1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/module.h> 33 #include <linux/fs.h> 34 #include <linux/time.h> 35 #include <linux/jbd2.h> 36 #include <linux/highuid.h> 37 #include <linux/pagemap.h> 38 #include <linux/quotaops.h> 39 #include <linux/string.h> 40 #include <linux/slab.h> 41 #include <linux/falloc.h> 42 #include <asm/uaccess.h> 43 #include "ext4_jbd2.h" 44 #include "ext4_extents.h" 45 46 47 /* 48 * ext_pblock: 49 * combine low and high parts of physical block number into ext4_fsblk_t 50 */ 51 static ext4_fsblk_t ext_pblock(struct ext4_extent *ex) 52 { 53 ext4_fsblk_t block; 54 55 block = le32_to_cpu(ex->ee_start_lo); 56 block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1; 57 return block; 58 } 59 60 /* 61 * idx_pblock: 62 * combine low and high parts of a leaf physical block number into ext4_fsblk_t 63 */ 64 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix) 65 { 66 ext4_fsblk_t block; 67 68 block = le32_to_cpu(ix->ei_leaf_lo); 69 block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1; 70 return block; 71 } 72 73 /* 74 * ext4_ext_store_pblock: 75 * stores a large physical block number into an extent struct, 76 * breaking it into parts 77 */ 78 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb) 79 { 80 ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); 81 ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); 82 } 83 84 /* 85 * ext4_idx_store_pblock: 86 * stores a large physical block number into an index struct, 87 * breaking it into parts 88 */ 89 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb) 90 { 91 ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); 92 ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); 93 } 94 95 static int ext4_ext_journal_restart(handle_t *handle, int needed) 96 { 97 int err; 98 99 if (handle->h_buffer_credits > needed) 100 return 0; 101 err = ext4_journal_extend(handle, needed); 102 if (err) 103 return err; 104 return ext4_journal_restart(handle, needed); 105 } 106 107 /* 108 * could return: 109 * - EROFS 110 * - ENOMEM 111 */ 112 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 113 struct ext4_ext_path *path) 114 { 115 if (path->p_bh) { 116 /* path points to block */ 117 return ext4_journal_get_write_access(handle, path->p_bh); 118 } 119 /* path points to leaf/index in inode body */ 120 /* we use in-core data, no need to protect them */ 121 return 0; 122 } 123 124 /* 125 * could return: 126 * - EROFS 127 * - ENOMEM 128 * - EIO 129 */ 130 static int ext4_ext_dirty(handle_t *handle, struct inode *inode, 131 struct ext4_ext_path *path) 132 { 133 int err; 134 if (path->p_bh) { 135 /* path points to block */ 136 err = ext4_journal_dirty_metadata(handle, path->p_bh); 137 } else { 138 /* path points to leaf/index in inode body */ 139 err = ext4_mark_inode_dirty(handle, inode); 140 } 141 return err; 142 } 143 144 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 145 struct ext4_ext_path *path, 146 ext4_lblk_t block) 147 { 148 struct ext4_inode_info *ei = EXT4_I(inode); 149 ext4_fsblk_t bg_start; 150 ext4_fsblk_t last_block; 151 ext4_grpblk_t colour; 152 int depth; 153 154 if (path) { 155 struct ext4_extent *ex; 156 depth = path->p_depth; 157 158 /* try to predict block placement */ 159 ex = path[depth].p_ext; 160 if (ex) 161 return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block)); 162 163 /* it looks like index is empty; 164 * try to find starting block from index itself */ 165 if (path[depth].p_bh) 166 return path[depth].p_bh->b_blocknr; 167 } 168 169 /* OK. use inode's group */ 170 bg_start = (ei->i_block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) + 171 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block); 172 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 173 174 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 175 colour = (current->pid % 16) * 176 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 177 else 178 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 179 return bg_start + colour + block; 180 } 181 182 /* 183 * Allocation for a meta data block 184 */ 185 static ext4_fsblk_t 186 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 187 struct ext4_ext_path *path, 188 struct ext4_extent *ex, int *err) 189 { 190 ext4_fsblk_t goal, newblock; 191 192 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 193 newblock = ext4_new_meta_block(handle, inode, goal, err); 194 return newblock; 195 } 196 197 static int ext4_ext_space_block(struct inode *inode) 198 { 199 int size; 200 201 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 202 / sizeof(struct ext4_extent); 203 #ifdef AGGRESSIVE_TEST 204 if (size > 6) 205 size = 6; 206 #endif 207 return size; 208 } 209 210 static int ext4_ext_space_block_idx(struct inode *inode) 211 { 212 int size; 213 214 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 215 / sizeof(struct ext4_extent_idx); 216 #ifdef AGGRESSIVE_TEST 217 if (size > 5) 218 size = 5; 219 #endif 220 return size; 221 } 222 223 static int ext4_ext_space_root(struct inode *inode) 224 { 225 int size; 226 227 size = sizeof(EXT4_I(inode)->i_data); 228 size -= sizeof(struct ext4_extent_header); 229 size /= sizeof(struct ext4_extent); 230 #ifdef AGGRESSIVE_TEST 231 if (size > 3) 232 size = 3; 233 #endif 234 return size; 235 } 236 237 static int ext4_ext_space_root_idx(struct inode *inode) 238 { 239 int size; 240 241 size = sizeof(EXT4_I(inode)->i_data); 242 size -= sizeof(struct ext4_extent_header); 243 size /= sizeof(struct ext4_extent_idx); 244 #ifdef AGGRESSIVE_TEST 245 if (size > 4) 246 size = 4; 247 #endif 248 return size; 249 } 250 251 /* 252 * Calculate the number of metadata blocks needed 253 * to allocate @blocks 254 * Worse case is one block per extent 255 */ 256 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks) 257 { 258 int lcap, icap, rcap, leafs, idxs, num; 259 int newextents = blocks; 260 261 rcap = ext4_ext_space_root_idx(inode); 262 lcap = ext4_ext_space_block(inode); 263 icap = ext4_ext_space_block_idx(inode); 264 265 /* number of new leaf blocks needed */ 266 num = leafs = (newextents + lcap - 1) / lcap; 267 268 /* 269 * Worse case, we need separate index block(s) 270 * to link all new leaf blocks 271 */ 272 idxs = (leafs + icap - 1) / icap; 273 do { 274 num += idxs; 275 idxs = (idxs + icap - 1) / icap; 276 } while (idxs > rcap); 277 278 return num; 279 } 280 281 static int 282 ext4_ext_max_entries(struct inode *inode, int depth) 283 { 284 int max; 285 286 if (depth == ext_depth(inode)) { 287 if (depth == 0) 288 max = ext4_ext_space_root(inode); 289 else 290 max = ext4_ext_space_root_idx(inode); 291 } else { 292 if (depth == 0) 293 max = ext4_ext_space_block(inode); 294 else 295 max = ext4_ext_space_block_idx(inode); 296 } 297 298 return max; 299 } 300 301 static int __ext4_ext_check_header(const char *function, struct inode *inode, 302 struct ext4_extent_header *eh, 303 int depth) 304 { 305 const char *error_msg; 306 int max = 0; 307 308 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 309 error_msg = "invalid magic"; 310 goto corrupted; 311 } 312 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 313 error_msg = "unexpected eh_depth"; 314 goto corrupted; 315 } 316 if (unlikely(eh->eh_max == 0)) { 317 error_msg = "invalid eh_max"; 318 goto corrupted; 319 } 320 max = ext4_ext_max_entries(inode, depth); 321 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 322 error_msg = "too large eh_max"; 323 goto corrupted; 324 } 325 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 326 error_msg = "invalid eh_entries"; 327 goto corrupted; 328 } 329 return 0; 330 331 corrupted: 332 ext4_error(inode->i_sb, function, 333 "bad header in inode #%lu: %s - magic %x, " 334 "entries %u, max %u(%u), depth %u(%u)", 335 inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic), 336 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 337 max, le16_to_cpu(eh->eh_depth), depth); 338 339 return -EIO; 340 } 341 342 #define ext4_ext_check_header(inode, eh, depth) \ 343 __ext4_ext_check_header(__func__, inode, eh, depth) 344 345 #ifdef EXT_DEBUG 346 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 347 { 348 int k, l = path->p_depth; 349 350 ext_debug("path:"); 351 for (k = 0; k <= l; k++, path++) { 352 if (path->p_idx) { 353 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 354 idx_pblock(path->p_idx)); 355 } else if (path->p_ext) { 356 ext_debug(" %d:%d:%llu ", 357 le32_to_cpu(path->p_ext->ee_block), 358 ext4_ext_get_actual_len(path->p_ext), 359 ext_pblock(path->p_ext)); 360 } else 361 ext_debug(" []"); 362 } 363 ext_debug("\n"); 364 } 365 366 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 367 { 368 int depth = ext_depth(inode); 369 struct ext4_extent_header *eh; 370 struct ext4_extent *ex; 371 int i; 372 373 if (!path) 374 return; 375 376 eh = path[depth].p_hdr; 377 ex = EXT_FIRST_EXTENT(eh); 378 379 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 380 ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block), 381 ext4_ext_get_actual_len(ex), ext_pblock(ex)); 382 } 383 ext_debug("\n"); 384 } 385 #else 386 #define ext4_ext_show_path(inode,path) 387 #define ext4_ext_show_leaf(inode,path) 388 #endif 389 390 void ext4_ext_drop_refs(struct ext4_ext_path *path) 391 { 392 int depth = path->p_depth; 393 int i; 394 395 for (i = 0; i <= depth; i++, path++) 396 if (path->p_bh) { 397 brelse(path->p_bh); 398 path->p_bh = NULL; 399 } 400 } 401 402 /* 403 * ext4_ext_binsearch_idx: 404 * binary search for the closest index of the given block 405 * the header must be checked before calling this 406 */ 407 static void 408 ext4_ext_binsearch_idx(struct inode *inode, 409 struct ext4_ext_path *path, ext4_lblk_t block) 410 { 411 struct ext4_extent_header *eh = path->p_hdr; 412 struct ext4_extent_idx *r, *l, *m; 413 414 415 ext_debug("binsearch for %u(idx): ", block); 416 417 l = EXT_FIRST_INDEX(eh) + 1; 418 r = EXT_LAST_INDEX(eh); 419 while (l <= r) { 420 m = l + (r - l) / 2; 421 if (block < le32_to_cpu(m->ei_block)) 422 r = m - 1; 423 else 424 l = m + 1; 425 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 426 m, le32_to_cpu(m->ei_block), 427 r, le32_to_cpu(r->ei_block)); 428 } 429 430 path->p_idx = l - 1; 431 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block), 432 idx_pblock(path->p_idx)); 433 434 #ifdef CHECK_BINSEARCH 435 { 436 struct ext4_extent_idx *chix, *ix; 437 int k; 438 439 chix = ix = EXT_FIRST_INDEX(eh); 440 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 441 if (k != 0 && 442 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 443 printk("k=%d, ix=0x%p, first=0x%p\n", k, 444 ix, EXT_FIRST_INDEX(eh)); 445 printk("%u <= %u\n", 446 le32_to_cpu(ix->ei_block), 447 le32_to_cpu(ix[-1].ei_block)); 448 } 449 BUG_ON(k && le32_to_cpu(ix->ei_block) 450 <= le32_to_cpu(ix[-1].ei_block)); 451 if (block < le32_to_cpu(ix->ei_block)) 452 break; 453 chix = ix; 454 } 455 BUG_ON(chix != path->p_idx); 456 } 457 #endif 458 459 } 460 461 /* 462 * ext4_ext_binsearch: 463 * binary search for closest extent of the given block 464 * the header must be checked before calling this 465 */ 466 static void 467 ext4_ext_binsearch(struct inode *inode, 468 struct ext4_ext_path *path, ext4_lblk_t block) 469 { 470 struct ext4_extent_header *eh = path->p_hdr; 471 struct ext4_extent *r, *l, *m; 472 473 if (eh->eh_entries == 0) { 474 /* 475 * this leaf is empty: 476 * we get such a leaf in split/add case 477 */ 478 return; 479 } 480 481 ext_debug("binsearch for %u: ", block); 482 483 l = EXT_FIRST_EXTENT(eh) + 1; 484 r = EXT_LAST_EXTENT(eh); 485 486 while (l <= r) { 487 m = l + (r - l) / 2; 488 if (block < le32_to_cpu(m->ee_block)) 489 r = m - 1; 490 else 491 l = m + 1; 492 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 493 m, le32_to_cpu(m->ee_block), 494 r, le32_to_cpu(r->ee_block)); 495 } 496 497 path->p_ext = l - 1; 498 ext_debug(" -> %d:%llu:%d ", 499 le32_to_cpu(path->p_ext->ee_block), 500 ext_pblock(path->p_ext), 501 ext4_ext_get_actual_len(path->p_ext)); 502 503 #ifdef CHECK_BINSEARCH 504 { 505 struct ext4_extent *chex, *ex; 506 int k; 507 508 chex = ex = EXT_FIRST_EXTENT(eh); 509 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 510 BUG_ON(k && le32_to_cpu(ex->ee_block) 511 <= le32_to_cpu(ex[-1].ee_block)); 512 if (block < le32_to_cpu(ex->ee_block)) 513 break; 514 chex = ex; 515 } 516 BUG_ON(chex != path->p_ext); 517 } 518 #endif 519 520 } 521 522 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 523 { 524 struct ext4_extent_header *eh; 525 526 eh = ext_inode_hdr(inode); 527 eh->eh_depth = 0; 528 eh->eh_entries = 0; 529 eh->eh_magic = EXT4_EXT_MAGIC; 530 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode)); 531 ext4_mark_inode_dirty(handle, inode); 532 ext4_ext_invalidate_cache(inode); 533 return 0; 534 } 535 536 struct ext4_ext_path * 537 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 538 struct ext4_ext_path *path) 539 { 540 struct ext4_extent_header *eh; 541 struct buffer_head *bh; 542 short int depth, i, ppos = 0, alloc = 0; 543 544 eh = ext_inode_hdr(inode); 545 depth = ext_depth(inode); 546 if (ext4_ext_check_header(inode, eh, depth)) 547 return ERR_PTR(-EIO); 548 549 550 /* account possible depth increase */ 551 if (!path) { 552 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 553 GFP_NOFS); 554 if (!path) 555 return ERR_PTR(-ENOMEM); 556 alloc = 1; 557 } 558 path[0].p_hdr = eh; 559 path[0].p_bh = NULL; 560 561 i = depth; 562 /* walk through the tree */ 563 while (i) { 564 ext_debug("depth %d: num %d, max %d\n", 565 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 566 567 ext4_ext_binsearch_idx(inode, path + ppos, block); 568 path[ppos].p_block = idx_pblock(path[ppos].p_idx); 569 path[ppos].p_depth = i; 570 path[ppos].p_ext = NULL; 571 572 bh = sb_bread(inode->i_sb, path[ppos].p_block); 573 if (!bh) 574 goto err; 575 576 eh = ext_block_hdr(bh); 577 ppos++; 578 BUG_ON(ppos > depth); 579 path[ppos].p_bh = bh; 580 path[ppos].p_hdr = eh; 581 i--; 582 583 if (ext4_ext_check_header(inode, eh, i)) 584 goto err; 585 } 586 587 path[ppos].p_depth = i; 588 path[ppos].p_ext = NULL; 589 path[ppos].p_idx = NULL; 590 591 /* find extent */ 592 ext4_ext_binsearch(inode, path + ppos, block); 593 /* if not an empty leaf */ 594 if (path[ppos].p_ext) 595 path[ppos].p_block = ext_pblock(path[ppos].p_ext); 596 597 ext4_ext_show_path(inode, path); 598 599 return path; 600 601 err: 602 ext4_ext_drop_refs(path); 603 if (alloc) 604 kfree(path); 605 return ERR_PTR(-EIO); 606 } 607 608 /* 609 * ext4_ext_insert_index: 610 * insert new index [@logical;@ptr] into the block at @curp; 611 * check where to insert: before @curp or after @curp 612 */ 613 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 614 struct ext4_ext_path *curp, 615 int logical, ext4_fsblk_t ptr) 616 { 617 struct ext4_extent_idx *ix; 618 int len, err; 619 620 err = ext4_ext_get_access(handle, inode, curp); 621 if (err) 622 return err; 623 624 BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block)); 625 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx; 626 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 627 /* insert after */ 628 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) { 629 len = (len - 1) * sizeof(struct ext4_extent_idx); 630 len = len < 0 ? 0 : len; 631 ext_debug("insert new index %d after: %llu. " 632 "move %d from 0x%p to 0x%p\n", 633 logical, ptr, len, 634 (curp->p_idx + 1), (curp->p_idx + 2)); 635 memmove(curp->p_idx + 2, curp->p_idx + 1, len); 636 } 637 ix = curp->p_idx + 1; 638 } else { 639 /* insert before */ 640 len = len * sizeof(struct ext4_extent_idx); 641 len = len < 0 ? 0 : len; 642 ext_debug("insert new index %d before: %llu. " 643 "move %d from 0x%p to 0x%p\n", 644 logical, ptr, len, 645 curp->p_idx, (curp->p_idx + 1)); 646 memmove(curp->p_idx + 1, curp->p_idx, len); 647 ix = curp->p_idx; 648 } 649 650 ix->ei_block = cpu_to_le32(logical); 651 ext4_idx_store_pblock(ix, ptr); 652 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 653 654 BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries) 655 > le16_to_cpu(curp->p_hdr->eh_max)); 656 BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr)); 657 658 err = ext4_ext_dirty(handle, inode, curp); 659 ext4_std_error(inode->i_sb, err); 660 661 return err; 662 } 663 664 /* 665 * ext4_ext_split: 666 * inserts new subtree into the path, using free index entry 667 * at depth @at: 668 * - allocates all needed blocks (new leaf and all intermediate index blocks) 669 * - makes decision where to split 670 * - moves remaining extents and index entries (right to the split point) 671 * into the newly allocated blocks 672 * - initializes subtree 673 */ 674 static int ext4_ext_split(handle_t *handle, struct inode *inode, 675 struct ext4_ext_path *path, 676 struct ext4_extent *newext, int at) 677 { 678 struct buffer_head *bh = NULL; 679 int depth = ext_depth(inode); 680 struct ext4_extent_header *neh; 681 struct ext4_extent_idx *fidx; 682 struct ext4_extent *ex; 683 int i = at, k, m, a; 684 ext4_fsblk_t newblock, oldblock; 685 __le32 border; 686 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 687 int err = 0; 688 689 /* make decision: where to split? */ 690 /* FIXME: now decision is simplest: at current extent */ 691 692 /* if current leaf will be split, then we should use 693 * border from split point */ 694 BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr)); 695 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 696 border = path[depth].p_ext[1].ee_block; 697 ext_debug("leaf will be split." 698 " next leaf starts at %d\n", 699 le32_to_cpu(border)); 700 } else { 701 border = newext->ee_block; 702 ext_debug("leaf will be added." 703 " next leaf starts at %d\n", 704 le32_to_cpu(border)); 705 } 706 707 /* 708 * If error occurs, then we break processing 709 * and mark filesystem read-only. index won't 710 * be inserted and tree will be in consistent 711 * state. Next mount will repair buffers too. 712 */ 713 714 /* 715 * Get array to track all allocated blocks. 716 * We need this to handle errors and free blocks 717 * upon them. 718 */ 719 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 720 if (!ablocks) 721 return -ENOMEM; 722 723 /* allocate all needed blocks */ 724 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 725 for (a = 0; a < depth - at; a++) { 726 newblock = ext4_ext_new_meta_block(handle, inode, path, 727 newext, &err); 728 if (newblock == 0) 729 goto cleanup; 730 ablocks[a] = newblock; 731 } 732 733 /* initialize new leaf */ 734 newblock = ablocks[--a]; 735 BUG_ON(newblock == 0); 736 bh = sb_getblk(inode->i_sb, newblock); 737 if (!bh) { 738 err = -EIO; 739 goto cleanup; 740 } 741 lock_buffer(bh); 742 743 err = ext4_journal_get_create_access(handle, bh); 744 if (err) 745 goto cleanup; 746 747 neh = ext_block_hdr(bh); 748 neh->eh_entries = 0; 749 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode)); 750 neh->eh_magic = EXT4_EXT_MAGIC; 751 neh->eh_depth = 0; 752 ex = EXT_FIRST_EXTENT(neh); 753 754 /* move remainder of path[depth] to the new leaf */ 755 BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max); 756 /* start copy from next extent */ 757 /* TODO: we could do it by single memmove */ 758 m = 0; 759 path[depth].p_ext++; 760 while (path[depth].p_ext <= 761 EXT_MAX_EXTENT(path[depth].p_hdr)) { 762 ext_debug("move %d:%llu:%d in new leaf %llu\n", 763 le32_to_cpu(path[depth].p_ext->ee_block), 764 ext_pblock(path[depth].p_ext), 765 ext4_ext_get_actual_len(path[depth].p_ext), 766 newblock); 767 /*memmove(ex++, path[depth].p_ext++, 768 sizeof(struct ext4_extent)); 769 neh->eh_entries++;*/ 770 path[depth].p_ext++; 771 m++; 772 } 773 if (m) { 774 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m); 775 le16_add_cpu(&neh->eh_entries, m); 776 } 777 778 set_buffer_uptodate(bh); 779 unlock_buffer(bh); 780 781 err = ext4_journal_dirty_metadata(handle, bh); 782 if (err) 783 goto cleanup; 784 brelse(bh); 785 bh = NULL; 786 787 /* correct old leaf */ 788 if (m) { 789 err = ext4_ext_get_access(handle, inode, path + depth); 790 if (err) 791 goto cleanup; 792 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 793 err = ext4_ext_dirty(handle, inode, path + depth); 794 if (err) 795 goto cleanup; 796 797 } 798 799 /* create intermediate indexes */ 800 k = depth - at - 1; 801 BUG_ON(k < 0); 802 if (k) 803 ext_debug("create %d intermediate indices\n", k); 804 /* insert new index into current index block */ 805 /* current depth stored in i var */ 806 i = depth - 1; 807 while (k--) { 808 oldblock = newblock; 809 newblock = ablocks[--a]; 810 bh = sb_getblk(inode->i_sb, newblock); 811 if (!bh) { 812 err = -EIO; 813 goto cleanup; 814 } 815 lock_buffer(bh); 816 817 err = ext4_journal_get_create_access(handle, bh); 818 if (err) 819 goto cleanup; 820 821 neh = ext_block_hdr(bh); 822 neh->eh_entries = cpu_to_le16(1); 823 neh->eh_magic = EXT4_EXT_MAGIC; 824 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode)); 825 neh->eh_depth = cpu_to_le16(depth - i); 826 fidx = EXT_FIRST_INDEX(neh); 827 fidx->ei_block = border; 828 ext4_idx_store_pblock(fidx, oldblock); 829 830 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 831 i, newblock, le32_to_cpu(border), oldblock); 832 /* copy indexes */ 833 m = 0; 834 path[i].p_idx++; 835 836 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 837 EXT_MAX_INDEX(path[i].p_hdr)); 838 BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) != 839 EXT_LAST_INDEX(path[i].p_hdr)); 840 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) { 841 ext_debug("%d: move %d:%llu in new index %llu\n", i, 842 le32_to_cpu(path[i].p_idx->ei_block), 843 idx_pblock(path[i].p_idx), 844 newblock); 845 /*memmove(++fidx, path[i].p_idx++, 846 sizeof(struct ext4_extent_idx)); 847 neh->eh_entries++; 848 BUG_ON(neh->eh_entries > neh->eh_max);*/ 849 path[i].p_idx++; 850 m++; 851 } 852 if (m) { 853 memmove(++fidx, path[i].p_idx - m, 854 sizeof(struct ext4_extent_idx) * m); 855 le16_add_cpu(&neh->eh_entries, m); 856 } 857 set_buffer_uptodate(bh); 858 unlock_buffer(bh); 859 860 err = ext4_journal_dirty_metadata(handle, bh); 861 if (err) 862 goto cleanup; 863 brelse(bh); 864 bh = NULL; 865 866 /* correct old index */ 867 if (m) { 868 err = ext4_ext_get_access(handle, inode, path + i); 869 if (err) 870 goto cleanup; 871 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 872 err = ext4_ext_dirty(handle, inode, path + i); 873 if (err) 874 goto cleanup; 875 } 876 877 i--; 878 } 879 880 /* insert new index */ 881 err = ext4_ext_insert_index(handle, inode, path + at, 882 le32_to_cpu(border), newblock); 883 884 cleanup: 885 if (bh) { 886 if (buffer_locked(bh)) 887 unlock_buffer(bh); 888 brelse(bh); 889 } 890 891 if (err) { 892 /* free all allocated blocks in error case */ 893 for (i = 0; i < depth; i++) { 894 if (!ablocks[i]) 895 continue; 896 ext4_free_blocks(handle, inode, ablocks[i], 1, 1); 897 } 898 } 899 kfree(ablocks); 900 901 return err; 902 } 903 904 /* 905 * ext4_ext_grow_indepth: 906 * implements tree growing procedure: 907 * - allocates new block 908 * - moves top-level data (index block or leaf) into the new block 909 * - initializes new top-level, creating index that points to the 910 * just created block 911 */ 912 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 913 struct ext4_ext_path *path, 914 struct ext4_extent *newext) 915 { 916 struct ext4_ext_path *curp = path; 917 struct ext4_extent_header *neh; 918 struct ext4_extent_idx *fidx; 919 struct buffer_head *bh; 920 ext4_fsblk_t newblock; 921 int err = 0; 922 923 newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err); 924 if (newblock == 0) 925 return err; 926 927 bh = sb_getblk(inode->i_sb, newblock); 928 if (!bh) { 929 err = -EIO; 930 ext4_std_error(inode->i_sb, err); 931 return err; 932 } 933 lock_buffer(bh); 934 935 err = ext4_journal_get_create_access(handle, bh); 936 if (err) { 937 unlock_buffer(bh); 938 goto out; 939 } 940 941 /* move top-level index/leaf into new block */ 942 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data)); 943 944 /* set size of new block */ 945 neh = ext_block_hdr(bh); 946 /* old root could have indexes or leaves 947 * so calculate e_max right way */ 948 if (ext_depth(inode)) 949 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode)); 950 else 951 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode)); 952 neh->eh_magic = EXT4_EXT_MAGIC; 953 set_buffer_uptodate(bh); 954 unlock_buffer(bh); 955 956 err = ext4_journal_dirty_metadata(handle, bh); 957 if (err) 958 goto out; 959 960 /* create index in new top-level index: num,max,pointer */ 961 err = ext4_ext_get_access(handle, inode, curp); 962 if (err) 963 goto out; 964 965 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC; 966 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode)); 967 curp->p_hdr->eh_entries = cpu_to_le16(1); 968 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr); 969 970 if (path[0].p_hdr->eh_depth) 971 curp->p_idx->ei_block = 972 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block; 973 else 974 curp->p_idx->ei_block = 975 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block; 976 ext4_idx_store_pblock(curp->p_idx, newblock); 977 978 neh = ext_inode_hdr(inode); 979 fidx = EXT_FIRST_INDEX(neh); 980 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 981 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 982 le32_to_cpu(fidx->ei_block), idx_pblock(fidx)); 983 984 neh->eh_depth = cpu_to_le16(path->p_depth + 1); 985 err = ext4_ext_dirty(handle, inode, curp); 986 out: 987 brelse(bh); 988 989 return err; 990 } 991 992 /* 993 * ext4_ext_create_new_leaf: 994 * finds empty index and adds new leaf. 995 * if no free index is found, then it requests in-depth growing. 996 */ 997 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 998 struct ext4_ext_path *path, 999 struct ext4_extent *newext) 1000 { 1001 struct ext4_ext_path *curp; 1002 int depth, i, err = 0; 1003 1004 repeat: 1005 i = depth = ext_depth(inode); 1006 1007 /* walk up to the tree and look for free index entry */ 1008 curp = path + depth; 1009 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1010 i--; 1011 curp--; 1012 } 1013 1014 /* we use already allocated block for index block, 1015 * so subsequent data blocks should be contiguous */ 1016 if (EXT_HAS_FREE_INDEX(curp)) { 1017 /* if we found index with free entry, then use that 1018 * entry: create all needed subtree and add new leaf */ 1019 err = ext4_ext_split(handle, inode, path, newext, i); 1020 if (err) 1021 goto out; 1022 1023 /* refill path */ 1024 ext4_ext_drop_refs(path); 1025 path = ext4_ext_find_extent(inode, 1026 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1027 path); 1028 if (IS_ERR(path)) 1029 err = PTR_ERR(path); 1030 } else { 1031 /* tree is full, time to grow in depth */ 1032 err = ext4_ext_grow_indepth(handle, inode, path, newext); 1033 if (err) 1034 goto out; 1035 1036 /* refill path */ 1037 ext4_ext_drop_refs(path); 1038 path = ext4_ext_find_extent(inode, 1039 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1040 path); 1041 if (IS_ERR(path)) { 1042 err = PTR_ERR(path); 1043 goto out; 1044 } 1045 1046 /* 1047 * only first (depth 0 -> 1) produces free space; 1048 * in all other cases we have to split the grown tree 1049 */ 1050 depth = ext_depth(inode); 1051 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1052 /* now we need to split */ 1053 goto repeat; 1054 } 1055 } 1056 1057 out: 1058 return err; 1059 } 1060 1061 /* 1062 * search the closest allocated block to the left for *logical 1063 * and returns it at @logical + it's physical address at @phys 1064 * if *logical is the smallest allocated block, the function 1065 * returns 0 at @phys 1066 * return value contains 0 (success) or error code 1067 */ 1068 int 1069 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path, 1070 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1071 { 1072 struct ext4_extent_idx *ix; 1073 struct ext4_extent *ex; 1074 int depth, ee_len; 1075 1076 BUG_ON(path == NULL); 1077 depth = path->p_depth; 1078 *phys = 0; 1079 1080 if (depth == 0 && path->p_ext == NULL) 1081 return 0; 1082 1083 /* usually extent in the path covers blocks smaller 1084 * then *logical, but it can be that extent is the 1085 * first one in the file */ 1086 1087 ex = path[depth].p_ext; 1088 ee_len = ext4_ext_get_actual_len(ex); 1089 if (*logical < le32_to_cpu(ex->ee_block)) { 1090 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex); 1091 while (--depth >= 0) { 1092 ix = path[depth].p_idx; 1093 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr)); 1094 } 1095 return 0; 1096 } 1097 1098 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len)); 1099 1100 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1101 *phys = ext_pblock(ex) + ee_len - 1; 1102 return 0; 1103 } 1104 1105 /* 1106 * search the closest allocated block to the right for *logical 1107 * and returns it at @logical + it's physical address at @phys 1108 * if *logical is the smallest allocated block, the function 1109 * returns 0 at @phys 1110 * return value contains 0 (success) or error code 1111 */ 1112 int 1113 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path, 1114 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1115 { 1116 struct buffer_head *bh = NULL; 1117 struct ext4_extent_header *eh; 1118 struct ext4_extent_idx *ix; 1119 struct ext4_extent *ex; 1120 ext4_fsblk_t block; 1121 int depth, ee_len; 1122 1123 BUG_ON(path == NULL); 1124 depth = path->p_depth; 1125 *phys = 0; 1126 1127 if (depth == 0 && path->p_ext == NULL) 1128 return 0; 1129 1130 /* usually extent in the path covers blocks smaller 1131 * then *logical, but it can be that extent is the 1132 * first one in the file */ 1133 1134 ex = path[depth].p_ext; 1135 ee_len = ext4_ext_get_actual_len(ex); 1136 if (*logical < le32_to_cpu(ex->ee_block)) { 1137 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex); 1138 while (--depth >= 0) { 1139 ix = path[depth].p_idx; 1140 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr)); 1141 } 1142 *logical = le32_to_cpu(ex->ee_block); 1143 *phys = ext_pblock(ex); 1144 return 0; 1145 } 1146 1147 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len)); 1148 1149 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1150 /* next allocated block in this leaf */ 1151 ex++; 1152 *logical = le32_to_cpu(ex->ee_block); 1153 *phys = ext_pblock(ex); 1154 return 0; 1155 } 1156 1157 /* go up and search for index to the right */ 1158 while (--depth >= 0) { 1159 ix = path[depth].p_idx; 1160 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1161 break; 1162 } 1163 1164 if (depth < 0) { 1165 /* we've gone up to the root and 1166 * found no index to the right */ 1167 return 0; 1168 } 1169 1170 /* we've found index to the right, let's 1171 * follow it and find the closest allocated 1172 * block to the right */ 1173 ix++; 1174 block = idx_pblock(ix); 1175 while (++depth < path->p_depth) { 1176 bh = sb_bread(inode->i_sb, block); 1177 if (bh == NULL) 1178 return -EIO; 1179 eh = ext_block_hdr(bh); 1180 if (ext4_ext_check_header(inode, eh, depth)) { 1181 put_bh(bh); 1182 return -EIO; 1183 } 1184 ix = EXT_FIRST_INDEX(eh); 1185 block = idx_pblock(ix); 1186 put_bh(bh); 1187 } 1188 1189 bh = sb_bread(inode->i_sb, block); 1190 if (bh == NULL) 1191 return -EIO; 1192 eh = ext_block_hdr(bh); 1193 if (ext4_ext_check_header(inode, eh, path->p_depth - depth)) { 1194 put_bh(bh); 1195 return -EIO; 1196 } 1197 ex = EXT_FIRST_EXTENT(eh); 1198 *logical = le32_to_cpu(ex->ee_block); 1199 *phys = ext_pblock(ex); 1200 put_bh(bh); 1201 return 0; 1202 1203 } 1204 1205 /* 1206 * ext4_ext_next_allocated_block: 1207 * returns allocated block in subsequent extent or EXT_MAX_BLOCK. 1208 * NOTE: it considers block number from index entry as 1209 * allocated block. Thus, index entries have to be consistent 1210 * with leaves. 1211 */ 1212 static ext4_lblk_t 1213 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1214 { 1215 int depth; 1216 1217 BUG_ON(path == NULL); 1218 depth = path->p_depth; 1219 1220 if (depth == 0 && path->p_ext == NULL) 1221 return EXT_MAX_BLOCK; 1222 1223 while (depth >= 0) { 1224 if (depth == path->p_depth) { 1225 /* leaf */ 1226 if (path[depth].p_ext != 1227 EXT_LAST_EXTENT(path[depth].p_hdr)) 1228 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1229 } else { 1230 /* index */ 1231 if (path[depth].p_idx != 1232 EXT_LAST_INDEX(path[depth].p_hdr)) 1233 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1234 } 1235 depth--; 1236 } 1237 1238 return EXT_MAX_BLOCK; 1239 } 1240 1241 /* 1242 * ext4_ext_next_leaf_block: 1243 * returns first allocated block from next leaf or EXT_MAX_BLOCK 1244 */ 1245 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode, 1246 struct ext4_ext_path *path) 1247 { 1248 int depth; 1249 1250 BUG_ON(path == NULL); 1251 depth = path->p_depth; 1252 1253 /* zero-tree has no leaf blocks at all */ 1254 if (depth == 0) 1255 return EXT_MAX_BLOCK; 1256 1257 /* go to index block */ 1258 depth--; 1259 1260 while (depth >= 0) { 1261 if (path[depth].p_idx != 1262 EXT_LAST_INDEX(path[depth].p_hdr)) 1263 return (ext4_lblk_t) 1264 le32_to_cpu(path[depth].p_idx[1].ei_block); 1265 depth--; 1266 } 1267 1268 return EXT_MAX_BLOCK; 1269 } 1270 1271 /* 1272 * ext4_ext_correct_indexes: 1273 * if leaf gets modified and modified extent is first in the leaf, 1274 * then we have to correct all indexes above. 1275 * TODO: do we need to correct tree in all cases? 1276 */ 1277 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1278 struct ext4_ext_path *path) 1279 { 1280 struct ext4_extent_header *eh; 1281 int depth = ext_depth(inode); 1282 struct ext4_extent *ex; 1283 __le32 border; 1284 int k, err = 0; 1285 1286 eh = path[depth].p_hdr; 1287 ex = path[depth].p_ext; 1288 BUG_ON(ex == NULL); 1289 BUG_ON(eh == NULL); 1290 1291 if (depth == 0) { 1292 /* there is no tree at all */ 1293 return 0; 1294 } 1295 1296 if (ex != EXT_FIRST_EXTENT(eh)) { 1297 /* we correct tree if first leaf got modified only */ 1298 return 0; 1299 } 1300 1301 /* 1302 * TODO: we need correction if border is smaller than current one 1303 */ 1304 k = depth - 1; 1305 border = path[depth].p_ext->ee_block; 1306 err = ext4_ext_get_access(handle, inode, path + k); 1307 if (err) 1308 return err; 1309 path[k].p_idx->ei_block = border; 1310 err = ext4_ext_dirty(handle, inode, path + k); 1311 if (err) 1312 return err; 1313 1314 while (k--) { 1315 /* change all left-side indexes */ 1316 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1317 break; 1318 err = ext4_ext_get_access(handle, inode, path + k); 1319 if (err) 1320 break; 1321 path[k].p_idx->ei_block = border; 1322 err = ext4_ext_dirty(handle, inode, path + k); 1323 if (err) 1324 break; 1325 } 1326 1327 return err; 1328 } 1329 1330 static int 1331 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1332 struct ext4_extent *ex2) 1333 { 1334 unsigned short ext1_ee_len, ext2_ee_len, max_len; 1335 1336 /* 1337 * Make sure that either both extents are uninitialized, or 1338 * both are _not_. 1339 */ 1340 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2)) 1341 return 0; 1342 1343 if (ext4_ext_is_uninitialized(ex1)) 1344 max_len = EXT_UNINIT_MAX_LEN; 1345 else 1346 max_len = EXT_INIT_MAX_LEN; 1347 1348 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1349 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1350 1351 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1352 le32_to_cpu(ex2->ee_block)) 1353 return 0; 1354 1355 /* 1356 * To allow future support for preallocated extents to be added 1357 * as an RO_COMPAT feature, refuse to merge to extents if 1358 * this can result in the top bit of ee_len being set. 1359 */ 1360 if (ext1_ee_len + ext2_ee_len > max_len) 1361 return 0; 1362 #ifdef AGGRESSIVE_TEST 1363 if (ext1_ee_len >= 4) 1364 return 0; 1365 #endif 1366 1367 if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2)) 1368 return 1; 1369 return 0; 1370 } 1371 1372 /* 1373 * This function tries to merge the "ex" extent to the next extent in the tree. 1374 * It always tries to merge towards right. If you want to merge towards 1375 * left, pass "ex - 1" as argument instead of "ex". 1376 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1377 * 1 if they got merged. 1378 */ 1379 int ext4_ext_try_to_merge(struct inode *inode, 1380 struct ext4_ext_path *path, 1381 struct ext4_extent *ex) 1382 { 1383 struct ext4_extent_header *eh; 1384 unsigned int depth, len; 1385 int merge_done = 0; 1386 int uninitialized = 0; 1387 1388 depth = ext_depth(inode); 1389 BUG_ON(path[depth].p_hdr == NULL); 1390 eh = path[depth].p_hdr; 1391 1392 while (ex < EXT_LAST_EXTENT(eh)) { 1393 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1394 break; 1395 /* merge with next extent! */ 1396 if (ext4_ext_is_uninitialized(ex)) 1397 uninitialized = 1; 1398 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1399 + ext4_ext_get_actual_len(ex + 1)); 1400 if (uninitialized) 1401 ext4_ext_mark_uninitialized(ex); 1402 1403 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1404 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1405 * sizeof(struct ext4_extent); 1406 memmove(ex + 1, ex + 2, len); 1407 } 1408 le16_add_cpu(&eh->eh_entries, -1); 1409 merge_done = 1; 1410 WARN_ON(eh->eh_entries == 0); 1411 if (!eh->eh_entries) 1412 ext4_error(inode->i_sb, "ext4_ext_try_to_merge", 1413 "inode#%lu, eh->eh_entries = 0!", inode->i_ino); 1414 } 1415 1416 return merge_done; 1417 } 1418 1419 /* 1420 * check if a portion of the "newext" extent overlaps with an 1421 * existing extent. 1422 * 1423 * If there is an overlap discovered, it updates the length of the newext 1424 * such that there will be no overlap, and then returns 1. 1425 * If there is no overlap found, it returns 0. 1426 */ 1427 unsigned int ext4_ext_check_overlap(struct inode *inode, 1428 struct ext4_extent *newext, 1429 struct ext4_ext_path *path) 1430 { 1431 ext4_lblk_t b1, b2; 1432 unsigned int depth, len1; 1433 unsigned int ret = 0; 1434 1435 b1 = le32_to_cpu(newext->ee_block); 1436 len1 = ext4_ext_get_actual_len(newext); 1437 depth = ext_depth(inode); 1438 if (!path[depth].p_ext) 1439 goto out; 1440 b2 = le32_to_cpu(path[depth].p_ext->ee_block); 1441 1442 /* 1443 * get the next allocated block if the extent in the path 1444 * is before the requested block(s) 1445 */ 1446 if (b2 < b1) { 1447 b2 = ext4_ext_next_allocated_block(path); 1448 if (b2 == EXT_MAX_BLOCK) 1449 goto out; 1450 } 1451 1452 /* check for wrap through zero on extent logical start block*/ 1453 if (b1 + len1 < b1) { 1454 len1 = EXT_MAX_BLOCK - b1; 1455 newext->ee_len = cpu_to_le16(len1); 1456 ret = 1; 1457 } 1458 1459 /* check for overlap */ 1460 if (b1 + len1 > b2) { 1461 newext->ee_len = cpu_to_le16(b2 - b1); 1462 ret = 1; 1463 } 1464 out: 1465 return ret; 1466 } 1467 1468 /* 1469 * ext4_ext_insert_extent: 1470 * tries to merge requsted extent into the existing extent or 1471 * inserts requested extent as new one into the tree, 1472 * creating new leaf in the no-space case. 1473 */ 1474 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1475 struct ext4_ext_path *path, 1476 struct ext4_extent *newext) 1477 { 1478 struct ext4_extent_header * eh; 1479 struct ext4_extent *ex, *fex; 1480 struct ext4_extent *nearex; /* nearest extent */ 1481 struct ext4_ext_path *npath = NULL; 1482 int depth, len, err; 1483 ext4_lblk_t next; 1484 unsigned uninitialized = 0; 1485 1486 BUG_ON(ext4_ext_get_actual_len(newext) == 0); 1487 depth = ext_depth(inode); 1488 ex = path[depth].p_ext; 1489 BUG_ON(path[depth].p_hdr == NULL); 1490 1491 /* try to insert block into found extent and return */ 1492 if (ex && ext4_can_extents_be_merged(inode, ex, newext)) { 1493 ext_debug("append %d block to %d:%d (from %llu)\n", 1494 ext4_ext_get_actual_len(newext), 1495 le32_to_cpu(ex->ee_block), 1496 ext4_ext_get_actual_len(ex), ext_pblock(ex)); 1497 err = ext4_ext_get_access(handle, inode, path + depth); 1498 if (err) 1499 return err; 1500 1501 /* 1502 * ext4_can_extents_be_merged should have checked that either 1503 * both extents are uninitialized, or both aren't. Thus we 1504 * need to check only one of them here. 1505 */ 1506 if (ext4_ext_is_uninitialized(ex)) 1507 uninitialized = 1; 1508 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1509 + ext4_ext_get_actual_len(newext)); 1510 if (uninitialized) 1511 ext4_ext_mark_uninitialized(ex); 1512 eh = path[depth].p_hdr; 1513 nearex = ex; 1514 goto merge; 1515 } 1516 1517 repeat: 1518 depth = ext_depth(inode); 1519 eh = path[depth].p_hdr; 1520 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 1521 goto has_space; 1522 1523 /* probably next leaf has space for us? */ 1524 fex = EXT_LAST_EXTENT(eh); 1525 next = ext4_ext_next_leaf_block(inode, path); 1526 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block) 1527 && next != EXT_MAX_BLOCK) { 1528 ext_debug("next leaf block - %d\n", next); 1529 BUG_ON(npath != NULL); 1530 npath = ext4_ext_find_extent(inode, next, NULL); 1531 if (IS_ERR(npath)) 1532 return PTR_ERR(npath); 1533 BUG_ON(npath->p_depth != path->p_depth); 1534 eh = npath[depth].p_hdr; 1535 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 1536 ext_debug("next leaf isnt full(%d)\n", 1537 le16_to_cpu(eh->eh_entries)); 1538 path = npath; 1539 goto repeat; 1540 } 1541 ext_debug("next leaf has no free space(%d,%d)\n", 1542 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 1543 } 1544 1545 /* 1546 * There is no free space in the found leaf. 1547 * We're gonna add a new leaf in the tree. 1548 */ 1549 err = ext4_ext_create_new_leaf(handle, inode, path, newext); 1550 if (err) 1551 goto cleanup; 1552 depth = ext_depth(inode); 1553 eh = path[depth].p_hdr; 1554 1555 has_space: 1556 nearex = path[depth].p_ext; 1557 1558 err = ext4_ext_get_access(handle, inode, path + depth); 1559 if (err) 1560 goto cleanup; 1561 1562 if (!nearex) { 1563 /* there is no extent in this leaf, create first one */ 1564 ext_debug("first extent in the leaf: %d:%llu:%d\n", 1565 le32_to_cpu(newext->ee_block), 1566 ext_pblock(newext), 1567 ext4_ext_get_actual_len(newext)); 1568 path[depth].p_ext = EXT_FIRST_EXTENT(eh); 1569 } else if (le32_to_cpu(newext->ee_block) 1570 > le32_to_cpu(nearex->ee_block)) { 1571 /* BUG_ON(newext->ee_block == nearex->ee_block); */ 1572 if (nearex != EXT_LAST_EXTENT(eh)) { 1573 len = EXT_MAX_EXTENT(eh) - nearex; 1574 len = (len - 1) * sizeof(struct ext4_extent); 1575 len = len < 0 ? 0 : len; 1576 ext_debug("insert %d:%llu:%d after: nearest 0x%p, " 1577 "move %d from 0x%p to 0x%p\n", 1578 le32_to_cpu(newext->ee_block), 1579 ext_pblock(newext), 1580 ext4_ext_get_actual_len(newext), 1581 nearex, len, nearex + 1, nearex + 2); 1582 memmove(nearex + 2, nearex + 1, len); 1583 } 1584 path[depth].p_ext = nearex + 1; 1585 } else { 1586 BUG_ON(newext->ee_block == nearex->ee_block); 1587 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent); 1588 len = len < 0 ? 0 : len; 1589 ext_debug("insert %d:%llu:%d before: nearest 0x%p, " 1590 "move %d from 0x%p to 0x%p\n", 1591 le32_to_cpu(newext->ee_block), 1592 ext_pblock(newext), 1593 ext4_ext_get_actual_len(newext), 1594 nearex, len, nearex + 1, nearex + 2); 1595 memmove(nearex + 1, nearex, len); 1596 path[depth].p_ext = nearex; 1597 } 1598 1599 le16_add_cpu(&eh->eh_entries, 1); 1600 nearex = path[depth].p_ext; 1601 nearex->ee_block = newext->ee_block; 1602 ext4_ext_store_pblock(nearex, ext_pblock(newext)); 1603 nearex->ee_len = newext->ee_len; 1604 1605 merge: 1606 /* try to merge extents to the right */ 1607 ext4_ext_try_to_merge(inode, path, nearex); 1608 1609 /* try to merge extents to the left */ 1610 1611 /* time to correct all indexes above */ 1612 err = ext4_ext_correct_indexes(handle, inode, path); 1613 if (err) 1614 goto cleanup; 1615 1616 err = ext4_ext_dirty(handle, inode, path + depth); 1617 1618 cleanup: 1619 if (npath) { 1620 ext4_ext_drop_refs(npath); 1621 kfree(npath); 1622 } 1623 ext4_ext_tree_changed(inode); 1624 ext4_ext_invalidate_cache(inode); 1625 return err; 1626 } 1627 1628 static void 1629 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block, 1630 __u32 len, ext4_fsblk_t start, int type) 1631 { 1632 struct ext4_ext_cache *cex; 1633 BUG_ON(len == 0); 1634 cex = &EXT4_I(inode)->i_cached_extent; 1635 cex->ec_type = type; 1636 cex->ec_block = block; 1637 cex->ec_len = len; 1638 cex->ec_start = start; 1639 } 1640 1641 /* 1642 * ext4_ext_put_gap_in_cache: 1643 * calculate boundaries of the gap that the requested block fits into 1644 * and cache this gap 1645 */ 1646 static void 1647 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 1648 ext4_lblk_t block) 1649 { 1650 int depth = ext_depth(inode); 1651 unsigned long len; 1652 ext4_lblk_t lblock; 1653 struct ext4_extent *ex; 1654 1655 ex = path[depth].p_ext; 1656 if (ex == NULL) { 1657 /* there is no extent yet, so gap is [0;-] */ 1658 lblock = 0; 1659 len = EXT_MAX_BLOCK; 1660 ext_debug("cache gap(whole file):"); 1661 } else if (block < le32_to_cpu(ex->ee_block)) { 1662 lblock = block; 1663 len = le32_to_cpu(ex->ee_block) - block; 1664 ext_debug("cache gap(before): %u [%u:%u]", 1665 block, 1666 le32_to_cpu(ex->ee_block), 1667 ext4_ext_get_actual_len(ex)); 1668 } else if (block >= le32_to_cpu(ex->ee_block) 1669 + ext4_ext_get_actual_len(ex)) { 1670 ext4_lblk_t next; 1671 lblock = le32_to_cpu(ex->ee_block) 1672 + ext4_ext_get_actual_len(ex); 1673 1674 next = ext4_ext_next_allocated_block(path); 1675 ext_debug("cache gap(after): [%u:%u] %u", 1676 le32_to_cpu(ex->ee_block), 1677 ext4_ext_get_actual_len(ex), 1678 block); 1679 BUG_ON(next == lblock); 1680 len = next - lblock; 1681 } else { 1682 lblock = len = 0; 1683 BUG(); 1684 } 1685 1686 ext_debug(" -> %u:%lu\n", lblock, len); 1687 ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP); 1688 } 1689 1690 static int 1691 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block, 1692 struct ext4_extent *ex) 1693 { 1694 struct ext4_ext_cache *cex; 1695 1696 cex = &EXT4_I(inode)->i_cached_extent; 1697 1698 /* has cache valid data? */ 1699 if (cex->ec_type == EXT4_EXT_CACHE_NO) 1700 return EXT4_EXT_CACHE_NO; 1701 1702 BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP && 1703 cex->ec_type != EXT4_EXT_CACHE_EXTENT); 1704 if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) { 1705 ex->ee_block = cpu_to_le32(cex->ec_block); 1706 ext4_ext_store_pblock(ex, cex->ec_start); 1707 ex->ee_len = cpu_to_le16(cex->ec_len); 1708 ext_debug("%u cached by %u:%u:%llu\n", 1709 block, 1710 cex->ec_block, cex->ec_len, cex->ec_start); 1711 return cex->ec_type; 1712 } 1713 1714 /* not in cache */ 1715 return EXT4_EXT_CACHE_NO; 1716 } 1717 1718 /* 1719 * ext4_ext_rm_idx: 1720 * removes index from the index block. 1721 * It's used in truncate case only, thus all requests are for 1722 * last index in the block only. 1723 */ 1724 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 1725 struct ext4_ext_path *path) 1726 { 1727 struct buffer_head *bh; 1728 int err; 1729 ext4_fsblk_t leaf; 1730 1731 /* free index block */ 1732 path--; 1733 leaf = idx_pblock(path->p_idx); 1734 BUG_ON(path->p_hdr->eh_entries == 0); 1735 err = ext4_ext_get_access(handle, inode, path); 1736 if (err) 1737 return err; 1738 le16_add_cpu(&path->p_hdr->eh_entries, -1); 1739 err = ext4_ext_dirty(handle, inode, path); 1740 if (err) 1741 return err; 1742 ext_debug("index is empty, remove it, free block %llu\n", leaf); 1743 bh = sb_find_get_block(inode->i_sb, leaf); 1744 ext4_forget(handle, 1, inode, bh, leaf); 1745 ext4_free_blocks(handle, inode, leaf, 1, 1); 1746 return err; 1747 } 1748 1749 /* 1750 * ext4_ext_calc_credits_for_insert: 1751 * This routine returns max. credits that the extent tree can consume. 1752 * It should be OK for low-performance paths like ->writepage() 1753 * To allow many writing processes to fit into a single transaction, 1754 * the caller should calculate credits under i_data_sem and 1755 * pass the actual path. 1756 */ 1757 int ext4_ext_calc_credits_for_insert(struct inode *inode, 1758 struct ext4_ext_path *path) 1759 { 1760 int depth, needed; 1761 1762 if (path) { 1763 /* probably there is space in leaf? */ 1764 depth = ext_depth(inode); 1765 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 1766 < le16_to_cpu(path[depth].p_hdr->eh_max)) 1767 return 1; 1768 } 1769 1770 /* 1771 * given 32-bit logical block (4294967296 blocks), max. tree 1772 * can be 4 levels in depth -- 4 * 340^4 == 53453440000. 1773 * Let's also add one more level for imbalance. 1774 */ 1775 depth = 5; 1776 1777 /* allocation of new data block(s) */ 1778 needed = 2; 1779 1780 /* 1781 * tree can be full, so it would need to grow in depth: 1782 * we need one credit to modify old root, credits for 1783 * new root will be added in split accounting 1784 */ 1785 needed += 1; 1786 1787 /* 1788 * Index split can happen, we would need: 1789 * allocate intermediate indexes (bitmap + group) 1790 * + change two blocks at each level, but root (already included) 1791 */ 1792 needed += (depth * 2) + (depth * 2); 1793 1794 /* any allocation modifies superblock */ 1795 needed += 1; 1796 1797 return needed; 1798 } 1799 1800 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 1801 struct ext4_extent *ex, 1802 ext4_lblk_t from, ext4_lblk_t to) 1803 { 1804 struct buffer_head *bh; 1805 unsigned short ee_len = ext4_ext_get_actual_len(ex); 1806 int i, metadata = 0; 1807 1808 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1809 metadata = 1; 1810 #ifdef EXTENTS_STATS 1811 { 1812 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1813 spin_lock(&sbi->s_ext_stats_lock); 1814 sbi->s_ext_blocks += ee_len; 1815 sbi->s_ext_extents++; 1816 if (ee_len < sbi->s_ext_min) 1817 sbi->s_ext_min = ee_len; 1818 if (ee_len > sbi->s_ext_max) 1819 sbi->s_ext_max = ee_len; 1820 if (ext_depth(inode) > sbi->s_depth_max) 1821 sbi->s_depth_max = ext_depth(inode); 1822 spin_unlock(&sbi->s_ext_stats_lock); 1823 } 1824 #endif 1825 if (from >= le32_to_cpu(ex->ee_block) 1826 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 1827 /* tail removal */ 1828 ext4_lblk_t num; 1829 ext4_fsblk_t start; 1830 1831 num = le32_to_cpu(ex->ee_block) + ee_len - from; 1832 start = ext_pblock(ex) + ee_len - num; 1833 ext_debug("free last %u blocks starting %llu\n", num, start); 1834 for (i = 0; i < num; i++) { 1835 bh = sb_find_get_block(inode->i_sb, start + i); 1836 ext4_forget(handle, 0, inode, bh, start + i); 1837 } 1838 ext4_free_blocks(handle, inode, start, num, metadata); 1839 } else if (from == le32_to_cpu(ex->ee_block) 1840 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { 1841 printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n", 1842 from, to, le32_to_cpu(ex->ee_block), ee_len); 1843 } else { 1844 printk(KERN_INFO "strange request: removal(2) " 1845 "%u-%u from %u:%u\n", 1846 from, to, le32_to_cpu(ex->ee_block), ee_len); 1847 } 1848 return 0; 1849 } 1850 1851 static int 1852 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 1853 struct ext4_ext_path *path, ext4_lblk_t start) 1854 { 1855 int err = 0, correct_index = 0; 1856 int depth = ext_depth(inode), credits; 1857 struct ext4_extent_header *eh; 1858 ext4_lblk_t a, b, block; 1859 unsigned num; 1860 ext4_lblk_t ex_ee_block; 1861 unsigned short ex_ee_len; 1862 unsigned uninitialized = 0; 1863 struct ext4_extent *ex; 1864 1865 /* the header must be checked already in ext4_ext_remove_space() */ 1866 ext_debug("truncate since %u in leaf\n", start); 1867 if (!path[depth].p_hdr) 1868 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 1869 eh = path[depth].p_hdr; 1870 BUG_ON(eh == NULL); 1871 1872 /* find where to start removing */ 1873 ex = EXT_LAST_EXTENT(eh); 1874 1875 ex_ee_block = le32_to_cpu(ex->ee_block); 1876 if (ext4_ext_is_uninitialized(ex)) 1877 uninitialized = 1; 1878 ex_ee_len = ext4_ext_get_actual_len(ex); 1879 1880 while (ex >= EXT_FIRST_EXTENT(eh) && 1881 ex_ee_block + ex_ee_len > start) { 1882 ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len); 1883 path[depth].p_ext = ex; 1884 1885 a = ex_ee_block > start ? ex_ee_block : start; 1886 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ? 1887 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK; 1888 1889 ext_debug(" border %u:%u\n", a, b); 1890 1891 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) { 1892 block = 0; 1893 num = 0; 1894 BUG(); 1895 } else if (a != ex_ee_block) { 1896 /* remove tail of the extent */ 1897 block = ex_ee_block; 1898 num = a - block; 1899 } else if (b != ex_ee_block + ex_ee_len - 1) { 1900 /* remove head of the extent */ 1901 block = a; 1902 num = b - a; 1903 /* there is no "make a hole" API yet */ 1904 BUG(); 1905 } else { 1906 /* remove whole extent: excellent! */ 1907 block = ex_ee_block; 1908 num = 0; 1909 BUG_ON(a != ex_ee_block); 1910 BUG_ON(b != ex_ee_block + ex_ee_len - 1); 1911 } 1912 1913 /* at present, extent can't cross block group: */ 1914 /* leaf + bitmap + group desc + sb + inode */ 1915 credits = 5; 1916 if (ex == EXT_FIRST_EXTENT(eh)) { 1917 correct_index = 1; 1918 credits += (ext_depth(inode)) + 1; 1919 } 1920 #ifdef CONFIG_QUOTA 1921 credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb); 1922 #endif 1923 1924 err = ext4_ext_journal_restart(handle, credits); 1925 if (err) 1926 goto out; 1927 1928 err = ext4_ext_get_access(handle, inode, path + depth); 1929 if (err) 1930 goto out; 1931 1932 err = ext4_remove_blocks(handle, inode, ex, a, b); 1933 if (err) 1934 goto out; 1935 1936 if (num == 0) { 1937 /* this extent is removed; mark slot entirely unused */ 1938 ext4_ext_store_pblock(ex, 0); 1939 le16_add_cpu(&eh->eh_entries, -1); 1940 } 1941 1942 ex->ee_block = cpu_to_le32(block); 1943 ex->ee_len = cpu_to_le16(num); 1944 /* 1945 * Do not mark uninitialized if all the blocks in the 1946 * extent have been removed. 1947 */ 1948 if (uninitialized && num) 1949 ext4_ext_mark_uninitialized(ex); 1950 1951 err = ext4_ext_dirty(handle, inode, path + depth); 1952 if (err) 1953 goto out; 1954 1955 ext_debug("new extent: %u:%u:%llu\n", block, num, 1956 ext_pblock(ex)); 1957 ex--; 1958 ex_ee_block = le32_to_cpu(ex->ee_block); 1959 ex_ee_len = ext4_ext_get_actual_len(ex); 1960 } 1961 1962 if (correct_index && eh->eh_entries) 1963 err = ext4_ext_correct_indexes(handle, inode, path); 1964 1965 /* if this leaf is free, then we should 1966 * remove it from index block above */ 1967 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 1968 err = ext4_ext_rm_idx(handle, inode, path + depth); 1969 1970 out: 1971 return err; 1972 } 1973 1974 /* 1975 * ext4_ext_more_to_rm: 1976 * returns 1 if current index has to be freed (even partial) 1977 */ 1978 static int 1979 ext4_ext_more_to_rm(struct ext4_ext_path *path) 1980 { 1981 BUG_ON(path->p_idx == NULL); 1982 1983 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 1984 return 0; 1985 1986 /* 1987 * if truncate on deeper level happened, it wasn't partial, 1988 * so we have to consider current index for truncation 1989 */ 1990 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 1991 return 0; 1992 return 1; 1993 } 1994 1995 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start) 1996 { 1997 struct super_block *sb = inode->i_sb; 1998 int depth = ext_depth(inode); 1999 struct ext4_ext_path *path; 2000 handle_t *handle; 2001 int i = 0, err = 0; 2002 2003 ext_debug("truncate since %u\n", start); 2004 2005 /* probably first extent we're gonna free will be last in block */ 2006 handle = ext4_journal_start(inode, depth + 1); 2007 if (IS_ERR(handle)) 2008 return PTR_ERR(handle); 2009 2010 ext4_ext_invalidate_cache(inode); 2011 2012 /* 2013 * We start scanning from right side, freeing all the blocks 2014 * after i_size and walking into the tree depth-wise. 2015 */ 2016 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS); 2017 if (path == NULL) { 2018 ext4_journal_stop(handle); 2019 return -ENOMEM; 2020 } 2021 path[0].p_hdr = ext_inode_hdr(inode); 2022 if (ext4_ext_check_header(inode, path[0].p_hdr, depth)) { 2023 err = -EIO; 2024 goto out; 2025 } 2026 path[0].p_depth = depth; 2027 2028 while (i >= 0 && err == 0) { 2029 if (i == depth) { 2030 /* this is leaf block */ 2031 err = ext4_ext_rm_leaf(handle, inode, path, start); 2032 /* root level has p_bh == NULL, brelse() eats this */ 2033 brelse(path[i].p_bh); 2034 path[i].p_bh = NULL; 2035 i--; 2036 continue; 2037 } 2038 2039 /* this is index block */ 2040 if (!path[i].p_hdr) { 2041 ext_debug("initialize header\n"); 2042 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2043 } 2044 2045 if (!path[i].p_idx) { 2046 /* this level hasn't been touched yet */ 2047 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2048 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2049 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2050 path[i].p_hdr, 2051 le16_to_cpu(path[i].p_hdr->eh_entries)); 2052 } else { 2053 /* we were already here, see at next index */ 2054 path[i].p_idx--; 2055 } 2056 2057 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2058 i, EXT_FIRST_INDEX(path[i].p_hdr), 2059 path[i].p_idx); 2060 if (ext4_ext_more_to_rm(path + i)) { 2061 struct buffer_head *bh; 2062 /* go to the next level */ 2063 ext_debug("move to level %d (block %llu)\n", 2064 i + 1, idx_pblock(path[i].p_idx)); 2065 memset(path + i + 1, 0, sizeof(*path)); 2066 bh = sb_bread(sb, idx_pblock(path[i].p_idx)); 2067 if (!bh) { 2068 /* should we reset i_size? */ 2069 err = -EIO; 2070 break; 2071 } 2072 if (WARN_ON(i + 1 > depth)) { 2073 err = -EIO; 2074 break; 2075 } 2076 if (ext4_ext_check_header(inode, ext_block_hdr(bh), 2077 depth - i - 1)) { 2078 err = -EIO; 2079 break; 2080 } 2081 path[i + 1].p_bh = bh; 2082 2083 /* save actual number of indexes since this 2084 * number is changed at the next iteration */ 2085 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2086 i++; 2087 } else { 2088 /* we finished processing this index, go up */ 2089 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2090 /* index is empty, remove it; 2091 * handle must be already prepared by the 2092 * truncatei_leaf() */ 2093 err = ext4_ext_rm_idx(handle, inode, path + i); 2094 } 2095 /* root level has p_bh == NULL, brelse() eats this */ 2096 brelse(path[i].p_bh); 2097 path[i].p_bh = NULL; 2098 i--; 2099 ext_debug("return to level %d\n", i); 2100 } 2101 } 2102 2103 /* TODO: flexible tree reduction should be here */ 2104 if (path->p_hdr->eh_entries == 0) { 2105 /* 2106 * truncate to zero freed all the tree, 2107 * so we need to correct eh_depth 2108 */ 2109 err = ext4_ext_get_access(handle, inode, path); 2110 if (err == 0) { 2111 ext_inode_hdr(inode)->eh_depth = 0; 2112 ext_inode_hdr(inode)->eh_max = 2113 cpu_to_le16(ext4_ext_space_root(inode)); 2114 err = ext4_ext_dirty(handle, inode, path); 2115 } 2116 } 2117 out: 2118 ext4_ext_tree_changed(inode); 2119 ext4_ext_drop_refs(path); 2120 kfree(path); 2121 ext4_journal_stop(handle); 2122 2123 return err; 2124 } 2125 2126 /* 2127 * called at mount time 2128 */ 2129 void ext4_ext_init(struct super_block *sb) 2130 { 2131 /* 2132 * possible initialization would be here 2133 */ 2134 2135 if (test_opt(sb, EXTENTS)) { 2136 printk("EXT4-fs: file extents enabled"); 2137 #ifdef AGGRESSIVE_TEST 2138 printk(", aggressive tests"); 2139 #endif 2140 #ifdef CHECK_BINSEARCH 2141 printk(", check binsearch"); 2142 #endif 2143 #ifdef EXTENTS_STATS 2144 printk(", stats"); 2145 #endif 2146 printk("\n"); 2147 #ifdef EXTENTS_STATS 2148 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 2149 EXT4_SB(sb)->s_ext_min = 1 << 30; 2150 EXT4_SB(sb)->s_ext_max = 0; 2151 #endif 2152 } 2153 } 2154 2155 /* 2156 * called at umount time 2157 */ 2158 void ext4_ext_release(struct super_block *sb) 2159 { 2160 if (!test_opt(sb, EXTENTS)) 2161 return; 2162 2163 #ifdef EXTENTS_STATS 2164 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 2165 struct ext4_sb_info *sbi = EXT4_SB(sb); 2166 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 2167 sbi->s_ext_blocks, sbi->s_ext_extents, 2168 sbi->s_ext_blocks / sbi->s_ext_extents); 2169 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 2170 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 2171 } 2172 #endif 2173 } 2174 2175 static void bi_complete(struct bio *bio, int error) 2176 { 2177 complete((struct completion *)bio->bi_private); 2178 } 2179 2180 /* FIXME!! we need to try to merge to left or right after zero-out */ 2181 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 2182 { 2183 int ret = -EIO; 2184 struct bio *bio; 2185 int blkbits, blocksize; 2186 sector_t ee_pblock; 2187 struct completion event; 2188 unsigned int ee_len, len, done, offset; 2189 2190 2191 blkbits = inode->i_blkbits; 2192 blocksize = inode->i_sb->s_blocksize; 2193 ee_len = ext4_ext_get_actual_len(ex); 2194 ee_pblock = ext_pblock(ex); 2195 2196 /* convert ee_pblock to 512 byte sectors */ 2197 ee_pblock = ee_pblock << (blkbits - 9); 2198 2199 while (ee_len > 0) { 2200 2201 if (ee_len > BIO_MAX_PAGES) 2202 len = BIO_MAX_PAGES; 2203 else 2204 len = ee_len; 2205 2206 bio = bio_alloc(GFP_NOIO, len); 2207 if (!bio) 2208 return -ENOMEM; 2209 bio->bi_sector = ee_pblock; 2210 bio->bi_bdev = inode->i_sb->s_bdev; 2211 2212 done = 0; 2213 offset = 0; 2214 while (done < len) { 2215 ret = bio_add_page(bio, ZERO_PAGE(0), 2216 blocksize, offset); 2217 if (ret != blocksize) { 2218 /* 2219 * We can't add any more pages because of 2220 * hardware limitations. Start a new bio. 2221 */ 2222 break; 2223 } 2224 done++; 2225 offset += blocksize; 2226 if (offset >= PAGE_CACHE_SIZE) 2227 offset = 0; 2228 } 2229 2230 init_completion(&event); 2231 bio->bi_private = &event; 2232 bio->bi_end_io = bi_complete; 2233 submit_bio(WRITE, bio); 2234 wait_for_completion(&event); 2235 2236 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 2237 ret = 0; 2238 else { 2239 ret = -EIO; 2240 break; 2241 } 2242 bio_put(bio); 2243 ee_len -= done; 2244 ee_pblock += done << (blkbits - 9); 2245 } 2246 return ret; 2247 } 2248 2249 #define EXT4_EXT_ZERO_LEN 7 2250 2251 /* 2252 * This function is called by ext4_ext_get_blocks() if someone tries to write 2253 * to an uninitialized extent. It may result in splitting the uninitialized 2254 * extent into multiple extents (upto three - one initialized and two 2255 * uninitialized). 2256 * There are three possibilities: 2257 * a> There is no split required: Entire extent should be initialized 2258 * b> Splits in two extents: Write is happening at either end of the extent 2259 * c> Splits in three extents: Somone is writing in middle of the extent 2260 */ 2261 static int ext4_ext_convert_to_initialized(handle_t *handle, 2262 struct inode *inode, 2263 struct ext4_ext_path *path, 2264 ext4_lblk_t iblock, 2265 unsigned long max_blocks) 2266 { 2267 struct ext4_extent *ex, newex, orig_ex; 2268 struct ext4_extent *ex1 = NULL; 2269 struct ext4_extent *ex2 = NULL; 2270 struct ext4_extent *ex3 = NULL; 2271 struct ext4_extent_header *eh; 2272 ext4_lblk_t ee_block; 2273 unsigned int allocated, ee_len, depth; 2274 ext4_fsblk_t newblock; 2275 int err = 0; 2276 int ret = 0; 2277 2278 depth = ext_depth(inode); 2279 eh = path[depth].p_hdr; 2280 ex = path[depth].p_ext; 2281 ee_block = le32_to_cpu(ex->ee_block); 2282 ee_len = ext4_ext_get_actual_len(ex); 2283 allocated = ee_len - (iblock - ee_block); 2284 newblock = iblock - ee_block + ext_pblock(ex); 2285 ex2 = ex; 2286 orig_ex.ee_block = ex->ee_block; 2287 orig_ex.ee_len = cpu_to_le16(ee_len); 2288 ext4_ext_store_pblock(&orig_ex, ext_pblock(ex)); 2289 2290 err = ext4_ext_get_access(handle, inode, path + depth); 2291 if (err) 2292 goto out; 2293 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */ 2294 if (ee_len <= 2*EXT4_EXT_ZERO_LEN) { 2295 err = ext4_ext_zeroout(inode, &orig_ex); 2296 if (err) 2297 goto fix_extent_len; 2298 /* update the extent length and mark as initialized */ 2299 ex->ee_block = orig_ex.ee_block; 2300 ex->ee_len = orig_ex.ee_len; 2301 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2302 ext4_ext_dirty(handle, inode, path + depth); 2303 /* zeroed the full extent */ 2304 return allocated; 2305 } 2306 2307 /* ex1: ee_block to iblock - 1 : uninitialized */ 2308 if (iblock > ee_block) { 2309 ex1 = ex; 2310 ex1->ee_len = cpu_to_le16(iblock - ee_block); 2311 ext4_ext_mark_uninitialized(ex1); 2312 ex2 = &newex; 2313 } 2314 /* 2315 * for sanity, update the length of the ex2 extent before 2316 * we insert ex3, if ex1 is NULL. This is to avoid temporary 2317 * overlap of blocks. 2318 */ 2319 if (!ex1 && allocated > max_blocks) 2320 ex2->ee_len = cpu_to_le16(max_blocks); 2321 /* ex3: to ee_block + ee_len : uninitialised */ 2322 if (allocated > max_blocks) { 2323 unsigned int newdepth; 2324 /* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */ 2325 if (allocated <= EXT4_EXT_ZERO_LEN) { 2326 /* Mark first half uninitialized. 2327 * Mark second half initialized and zero out the 2328 * initialized extent 2329 */ 2330 ex->ee_block = orig_ex.ee_block; 2331 ex->ee_len = cpu_to_le16(ee_len - allocated); 2332 ext4_ext_mark_uninitialized(ex); 2333 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2334 ext4_ext_dirty(handle, inode, path + depth); 2335 2336 ex3 = &newex; 2337 ex3->ee_block = cpu_to_le32(iblock); 2338 ext4_ext_store_pblock(ex3, newblock); 2339 ex3->ee_len = cpu_to_le16(allocated); 2340 err = ext4_ext_insert_extent(handle, inode, path, ex3); 2341 if (err == -ENOSPC) { 2342 err = ext4_ext_zeroout(inode, &orig_ex); 2343 if (err) 2344 goto fix_extent_len; 2345 ex->ee_block = orig_ex.ee_block; 2346 ex->ee_len = orig_ex.ee_len; 2347 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2348 ext4_ext_dirty(handle, inode, path + depth); 2349 /* zeroed the full extent */ 2350 return allocated; 2351 2352 } else if (err) 2353 goto fix_extent_len; 2354 2355 /* 2356 * We need to zero out the second half because 2357 * an fallocate request can update file size and 2358 * converting the second half to initialized extent 2359 * implies that we can leak some junk data to user 2360 * space. 2361 */ 2362 err = ext4_ext_zeroout(inode, ex3); 2363 if (err) { 2364 /* 2365 * We should actually mark the 2366 * second half as uninit and return error 2367 * Insert would have changed the extent 2368 */ 2369 depth = ext_depth(inode); 2370 ext4_ext_drop_refs(path); 2371 path = ext4_ext_find_extent(inode, 2372 iblock, path); 2373 if (IS_ERR(path)) { 2374 err = PTR_ERR(path); 2375 return err; 2376 } 2377 ex = path[depth].p_ext; 2378 err = ext4_ext_get_access(handle, inode, 2379 path + depth); 2380 if (err) 2381 return err; 2382 ext4_ext_mark_uninitialized(ex); 2383 ext4_ext_dirty(handle, inode, path + depth); 2384 return err; 2385 } 2386 2387 /* zeroed the second half */ 2388 return allocated; 2389 } 2390 ex3 = &newex; 2391 ex3->ee_block = cpu_to_le32(iblock + max_blocks); 2392 ext4_ext_store_pblock(ex3, newblock + max_blocks); 2393 ex3->ee_len = cpu_to_le16(allocated - max_blocks); 2394 ext4_ext_mark_uninitialized(ex3); 2395 err = ext4_ext_insert_extent(handle, inode, path, ex3); 2396 if (err == -ENOSPC) { 2397 err = ext4_ext_zeroout(inode, &orig_ex); 2398 if (err) 2399 goto fix_extent_len; 2400 /* update the extent length and mark as initialized */ 2401 ex->ee_block = orig_ex.ee_block; 2402 ex->ee_len = orig_ex.ee_len; 2403 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2404 ext4_ext_dirty(handle, inode, path + depth); 2405 /* zeroed the full extent */ 2406 return allocated; 2407 2408 } else if (err) 2409 goto fix_extent_len; 2410 /* 2411 * The depth, and hence eh & ex might change 2412 * as part of the insert above. 2413 */ 2414 newdepth = ext_depth(inode); 2415 /* 2416 * update the extent length after successfull insert of the 2417 * split extent 2418 */ 2419 orig_ex.ee_len = cpu_to_le16(ee_len - 2420 ext4_ext_get_actual_len(ex3)); 2421 if (newdepth != depth) { 2422 depth = newdepth; 2423 ext4_ext_drop_refs(path); 2424 path = ext4_ext_find_extent(inode, iblock, path); 2425 if (IS_ERR(path)) { 2426 err = PTR_ERR(path); 2427 goto out; 2428 } 2429 eh = path[depth].p_hdr; 2430 ex = path[depth].p_ext; 2431 if (ex2 != &newex) 2432 ex2 = ex; 2433 2434 err = ext4_ext_get_access(handle, inode, path + depth); 2435 if (err) 2436 goto out; 2437 } 2438 allocated = max_blocks; 2439 2440 /* If extent has less than EXT4_EXT_ZERO_LEN and we are trying 2441 * to insert a extent in the middle zerout directly 2442 * otherwise give the extent a chance to merge to left 2443 */ 2444 if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN && 2445 iblock != ee_block) { 2446 err = ext4_ext_zeroout(inode, &orig_ex); 2447 if (err) 2448 goto fix_extent_len; 2449 /* update the extent length and mark as initialized */ 2450 ex->ee_block = orig_ex.ee_block; 2451 ex->ee_len = orig_ex.ee_len; 2452 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2453 ext4_ext_dirty(handle, inode, path + depth); 2454 /* zero out the first half */ 2455 return allocated; 2456 } 2457 } 2458 /* 2459 * If there was a change of depth as part of the 2460 * insertion of ex3 above, we need to update the length 2461 * of the ex1 extent again here 2462 */ 2463 if (ex1 && ex1 != ex) { 2464 ex1 = ex; 2465 ex1->ee_len = cpu_to_le16(iblock - ee_block); 2466 ext4_ext_mark_uninitialized(ex1); 2467 ex2 = &newex; 2468 } 2469 /* ex2: iblock to iblock + maxblocks-1 : initialised */ 2470 ex2->ee_block = cpu_to_le32(iblock); 2471 ext4_ext_store_pblock(ex2, newblock); 2472 ex2->ee_len = cpu_to_le16(allocated); 2473 if (ex2 != ex) 2474 goto insert; 2475 /* 2476 * New (initialized) extent starts from the first block 2477 * in the current extent. i.e., ex2 == ex 2478 * We have to see if it can be merged with the extent 2479 * on the left. 2480 */ 2481 if (ex2 > EXT_FIRST_EXTENT(eh)) { 2482 /* 2483 * To merge left, pass "ex2 - 1" to try_to_merge(), 2484 * since it merges towards right _only_. 2485 */ 2486 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1); 2487 if (ret) { 2488 err = ext4_ext_correct_indexes(handle, inode, path); 2489 if (err) 2490 goto out; 2491 depth = ext_depth(inode); 2492 ex2--; 2493 } 2494 } 2495 /* 2496 * Try to Merge towards right. This might be required 2497 * only when the whole extent is being written to. 2498 * i.e. ex2 == ex and ex3 == NULL. 2499 */ 2500 if (!ex3) { 2501 ret = ext4_ext_try_to_merge(inode, path, ex2); 2502 if (ret) { 2503 err = ext4_ext_correct_indexes(handle, inode, path); 2504 if (err) 2505 goto out; 2506 } 2507 } 2508 /* Mark modified extent as dirty */ 2509 err = ext4_ext_dirty(handle, inode, path + depth); 2510 goto out; 2511 insert: 2512 err = ext4_ext_insert_extent(handle, inode, path, &newex); 2513 if (err == -ENOSPC) { 2514 err = ext4_ext_zeroout(inode, &orig_ex); 2515 if (err) 2516 goto fix_extent_len; 2517 /* update the extent length and mark as initialized */ 2518 ex->ee_block = orig_ex.ee_block; 2519 ex->ee_len = orig_ex.ee_len; 2520 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2521 ext4_ext_dirty(handle, inode, path + depth); 2522 /* zero out the first half */ 2523 return allocated; 2524 } else if (err) 2525 goto fix_extent_len; 2526 out: 2527 return err ? err : allocated; 2528 2529 fix_extent_len: 2530 ex->ee_block = orig_ex.ee_block; 2531 ex->ee_len = orig_ex.ee_len; 2532 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex)); 2533 ext4_ext_mark_uninitialized(ex); 2534 ext4_ext_dirty(handle, inode, path + depth); 2535 return err; 2536 } 2537 2538 /* 2539 * Block allocation/map/preallocation routine for extents based files 2540 * 2541 * 2542 * Need to be called with 2543 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 2544 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 2545 * 2546 * return > 0, number of of blocks already mapped/allocated 2547 * if create == 0 and these are pre-allocated blocks 2548 * buffer head is unmapped 2549 * otherwise blocks are mapped 2550 * 2551 * return = 0, if plain look up failed (blocks have not been allocated) 2552 * buffer head is unmapped 2553 * 2554 * return < 0, error case. 2555 */ 2556 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode, 2557 ext4_lblk_t iblock, 2558 unsigned long max_blocks, struct buffer_head *bh_result, 2559 int create, int extend_disksize) 2560 { 2561 struct ext4_ext_path *path = NULL; 2562 struct ext4_extent_header *eh; 2563 struct ext4_extent newex, *ex; 2564 ext4_fsblk_t goal, newblock; 2565 int err = 0, depth, ret; 2566 unsigned long allocated = 0; 2567 struct ext4_allocation_request ar; 2568 loff_t disksize; 2569 2570 __clear_bit(BH_New, &bh_result->b_state); 2571 ext_debug("blocks %u/%lu requested for inode %u\n", 2572 iblock, max_blocks, inode->i_ino); 2573 2574 /* check in cache */ 2575 goal = ext4_ext_in_cache(inode, iblock, &newex); 2576 if (goal) { 2577 if (goal == EXT4_EXT_CACHE_GAP) { 2578 if (!create) { 2579 /* 2580 * block isn't allocated yet and 2581 * user doesn't want to allocate it 2582 */ 2583 goto out2; 2584 } 2585 /* we should allocate requested block */ 2586 } else if (goal == EXT4_EXT_CACHE_EXTENT) { 2587 /* block is already allocated */ 2588 newblock = iblock 2589 - le32_to_cpu(newex.ee_block) 2590 + ext_pblock(&newex); 2591 /* number of remaining blocks in the extent */ 2592 allocated = ext4_ext_get_actual_len(&newex) - 2593 (iblock - le32_to_cpu(newex.ee_block)); 2594 goto out; 2595 } else { 2596 BUG(); 2597 } 2598 } 2599 2600 /* find extent for this block */ 2601 path = ext4_ext_find_extent(inode, iblock, NULL); 2602 if (IS_ERR(path)) { 2603 err = PTR_ERR(path); 2604 path = NULL; 2605 goto out2; 2606 } 2607 2608 depth = ext_depth(inode); 2609 2610 /* 2611 * consistent leaf must not be empty; 2612 * this situation is possible, though, _during_ tree modification; 2613 * this is why assert can't be put in ext4_ext_find_extent() 2614 */ 2615 BUG_ON(path[depth].p_ext == NULL && depth != 0); 2616 eh = path[depth].p_hdr; 2617 2618 ex = path[depth].p_ext; 2619 if (ex) { 2620 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 2621 ext4_fsblk_t ee_start = ext_pblock(ex); 2622 unsigned short ee_len; 2623 2624 /* 2625 * Uninitialized extents are treated as holes, except that 2626 * we split out initialized portions during a write. 2627 */ 2628 ee_len = ext4_ext_get_actual_len(ex); 2629 /* if found extent covers block, simply return it */ 2630 if (iblock >= ee_block && iblock < ee_block + ee_len) { 2631 newblock = iblock - ee_block + ee_start; 2632 /* number of remaining blocks in the extent */ 2633 allocated = ee_len - (iblock - ee_block); 2634 ext_debug("%u fit into %lu:%d -> %llu\n", iblock, 2635 ee_block, ee_len, newblock); 2636 2637 /* Do not put uninitialized extent in the cache */ 2638 if (!ext4_ext_is_uninitialized(ex)) { 2639 ext4_ext_put_in_cache(inode, ee_block, 2640 ee_len, ee_start, 2641 EXT4_EXT_CACHE_EXTENT); 2642 goto out; 2643 } 2644 if (create == EXT4_CREATE_UNINITIALIZED_EXT) 2645 goto out; 2646 if (!create) { 2647 /* 2648 * We have blocks reserved already. We 2649 * return allocated blocks so that delalloc 2650 * won't do block reservation for us. But 2651 * the buffer head will be unmapped so that 2652 * a read from the block returns 0s. 2653 */ 2654 if (allocated > max_blocks) 2655 allocated = max_blocks; 2656 set_buffer_unwritten(bh_result); 2657 goto out2; 2658 } 2659 2660 ret = ext4_ext_convert_to_initialized(handle, inode, 2661 path, iblock, 2662 max_blocks); 2663 if (ret <= 0) { 2664 err = ret; 2665 goto out2; 2666 } else 2667 allocated = ret; 2668 goto outnew; 2669 } 2670 } 2671 2672 /* 2673 * requested block isn't allocated yet; 2674 * we couldn't try to create block if create flag is zero 2675 */ 2676 if (!create) { 2677 /* 2678 * put just found gap into cache to speed up 2679 * subsequent requests 2680 */ 2681 ext4_ext_put_gap_in_cache(inode, path, iblock); 2682 goto out2; 2683 } 2684 /* 2685 * Okay, we need to do block allocation. Lazily initialize the block 2686 * allocation info here if necessary. 2687 */ 2688 if (S_ISREG(inode->i_mode) && (!EXT4_I(inode)->i_block_alloc_info)) 2689 ext4_init_block_alloc_info(inode); 2690 2691 /* find neighbour allocated blocks */ 2692 ar.lleft = iblock; 2693 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 2694 if (err) 2695 goto out2; 2696 ar.lright = iblock; 2697 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright); 2698 if (err) 2699 goto out2; 2700 2701 /* 2702 * See if request is beyond maximum number of blocks we can have in 2703 * a single extent. For an initialized extent this limit is 2704 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is 2705 * EXT_UNINIT_MAX_LEN. 2706 */ 2707 if (max_blocks > EXT_INIT_MAX_LEN && 2708 create != EXT4_CREATE_UNINITIALIZED_EXT) 2709 max_blocks = EXT_INIT_MAX_LEN; 2710 else if (max_blocks > EXT_UNINIT_MAX_LEN && 2711 create == EXT4_CREATE_UNINITIALIZED_EXT) 2712 max_blocks = EXT_UNINIT_MAX_LEN; 2713 2714 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */ 2715 newex.ee_block = cpu_to_le32(iblock); 2716 newex.ee_len = cpu_to_le16(max_blocks); 2717 err = ext4_ext_check_overlap(inode, &newex, path); 2718 if (err) 2719 allocated = ext4_ext_get_actual_len(&newex); 2720 else 2721 allocated = max_blocks; 2722 2723 /* allocate new block */ 2724 ar.inode = inode; 2725 ar.goal = ext4_ext_find_goal(inode, path, iblock); 2726 ar.logical = iblock; 2727 ar.len = allocated; 2728 if (S_ISREG(inode->i_mode)) 2729 ar.flags = EXT4_MB_HINT_DATA; 2730 else 2731 /* disable in-core preallocation for non-regular files */ 2732 ar.flags = 0; 2733 newblock = ext4_mb_new_blocks(handle, &ar, &err); 2734 if (!newblock) 2735 goto out2; 2736 ext_debug("allocate new block: goal %llu, found %llu/%lu\n", 2737 goal, newblock, allocated); 2738 2739 /* try to insert new extent into found leaf and return */ 2740 ext4_ext_store_pblock(&newex, newblock); 2741 newex.ee_len = cpu_to_le16(ar.len); 2742 if (create == EXT4_CREATE_UNINITIALIZED_EXT) /* Mark uninitialized */ 2743 ext4_ext_mark_uninitialized(&newex); 2744 err = ext4_ext_insert_extent(handle, inode, path, &newex); 2745 if (err) { 2746 /* free data blocks we just allocated */ 2747 /* not a good idea to call discard here directly, 2748 * but otherwise we'd need to call it every free() */ 2749 ext4_mb_discard_inode_preallocations(inode); 2750 ext4_free_blocks(handle, inode, ext_pblock(&newex), 2751 ext4_ext_get_actual_len(&newex), 0); 2752 goto out2; 2753 } 2754 2755 /* previous routine could use block we allocated */ 2756 newblock = ext_pblock(&newex); 2757 allocated = ext4_ext_get_actual_len(&newex); 2758 outnew: 2759 if (extend_disksize) { 2760 disksize = ((loff_t) iblock + ar.len) << inode->i_blkbits; 2761 if (disksize > i_size_read(inode)) 2762 disksize = i_size_read(inode); 2763 if (disksize > EXT4_I(inode)->i_disksize) 2764 EXT4_I(inode)->i_disksize = disksize; 2765 } 2766 2767 set_buffer_new(bh_result); 2768 2769 /* Cache only when it is _not_ an uninitialized extent */ 2770 if (create != EXT4_CREATE_UNINITIALIZED_EXT) 2771 ext4_ext_put_in_cache(inode, iblock, allocated, newblock, 2772 EXT4_EXT_CACHE_EXTENT); 2773 out: 2774 if (allocated > max_blocks) 2775 allocated = max_blocks; 2776 ext4_ext_show_leaf(inode, path); 2777 set_buffer_mapped(bh_result); 2778 bh_result->b_bdev = inode->i_sb->s_bdev; 2779 bh_result->b_blocknr = newblock; 2780 out2: 2781 if (path) { 2782 ext4_ext_drop_refs(path); 2783 kfree(path); 2784 } 2785 return err ? err : allocated; 2786 } 2787 2788 void ext4_ext_truncate(struct inode *inode) 2789 { 2790 struct address_space *mapping = inode->i_mapping; 2791 struct super_block *sb = inode->i_sb; 2792 ext4_lblk_t last_block; 2793 handle_t *handle; 2794 int err = 0; 2795 2796 /* 2797 * probably first extent we're gonna free will be last in block 2798 */ 2799 err = ext4_writepage_trans_blocks(inode) + 3; 2800 handle = ext4_journal_start(inode, err); 2801 if (IS_ERR(handle)) 2802 return; 2803 2804 if (inode->i_size & (sb->s_blocksize - 1)) 2805 ext4_block_truncate_page(handle, mapping, inode->i_size); 2806 2807 if (ext4_orphan_add(handle, inode)) 2808 goto out_stop; 2809 2810 down_write(&EXT4_I(inode)->i_data_sem); 2811 ext4_ext_invalidate_cache(inode); 2812 2813 ext4_mb_discard_inode_preallocations(inode); 2814 2815 /* 2816 * TODO: optimization is possible here. 2817 * Probably we need not scan at all, 2818 * because page truncation is enough. 2819 */ 2820 2821 /* we have to know where to truncate from in crash case */ 2822 EXT4_I(inode)->i_disksize = inode->i_size; 2823 ext4_mark_inode_dirty(handle, inode); 2824 2825 last_block = (inode->i_size + sb->s_blocksize - 1) 2826 >> EXT4_BLOCK_SIZE_BITS(sb); 2827 err = ext4_ext_remove_space(inode, last_block); 2828 2829 /* In a multi-transaction truncate, we only make the final 2830 * transaction synchronous. 2831 */ 2832 if (IS_SYNC(inode)) 2833 handle->h_sync = 1; 2834 2835 out_stop: 2836 up_write(&EXT4_I(inode)->i_data_sem); 2837 /* 2838 * If this was a simple ftruncate() and the file will remain alive, 2839 * then we need to clear up the orphan record which we created above. 2840 * However, if this was a real unlink then we were called by 2841 * ext4_delete_inode(), and we allow that function to clean up the 2842 * orphan info for us. 2843 */ 2844 if (inode->i_nlink) 2845 ext4_orphan_del(handle, inode); 2846 2847 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 2848 ext4_mark_inode_dirty(handle, inode); 2849 ext4_journal_stop(handle); 2850 } 2851 2852 /* 2853 * ext4_ext_writepage_trans_blocks: 2854 * calculate max number of blocks we could modify 2855 * in order to allocate new block for an inode 2856 */ 2857 int ext4_ext_writepage_trans_blocks(struct inode *inode, int num) 2858 { 2859 int needed; 2860 2861 needed = ext4_ext_calc_credits_for_insert(inode, NULL); 2862 2863 /* caller wants to allocate num blocks, but note it includes sb */ 2864 needed = needed * num - (num - 1); 2865 2866 #ifdef CONFIG_QUOTA 2867 needed += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb); 2868 #endif 2869 2870 return needed; 2871 } 2872 2873 static void ext4_falloc_update_inode(struct inode *inode, 2874 int mode, loff_t new_size, int update_ctime) 2875 { 2876 struct timespec now; 2877 2878 if (update_ctime) { 2879 now = current_fs_time(inode->i_sb); 2880 if (!timespec_equal(&inode->i_ctime, &now)) 2881 inode->i_ctime = now; 2882 } 2883 /* 2884 * Update only when preallocation was requested beyond 2885 * the file size. 2886 */ 2887 if (!(mode & FALLOC_FL_KEEP_SIZE) && 2888 new_size > i_size_read(inode)) { 2889 i_size_write(inode, new_size); 2890 EXT4_I(inode)->i_disksize = new_size; 2891 } 2892 2893 } 2894 2895 /* 2896 * preallocate space for a file. This implements ext4's fallocate inode 2897 * operation, which gets called from sys_fallocate system call. 2898 * For block-mapped files, posix_fallocate should fall back to the method 2899 * of writing zeroes to the required new blocks (the same behavior which is 2900 * expected for file systems which do not support fallocate() system call). 2901 */ 2902 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len) 2903 { 2904 handle_t *handle; 2905 ext4_lblk_t block; 2906 loff_t new_size; 2907 unsigned long max_blocks; 2908 int ret = 0; 2909 int ret2 = 0; 2910 int retries = 0; 2911 struct buffer_head map_bh; 2912 unsigned int credits, blkbits = inode->i_blkbits; 2913 2914 /* 2915 * currently supporting (pre)allocate mode for extent-based 2916 * files _only_ 2917 */ 2918 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 2919 return -EOPNOTSUPP; 2920 2921 /* preallocation to directories is currently not supported */ 2922 if (S_ISDIR(inode->i_mode)) 2923 return -ENODEV; 2924 2925 block = offset >> blkbits; 2926 /* 2927 * We can't just convert len to max_blocks because 2928 * If blocksize = 4096 offset = 3072 and len = 2048 2929 */ 2930 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 2931 - block; 2932 /* 2933 * credits to insert 1 extent into extent tree + buffers to be able to 2934 * modify 1 super block, 1 block bitmap and 1 group descriptor. 2935 */ 2936 credits = EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + 3; 2937 mutex_lock(&inode->i_mutex); 2938 retry: 2939 while (ret >= 0 && ret < max_blocks) { 2940 block = block + ret; 2941 max_blocks = max_blocks - ret; 2942 handle = ext4_journal_start(inode, credits); 2943 if (IS_ERR(handle)) { 2944 ret = PTR_ERR(handle); 2945 break; 2946 } 2947 ret = ext4_get_blocks_wrap(handle, inode, block, 2948 max_blocks, &map_bh, 2949 EXT4_CREATE_UNINITIALIZED_EXT, 0, 0); 2950 if (ret <= 0) { 2951 #ifdef EXT4FS_DEBUG 2952 WARN_ON(ret <= 0); 2953 printk(KERN_ERR "%s: ext4_ext_get_blocks " 2954 "returned error inode#%lu, block=%u, " 2955 "max_blocks=%lu", __func__, 2956 inode->i_ino, block, max_blocks); 2957 #endif 2958 ext4_mark_inode_dirty(handle, inode); 2959 ret2 = ext4_journal_stop(handle); 2960 break; 2961 } 2962 if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len, 2963 blkbits) >> blkbits)) 2964 new_size = offset + len; 2965 else 2966 new_size = (block + ret) << blkbits; 2967 2968 ext4_falloc_update_inode(inode, mode, new_size, 2969 buffer_new(&map_bh)); 2970 ext4_mark_inode_dirty(handle, inode); 2971 ret2 = ext4_journal_stop(handle); 2972 if (ret2) 2973 break; 2974 } 2975 if (ret == -ENOSPC && 2976 ext4_should_retry_alloc(inode->i_sb, &retries)) { 2977 ret = 0; 2978 goto retry; 2979 } 2980 mutex_unlock(&inode->i_mutex); 2981 return ret > 0 ? ret2 : ret; 2982 } 2983