if (unlikely(eh->eh_max == 0)) {
419 		error_msg = "invalid eh_max";
420 		goto corrupted;
421 	}
422 	max = ext4_ext_max_entries(inode, depth);
423 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
424 		error_msg = "too large eh_max";
425 		goto corrupted;
426 	}
427 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
428 		error_msg = "invalid eh_entries";
429 		goto corrupted;
430 	}
431 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
432 		error_msg = "invalid extent entries";
433 		goto corrupted;
434 	}
435 	/* Verify checksum on non-root extent tree nodes */
436 	if (ext_depth(inode) != depth &&
437 	    !ext4_extent_block_csum_verify(inode, eh)) {
438 		error_msg = "extent tree corrupted";
439 		goto corrupted;
440 	}
441 	return 0;
442 
443 corrupted:
444 	ext4_error_inode(inode, function, line, 0,
445 			"bad header/extent: %s - magic %x, "
446 			"entries %u, max %u(%u), depth %u(%u)",
447 			error_msg, le16_to_cpu(eh->eh_magic),
448 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
449 			max, le16_to_cpu(eh->eh_depth), depth);
450 
451 	return -EIO;
452 }
453 
454 #define ext4_ext_check(inode, eh, depth)	\
455 	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
456 
457 int ext4_ext_check_inode(struct inode *inode)
458 {
459 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
460 }
461 
462 static int __ext4_ext_check_block(const char *function, unsigned int line,
463 				  struct inode *inode,
464 				  struct ext4_extent_header *eh,
465 				  int depth,
466 				  struct buffer_head *bh)
467 {
468 	int ret;
469 
470 	if (buffer_verified(bh))
471 		return 0;
472 	ret = ext4_ext_check(inode, eh, depth);
473 	if (ret)
474 		return ret;
475 	set_buffer_verified(bh);
476 	return ret;
477 }
478 
479 #define ext4_ext_check_block(inode, eh, depth, bh)	\
480 	__ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
481 
482 #ifdef EXT_DEBUG
483 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
484 {
485 	int k, l = path->p_depth;
486 
487 	ext_debug("path:");
488 	for (k = 0; k <= l; k++, path++) {
489 		if (path->p_idx) {
490 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
491 			    ext4_idx_pblock(path->p_idx));
492 		} else if (path->p_ext) {
493 			ext_debug("  %d:[%d]%d:%llu ",
494 				  le32_to_cpu(path->p_ext->ee_block),
495 				  ext4_ext_is_uninitialized(path->p_ext),
496 				  ext4_ext_get_actual_len(path->p_ext),
497 				  ext4_ext_pblock(path->p_ext));
498 		} else
499 			ext_debug("  []");
500 	}
501 	ext_debug("\n");
502 }
503 
504 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
505 {
506 	int depth = ext_depth(inode);
507 	struct ext4_extent_header *eh;
508 	struct ext4_extent *ex;
509 	int i;
510 
511 	if (!path)
512 		return;
513 
514 	eh = path[depth].p_hdr;
515 	ex = EXT_FIRST_EXTENT(eh);
516 
517 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
518 
519 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
520 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
521 			  ext4_ext_is_uninitialized(ex),
522 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
523 	}
524 	ext_debug("\n");
525 }
526 
527 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
528 			ext4_fsblk_t newblock, int level)
529 {
530 	int depth = ext_depth(inode);
531 	struct ext4_extent *ex;
532 
533 	if (depth != level) {
534 		struct ext4_extent_idx *idx;
535 		idx = path[level].p_idx;
536 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
537 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
538 					le32_to_cpu(idx->ei_block),
539 					ext4_idx_pblock(idx),
540 					newblock);
541 			idx++;
542 		}
543 
544 		return;
545 	}
546 
547 	ex = path[depth].p_ext;
548 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
549 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
550 				le32_to_cpu(ex->ee_block),
551 				ext4_ext_pblock(ex),
552 				ext4_ext_is_uninitialized(ex),
553 				ext4_ext_get_actual_len(ex),
554 				newblock);
555 		ex++;
556 	}
557 }
558 
559 #else
560 #define ext4_ext_show_path(inode, path)
561 #define ext4_ext_show_leaf(inode, path)
562 #define ext4_ext_show_move(inode, path, newblock, level)
563 #endif
564 
565 void ext4_ext_drop_refs(struct ext4_ext_path *path)
566 {
567 	int depth = path->p_depth;
568 	int i;
569 
570 	for (i = 0; i <= depth; i++, path++)
571 		if (path->p_bh) {
572 			brelse(path->p_bh);
573 			path->p_bh = NULL;
574 		}
575 }
576 
577 /*
578  * ext4_ext_binsearch_idx:
579  * binary search for the closest index of the given block
580  * the header must be checked before calling this
581  */
582 static void
583 ext4_ext_binsearch_idx(struct inode *inode,
584 			struct ext4_ext_path *path, ext4_lblk_t block)
585 {
586 	struct ext4_extent_header *eh = path->p_hdr;
587 	struct ext4_extent_idx *r, *l, *m;
588 
589 
590 	ext_debug("binsearch for %u(idx):  ", block);
591 
592 	l = EXT_FIRST_INDEX(eh) + 1;
593 	r = EXT_LAST_INDEX(eh);
594 	while (l <= r) {
595 		m = l + (r - l) / 2;
596 		if (block < le32_to_cpu(m->ei_block))
597 			r = m - 1;
598 		else
599 			l = m + 1;
600 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
601 				m, le32_to_cpu(m->ei_block),
602 				r, le32_to_cpu(r->ei_block));
603 	}
604 
605 	path->p_idx = l - 1;
606 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
607 		  ext4_idx_pblock(path->p_idx));
608 
609 #ifdef CHECK_BINSEARCH
610 	{
611 		struct ext4_extent_idx *chix, *ix;
612 		int k;
613 
614 		chix = ix = EXT_FIRST_INDEX(eh);
615 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
616 		  if (k != 0 &&
617 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
618 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
619 				       "first=0x%p\n", k,
620 				       ix, EXT_FIRST_INDEX(eh));
621 				printk(KERN_DEBUG "%u <= %u\n",
622 				       le32_to_cpu(ix->ei_block),
623 				       le32_to_cpu(ix[-1].ei_block));
624 			}
625 			BUG_ON(k && le32_to_cpu(ix->ei_block)
626 					   <= le32_to_cpu(ix[-1].ei_block));
627 			if (block < le32_to_cpu(ix->ei_block))
628 				break;
629 			chix = ix;
630 		}
631 		BUG_ON(chix != path->p_idx);
632 	}
633 #endif
634 
635 }
636 
637 /*
638  * ext4_ext_binsearch:
639  * binary search for closest extent of the given block
640  * the header must be checked before calling this
641  */
642 static void
643 ext4_ext_binsearch(struct inode *inode,
644 		struct ext4_ext_path *path, ext4_lblk_t block)
645 {
646 	struct ext4_extent_header *eh = path->p_hdr;
647 	struct ext4_extent *r, *l, *m;
648 
649 	if (eh->eh_entries == 0) {
650 		/*
651 		 * this leaf is empty:
652 		 * we get such a leaf in split/add case
653 		 */
654 		return;
655 	}
656 
657 	ext_debug("binsearch for %u:  ", block);
658 
659 	l = EXT_FIRST_EXTENT(eh) + 1;
660 	r = EXT_LAST_EXTENT(eh);
661 
662 	while (l <= r) {
663 		m = l + (r - l) / 2;
664 		if (block < le32_to_cpu(m->ee_block))
665 			r = m - 1;
666 		else
667 			l = m + 1;
668 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
669 				m, le32_to_cpu(m->ee_block),
670 				r, le32_to_cpu(r->ee_block));
671 	}
672 
673 	path->p_ext = l - 1;
674 	ext_debug("  -> %d:%llu:[%d]%d ",
675 			le32_to_cpu(path->p_ext->ee_block),
676 			ext4_ext_pblock(path->p_ext),
677 			ext4_ext_is_uninitialized(path->p_ext),
678 			ext4_ext_get_actual_len(path->p_ext));
679 
680 #ifdef CHECK_BINSEARCH
681 	{
682 		struct ext4_extent *chex, *ex;
683 		int k;
684 
685 		chex = ex = EXT_FIRST_EXTENT(eh);
686 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
687 			BUG_ON(k && le32_to_cpu(ex->ee_block)
688 					  <= le32_to_cpu(ex[-1].ee_block));
689 			if (block < le32_to_cpu(ex->ee_block))
690 				break;
691 			chex = ex;
692 		}
693 		BUG_ON(chex != path->p_ext);
694 	}
695 #endif
696 
697 }
698 
699 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
700 {
701 	struct ext4_extent_header *eh;
702 
703 	eh = ext_inode_hdr(inode);
704 	eh->eh_depth = 0;
705 	eh->eh_entries = 0;
706 	eh->eh_magic = EXT4_EXT_MAGIC;
707 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
708 	ext4_mark_inode_dirty(handle, inode);
709 	ext4_ext_invalidate_cache(inode);
710 	return 0;
711 }
712 
713 struct ext4_ext_path *
714 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
715 					struct ext4_ext_path *path)
716 {
717 	struct ext4_extent_header *eh;
718 	struct buffer_head *bh;
719 	short int depth, i, ppos = 0, alloc = 0;
720 
721 	eh = ext_inode_hdr(inode);
722 	depth = ext_depth(inode);
723 
724 	/* account possible depth increase */
725 	if (!path) {
726 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
727 				GFP_NOFS);
728 		if (!path)
729 			return ERR_PTR(-ENOMEM);
730 		alloc = 1;
731 	}
732 	path[0].p_hdr = eh;
733 	path[0].p_bh = NULL;
734 
735 	i = depth;
736 	/* walk through the tree */
737 	while (i) {
738 		ext_debug("depth %d: num %d, max %d\n",
739 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
740 
741 		ext4_ext_binsearch_idx(inode, path + ppos, block);
742 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
743 		path[ppos].p_depth = i;
744 		path[ppos].p_ext = NULL;
745 
746 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
747 		if (unlikely(!bh))
748 			goto err;
749 		if (!bh_uptodate_or_lock(bh)) {
750 			trace_ext4_ext_load_extent(inode, block,
751 						path[ppos].p_block);
752 			if (bh_submit_read(bh) < 0) {
753 				put_bh(bh);
754 				goto err;
755 			}
756 		}
757 		eh = ext_block_hdr(bh);
758 		ppos++;
759 		if (unlikely(ppos > depth)) {
760 			put_bh(bh);
761 			EXT4_ERROR_INODE(inode,
762 					 "ppos %d > depth %d", ppos, depth);
763 			goto err;
764 		}
765 		path[ppos].p_bh = bh;
766 		path[ppos].p_hdr = eh;
767 		i--;
768 
769 		if (ext4_ext_check_block(inode, eh, i, bh))
770 			goto err;
771 	}
772 
773 	path[ppos].p_depth = i;
774 	path[ppos].p_ext = NULL;
775 	path[ppos].p_idx = NULL;
776 
777 	/* find extent */
778 	ext4_ext_binsearch(inode, path + ppos, block);
779 	/* if not an empty leaf */
780 	if (path[ppos].p_ext)
781 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
782 
783 	ext4_ext_show_path(inode, path);
784 
785 	return path;
786 
787 err:
788 	ext4_ext_drop_refs(path);
789 	if (alloc)
790 		kfree(path);
791 	return ERR_PTR(-EIO);
792 }
793 
794 /*
795  * ext4_ext_insert_index:
796  * insert new index [@logical;@ptr] into the block at @curp;
797  * check where to insert: before @curp or after @curp
798  */
799 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
800 				 struct ext4_ext_path *curp,
801 				 int logical, ext4_fsblk_t ptr)
802 {
803 	struct ext4_extent_idx *ix;
804 	int len, err;
805 
806 	err = ext4_ext_get_access(handle, inode, curp);
807 	if (err)
808 		return err;
809 
810 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
811 		EXT4_ERROR_INODE(inode,
812 				 "logical %d == ei_block %d!",
813 				 logical, le32_to_cpu(curp->p_idx->ei_block));
814 		return -EIO;
815 	}
816 
817 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
818 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
819 		EXT4_ERROR_INODE(inode,
820 				 "eh_entries %d >= eh_max %d!",
821 				 le16_to_cpu(curp->p_hdr->eh_entries),
822 				 le16_to_cpu(curp->p_hdr->eh_max));
823 		return -EIO;
824 	}
825 
826 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
827 		/* insert after */
828 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
829 		ix = curp->p_idx + 1;
830 	} else {
831 		/* insert before */
832 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
833 		ix = curp->p_idx;
834 	}
835 
836 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
837 	BUG_ON(len < 0);
838 	if (len > 0) {
839 		ext_debug("insert new index %d: "
840 				"move %d indices from 0x%p to 0x%p\n",
841 				logical, len, ix, ix + 1);
842 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
843 	}
844 
845 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
846 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
847 		return -EIO;
848 	}
849 
850 	ix->ei_block = cpu_to_le32(logical);
851 	ext4_idx_store_pblock(ix, ptr);
852 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
853 
854 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
855 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
856 		return -EIO;
857 	}
858 
859 	err = ext4_ext_dirty(handle, inode, curp);
860 	ext4_std_error(inode->i_sb, err);
861 
862 	return err;
863 }
864 
865 /*
866  * ext4_ext_split:
867  * inserts new subtree into the path, using free index entry
868  * at depth @at:
869  * - allocates all needed blocks (new leaf and all intermediate index blocks)
870  * - makes decision where to split
871  * - moves remaining extents and index entries (right to the split point)
872  *   into the newly allocated blocks
873  * - initializes subtree
874  */
875 static int ext4_ext_split(handle_t *handle, struct inode *inode,
876 			  unsigned int flags,
877 			  struct ext4_ext_path *path,
878 			  struct ext4_extent *newext, int at)
879 {
880 	struct buffer_head *bh = NULL;
881 	int depth = ext_depth(inode);
882 	struct ext4_extent_header *neh;
883 	struct ext4_extent_idx *fidx;
884 	int i = at, k, m, a;
885 	ext4_fsblk_t newblock, oldblock;
886 	__le32 border;
887 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
888 	int err = 0;
889 
890 	/* make decision: where to split? */
891 	/* FIXME: now decision is simplest: at current extent */
892 
893 	/* if current leaf will be split, then we should use
894 	 * border from split point */
895 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
896 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
897 		return -EIO;
898 	}
899 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
900 		border = path[depth].p_ext[1].ee_block;
901 		ext_debug("leaf will be split."
902 				" next leaf starts at %d\n",
903 				  le32_to_cpu(border));
904 	} else {
905 		border = newext->ee_block;
906 		ext_debug("leaf will be added."
907 				" next leaf starts at %d\n",
908 				le32_to_cpu(border));
909 	}
910 
911 	/*
912 	 * If error occurs, then we break processing
913 	 * and mark filesystem read-only. index won't
914 	 * be inserted and tree will be in consistent
915 	 * state. Next mount will repair buffers too.
916 	 */
917 
918 	/*
919 	 * Get array to track all allocated blocks.
920 	 * We need this to handle errors and free blocks
921 	 * upon them.
922 	 */
923 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
924 	if (!ablocks)
925 		return -ENOMEM;
926 
927 	/* allocate all needed blocks */
928 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
929 	for (a = 0; a < depth - at; a++) {
930 		newblock = ext4_ext_new_meta_block(handle, inode, path,
931 						   newext, &err, flags);
932 		if (newblock == 0)
933 			goto cleanup;
934 		ablocks[a] = newblock;
935 	}
936 
937 	/* initialize new leaf */
938 	newblock = ablocks[--a];
939 	if (unlikely(newblock == 0)) {
940 		EXT4_ERROR_INODE(inode, "newblock == 0!");
941 		err = -EIO;
942 		goto cleanup;
943 	}
944 	bh = sb_getblk(inode->i_sb, newblock);
945 	if (!bh) {
946 		err = -EIO;
947 		goto cleanup;
948 	}
949 	lock_buffer(bh);
950 
951 	err = ext4_journal_get_create_access(handle, bh);
952 	if (err)
953 		goto cleanup;
954 
955 	neh = ext_block_hdr(bh);
956 	neh->eh_entries = 0;
957 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
958 	neh->eh_magic = EXT4_EXT_MAGIC;
959 	neh->eh_depth = 0;
960 
961 	/* move remainder of path[depth] to the new leaf */
962 	if (unlikely(path[depth].p_hdr->eh_entries !=
963 		     path[depth].p_hdr->eh_max)) {
964 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
965 				 path[depth].p_hdr->eh_entries,
966 				 path[depth].p_hdr->eh_max);
967 		err = -EIO;
968 		goto cleanup;
969 	}
970 	/* start copy from next extent */
971 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
972 	ext4_ext_show_move(inode, path, newblock, depth);
973 	if (m) {
974 		struct ext4_extent *ex;
975 		ex = EXT_FIRST_EXTENT(neh);
976 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
977 		le16_add_cpu(&neh->eh_entries, m);
978 	}
979 
980 	ext4_extent_block_csum_set(inode, neh);
981 	set_buffer_uptodate(bh);
982 	unlock_buffer(bh);
983 
984 	err = ext4_handle_dirty_metadata(handle, inode, bh);
985 	if (err)
986 		goto cleanup;
987 	brelse(bh);
988 	bh = NULL;
989 
990 	/* correct old leaf */
991 	if (m) {
992 		err = ext4_ext_get_access(handle, inode, path + depth);
993 		if (err)
994 			goto cleanup;
995 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
996 		err = ext4_ext_dirty(handle, inode, path + depth);
997 		if (err)
998 			goto cleanup;
999 
1000 	}
1001 
1002 	/* create intermediate indexes */
1003 	k = depth - at - 1;
1004 	if (unlikely(k < 0)) {
1005 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1006 		err = -EIO;
1007 		goto cleanup;
1008 	}
1009 	if (k)
1010 		ext_debug("create %d intermediate indices\n", k);
1011 	/* insert new index into current index block */
1012 	/* current depth stored in i var */
1013 	i = depth - 1;
1014 	while (k--) {
1015 		oldblock = newblock;
1016 		newblock = ablocks[--a];
1017 		bh = sb_getblk(inode->i_sb, newblock);
1018 		if (!bh) {
1019 			err = -EIO;
1020 			goto cleanup;
1021 		}
1022 		lock_buffer(bh);
1023 
1024 		err = ext4_journal_get_create_access(handle, bh);
1025 		if (err)
1026 			goto cleanup;
1027 
1028 		neh = ext_block_hdr(bh);
1029 		neh->eh_entries = cpu_to_le16(1);
1030 		neh->eh_magic = EXT4_EXT_MAGIC;
1031 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1032 		neh->eh_depth = cpu_to_le16(depth - i);
1033 		fidx = EXT_FIRST_INDEX(neh);
1034 		fidx->ei_block = border;
1035 		ext4_idx_store_pblock(fidx, oldblock);
1036 
1037 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1038 				i, newblock, le32_to_cpu(border), oldblock);
1039 
1040 		/* move remainder of path[i] to the new index block */
1041 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1042 					EXT_LAST_INDEX(path[i].p_hdr))) {
1043 			EXT4_ERROR_INODE(inode,
1044 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1045 					 le32_to_cpu(path[i].p_ext->ee_block));
1046 			err = -EIO;
1047 			goto cleanup;
1048 		}
1049 		/* start copy indexes */
1050 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1051 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1052 				EXT_MAX_INDEX(path[i].p_hdr));
1053 		ext4_ext_show_move(inode, path, newblock, i);
1054 		if (m) {
1055 			memmove(++fidx, path[i].p_idx,
1056 				sizeof(struct ext4_extent_idx) * m);
1057 			le16_add_cpu(&neh->eh_entries, m);
1058 		}
1059 		ext4_extent_block_csum_set(inode, neh);
1060 		set_buffer_uptodate(bh);
1061 		unlock_buffer(bh);
1062 
1063 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1064 		if (err)
1065 			goto cleanup;
1066 		brelse(bh);
1067 		bh = NULL;
1068 
1069 		/* correct old index */
1070 		if (m) {
1071 			err = ext4_ext_get_access(handle, inode, path + i);
1072 			if (err)
1073 				goto cleanup;
1074 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1075 			err = ext4_ext_dirty(handle, inode, path + i);
1076 			if (err)
1077 				goto cleanup;
1078 		}
1079 
1080 		i--;
1081 	}
1082 
1083 	/* insert new index */
1084 	err = ext4_ext_insert_index(handle, inode, path + at,
1085 				    le32_to_cpu(border), newblock);
1086 
1087 cleanup:
1088 	if (bh) {
1089 		if (buffer_locked(bh))
1090 			unlock_buffer(bh);
1091 		brelse(bh);
1092 	}
1093 
1094 	if (err) {
1095 		/* free all allocated blocks in error case */
1096 		for (i = 0; i < depth; i++) {
1097 			if (!ablocks[i])
1098 				continue;
1099 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1100 					 EXT4_FREE_BLOCKS_METADATA);
1101 		}
1102 	}
1103 	kfree(ablocks);
1104 
1105 	return err;
1106 }
1107 
1108 /*
1109  * ext4_ext_grow_indepth:
1110  * implements tree growing procedure:
1111  * - allocates new block
1112  * - moves top-level data (index block or leaf) into the new block
1113  * - initializes new top-level, creating index that points to the
1114  *   just created block
1115  */
1116 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1117 				 unsigned int flags,
1118 				 struct ext4_extent *newext)
1119 {
1120 	struct ext4_extent_header *neh;
1121 	struct buffer_head *bh;
1122 	ext4_fsblk_t newblock;
1123 	int err = 0;
1124 
1125 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1126 		newext, &err, flags);
1127 	if (newblock == 0)
1128 		return err;
1129 
1130 	bh = sb_getblk(inode->i_sb, newblock);
1131 	if (!bh) {
1132 		err = -EIO;
1133 		ext4_std_error(inode->i_sb, err);
1134 		return err;
1135 	}
1136 	lock_buffer(bh);
1137 
1138 	err = ext4_journal_get_create_access(handle, bh);
1139 	if (err) {
1140 		unlock_buffer(bh);
1141 		goto out;
1142 	}
1143 
1144 	/* move top-level index/leaf into new block */
1145 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1146 		sizeof(EXT4_I(inode)->i_data));
1147 
1148 	/* set size of new block */
1149 	neh = ext_block_hdr(bh);
1150 	/* old root could have indexes or leaves
1151 	 * so calculate e_max right way */
1152 	if (ext_depth(inode))
1153 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1154 	else
1155 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1156 	neh->eh_magic = EXT4_EXT_MAGIC;
1157 	ext4_extent_block_csum_set(inode, neh);
1158 	set_buffer_uptodate(bh);
1159 	unlock_buffer(bh);
1160 
1161 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1162 	if (err)
1163 		goto out;
1164 
1165 	/* Update top-level index: num,max,pointer */
1166 	neh = ext_inode_hdr(inode);
1167 	neh->eh_entries = cpu_to_le16(1);
1168 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1169 	if (neh->eh_depth == 0) {
1170 		/* Root extent block becomes index block */
1171 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1172 		EXT_FIRST_INDEX(neh)->ei_block =
1173 			EXT_FIRST_EXTENT(neh)->ee_block;
1174 	}
1175 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1176 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1177 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1178 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1179 
1180 	neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1181 	ext4_mark_inode_dirty(handle, inode);
1182 out:
1183 	brelse(bh);
1184 
1185 	return err;
1186 }
1187 
1188 /*
1189  * ext4_ext_create_new_leaf:
1190  * finds empty index and adds new leaf.
1191  * if no free index is found, then it requests in-depth growing.
1192  */
1193 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1194 				    unsigned int flags,
1195 				    struct ext4_ext_path *path,
1196 				    struct ext4_extent *newext)
1197 {
1198 	struct ext4_ext_path *curp;
1199 	int depth, i, err = 0;
1200 
1201 repeat:
1202 	i = depth = ext_depth(inode);
1203 
1204 	/* walk up to the tree and look for free index entry */
1205 	curp = path + depth;
1206 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1207 		i--;
1208 		curp--;
1209 	}
1210 
1211 	/* we use already allocated block for index block,
1212 	 * so subsequent data blocks should be contiguous */
1213 	if (EXT_HAS_FREE_INDEX(curp)) {
1214 		/* if we found index with free entry, then use that
1215 		 * entry: create all needed subtree and add new leaf */
1216 		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1217 		if (err)
1218 			goto out;
1219 
1220 		/* refill path */
1221 		ext4_ext_drop_refs(path);
1222 		path = ext4_ext_find_extent(inode,
1223 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1224 				    path);
1225 		if (IS_ERR(path))
1226 			err = PTR_ERR(path);
1227 	} else {
1228 		/* tree is full, time to grow in depth */
1229 		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1230 		if (err)
1231 			goto out;
1232 
1233 		/* refill path */
1234 		ext4_ext_drop_refs(path);
1235 		path = ext4_ext_find_extent(inode,
1236 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1237 				    path);
1238 		if (IS_ERR(path)) {
1239 			err = PTR_ERR(path);
1240 			goto out;
1241 		}
1242 
1243 		/*
1244 		 * only first (depth 0 -> 1) produces free space;
1245 		 * in all other cases we have to split the grown tree
1246 		 */
1247 		depth = ext_depth(inode);
1248 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1249 			/* now we need to split */
1250 			goto repeat;
1251 		}
1252 	}
1253 
1254 out:
1255 	return err;
1256 }
1257 
1258 /*
1259  * search the closest allocated block to the left for *logical
1260  * and returns it at @logical + it's physical address at @phys
1261  * if *logical is the smallest allocated block, the function
1262  * returns 0 at @phys
1263  * return value contains 0 (success) or error code
1264  */
1265 static int ext4_ext_search_left(struct inode *inode,
1266 				struct ext4_ext_path *path,
1267 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1268 {
1269 	struct ext4_extent_idx *ix;
1270 	struct ext4_extent *ex;
1271 	int depth, ee_len;
1272 
1273 	if (unlikely(path == NULL)) {
1274 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1275 		return -EIO;
1276 	}
1277 	depth = path->p_depth;
1278 	*phys = 0;
1279 
1280 	if (depth == 0 && path->p_ext == NULL)
1281 		return 0;
1282 
1283 	/* usually extent in the path covers blocks smaller
1284 	 * then *logical, but it can be that extent is the
1285 	 * first one in the file */
1286 
1287 	ex = path[depth].p_ext;
1288 	ee_len = ext4_ext_get_actual_len(ex);
1289 	if (*logical < le32_to_cpu(ex->ee_block)) {
1290 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1291 			EXT4_ERROR_INODE(inode,
1292 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1293 					 *logical, le32_to_cpu(ex->ee_block));
1294 			return -EIO;
1295 		}
1296 		while (--depth >= 0) {
1297 			ix = path[depth].p_idx;
1298 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1299 				EXT4_ERROR_INODE(inode,
1300 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1301 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1302 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1303 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1304 				  depth);
1305 				return -EIO;
1306 			}
1307 		}
1308 		return 0;
1309 	}
1310 
1311 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1312 		EXT4_ERROR_INODE(inode,
1313 				 "logical %d < ee_block %d + ee_len %d!",
1314 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1315 		return -EIO;
1316 	}
1317 
1318 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1319 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1320 	return 0;
1321 }
1322 
1323 /*
1324  * search the closest allocated block to the right for *logical
1325  * and returns it at @logical + it's physical address at @phys
1326  * if *logical is the largest allocated block, the function
1327  * returns 0 at @phys
1328  * return value contains 0 (success) or error code
1329  */
1330 static int ext4_ext_search_right(struct inode *inode,
1331 				 struct ext4_ext_path *path,
1332 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1333 				 struct ext4_extent **ret_ex)
1334 {
1335 	struct buffer_head *bh = NULL;
1336 	struct ext4_extent_header *eh;
1337 	struct ext4_extent_idx *ix;
1338 	struct ext4_extent *ex;
1339 	ext4_fsblk_t block;
1340 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1341 	int ee_len;
1342 
1343 	if (unlikely(path == NULL)) {
1344 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1345 		return -EIO;
1346 	}
1347 	depth = path->p_depth;
1348 	*phys = 0;
1349 
1350 	if (depth == 0 && path->p_ext == NULL)
1351 		return 0;
1352 
1353 	/* usually extent in the path covers blocks smaller
1354 	 * then *logical, but it can be that extent is the
1355 	 * first one in the file */
1356 
1357 	ex = path[depth].p_ext;
1358 	ee_len = ext4_ext_get_actual_len(ex);
1359 	if (*logical < le32_to_cpu(ex->ee_block)) {
1360 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1361 			EXT4_ERROR_INODE(inode,
1362 					 "first_extent(path[%d].p_hdr) != ex",
1363 					 depth);
1364 			return -EIO;
1365 		}
1366 		while (--depth >= 0) {
1367 			ix = path[depth].p_idx;
1368 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1369 				EXT4_ERROR_INODE(inode,
1370 						 "ix != EXT_FIRST_INDEX *logical %d!",
1371 						 *logical);
1372 				return -EIO;
1373 			}
1374 		}
1375 		goto found_extent;
1376 	}
1377 
1378 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1379 		EXT4_ERROR_INODE(inode,
1380 				 "logical %d < ee_block %d + ee_len %d!",
1381 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1382 		return -EIO;
1383 	}
1384 
1385 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1386 		/* next allocated block in this leaf */
1387 		ex++;
1388 		goto found_extent;
1389 	}
1390 
1391 	/* go up and search for index to the right */
1392 	while (--depth >= 0) {
1393 		ix = path[depth].p_idx;
1394 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1395 			goto got_index;
1396 	}
1397 
1398 	/* we've gone up to the root and found no index to the right */
1399 	return 0;
1400 
1401 got_index:
1402 	/* we've found index to the right, let's
1403 	 * follow it and find the closest allocated
1404 	 * block to the right */
1405 	ix++;
1406 	block = ext4_idx_pblock(ix);
1407 	while (++depth < path->p_depth) {
1408 		bh = sb_bread(inode->i_sb, block);
1409 		if (bh == NULL)
1410 			return -EIO;
1411 		eh = ext_block_hdr(bh);
1412 		/* subtract from p_depth to get proper eh_depth */
1413 		if (ext4_ext_check_block(inode, eh,
1414 					 path->p_depth - depth, bh)) {
1415 			put_bh(bh);
1416 			return -EIO;
1417 		}
1418 		ix = EXT_FIRST_INDEX(eh);
1419 		block = ext4_idx_pblock(ix);
1420 		put_bh(bh);
1421 	}
1422 
1423 	bh = sb_bread(inode->i_sb, block);
1424 	if (bh == NULL)
1425 		return -EIO;
1426 	eh = ext_block_hdr(bh);
1427 	if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1428 		put_bh(bh);
1429 		return -EIO;
1430 	}
1431 	ex = EXT_FIRST_EXTENT(eh);
1432 found_extent:
1433 	*logical = le32_to_cpu(ex->ee_block);
1434 	*phys = ext4_ext_pblock(ex);
1435 	*ret_ex = ex;
1436 	if (bh)
1437 		put_bh(bh);
1438 	return 0;
1439 }
1440 
1441 /*
1442  * ext4_ext_next_allocated_block:
1443  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1444  * NOTE: it considers block number from index entry as
1445  * allocated block. Thus, index entries have to be consistent
1446  * with leaves.
1447  */
1448 static ext4_lblk_t
1449 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1450 {
1451 	int depth;
1452 
1453 	BUG_ON(path == NULL);
1454 	depth = path->p_depth;
1455 
1456 	if (depth == 0 && path->p_ext == NULL)
1457 		return EXT_MAX_BLOCKS;
1458 
1459 	while (depth >= 0) {
1460 		if (depth == path->p_depth) {
1461 			/* leaf */
1462 			if (path[depth].p_ext &&
1463 				path[depth].p_ext !=
1464 					EXT_LAST_EXTENT(path[depth].p_hdr))
1465 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1466 		} else {
1467 			/* index */
1468 			if (path[depth].p_idx !=
1469 					EXT_LAST_INDEX(path[depth].p_hdr))
1470 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1471 		}
1472 		depth--;
1473 	}
1474 
1475 	return EXT_MAX_BLOCKS;
1476 }
1477 
1478 /*
1479  * ext4_ext_next_leaf_block:
1480  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1481  */
1482 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1483 {
1484 	int depth;
1485 
1486 	BUG_ON(path == NULL);
1487 	depth = path->p_depth;
1488 
1489 	/* zero-tree has no leaf blocks at all */
1490 	if (depth == 0)
1491 		return EXT_MAX_BLOCKS;
1492 
1493 	/* go to index block */
1494 	depth--;
1495 
1496 	while (depth >= 0) {
1497 		if (path[depth].p_idx !=
1498 				EXT_LAST_INDEX(path[depth].p_hdr))
1499 			return (ext4_lblk_t)
1500 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1501 		depth--;
1502 	}
1503 
1504 	return EXT_MAX_BLOCKS;
1505 }
1506 
1507 /*
1508  * ext4_ext_correct_indexes:
1509  * if leaf gets modified and modified extent is first in the leaf,
1510  * then we have to correct all indexes above.
1511  * TODO: do we need to correct tree in all cases?
1512  */
1513 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1514 				struct ext4_ext_path *path)
1515 {
1516 	struct ext4_extent_header *eh;
1517 	int depth = ext_depth(inode);
1518 	struct ext4_extent *ex;
1519 	__le32 border;
1520 	int k, err = 0;
1521 
1522 	eh = path[depth].p_hdr;
1523 	ex = path[depth].p_ext;
1524 
1525 	if (unlikely(ex == NULL || eh == NULL)) {
1526 		EXT4_ERROR_INODE(inode,
1527 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1528 		return -EIO;
1529 	}
1530 
1531 	if (depth == 0) {
1532 		/* there is no tree at all */
1533 		return 0;
1534 	}
1535 
1536 	if (ex != EXT_FIRST_EXTENT(eh)) {
1537 		/* we correct tree if first leaf got modified only */
1538 		return 0;
1539 	}
1540 
1541 	/*
1542 	 * TODO: we need correction if border is smaller than current one
1543 	 */
1544 	k = depth - 1;
1545 	border = path[depth].p_ext->ee_block;
1546 	err = ext4_ext_get_access(handle, inode, path + k);
1547 	if (err)
1548 		return err;
1549 	path[k].p_idx->ei_block = border;
1550 	err = ext4_ext_dirty(handle, inode, path + k);
1551 	if (err)
1552 		return err;
1553 
1554 	while (k--) {
1555 		/* change all left-side indexes */
1556 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1557 			break;
1558 		err = ext4_ext_get_access(handle, inode, path + k);
1559 		if (err)
1560 			break;
1561 		path[k].p_idx->ei_block = border;
1562 		err = ext4_ext_dirty(handle, inode, path + k);
1563 		if (err)
1564 			break;
1565 	}
1566 
1567 	return err;
1568 }
1569 
1570 int
1571 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1572 				struct ext4_extent *ex2)
1573 {
1574 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1575 
1576 	/*
1577 	 * Make sure that either both extents are uninitialized, or
1578 	 * both are _not_.
1579 	 */
1580 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1581 		return 0;
1582 
1583 	if (ext4_ext_is_uninitialized(ex1))
1584 		max_len = EXT_UNINIT_MAX_LEN;
1585 	else
1586 		max_len = EXT_INIT_MAX_LEN;
1587 
1588 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1589 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1590 
1591 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1592 			le32_to_cpu(ex2->ee_block))
1593 		return 0;
1594 
1595 	/*
1596 	 * To allow future support for preallocated extents to be added
1597 	 * as an RO_COMPAT feature, refuse to merge to extents if
1598 	 * this can result in the top bit of ee_len being set.
1599 	 */
1600 	if (ext1_ee_len + ext2_ee_len > max_len)
1601 		return 0;
1602 #ifdef AGGRESSIVE_TEST
1603 	if (ext1_ee_len >= 4)
1604 		return 0;
1605 #endif
1606 
1607 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1608 		return 1;
1609 	return 0;
1610 }
1611 
1612 /*
1613  * This function tries to merge the "ex" extent to the next extent in the tree.
1614  * It always tries to merge towards right. If you want to merge towards
1615  * left, pass "ex - 1" as argument instead of "ex".
1616  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1617  * 1 if they got merged.
1618  */
1619 static int ext4_ext_try_to_merge_right(struct inode *inode,
1620 				 struct ext4_ext_path *path,
1621 				 struct ext4_extent *ex)
1622 {
1623 	struct ext4_extent_header *eh;
1624 	unsigned int depth, len;
1625 	int merge_done = 0;
1626 	int uninitialized = 0;
1627 
1628 	depth = ext_depth(inode);
1629 	BUG_ON(path[depth].p_hdr == NULL);
1630 	eh = path[depth].p_hdr;
1631 
1632 	while (ex < EXT_LAST_EXTENT(eh)) {
1633 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1634 			break;
1635 		/* merge with next extent! */
1636 		if (ext4_ext_is_uninitialized(ex))
1637 			uninitialized = 1;
1638 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1639 				+ ext4_ext_get_actual_len(ex + 1));
1640 		if (uninitialized)
1641 			ext4_ext_mark_uninitialized(ex);
1642 
1643 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1644 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1645 				* sizeof(struct ext4_extent);
1646 			memmove(ex + 1, ex + 2, len);
1647 		}
1648 		le16_add_cpu(&eh->eh_entries, -1);
1649 		merge_done = 1;
1650 		WARN_ON(eh->eh_entries == 0);
1651 		if (!eh->eh_entries)
1652 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1653 	}
1654 
1655 	return merge_done;
1656 }
1657 
1658 /*
1659  * This function tries to merge the @ex extent to neighbours in the tree.
1660  * return 1 if merge left else 0.
1661  */
1662 static int ext4_ext_try_to_merge(struct inode *inode,
1663 				  struct ext4_ext_path *path,
1664 				  struct ext4_extent *ex) {
1665 	struct ext4_extent_header *eh;
1666 	unsigned int depth;
1667 	int merge_done = 0;
1668 	int ret = 0;
1669 
1670 	depth = ext_depth(inode);
1671 	BUG_ON(path[depth].p_hdr == NULL);
1672 	eh = path[depth].p_hdr;
1673 
1674 	if (ex > EXT_FIRST_EXTENT(eh))
1675 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1676 
1677 	if (!merge_done)
1678 		ret = ext4_ext_try_to_merge_right(inode, path, ex);
1679 
1680 	return ret;
1681 }
1682 
1683 /*
1684  * check if a portion of the "newext" extent overlaps with an
1685  * existing extent.
1686  *
1687  * If there is an overlap discovered, it updates the length of the newext
1688  * such that there will be no overlap, and then returns 1.
1689  * If there is no overlap found, it returns 0.
1690  */
1691 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1692 					   struct inode *inode,
1693 					   struct ext4_extent *newext,
1694 					   struct ext4_ext_path *path)
1695 {
1696 	ext4_lblk_t b1, b2;
1697 	unsigned int depth, len1;
1698 	unsigned int ret = 0;
1699 
1700 	b1 = le32_to_cpu(newext->ee_block);
1701 	len1 = ext4_ext_get_actual_len(newext);
1702 	depth = ext_depth(inode);
1703 	if (!path[depth].p_ext)
1704 		goto out;
1705 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1706 	b2 &= ~(sbi->s_cluster_ratio - 1);
1707 
1708 	/*
1709 	 * get the next allocated block if the extent in the path
1710 	 * is before the requested block(s)
1711 	 */
1712 	if (b2 < b1) {
1713 		b2 = ext4_ext_next_allocated_block(path);
1714 		if (b2 == EXT_MAX_BLOCKS)
1715 			goto out;
1716 		b2 &= ~(sbi->s_cluster_ratio - 1);
1717 	}
1718 
1719 	/* check for wrap through zero on extent logical start block*/
1720 	if (b1 + len1 < b1) {
1721 		len1 = EXT_MAX_BLOCKS - b1;
1722 		newext->ee_len = cpu_to_le16(len1);
1723 		ret = 1;
1724 	}
1725 
1726 	/* check for overlap */
1727 	if (b1 + len1 > b2) {
1728 		newext->ee_len = cpu_to_le16(b2 - b1);
1729 		ret = 1;
1730 	}
1731 out:
1732 	return ret;
1733 }
1734 
1735 /*
1736  * ext4_ext_insert_extent:
1737  * tries to merge requsted extent into the existing extent or
1738  * inserts requested extent as new one into the tree,
1739  * creating new leaf in the no-space case.
1740  */
1741 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1742 				struct ext4_ext_path *path,
1743 				struct ext4_extent *newext, int flag)
1744 {
1745 	struct ext4_extent_header *eh;
1746 	struct ext4_extent *ex, *fex;
1747 	struct ext4_extent *nearex; /* nearest extent */
1748 	struct ext4_ext_path *npath = NULL;
1749 	int depth, len, err;
1750 	ext4_lblk_t next;
1751 	unsigned uninitialized = 0;
1752 	int flags = 0;
1753 
1754 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1755 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1756 		return -EIO;
1757 	}
1758 	depth = ext_depth(inode);
1759 	ex = path[depth].p_ext;
1760 	if (unlikely(path[depth].p_hdr == NULL)) {
1761 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1762 		return -EIO;
1763 	}
1764 
1765 	/* try to insert block into found extent and return */
1766 	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1767 		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1768 		ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1769 			  ext4_ext_is_uninitialized(newext),
1770 			  ext4_ext_get_actual_len(newext),
1771 			  le32_to_cpu(ex->ee_block),
1772 			  ext4_ext_is_uninitialized(ex),
1773 			  ext4_ext_get_actual_len(ex),
1774 			  ext4_ext_pblock(ex));
1775 		err = ext4_ext_get_access(handle, inode, path + depth);
1776 		if (err)
1777 			return err;
1778 
1779 		/*
1780 		 * ext4_can_extents_be_merged should have checked that either
1781 		 * both extents are uninitialized, or both aren't. Thus we
1782 		 * need to check only one of them here.
1783 		 */
1784 		if (ext4_ext_is_uninitialized(ex))
1785 			uninitialized = 1;
1786 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1787 					+ ext4_ext_get_actual_len(newext));
1788 		if (uninitialized)
1789 			ext4_ext_mark_uninitialized(ex);
1790 		eh = path[depth].p_hdr;
1791 		nearex = ex;
1792 		goto merge;
1793 	}
1794 
1795 	depth = ext_depth(inode);
1796 	eh = path[depth].p_hdr;
1797 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1798 		goto has_space;
1799 
1800 	/* probably next leaf has space for us? */
1801 	fex = EXT_LAST_EXTENT(eh);
1802 	next = EXT_MAX_BLOCKS;
1803 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1804 		next = ext4_ext_next_leaf_block(path);
1805 	if (next != EXT_MAX_BLOCKS) {
1806 		ext_debug("next leaf block - %u\n", next);
1807 		BUG_ON(npath != NULL);
1808 		npath = ext4_ext_find_extent(inode, next, NULL);
1809 		if (IS_ERR(npath))
1810 			return PTR_ERR(npath);
1811 		BUG_ON(npath->p_depth != path->p_depth);
1812 		eh = npath[depth].p_hdr;
1813 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1814 			ext_debug("next leaf isn't full(%d)\n",
1815 				  le16_to_cpu(eh->eh_entries));
1816 			path = npath;
1817 			goto has_space;
1818 		}
1819 		ext_debug("next leaf has no free space(%d,%d)\n",
1820 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1821 	}
1822 
1823 	/*
1824 	 * There is no free space in the found leaf.
1825 	 * We're gonna add a new leaf in the tree.
1826 	 */
1827 	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1828 		flags = EXT4_MB_USE_ROOT_BLOCKS;
1829 	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1830 	if (err)
1831 		goto cleanup;
1832 	depth = ext_depth(inode);
1833 	eh = path[depth].p_hdr;
1834 
1835 has_space:
1836 	nearex = path[depth].p_ext;
1837 
1838 	err = ext4_ext_get_access(handle, inode, path + depth);
1839 	if (err)
1840 		goto cleanup;
1841 
1842 	if (!nearex) {
1843 		/* there is no extent in this leaf, create first one */
1844 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1845 				le32_to_cpu(newext->ee_block),
1846 				ext4_ext_pblock(newext),
1847 				ext4_ext_is_uninitialized(newext),
1848 				ext4_ext_get_actual_len(newext));
1849 		nearex = EXT_FIRST_EXTENT(eh);
1850 	} else {
1851 		if (le32_to_cpu(newext->ee_block)
1852 			   > le32_to_cpu(nearex->ee_block)) {
1853 			/* Insert after */
1854 			ext_debug("insert %u:%llu:[%d]%d before: "
1855 					"nearest %p\n",
1856 					le32_to_cpu(newext->ee_block),
1857 					ext4_ext_pblock(newext),
1858 					ext4_ext_is_uninitialized(newext),
1859 					ext4_ext_get_actual_len(newext),
1860 					nearex);
1861 			nearex++;
1862 		} else {
1863 			/* Insert before */
1864 			BUG_ON(newext->ee_block == nearex->ee_block);
1865 			ext_debug("insert %u:%llu:[%d]%d after: "
1866 					"nearest %p\n",
1867 					le32_to_cpu(newext->ee_block),
1868 					ext4_ext_pblock(newext),
1869 					ext4_ext_is_uninitialized(newext),
1870 					ext4_ext_get_actual_len(newext),
1871 					nearex);
1872 		}
1873 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1874 		if (len > 0) {
1875 			ext_debug("insert %u:%llu:[%d]%d: "
1876 					"move %d extents from 0x%p to 0x%p\n",
1877 					le32_to_cpu(newext->ee_block),
1878 					ext4_ext_pblock(newext),
1879 					ext4_ext_is_uninitialized(newext),
1880 					ext4_ext_get_actual_len(newext),
1881 					len, nearex, nearex + 1);
1882 			memmove(nearex + 1, nearex,
1883 				len * sizeof(struct ext4_extent));
1884 		}
1885 	}
1886 
1887 	le16_add_cpu(&eh->eh_entries, 1);
1888 	path[depth].p_ext = nearex;
1889 	nearex->ee_block = newext->ee_block;
1890 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1891 	nearex->ee_len = newext->ee_len;
1892 
1893 merge:
1894 	/* try to merge extents */
1895 	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1896 		ext4_ext_try_to_merge(inode, path, nearex);
1897 
1898 
1899 	/* time to correct all indexes above */
1900 	err = ext4_ext_correct_indexes(handle, inode, path);
1901 	if (err)
1902 		goto cleanup;
1903 
1904 	err = ext4_ext_dirty(handle, inode, path + depth);
1905 
1906 cleanup:
1907 	if (npath) {
1908 		ext4_ext_drop_refs(npath);
1909 		kfree(npath);
1910 	}
1911 	ext4_ext_invalidate_cache(inode);
1912 	return err;
1913 }
1914 
1915 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1916 			       ext4_lblk_t num, ext_prepare_callback func,
1917 			       void *cbdata)
1918 {
1919 	struct ext4_ext_path *path = NULL;
1920 	struct ext4_ext_cache cbex;
1921 	struct ext4_extent *ex;
1922 	ext4_lblk_t next, start = 0, end = 0;
1923 	ext4_lblk_t last = block + num;
1924 	int depth, exists, err = 0;
1925 
1926 	BUG_ON(func == NULL);
1927 	BUG_ON(inode == NULL);
1928 
1929 	while (block < last && block != EXT_MAX_BLOCKS) {
1930 		num = last - block;
1931 		/* find extent for this block */
1932 		down_read(&EXT4_I(inode)->i_data_sem);
1933 		path = ext4_ext_find_extent(inode, block, path);
1934 		up_read(&EXT4_I(inode)->i_data_sem);
1935 		if (IS_ERR(path)) {
1936 			err = PTR_ERR(path);
1937 			path = NULL;
1938 			break;
1939 		}
1940 
1941 		depth = ext_depth(inode);
1942 		if (unlikely(path[depth].p_hdr == NULL)) {
1943 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1944 			err = -EIO;
1945 			break;
1946 		}
1947 		ex = path[depth].p_ext;
1948 		next = ext4_ext_next_allocated_block(path);
1949 
1950 		exists = 0;
1951 		if (!ex) {
1952 			/* there is no extent yet, so try to allocate
1953 			 * all requested space */
1954 			start = block;
1955 			end = block + num;
1956 		} else if (le32_to_cpu(ex->ee_block) > block) {
1957 			/* need to allocate space before found extent */
1958 			start = block;
1959 			end = le32_to_cpu(ex->ee_block);
1960 			if (block + num < end)
1961 				end = block + num;
1962 		} else if (block >= le32_to_cpu(ex->ee_block)
1963 					+ ext4_ext_get_actual_len(ex)) {
1964 			/* need to allocate space after found extent */
1965 			start = block;
1966 			end = block + num;
1967 			if (end >= next)
1968 				end = next;
1969 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1970 			/*
1971 			 * some part of requested space is covered
1972 			 * by found extent
1973 			 */
1974 			start = block;
1975 			end = le32_to_cpu(ex->ee_block)
1976 				+ ext4_ext_get_actual_len(ex);
1977 			if (block + num < end)
1978 				end = block + num;
1979 			exists = 1;
1980 		} else {
1981 			BUG();
1982 		}
1983 		BUG_ON(end <= start);
1984 
1985 		if (!exists) {
1986 			cbex.ec_block = start;
1987 			cbex.ec_len = end - start;
1988 			cbex.ec_start = 0;
1989 		} else {
1990 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1991 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1992 			cbex.ec_start = ext4_ext_pblock(ex);
1993 		}
1994 
1995 		if (unlikely(cbex.ec_len == 0)) {
1996 			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1997 			err = -EIO;
1998 			break;
1999 		}
2000 		err = func(inode, next, &cbex, ex, cbdata);
2001 		ext4_ext_drop_refs(path);
2002 
2003 		if (err < 0)
2004 			break;
2005 
2006 		if (err == EXT_REPEAT)
2007 			continue;
2008 		else if (err == EXT_BREAK) {
2009 			err = 0;
2010 			break;
2011 		}
2012 
2013 		if (ext_depth(inode) != depth) {
2014 			/* depth was changed. we have to realloc path */
2015 			kfree(path);
2016 			path = NULL;
2017 		}
2018 
2019 		block = cbex.ec_block + cbex.ec_len;
2020 	}
2021 
2022 	if (path) {
2023 		ext4_ext_drop_refs(path);
2024 		kfree(path);
2025 	}
2026 
2027 	return err;
2028 }
2029 
2030 static void
2031 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2032 			__u32 len, ext4_fsblk_t start)
2033 {
2034 	struct ext4_ext_cache *cex;
2035 	BUG_ON(len == 0);
2036 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2037 	trace_ext4_ext_put_in_cache(inode, block, len, start);
2038 	cex = &EXT4_I(inode)->i_cached_extent;
2039 	cex->ec_block = block;
2040 	cex->ec_len = len;
2041 	cex->ec_start = start;
2042 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2043 }
2044 
2045 /*
2046  * ext4_ext_put_gap_in_cache:
2047  * calculate boundaries of the gap that the requested block fits into
2048  * and cache this gap
2049  */
2050 static void
2051 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2052 				ext4_lblk_t block)
2053 {
2054 	int depth = ext_depth(inode);
2055 	unsigned long len;
2056 	ext4_lblk_t lblock;
2057 	struct ext4_extent *ex;
2058 
2059 	ex = path[depth].p_ext;
2060 	if (ex == NULL) {
2061 		/* there is no extent yet, so gap is [0;-] */
2062 		lblock = 0;
2063 		len = EXT_MAX_BLOCKS;
2064 		ext_debug("cache gap(whole file):");
2065 	} else if (block < le32_to_cpu(ex->ee_block)) {
2066 		lblock = block;
2067 		len = le32_to_cpu(ex->ee_block) - block;
2068 		ext_debug("cache gap(before): %u [%u:%u]",
2069 				block,
2070 				le32_to_cpu(ex->ee_block),
2071 				 ext4_ext_get_actual_len(ex));
2072 	} else if (block >= le32_to_cpu(ex->ee_block)
2073 			+ ext4_ext_get_actual_len(ex)) {
2074 		ext4_lblk_t next;
2075 		lblock = le32_to_cpu(ex->ee_block)
2076 			+ ext4_ext_get_actual_len(ex);
2077 
2078 		next = ext4_ext_next_allocated_block(path);
2079 		ext_debug("cache gap(after): [%u:%u] %u",
2080 				le32_to_cpu(ex->ee_block),
2081 				ext4_ext_get_actual_len(ex),
2082 				block);
2083 		BUG_ON(next == lblock);
2084 		len = next - lblock;
2085 	} else {
2086 		lblock = len = 0;
2087 		BUG();
2088 	}
2089 
2090 	ext_debug(" -> %u:%lu\n", lblock, len);
2091 	ext4_ext_put_in_cache(inode, lblock, len, 0);
2092 }
2093 
2094 /*
2095  * ext4_ext_check_cache()
2096  * Checks to see if the given block is in the cache.
2097  * If it is, the cached extent is stored in the given
2098  * cache extent pointer.  If the cached extent is a hole,
2099  * this routine should be used instead of
2100  * ext4_ext_in_cache if the calling function needs to
2101  * know the size of the hole.
2102  *
2103  * @inode: The files inode
2104  * @block: The block to look for in the cache
2105  * @ex:    Pointer where the cached extent will be stored
2106  *         if it contains block
2107  *
2108  * Return 0 if cache is invalid; 1 if the cache is valid
2109  */
2110 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2111 	struct ext4_ext_cache *ex){
2112 	struct ext4_ext_cache *cex;
2113 	struct ext4_sb_info *sbi;
2114 	int ret = 0;
2115 
2116 	/*
2117 	 * We borrow i_block_reservation_lock to protect i_cached_extent
2118 	 */
2119 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2120 	cex = &EXT4_I(inode)->i_cached_extent;
2121 	sbi = EXT4_SB(inode->i_sb);
2122 
2123 	/* has cache valid data? */
2124 	if (cex->ec_len == 0)
2125 		goto errout;
2126 
2127 	if (in_range(block, cex->ec_block, cex->ec_len)) {
2128 		memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2129 		ext_debug("%u cached by %u:%u:%llu\n",
2130 				block,
2131 				cex->ec_block, cex->ec_len, cex->ec_start);
2132 		ret = 1;
2133 	}
2134 errout:
2135 	trace_ext4_ext_in_cache(inode, block, ret);
2136 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2137 	return ret;
2138 }
2139 
2140 /*
2141  * ext4_ext_in_cache()
2142  * Checks to see if the given block is in the cache.
2143  * If it is, the cached extent is stored in the given
2144  * extent pointer.
2145  *
2146  * @inode: The files inode
2147  * @block: The block to look for in the cache
2148  * @ex:    Pointer where the cached extent will be stored
2149  *         if it contains block
2150  *
2151  * Return 0 if cache is invalid; 1 if the cache is valid
2152  */
2153 static int
2154 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2155 			struct ext4_extent *ex)
2156 {
2157 	struct ext4_ext_cache cex;
2158 	int ret = 0;
2159 
2160 	if (ext4_ext_check_cache(inode, block, &cex)) {
2161 		ex->ee_block = cpu_to_le32(cex.ec_block);
2162 		ext4_ext_store_pblock(ex, cex.ec_start);
2163 		ex->ee_len = cpu_to_le16(cex.ec_len);
2164 		ret = 1;
2165 	}
2166 
2167 	return ret;
2168 }
2169 
2170 
2171 /*
2172  * ext4_ext_rm_idx:
2173  * removes index from the index block.
2174  */
2175 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2176 			struct ext4_ext_path *path)
2177 {
2178 	int err;
2179 	ext4_fsblk_t leaf;
2180 
2181 	/* free index block */
2182 	path--;
2183 	leaf = ext4_idx_pblock(path->p_idx);
2184 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2185 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2186 		return -EIO;
2187 	}
2188 	err = ext4_ext_get_access(handle, inode, path);
2189 	if (err)
2190 		return err;
2191 
2192 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2193 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2194 		len *= sizeof(struct ext4_extent_idx);
2195 		memmove(path->p_idx, path->p_idx + 1, len);
2196 	}
2197 
2198 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2199 	err = ext4_ext_dirty(handle, inode, path);
2200 	if (err)
2201 		return err;
2202 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2203 	trace_ext4_ext_rm_idx(inode, leaf);
2204 
2205 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2206 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2207 	return err;
2208 }
2209 
2210 /*
2211  * ext4_ext_calc_credits_for_single_extent:
2212  * This routine returns max. credits that needed to insert an extent
2213  * to the extent tree.
2214  * When pass the actual path, the caller should calculate credits
2215  * under i_data_sem.
2216  */
2217 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2218 						struct ext4_ext_path *path)
2219 {
2220 	if (path) {
2221 		int depth = ext_depth(inode);
2222 		int ret = 0;
2223 
2224 		/* probably there is space in leaf? */
2225 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2226 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2227 
2228 			/*
2229 			 *  There are some space in the leaf tree, no
2230 			 *  need to account for leaf block credit
2231 			 *
2232 			 *  bitmaps and block group descriptor blocks
2233 			 *  and other metadata blocks still need to be
2234 			 *  accounted.
2235 			 */
2236 			/* 1 bitmap, 1 block group descriptor */
2237 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2238 			return ret;
2239 		}
2240 	}
2241 
2242 	return ext4_chunk_trans_blocks(inode, nrblocks);
2243 }
2244 
2245 /*
2246  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2247  *
2248  * if nrblocks are fit in a single extent (chunk flag is 1), then
2249  * in the worse case, each tree level index/leaf need to be changed
2250  * if the tree split due to insert a new extent, then the old tree
2251  * index/leaf need to be updated too
2252  *
2253  * If the nrblocks are discontiguous, they could cause
2254  * the whole tree split more than once, but this is really rare.
2255  */
2256 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2257 {
2258 	int index;
2259 	int depth = ext_depth(inode);
2260 
2261 	if (chunk)
2262 		index = depth * 2;
2263 	else
2264 		index = depth * 3;
2265 
2266 	return index;
2267 }
2268 
2269 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2270 			      struct ext4_extent *ex,
2271 			      ext4_fsblk_t *partial_cluster,
2272 			      ext4_lblk_t from, ext4_lblk_t to)
2273 {
2274 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2275 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2276 	ext4_fsblk_t pblk;
2277 	int flags = EXT4_FREE_BLOCKS_FORGET;
2278 
2279 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2280 		flags |= EXT4_FREE_BLOCKS_METADATA;
2281 	/*
2282 	 * For bigalloc file systems, we never free a partial cluster
2283 	 * at the beginning of the extent.  Instead, we make a note
2284 	 * that we tried freeing the cluster, and check to see if we
2285 	 * need to free it on a subsequent call to ext4_remove_blocks,
2286 	 * or at the end of the ext4_truncate() operation.
2287 	 */
2288 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2289 
2290 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2291 	/*
2292 	 * If we have a partial cluster, and it's different from the
2293 	 * cluster of the last block, we need to explicitly free the
2294 	 * partial cluster here.
2295 	 */
2296 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2297 	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2298 		ext4_free_blocks(handle, inode, NULL,
2299 				 EXT4_C2B(sbi, *partial_cluster),
2300 				 sbi->s_cluster_ratio, flags);
2301 		*partial_cluster = 0;
2302 	}
2303 
2304 #ifdef EXTENTS_STATS
2305 	{
2306 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2307 		spin_lock(&sbi->s_ext_stats_lock);
2308 		sbi->s_ext_blocks += ee_len;
2309 		sbi->s_ext_extents++;
2310 		if (ee_len < sbi->s_ext_min)
2311 			sbi->s_ext_min = ee_len;
2312 		if (ee_len > sbi->s_ext_max)
2313 			sbi->s_ext_max = ee_len;
2314 		if (ext_depth(inode) > sbi->s_depth_max)
2315 			sbi->s_depth_max = ext_depth(inode);
2316 		spin_unlock(&sbi->s_ext_stats_lock);
2317 	}
2318 #endif
2319 	if (from >= le32_to_cpu(ex->ee_block)
2320 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2321 		/* tail removal */
2322 		ext4_lblk_t num;
2323 
2324 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2325 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2326 		ext_debug("free last %u blocks starting %llu\n", num, pblk);
2327 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2328 		/*
2329 		 * If the block range to be freed didn't start at the
2330 		 * beginning of a cluster, and we removed the entire
2331 		 * extent, save the partial cluster here, since we
2332 		 * might need to delete if we determine that the
2333 		 * truncate operation has removed all of the blocks in
2334 		 * the cluster.
2335 		 */
2336 		if (pblk & (sbi->s_cluster_ratio - 1) &&
2337 		    (ee_len == num))
2338 			*partial_cluster = EXT4_B2C(sbi, pblk);
2339 		else
2340 			*partial_cluster = 0;
2341 	} else if (from == le32_to_cpu(ex->ee_block)
2342 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2343 		/* head removal */
2344 		ext4_lblk_t num;
2345 		ext4_fsblk_t start;
2346 
2347 		num = to - from;
2348 		start = ext4_ext_pblock(ex);
2349 
2350 		ext_debug("free first %u blocks starting %llu\n", num, start);
2351 		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2352 
2353 	} else {
2354 		printk(KERN_INFO "strange request: removal(2) "
2355 				"%u-%u from %u:%u\n",
2356 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2357 	}
2358 	return 0;
2359 }
2360 
2361 
2362 /*
2363  * ext4_ext_rm_leaf() Removes the extents associated with the
2364  * blocks appearing between "start" and "end", and splits the extents
2365  * if "start" and "end" appear in the same extent
2366  *
2367  * @handle: The journal handle
2368  * @inode:  The files inode
2369  * @path:   The path to the leaf
2370  * @start:  The first block to remove
2371  * @end:   The last block to remove
2372  */
2373 static int
2374 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2375 		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2376 		 ext4_lblk_t start, ext4_lblk_t end)
2377 {
2378 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2379 	int err = 0, correct_index = 0;
2380 	int depth = ext_depth(inode), credits;
2381 	struct ext4_extent_header *eh;
2382 	ext4_lblk_t a, b;
2383 	unsigned num;
2384 	ext4_lblk_t ex_ee_block;
2385 	unsigned short ex_ee_len;
2386 	unsigned uninitialized = 0;
2387 	struct ext4_extent *ex;
2388 
2389 	/* the header must be checked already in ext4_ext_remove_space() */
2390 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2391 	if (!path[depth].p_hdr)
2392 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2393 	eh = path[depth].p_hdr;
2394 	if (unlikely(path[depth].p_hdr == NULL)) {
2395 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2396 		return -EIO;
2397 	}
2398 	/* find where to start removing */
2399 	ex = EXT_LAST_EXTENT(eh);
2400 
2401 	ex_ee_block = le32_to_cpu(ex->ee_block);
2402 	ex_ee_len = ext4_ext_get_actual_len(ex);
2403 
2404 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2405 
2406 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2407 			ex_ee_block + ex_ee_len > start) {
2408 
2409 		if (ext4_ext_is_uninitialized(ex))
2410 			uninitialized = 1;
2411 		else
2412 			uninitialized = 0;
2413 
2414 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2415 			 uninitialized, ex_ee_len);
2416 		path[depth].p_ext = ex;
2417 
2418 		a = ex_ee_block > start ? ex_ee_block : start;
2419 		b = ex_ee_block+ex_ee_len - 1 < end ?
2420 			ex_ee_block+ex_ee_len - 1 : end;
2421 
2422 		ext_debug("  border %u:%u\n", a, b);
2423 
2424 		/* If this extent is beyond the end of the hole, skip it */
2425 		if (end < ex_ee_block) {
2426 			ex--;
2427 			ex_ee_block = le32_to_cpu(ex->ee_block);
2428 			ex_ee_len = ext4_ext_get_actual_len(ex);
2429 			continue;
2430 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2431 			EXT4_ERROR_INODE(inode,
2432 					 "can not handle truncate %u:%u "
2433 					 "on extent %u:%u",
2434 					 start, end, ex_ee_block,
2435 					 ex_ee_block + ex_ee_len - 1);
2436 			err = -EIO;
2437 			goto out;
2438 		} else if (a != ex_ee_block) {
2439 			/* remove tail of the extent */
2440 			num = a - ex_ee_block;
2441 		} else {
2442 			/* remove whole extent: excellent! */
2443 			num = 0;
2444 		}
2445 		/*
2446 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2447 		 * descriptor) for each block group; assume two block
2448 		 * groups plus ex_ee_len/blocks_per_block_group for
2449 		 * the worst case
2450 		 */
2451 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2452 		if (ex == EXT_FIRST_EXTENT(eh)) {
2453 			correct_index = 1;
2454 			credits += (ext_depth(inode)) + 1;
2455 		}
2456 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2457 
2458 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2459 		if (err)
2460 			goto out;
2461 
2462 		err = ext4_ext_get_access(handle, inode, path + depth);
2463 		if (err)
2464 			goto out;
2465 
2466 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2467 					 a, b);
2468 		if (err)
2469 			goto out;
2470 
2471 		if (num == 0)
2472 			/* this extent is removed; mark slot entirely unused */
2473 			ext4_ext_store_pblock(ex, 0);
2474 
2475 		ex->ee_len = cpu_to_le16(num);
2476 		/*
2477 		 * Do not mark uninitialized if all the blocks in the
2478 		 * extent have been removed.
2479 		 */
2480 		if (uninitialized && num)
2481 			ext4_ext_mark_uninitialized(ex);
2482 		/*
2483 		 * If the extent was completely released,
2484 		 * we need to remove it from the leaf
2485 		 */
2486 		if (num == 0) {
2487 			if (end != EXT_MAX_BLOCKS - 1) {
2488 				/*
2489 				 * For hole punching, we need to scoot all the
2490 				 * extents up when an extent is removed so that
2491 				 * we dont have blank extents in the middle
2492 				 */
2493 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2494 					sizeof(struct ext4_extent));
2495 
2496 				/* Now get rid of the one at the end */
2497 				memset(EXT_LAST_EXTENT(eh), 0,
2498 					sizeof(struct ext4_extent));
2499 			}
2500 			le16_add_cpu(&eh->eh_entries, -1);
2501 		} else
2502 			*partial_cluster = 0;
2503 
2504 		err = ext4_ext_dirty(handle, inode, path + depth);
2505 		if (err)
2506 			goto out;
2507 
2508 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2509 				ext4_ext_pblock(ex));
2510 		ex--;
2511 		ex_ee_block = le32_to_cpu(ex->ee_block);
2512 		ex_ee_len = ext4_ext_get_actual_len(ex);
2513 	}
2514 
2515 	if (correct_index && eh->eh_entries)
2516 		err = ext4_ext_correct_indexes(handle, inode, path);
2517 
2518 	/*
2519 	 * If there is still a entry in the leaf node, check to see if
2520 	 * it references the partial cluster.  This is the only place
2521 	 * where it could; if it doesn't, we can free the cluster.
2522 	 */
2523 	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2524 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2525 	     *partial_cluster)) {
2526 		int flags = EXT4_FREE_BLOCKS_FORGET;
2527 
2528 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2529 			flags |= EXT4_FREE_BLOCKS_METADATA;
2530 
2531 		ext4_free_blocks(handle, inode, NULL,
2532 				 EXT4_C2B(sbi, *partial_cluster),
2533 				 sbi->s_cluster_ratio, flags);
2534 		*partial_cluster = 0;
2535 	}
2536 
2537 	/* if this leaf is free, then we should
2538 	 * remove it from index block above */
2539 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2540 		err = ext4_ext_rm_idx(handle, inode, path + depth);
2541 
2542 out:
2543 	return err;
2544 }
2545 
2546 /*
2547  * ext4_ext_more_to_rm:
2548  * returns 1 if current index has to be freed (even partial)
2549  */
2550 static int
2551 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2552 {
2553 	BUG_ON(path->p_idx == NULL);
2554 
2555 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2556 		return 0;
2557 
2558 	/*
2559 	 * if truncate on deeper level happened, it wasn't partial,
2560 	 * so we have to consider current index for truncation
2561 	 */
2562 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2563 		return 0;
2564 	return 1;
2565 }
2566 
2567 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2568 				 ext4_lblk_t end)
2569 {
2570 	struct super_block *sb = inode->i_sb;
2571 	int depth = ext_depth(inode);
2572 	struct ext4_ext_path *path = NULL;
2573 	ext4_fsblk_t partial_cluster = 0;
2574 	handle_t *handle;
2575 	int i = 0, err;
2576 
2577 	ext_debug("truncate since %u to %u\n", start, end);
2578 
2579 	/* probably first extent we're gonna free will be last in block */
2580 	handle = ext4_journal_start(inode, depth + 1);
2581 	if (IS_ERR(handle))
2582 		return PTR_ERR(handle);
2583 
2584 again:
2585 	ext4_ext_invalidate_cache(inode);
2586 
2587 	trace_ext4_ext_remove_space(inode, start, depth);
2588 
2589 	/*
2590 	 * Check if we are removing extents inside the extent tree. If that
2591 	 * is the case, we are going to punch a hole inside the extent tree
2592 	 * so we have to check whether we need to split the extent covering
2593 	 * the last block to remove so we can easily remove the part of it
2594 	 * in ext4_ext_rm_leaf().
2595 	 */
2596 	if (end < EXT_MAX_BLOCKS - 1) {
2597 		struct ext4_extent *ex;
2598 		ext4_lblk_t ee_block;
2599 
2600 		/* find extent for this block */
2601 		path = ext4_ext_find_extent(inode, end, NULL);
2602 		if (IS_ERR(path)) {
2603 			ext4_journal_stop(handle);
2604 			return PTR_ERR(path);
2605 		}
2606 		depth = ext_depth(inode);
2607 		ex = path[depth].p_ext;
2608 		if (!ex) {
2609 			ext4_ext_drop_refs(path);
2610 			kfree(path);
2611 			path = NULL;
2612 			goto cont;
2613 		}
2614 
2615 		ee_block = le32_to_cpu(ex->ee_block);
2616 
2617 		/*
2618 		 * See if the last block is inside the extent, if so split
2619 		 * the extent at 'end' block so we can easily remove the
2620 		 * tail of the first part of the split extent in
2621 		 * ext4_ext_rm_leaf().
2622 		 */
2623 		if (end >= ee_block &&
2624 		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2625 			int split_flag = 0;
2626 
2627 			if (ext4_ext_is_uninitialized(ex))
2628 				split_flag = EXT4_EXT_MARK_UNINIT1 |
2629 					     EXT4_EXT_MARK_UNINIT2;
2630 
2631 			/*
2632 			 * Split the extent in two so that 'end' is the last
2633 			 * block in the first new extent
2634 			 */
2635 			err = ext4_split_extent_at(handle, inode, path,
2636 						end + 1, split_flag,
2637 						EXT4_GET_BLOCKS_PRE_IO |
2638 						EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2639 
2640 			if (err < 0)
2641 				goto out;
2642 		}
2643 	}
2644 cont:
2645 
2646 	/*
2647 	 * We start scanning from right side, freeing all the blocks
2648 	 * after i_size and walking into the tree depth-wise.
2649 	 */
2650 	depth = ext_depth(inode);
2651 	if (path) {
2652 		int k = i = depth;
2653 		while (--k > 0)
2654 			path[k].p_block =
2655 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2656 	} else {
2657 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2658 			       GFP_NOFS);
2659 		if (path == NULL) {
2660 			ext4_journal_stop(handle);
2661 			return -ENOMEM;
2662 		}
2663 		path[0].p_depth = depth;
2664 		path[0].p_hdr = ext_inode_hdr(inode);
2665 		i = 0;
2666 
2667 		if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2668 			err = -EIO;
2669 			goto out;
2670 		}
2671 	}
2672 	err = 0;
2673 
2674 	while (i >= 0 && err == 0) {
2675 		if (i == depth) {
2676 			/* this is leaf block */
2677 			err = ext4_ext_rm_leaf(handle, inode, path,
2678 					       &partial_cluster, start,
2679 					       end);
2680 			/* root level has p_bh == NULL, brelse() eats this */
2681 			brelse(path[i].p_bh);
2682 			path[i].p_bh = NULL;
2683 			i--;
2684 			continue;
2685 		}
2686 
2687 		/* this is index block */
2688 		if (!path[i].p_hdr) {
2689 			ext_debug("initialize header\n");
2690 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2691 		}
2692 
2693 		if (!path[i].p_idx) {
2694 			/* this level hasn't been touched yet */
2695 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2696 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2697 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2698 				  path[i].p_hdr,
2699 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2700 		} else {
2701 			/* we were already here, see at next index */
2702 			path[i].p_idx--;
2703 		}
2704 
2705 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2706 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2707 				path[i].p_idx);
2708 		if (ext4_ext_more_to_rm(path + i)) {
2709 			struct buffer_head *bh;
2710 			/* go to the next level */
2711 			ext_debug("move to level %d (block %llu)\n",
2712 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2713 			memset(path + i + 1, 0, sizeof(*path));
2714 			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2715 			if (!bh) {
2716 				/* should we reset i_size? */
2717 				err = -EIO;
2718 				break;
2719 			}
2720 			if (WARN_ON(i + 1 > depth)) {
2721 				err = -EIO;
2722 				break;
2723 			}
2724 			if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2725 							depth - i - 1, bh)) {
2726 				err = -EIO;
2727 				break;
2728 			}
2729 			path[i + 1].p_bh = bh;
2730 
2731 			/* save actual number of indexes since this
2732 			 * number is changed at the next iteration */
2733 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2734 			i++;
2735 		} else {
2736 			/* we finished processing this index, go up */
2737 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2738 				/* index is empty, remove it;
2739 				 * handle must be already prepared by the
2740 				 * truncatei_leaf() */
2741 				err = ext4_ext_rm_idx(handle, inode, path + i);
2742 			}
2743 			/* root level has p_bh == NULL, brelse() eats this */
2744 			brelse(path[i].p_bh);
2745 			path[i].p_bh = NULL;
2746 			i--;
2747 			ext_debug("return to level %d\n", i);
2748 		}
2749 	}
2750 
2751 	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2752 			path->p_hdr->eh_entries);
2753 
2754 	/* If we still have something in the partial cluster and we have removed
2755 	 * even the first extent, then we should free the blocks in the partial
2756 	 * cluster as well. */
2757 	if (partial_cluster && path->p_hdr->eh_entries == 0) {
2758 		int flags = EXT4_FREE_BLOCKS_FORGET;
2759 
2760 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2761 			flags |= EXT4_FREE_BLOCKS_METADATA;
2762 
2763 		ext4_free_blocks(handle, inode, NULL,
2764 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2765 				 EXT4_SB(sb)->s_cluster_ratio, flags);
2766 		partial_cluster = 0;
2767 	}
2768 
2769 	/* TODO: flexible tree reduction should be here */
2770 	if (path->p_hdr->eh_entries == 0) {
2771 		/*
2772 		 * truncate to zero freed all the tree,
2773 		 * so we need to correct eh_depth
2774 		 */
2775 		err = ext4_ext_get_access(handle, inode, path);
2776 		if (err == 0) {
2777 			ext_inode_hdr(inode)->eh_depth = 0;
2778 			ext_inode_hdr(inode)->eh_max =
2779 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2780 			err = ext4_ext_dirty(handle, inode, path);
2781 		}
2782 	}
2783 out:
2784 	ext4_ext_drop_refs(path);
2785 	kfree(path);
2786 	if (err == -EAGAIN) {
2787 		path = NULL;
2788 		goto again;
2789 	}
2790 	ext4_journal_stop(handle);
2791 
2792 	return err;
2793 }
2794 
2795 /*
2796  * called at mount time
2797  */
2798 void ext4_ext_init(struct super_block *sb)
2799 {
2800 	/*
2801 	 * possible initialization would be here
2802 	 */
2803 
2804 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2805 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2806 		printk(KERN_INFO "EXT4-fs: file extents enabled"
2807 #ifdef AGGRESSIVE_TEST
2808 		       ", aggressive tests"
2809 #endif
2810 #ifdef CHECK_BINSEARCH
2811 		       ", check binsearch"
2812 #endif
2813 #ifdef EXTENTS_STATS
2814 		       ", stats"
2815 #endif
2816 		       "\n");
2817 #endif
2818 #ifdef EXTENTS_STATS
2819 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2820 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2821 		EXT4_SB(sb)->s_ext_max = 0;
2822 #endif
2823 	}
2824 }
2825 
2826 /*
2827  * called at umount time
2828  */
2829 void ext4_ext_release(struct super_block *sb)
2830 {
2831 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2832 		return;
2833 
2834 #ifdef EXTENTS_STATS
2835 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2836 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2837 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2838 			sbi->s_ext_blocks, sbi->s_ext_extents,
2839 			sbi->s_ext_blocks / sbi->s_ext_extents);
2840 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2841 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2842 	}
2843 #endif
2844 }
2845 
2846 /* FIXME!! we need to try to merge to left or right after zero-out  */
2847 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2848 {
2849 	ext4_fsblk_t ee_pblock;
2850 	unsigned int ee_len;
2851 	int ret;
2852 
2853 	ee_len    = ext4_ext_get_actual_len(ex);
2854 	ee_pblock = ext4_ext_pblock(ex);
2855 
2856 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2857 	if (ret > 0)
2858 		ret = 0;
2859 
2860 	return ret;
2861 }
2862 
2863 /*
2864  * ext4_split_extent_at() splits an extent at given block.
2865  *
2866  * @handle: the journal handle
2867  * @inode: the file inode
2868  * @path: the path to the extent
2869  * @split: the logical block where the extent is splitted.
2870  * @split_flags: indicates if the extent could be zeroout if split fails, and
2871  *		 the states(init or uninit) of new extents.
2872  * @flags: flags used to insert new extent to extent tree.
2873  *
2874  *
2875  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2876  * of which are deterimined by split_flag.
2877  *
2878  * There are two cases:
2879  *  a> the extent are splitted into two extent.
2880  *  b> split is not needed, and just mark the extent.
2881  *
2882  * return 0 on success.
2883  */
2884 static int ext4_split_extent_at(handle_t *handle,
2885 			     struct inode *inode,
2886 			     struct ext4_ext_path *path,
2887 			     ext4_lblk_t split,
2888 			     int split_flag,
2889 			     int flags)
2890 {
2891 	ext4_fsblk_t newblock;
2892 	ext4_lblk_t ee_block;
2893 	struct ext4_extent *ex, newex, orig_ex;
2894 	struct ext4_extent *ex2 = NULL;
2895 	unsigned int ee_len, depth;
2896 	int err = 0;
2897 
2898 	ext_debug("ext4_split_extents_at: inode %lu, logical"
2899 		"block %llu\n", inode->i_ino, (unsigned long long)split);
2900 
2901 	ext4_ext_show_leaf(inode, path);
2902 
2903 	depth = ext_depth(inode);
2904 	ex = path[depth].p_ext;
2905 	ee_block = le32_to_cpu(ex->ee_block);
2906 	ee_len = ext4_ext_get_actual_len(ex);
2907 	newblock = split - ee_block + ext4_ext_pblock(ex);
2908 
2909 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2910 
2911 	err = ext4_ext_get_access(handle, inode, path + depth);
2912 	if (err)
2913 		goto out;
2914 
2915 	if (split == ee_block) {
2916 		/*
2917 		 * case b: block @split is the block that the extent begins with
2918 		 * then we just change the state of the extent, and splitting
2919 		 * is not needed.
2920 		 */
2921 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2922 			ext4_ext_mark_uninitialized(ex);
2923 		else
2924 			ext4_ext_mark_initialized(ex);
2925 
2926 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2927 			ext4_ext_try_to_merge(inode, path, ex);
2928 
2929 		err = ext4_ext_dirty(handle, inode, path + depth);
2930 		goto out;
2931 	}
2932 
2933 	/* case a */
2934 	memcpy(&orig_ex, ex, sizeof(orig_ex));
2935 	ex->ee_len = cpu_to_le16(split - ee_block);
2936 	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2937 		ext4_ext_mark_uninitialized(ex);
2938 
2939 	/*
2940 	 * path may lead to new leaf, not to original leaf any more
2941 	 * after ext4_ext_insert_extent() returns,
2942 	 */
2943 	err = ext4_ext_dirty(handle, inode, path + depth);
2944 	if (err)
2945 		goto fix_extent_len;
2946 
2947 	ex2 = &newex;
2948 	ex2->ee_block = cpu_to_le32(split);
2949 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2950 	ext4_ext_store_pblock(ex2, newblock);
2951 	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2952 		ext4_ext_mark_uninitialized(ex2);
2953 
2954 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2955 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2956 		err = ext4_ext_zeroout(inode, &orig_ex);
2957 		if (err)
2958 			goto fix_extent_len;
2959 		/* update the extent length and mark as initialized */
2960 		ex->ee_len = cpu_to_le16(ee_len);
2961 		ext4_ext_try_to_merge(inode, path, ex);
2962 		err = ext4_ext_dirty(handle, inode, path + depth);
2963 		goto out;
2964 	} else if (err)
2965 		goto fix_extent_len;
2966 
2967 out:
2968 	ext4_ext_show_leaf(inode, path);
2969 	return err;
2970 
2971 fix_extent_len:
2972 	ex->ee_len = orig_ex.ee_len;
2973 	ext4_ext_dirty(handle, inode, path + depth);
2974 	return err;
2975 }
2976 
2977 /*
2978  * ext4_split_extents() splits an extent and mark extent which is covered
2979  * by @map as split_flags indicates
2980  *
2981  * It may result in splitting the extent into multiple extents (upto three)
2982  * There are three possibilities:
2983  *   a> There is no split required
2984  *   b> Splits in two extents: Split is happening at either end of the extent
2985  *   c> Splits in three extents: Somone is splitting in middle of the extent
2986  *
2987  */
2988 static int ext4_split_extent(handle_t *handle,
2989 			      struct inode *inode,
2990 			      struct ext4_ext_path *path,
2991 			      struct ext4_map_blocks *map,
2992 			      int split_flag,
2993 			      int flags)
2994 {
2995 	ext4_lblk_t ee_block;
2996 	struct ext4_extent *ex;
2997 	unsigned int ee_len, depth;
2998 	int err = 0;
2999 	int uninitialized;
3000 	int split_flag1, flags1;
3001 
3002 	depth = ext_depth(inode);
3003 	ex = path[depth].p_ext;
3004 	ee_block = le32_to_cpu(ex->ee_block);
3005 	ee_len = ext4_ext_get_actual_len(ex);
3006 	uninitialized = ext4_ext_is_uninitialized(ex);
3007 
3008 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3009 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
3010 			      EXT4_EXT_MAY_ZEROOUT : 0;
3011 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3012 		if (uninitialized)
3013 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3014 				       EXT4_EXT_MARK_UNINIT2;
3015 		err = ext4_split_extent_at(handle, inode, path,
3016 				map->m_lblk + map->m_len, split_flag1, flags1);
3017 		if (err)
3018 			goto out;
3019 	}
3020 
3021 	ext4_ext_drop_refs(path);
3022 	path = ext4_ext_find_extent(inode, map->m_lblk, path);
3023 	if (IS_ERR(path))
3024 		return PTR_ERR(path);
3025 
3026 	if (map->m_lblk >= ee_block) {
3027 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
3028 			      EXT4_EXT_MAY_ZEROOUT : 0;
3029 		if (uninitialized)
3030 			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3031 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3032 			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3033 		err = ext4_split_extent_at(handle, inode, path,
3034 				map->m_lblk, split_flag1, flags);
3035 		if (err)
3036 			goto out;
3037 	}
3038 
3039 	ext4_ext_show_leaf(inode, path);
3040 out:
3041 	return err ? err : map->m_len;
3042 }
3043 
3044 #define EXT4_EXT_ZERO_LEN 7
3045 /*
3046  * This function is called by ext4_ext_map_blocks() if someone tries to write
3047  * to an uninitialized extent. It may result in splitting the uninitialized
3048  * extent into multiple extents (up to three - one initialized and two
3049  * uninitialized).
3050  * There are three possibilities:
3051  *   a> There is no split required: Entire extent should be initialized
3052  *   b> Splits in two extents: Write is happening at either end of the extent
3053  *   c> Splits in three extents: Somone is writing in middle of the extent
3054  *
3055  * Pre-conditions:
3056  *  - The extent pointed to by 'path' is uninitialized.
3057  *  - The extent pointed to by 'path' contains a superset
3058  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3059  *
3060  * Post-conditions on success:
3061  *  - the returned value is the number of blocks beyond map->l_lblk
3062  *    that are allocated and initialized.
3063  *    It is guaranteed to be >= map->m_len.
3064  */
3065 static int ext4_ext_convert_to_initialized(handle_t *handle,
3066 					   struct inode *inode,
3067 					   struct ext4_map_blocks *map,
3068 					   struct ext4_ext_path *path)
3069 {
3070 	struct ext4_extent_header *eh;
3071 	struct ext4_map_blocks split_map;
3072 	struct ext4_extent zero_ex;
3073 	struct ext4_extent *ex;
3074 	ext4_lblk_t ee_block, eof_block;
3075 	unsigned int ee_len, depth;
3076 	int allocated;
3077 	int err = 0;
3078 	int split_flag = 0;
3079 
3080 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3081 		"block %llu, max_blocks %u\n", inode->i_ino,
3082 		(unsigned long long)map->m_lblk, map->m_len);
3083 
3084 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3085 		inode->i_sb->s_blocksize_bits;
3086 	if (eof_block < map->m_lblk + map->m_len)
3087 		eof_block = map->m_lblk + map->m_len;
3088 
3089 	depth = ext_depth(inode);
3090 	eh = path[depth].p_hdr;
3091 	ex = path[depth].p_ext;
3092 	ee_block = le32_to_cpu(ex->ee_block);
3093 	ee_len = ext4_ext_get_actual_len(ex);
3094 	allocated = ee_len - (map->m_lblk - ee_block);
3095 
3096 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3097 
3098 	/* Pre-conditions */
3099 	BUG_ON(!ext4_ext_is_uninitialized(ex));
3100 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3101 
3102 	/*
3103 	 * Attempt to transfer newly initialized blocks from the currently
3104 	 * uninitialized extent to its left neighbor. This is much cheaper
3105 	 * than an insertion followed by a merge as those involve costly
3106 	 * memmove() calls. This is the common case in steady state for
3107 	 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3108 	 * writes.
3109 	 *
3110 	 * Limitations of the current logic:
3111 	 *  - L1: we only deal with writes at the start of the extent.
3112 	 *    The approach could be extended to writes at the end
3113 	 *    of the extent but this scenario was deemed less common.
3114 	 *  - L2: we do not deal with writes covering the whole extent.
3115 	 *    This would require removing the extent if the transfer
3116 	 *    is possible.
3117 	 *  - L3: we only attempt to merge with an extent stored in the
3118 	 *    same extent tree node.
3119 	 */
3120 	if ((map->m_lblk == ee_block) &&	/*L1*/
3121 		(map->m_len < ee_len) &&	/*L2*/
3122 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/
3123 		struct ext4_extent *prev_ex;
3124 		ext4_lblk_t prev_lblk;
3125 		ext4_fsblk_t prev_pblk, ee_pblk;
3126 		unsigned int prev_len, write_len;
3127 
3128 		prev_ex = ex - 1;
3129 		prev_lblk = le32_to_cpu(prev_ex->ee_block);
3130 		prev_len = ext4_ext_get_actual_len(prev_ex);
3131 		prev_pblk = ext4_ext_pblock(prev_ex);
3132 		ee_pblk = ext4_ext_pblock(ex);
3133 		write_len = map->m_len;
3134 
3135 		/*
3136 		 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3137 		 * upon those conditions:
3138 		 * - C1: prev_ex is initialized,
3139 		 * - C2: prev_ex is logically abutting ex,
3140 		 * - C3: prev_ex is physically abutting ex,
3141 		 * - C4: prev_ex can receive the additional blocks without
3142 		 *   overflowing the (initialized) length limit.
3143 		 */
3144 		if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/
3145 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3146 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3147 			(prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/
3148 			err = ext4_ext_get_access(handle, inode, path + depth);
3149 			if (err)
3150 				goto out;
3151 
3152 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3153 				map, ex, prev_ex);
3154 
3155 			/* Shift the start of ex by 'write_len' blocks */
3156 			ex->ee_block = cpu_to_le32(ee_block + write_len);
3157 			ext4_ext_store_pblock(ex, ee_pblk + write_len);
3158 			ex->ee_len = cpu_to_le16(ee_len - write_len);
3159 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3160 
3161 			/* Extend prev_ex by 'write_len' blocks */
3162 			prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3163 
3164 			/* Mark the block containing both extents as dirty */
3165 			ext4_ext_dirty(handle, inode, path + depth);
3166 
3167 			/* Update path to point to the right extent */
3168 			path[depth].p_ext = prev_ex;
3169 
3170 			/* Result: number of initialized blocks past m_lblk */
3171 			allocated = write_len;
3172 			goto out;
3173 		}
3174 	}
3175 
3176 	WARN_ON(map->m_lblk < ee_block);
3177 	/*
3178 	 * It is safe to convert extent to initialized via explicit
3179 	 * zeroout only if extent is fully insde i_size or new_size.
3180 	 */
3181 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3182 
3183 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3184 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3185 	    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3186 		err = ext4_ext_zeroout(inode, ex);
3187 		if (err)
3188 			goto out;
3189 
3190 		err = ext4_ext_get_access(handle, inode, path + depth);
3191 		if (err)
3192 			goto out;
3193 		ext4_ext_mark_initialized(ex);
3194 		ext4_ext_try_to_merge(inode, path, ex);
3195 		err = ext4_ext_dirty(handle, inode, path + depth);
3196 		goto out;
3197 	}
3198 
3199 	/*
3200 	 * four cases:
3201 	 * 1. split the extent into three extents.
3202 	 * 2. split the extent into two extents, zeroout the first half.
3203 	 * 3. split the extent into two extents, zeroout the second half.
3204 	 * 4. split the extent into two extents with out zeroout.
3205 	 */
3206 	split_map.m_lblk = map->m_lblk;
3207 	split_map.m_len = map->m_len;
3208 
3209 	if (allocated > map->m_len) {
3210 		if (allocated <= EXT4_EXT_ZERO_LEN &&
3211 		    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3212 			/* case 3 */
3213 			zero_ex.ee_block =
3214 					 cpu_to_le32(map->m_lblk);
3215 			zero_ex.ee_len = cpu_to_le16(allocated);
3216 			ext4_ext_store_pblock(&zero_ex,
3217 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3218 			err = ext4_ext_zeroout(inode, &zero_ex);
3219 			if (err)
3220 				goto out;
3221 			split_map.m_lblk = map->m_lblk;
3222 			split_map.m_len = allocated;
3223 		} else if ((map->m_lblk - ee_block + map->m_len <
3224 			   EXT4_EXT_ZERO_LEN) &&
3225 			   (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3226 			/* case 2 */
3227 			if (map->m_lblk != ee_block) {
3228 				zero_ex.ee_block = ex->ee_block;
3229 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3230 							ee_block);
3231 				ext4_ext_store_pblock(&zero_ex,
3232 						      ext4_ext_pblock(ex));
3233 				err = ext4_ext_zeroout(inode, &zero_ex);
3234 				if (err)
3235 					goto out;
3236 			}
3237 
3238 			split_map.m_lblk = ee_block;
3239 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3240 			allocated = map->m_len;
3241 		}
3242 	}
3243 
3244 	allocated = ext4_split_extent(handle, inode, path,
3245 				       &split_map, split_flag, 0);
3246 	if (allocated < 0)
3247 		err = allocated;
3248 
3249 out:
3250 	return err ? err : allocated;
3251 }
3252 
3253 /*
3254  * This function is called by ext4_ext_map_blocks() from
3255  * ext4_get_blocks_dio_write() when DIO to write
3256  * to an uninitialized extent.
3257  *
3258  * Writing to an uninitialized extent may result in splitting the uninitialized
3259  * extent into multiple /initialized uninitialized extents (up to three)
3260  * There are three possibilities:
3261  *   a> There is no split required: Entire extent should be uninitialized
3262  *   b> Splits in two extents: Write is happening at either end of the extent
3263  *   c> Splits in three extents: Somone is writing in middle of the extent
3264  *
3265  * One of more index blocks maybe needed if the extent tree grow after
3266  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3267  * complete, we need to split the uninitialized extent before DIO submit
3268  * the IO. The uninitialized extent called at this time will be split
3269  * into three uninitialized extent(at most). After IO complete, the part
3270  * being filled will be convert to initialized by the end_io callback function
3271  * via ext4_convert_unwritten_extents().
3272  *
3273  * Returns the size of uninitialized extent to be written on success.
3274  */
3275 static int ext4_split_unwritten_extents(handle_t *handle,
3276 					struct inode *inode,
3277 					struct ext4_map_blocks *map,
3278 					struct ext4_ext_path *path,
3279 					int flags)
3280 {
3281 	ext4_lblk_t eof_block;
3282 	ext4_lblk_t ee_block;
3283 	struct ext4_extent *ex;
3284 	unsigned int ee_len;
3285 	int split_flag = 0, depth;
3286 
3287 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3288 		"block %llu, max_blocks %u\n", inode->i_ino,
3289 		(unsigned long long)map->m_lblk, map->m_len);
3290 
3291 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3292 		inode->i_sb->s_blocksize_bits;
3293 	if (eof_block < map->m_lblk + map->m_len)
3294 		eof_block = map->m_lblk + map->m_len;
3295 	/*
3296 	 * It is safe to convert extent to initialized via explicit
3297 	 * zeroout only if extent is fully insde i_size or new_size.
3298 	 */
3299 	depth = ext_depth(inode);
3300 	ex = path[depth].p_ext;
3301 	ee_block = le32_to_cpu(ex->ee_block);
3302 	ee_len = ext4_ext_get_actual_len(ex);
3303 
3304 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3305 	split_flag |= EXT4_EXT_MARK_UNINIT2;
3306 
3307 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3308 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3309 }
3310 
3311 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3312 					      struct inode *inode,
3313 					      struct ext4_ext_path *path)
3314 {
3315 	struct ext4_extent *ex;
3316 	int depth;
3317 	int err = 0;
3318 
3319 	depth = ext_depth(inode);
3320 	ex = path[depth].p_ext;
3321 
3322 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3323 		"block %llu, max_blocks %u\n", inode->i_ino,
3324 		(unsigned long long)le32_to_cpu(ex->ee_block),
3325 		ext4_ext_get_actual_len(ex));
3326 
3327 	err = ext4_ext_get_access(handle, inode, path + depth);
3328 	if (err)
3329 		goto out;
3330 	/* first mark the extent as initialized */
3331 	ext4_ext_mark_initialized(ex);
3332 
3333 	/* note: ext4_ext_correct_indexes() isn't needed here because
3334 	 * borders are not changed
3335 	 */
3336 	ext4_ext_try_to_merge(inode, path, ex);
3337 
3338 	/* Mark modified extent as dirty */
3339 	err = ext4_ext_dirty(handle, inode, path + depth);
3340 out:
3341 	ext4_ext_show_leaf(inode, path);
3342 	return err;
3343 }
3344 
3345 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3346 			sector_t block, int count)
3347 {
3348 	int i;
3349 	for (i = 0; i < count; i++)
3350                 unmap_underlying_metadata(bdev, block + i);
3351 }
3352 
3353 /*
3354  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3355  */
3356 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3357 			      ext4_lblk_t lblk,
3358 			      struct ext4_ext_path *path,
3359 			      unsigned int len)
3360 {
3361 	int i, depth;
3362 	struct ext4_extent_header *eh;
3363 	struct ext4_extent *last_ex;
3364 
3365 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3366 		return 0;
3367 
3368 	depth = ext_depth(inode);
3369 	eh = path[depth].p_hdr;
3370 
3371 	/*
3372 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3373 	 * do not care for this case anymore. Simply remove the flag
3374 	 * if there are no extents.
3375 	 */
3376 	if (unlikely(!eh->eh_entries))
3377 		goto out;
3378 	last_ex = EXT_LAST_EXTENT(eh);
3379 	/*
3380 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3381 	 * last block in the last extent in the file.  We test this by
3382 	 * first checking to see if the caller to
3383 	 * ext4_ext_get_blocks() was interested in the last block (or
3384 	 * a block beyond the last block) in the current extent.  If
3385 	 * this turns out to be false, we can bail out from this
3386 	 * function immediately.
3387 	 */
3388 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3389 	    ext4_ext_get_actual_len(last_ex))
3390 		return 0;
3391 	/*
3392 	 * If the caller does appear to be planning to write at or
3393 	 * beyond the end of the current extent, we then test to see
3394 	 * if the current extent is the last extent in the file, by
3395 	 * checking to make sure it was reached via the rightmost node
3396 	 * at each level of the tree.
3397 	 */
3398 	for (i = depth-1; i >= 0; i--)
3399 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3400 			return 0;
3401 out:
3402 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3403 	return ext4_mark_inode_dirty(handle, inode);
3404 }
3405 
3406 /**
3407  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3408  *
3409  * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3410  * whether there are any buffers marked for delayed allocation. It returns '1'
3411  * on the first delalloc'ed buffer head found. If no buffer head in the given
3412  * range is marked for delalloc, it returns 0.
3413  * lblk_start should always be <= lblk_end.
3414  * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3415  * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3416  * block sooner). This is useful when blocks are truncated sequentially from
3417  * lblk_start towards lblk_end.
3418  */
3419 static int ext4_find_delalloc_range(struct inode *inode,
3420 				    ext4_lblk_t lblk_start,
3421 				    ext4_lblk_t lblk_end,
3422 				    int search_hint_reverse)
3423 {
3424 	struct address_space *mapping = inode->i_mapping;
3425 	struct buffer_head *head, *bh = NULL;
3426 	struct page *page;
3427 	ext4_lblk_t i, pg_lblk;
3428 	pgoff_t index;
3429 
3430 	if (!test_opt(inode->i_sb, DELALLOC))
3431 		return 0;
3432 
3433 	/* reverse search wont work if fs block size is less than page size */
3434 	if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3435 		search_hint_reverse = 0;
3436 
3437 	if (search_hint_reverse)
3438 		i = lblk_end;
3439 	else
3440 		i = lblk_start;
3441 
3442 	index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3443 
3444 	while ((i >= lblk_start) && (i <= lblk_end)) {
3445 		page = find_get_page(mapping, index);
3446 		if (!page)
3447 			goto nextpage;
3448 
3449 		if (!page_has_buffers(page))
3450 			goto nextpage;
3451 
3452 		head = page_buffers(page);
3453 		if (!head)
3454 			goto nextpage;
3455 
3456 		bh = head;
3457 		pg_lblk = index << (PAGE_CACHE_SHIFT -
3458 						inode->i_blkbits);
3459 		do {
3460 			if (unlikely(pg_lblk < lblk_start)) {
3461 				/*
3462 				 * This is possible when fs block size is less
3463 				 * than page size and our cluster starts/ends in
3464 				 * middle of the page. So we need to skip the
3465 				 * initial few blocks till we reach the 'lblk'
3466 				 */
3467 				pg_lblk++;
3468 				continue;
3469 			}
3470 
3471 			/* Check if the buffer is delayed allocated and that it
3472 			 * is not yet mapped. (when da-buffers are mapped during
3473 			 * their writeout, their da_mapped bit is set.)
3474 			 */
3475 			if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3476 				page_cache_release(page);
3477 				trace_ext4_find_delalloc_range(inode,
3478 						lblk_start, lblk_end,
3479 						search_hint_reverse,
3480 						1, i);
3481 				return 1;
3482 			}
3483 			if (search_hint_reverse)
3484 				i--;
3485 			else
3486 				i++;
3487 		} while ((i >= lblk_start) && (i <= lblk_end) &&
3488 				((bh = bh->b_this_page) != head));
3489 nextpage:
3490 		if (page)
3491 			page_cache_release(page);
3492 		/*
3493 		 * Move to next page. 'i' will be the first lblk in the next
3494 		 * page.
3495 		 */
3496 		if (search_hint_reverse)
3497 			index--;
3498 		else
3499 			index++;
3500 		i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3501 	}
3502 
3503 	trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3504 					search_hint_reverse, 0, 0);
3505 	return 0;
3506 }
3507 
3508 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3509 			       int search_hint_reverse)
3510 {
3511 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3512 	ext4_lblk_t lblk_start, lblk_end;
3513 	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3514 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3515 
3516 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3517 					search_hint_reverse);
3518 }
3519 
3520 /**
3521  * Determines how many complete clusters (out of those specified by the 'map')
3522  * are under delalloc and were reserved quota for.
3523  * This function is called when we are writing out the blocks that were
3524  * originally written with their allocation delayed, but then the space was
3525  * allocated using fallocate() before the delayed allocation could be resolved.
3526  * The cases to look for are:
3527  * ('=' indicated delayed allocated blocks
3528  *  '-' indicates non-delayed allocated blocks)
3529  * (a) partial clusters towards beginning and/or end outside of allocated range
3530  *     are not delalloc'ed.
3531  *	Ex:
3532  *	|----c---=|====c====|====c====|===-c----|
3533  *	         |++++++ allocated ++++++|
3534  *	==> 4 complete clusters in above example
3535  *
3536  * (b) partial cluster (outside of allocated range) towards either end is
3537  *     marked for delayed allocation. In this case, we will exclude that
3538  *     cluster.
3539  *	Ex:
3540  *	|----====c========|========c========|
3541  *	     |++++++ allocated ++++++|
3542  *	==> 1 complete clusters in above example
3543  *
3544  *	Ex:
3545  *	|================c================|
3546  *            |++++++ allocated ++++++|
3547  *	==> 0 complete clusters in above example
3548  *
3549  * The ext4_da_update_reserve_space will be called only if we
3550  * determine here that there were some "entire" clusters that span
3551  * this 'allocated' range.
3552  * In the non-bigalloc case, this function will just end up returning num_blks
3553  * without ever calling ext4_find_delalloc_range.
3554  */
3555 static unsigned int
3556 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3557 			   unsigned int num_blks)
3558 {
3559 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3560 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3561 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3562 	unsigned int allocated_clusters = 0;
3563 
3564 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3565 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3566 
3567 	/* max possible clusters for this allocation */
3568 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3569 
3570 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3571 
3572 	/* Check towards left side */
3573 	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3574 	if (c_offset) {
3575 		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3576 		lblk_to = lblk_from + c_offset - 1;
3577 
3578 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3579 			allocated_clusters--;
3580 	}
3581 
3582 	/* Now check towards right. */
3583 	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3584 	if (allocated_clusters && c_offset) {
3585 		lblk_from = lblk_start + num_blks;
3586 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3587 
3588 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3589 			allocated_clusters--;
3590 	}
3591 
3592 	return allocated_clusters;
3593 }
3594 
3595 static int
3596 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3597 			struct ext4_map_blocks *map,
3598 			struct ext4_ext_path *path, int flags,
3599 			unsigned int allocated, ext4_fsblk_t newblock)
3600 {
3601 	int ret = 0;
3602 	int err = 0;
3603 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3604 
3605 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3606 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3607 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3608 		  flags, allocated);
3609 	ext4_ext_show_leaf(inode, path);
3610 
3611 	trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3612 						    newblock);
3613 
3614 	/* get_block() before submit the IO, split the extent */
3615 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3616 		ret = ext4_split_unwritten_extents(handle, inode, map,
3617 						   path, flags);
3618 		/*
3619 		 * Flag the inode(non aio case) or end_io struct (aio case)
3620 		 * that this IO needs to conversion to written when IO is
3621 		 * completed
3622 		 */
3623 		if (io)
3624 			ext4_set_io_unwritten_flag(inode, io);
3625 		else
3626 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3627 		if (ext4_should_dioread_nolock(inode))
3628 			map->m_flags |= EXT4_MAP_UNINIT;
3629 		goto out;
3630 	}
3631 	/* IO end_io complete, convert the filled extent to written */
3632 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3633 		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3634 							path);
3635 		if (ret >= 0) {
3636 			ext4_update_inode_fsync_trans(handle, inode, 1);
3637 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3638 						 path, map->m_len);
3639 		} else
3640 			err = ret;
3641 		goto out2;
3642 	}
3643 	/* buffered IO case */
3644 	/*
3645 	 * repeat fallocate creation request
3646 	 * we already have an unwritten extent
3647 	 */
3648 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3649 		goto map_out;
3650 
3651 	/* buffered READ or buffered write_begin() lookup */
3652 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3653 		/*
3654 		 * We have blocks reserved already.  We
3655 		 * return allocated blocks so that delalloc
3656 		 * won't do block reservation for us.  But
3657 		 * the buffer head will be unmapped so that
3658 		 * a read from the block returns 0s.
3659 		 */
3660 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3661 		goto out1;
3662 	}
3663 
3664 	/* buffered write, writepage time, convert*/
3665 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3666 	if (ret >= 0)
3667 		ext4_update_inode_fsync_trans(handle, inode, 1);
3668 out:
3669 	if (ret <= 0) {
3670 		err = ret;
3671 		goto out2;
3672 	} else
3673 		allocated = ret;
3674 	map->m_flags |= EXT4_MAP_NEW;
3675 	/*
3676 	 * if we allocated more blocks than requested
3677 	 * we need to make sure we unmap the extra block
3678 	 * allocated. The actual needed block will get
3679 	 * unmapped later when we find the buffer_head marked
3680 	 * new.
3681 	 */
3682 	if (allocated > map->m_len) {
3683 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3684 					newblock + map->m_len,
3685 					allocated - map->m_len);
3686 		allocated = map->m_len;
3687 	}
3688 
3689 	/*
3690 	 * If we have done fallocate with the offset that is already
3691 	 * delayed allocated, we would have block reservation
3692 	 * and quota reservation done in the delayed write path.
3693 	 * But fallocate would have already updated quota and block
3694 	 * count for this offset. So cancel these reservation
3695 	 */
3696 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3697 		unsigned int reserved_clusters;
3698 		reserved_clusters = get_reserved_cluster_alloc(inode,
3699 				map->m_lblk, map->m_len);
3700 		if (reserved_clusters)
3701 			ext4_da_update_reserve_space(inode,
3702 						     reserved_clusters,
3703 						     0);
3704 	}
3705 
3706 map_out:
3707 	map->m_flags |= EXT4_MAP_MAPPED;
3708 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3709 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3710 					 map->m_len);
3711 		if (err < 0)
3712 			goto out2;
3713 	}
3714 out1:
3715 	if (allocated > map->m_len)
3716 		allocated = map->m_len;
3717 	ext4_ext_show_leaf(inode, path);
3718 	map->m_pblk = newblock;
3719 	map->m_len = allocated;
3720 out2:
3721 	if (path) {
3722 		ext4_ext_drop_refs(path);
3723 		kfree(path);
3724 	}
3725 	return err ? err : allocated;
3726 }
3727 
3728 /*
3729  * get_implied_cluster_alloc - check to see if the requested
3730  * allocation (in the map structure) overlaps with a cluster already
3731  * allocated in an extent.
3732  *	@sb	The filesystem superblock structure
3733  *	@map	The requested lblk->pblk mapping
3734  *	@ex	The extent structure which might contain an implied
3735  *			cluster allocation
3736  *
3737  * This function is called by ext4_ext_map_blocks() after we failed to
3738  * find blocks that were already in the inode's extent tree.  Hence,
3739  * we know that the beginning of the requested region cannot overlap
3740  * the extent from the inode's extent tree.  There are three cases we
3741  * want to catch.  The first is this case:
3742  *
3743  *		 |--- cluster # N--|
3744  *    |--- extent ---|	|---- requested region ---|
3745  *			|==========|
3746  *
3747  * The second case that we need to test for is this one:
3748  *
3749  *   |--------- cluster # N ----------------|
3750  *	   |--- requested region --|   |------- extent ----|
3751  *	   |=======================|
3752  *
3753  * The third case is when the requested region lies between two extents
3754  * within the same cluster:
3755  *          |------------- cluster # N-------------|
3756  * |----- ex -----|                  |---- ex_right ----|
3757  *                  |------ requested region ------|
3758  *                  |================|
3759  *
3760  * In each of the above cases, we need to set the map->m_pblk and
3761  * map->m_len so it corresponds to the return the extent labelled as
3762  * "|====|" from cluster #N, since it is already in use for data in
3763  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3764  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3765  * as a new "allocated" block region.  Otherwise, we will return 0 and
3766  * ext4_ext_map_blocks() will then allocate one or more new clusters
3767  * by calling ext4_mb_new_blocks().
3768  */
3769 static int get_implied_cluster_alloc(struct super_block *sb,
3770 				     struct ext4_map_blocks *map,
3771 				     struct ext4_extent *ex,
3772 				     struct ext4_ext_path *path)
3773 {
3774 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3775 	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3776 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3777 	ext4_lblk_t rr_cluster_start;
3778 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3779 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3780 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3781 
3782 	/* The extent passed in that we are trying to match */
3783 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3784 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3785 
3786 	/* The requested region passed into ext4_map_blocks() */
3787 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3788 
3789 	if ((rr_cluster_start == ex_cluster_end) ||
3790 	    (rr_cluster_start == ex_cluster_start)) {
3791 		if (rr_cluster_start == ex_cluster_end)
3792 			ee_start += ee_len - 1;
3793 		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3794 			c_offset;
3795 		map->m_len = min(map->m_len,
3796 				 (unsigned) sbi->s_cluster_ratio - c_offset);
3797 		/*
3798 		 * Check for and handle this case:
3799 		 *
3800 		 *   |--------- cluster # N-------------|
3801 		 *		       |------- extent ----|
3802 		 *	   |--- requested region ---|
3803 		 *	   |===========|
3804 		 */
3805 
3806 		if (map->m_lblk < ee_block)
3807 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3808 
3809 		/*
3810 		 * Check for the case where there is already another allocated
3811 		 * block to the right of 'ex' but before the end of the cluster.
3812 		 *
3813 		 *          |------------- cluster # N-------------|
3814 		 * |----- ex -----|                  |---- ex_right ----|
3815 		 *                  |------ requested region ------|
3816 		 *                  |================|
3817 		 */
3818 		if (map->m_lblk > ee_block) {
3819 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3820 			map->m_len = min(map->m_len, next - map->m_lblk);
3821 		}
3822 
3823 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3824 		return 1;
3825 	}
3826 
3827 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3828 	return 0;
3829 }
3830 
3831 
3832 /*
3833  * Block allocation/map/preallocation routine for extents based files
3834  *
3835  *
3836  * Need to be called with
3837  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3838  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3839  *
3840  * return > 0, number of of blocks already mapped/allocated
3841  *          if create == 0 and these are pre-allocated blocks
3842  *          	buffer head is unmapped
3843  *          otherwise blocks are mapped
3844  *
3845  * return = 0, if plain look up failed (blocks have not been allocated)
3846  *          buffer head is unmapped
3847  *
3848  * return < 0, error case.
3849  */
3850 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3851 			struct ext4_map_blocks *map, int flags)
3852 {
3853 	struct ext4_ext_path *path = NULL;
3854 	struct ext4_extent newex, *ex, *ex2;
3855 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3856 	ext4_fsblk_t newblock = 0;
3857 	int free_on_err = 0, err = 0, depth, ret;
3858 	unsigned int allocated = 0, offset = 0;
3859 	unsigned int allocated_clusters = 0;
3860 	struct ext4_allocation_request ar;
3861 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3862 	ext4_lblk_t cluster_offset;
3863 
3864 	ext_debug("blocks %u/%u requested for inode %lu\n",
3865 		  map->m_lblk, map->m_len, inode->i_ino);
3866 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3867 
3868 	/* check in cache */
3869 	if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3870 		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3871 			if ((sbi->s_cluster_ratio > 1) &&
3872 			    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3873 				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3874 
3875 			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3876 				/*
3877 				 * block isn't allocated yet and
3878 				 * user doesn't want to allocate it
3879 				 */
3880 				goto out2;
3881 			}
3882 			/* we should allocate requested block */
3883 		} else {
3884 			/* block is already allocated */
3885 			if (sbi->s_cluster_ratio > 1)
3886 				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3887 			newblock = map->m_lblk
3888 				   - le32_to_cpu(newex.ee_block)
3889 				   + ext4_ext_pblock(&newex);
3890 			/* number of remaining blocks in the extent */
3891 			allocated = ext4_ext_get_actual_len(&newex) -
3892 				(map->m_lblk - le32_to_cpu(newex.ee_block));
3893 			goto out;
3894 		}
3895 	}
3896 
3897 	/* find extent for this block */
3898 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3899 	if (IS_ERR(path)) {
3900 		err = PTR_ERR(path);
3901 		path = NULL;
3902 		goto out2;
3903 	}
3904 
3905 	depth = ext_depth(inode);
3906 
3907 	/*
3908 	 * consistent leaf must not be empty;
3909 	 * this situation is possible, though, _during_ tree modification;
3910 	 * this is why assert can't be put in ext4_ext_find_extent()
3911 	 */
3912 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3913 		EXT4_ERROR_INODE(inode, "bad extent address "
3914 				 "lblock: %lu, depth: %d pblock %lld",
3915 				 (unsigned long) map->m_lblk, depth,
3916 				 path[depth].p_block);
3917 		err = -EIO;
3918 		goto out2;
3919 	}
3920 
3921 	ex = path[depth].p_ext;
3922 	if (ex) {
3923 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3924 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3925 		unsigned short ee_len;
3926 
3927 		/*
3928 		 * Uninitialized extents are treated as holes, except that
3929 		 * we split out initialized portions during a write.
3930 		 */
3931 		ee_len = ext4_ext_get_actual_len(ex);
3932 
3933 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3934 
3935 		/* if found extent covers block, simply return it */
3936 		if (in_range(map->m_lblk, ee_block, ee_len)) {
3937 			newblock = map->m_lblk - ee_block + ee_start;
3938 			/* number of remaining blocks in the extent */
3939 			allocated = ee_len - (map->m_lblk - ee_block);
3940 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3941 				  ee_block, ee_len, newblock);
3942 
3943 			/*
3944 			 * Do not put uninitialized extent
3945 			 * in the cache
3946 			 */
3947 			if (!ext4_ext_is_uninitialized(ex)) {
3948 				ext4_ext_put_in_cache(inode, ee_block,
3949 					ee_len, ee_start);
3950 				goto out;
3951 			}
3952 			ret = ext4_ext_handle_uninitialized_extents(
3953 				handle, inode, map, path, flags,
3954 				allocated, newblock);
3955 			return ret;
3956 		}
3957 	}
3958 
3959 	if ((sbi->s_cluster_ratio > 1) &&
3960 	    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3961 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3962 
3963 	/*
3964 	 * requested block isn't allocated yet;
3965 	 * we couldn't try to create block if create flag is zero
3966 	 */
3967 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3968 		/*
3969 		 * put just found gap into cache to speed up
3970 		 * subsequent requests
3971 		 */
3972 		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3973 		goto out2;
3974 	}
3975 
3976 	/*
3977 	 * Okay, we need to do block allocation.
3978 	 */
3979 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3980 	newex.ee_block = cpu_to_le32(map->m_lblk);
3981 	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3982 
3983 	/*
3984 	 * If we are doing bigalloc, check to see if the extent returned
3985 	 * by ext4_ext_find_extent() implies a cluster we can use.
3986 	 */
3987 	if (cluster_offset && ex &&
3988 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3989 		ar.len = allocated = map->m_len;
3990 		newblock = map->m_pblk;
3991 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3992 		goto got_allocated_blocks;
3993 	}
3994 
3995 	/* find neighbour allocated blocks */
3996 	ar.lleft = map->m_lblk;
3997 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3998 	if (err)
3999 		goto out2;
4000 	ar.lright = map->m_lblk;
4001 	ex2 = NULL;
4002 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4003 	if (err)
4004 		goto out2;
4005 
4006 	/* Check if the extent after searching to the right implies a
4007 	 * cluster we can use. */
4008 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4009 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4010 		ar.len = allocated = map->m_len;
4011 		newblock = map->m_pblk;
4012 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4013 		goto got_allocated_blocks;
4014 	}
4015 
4016 	/*
4017 	 * See if request is beyond maximum number of blocks we can have in
4018 	 * a single extent. For an initialized extent this limit is
4019 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4020 	 * EXT_UNINIT_MAX_LEN.
4021 	 */
4022 	if (map->m_len > EXT_INIT_MAX_LEN &&
4023 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4024 		map->m_len = EXT_INIT_MAX_LEN;
4025 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4026 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4027 		map->m_len = EXT_UNINIT_MAX_LEN;
4028 
4029 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4030 	newex.ee_len = cpu_to_le16(map->m_len);
4031 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4032 	if (err)
4033 		allocated = ext4_ext_get_actual_len(&newex);
4034 	else
4035 		allocated = map->m_len;
4036 
4037 	/* allocate new block */
4038 	ar.inode = inode;
4039 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4040 	ar.logical = map->m_lblk;
4041 	/*
4042 	 * We calculate the offset from the beginning of the cluster
4043 	 * for the logical block number, since when we allocate a
4044 	 * physical cluster, the physical block should start at the
4045 	 * same offset from the beginning of the cluster.  This is
4046 	 * needed so that future calls to get_implied_cluster_alloc()
4047 	 * work correctly.
4048 	 */
4049 	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4050 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4051 	ar.goal -= offset;
4052 	ar.logical -= offset;
4053 	if (S_ISREG(inode->i_mode))
4054 		ar.flags = EXT4_MB_HINT_DATA;
4055 	else
4056 		/* disable in-core preallocation for non-regular files */
4057 		ar.flags = 0;
4058 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4059 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4060 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4061 	if (!newblock)
4062 		goto out2;
4063 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4064 		  ar.goal, newblock, allocated);
4065 	free_on_err = 1;
4066 	allocated_clusters = ar.len;
4067 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4068 	if (ar.len > allocated)
4069 		ar.len = allocated;
4070 
4071 got_allocated_blocks:
4072 	/* try to insert new extent into found leaf and return */
4073 	ext4_ext_store_pblock(&newex, newblock + offset);
4074 	newex.ee_len = cpu_to_le16(ar.len);
4075 	/* Mark uninitialized */
4076 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4077 		ext4_ext_mark_uninitialized(&newex);
4078 		/*
4079 		 * io_end structure was created for every IO write to an
4080 		 * uninitialized extent. To avoid unnecessary conversion,
4081 		 * here we flag the IO that really needs the conversion.
4082 		 * For non asycn direct IO case, flag the inode state
4083 		 * that we need to perform conversion when IO is done.
4084 		 */
4085 		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4086 			if (io)
4087 				ext4_set_io_unwritten_flag(inode, io);
4088 			else
4089 				ext4_set_inode_state(inode,
4090 						     EXT4_STATE_DIO_UNWRITTEN);
4091 		}
4092 		if (ext4_should_dioread_nolock(inode))
4093 			map->m_flags |= EXT4_MAP_UNINIT;
4094 	}
4095 
4096 	err = 0;
4097 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4098 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4099 					 path, ar.len);
4100 	if (!err)
4101 		err = ext4_ext_insert_extent(handle, inode, path,
4102 					     &newex, flags);
4103 	if (err && free_on_err) {
4104 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4105 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4106 		/* free data blocks we just allocated */
4107 		/* not a good idea to call discard here directly,
4108 		 * but otherwise we'd need to call it every free() */
4109 		ext4_discard_preallocations(inode);
4110 		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4111 				 ext4_ext_get_actual_len(&newex), fb_flags);
4112 		goto out2;
4113 	}
4114 
4115 	/* previous routine could use block we allocated */
4116 	newblock = ext4_ext_pblock(&newex);
4117 	allocated = ext4_ext_get_actual_len(&newex);
4118 	if (allocated > map->m_len)
4119 		allocated = map->m_len;
4120 	map->m_flags |= EXT4_MAP_NEW;
4121 
4122 	/*
4123 	 * Update reserved blocks/metadata blocks after successful
4124 	 * block allocation which had been deferred till now.
4125 	 */
4126 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4127 		unsigned int reserved_clusters;
4128 		/*
4129 		 * Check how many clusters we had reserved this allocated range
4130 		 */
4131 		reserved_clusters = get_reserved_cluster_alloc(inode,
4132 						map->m_lblk, allocated);
4133 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4134 			if (reserved_clusters) {
4135 				/*
4136 				 * We have clusters reserved for this range.
4137 				 * But since we are not doing actual allocation
4138 				 * and are simply using blocks from previously
4139 				 * allocated cluster, we should release the
4140 				 * reservation and not claim quota.
4141 				 */
4142 				ext4_da_update_reserve_space(inode,
4143 						reserved_clusters, 0);
4144 			}
4145 		} else {
4146 			BUG_ON(allocated_clusters < reserved_clusters);
4147 			/* We will claim quota for all newly allocated blocks.*/
4148 			ext4_da_update_reserve_space(inode, allocated_clusters,
4149 							1);
4150 			if (reserved_clusters < allocated_clusters) {
4151 				struct ext4_inode_info *ei = EXT4_I(inode);
4152 				int reservation = allocated_clusters -
4153 						  reserved_clusters;
4154 				/*
4155 				 * It seems we claimed few clusters outside of
4156 				 * the range of this allocation. We should give
4157 				 * it back to the reservation pool. This can
4158 				 * happen in the following case:
4159 				 *
4160 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4161 				 *   cluster has 4 blocks. Thus, the clusters
4162 				 *   are [0-3],[4-7],[8-11]...
4163 				 * * First comes delayed allocation write for
4164 				 *   logical blocks 10 & 11. Since there were no
4165 				 *   previous delayed allocated blocks in the
4166 				 *   range [8-11], we would reserve 1 cluster
4167 				 *   for this write.
4168 				 * * Next comes write for logical blocks 3 to 8.
4169 				 *   In this case, we will reserve 2 clusters
4170 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4171 				 *   that range has a delayed allocated blocks.
4172 				 *   Thus total reserved clusters now becomes 3.
4173 				 * * Now, during the delayed allocation writeout
4174 				 *   time, we will first write blocks [3-8] and
4175 				 *   allocate 3 clusters for writing these
4176 				 *   blocks. Also, we would claim all these
4177 				 *   three clusters above.
4178 				 * * Now when we come here to writeout the
4179 				 *   blocks [10-11], we would expect to claim
4180 				 *   the reservation of 1 cluster we had made
4181 				 *   (and we would claim it since there are no
4182 				 *   more delayed allocated blocks in the range
4183 				 *   [8-11]. But our reserved cluster count had
4184 				 *   already gone to 0.
4185 				 *
4186 				 *   Thus, at the step 4 above when we determine
4187 				 *   that there are still some unwritten delayed
4188 				 *   allocated blocks outside of our current
4189 				 *   block range, we should increment the
4190 				 *   reserved clusters count so that when the
4191 				 *   remaining blocks finally gets written, we
4192 				 *   could claim them.
4193 				 */
4194 				dquot_reserve_block(inode,
4195 						EXT4_C2B(sbi, reservation));
4196 				spin_lock(&ei->i_block_reservation_lock);
4197 				ei->i_reserved_data_blocks += reservation;
4198 				spin_unlock(&ei->i_block_reservation_lock);
4199 			}
4200 		}
4201 	}
4202 
4203 	/*
4204 	 * Cache the extent and update transaction to commit on fdatasync only
4205 	 * when it is _not_ an uninitialized extent.
4206 	 */
4207 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4208 		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4209 		ext4_update_inode_fsync_trans(handle, inode, 1);
4210 	} else
4211 		ext4_update_inode_fsync_trans(handle, inode, 0);
4212 out:
4213 	if (allocated > map->m_len)
4214 		allocated = map->m_len;
4215 	ext4_ext_show_leaf(inode, path);
4216 	map->m_flags |= EXT4_MAP_MAPPED;
4217 	map->m_pblk = newblock;
4218 	map->m_len = allocated;
4219 out2:
4220 	if (path) {
4221 		ext4_ext_drop_refs(path);
4222 		kfree(path);
4223 	}
4224 
4225 	trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4226 		newblock, map->m_len, err ? err : allocated);
4227 
4228 	return err ? err : allocated;
4229 }
4230 
4231 void ext4_ext_truncate(struct inode *inode)
4232 {
4233 	struct address_space *mapping = inode->i_mapping;
4234 	struct super_block *sb = inode->i_sb;
4235 	ext4_lblk_t last_block;
4236 	handle_t *handle;
4237 	loff_t page_len;
4238 	int err = 0;
4239 
4240 	/*
4241 	 * finish any pending end_io work so we won't run the risk of
4242 	 * converting any truncated blocks to initialized later
4243 	 */
4244 	ext4_flush_completed_IO(inode);
4245 
4246 	/*
4247 	 * probably first extent we're gonna free will be last in block
4248 	 */
4249 	err = ext4_writepage_trans_blocks(inode);
4250 	handle = ext4_journal_start(inode, err);
4251 	if (IS_ERR(handle))
4252 		return;
4253 
4254 	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4255 		page_len = PAGE_CACHE_SIZE -
4256 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4257 
4258 		err = ext4_discard_partial_page_buffers(handle,
4259 			mapping, inode->i_size, page_len, 0);
4260 
4261 		if (err)
4262 			goto out_stop;
4263 	}
4264 
4265 	if (ext4_orphan_add(handle, inode))
4266 		goto out_stop;
4267 
4268 	down_write(&EXT4_I(inode)->i_data_sem);
4269 	ext4_ext_invalidate_cache(inode);
4270 
4271 	ext4_discard_preallocations(inode);
4272 
4273 	/*
4274 	 * TODO: optimization is possible here.
4275 	 * Probably we need not scan at all,
4276 	 * because page truncation is enough.
4277 	 */
4278 
4279 	/* we have to know where to truncate from in crash case */
4280 	EXT4_I(inode)->i_disksize = inode->i_size;
4281 	ext4_mark_inode_dirty(handle, inode);
4282 
4283 	last_block = (inode->i_size + sb->s_blocksize - 1)
4284 			>> EXT4_BLOCK_SIZE_BITS(sb);
4285 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4286 
4287 	/* In a multi-transaction truncate, we only make the final
4288 	 * transaction synchronous.
4289 	 */
4290 	if (IS_SYNC(inode))
4291 		ext4_handle_sync(handle);
4292 
4293 	up_write(&EXT4_I(inode)->i_data_sem);
4294 
4295 out_stop:
4296 	/*
4297 	 * If this was a simple ftruncate() and the file will remain alive,
4298 	 * then we need to clear up the orphan record which we created above.
4299 	 * However, if this was a real unlink then we were called by
4300 	 * ext4_delete_inode(), and we allow that function to clean up the
4301 	 * orphan info for us.
4302 	 */
4303 	if (inode->i_nlink)
4304 		ext4_orphan_del(handle, inode);
4305 
4306 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4307 	ext4_mark_inode_dirty(handle, inode);
4308 	ext4_journal_stop(handle);
4309 }
4310 
4311 static void ext4_falloc_update_inode(struct inode *inode,
4312 				int mode, loff_t new_size, int update_ctime)
4313 {
4314 	struct timespec now;
4315 
4316 	if (update_ctime) {
4317 		now = current_fs_time(inode->i_sb);
4318 		if (!timespec_equal(&inode->i_ctime, &now))
4319 			inode->i_ctime = now;
4320 	}
4321 	/*
4322 	 * Update only when preallocation was requested beyond
4323 	 * the file size.
4324 	 */
4325 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4326 		if (new_size > i_size_read(inode))
4327 			i_size_write(inode, new_size);
4328 		if (new_size > EXT4_I(inode)->i_disksize)
4329 			ext4_update_i_disksize(inode, new_size);
4330 	} else {
4331 		/*
4332 		 * Mark that we allocate beyond EOF so the subsequent truncate
4333 		 * can proceed even if the new size is the same as i_size.
4334 		 */
4335 		if (new_size > i_size_read(inode))
4336 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4337 	}
4338 
4339 }
4340 
4341 /*
4342  * preallocate space for a file. This implements ext4's fallocate file
4343  * operation, which gets called from sys_fallocate system call.
4344  * For block-mapped files, posix_fallocate should fall back to the method
4345  * of writing zeroes to the required new blocks (the same behavior which is
4346  * expected for file systems which do not support fallocate() system call).
4347  */
4348 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4349 {
4350 	struct inode *inode = file->f_path.dentry->d_inode;
4351 	handle_t *handle;
4352 	loff_t new_size;
4353 	unsigned int max_blocks;
4354 	int ret = 0;
4355 	int ret2 = 0;
4356 	int retries = 0;
4357 	int flags;
4358 	struct ext4_map_blocks map;
4359 	unsigned int credits, blkbits = inode->i_blkbits;
4360 
4361 	/*
4362 	 * currently supporting (pre)allocate mode for extent-based
4363 	 * files _only_
4364 	 */
4365 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4366 		return -EOPNOTSUPP;
4367 
4368 	/* Return error if mode is not supported */
4369 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4370 		return -EOPNOTSUPP;
4371 
4372 	if (mode & FALLOC_FL_PUNCH_HOLE)
4373 		return ext4_punch_hole(file, offset, len);
4374 
4375 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4376 	map.m_lblk = offset >> blkbits;
4377 	/*
4378 	 * We can't just convert len to max_blocks because
4379 	 * If blocksize = 4096 offset = 3072 and len = 2048
4380 	 */
4381 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4382 		- map.m_lblk;
4383 	/*
4384 	 * credits to insert 1 extent into extent tree
4385 	 */
4386 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4387 	mutex_lock(&inode->i_mutex);
4388 	ret = inode_newsize_ok(inode, (len + offset));
4389 	if (ret) {
4390 		mutex_unlock(&inode->i_mutex);
4391 		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4392 		return ret;
4393 	}
4394 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4395 	if (mode & FALLOC_FL_KEEP_SIZE)
4396 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4397 	/*
4398 	 * Don't normalize the request if it can fit in one extent so
4399 	 * that it doesn't get unnecessarily split into multiple
4400 	 * extents.
4401 	 */
4402 	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4403 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4404 retry:
4405 	while (ret >= 0 && ret < max_blocks) {
4406 		map.m_lblk = map.m_lblk + ret;
4407 		map.m_len = max_blocks = max_blocks - ret;
4408 		handle = ext4_journal_start(inode, credits);
4409 		if (IS_ERR(handle)) {
4410 			ret = PTR_ERR(handle);
4411 			break;
4412 		}
4413 		ret = ext4_map_blocks(handle, inode, &map, flags);
4414 		if (ret <= 0) {
4415 #ifdef EXT4FS_DEBUG
4416 			WARN_ON(ret <= 0);
4417 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
4418 				    "returned error inode#%lu, block=%u, "
4419 				    "max_blocks=%u", __func__,
4420 				    inode->i_ino, map.m_lblk, max_blocks);
4421 #endif
4422 			ext4_mark_inode_dirty(handle, inode);
4423 			ret2 = ext4_journal_stop(handle);
4424 			break;
4425 		}
4426 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4427 						blkbits) >> blkbits))
4428 			new_size = offset + len;
4429 		else
4430 			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4431 
4432 		ext4_falloc_update_inode(inode, mode, new_size,
4433 					 (map.m_flags & EXT4_MAP_NEW));
4434 		ext4_mark_inode_dirty(handle, inode);
4435 		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4436 			ext4_handle_sync(handle);
4437 		ret2 = ext4_journal_stop(handle);
4438 		if (ret2)
4439 			break;
4440 	}
4441 	if (ret == -ENOSPC &&
4442 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4443 		ret = 0;
4444 		goto retry;
4445 	}
4446 	mutex_unlock(&inode->i_mutex);
4447 	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4448 				ret > 0 ? ret2 : ret);
4449 	return ret > 0 ? ret2 : ret;
4450 }
4451 
4452 /*
4453  * This function convert a range of blocks to written extents
4454  * The caller of this function will pass the start offset and the size.
4455  * all unwritten extents within this range will be converted to
4456  * written extents.
4457  *
4458  * This function is called from the direct IO end io call back
4459  * function, to convert the fallocated extents after IO is completed.
4460  * Returns 0 on success.
4461  */
4462 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4463 				    ssize_t len)
4464 {
4465 	handle_t *handle;
4466 	unsigned int max_blocks;
4467 	int ret = 0;
4468 	int ret2 = 0;
4469 	struct ext4_map_blocks map;
4470 	unsigned int credits, blkbits = inode->i_blkbits;
4471 
4472 	map.m_lblk = offset >> blkbits;
4473 	/*
4474 	 * We can't just convert len to max_blocks because
4475 	 * If blocksize = 4096 offset = 3072 and len = 2048
4476 	 */
4477 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4478 		      map.m_lblk);
4479 	/*
4480 	 * credits to insert 1 extent into extent tree
4481 	 */
4482 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4483 	while (ret >= 0 && ret < max_blocks) {
4484 		map.m_lblk += ret;
4485 		map.m_len = (max_blocks -= ret);
4486 		handle = ext4_journal_start(inode, credits);
4487 		if (IS_ERR(handle)) {
4488 			ret = PTR_ERR(handle);
4489 			break;
4490 		}
4491 		ret = ext4_map_blocks(handle, inode, &map,
4492 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4493 		if (ret <= 0) {
4494 			WARN_ON(ret <= 0);
4495 			ext4_msg(inode->i_sb, KERN_ERR,
4496 				 "%s:%d: inode #%lu: block %u: len %u: "
4497 				 "ext4_ext_map_blocks returned %d",
4498 				 __func__, __LINE__, inode->i_ino, map.m_lblk,
4499 				 map.m_len, ret);
4500 		}
4501 		ext4_mark_inode_dirty(handle, inode);
4502 		ret2 = ext4_journal_stop(handle);
4503 		if (ret <= 0 || ret2 )
4504 			break;
4505 	}
4506 	return ret > 0 ? ret2 : ret;
4507 }
4508 
4509 /*
4510  * Callback function called for each extent to gather FIEMAP information.
4511  */
4512 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4513 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
4514 		       void *data)
4515 {
4516 	__u64	logical;
4517 	__u64	physical;
4518 	__u64	length;
4519 	__u32	flags = 0;
4520 	int		ret = 0;
4521 	struct fiemap_extent_info *fieinfo = data;
4522 	unsigned char blksize_bits;
4523 
4524 	blksize_bits = inode->i_sb->s_blocksize_bits;
4525 	logical = (__u64)newex->ec_block << blksize_bits;
4526 
4527 	if (newex->ec_start == 0) {
4528 		/*
4529 		 * No extent in extent-tree contains block @newex->ec_start,
4530 		 * then the block may stay in 1)a hole or 2)delayed-extent.
4531 		 *
4532 		 * Holes or delayed-extents are processed as follows.
4533 		 * 1. lookup dirty pages with specified range in pagecache.
4534 		 *    If no page is got, then there is no delayed-extent and
4535 		 *    return with EXT_CONTINUE.
4536 		 * 2. find the 1st mapped buffer,
4537 		 * 3. check if the mapped buffer is both in the request range
4538 		 *    and a delayed buffer. If not, there is no delayed-extent,
4539 		 *    then return.
4540 		 * 4. a delayed-extent is found, the extent will be collected.
4541 		 */
4542 		ext4_lblk_t	end = 0;
4543 		pgoff_t		last_offset;
4544 		pgoff_t		offset;
4545 		pgoff_t		index;
4546 		pgoff_t		start_index = 0;
4547 		struct page	**pages = NULL;
4548 		struct buffer_head *bh = NULL;
4549 		struct buffer_head *head = NULL;
4550 		unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4551 
4552 		pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4553 		if (pages == NULL)
4554 			return -ENOMEM;
4555 
4556 		offset = logical >> PAGE_SHIFT;
4557 repeat:
4558 		last_offset = offset;
4559 		head = NULL;
4560 		ret = find_get_pages_tag(inode->i_mapping, &offset,
4561 					PAGECACHE_TAG_DIRTY, nr_pages, pages);
4562 
4563 		if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4564 			/* First time, try to find a mapped buffer. */
4565 			if (ret == 0) {
4566 out:
4567 				for (index = 0; index < ret; index++)
4568 					page_cache_release(pages[index]);
4569 				/* just a hole. */
4570 				kfree(pages);
4571 				return EXT_CONTINUE;
4572 			}
4573 			index = 0;
4574 
4575 next_page:
4576 			/* Try to find the 1st mapped buffer. */
4577 			end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4578 				  blksize_bits;
4579 			if (!page_has_buffers(pages[index]))
4580 				goto out;
4581 			head = page_buffers(pages[index]);
4582 			if (!head)
4583 				goto out;
4584 
4585 			index++;
4586 			bh = head;
4587 			do {
4588 				if (end >= newex->ec_block +
4589 					newex->ec_len)
4590 					/* The buffer is out of
4591 					 * the request range.
4592 					 */
4593 					goto out;
4594 
4595 				if (buffer_mapped(bh) &&
4596 				    end >= newex->ec_block) {
4597 					start_index = index - 1;
4598 					/* get the 1st mapped buffer. */
4599 					goto found_mapped_buffer;
4600 				}
4601 
4602 				bh = bh->b_this_page;
4603 				end++;
4604 			} while (bh != head);
4605 
4606 			/* No mapped buffer in the range found in this page,
4607 			 * We need to look up next page.
4608 			 */
4609 			if (index >= ret) {
4610 				/* There is no page left, but we need to limit
4611 				 * newex->ec_len.
4612 				 */
4613 				newex->ec_len = end - newex->ec_block;
4614 				goto out;
4615 			}
4616 			goto next_page;
4617 		} else {
4618 			/*Find contiguous delayed buffers. */
4619 			if (ret > 0 && pages[0]->index == last_offset)
4620 				head = page_buffers(pages[0]);
4621 			bh = head;
4622 			index = 1;
4623 			start_index = 0;
4624 		}
4625 
4626 found_mapped_buffer:
4627 		if (bh != NULL && buffer_delay(bh)) {
4628 			/* 1st or contiguous delayed buffer found. */
4629 			if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4630 				/*
4631 				 * 1st delayed buffer found, record
4632 				 * the start of extent.
4633 				 */
4634 				flags |= FIEMAP_EXTENT_DELALLOC;
4635 				newex->ec_block = end;
4636 				logical = (__u64)end << blksize_bits;
4637 			}
4638 			/* Find contiguous delayed buffers. */
4639 			do {
4640 				if (!buffer_delay(bh))
4641 					goto found_delayed_extent;
4642 				bh = bh->b_this_page;
4643 				end++;
4644 			} while (bh != head);
4645 
4646 			for (; index < ret; index++) {
4647 				if (!page_has_buffers(pages[index])) {
4648 					bh = NULL;
4649 					break;
4650 				}
4651 				head = page_buffers(pages[index]);
4652 				if (!head) {
4653 					bh = NULL;
4654 					break;
4655 				}
4656 
4657 				if (pages[index]->index !=
4658 				    pages[start_index]->index + index
4659 				    - start_index) {
4660 					/* Blocks are not contiguous. */
4661 					bh = NULL;
4662 					break;
4663 				}
4664 				bh = head;
4665 				do {
4666 					if (!buffer_delay(bh))
4667 						/* Delayed-extent ends. */
4668 						goto found_delayed_extent;
4669 					bh = bh->b_this_page;
4670 					end++;
4671 				} while (bh != head);
4672 			}
4673 		} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4674 			/* a hole found. */
4675 			goto out;
4676 
4677 found_delayed_extent:
4678 		newex->ec_len = min(end - newex->ec_block,
4679 						(ext4_lblk_t)EXT_INIT_MAX_LEN);
4680 		if (ret == nr_pages && bh != NULL &&
4681 			newex->ec_len < EXT_INIT_MAX_LEN &&
4682 			buffer_delay(bh)) {
4683 			/* Have not collected an extent and continue. */
4684 			for (index = 0; index < ret; index++)
4685 				page_cache_release(pages[index]);
4686 			goto repeat;
4687 		}
4688 
4689 		for (index = 0; index < ret; index++)
4690 			page_cache_release(pages[index]);
4691 		kfree(pages);
4692 	}
4693 
4694 	physical = (__u64)newex->ec_start << blksize_bits;
4695 	length =   (__u64)newex->ec_len << blksize_bits;
4696 
4697 	if (ex && ext4_ext_is_uninitialized(ex))
4698 		flags |= FIEMAP_EXTENT_UNWRITTEN;
4699 
4700 	if (next == EXT_MAX_BLOCKS)
4701 		flags |= FIEMAP_EXTENT_LAST;
4702 
4703 	ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4704 					length, flags);
4705 	if (ret < 0)
4706 		return ret;
4707 	if (ret == 1)
4708 		return EXT_BREAK;
4709 	return EXT_CONTINUE;
4710 }
4711 /* fiemap flags we can handle specified here */
4712 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4713 
4714 static int ext4_xattr_fiemap(struct inode *inode,
4715 				struct fiemap_extent_info *fieinfo)
4716 {
4717 	__u64 physical = 0;
4718 	__u64 length;
4719 	__u32 flags = FIEMAP_EXTENT_LAST;
4720 	int blockbits = inode->i_sb->s_blocksize_bits;
4721 	int error = 0;
4722 
4723 	/* in-inode? */
4724 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4725 		struct ext4_iloc iloc;
4726 		int offset;	/* offset of xattr in inode */
4727 
4728 		error = ext4_get_inode_loc(inode, &iloc);
4729 		if (error)
4730 			return error;
4731 		physical = iloc.bh->b_blocknr << blockbits;
4732 		offset = EXT4_GOOD_OLD_INODE_SIZE +
4733 				EXT4_I(inode)->i_extra_isize;
4734 		physical += offset;
4735 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4736 		flags |= FIEMAP_EXTENT_DATA_INLINE;
4737 		brelse(iloc.bh);
4738 	} else { /* external block */
4739 		physical = EXT4_I(inode)->i_file_acl << blockbits;
4740 		length = inode->i_sb->s_blocksize;
4741 	}
4742 
4743 	if (physical)
4744 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4745 						length, flags);
4746 	return (error < 0 ? error : 0);
4747 }
4748 
4749 /*
4750  * ext4_ext_punch_hole
4751  *
4752  * Punches a hole of "length" bytes in a file starting
4753  * at byte "offset"
4754  *
4755  * @inode:  The inode of the file to punch a hole in
4756  * @offset: The starting byte offset of the hole
4757  * @length: The length of the hole
4758  *
4759  * Returns the number of blocks removed or negative on err
4760  */
4761 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4762 {
4763 	struct inode *inode = file->f_path.dentry->d_inode;
4764 	struct super_block *sb = inode->i_sb;
4765 	ext4_lblk_t first_block, stop_block;
4766 	struct address_space *mapping = inode->i_mapping;
4767 	handle_t *handle;
4768 	loff_t first_page, last_page, page_len;
4769 	loff_t first_page_offset, last_page_offset;
4770 	int credits, err = 0;
4771 
4772 	/* No need to punch hole beyond i_size */
4773 	if (offset >= inode->i_size)
4774 		return 0;
4775 
4776 	/*
4777 	 * If the hole extends beyond i_size, set the hole
4778 	 * to end after the page that contains i_size
4779 	 */
4780 	if (offset + length > inode->i_size) {
4781 		length = inode->i_size +
4782 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4783 		   offset;
4784 	}
4785 
4786 	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4787 	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4788 
4789 	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4790 	last_page_offset = last_page << PAGE_CACHE_SHIFT;
4791 
4792 	/*
4793 	 * Write out all dirty pages to avoid race conditions
4794 	 * Then release them.
4795 	 */
4796 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4797 		err = filemap_write_and_wait_range(mapping,
4798 			offset, offset + length - 1);
4799 
4800 		if (err)
4801 			return err;
4802 	}
4803 
4804 	/* Now release the pages */
4805 	if (last_page_offset > first_page_offset) {
4806 		truncate_pagecache_range(inode, first_page_offset,
4807 					 last_page_offset - 1);
4808 	}
4809 
4810 	/* finish any pending end_io work */
4811 	ext4_flush_completed_IO(inode);
4812 
4813 	credits = ext4_writepage_trans_blocks(inode);
4814 	handle = ext4_journal_start(inode, credits);
4815 	if (IS_ERR(handle))
4816 		return PTR_ERR(handle);
4817 
4818 	err = ext4_orphan_add(handle, inode);
4819 	if (err)
4820 		goto out;
4821 
4822 	/*
4823 	 * Now we need to zero out the non-page-aligned data in the
4824 	 * pages at the start and tail of the hole, and unmap the buffer
4825 	 * heads for the block aligned regions of the page that were
4826 	 * completely zeroed.
4827 	 */
4828 	if (first_page > last_page) {
4829 		/*
4830 		 * If the file space being truncated is contained within a page
4831 		 * just zero out and unmap the middle of that page
4832 		 */
4833 		err = ext4_discard_partial_page_buffers(handle,
4834 			mapping, offset, length, 0);
4835 
4836 		if (err)
4837 			goto out;
4838 	} else {
4839 		/*
4840 		 * zero out and unmap the partial page that contains
4841 		 * the start of the hole
4842 		 */
4843 		page_len  = first_page_offset - offset;
4844 		if (page_len > 0) {
4845 			err = ext4_discard_partial_page_buffers(handle, mapping,
4846 						   offset, page_len, 0);
4847 			if (err)
4848 				goto out;
4849 		}
4850 
4851 		/*
4852 		 * zero out and unmap the partial page that contains
4853 		 * the end of the hole
4854 		 */
4855 		page_len = offset + length - last_page_offset;
4856 		if (page_len > 0) {
4857 			err = ext4_discard_partial_page_buffers(handle, mapping,
4858 					last_page_offset, page_len, 0);
4859 			if (err)
4860 				goto out;
4861 		}
4862 	}
4863 
4864 	/*
4865 	 * If i_size is contained in the last page, we need to
4866 	 * unmap and zero the partial page after i_size
4867 	 */
4868 	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4869 	   inode->i_size % PAGE_CACHE_SIZE != 0) {
4870 
4871 		page_len = PAGE_CACHE_SIZE -
4872 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4873 
4874 		if (page_len > 0) {
4875 			err = ext4_discard_partial_page_buffers(handle,
4876 			  mapping, inode->i_size, page_len, 0);
4877 
4878 			if (err)
4879 				goto out;
4880 		}
4881 	}
4882 
4883 	first_block = (offset + sb->s_blocksize - 1) >>
4884 		EXT4_BLOCK_SIZE_BITS(sb);
4885 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4886 
4887 	/* If there are no blocks to remove, return now */
4888 	if (first_block >= stop_block)
4889 		goto out;
4890 
4891 	down_write(&EXT4_I(inode)->i_data_sem);
4892 	ext4_ext_invalidate_cache(inode);
4893 	ext4_discard_preallocations(inode);
4894 
4895 	err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4896 
4897 	ext4_ext_invalidate_cache(inode);
4898 	ext4_discard_preallocations(inode);
4899 
4900 	if (IS_SYNC(inode))
4901 		ext4_handle_sync(handle);
4902 
4903 	up_write(&EXT4_I(inode)->i_data_sem);
4904 
4905 out:
4906 	ext4_orphan_del(handle, inode);
4907 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4908 	ext4_mark_inode_dirty(handle, inode);
4909 	ext4_journal_stop(handle);
4910 	return err;
4911 }
4912 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4913 		__u64 start, __u64 len)
4914 {
4915 	ext4_lblk_t start_blk;
4916 	int error = 0;
4917 
4918 	/* fallback to generic here if not in extents fmt */
4919 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4920 		return generic_block_fiemap(inode, fieinfo, start, len,
4921 			ext4_get_block);
4922 
4923 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4924 		return -EBADR;
4925 
4926 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4927 		error = ext4_xattr_fiemap(inode, fieinfo);
4928 	} else {
4929 		ext4_lblk_t len_blks;
4930 		__u64 last_blk;
4931 
4932 		start_blk = start >> inode->i_sb->s_blocksize_bits;
4933 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4934 		if (last_blk >= EXT_MAX_BLOCKS)
4935 			last_blk = EXT_MAX_BLOCKS-1;
4936 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4937 
4938 		/*
4939 		 * Walk the extent tree gathering extent information.
4940 		 * ext4_ext_fiemap_cb will push extents back to user.
4941 		 */
4942 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
4943 					  ext4_ext_fiemap_cb, fieinfo);
4944 	}
4945 
4946 	return error;
4947 }
4948