xref: /openbmc/linux/fs/ext4/extents.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/uaccess.h>
41 #include <linux/fiemap.h>
42 #include <linux/backing-dev.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46 
47 #include <trace/events/ext4.h>
48 
49 /*
50  * used by extent splitting.
51  */
52 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
53 					due to ENOSPC */
54 #define EXT4_EXT_MARK_UNWRIT1	0x2  /* mark first half unwritten */
55 #define EXT4_EXT_MARK_UNWRIT2	0x4  /* mark second half unwritten */
56 
57 #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
59 
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 				     struct ext4_extent_header *eh)
62 {
63 	struct ext4_inode_info *ei = EXT4_I(inode);
64 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 	__u32 csum;
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 			   EXT4_EXTENT_TAIL_OFFSET(eh));
69 	return cpu_to_le32(csum);
70 }
71 
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 					 struct ext4_extent_header *eh)
74 {
75 	struct ext4_extent_tail *et;
76 
77 	if (!ext4_has_metadata_csum(inode->i_sb))
78 		return 1;
79 
80 	et = find_ext4_extent_tail(eh);
81 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
82 		return 0;
83 	return 1;
84 }
85 
86 static void ext4_extent_block_csum_set(struct inode *inode,
87 				       struct ext4_extent_header *eh)
88 {
89 	struct ext4_extent_tail *et;
90 
91 	if (!ext4_has_metadata_csum(inode->i_sb))
92 		return;
93 
94 	et = find_ext4_extent_tail(eh);
95 	et->et_checksum = ext4_extent_block_csum(inode, eh);
96 }
97 
98 static int ext4_split_extent(handle_t *handle,
99 				struct inode *inode,
100 				struct ext4_ext_path **ppath,
101 				struct ext4_map_blocks *map,
102 				int split_flag,
103 				int flags);
104 
105 static int ext4_split_extent_at(handle_t *handle,
106 			     struct inode *inode,
107 			     struct ext4_ext_path **ppath,
108 			     ext4_lblk_t split,
109 			     int split_flag,
110 			     int flags);
111 
112 static int ext4_find_delayed_extent(struct inode *inode,
113 				    struct extent_status *newes);
114 
115 static int ext4_ext_truncate_extend_restart(handle_t *handle,
116 					    struct inode *inode,
117 					    int needed)
118 {
119 	int err;
120 
121 	if (!ext4_handle_valid(handle))
122 		return 0;
123 	if (handle->h_buffer_credits >= needed)
124 		return 0;
125 	/*
126 	 * If we need to extend the journal get a few extra blocks
127 	 * while we're at it for efficiency's sake.
128 	 */
129 	needed += 3;
130 	err = ext4_journal_extend(handle, needed - handle->h_buffer_credits);
131 	if (err <= 0)
132 		return err;
133 	err = ext4_truncate_restart_trans(handle, inode, needed);
134 	if (err == 0)
135 		err = -EAGAIN;
136 
137 	return err;
138 }
139 
140 /*
141  * could return:
142  *  - EROFS
143  *  - ENOMEM
144  */
145 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
146 				struct ext4_ext_path *path)
147 {
148 	if (path->p_bh) {
149 		/* path points to block */
150 		BUFFER_TRACE(path->p_bh, "get_write_access");
151 		return ext4_journal_get_write_access(handle, path->p_bh);
152 	}
153 	/* path points to leaf/index in inode body */
154 	/* we use in-core data, no need to protect them */
155 	return 0;
156 }
157 
158 /*
159  * could return:
160  *  - EROFS
161  *  - ENOMEM
162  *  - EIO
163  */
164 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
165 		     struct inode *inode, struct ext4_ext_path *path)
166 {
167 	int err;
168 
169 	WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
170 	if (path->p_bh) {
171 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
172 		/* path points to block */
173 		err = __ext4_handle_dirty_metadata(where, line, handle,
174 						   inode, path->p_bh);
175 	} else {
176 		/* path points to leaf/index in inode body */
177 		err = ext4_mark_inode_dirty(handle, inode);
178 	}
179 	return err;
180 }
181 
182 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
183 			      struct ext4_ext_path *path,
184 			      ext4_lblk_t block)
185 {
186 	if (path) {
187 		int depth = path->p_depth;
188 		struct ext4_extent *ex;
189 
190 		/*
191 		 * Try to predict block placement assuming that we are
192 		 * filling in a file which will eventually be
193 		 * non-sparse --- i.e., in the case of libbfd writing
194 		 * an ELF object sections out-of-order but in a way
195 		 * the eventually results in a contiguous object or
196 		 * executable file, or some database extending a table
197 		 * space file.  However, this is actually somewhat
198 		 * non-ideal if we are writing a sparse file such as
199 		 * qemu or KVM writing a raw image file that is going
200 		 * to stay fairly sparse, since it will end up
201 		 * fragmenting the file system's free space.  Maybe we
202 		 * should have some hueristics or some way to allow
203 		 * userspace to pass a hint to file system,
204 		 * especially if the latter case turns out to be
205 		 * common.
206 		 */
207 		ex = path[depth].p_ext;
208 		if (ex) {
209 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
210 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
211 
212 			if (block > ext_block)
213 				return ext_pblk + (block - ext_block);
214 			else
215 				return ext_pblk - (ext_block - block);
216 		}
217 
218 		/* it looks like index is empty;
219 		 * try to find starting block from index itself */
220 		if (path[depth].p_bh)
221 			return path[depth].p_bh->b_blocknr;
222 	}
223 
224 	/* OK. use inode's group */
225 	return ext4_inode_to_goal_block(inode);
226 }
227 
228 /*
229  * Allocation for a meta data block
230  */
231 static ext4_fsblk_t
232 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
233 			struct ext4_ext_path *path,
234 			struct ext4_extent *ex, int *err, unsigned int flags)
235 {
236 	ext4_fsblk_t goal, newblock;
237 
238 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
239 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
240 					NULL, err);
241 	return newblock;
242 }
243 
244 static inline int ext4_ext_space_block(struct inode *inode, int check)
245 {
246 	int size;
247 
248 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
249 			/ sizeof(struct ext4_extent);
250 #ifdef AGGRESSIVE_TEST
251 	if (!check && size > 6)
252 		size = 6;
253 #endif
254 	return size;
255 }
256 
257 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
258 {
259 	int size;
260 
261 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
262 			/ sizeof(struct ext4_extent_idx);
263 #ifdef AGGRESSIVE_TEST
264 	if (!check && size > 5)
265 		size = 5;
266 #endif
267 	return size;
268 }
269 
270 static inline int ext4_ext_space_root(struct inode *inode, int check)
271 {
272 	int size;
273 
274 	size = sizeof(EXT4_I(inode)->i_data);
275 	size -= sizeof(struct ext4_extent_header);
276 	size /= sizeof(struct ext4_extent);
277 #ifdef AGGRESSIVE_TEST
278 	if (!check && size > 3)
279 		size = 3;
280 #endif
281 	return size;
282 }
283 
284 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
285 {
286 	int size;
287 
288 	size = sizeof(EXT4_I(inode)->i_data);
289 	size -= sizeof(struct ext4_extent_header);
290 	size /= sizeof(struct ext4_extent_idx);
291 #ifdef AGGRESSIVE_TEST
292 	if (!check && size > 4)
293 		size = 4;
294 #endif
295 	return size;
296 }
297 
298 static inline int
299 ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
300 			   struct ext4_ext_path **ppath, ext4_lblk_t lblk,
301 			   int nofail)
302 {
303 	struct ext4_ext_path *path = *ppath;
304 	int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
305 
306 	return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
307 			EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
308 			EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
309 			(nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
310 }
311 
312 /*
313  * Calculate the number of metadata blocks needed
314  * to allocate @blocks
315  * Worse case is one block per extent
316  */
317 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
318 {
319 	struct ext4_inode_info *ei = EXT4_I(inode);
320 	int idxs;
321 
322 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
323 		/ sizeof(struct ext4_extent_idx));
324 
325 	/*
326 	 * If the new delayed allocation block is contiguous with the
327 	 * previous da block, it can share index blocks with the
328 	 * previous block, so we only need to allocate a new index
329 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
330 	 * an additional index block, and at ldxs**3 blocks, yet
331 	 * another index blocks.
332 	 */
333 	if (ei->i_da_metadata_calc_len &&
334 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
335 		int num = 0;
336 
337 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
338 			num++;
339 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
340 			num++;
341 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
342 			num++;
343 			ei->i_da_metadata_calc_len = 0;
344 		} else
345 			ei->i_da_metadata_calc_len++;
346 		ei->i_da_metadata_calc_last_lblock++;
347 		return num;
348 	}
349 
350 	/*
351 	 * In the worst case we need a new set of index blocks at
352 	 * every level of the inode's extent tree.
353 	 */
354 	ei->i_da_metadata_calc_len = 1;
355 	ei->i_da_metadata_calc_last_lblock = lblock;
356 	return ext_depth(inode) + 1;
357 }
358 
359 static int
360 ext4_ext_max_entries(struct inode *inode, int depth)
361 {
362 	int max;
363 
364 	if (depth == ext_depth(inode)) {
365 		if (depth == 0)
366 			max = ext4_ext_space_root(inode, 1);
367 		else
368 			max = ext4_ext_space_root_idx(inode, 1);
369 	} else {
370 		if (depth == 0)
371 			max = ext4_ext_space_block(inode, 1);
372 		else
373 			max = ext4_ext_space_block_idx(inode, 1);
374 	}
375 
376 	return max;
377 }
378 
379 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
380 {
381 	ext4_fsblk_t block = ext4_ext_pblock(ext);
382 	int len = ext4_ext_get_actual_len(ext);
383 	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
384 
385 	/*
386 	 * We allow neither:
387 	 *  - zero length
388 	 *  - overflow/wrap-around
389 	 */
390 	if (lblock + len <= lblock)
391 		return 0;
392 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
393 }
394 
395 static int ext4_valid_extent_idx(struct inode *inode,
396 				struct ext4_extent_idx *ext_idx)
397 {
398 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
399 
400 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
401 }
402 
403 static int ext4_valid_extent_entries(struct inode *inode,
404 				struct ext4_extent_header *eh,
405 				int depth)
406 {
407 	unsigned short entries;
408 	if (eh->eh_entries == 0)
409 		return 1;
410 
411 	entries = le16_to_cpu(eh->eh_entries);
412 
413 	if (depth == 0) {
414 		/* leaf entries */
415 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
416 		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
417 		ext4_fsblk_t pblock = 0;
418 		ext4_lblk_t lblock = 0;
419 		ext4_lblk_t prev = 0;
420 		int len = 0;
421 		while (entries) {
422 			if (!ext4_valid_extent(inode, ext))
423 				return 0;
424 
425 			/* Check for overlapping extents */
426 			lblock = le32_to_cpu(ext->ee_block);
427 			len = ext4_ext_get_actual_len(ext);
428 			if ((lblock <= prev) && prev) {
429 				pblock = ext4_ext_pblock(ext);
430 				es->s_last_error_block = cpu_to_le64(pblock);
431 				return 0;
432 			}
433 			ext++;
434 			entries--;
435 			prev = lblock + len - 1;
436 		}
437 	} else {
438 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
439 		while (entries) {
440 			if (!ext4_valid_extent_idx(inode, ext_idx))
441 				return 0;
442 			ext_idx++;
443 			entries--;
444 		}
445 	}
446 	return 1;
447 }
448 
449 static int __ext4_ext_check(const char *function, unsigned int line,
450 			    struct inode *inode, struct ext4_extent_header *eh,
451 			    int depth, ext4_fsblk_t pblk)
452 {
453 	const char *error_msg;
454 	int max = 0, err = -EFSCORRUPTED;
455 
456 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
457 		error_msg = "invalid magic";
458 		goto corrupted;
459 	}
460 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
461 		error_msg = "unexpected eh_depth";
462 		goto corrupted;
463 	}
464 	if (unlikely(eh->eh_max == 0)) {
465 		error_msg = "invalid eh_max";
466 		goto corrupted;
467 	}
468 	max = ext4_ext_max_entries(inode, depth);
469 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
470 		error_msg = "too large eh_max";
471 		goto corrupted;
472 	}
473 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
474 		error_msg = "invalid eh_entries";
475 		goto corrupted;
476 	}
477 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
478 		error_msg = "invalid extent entries";
479 		goto corrupted;
480 	}
481 	if (unlikely(depth > 32)) {
482 		error_msg = "too large eh_depth";
483 		goto corrupted;
484 	}
485 	/* Verify checksum on non-root extent tree nodes */
486 	if (ext_depth(inode) != depth &&
487 	    !ext4_extent_block_csum_verify(inode, eh)) {
488 		error_msg = "extent tree corrupted";
489 		err = -EFSBADCRC;
490 		goto corrupted;
491 	}
492 	return 0;
493 
494 corrupted:
495 	ext4_error_inode(inode, function, line, 0,
496 			 "pblk %llu bad header/extent: %s - magic %x, "
497 			 "entries %u, max %u(%u), depth %u(%u)",
498 			 (unsigned long long) pblk, error_msg,
499 			 le16_to_cpu(eh->eh_magic),
500 			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
501 			 max, le16_to_cpu(eh->eh_depth), depth);
502 	return err;
503 }
504 
505 #define ext4_ext_check(inode, eh, depth, pblk)			\
506 	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
507 
508 int ext4_ext_check_inode(struct inode *inode)
509 {
510 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
511 }
512 
513 static struct buffer_head *
514 __read_extent_tree_block(const char *function, unsigned int line,
515 			 struct inode *inode, ext4_fsblk_t pblk, int depth,
516 			 int flags)
517 {
518 	struct buffer_head		*bh;
519 	int				err;
520 
521 	bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS);
522 	if (unlikely(!bh))
523 		return ERR_PTR(-ENOMEM);
524 
525 	if (!bh_uptodate_or_lock(bh)) {
526 		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
527 		err = bh_submit_read(bh);
528 		if (err < 0)
529 			goto errout;
530 	}
531 	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
532 		return bh;
533 	err = __ext4_ext_check(function, line, inode,
534 			       ext_block_hdr(bh), depth, pblk);
535 	if (err)
536 		goto errout;
537 	set_buffer_verified(bh);
538 	/*
539 	 * If this is a leaf block, cache all of its entries
540 	 */
541 	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
542 		struct ext4_extent_header *eh = ext_block_hdr(bh);
543 		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
544 		ext4_lblk_t prev = 0;
545 		int i;
546 
547 		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
548 			unsigned int status = EXTENT_STATUS_WRITTEN;
549 			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
550 			int len = ext4_ext_get_actual_len(ex);
551 
552 			if (prev && (prev != lblk))
553 				ext4_es_cache_extent(inode, prev,
554 						     lblk - prev, ~0,
555 						     EXTENT_STATUS_HOLE);
556 
557 			if (ext4_ext_is_unwritten(ex))
558 				status = EXTENT_STATUS_UNWRITTEN;
559 			ext4_es_cache_extent(inode, lblk, len,
560 					     ext4_ext_pblock(ex), status);
561 			prev = lblk + len;
562 		}
563 	}
564 	return bh;
565 errout:
566 	put_bh(bh);
567 	return ERR_PTR(err);
568 
569 }
570 
571 #define read_extent_tree_block(inode, pblk, depth, flags)		\
572 	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
573 				 (depth), (flags))
574 
575 /*
576  * This function is called to cache a file's extent information in the
577  * extent status tree
578  */
579 int ext4_ext_precache(struct inode *inode)
580 {
581 	struct ext4_inode_info *ei = EXT4_I(inode);
582 	struct ext4_ext_path *path = NULL;
583 	struct buffer_head *bh;
584 	int i = 0, depth, ret = 0;
585 
586 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
587 		return 0;	/* not an extent-mapped inode */
588 
589 	down_read(&ei->i_data_sem);
590 	depth = ext_depth(inode);
591 
592 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
593 		       GFP_NOFS);
594 	if (path == NULL) {
595 		up_read(&ei->i_data_sem);
596 		return -ENOMEM;
597 	}
598 
599 	/* Don't cache anything if there are no external extent blocks */
600 	if (depth == 0)
601 		goto out;
602 	path[0].p_hdr = ext_inode_hdr(inode);
603 	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
604 	if (ret)
605 		goto out;
606 	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
607 	while (i >= 0) {
608 		/*
609 		 * If this is a leaf block or we've reached the end of
610 		 * the index block, go up
611 		 */
612 		if ((i == depth) ||
613 		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
614 			brelse(path[i].p_bh);
615 			path[i].p_bh = NULL;
616 			i--;
617 			continue;
618 		}
619 		bh = read_extent_tree_block(inode,
620 					    ext4_idx_pblock(path[i].p_idx++),
621 					    depth - i - 1,
622 					    EXT4_EX_FORCE_CACHE);
623 		if (IS_ERR(bh)) {
624 			ret = PTR_ERR(bh);
625 			break;
626 		}
627 		i++;
628 		path[i].p_bh = bh;
629 		path[i].p_hdr = ext_block_hdr(bh);
630 		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
631 	}
632 	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
633 out:
634 	up_read(&ei->i_data_sem);
635 	ext4_ext_drop_refs(path);
636 	kfree(path);
637 	return ret;
638 }
639 
640 #ifdef EXT_DEBUG
641 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
642 {
643 	int k, l = path->p_depth;
644 
645 	ext_debug("path:");
646 	for (k = 0; k <= l; k++, path++) {
647 		if (path->p_idx) {
648 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
649 			    ext4_idx_pblock(path->p_idx));
650 		} else if (path->p_ext) {
651 			ext_debug("  %d:[%d]%d:%llu ",
652 				  le32_to_cpu(path->p_ext->ee_block),
653 				  ext4_ext_is_unwritten(path->p_ext),
654 				  ext4_ext_get_actual_len(path->p_ext),
655 				  ext4_ext_pblock(path->p_ext));
656 		} else
657 			ext_debug("  []");
658 	}
659 	ext_debug("\n");
660 }
661 
662 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
663 {
664 	int depth = ext_depth(inode);
665 	struct ext4_extent_header *eh;
666 	struct ext4_extent *ex;
667 	int i;
668 
669 	if (!path)
670 		return;
671 
672 	eh = path[depth].p_hdr;
673 	ex = EXT_FIRST_EXTENT(eh);
674 
675 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
676 
677 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
678 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
679 			  ext4_ext_is_unwritten(ex),
680 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
681 	}
682 	ext_debug("\n");
683 }
684 
685 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
686 			ext4_fsblk_t newblock, int level)
687 {
688 	int depth = ext_depth(inode);
689 	struct ext4_extent *ex;
690 
691 	if (depth != level) {
692 		struct ext4_extent_idx *idx;
693 		idx = path[level].p_idx;
694 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
695 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
696 					le32_to_cpu(idx->ei_block),
697 					ext4_idx_pblock(idx),
698 					newblock);
699 			idx++;
700 		}
701 
702 		return;
703 	}
704 
705 	ex = path[depth].p_ext;
706 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
707 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
708 				le32_to_cpu(ex->ee_block),
709 				ext4_ext_pblock(ex),
710 				ext4_ext_is_unwritten(ex),
711 				ext4_ext_get_actual_len(ex),
712 				newblock);
713 		ex++;
714 	}
715 }
716 
717 #else
718 #define ext4_ext_show_path(inode, path)
719 #define ext4_ext_show_leaf(inode, path)
720 #define ext4_ext_show_move(inode, path, newblock, level)
721 #endif
722 
723 void ext4_ext_drop_refs(struct ext4_ext_path *path)
724 {
725 	int depth, i;
726 
727 	if (!path)
728 		return;
729 	depth = path->p_depth;
730 	for (i = 0; i <= depth; i++, path++)
731 		if (path->p_bh) {
732 			brelse(path->p_bh);
733 			path->p_bh = NULL;
734 		}
735 }
736 
737 /*
738  * ext4_ext_binsearch_idx:
739  * binary search for the closest index of the given block
740  * the header must be checked before calling this
741  */
742 static void
743 ext4_ext_binsearch_idx(struct inode *inode,
744 			struct ext4_ext_path *path, ext4_lblk_t block)
745 {
746 	struct ext4_extent_header *eh = path->p_hdr;
747 	struct ext4_extent_idx *r, *l, *m;
748 
749 
750 	ext_debug("binsearch for %u(idx):  ", block);
751 
752 	l = EXT_FIRST_INDEX(eh) + 1;
753 	r = EXT_LAST_INDEX(eh);
754 	while (l <= r) {
755 		m = l + (r - l) / 2;
756 		if (block < le32_to_cpu(m->ei_block))
757 			r = m - 1;
758 		else
759 			l = m + 1;
760 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
761 				m, le32_to_cpu(m->ei_block),
762 				r, le32_to_cpu(r->ei_block));
763 	}
764 
765 	path->p_idx = l - 1;
766 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
767 		  ext4_idx_pblock(path->p_idx));
768 
769 #ifdef CHECK_BINSEARCH
770 	{
771 		struct ext4_extent_idx *chix, *ix;
772 		int k;
773 
774 		chix = ix = EXT_FIRST_INDEX(eh);
775 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
776 		  if (k != 0 &&
777 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
778 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
779 				       "first=0x%p\n", k,
780 				       ix, EXT_FIRST_INDEX(eh));
781 				printk(KERN_DEBUG "%u <= %u\n",
782 				       le32_to_cpu(ix->ei_block),
783 				       le32_to_cpu(ix[-1].ei_block));
784 			}
785 			BUG_ON(k && le32_to_cpu(ix->ei_block)
786 					   <= le32_to_cpu(ix[-1].ei_block));
787 			if (block < le32_to_cpu(ix->ei_block))
788 				break;
789 			chix = ix;
790 		}
791 		BUG_ON(chix != path->p_idx);
792 	}
793 #endif
794 
795 }
796 
797 /*
798  * ext4_ext_binsearch:
799  * binary search for closest extent of the given block
800  * the header must be checked before calling this
801  */
802 static void
803 ext4_ext_binsearch(struct inode *inode,
804 		struct ext4_ext_path *path, ext4_lblk_t block)
805 {
806 	struct ext4_extent_header *eh = path->p_hdr;
807 	struct ext4_extent *r, *l, *m;
808 
809 	if (eh->eh_entries == 0) {
810 		/*
811 		 * this leaf is empty:
812 		 * we get such a leaf in split/add case
813 		 */
814 		return;
815 	}
816 
817 	ext_debug("binsearch for %u:  ", block);
818 
819 	l = EXT_FIRST_EXTENT(eh) + 1;
820 	r = EXT_LAST_EXTENT(eh);
821 
822 	while (l <= r) {
823 		m = l + (r - l) / 2;
824 		if (block < le32_to_cpu(m->ee_block))
825 			r = m - 1;
826 		else
827 			l = m + 1;
828 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
829 				m, le32_to_cpu(m->ee_block),
830 				r, le32_to_cpu(r->ee_block));
831 	}
832 
833 	path->p_ext = l - 1;
834 	ext_debug("  -> %d:%llu:[%d]%d ",
835 			le32_to_cpu(path->p_ext->ee_block),
836 			ext4_ext_pblock(path->p_ext),
837 			ext4_ext_is_unwritten(path->p_ext),
838 			ext4_ext_get_actual_len(path->p_ext));
839 
840 #ifdef CHECK_BINSEARCH
841 	{
842 		struct ext4_extent *chex, *ex;
843 		int k;
844 
845 		chex = ex = EXT_FIRST_EXTENT(eh);
846 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
847 			BUG_ON(k && le32_to_cpu(ex->ee_block)
848 					  <= le32_to_cpu(ex[-1].ee_block));
849 			if (block < le32_to_cpu(ex->ee_block))
850 				break;
851 			chex = ex;
852 		}
853 		BUG_ON(chex != path->p_ext);
854 	}
855 #endif
856 
857 }
858 
859 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
860 {
861 	struct ext4_extent_header *eh;
862 
863 	eh = ext_inode_hdr(inode);
864 	eh->eh_depth = 0;
865 	eh->eh_entries = 0;
866 	eh->eh_magic = EXT4_EXT_MAGIC;
867 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
868 	ext4_mark_inode_dirty(handle, inode);
869 	return 0;
870 }
871 
872 struct ext4_ext_path *
873 ext4_find_extent(struct inode *inode, ext4_lblk_t block,
874 		 struct ext4_ext_path **orig_path, int flags)
875 {
876 	struct ext4_extent_header *eh;
877 	struct buffer_head *bh;
878 	struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
879 	short int depth, i, ppos = 0;
880 	int ret;
881 
882 	eh = ext_inode_hdr(inode);
883 	depth = ext_depth(inode);
884 
885 	if (path) {
886 		ext4_ext_drop_refs(path);
887 		if (depth > path[0].p_maxdepth) {
888 			kfree(path);
889 			*orig_path = path = NULL;
890 		}
891 	}
892 	if (!path) {
893 		/* account possible depth increase */
894 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
895 				GFP_NOFS);
896 		if (unlikely(!path))
897 			return ERR_PTR(-ENOMEM);
898 		path[0].p_maxdepth = depth + 1;
899 	}
900 	path[0].p_hdr = eh;
901 	path[0].p_bh = NULL;
902 
903 	i = depth;
904 	/* walk through the tree */
905 	while (i) {
906 		ext_debug("depth %d: num %d, max %d\n",
907 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
908 
909 		ext4_ext_binsearch_idx(inode, path + ppos, block);
910 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
911 		path[ppos].p_depth = i;
912 		path[ppos].p_ext = NULL;
913 
914 		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
915 					    flags);
916 		if (IS_ERR(bh)) {
917 			ret = PTR_ERR(bh);
918 			goto err;
919 		}
920 
921 		eh = ext_block_hdr(bh);
922 		ppos++;
923 		path[ppos].p_bh = bh;
924 		path[ppos].p_hdr = eh;
925 	}
926 
927 	path[ppos].p_depth = i;
928 	path[ppos].p_ext = NULL;
929 	path[ppos].p_idx = NULL;
930 
931 	/* find extent */
932 	ext4_ext_binsearch(inode, path + ppos, block);
933 	/* if not an empty leaf */
934 	if (path[ppos].p_ext)
935 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
936 
937 	ext4_ext_show_path(inode, path);
938 
939 	return path;
940 
941 err:
942 	ext4_ext_drop_refs(path);
943 	kfree(path);
944 	if (orig_path)
945 		*orig_path = NULL;
946 	return ERR_PTR(ret);
947 }
948 
949 /*
950  * ext4_ext_insert_index:
951  * insert new index [@logical;@ptr] into the block at @curp;
952  * check where to insert: before @curp or after @curp
953  */
954 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
955 				 struct ext4_ext_path *curp,
956 				 int logical, ext4_fsblk_t ptr)
957 {
958 	struct ext4_extent_idx *ix;
959 	int len, err;
960 
961 	err = ext4_ext_get_access(handle, inode, curp);
962 	if (err)
963 		return err;
964 
965 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
966 		EXT4_ERROR_INODE(inode,
967 				 "logical %d == ei_block %d!",
968 				 logical, le32_to_cpu(curp->p_idx->ei_block));
969 		return -EFSCORRUPTED;
970 	}
971 
972 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
973 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
974 		EXT4_ERROR_INODE(inode,
975 				 "eh_entries %d >= eh_max %d!",
976 				 le16_to_cpu(curp->p_hdr->eh_entries),
977 				 le16_to_cpu(curp->p_hdr->eh_max));
978 		return -EFSCORRUPTED;
979 	}
980 
981 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
982 		/* insert after */
983 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
984 		ix = curp->p_idx + 1;
985 	} else {
986 		/* insert before */
987 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
988 		ix = curp->p_idx;
989 	}
990 
991 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
992 	BUG_ON(len < 0);
993 	if (len > 0) {
994 		ext_debug("insert new index %d: "
995 				"move %d indices from 0x%p to 0x%p\n",
996 				logical, len, ix, ix + 1);
997 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
998 	}
999 
1000 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
1001 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
1002 		return -EFSCORRUPTED;
1003 	}
1004 
1005 	ix->ei_block = cpu_to_le32(logical);
1006 	ext4_idx_store_pblock(ix, ptr);
1007 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
1008 
1009 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
1010 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
1011 		return -EFSCORRUPTED;
1012 	}
1013 
1014 	err = ext4_ext_dirty(handle, inode, curp);
1015 	ext4_std_error(inode->i_sb, err);
1016 
1017 	return err;
1018 }
1019 
1020 /*
1021  * ext4_ext_split:
1022  * inserts new subtree into the path, using free index entry
1023  * at depth @at:
1024  * - allocates all needed blocks (new leaf and all intermediate index blocks)
1025  * - makes decision where to split
1026  * - moves remaining extents and index entries (right to the split point)
1027  *   into the newly allocated blocks
1028  * - initializes subtree
1029  */
1030 static int ext4_ext_split(handle_t *handle, struct inode *inode,
1031 			  unsigned int flags,
1032 			  struct ext4_ext_path *path,
1033 			  struct ext4_extent *newext, int at)
1034 {
1035 	struct buffer_head *bh = NULL;
1036 	int depth = ext_depth(inode);
1037 	struct ext4_extent_header *neh;
1038 	struct ext4_extent_idx *fidx;
1039 	int i = at, k, m, a;
1040 	ext4_fsblk_t newblock, oldblock;
1041 	__le32 border;
1042 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1043 	int err = 0;
1044 
1045 	/* make decision: where to split? */
1046 	/* FIXME: now decision is simplest: at current extent */
1047 
1048 	/* if current leaf will be split, then we should use
1049 	 * border from split point */
1050 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1051 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1052 		return -EFSCORRUPTED;
1053 	}
1054 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1055 		border = path[depth].p_ext[1].ee_block;
1056 		ext_debug("leaf will be split."
1057 				" next leaf starts at %d\n",
1058 				  le32_to_cpu(border));
1059 	} else {
1060 		border = newext->ee_block;
1061 		ext_debug("leaf will be added."
1062 				" next leaf starts at %d\n",
1063 				le32_to_cpu(border));
1064 	}
1065 
1066 	/*
1067 	 * If error occurs, then we break processing
1068 	 * and mark filesystem read-only. index won't
1069 	 * be inserted and tree will be in consistent
1070 	 * state. Next mount will repair buffers too.
1071 	 */
1072 
1073 	/*
1074 	 * Get array to track all allocated blocks.
1075 	 * We need this to handle errors and free blocks
1076 	 * upon them.
1077 	 */
1078 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1079 	if (!ablocks)
1080 		return -ENOMEM;
1081 
1082 	/* allocate all needed blocks */
1083 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1084 	for (a = 0; a < depth - at; a++) {
1085 		newblock = ext4_ext_new_meta_block(handle, inode, path,
1086 						   newext, &err, flags);
1087 		if (newblock == 0)
1088 			goto cleanup;
1089 		ablocks[a] = newblock;
1090 	}
1091 
1092 	/* initialize new leaf */
1093 	newblock = ablocks[--a];
1094 	if (unlikely(newblock == 0)) {
1095 		EXT4_ERROR_INODE(inode, "newblock == 0!");
1096 		err = -EFSCORRUPTED;
1097 		goto cleanup;
1098 	}
1099 	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1100 	if (unlikely(!bh)) {
1101 		err = -ENOMEM;
1102 		goto cleanup;
1103 	}
1104 	lock_buffer(bh);
1105 
1106 	err = ext4_journal_get_create_access(handle, bh);
1107 	if (err)
1108 		goto cleanup;
1109 
1110 	neh = ext_block_hdr(bh);
1111 	neh->eh_entries = 0;
1112 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1113 	neh->eh_magic = EXT4_EXT_MAGIC;
1114 	neh->eh_depth = 0;
1115 
1116 	/* move remainder of path[depth] to the new leaf */
1117 	if (unlikely(path[depth].p_hdr->eh_entries !=
1118 		     path[depth].p_hdr->eh_max)) {
1119 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1120 				 path[depth].p_hdr->eh_entries,
1121 				 path[depth].p_hdr->eh_max);
1122 		err = -EFSCORRUPTED;
1123 		goto cleanup;
1124 	}
1125 	/* start copy from next extent */
1126 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1127 	ext4_ext_show_move(inode, path, newblock, depth);
1128 	if (m) {
1129 		struct ext4_extent *ex;
1130 		ex = EXT_FIRST_EXTENT(neh);
1131 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1132 		le16_add_cpu(&neh->eh_entries, m);
1133 	}
1134 
1135 	ext4_extent_block_csum_set(inode, neh);
1136 	set_buffer_uptodate(bh);
1137 	unlock_buffer(bh);
1138 
1139 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1140 	if (err)
1141 		goto cleanup;
1142 	brelse(bh);
1143 	bh = NULL;
1144 
1145 	/* correct old leaf */
1146 	if (m) {
1147 		err = ext4_ext_get_access(handle, inode, path + depth);
1148 		if (err)
1149 			goto cleanup;
1150 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1151 		err = ext4_ext_dirty(handle, inode, path + depth);
1152 		if (err)
1153 			goto cleanup;
1154 
1155 	}
1156 
1157 	/* create intermediate indexes */
1158 	k = depth - at - 1;
1159 	if (unlikely(k < 0)) {
1160 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1161 		err = -EFSCORRUPTED;
1162 		goto cleanup;
1163 	}
1164 	if (k)
1165 		ext_debug("create %d intermediate indices\n", k);
1166 	/* insert new index into current index block */
1167 	/* current depth stored in i var */
1168 	i = depth - 1;
1169 	while (k--) {
1170 		oldblock = newblock;
1171 		newblock = ablocks[--a];
1172 		bh = sb_getblk(inode->i_sb, newblock);
1173 		if (unlikely(!bh)) {
1174 			err = -ENOMEM;
1175 			goto cleanup;
1176 		}
1177 		lock_buffer(bh);
1178 
1179 		err = ext4_journal_get_create_access(handle, bh);
1180 		if (err)
1181 			goto cleanup;
1182 
1183 		neh = ext_block_hdr(bh);
1184 		neh->eh_entries = cpu_to_le16(1);
1185 		neh->eh_magic = EXT4_EXT_MAGIC;
1186 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1187 		neh->eh_depth = cpu_to_le16(depth - i);
1188 		fidx = EXT_FIRST_INDEX(neh);
1189 		fidx->ei_block = border;
1190 		ext4_idx_store_pblock(fidx, oldblock);
1191 
1192 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1193 				i, newblock, le32_to_cpu(border), oldblock);
1194 
1195 		/* move remainder of path[i] to the new index block */
1196 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1197 					EXT_LAST_INDEX(path[i].p_hdr))) {
1198 			EXT4_ERROR_INODE(inode,
1199 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1200 					 le32_to_cpu(path[i].p_ext->ee_block));
1201 			err = -EFSCORRUPTED;
1202 			goto cleanup;
1203 		}
1204 		/* start copy indexes */
1205 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1206 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1207 				EXT_MAX_INDEX(path[i].p_hdr));
1208 		ext4_ext_show_move(inode, path, newblock, i);
1209 		if (m) {
1210 			memmove(++fidx, path[i].p_idx,
1211 				sizeof(struct ext4_extent_idx) * m);
1212 			le16_add_cpu(&neh->eh_entries, m);
1213 		}
1214 		ext4_extent_block_csum_set(inode, neh);
1215 		set_buffer_uptodate(bh);
1216 		unlock_buffer(bh);
1217 
1218 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1219 		if (err)
1220 			goto cleanup;
1221 		brelse(bh);
1222 		bh = NULL;
1223 
1224 		/* correct old index */
1225 		if (m) {
1226 			err = ext4_ext_get_access(handle, inode, path + i);
1227 			if (err)
1228 				goto cleanup;
1229 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1230 			err = ext4_ext_dirty(handle, inode, path + i);
1231 			if (err)
1232 				goto cleanup;
1233 		}
1234 
1235 		i--;
1236 	}
1237 
1238 	/* insert new index */
1239 	err = ext4_ext_insert_index(handle, inode, path + at,
1240 				    le32_to_cpu(border), newblock);
1241 
1242 cleanup:
1243 	if (bh) {
1244 		if (buffer_locked(bh))
1245 			unlock_buffer(bh);
1246 		brelse(bh);
1247 	}
1248 
1249 	if (err) {
1250 		/* free all allocated blocks in error case */
1251 		for (i = 0; i < depth; i++) {
1252 			if (!ablocks[i])
1253 				continue;
1254 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1255 					 EXT4_FREE_BLOCKS_METADATA);
1256 		}
1257 	}
1258 	kfree(ablocks);
1259 
1260 	return err;
1261 }
1262 
1263 /*
1264  * ext4_ext_grow_indepth:
1265  * implements tree growing procedure:
1266  * - allocates new block
1267  * - moves top-level data (index block or leaf) into the new block
1268  * - initializes new top-level, creating index that points to the
1269  *   just created block
1270  */
1271 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1272 				 unsigned int flags)
1273 {
1274 	struct ext4_extent_header *neh;
1275 	struct buffer_head *bh;
1276 	ext4_fsblk_t newblock, goal = 0;
1277 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
1278 	int err = 0;
1279 
1280 	/* Try to prepend new index to old one */
1281 	if (ext_depth(inode))
1282 		goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
1283 	if (goal > le32_to_cpu(es->s_first_data_block)) {
1284 		flags |= EXT4_MB_HINT_TRY_GOAL;
1285 		goal--;
1286 	} else
1287 		goal = ext4_inode_to_goal_block(inode);
1288 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
1289 					NULL, &err);
1290 	if (newblock == 0)
1291 		return err;
1292 
1293 	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1294 	if (unlikely(!bh))
1295 		return -ENOMEM;
1296 	lock_buffer(bh);
1297 
1298 	err = ext4_journal_get_create_access(handle, bh);
1299 	if (err) {
1300 		unlock_buffer(bh);
1301 		goto out;
1302 	}
1303 
1304 	/* move top-level index/leaf into new block */
1305 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1306 		sizeof(EXT4_I(inode)->i_data));
1307 
1308 	/* set size of new block */
1309 	neh = ext_block_hdr(bh);
1310 	/* old root could have indexes or leaves
1311 	 * so calculate e_max right way */
1312 	if (ext_depth(inode))
1313 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1314 	else
1315 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1316 	neh->eh_magic = EXT4_EXT_MAGIC;
1317 	ext4_extent_block_csum_set(inode, neh);
1318 	set_buffer_uptodate(bh);
1319 	unlock_buffer(bh);
1320 
1321 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1322 	if (err)
1323 		goto out;
1324 
1325 	/* Update top-level index: num,max,pointer */
1326 	neh = ext_inode_hdr(inode);
1327 	neh->eh_entries = cpu_to_le16(1);
1328 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1329 	if (neh->eh_depth == 0) {
1330 		/* Root extent block becomes index block */
1331 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1332 		EXT_FIRST_INDEX(neh)->ei_block =
1333 			EXT_FIRST_EXTENT(neh)->ee_block;
1334 	}
1335 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1336 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1337 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1338 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1339 
1340 	le16_add_cpu(&neh->eh_depth, 1);
1341 	ext4_mark_inode_dirty(handle, inode);
1342 out:
1343 	brelse(bh);
1344 
1345 	return err;
1346 }
1347 
1348 /*
1349  * ext4_ext_create_new_leaf:
1350  * finds empty index and adds new leaf.
1351  * if no free index is found, then it requests in-depth growing.
1352  */
1353 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1354 				    unsigned int mb_flags,
1355 				    unsigned int gb_flags,
1356 				    struct ext4_ext_path **ppath,
1357 				    struct ext4_extent *newext)
1358 {
1359 	struct ext4_ext_path *path = *ppath;
1360 	struct ext4_ext_path *curp;
1361 	int depth, i, err = 0;
1362 
1363 repeat:
1364 	i = depth = ext_depth(inode);
1365 
1366 	/* walk up to the tree and look for free index entry */
1367 	curp = path + depth;
1368 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1369 		i--;
1370 		curp--;
1371 	}
1372 
1373 	/* we use already allocated block for index block,
1374 	 * so subsequent data blocks should be contiguous */
1375 	if (EXT_HAS_FREE_INDEX(curp)) {
1376 		/* if we found index with free entry, then use that
1377 		 * entry: create all needed subtree and add new leaf */
1378 		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1379 		if (err)
1380 			goto out;
1381 
1382 		/* refill path */
1383 		path = ext4_find_extent(inode,
1384 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1385 				    ppath, gb_flags);
1386 		if (IS_ERR(path))
1387 			err = PTR_ERR(path);
1388 	} else {
1389 		/* tree is full, time to grow in depth */
1390 		err = ext4_ext_grow_indepth(handle, inode, mb_flags);
1391 		if (err)
1392 			goto out;
1393 
1394 		/* refill path */
1395 		path = ext4_find_extent(inode,
1396 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1397 				    ppath, gb_flags);
1398 		if (IS_ERR(path)) {
1399 			err = PTR_ERR(path);
1400 			goto out;
1401 		}
1402 
1403 		/*
1404 		 * only first (depth 0 -> 1) produces free space;
1405 		 * in all other cases we have to split the grown tree
1406 		 */
1407 		depth = ext_depth(inode);
1408 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1409 			/* now we need to split */
1410 			goto repeat;
1411 		}
1412 	}
1413 
1414 out:
1415 	return err;
1416 }
1417 
1418 /*
1419  * search the closest allocated block to the left for *logical
1420  * and returns it at @logical + it's physical address at @phys
1421  * if *logical is the smallest allocated block, the function
1422  * returns 0 at @phys
1423  * return value contains 0 (success) or error code
1424  */
1425 static int ext4_ext_search_left(struct inode *inode,
1426 				struct ext4_ext_path *path,
1427 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1428 {
1429 	struct ext4_extent_idx *ix;
1430 	struct ext4_extent *ex;
1431 	int depth, ee_len;
1432 
1433 	if (unlikely(path == NULL)) {
1434 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1435 		return -EFSCORRUPTED;
1436 	}
1437 	depth = path->p_depth;
1438 	*phys = 0;
1439 
1440 	if (depth == 0 && path->p_ext == NULL)
1441 		return 0;
1442 
1443 	/* usually extent in the path covers blocks smaller
1444 	 * then *logical, but it can be that extent is the
1445 	 * first one in the file */
1446 
1447 	ex = path[depth].p_ext;
1448 	ee_len = ext4_ext_get_actual_len(ex);
1449 	if (*logical < le32_to_cpu(ex->ee_block)) {
1450 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1451 			EXT4_ERROR_INODE(inode,
1452 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1453 					 *logical, le32_to_cpu(ex->ee_block));
1454 			return -EFSCORRUPTED;
1455 		}
1456 		while (--depth >= 0) {
1457 			ix = path[depth].p_idx;
1458 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1459 				EXT4_ERROR_INODE(inode,
1460 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1461 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1462 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1463 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1464 				  depth);
1465 				return -EFSCORRUPTED;
1466 			}
1467 		}
1468 		return 0;
1469 	}
1470 
1471 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1472 		EXT4_ERROR_INODE(inode,
1473 				 "logical %d < ee_block %d + ee_len %d!",
1474 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1475 		return -EFSCORRUPTED;
1476 	}
1477 
1478 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1479 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1480 	return 0;
1481 }
1482 
1483 /*
1484  * search the closest allocated block to the right for *logical
1485  * and returns it at @logical + it's physical address at @phys
1486  * if *logical is the largest allocated block, the function
1487  * returns 0 at @phys
1488  * return value contains 0 (success) or error code
1489  */
1490 static int ext4_ext_search_right(struct inode *inode,
1491 				 struct ext4_ext_path *path,
1492 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1493 				 struct ext4_extent **ret_ex)
1494 {
1495 	struct buffer_head *bh = NULL;
1496 	struct ext4_extent_header *eh;
1497 	struct ext4_extent_idx *ix;
1498 	struct ext4_extent *ex;
1499 	ext4_fsblk_t block;
1500 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1501 	int ee_len;
1502 
1503 	if (unlikely(path == NULL)) {
1504 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1505 		return -EFSCORRUPTED;
1506 	}
1507 	depth = path->p_depth;
1508 	*phys = 0;
1509 
1510 	if (depth == 0 && path->p_ext == NULL)
1511 		return 0;
1512 
1513 	/* usually extent in the path covers blocks smaller
1514 	 * then *logical, but it can be that extent is the
1515 	 * first one in the file */
1516 
1517 	ex = path[depth].p_ext;
1518 	ee_len = ext4_ext_get_actual_len(ex);
1519 	if (*logical < le32_to_cpu(ex->ee_block)) {
1520 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1521 			EXT4_ERROR_INODE(inode,
1522 					 "first_extent(path[%d].p_hdr) != ex",
1523 					 depth);
1524 			return -EFSCORRUPTED;
1525 		}
1526 		while (--depth >= 0) {
1527 			ix = path[depth].p_idx;
1528 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1529 				EXT4_ERROR_INODE(inode,
1530 						 "ix != EXT_FIRST_INDEX *logical %d!",
1531 						 *logical);
1532 				return -EFSCORRUPTED;
1533 			}
1534 		}
1535 		goto found_extent;
1536 	}
1537 
1538 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1539 		EXT4_ERROR_INODE(inode,
1540 				 "logical %d < ee_block %d + ee_len %d!",
1541 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1542 		return -EFSCORRUPTED;
1543 	}
1544 
1545 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1546 		/* next allocated block in this leaf */
1547 		ex++;
1548 		goto found_extent;
1549 	}
1550 
1551 	/* go up and search for index to the right */
1552 	while (--depth >= 0) {
1553 		ix = path[depth].p_idx;
1554 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1555 			goto got_index;
1556 	}
1557 
1558 	/* we've gone up to the root and found no index to the right */
1559 	return 0;
1560 
1561 got_index:
1562 	/* we've found index to the right, let's
1563 	 * follow it and find the closest allocated
1564 	 * block to the right */
1565 	ix++;
1566 	block = ext4_idx_pblock(ix);
1567 	while (++depth < path->p_depth) {
1568 		/* subtract from p_depth to get proper eh_depth */
1569 		bh = read_extent_tree_block(inode, block,
1570 					    path->p_depth - depth, 0);
1571 		if (IS_ERR(bh))
1572 			return PTR_ERR(bh);
1573 		eh = ext_block_hdr(bh);
1574 		ix = EXT_FIRST_INDEX(eh);
1575 		block = ext4_idx_pblock(ix);
1576 		put_bh(bh);
1577 	}
1578 
1579 	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1580 	if (IS_ERR(bh))
1581 		return PTR_ERR(bh);
1582 	eh = ext_block_hdr(bh);
1583 	ex = EXT_FIRST_EXTENT(eh);
1584 found_extent:
1585 	*logical = le32_to_cpu(ex->ee_block);
1586 	*phys = ext4_ext_pblock(ex);
1587 	*ret_ex = ex;
1588 	if (bh)
1589 		put_bh(bh);
1590 	return 0;
1591 }
1592 
1593 /*
1594  * ext4_ext_next_allocated_block:
1595  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1596  * NOTE: it considers block number from index entry as
1597  * allocated block. Thus, index entries have to be consistent
1598  * with leaves.
1599  */
1600 ext4_lblk_t
1601 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1602 {
1603 	int depth;
1604 
1605 	BUG_ON(path == NULL);
1606 	depth = path->p_depth;
1607 
1608 	if (depth == 0 && path->p_ext == NULL)
1609 		return EXT_MAX_BLOCKS;
1610 
1611 	while (depth >= 0) {
1612 		if (depth == path->p_depth) {
1613 			/* leaf */
1614 			if (path[depth].p_ext &&
1615 				path[depth].p_ext !=
1616 					EXT_LAST_EXTENT(path[depth].p_hdr))
1617 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1618 		} else {
1619 			/* index */
1620 			if (path[depth].p_idx !=
1621 					EXT_LAST_INDEX(path[depth].p_hdr))
1622 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1623 		}
1624 		depth--;
1625 	}
1626 
1627 	return EXT_MAX_BLOCKS;
1628 }
1629 
1630 /*
1631  * ext4_ext_next_leaf_block:
1632  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1633  */
1634 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1635 {
1636 	int depth;
1637 
1638 	BUG_ON(path == NULL);
1639 	depth = path->p_depth;
1640 
1641 	/* zero-tree has no leaf blocks at all */
1642 	if (depth == 0)
1643 		return EXT_MAX_BLOCKS;
1644 
1645 	/* go to index block */
1646 	depth--;
1647 
1648 	while (depth >= 0) {
1649 		if (path[depth].p_idx !=
1650 				EXT_LAST_INDEX(path[depth].p_hdr))
1651 			return (ext4_lblk_t)
1652 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1653 		depth--;
1654 	}
1655 
1656 	return EXT_MAX_BLOCKS;
1657 }
1658 
1659 /*
1660  * ext4_ext_correct_indexes:
1661  * if leaf gets modified and modified extent is first in the leaf,
1662  * then we have to correct all indexes above.
1663  * TODO: do we need to correct tree in all cases?
1664  */
1665 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1666 				struct ext4_ext_path *path)
1667 {
1668 	struct ext4_extent_header *eh;
1669 	int depth = ext_depth(inode);
1670 	struct ext4_extent *ex;
1671 	__le32 border;
1672 	int k, err = 0;
1673 
1674 	eh = path[depth].p_hdr;
1675 	ex = path[depth].p_ext;
1676 
1677 	if (unlikely(ex == NULL || eh == NULL)) {
1678 		EXT4_ERROR_INODE(inode,
1679 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1680 		return -EFSCORRUPTED;
1681 	}
1682 
1683 	if (depth == 0) {
1684 		/* there is no tree at all */
1685 		return 0;
1686 	}
1687 
1688 	if (ex != EXT_FIRST_EXTENT(eh)) {
1689 		/* we correct tree if first leaf got modified only */
1690 		return 0;
1691 	}
1692 
1693 	/*
1694 	 * TODO: we need correction if border is smaller than current one
1695 	 */
1696 	k = depth - 1;
1697 	border = path[depth].p_ext->ee_block;
1698 	err = ext4_ext_get_access(handle, inode, path + k);
1699 	if (err)
1700 		return err;
1701 	path[k].p_idx->ei_block = border;
1702 	err = ext4_ext_dirty(handle, inode, path + k);
1703 	if (err)
1704 		return err;
1705 
1706 	while (k--) {
1707 		/* change all left-side indexes */
1708 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1709 			break;
1710 		err = ext4_ext_get_access(handle, inode, path + k);
1711 		if (err)
1712 			break;
1713 		path[k].p_idx->ei_block = border;
1714 		err = ext4_ext_dirty(handle, inode, path + k);
1715 		if (err)
1716 			break;
1717 	}
1718 
1719 	return err;
1720 }
1721 
1722 int
1723 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1724 				struct ext4_extent *ex2)
1725 {
1726 	unsigned short ext1_ee_len, ext2_ee_len;
1727 
1728 	if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1729 		return 0;
1730 
1731 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1732 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1733 
1734 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1735 			le32_to_cpu(ex2->ee_block))
1736 		return 0;
1737 
1738 	/*
1739 	 * To allow future support for preallocated extents to be added
1740 	 * as an RO_COMPAT feature, refuse to merge to extents if
1741 	 * this can result in the top bit of ee_len being set.
1742 	 */
1743 	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1744 		return 0;
1745 	/*
1746 	 * The check for IO to unwritten extent is somewhat racy as we
1747 	 * increment i_unwritten / set EXT4_STATE_DIO_UNWRITTEN only after
1748 	 * dropping i_data_sem. But reserved blocks should save us in that
1749 	 * case.
1750 	 */
1751 	if (ext4_ext_is_unwritten(ex1) &&
1752 	    (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1753 	     atomic_read(&EXT4_I(inode)->i_unwritten) ||
1754 	     (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1755 		return 0;
1756 #ifdef AGGRESSIVE_TEST
1757 	if (ext1_ee_len >= 4)
1758 		return 0;
1759 #endif
1760 
1761 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1762 		return 1;
1763 	return 0;
1764 }
1765 
1766 /*
1767  * This function tries to merge the "ex" extent to the next extent in the tree.
1768  * It always tries to merge towards right. If you want to merge towards
1769  * left, pass "ex - 1" as argument instead of "ex".
1770  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1771  * 1 if they got merged.
1772  */
1773 static int ext4_ext_try_to_merge_right(struct inode *inode,
1774 				 struct ext4_ext_path *path,
1775 				 struct ext4_extent *ex)
1776 {
1777 	struct ext4_extent_header *eh;
1778 	unsigned int depth, len;
1779 	int merge_done = 0, unwritten;
1780 
1781 	depth = ext_depth(inode);
1782 	BUG_ON(path[depth].p_hdr == NULL);
1783 	eh = path[depth].p_hdr;
1784 
1785 	while (ex < EXT_LAST_EXTENT(eh)) {
1786 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1787 			break;
1788 		/* merge with next extent! */
1789 		unwritten = ext4_ext_is_unwritten(ex);
1790 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1791 				+ ext4_ext_get_actual_len(ex + 1));
1792 		if (unwritten)
1793 			ext4_ext_mark_unwritten(ex);
1794 
1795 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1796 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1797 				* sizeof(struct ext4_extent);
1798 			memmove(ex + 1, ex + 2, len);
1799 		}
1800 		le16_add_cpu(&eh->eh_entries, -1);
1801 		merge_done = 1;
1802 		WARN_ON(eh->eh_entries == 0);
1803 		if (!eh->eh_entries)
1804 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1805 	}
1806 
1807 	return merge_done;
1808 }
1809 
1810 /*
1811  * This function does a very simple check to see if we can collapse
1812  * an extent tree with a single extent tree leaf block into the inode.
1813  */
1814 static void ext4_ext_try_to_merge_up(handle_t *handle,
1815 				     struct inode *inode,
1816 				     struct ext4_ext_path *path)
1817 {
1818 	size_t s;
1819 	unsigned max_root = ext4_ext_space_root(inode, 0);
1820 	ext4_fsblk_t blk;
1821 
1822 	if ((path[0].p_depth != 1) ||
1823 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1824 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1825 		return;
1826 
1827 	/*
1828 	 * We need to modify the block allocation bitmap and the block
1829 	 * group descriptor to release the extent tree block.  If we
1830 	 * can't get the journal credits, give up.
1831 	 */
1832 	if (ext4_journal_extend(handle, 2))
1833 		return;
1834 
1835 	/*
1836 	 * Copy the extent data up to the inode
1837 	 */
1838 	blk = ext4_idx_pblock(path[0].p_idx);
1839 	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1840 		sizeof(struct ext4_extent_idx);
1841 	s += sizeof(struct ext4_extent_header);
1842 
1843 	path[1].p_maxdepth = path[0].p_maxdepth;
1844 	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1845 	path[0].p_depth = 0;
1846 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1847 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1848 	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1849 
1850 	brelse(path[1].p_bh);
1851 	ext4_free_blocks(handle, inode, NULL, blk, 1,
1852 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1853 }
1854 
1855 /*
1856  * This function tries to merge the @ex extent to neighbours in the tree.
1857  * return 1 if merge left else 0.
1858  */
1859 static void ext4_ext_try_to_merge(handle_t *handle,
1860 				  struct inode *inode,
1861 				  struct ext4_ext_path *path,
1862 				  struct ext4_extent *ex) {
1863 	struct ext4_extent_header *eh;
1864 	unsigned int depth;
1865 	int merge_done = 0;
1866 
1867 	depth = ext_depth(inode);
1868 	BUG_ON(path[depth].p_hdr == NULL);
1869 	eh = path[depth].p_hdr;
1870 
1871 	if (ex > EXT_FIRST_EXTENT(eh))
1872 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1873 
1874 	if (!merge_done)
1875 		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1876 
1877 	ext4_ext_try_to_merge_up(handle, inode, path);
1878 }
1879 
1880 /*
1881  * check if a portion of the "newext" extent overlaps with an
1882  * existing extent.
1883  *
1884  * If there is an overlap discovered, it updates the length of the newext
1885  * such that there will be no overlap, and then returns 1.
1886  * If there is no overlap found, it returns 0.
1887  */
1888 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1889 					   struct inode *inode,
1890 					   struct ext4_extent *newext,
1891 					   struct ext4_ext_path *path)
1892 {
1893 	ext4_lblk_t b1, b2;
1894 	unsigned int depth, len1;
1895 	unsigned int ret = 0;
1896 
1897 	b1 = le32_to_cpu(newext->ee_block);
1898 	len1 = ext4_ext_get_actual_len(newext);
1899 	depth = ext_depth(inode);
1900 	if (!path[depth].p_ext)
1901 		goto out;
1902 	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1903 
1904 	/*
1905 	 * get the next allocated block if the extent in the path
1906 	 * is before the requested block(s)
1907 	 */
1908 	if (b2 < b1) {
1909 		b2 = ext4_ext_next_allocated_block(path);
1910 		if (b2 == EXT_MAX_BLOCKS)
1911 			goto out;
1912 		b2 = EXT4_LBLK_CMASK(sbi, b2);
1913 	}
1914 
1915 	/* check for wrap through zero on extent logical start block*/
1916 	if (b1 + len1 < b1) {
1917 		len1 = EXT_MAX_BLOCKS - b1;
1918 		newext->ee_len = cpu_to_le16(len1);
1919 		ret = 1;
1920 	}
1921 
1922 	/* check for overlap */
1923 	if (b1 + len1 > b2) {
1924 		newext->ee_len = cpu_to_le16(b2 - b1);
1925 		ret = 1;
1926 	}
1927 out:
1928 	return ret;
1929 }
1930 
1931 /*
1932  * ext4_ext_insert_extent:
1933  * tries to merge requsted extent into the existing extent or
1934  * inserts requested extent as new one into the tree,
1935  * creating new leaf in the no-space case.
1936  */
1937 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1938 				struct ext4_ext_path **ppath,
1939 				struct ext4_extent *newext, int gb_flags)
1940 {
1941 	struct ext4_ext_path *path = *ppath;
1942 	struct ext4_extent_header *eh;
1943 	struct ext4_extent *ex, *fex;
1944 	struct ext4_extent *nearex; /* nearest extent */
1945 	struct ext4_ext_path *npath = NULL;
1946 	int depth, len, err;
1947 	ext4_lblk_t next;
1948 	int mb_flags = 0, unwritten;
1949 
1950 	if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1951 		mb_flags |= EXT4_MB_DELALLOC_RESERVED;
1952 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1953 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1954 		return -EFSCORRUPTED;
1955 	}
1956 	depth = ext_depth(inode);
1957 	ex = path[depth].p_ext;
1958 	eh = path[depth].p_hdr;
1959 	if (unlikely(path[depth].p_hdr == NULL)) {
1960 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1961 		return -EFSCORRUPTED;
1962 	}
1963 
1964 	/* try to insert block into found extent and return */
1965 	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1966 
1967 		/*
1968 		 * Try to see whether we should rather test the extent on
1969 		 * right from ex, or from the left of ex. This is because
1970 		 * ext4_find_extent() can return either extent on the
1971 		 * left, or on the right from the searched position. This
1972 		 * will make merging more effective.
1973 		 */
1974 		if (ex < EXT_LAST_EXTENT(eh) &&
1975 		    (le32_to_cpu(ex->ee_block) +
1976 		    ext4_ext_get_actual_len(ex) <
1977 		    le32_to_cpu(newext->ee_block))) {
1978 			ex += 1;
1979 			goto prepend;
1980 		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1981 			   (le32_to_cpu(newext->ee_block) +
1982 			   ext4_ext_get_actual_len(newext) <
1983 			   le32_to_cpu(ex->ee_block)))
1984 			ex -= 1;
1985 
1986 		/* Try to append newex to the ex */
1987 		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1988 			ext_debug("append [%d]%d block to %u:[%d]%d"
1989 				  "(from %llu)\n",
1990 				  ext4_ext_is_unwritten(newext),
1991 				  ext4_ext_get_actual_len(newext),
1992 				  le32_to_cpu(ex->ee_block),
1993 				  ext4_ext_is_unwritten(ex),
1994 				  ext4_ext_get_actual_len(ex),
1995 				  ext4_ext_pblock(ex));
1996 			err = ext4_ext_get_access(handle, inode,
1997 						  path + depth);
1998 			if (err)
1999 				return err;
2000 			unwritten = ext4_ext_is_unwritten(ex);
2001 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2002 					+ ext4_ext_get_actual_len(newext));
2003 			if (unwritten)
2004 				ext4_ext_mark_unwritten(ex);
2005 			eh = path[depth].p_hdr;
2006 			nearex = ex;
2007 			goto merge;
2008 		}
2009 
2010 prepend:
2011 		/* Try to prepend newex to the ex */
2012 		if (ext4_can_extents_be_merged(inode, newext, ex)) {
2013 			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
2014 				  "(from %llu)\n",
2015 				  le32_to_cpu(newext->ee_block),
2016 				  ext4_ext_is_unwritten(newext),
2017 				  ext4_ext_get_actual_len(newext),
2018 				  le32_to_cpu(ex->ee_block),
2019 				  ext4_ext_is_unwritten(ex),
2020 				  ext4_ext_get_actual_len(ex),
2021 				  ext4_ext_pblock(ex));
2022 			err = ext4_ext_get_access(handle, inode,
2023 						  path + depth);
2024 			if (err)
2025 				return err;
2026 
2027 			unwritten = ext4_ext_is_unwritten(ex);
2028 			ex->ee_block = newext->ee_block;
2029 			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2030 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2031 					+ ext4_ext_get_actual_len(newext));
2032 			if (unwritten)
2033 				ext4_ext_mark_unwritten(ex);
2034 			eh = path[depth].p_hdr;
2035 			nearex = ex;
2036 			goto merge;
2037 		}
2038 	}
2039 
2040 	depth = ext_depth(inode);
2041 	eh = path[depth].p_hdr;
2042 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2043 		goto has_space;
2044 
2045 	/* probably next leaf has space for us? */
2046 	fex = EXT_LAST_EXTENT(eh);
2047 	next = EXT_MAX_BLOCKS;
2048 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2049 		next = ext4_ext_next_leaf_block(path);
2050 	if (next != EXT_MAX_BLOCKS) {
2051 		ext_debug("next leaf block - %u\n", next);
2052 		BUG_ON(npath != NULL);
2053 		npath = ext4_find_extent(inode, next, NULL, 0);
2054 		if (IS_ERR(npath))
2055 			return PTR_ERR(npath);
2056 		BUG_ON(npath->p_depth != path->p_depth);
2057 		eh = npath[depth].p_hdr;
2058 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2059 			ext_debug("next leaf isn't full(%d)\n",
2060 				  le16_to_cpu(eh->eh_entries));
2061 			path = npath;
2062 			goto has_space;
2063 		}
2064 		ext_debug("next leaf has no free space(%d,%d)\n",
2065 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2066 	}
2067 
2068 	/*
2069 	 * There is no free space in the found leaf.
2070 	 * We're gonna add a new leaf in the tree.
2071 	 */
2072 	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2073 		mb_flags |= EXT4_MB_USE_RESERVED;
2074 	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2075 				       ppath, newext);
2076 	if (err)
2077 		goto cleanup;
2078 	depth = ext_depth(inode);
2079 	eh = path[depth].p_hdr;
2080 
2081 has_space:
2082 	nearex = path[depth].p_ext;
2083 
2084 	err = ext4_ext_get_access(handle, inode, path + depth);
2085 	if (err)
2086 		goto cleanup;
2087 
2088 	if (!nearex) {
2089 		/* there is no extent in this leaf, create first one */
2090 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2091 				le32_to_cpu(newext->ee_block),
2092 				ext4_ext_pblock(newext),
2093 				ext4_ext_is_unwritten(newext),
2094 				ext4_ext_get_actual_len(newext));
2095 		nearex = EXT_FIRST_EXTENT(eh);
2096 	} else {
2097 		if (le32_to_cpu(newext->ee_block)
2098 			   > le32_to_cpu(nearex->ee_block)) {
2099 			/* Insert after */
2100 			ext_debug("insert %u:%llu:[%d]%d before: "
2101 					"nearest %p\n",
2102 					le32_to_cpu(newext->ee_block),
2103 					ext4_ext_pblock(newext),
2104 					ext4_ext_is_unwritten(newext),
2105 					ext4_ext_get_actual_len(newext),
2106 					nearex);
2107 			nearex++;
2108 		} else {
2109 			/* Insert before */
2110 			BUG_ON(newext->ee_block == nearex->ee_block);
2111 			ext_debug("insert %u:%llu:[%d]%d after: "
2112 					"nearest %p\n",
2113 					le32_to_cpu(newext->ee_block),
2114 					ext4_ext_pblock(newext),
2115 					ext4_ext_is_unwritten(newext),
2116 					ext4_ext_get_actual_len(newext),
2117 					nearex);
2118 		}
2119 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2120 		if (len > 0) {
2121 			ext_debug("insert %u:%llu:[%d]%d: "
2122 					"move %d extents from 0x%p to 0x%p\n",
2123 					le32_to_cpu(newext->ee_block),
2124 					ext4_ext_pblock(newext),
2125 					ext4_ext_is_unwritten(newext),
2126 					ext4_ext_get_actual_len(newext),
2127 					len, nearex, nearex + 1);
2128 			memmove(nearex + 1, nearex,
2129 				len * sizeof(struct ext4_extent));
2130 		}
2131 	}
2132 
2133 	le16_add_cpu(&eh->eh_entries, 1);
2134 	path[depth].p_ext = nearex;
2135 	nearex->ee_block = newext->ee_block;
2136 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2137 	nearex->ee_len = newext->ee_len;
2138 
2139 merge:
2140 	/* try to merge extents */
2141 	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2142 		ext4_ext_try_to_merge(handle, inode, path, nearex);
2143 
2144 
2145 	/* time to correct all indexes above */
2146 	err = ext4_ext_correct_indexes(handle, inode, path);
2147 	if (err)
2148 		goto cleanup;
2149 
2150 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2151 
2152 cleanup:
2153 	ext4_ext_drop_refs(npath);
2154 	kfree(npath);
2155 	return err;
2156 }
2157 
2158 static int ext4_fill_fiemap_extents(struct inode *inode,
2159 				    ext4_lblk_t block, ext4_lblk_t num,
2160 				    struct fiemap_extent_info *fieinfo)
2161 {
2162 	struct ext4_ext_path *path = NULL;
2163 	struct ext4_extent *ex;
2164 	struct extent_status es;
2165 	ext4_lblk_t next, next_del, start = 0, end = 0;
2166 	ext4_lblk_t last = block + num;
2167 	int exists, depth = 0, err = 0;
2168 	unsigned int flags = 0;
2169 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2170 
2171 	while (block < last && block != EXT_MAX_BLOCKS) {
2172 		num = last - block;
2173 		/* find extent for this block */
2174 		down_read(&EXT4_I(inode)->i_data_sem);
2175 
2176 		path = ext4_find_extent(inode, block, &path, 0);
2177 		if (IS_ERR(path)) {
2178 			up_read(&EXT4_I(inode)->i_data_sem);
2179 			err = PTR_ERR(path);
2180 			path = NULL;
2181 			break;
2182 		}
2183 
2184 		depth = ext_depth(inode);
2185 		if (unlikely(path[depth].p_hdr == NULL)) {
2186 			up_read(&EXT4_I(inode)->i_data_sem);
2187 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2188 			err = -EFSCORRUPTED;
2189 			break;
2190 		}
2191 		ex = path[depth].p_ext;
2192 		next = ext4_ext_next_allocated_block(path);
2193 
2194 		flags = 0;
2195 		exists = 0;
2196 		if (!ex) {
2197 			/* there is no extent yet, so try to allocate
2198 			 * all requested space */
2199 			start = block;
2200 			end = block + num;
2201 		} else if (le32_to_cpu(ex->ee_block) > block) {
2202 			/* need to allocate space before found extent */
2203 			start = block;
2204 			end = le32_to_cpu(ex->ee_block);
2205 			if (block + num < end)
2206 				end = block + num;
2207 		} else if (block >= le32_to_cpu(ex->ee_block)
2208 					+ ext4_ext_get_actual_len(ex)) {
2209 			/* need to allocate space after found extent */
2210 			start = block;
2211 			end = block + num;
2212 			if (end >= next)
2213 				end = next;
2214 		} else if (block >= le32_to_cpu(ex->ee_block)) {
2215 			/*
2216 			 * some part of requested space is covered
2217 			 * by found extent
2218 			 */
2219 			start = block;
2220 			end = le32_to_cpu(ex->ee_block)
2221 				+ ext4_ext_get_actual_len(ex);
2222 			if (block + num < end)
2223 				end = block + num;
2224 			exists = 1;
2225 		} else {
2226 			BUG();
2227 		}
2228 		BUG_ON(end <= start);
2229 
2230 		if (!exists) {
2231 			es.es_lblk = start;
2232 			es.es_len = end - start;
2233 			es.es_pblk = 0;
2234 		} else {
2235 			es.es_lblk = le32_to_cpu(ex->ee_block);
2236 			es.es_len = ext4_ext_get_actual_len(ex);
2237 			es.es_pblk = ext4_ext_pblock(ex);
2238 			if (ext4_ext_is_unwritten(ex))
2239 				flags |= FIEMAP_EXTENT_UNWRITTEN;
2240 		}
2241 
2242 		/*
2243 		 * Find delayed extent and update es accordingly. We call
2244 		 * it even in !exists case to find out whether es is the
2245 		 * last existing extent or not.
2246 		 */
2247 		next_del = ext4_find_delayed_extent(inode, &es);
2248 		if (!exists && next_del) {
2249 			exists = 1;
2250 			flags |= (FIEMAP_EXTENT_DELALLOC |
2251 				  FIEMAP_EXTENT_UNKNOWN);
2252 		}
2253 		up_read(&EXT4_I(inode)->i_data_sem);
2254 
2255 		if (unlikely(es.es_len == 0)) {
2256 			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2257 			err = -EFSCORRUPTED;
2258 			break;
2259 		}
2260 
2261 		/*
2262 		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2263 		 * we need to check next == EXT_MAX_BLOCKS because it is
2264 		 * possible that an extent is with unwritten and delayed
2265 		 * status due to when an extent is delayed allocated and
2266 		 * is allocated by fallocate status tree will track both of
2267 		 * them in a extent.
2268 		 *
2269 		 * So we could return a unwritten and delayed extent, and
2270 		 * its block is equal to 'next'.
2271 		 */
2272 		if (next == next_del && next == EXT_MAX_BLOCKS) {
2273 			flags |= FIEMAP_EXTENT_LAST;
2274 			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2275 				     next != EXT_MAX_BLOCKS)) {
2276 				EXT4_ERROR_INODE(inode,
2277 						 "next extent == %u, next "
2278 						 "delalloc extent = %u",
2279 						 next, next_del);
2280 				err = -EFSCORRUPTED;
2281 				break;
2282 			}
2283 		}
2284 
2285 		if (exists) {
2286 			err = fiemap_fill_next_extent(fieinfo,
2287 				(__u64)es.es_lblk << blksize_bits,
2288 				(__u64)es.es_pblk << blksize_bits,
2289 				(__u64)es.es_len << blksize_bits,
2290 				flags);
2291 			if (err < 0)
2292 				break;
2293 			if (err == 1) {
2294 				err = 0;
2295 				break;
2296 			}
2297 		}
2298 
2299 		block = es.es_lblk + es.es_len;
2300 	}
2301 
2302 	ext4_ext_drop_refs(path);
2303 	kfree(path);
2304 	return err;
2305 }
2306 
2307 /*
2308  * ext4_ext_determine_hole - determine hole around given block
2309  * @inode:	inode we lookup in
2310  * @path:	path in extent tree to @lblk
2311  * @lblk:	pointer to logical block around which we want to determine hole
2312  *
2313  * Determine hole length (and start if easily possible) around given logical
2314  * block. We don't try too hard to find the beginning of the hole but @path
2315  * actually points to extent before @lblk, we provide it.
2316  *
2317  * The function returns the length of a hole starting at @lblk. We update @lblk
2318  * to the beginning of the hole if we managed to find it.
2319  */
2320 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode,
2321 					   struct ext4_ext_path *path,
2322 					   ext4_lblk_t *lblk)
2323 {
2324 	int depth = ext_depth(inode);
2325 	struct ext4_extent *ex;
2326 	ext4_lblk_t len;
2327 
2328 	ex = path[depth].p_ext;
2329 	if (ex == NULL) {
2330 		/* there is no extent yet, so gap is [0;-] */
2331 		*lblk = 0;
2332 		len = EXT_MAX_BLOCKS;
2333 	} else if (*lblk < le32_to_cpu(ex->ee_block)) {
2334 		len = le32_to_cpu(ex->ee_block) - *lblk;
2335 	} else if (*lblk >= le32_to_cpu(ex->ee_block)
2336 			+ ext4_ext_get_actual_len(ex)) {
2337 		ext4_lblk_t next;
2338 
2339 		*lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex);
2340 		next = ext4_ext_next_allocated_block(path);
2341 		BUG_ON(next == *lblk);
2342 		len = next - *lblk;
2343 	} else {
2344 		BUG();
2345 	}
2346 	return len;
2347 }
2348 
2349 /*
2350  * ext4_ext_put_gap_in_cache:
2351  * calculate boundaries of the gap that the requested block fits into
2352  * and cache this gap
2353  */
2354 static void
2355 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start,
2356 			  ext4_lblk_t hole_len)
2357 {
2358 	struct extent_status es;
2359 
2360 	ext4_es_find_delayed_extent_range(inode, hole_start,
2361 					  hole_start + hole_len - 1, &es);
2362 	if (es.es_len) {
2363 		/* There's delayed extent containing lblock? */
2364 		if (es.es_lblk <= hole_start)
2365 			return;
2366 		hole_len = min(es.es_lblk - hole_start, hole_len);
2367 	}
2368 	ext_debug(" -> %u:%u\n", hole_start, hole_len);
2369 	ext4_es_insert_extent(inode, hole_start, hole_len, ~0,
2370 			      EXTENT_STATUS_HOLE);
2371 }
2372 
2373 /*
2374  * ext4_ext_rm_idx:
2375  * removes index from the index block.
2376  */
2377 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2378 			struct ext4_ext_path *path, int depth)
2379 {
2380 	int err;
2381 	ext4_fsblk_t leaf;
2382 
2383 	/* free index block */
2384 	depth--;
2385 	path = path + depth;
2386 	leaf = ext4_idx_pblock(path->p_idx);
2387 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2388 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2389 		return -EFSCORRUPTED;
2390 	}
2391 	err = ext4_ext_get_access(handle, inode, path);
2392 	if (err)
2393 		return err;
2394 
2395 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2396 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2397 		len *= sizeof(struct ext4_extent_idx);
2398 		memmove(path->p_idx, path->p_idx + 1, len);
2399 	}
2400 
2401 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2402 	err = ext4_ext_dirty(handle, inode, path);
2403 	if (err)
2404 		return err;
2405 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2406 	trace_ext4_ext_rm_idx(inode, leaf);
2407 
2408 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2409 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2410 
2411 	while (--depth >= 0) {
2412 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2413 			break;
2414 		path--;
2415 		err = ext4_ext_get_access(handle, inode, path);
2416 		if (err)
2417 			break;
2418 		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2419 		err = ext4_ext_dirty(handle, inode, path);
2420 		if (err)
2421 			break;
2422 	}
2423 	return err;
2424 }
2425 
2426 /*
2427  * ext4_ext_calc_credits_for_single_extent:
2428  * This routine returns max. credits that needed to insert an extent
2429  * to the extent tree.
2430  * When pass the actual path, the caller should calculate credits
2431  * under i_data_sem.
2432  */
2433 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2434 						struct ext4_ext_path *path)
2435 {
2436 	if (path) {
2437 		int depth = ext_depth(inode);
2438 		int ret = 0;
2439 
2440 		/* probably there is space in leaf? */
2441 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2442 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2443 
2444 			/*
2445 			 *  There are some space in the leaf tree, no
2446 			 *  need to account for leaf block credit
2447 			 *
2448 			 *  bitmaps and block group descriptor blocks
2449 			 *  and other metadata blocks still need to be
2450 			 *  accounted.
2451 			 */
2452 			/* 1 bitmap, 1 block group descriptor */
2453 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2454 			return ret;
2455 		}
2456 	}
2457 
2458 	return ext4_chunk_trans_blocks(inode, nrblocks);
2459 }
2460 
2461 /*
2462  * How many index/leaf blocks need to change/allocate to add @extents extents?
2463  *
2464  * If we add a single extent, then in the worse case, each tree level
2465  * index/leaf need to be changed in case of the tree split.
2466  *
2467  * If more extents are inserted, they could cause the whole tree split more
2468  * than once, but this is really rare.
2469  */
2470 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2471 {
2472 	int index;
2473 	int depth;
2474 
2475 	/* If we are converting the inline data, only one is needed here. */
2476 	if (ext4_has_inline_data(inode))
2477 		return 1;
2478 
2479 	depth = ext_depth(inode);
2480 
2481 	if (extents <= 1)
2482 		index = depth * 2;
2483 	else
2484 		index = depth * 3;
2485 
2486 	return index;
2487 }
2488 
2489 static inline int get_default_free_blocks_flags(struct inode *inode)
2490 {
2491 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2492 		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2493 	else if (ext4_should_journal_data(inode))
2494 		return EXT4_FREE_BLOCKS_FORGET;
2495 	return 0;
2496 }
2497 
2498 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2499 			      struct ext4_extent *ex,
2500 			      long long *partial_cluster,
2501 			      ext4_lblk_t from, ext4_lblk_t to)
2502 {
2503 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2504 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
2505 	ext4_fsblk_t pblk;
2506 	int flags = get_default_free_blocks_flags(inode);
2507 
2508 	/*
2509 	 * For bigalloc file systems, we never free a partial cluster
2510 	 * at the beginning of the extent.  Instead, we make a note
2511 	 * that we tried freeing the cluster, and check to see if we
2512 	 * need to free it on a subsequent call to ext4_remove_blocks,
2513 	 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space.
2514 	 */
2515 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2516 
2517 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2518 	/*
2519 	 * If we have a partial cluster, and it's different from the
2520 	 * cluster of the last block, we need to explicitly free the
2521 	 * partial cluster here.
2522 	 */
2523 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2524 	if (*partial_cluster > 0 &&
2525 	    *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2526 		ext4_free_blocks(handle, inode, NULL,
2527 				 EXT4_C2B(sbi, *partial_cluster),
2528 				 sbi->s_cluster_ratio, flags);
2529 		*partial_cluster = 0;
2530 	}
2531 
2532 #ifdef EXTENTS_STATS
2533 	{
2534 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2535 		spin_lock(&sbi->s_ext_stats_lock);
2536 		sbi->s_ext_blocks += ee_len;
2537 		sbi->s_ext_extents++;
2538 		if (ee_len < sbi->s_ext_min)
2539 			sbi->s_ext_min = ee_len;
2540 		if (ee_len > sbi->s_ext_max)
2541 			sbi->s_ext_max = ee_len;
2542 		if (ext_depth(inode) > sbi->s_depth_max)
2543 			sbi->s_depth_max = ext_depth(inode);
2544 		spin_unlock(&sbi->s_ext_stats_lock);
2545 	}
2546 #endif
2547 	if (from >= le32_to_cpu(ex->ee_block)
2548 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2549 		/* tail removal */
2550 		ext4_lblk_t num;
2551 		long long first_cluster;
2552 
2553 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2554 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2555 		/*
2556 		 * Usually we want to free partial cluster at the end of the
2557 		 * extent, except for the situation when the cluster is still
2558 		 * used by any other extent (partial_cluster is negative).
2559 		 */
2560 		if (*partial_cluster < 0 &&
2561 		    *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1))
2562 			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2563 
2564 		ext_debug("free last %u blocks starting %llu partial %lld\n",
2565 			  num, pblk, *partial_cluster);
2566 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2567 		/*
2568 		 * If the block range to be freed didn't start at the
2569 		 * beginning of a cluster, and we removed the entire
2570 		 * extent and the cluster is not used by any other extent,
2571 		 * save the partial cluster here, since we might need to
2572 		 * delete if we determine that the truncate or punch hole
2573 		 * operation has removed all of the blocks in the cluster.
2574 		 * If that cluster is used by another extent, preserve its
2575 		 * negative value so it isn't freed later on.
2576 		 *
2577 		 * If the whole extent wasn't freed, we've reached the
2578 		 * start of the truncated/punched region and have finished
2579 		 * removing blocks.  If there's a partial cluster here it's
2580 		 * shared with the remainder of the extent and is no longer
2581 		 * a candidate for removal.
2582 		 */
2583 		if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) {
2584 			first_cluster = (long long) EXT4_B2C(sbi, pblk);
2585 			if (first_cluster != -*partial_cluster)
2586 				*partial_cluster = first_cluster;
2587 		} else {
2588 			*partial_cluster = 0;
2589 		}
2590 	} else
2591 		ext4_error(sbi->s_sb, "strange request: removal(2) "
2592 			   "%u-%u from %u:%u",
2593 			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2594 	return 0;
2595 }
2596 
2597 
2598 /*
2599  * ext4_ext_rm_leaf() Removes the extents associated with the
2600  * blocks appearing between "start" and "end".  Both "start"
2601  * and "end" must appear in the same extent or EIO is returned.
2602  *
2603  * @handle: The journal handle
2604  * @inode:  The files inode
2605  * @path:   The path to the leaf
2606  * @partial_cluster: The cluster which we'll have to free if all extents
2607  *                   has been released from it.  However, if this value is
2608  *                   negative, it's a cluster just to the right of the
2609  *                   punched region and it must not be freed.
2610  * @start:  The first block to remove
2611  * @end:   The last block to remove
2612  */
2613 static int
2614 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2615 		 struct ext4_ext_path *path,
2616 		 long long *partial_cluster,
2617 		 ext4_lblk_t start, ext4_lblk_t end)
2618 {
2619 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2620 	int err = 0, correct_index = 0;
2621 	int depth = ext_depth(inode), credits;
2622 	struct ext4_extent_header *eh;
2623 	ext4_lblk_t a, b;
2624 	unsigned num;
2625 	ext4_lblk_t ex_ee_block;
2626 	unsigned short ex_ee_len;
2627 	unsigned unwritten = 0;
2628 	struct ext4_extent *ex;
2629 	ext4_fsblk_t pblk;
2630 
2631 	/* the header must be checked already in ext4_ext_remove_space() */
2632 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2633 	if (!path[depth].p_hdr)
2634 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2635 	eh = path[depth].p_hdr;
2636 	if (unlikely(path[depth].p_hdr == NULL)) {
2637 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2638 		return -EFSCORRUPTED;
2639 	}
2640 	/* find where to start removing */
2641 	ex = path[depth].p_ext;
2642 	if (!ex)
2643 		ex = EXT_LAST_EXTENT(eh);
2644 
2645 	ex_ee_block = le32_to_cpu(ex->ee_block);
2646 	ex_ee_len = ext4_ext_get_actual_len(ex);
2647 
2648 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2649 
2650 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2651 			ex_ee_block + ex_ee_len > start) {
2652 
2653 		if (ext4_ext_is_unwritten(ex))
2654 			unwritten = 1;
2655 		else
2656 			unwritten = 0;
2657 
2658 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2659 			  unwritten, ex_ee_len);
2660 		path[depth].p_ext = ex;
2661 
2662 		a = ex_ee_block > start ? ex_ee_block : start;
2663 		b = ex_ee_block+ex_ee_len - 1 < end ?
2664 			ex_ee_block+ex_ee_len - 1 : end;
2665 
2666 		ext_debug("  border %u:%u\n", a, b);
2667 
2668 		/* If this extent is beyond the end of the hole, skip it */
2669 		if (end < ex_ee_block) {
2670 			/*
2671 			 * We're going to skip this extent and move to another,
2672 			 * so note that its first cluster is in use to avoid
2673 			 * freeing it when removing blocks.  Eventually, the
2674 			 * right edge of the truncated/punched region will
2675 			 * be just to the left.
2676 			 */
2677 			if (sbi->s_cluster_ratio > 1) {
2678 				pblk = ext4_ext_pblock(ex);
2679 				*partial_cluster =
2680 					-(long long) EXT4_B2C(sbi, pblk);
2681 			}
2682 			ex--;
2683 			ex_ee_block = le32_to_cpu(ex->ee_block);
2684 			ex_ee_len = ext4_ext_get_actual_len(ex);
2685 			continue;
2686 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2687 			EXT4_ERROR_INODE(inode,
2688 					 "can not handle truncate %u:%u "
2689 					 "on extent %u:%u",
2690 					 start, end, ex_ee_block,
2691 					 ex_ee_block + ex_ee_len - 1);
2692 			err = -EFSCORRUPTED;
2693 			goto out;
2694 		} else if (a != ex_ee_block) {
2695 			/* remove tail of the extent */
2696 			num = a - ex_ee_block;
2697 		} else {
2698 			/* remove whole extent: excellent! */
2699 			num = 0;
2700 		}
2701 		/*
2702 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2703 		 * descriptor) for each block group; assume two block
2704 		 * groups plus ex_ee_len/blocks_per_block_group for
2705 		 * the worst case
2706 		 */
2707 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2708 		if (ex == EXT_FIRST_EXTENT(eh)) {
2709 			correct_index = 1;
2710 			credits += (ext_depth(inode)) + 1;
2711 		}
2712 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2713 
2714 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2715 		if (err)
2716 			goto out;
2717 
2718 		err = ext4_ext_get_access(handle, inode, path + depth);
2719 		if (err)
2720 			goto out;
2721 
2722 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2723 					 a, b);
2724 		if (err)
2725 			goto out;
2726 
2727 		if (num == 0)
2728 			/* this extent is removed; mark slot entirely unused */
2729 			ext4_ext_store_pblock(ex, 0);
2730 
2731 		ex->ee_len = cpu_to_le16(num);
2732 		/*
2733 		 * Do not mark unwritten if all the blocks in the
2734 		 * extent have been removed.
2735 		 */
2736 		if (unwritten && num)
2737 			ext4_ext_mark_unwritten(ex);
2738 		/*
2739 		 * If the extent was completely released,
2740 		 * we need to remove it from the leaf
2741 		 */
2742 		if (num == 0) {
2743 			if (end != EXT_MAX_BLOCKS - 1) {
2744 				/*
2745 				 * For hole punching, we need to scoot all the
2746 				 * extents up when an extent is removed so that
2747 				 * we dont have blank extents in the middle
2748 				 */
2749 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2750 					sizeof(struct ext4_extent));
2751 
2752 				/* Now get rid of the one at the end */
2753 				memset(EXT_LAST_EXTENT(eh), 0,
2754 					sizeof(struct ext4_extent));
2755 			}
2756 			le16_add_cpu(&eh->eh_entries, -1);
2757 		}
2758 
2759 		err = ext4_ext_dirty(handle, inode, path + depth);
2760 		if (err)
2761 			goto out;
2762 
2763 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2764 				ext4_ext_pblock(ex));
2765 		ex--;
2766 		ex_ee_block = le32_to_cpu(ex->ee_block);
2767 		ex_ee_len = ext4_ext_get_actual_len(ex);
2768 	}
2769 
2770 	if (correct_index && eh->eh_entries)
2771 		err = ext4_ext_correct_indexes(handle, inode, path);
2772 
2773 	/*
2774 	 * If there's a partial cluster and at least one extent remains in
2775 	 * the leaf, free the partial cluster if it isn't shared with the
2776 	 * current extent.  If it is shared with the current extent
2777 	 * we zero partial_cluster because we've reached the start of the
2778 	 * truncated/punched region and we're done removing blocks.
2779 	 */
2780 	if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) {
2781 		pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2782 		if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2783 			ext4_free_blocks(handle, inode, NULL,
2784 					 EXT4_C2B(sbi, *partial_cluster),
2785 					 sbi->s_cluster_ratio,
2786 					 get_default_free_blocks_flags(inode));
2787 		}
2788 		*partial_cluster = 0;
2789 	}
2790 
2791 	/* if this leaf is free, then we should
2792 	 * remove it from index block above */
2793 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2794 		err = ext4_ext_rm_idx(handle, inode, path, depth);
2795 
2796 out:
2797 	return err;
2798 }
2799 
2800 /*
2801  * ext4_ext_more_to_rm:
2802  * returns 1 if current index has to be freed (even partial)
2803  */
2804 static int
2805 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2806 {
2807 	BUG_ON(path->p_idx == NULL);
2808 
2809 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2810 		return 0;
2811 
2812 	/*
2813 	 * if truncate on deeper level happened, it wasn't partial,
2814 	 * so we have to consider current index for truncation
2815 	 */
2816 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2817 		return 0;
2818 	return 1;
2819 }
2820 
2821 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2822 			  ext4_lblk_t end)
2823 {
2824 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2825 	int depth = ext_depth(inode);
2826 	struct ext4_ext_path *path = NULL;
2827 	long long partial_cluster = 0;
2828 	handle_t *handle;
2829 	int i = 0, err = 0;
2830 
2831 	ext_debug("truncate since %u to %u\n", start, end);
2832 
2833 	/* probably first extent we're gonna free will be last in block */
2834 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2835 	if (IS_ERR(handle))
2836 		return PTR_ERR(handle);
2837 
2838 again:
2839 	trace_ext4_ext_remove_space(inode, start, end, depth);
2840 
2841 	/*
2842 	 * Check if we are removing extents inside the extent tree. If that
2843 	 * is the case, we are going to punch a hole inside the extent tree
2844 	 * so we have to check whether we need to split the extent covering
2845 	 * the last block to remove so we can easily remove the part of it
2846 	 * in ext4_ext_rm_leaf().
2847 	 */
2848 	if (end < EXT_MAX_BLOCKS - 1) {
2849 		struct ext4_extent *ex;
2850 		ext4_lblk_t ee_block, ex_end, lblk;
2851 		ext4_fsblk_t pblk;
2852 
2853 		/* find extent for or closest extent to this block */
2854 		path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2855 		if (IS_ERR(path)) {
2856 			ext4_journal_stop(handle);
2857 			return PTR_ERR(path);
2858 		}
2859 		depth = ext_depth(inode);
2860 		/* Leaf not may not exist only if inode has no blocks at all */
2861 		ex = path[depth].p_ext;
2862 		if (!ex) {
2863 			if (depth) {
2864 				EXT4_ERROR_INODE(inode,
2865 						 "path[%d].p_hdr == NULL",
2866 						 depth);
2867 				err = -EFSCORRUPTED;
2868 			}
2869 			goto out;
2870 		}
2871 
2872 		ee_block = le32_to_cpu(ex->ee_block);
2873 		ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1;
2874 
2875 		/*
2876 		 * See if the last block is inside the extent, if so split
2877 		 * the extent at 'end' block so we can easily remove the
2878 		 * tail of the first part of the split extent in
2879 		 * ext4_ext_rm_leaf().
2880 		 */
2881 		if (end >= ee_block && end < ex_end) {
2882 
2883 			/*
2884 			 * If we're going to split the extent, note that
2885 			 * the cluster containing the block after 'end' is
2886 			 * in use to avoid freeing it when removing blocks.
2887 			 */
2888 			if (sbi->s_cluster_ratio > 1) {
2889 				pblk = ext4_ext_pblock(ex) + end - ee_block + 2;
2890 				partial_cluster =
2891 					-(long long) EXT4_B2C(sbi, pblk);
2892 			}
2893 
2894 			/*
2895 			 * Split the extent in two so that 'end' is the last
2896 			 * block in the first new extent. Also we should not
2897 			 * fail removing space due to ENOSPC so try to use
2898 			 * reserved block if that happens.
2899 			 */
2900 			err = ext4_force_split_extent_at(handle, inode, &path,
2901 							 end + 1, 1);
2902 			if (err < 0)
2903 				goto out;
2904 
2905 		} else if (sbi->s_cluster_ratio > 1 && end >= ex_end) {
2906 			/*
2907 			 * If there's an extent to the right its first cluster
2908 			 * contains the immediate right boundary of the
2909 			 * truncated/punched region.  Set partial_cluster to
2910 			 * its negative value so it won't be freed if shared
2911 			 * with the current extent.  The end < ee_block case
2912 			 * is handled in ext4_ext_rm_leaf().
2913 			 */
2914 			lblk = ex_end + 1;
2915 			err = ext4_ext_search_right(inode, path, &lblk, &pblk,
2916 						    &ex);
2917 			if (err)
2918 				goto out;
2919 			if (pblk)
2920 				partial_cluster =
2921 					-(long long) EXT4_B2C(sbi, pblk);
2922 		}
2923 	}
2924 	/*
2925 	 * We start scanning from right side, freeing all the blocks
2926 	 * after i_size and walking into the tree depth-wise.
2927 	 */
2928 	depth = ext_depth(inode);
2929 	if (path) {
2930 		int k = i = depth;
2931 		while (--k > 0)
2932 			path[k].p_block =
2933 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2934 	} else {
2935 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2936 			       GFP_NOFS);
2937 		if (path == NULL) {
2938 			ext4_journal_stop(handle);
2939 			return -ENOMEM;
2940 		}
2941 		path[0].p_maxdepth = path[0].p_depth = depth;
2942 		path[0].p_hdr = ext_inode_hdr(inode);
2943 		i = 0;
2944 
2945 		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2946 			err = -EFSCORRUPTED;
2947 			goto out;
2948 		}
2949 	}
2950 	err = 0;
2951 
2952 	while (i >= 0 && err == 0) {
2953 		if (i == depth) {
2954 			/* this is leaf block */
2955 			err = ext4_ext_rm_leaf(handle, inode, path,
2956 					       &partial_cluster, start,
2957 					       end);
2958 			/* root level has p_bh == NULL, brelse() eats this */
2959 			brelse(path[i].p_bh);
2960 			path[i].p_bh = NULL;
2961 			i--;
2962 			continue;
2963 		}
2964 
2965 		/* this is index block */
2966 		if (!path[i].p_hdr) {
2967 			ext_debug("initialize header\n");
2968 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2969 		}
2970 
2971 		if (!path[i].p_idx) {
2972 			/* this level hasn't been touched yet */
2973 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2974 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2975 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2976 				  path[i].p_hdr,
2977 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2978 		} else {
2979 			/* we were already here, see at next index */
2980 			path[i].p_idx--;
2981 		}
2982 
2983 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2984 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2985 				path[i].p_idx);
2986 		if (ext4_ext_more_to_rm(path + i)) {
2987 			struct buffer_head *bh;
2988 			/* go to the next level */
2989 			ext_debug("move to level %d (block %llu)\n",
2990 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2991 			memset(path + i + 1, 0, sizeof(*path));
2992 			bh = read_extent_tree_block(inode,
2993 				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2994 				EXT4_EX_NOCACHE);
2995 			if (IS_ERR(bh)) {
2996 				/* should we reset i_size? */
2997 				err = PTR_ERR(bh);
2998 				break;
2999 			}
3000 			/* Yield here to deal with large extent trees.
3001 			 * Should be a no-op if we did IO above. */
3002 			cond_resched();
3003 			if (WARN_ON(i + 1 > depth)) {
3004 				err = -EFSCORRUPTED;
3005 				break;
3006 			}
3007 			path[i + 1].p_bh = bh;
3008 
3009 			/* save actual number of indexes since this
3010 			 * number is changed at the next iteration */
3011 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
3012 			i++;
3013 		} else {
3014 			/* we finished processing this index, go up */
3015 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
3016 				/* index is empty, remove it;
3017 				 * handle must be already prepared by the
3018 				 * truncatei_leaf() */
3019 				err = ext4_ext_rm_idx(handle, inode, path, i);
3020 			}
3021 			/* root level has p_bh == NULL, brelse() eats this */
3022 			brelse(path[i].p_bh);
3023 			path[i].p_bh = NULL;
3024 			i--;
3025 			ext_debug("return to level %d\n", i);
3026 		}
3027 	}
3028 
3029 	trace_ext4_ext_remove_space_done(inode, start, end, depth,
3030 			partial_cluster, path->p_hdr->eh_entries);
3031 
3032 	/*
3033 	 * If we still have something in the partial cluster and we have removed
3034 	 * even the first extent, then we should free the blocks in the partial
3035 	 * cluster as well.  (This code will only run when there are no leaves
3036 	 * to the immediate left of the truncated/punched region.)
3037 	 */
3038 	if (partial_cluster > 0 && err == 0) {
3039 		/* don't zero partial_cluster since it's not used afterwards */
3040 		ext4_free_blocks(handle, inode, NULL,
3041 				 EXT4_C2B(sbi, partial_cluster),
3042 				 sbi->s_cluster_ratio,
3043 				 get_default_free_blocks_flags(inode));
3044 	}
3045 
3046 	/* TODO: flexible tree reduction should be here */
3047 	if (path->p_hdr->eh_entries == 0) {
3048 		/*
3049 		 * truncate to zero freed all the tree,
3050 		 * so we need to correct eh_depth
3051 		 */
3052 		err = ext4_ext_get_access(handle, inode, path);
3053 		if (err == 0) {
3054 			ext_inode_hdr(inode)->eh_depth = 0;
3055 			ext_inode_hdr(inode)->eh_max =
3056 				cpu_to_le16(ext4_ext_space_root(inode, 0));
3057 			err = ext4_ext_dirty(handle, inode, path);
3058 		}
3059 	}
3060 out:
3061 	ext4_ext_drop_refs(path);
3062 	kfree(path);
3063 	path = NULL;
3064 	if (err == -EAGAIN)
3065 		goto again;
3066 	ext4_journal_stop(handle);
3067 
3068 	return err;
3069 }
3070 
3071 /*
3072  * called at mount time
3073  */
3074 void ext4_ext_init(struct super_block *sb)
3075 {
3076 	/*
3077 	 * possible initialization would be here
3078 	 */
3079 
3080 	if (ext4_has_feature_extents(sb)) {
3081 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3082 		printk(KERN_INFO "EXT4-fs: file extents enabled"
3083 #ifdef AGGRESSIVE_TEST
3084 		       ", aggressive tests"
3085 #endif
3086 #ifdef CHECK_BINSEARCH
3087 		       ", check binsearch"
3088 #endif
3089 #ifdef EXTENTS_STATS
3090 		       ", stats"
3091 #endif
3092 		       "\n");
3093 #endif
3094 #ifdef EXTENTS_STATS
3095 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3096 		EXT4_SB(sb)->s_ext_min = 1 << 30;
3097 		EXT4_SB(sb)->s_ext_max = 0;
3098 #endif
3099 	}
3100 }
3101 
3102 /*
3103  * called at umount time
3104  */
3105 void ext4_ext_release(struct super_block *sb)
3106 {
3107 	if (!ext4_has_feature_extents(sb))
3108 		return;
3109 
3110 #ifdef EXTENTS_STATS
3111 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3112 		struct ext4_sb_info *sbi = EXT4_SB(sb);
3113 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3114 			sbi->s_ext_blocks, sbi->s_ext_extents,
3115 			sbi->s_ext_blocks / sbi->s_ext_extents);
3116 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3117 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3118 	}
3119 #endif
3120 }
3121 
3122 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3123 {
3124 	ext4_lblk_t  ee_block;
3125 	ext4_fsblk_t ee_pblock;
3126 	unsigned int ee_len;
3127 
3128 	ee_block  = le32_to_cpu(ex->ee_block);
3129 	ee_len    = ext4_ext_get_actual_len(ex);
3130 	ee_pblock = ext4_ext_pblock(ex);
3131 
3132 	if (ee_len == 0)
3133 		return 0;
3134 
3135 	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3136 				     EXTENT_STATUS_WRITTEN);
3137 }
3138 
3139 /* FIXME!! we need to try to merge to left or right after zero-out  */
3140 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3141 {
3142 	ext4_fsblk_t ee_pblock;
3143 	unsigned int ee_len;
3144 
3145 	ee_len    = ext4_ext_get_actual_len(ex);
3146 	ee_pblock = ext4_ext_pblock(ex);
3147 	return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock,
3148 				  ee_len);
3149 }
3150 
3151 /*
3152  * ext4_split_extent_at() splits an extent at given block.
3153  *
3154  * @handle: the journal handle
3155  * @inode: the file inode
3156  * @path: the path to the extent
3157  * @split: the logical block where the extent is splitted.
3158  * @split_flags: indicates if the extent could be zeroout if split fails, and
3159  *		 the states(init or unwritten) of new extents.
3160  * @flags: flags used to insert new extent to extent tree.
3161  *
3162  *
3163  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3164  * of which are deterimined by split_flag.
3165  *
3166  * There are two cases:
3167  *  a> the extent are splitted into two extent.
3168  *  b> split is not needed, and just mark the extent.
3169  *
3170  * return 0 on success.
3171  */
3172 static int ext4_split_extent_at(handle_t *handle,
3173 			     struct inode *inode,
3174 			     struct ext4_ext_path **ppath,
3175 			     ext4_lblk_t split,
3176 			     int split_flag,
3177 			     int flags)
3178 {
3179 	struct ext4_ext_path *path = *ppath;
3180 	ext4_fsblk_t newblock;
3181 	ext4_lblk_t ee_block;
3182 	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3183 	struct ext4_extent *ex2 = NULL;
3184 	unsigned int ee_len, depth;
3185 	int err = 0;
3186 
3187 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3188 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3189 
3190 	ext_debug("ext4_split_extents_at: inode %lu, logical"
3191 		"block %llu\n", inode->i_ino, (unsigned long long)split);
3192 
3193 	ext4_ext_show_leaf(inode, path);
3194 
3195 	depth = ext_depth(inode);
3196 	ex = path[depth].p_ext;
3197 	ee_block = le32_to_cpu(ex->ee_block);
3198 	ee_len = ext4_ext_get_actual_len(ex);
3199 	newblock = split - ee_block + ext4_ext_pblock(ex);
3200 
3201 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3202 	BUG_ON(!ext4_ext_is_unwritten(ex) &&
3203 	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3204 			     EXT4_EXT_MARK_UNWRIT1 |
3205 			     EXT4_EXT_MARK_UNWRIT2));
3206 
3207 	err = ext4_ext_get_access(handle, inode, path + depth);
3208 	if (err)
3209 		goto out;
3210 
3211 	if (split == ee_block) {
3212 		/*
3213 		 * case b: block @split is the block that the extent begins with
3214 		 * then we just change the state of the extent, and splitting
3215 		 * is not needed.
3216 		 */
3217 		if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3218 			ext4_ext_mark_unwritten(ex);
3219 		else
3220 			ext4_ext_mark_initialized(ex);
3221 
3222 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3223 			ext4_ext_try_to_merge(handle, inode, path, ex);
3224 
3225 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3226 		goto out;
3227 	}
3228 
3229 	/* case a */
3230 	memcpy(&orig_ex, ex, sizeof(orig_ex));
3231 	ex->ee_len = cpu_to_le16(split - ee_block);
3232 	if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3233 		ext4_ext_mark_unwritten(ex);
3234 
3235 	/*
3236 	 * path may lead to new leaf, not to original leaf any more
3237 	 * after ext4_ext_insert_extent() returns,
3238 	 */
3239 	err = ext4_ext_dirty(handle, inode, path + depth);
3240 	if (err)
3241 		goto fix_extent_len;
3242 
3243 	ex2 = &newex;
3244 	ex2->ee_block = cpu_to_le32(split);
3245 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3246 	ext4_ext_store_pblock(ex2, newblock);
3247 	if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3248 		ext4_ext_mark_unwritten(ex2);
3249 
3250 	err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3251 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3252 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3253 			if (split_flag & EXT4_EXT_DATA_VALID1) {
3254 				err = ext4_ext_zeroout(inode, ex2);
3255 				zero_ex.ee_block = ex2->ee_block;
3256 				zero_ex.ee_len = cpu_to_le16(
3257 						ext4_ext_get_actual_len(ex2));
3258 				ext4_ext_store_pblock(&zero_ex,
3259 						      ext4_ext_pblock(ex2));
3260 			} else {
3261 				err = ext4_ext_zeroout(inode, ex);
3262 				zero_ex.ee_block = ex->ee_block;
3263 				zero_ex.ee_len = cpu_to_le16(
3264 						ext4_ext_get_actual_len(ex));
3265 				ext4_ext_store_pblock(&zero_ex,
3266 						      ext4_ext_pblock(ex));
3267 			}
3268 		} else {
3269 			err = ext4_ext_zeroout(inode, &orig_ex);
3270 			zero_ex.ee_block = orig_ex.ee_block;
3271 			zero_ex.ee_len = cpu_to_le16(
3272 						ext4_ext_get_actual_len(&orig_ex));
3273 			ext4_ext_store_pblock(&zero_ex,
3274 					      ext4_ext_pblock(&orig_ex));
3275 		}
3276 
3277 		if (err)
3278 			goto fix_extent_len;
3279 		/* update the extent length and mark as initialized */
3280 		ex->ee_len = cpu_to_le16(ee_len);
3281 		ext4_ext_try_to_merge(handle, inode, path, ex);
3282 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3283 		if (err)
3284 			goto fix_extent_len;
3285 
3286 		/* update extent status tree */
3287 		err = ext4_zeroout_es(inode, &zero_ex);
3288 
3289 		goto out;
3290 	} else if (err)
3291 		goto fix_extent_len;
3292 
3293 out:
3294 	ext4_ext_show_leaf(inode, path);
3295 	return err;
3296 
3297 fix_extent_len:
3298 	ex->ee_len = orig_ex.ee_len;
3299 	ext4_ext_dirty(handle, inode, path + path->p_depth);
3300 	return err;
3301 }
3302 
3303 /*
3304  * ext4_split_extents() splits an extent and mark extent which is covered
3305  * by @map as split_flags indicates
3306  *
3307  * It may result in splitting the extent into multiple extents (up to three)
3308  * There are three possibilities:
3309  *   a> There is no split required
3310  *   b> Splits in two extents: Split is happening at either end of the extent
3311  *   c> Splits in three extents: Somone is splitting in middle of the extent
3312  *
3313  */
3314 static int ext4_split_extent(handle_t *handle,
3315 			      struct inode *inode,
3316 			      struct ext4_ext_path **ppath,
3317 			      struct ext4_map_blocks *map,
3318 			      int split_flag,
3319 			      int flags)
3320 {
3321 	struct ext4_ext_path *path = *ppath;
3322 	ext4_lblk_t ee_block;
3323 	struct ext4_extent *ex;
3324 	unsigned int ee_len, depth;
3325 	int err = 0;
3326 	int unwritten;
3327 	int split_flag1, flags1;
3328 	int allocated = map->m_len;
3329 
3330 	depth = ext_depth(inode);
3331 	ex = path[depth].p_ext;
3332 	ee_block = le32_to_cpu(ex->ee_block);
3333 	ee_len = ext4_ext_get_actual_len(ex);
3334 	unwritten = ext4_ext_is_unwritten(ex);
3335 
3336 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3337 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3338 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3339 		if (unwritten)
3340 			split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3341 				       EXT4_EXT_MARK_UNWRIT2;
3342 		if (split_flag & EXT4_EXT_DATA_VALID2)
3343 			split_flag1 |= EXT4_EXT_DATA_VALID1;
3344 		err = ext4_split_extent_at(handle, inode, ppath,
3345 				map->m_lblk + map->m_len, split_flag1, flags1);
3346 		if (err)
3347 			goto out;
3348 	} else {
3349 		allocated = ee_len - (map->m_lblk - ee_block);
3350 	}
3351 	/*
3352 	 * Update path is required because previous ext4_split_extent_at() may
3353 	 * result in split of original leaf or extent zeroout.
3354 	 */
3355 	path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3356 	if (IS_ERR(path))
3357 		return PTR_ERR(path);
3358 	depth = ext_depth(inode);
3359 	ex = path[depth].p_ext;
3360 	if (!ex) {
3361 		EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3362 				 (unsigned long) map->m_lblk);
3363 		return -EFSCORRUPTED;
3364 	}
3365 	unwritten = ext4_ext_is_unwritten(ex);
3366 	split_flag1 = 0;
3367 
3368 	if (map->m_lblk >= ee_block) {
3369 		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3370 		if (unwritten) {
3371 			split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3372 			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3373 						     EXT4_EXT_MARK_UNWRIT2);
3374 		}
3375 		err = ext4_split_extent_at(handle, inode, ppath,
3376 				map->m_lblk, split_flag1, flags);
3377 		if (err)
3378 			goto out;
3379 	}
3380 
3381 	ext4_ext_show_leaf(inode, path);
3382 out:
3383 	return err ? err : allocated;
3384 }
3385 
3386 /*
3387  * This function is called by ext4_ext_map_blocks() if someone tries to write
3388  * to an unwritten extent. It may result in splitting the unwritten
3389  * extent into multiple extents (up to three - one initialized and two
3390  * unwritten).
3391  * There are three possibilities:
3392  *   a> There is no split required: Entire extent should be initialized
3393  *   b> Splits in two extents: Write is happening at either end of the extent
3394  *   c> Splits in three extents: Somone is writing in middle of the extent
3395  *
3396  * Pre-conditions:
3397  *  - The extent pointed to by 'path' is unwritten.
3398  *  - The extent pointed to by 'path' contains a superset
3399  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3400  *
3401  * Post-conditions on success:
3402  *  - the returned value is the number of blocks beyond map->l_lblk
3403  *    that are allocated and initialized.
3404  *    It is guaranteed to be >= map->m_len.
3405  */
3406 static int ext4_ext_convert_to_initialized(handle_t *handle,
3407 					   struct inode *inode,
3408 					   struct ext4_map_blocks *map,
3409 					   struct ext4_ext_path **ppath,
3410 					   int flags)
3411 {
3412 	struct ext4_ext_path *path = *ppath;
3413 	struct ext4_sb_info *sbi;
3414 	struct ext4_extent_header *eh;
3415 	struct ext4_map_blocks split_map;
3416 	struct ext4_extent zero_ex;
3417 	struct ext4_extent *ex, *abut_ex;
3418 	ext4_lblk_t ee_block, eof_block;
3419 	unsigned int ee_len, depth, map_len = map->m_len;
3420 	int allocated = 0, max_zeroout = 0;
3421 	int err = 0;
3422 	int split_flag = 0;
3423 
3424 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3425 		"block %llu, max_blocks %u\n", inode->i_ino,
3426 		(unsigned long long)map->m_lblk, map_len);
3427 
3428 	sbi = EXT4_SB(inode->i_sb);
3429 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3430 		inode->i_sb->s_blocksize_bits;
3431 	if (eof_block < map->m_lblk + map_len)
3432 		eof_block = map->m_lblk + map_len;
3433 
3434 	depth = ext_depth(inode);
3435 	eh = path[depth].p_hdr;
3436 	ex = path[depth].p_ext;
3437 	ee_block = le32_to_cpu(ex->ee_block);
3438 	ee_len = ext4_ext_get_actual_len(ex);
3439 	zero_ex.ee_len = 0;
3440 
3441 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3442 
3443 	/* Pre-conditions */
3444 	BUG_ON(!ext4_ext_is_unwritten(ex));
3445 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3446 
3447 	/*
3448 	 * Attempt to transfer newly initialized blocks from the currently
3449 	 * unwritten extent to its neighbor. This is much cheaper
3450 	 * than an insertion followed by a merge as those involve costly
3451 	 * memmove() calls. Transferring to the left is the common case in
3452 	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3453 	 * followed by append writes.
3454 	 *
3455 	 * Limitations of the current logic:
3456 	 *  - L1: we do not deal with writes covering the whole extent.
3457 	 *    This would require removing the extent if the transfer
3458 	 *    is possible.
3459 	 *  - L2: we only attempt to merge with an extent stored in the
3460 	 *    same extent tree node.
3461 	 */
3462 	if ((map->m_lblk == ee_block) &&
3463 		/* See if we can merge left */
3464 		(map_len < ee_len) &&		/*L1*/
3465 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3466 		ext4_lblk_t prev_lblk;
3467 		ext4_fsblk_t prev_pblk, ee_pblk;
3468 		unsigned int prev_len;
3469 
3470 		abut_ex = ex - 1;
3471 		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3472 		prev_len = ext4_ext_get_actual_len(abut_ex);
3473 		prev_pblk = ext4_ext_pblock(abut_ex);
3474 		ee_pblk = ext4_ext_pblock(ex);
3475 
3476 		/*
3477 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3478 		 * upon those conditions:
3479 		 * - C1: abut_ex is initialized,
3480 		 * - C2: abut_ex is logically abutting ex,
3481 		 * - C3: abut_ex is physically abutting ex,
3482 		 * - C4: abut_ex can receive the additional blocks without
3483 		 *   overflowing the (initialized) length limit.
3484 		 */
3485 		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3486 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3487 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3488 			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3489 			err = ext4_ext_get_access(handle, inode, path + depth);
3490 			if (err)
3491 				goto out;
3492 
3493 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3494 				map, ex, abut_ex);
3495 
3496 			/* Shift the start of ex by 'map_len' blocks */
3497 			ex->ee_block = cpu_to_le32(ee_block + map_len);
3498 			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3499 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3500 			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3501 
3502 			/* Extend abut_ex by 'map_len' blocks */
3503 			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3504 
3505 			/* Result: number of initialized blocks past m_lblk */
3506 			allocated = map_len;
3507 		}
3508 	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3509 		   (map_len < ee_len) &&	/*L1*/
3510 		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3511 		/* See if we can merge right */
3512 		ext4_lblk_t next_lblk;
3513 		ext4_fsblk_t next_pblk, ee_pblk;
3514 		unsigned int next_len;
3515 
3516 		abut_ex = ex + 1;
3517 		next_lblk = le32_to_cpu(abut_ex->ee_block);
3518 		next_len = ext4_ext_get_actual_len(abut_ex);
3519 		next_pblk = ext4_ext_pblock(abut_ex);
3520 		ee_pblk = ext4_ext_pblock(ex);
3521 
3522 		/*
3523 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3524 		 * upon those conditions:
3525 		 * - C1: abut_ex is initialized,
3526 		 * - C2: abut_ex is logically abutting ex,
3527 		 * - C3: abut_ex is physically abutting ex,
3528 		 * - C4: abut_ex can receive the additional blocks without
3529 		 *   overflowing the (initialized) length limit.
3530 		 */
3531 		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3532 		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3533 		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3534 		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3535 			err = ext4_ext_get_access(handle, inode, path + depth);
3536 			if (err)
3537 				goto out;
3538 
3539 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3540 				map, ex, abut_ex);
3541 
3542 			/* Shift the start of abut_ex by 'map_len' blocks */
3543 			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3544 			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3545 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3546 			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3547 
3548 			/* Extend abut_ex by 'map_len' blocks */
3549 			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3550 
3551 			/* Result: number of initialized blocks past m_lblk */
3552 			allocated = map_len;
3553 		}
3554 	}
3555 	if (allocated) {
3556 		/* Mark the block containing both extents as dirty */
3557 		ext4_ext_dirty(handle, inode, path + depth);
3558 
3559 		/* Update path to point to the right extent */
3560 		path[depth].p_ext = abut_ex;
3561 		goto out;
3562 	} else
3563 		allocated = ee_len - (map->m_lblk - ee_block);
3564 
3565 	WARN_ON(map->m_lblk < ee_block);
3566 	/*
3567 	 * It is safe to convert extent to initialized via explicit
3568 	 * zeroout only if extent is fully inside i_size or new_size.
3569 	 */
3570 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3571 
3572 	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3573 		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3574 			(inode->i_sb->s_blocksize_bits - 10);
3575 
3576 	if (ext4_encrypted_inode(inode))
3577 		max_zeroout = 0;
3578 
3579 	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3580 	if (max_zeroout && (ee_len <= max_zeroout)) {
3581 		err = ext4_ext_zeroout(inode, ex);
3582 		if (err)
3583 			goto out;
3584 		zero_ex.ee_block = ex->ee_block;
3585 		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3586 		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3587 
3588 		err = ext4_ext_get_access(handle, inode, path + depth);
3589 		if (err)
3590 			goto out;
3591 		ext4_ext_mark_initialized(ex);
3592 		ext4_ext_try_to_merge(handle, inode, path, ex);
3593 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3594 		goto out;
3595 	}
3596 
3597 	/*
3598 	 * four cases:
3599 	 * 1. split the extent into three extents.
3600 	 * 2. split the extent into two extents, zeroout the first half.
3601 	 * 3. split the extent into two extents, zeroout the second half.
3602 	 * 4. split the extent into two extents with out zeroout.
3603 	 */
3604 	split_map.m_lblk = map->m_lblk;
3605 	split_map.m_len = map->m_len;
3606 
3607 	if (max_zeroout && (allocated > map->m_len)) {
3608 		if (allocated <= max_zeroout) {
3609 			/* case 3 */
3610 			zero_ex.ee_block =
3611 					 cpu_to_le32(map->m_lblk);
3612 			zero_ex.ee_len = cpu_to_le16(allocated);
3613 			ext4_ext_store_pblock(&zero_ex,
3614 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3615 			err = ext4_ext_zeroout(inode, &zero_ex);
3616 			if (err)
3617 				goto out;
3618 			split_map.m_lblk = map->m_lblk;
3619 			split_map.m_len = allocated;
3620 		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3621 			/* case 2 */
3622 			if (map->m_lblk != ee_block) {
3623 				zero_ex.ee_block = ex->ee_block;
3624 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3625 							ee_block);
3626 				ext4_ext_store_pblock(&zero_ex,
3627 						      ext4_ext_pblock(ex));
3628 				err = ext4_ext_zeroout(inode, &zero_ex);
3629 				if (err)
3630 					goto out;
3631 			}
3632 
3633 			split_map.m_lblk = ee_block;
3634 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3635 			allocated = map->m_len;
3636 		}
3637 	}
3638 
3639 	err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
3640 				flags);
3641 	if (err > 0)
3642 		err = 0;
3643 out:
3644 	/* If we have gotten a failure, don't zero out status tree */
3645 	if (!err)
3646 		err = ext4_zeroout_es(inode, &zero_ex);
3647 	return err ? err : allocated;
3648 }
3649 
3650 /*
3651  * This function is called by ext4_ext_map_blocks() from
3652  * ext4_get_blocks_dio_write() when DIO to write
3653  * to an unwritten extent.
3654  *
3655  * Writing to an unwritten extent may result in splitting the unwritten
3656  * extent into multiple initialized/unwritten extents (up to three)
3657  * There are three possibilities:
3658  *   a> There is no split required: Entire extent should be unwritten
3659  *   b> Splits in two extents: Write is happening at either end of the extent
3660  *   c> Splits in three extents: Somone is writing in middle of the extent
3661  *
3662  * This works the same way in the case of initialized -> unwritten conversion.
3663  *
3664  * One of more index blocks maybe needed if the extent tree grow after
3665  * the unwritten extent split. To prevent ENOSPC occur at the IO
3666  * complete, we need to split the unwritten extent before DIO submit
3667  * the IO. The unwritten extent called at this time will be split
3668  * into three unwritten extent(at most). After IO complete, the part
3669  * being filled will be convert to initialized by the end_io callback function
3670  * via ext4_convert_unwritten_extents().
3671  *
3672  * Returns the size of unwritten extent to be written on success.
3673  */
3674 static int ext4_split_convert_extents(handle_t *handle,
3675 					struct inode *inode,
3676 					struct ext4_map_blocks *map,
3677 					struct ext4_ext_path **ppath,
3678 					int flags)
3679 {
3680 	struct ext4_ext_path *path = *ppath;
3681 	ext4_lblk_t eof_block;
3682 	ext4_lblk_t ee_block;
3683 	struct ext4_extent *ex;
3684 	unsigned int ee_len;
3685 	int split_flag = 0, depth;
3686 
3687 	ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3688 		  __func__, inode->i_ino,
3689 		  (unsigned long long)map->m_lblk, map->m_len);
3690 
3691 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3692 		inode->i_sb->s_blocksize_bits;
3693 	if (eof_block < map->m_lblk + map->m_len)
3694 		eof_block = map->m_lblk + map->m_len;
3695 	/*
3696 	 * It is safe to convert extent to initialized via explicit
3697 	 * zeroout only if extent is fully insde i_size or new_size.
3698 	 */
3699 	depth = ext_depth(inode);
3700 	ex = path[depth].p_ext;
3701 	ee_block = le32_to_cpu(ex->ee_block);
3702 	ee_len = ext4_ext_get_actual_len(ex);
3703 
3704 	/* Convert to unwritten */
3705 	if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3706 		split_flag |= EXT4_EXT_DATA_VALID1;
3707 	/* Convert to initialized */
3708 	} else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3709 		split_flag |= ee_block + ee_len <= eof_block ?
3710 			      EXT4_EXT_MAY_ZEROOUT : 0;
3711 		split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3712 	}
3713 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3714 	return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3715 }
3716 
3717 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3718 						struct inode *inode,
3719 						struct ext4_map_blocks *map,
3720 						struct ext4_ext_path **ppath)
3721 {
3722 	struct ext4_ext_path *path = *ppath;
3723 	struct ext4_extent *ex;
3724 	ext4_lblk_t ee_block;
3725 	unsigned int ee_len;
3726 	int depth;
3727 	int err = 0;
3728 
3729 	depth = ext_depth(inode);
3730 	ex = path[depth].p_ext;
3731 	ee_block = le32_to_cpu(ex->ee_block);
3732 	ee_len = ext4_ext_get_actual_len(ex);
3733 
3734 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3735 		"block %llu, max_blocks %u\n", inode->i_ino,
3736 		  (unsigned long long)ee_block, ee_len);
3737 
3738 	/* If extent is larger than requested it is a clear sign that we still
3739 	 * have some extent state machine issues left. So extent_split is still
3740 	 * required.
3741 	 * TODO: Once all related issues will be fixed this situation should be
3742 	 * illegal.
3743 	 */
3744 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3745 #ifdef EXT4_DEBUG
3746 		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3747 			     " len %u; IO logical block %llu, len %u",
3748 			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3749 			     (unsigned long long)map->m_lblk, map->m_len);
3750 #endif
3751 		err = ext4_split_convert_extents(handle, inode, map, ppath,
3752 						 EXT4_GET_BLOCKS_CONVERT);
3753 		if (err < 0)
3754 			return err;
3755 		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3756 		if (IS_ERR(path))
3757 			return PTR_ERR(path);
3758 		depth = ext_depth(inode);
3759 		ex = path[depth].p_ext;
3760 	}
3761 
3762 	err = ext4_ext_get_access(handle, inode, path + depth);
3763 	if (err)
3764 		goto out;
3765 	/* first mark the extent as initialized */
3766 	ext4_ext_mark_initialized(ex);
3767 
3768 	/* note: ext4_ext_correct_indexes() isn't needed here because
3769 	 * borders are not changed
3770 	 */
3771 	ext4_ext_try_to_merge(handle, inode, path, ex);
3772 
3773 	/* Mark modified extent as dirty */
3774 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3775 out:
3776 	ext4_ext_show_leaf(inode, path);
3777 	return err;
3778 }
3779 
3780 /*
3781  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3782  */
3783 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3784 			      ext4_lblk_t lblk,
3785 			      struct ext4_ext_path *path,
3786 			      unsigned int len)
3787 {
3788 	int i, depth;
3789 	struct ext4_extent_header *eh;
3790 	struct ext4_extent *last_ex;
3791 
3792 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3793 		return 0;
3794 
3795 	depth = ext_depth(inode);
3796 	eh = path[depth].p_hdr;
3797 
3798 	/*
3799 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3800 	 * do not care for this case anymore. Simply remove the flag
3801 	 * if there are no extents.
3802 	 */
3803 	if (unlikely(!eh->eh_entries))
3804 		goto out;
3805 	last_ex = EXT_LAST_EXTENT(eh);
3806 	/*
3807 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3808 	 * last block in the last extent in the file.  We test this by
3809 	 * first checking to see if the caller to
3810 	 * ext4_ext_get_blocks() was interested in the last block (or
3811 	 * a block beyond the last block) in the current extent.  If
3812 	 * this turns out to be false, we can bail out from this
3813 	 * function immediately.
3814 	 */
3815 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3816 	    ext4_ext_get_actual_len(last_ex))
3817 		return 0;
3818 	/*
3819 	 * If the caller does appear to be planning to write at or
3820 	 * beyond the end of the current extent, we then test to see
3821 	 * if the current extent is the last extent in the file, by
3822 	 * checking to make sure it was reached via the rightmost node
3823 	 * at each level of the tree.
3824 	 */
3825 	for (i = depth-1; i >= 0; i--)
3826 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3827 			return 0;
3828 out:
3829 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3830 	return ext4_mark_inode_dirty(handle, inode);
3831 }
3832 
3833 /**
3834  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3835  *
3836  * Return 1 if there is a delalloc block in the range, otherwise 0.
3837  */
3838 int ext4_find_delalloc_range(struct inode *inode,
3839 			     ext4_lblk_t lblk_start,
3840 			     ext4_lblk_t lblk_end)
3841 {
3842 	struct extent_status es;
3843 
3844 	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3845 	if (es.es_len == 0)
3846 		return 0; /* there is no delay extent in this tree */
3847 	else if (es.es_lblk <= lblk_start &&
3848 		 lblk_start < es.es_lblk + es.es_len)
3849 		return 1;
3850 	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3851 		return 1;
3852 	else
3853 		return 0;
3854 }
3855 
3856 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3857 {
3858 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3859 	ext4_lblk_t lblk_start, lblk_end;
3860 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3861 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3862 
3863 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3864 }
3865 
3866 /**
3867  * Determines how many complete clusters (out of those specified by the 'map')
3868  * are under delalloc and were reserved quota for.
3869  * This function is called when we are writing out the blocks that were
3870  * originally written with their allocation delayed, but then the space was
3871  * allocated using fallocate() before the delayed allocation could be resolved.
3872  * The cases to look for are:
3873  * ('=' indicated delayed allocated blocks
3874  *  '-' indicates non-delayed allocated blocks)
3875  * (a) partial clusters towards beginning and/or end outside of allocated range
3876  *     are not delalloc'ed.
3877  *	Ex:
3878  *	|----c---=|====c====|====c====|===-c----|
3879  *	         |++++++ allocated ++++++|
3880  *	==> 4 complete clusters in above example
3881  *
3882  * (b) partial cluster (outside of allocated range) towards either end is
3883  *     marked for delayed allocation. In this case, we will exclude that
3884  *     cluster.
3885  *	Ex:
3886  *	|----====c========|========c========|
3887  *	     |++++++ allocated ++++++|
3888  *	==> 1 complete clusters in above example
3889  *
3890  *	Ex:
3891  *	|================c================|
3892  *            |++++++ allocated ++++++|
3893  *	==> 0 complete clusters in above example
3894  *
3895  * The ext4_da_update_reserve_space will be called only if we
3896  * determine here that there were some "entire" clusters that span
3897  * this 'allocated' range.
3898  * In the non-bigalloc case, this function will just end up returning num_blks
3899  * without ever calling ext4_find_delalloc_range.
3900  */
3901 static unsigned int
3902 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3903 			   unsigned int num_blks)
3904 {
3905 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3906 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3907 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3908 	unsigned int allocated_clusters = 0;
3909 
3910 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3911 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3912 
3913 	/* max possible clusters for this allocation */
3914 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3915 
3916 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3917 
3918 	/* Check towards left side */
3919 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3920 	if (c_offset) {
3921 		lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3922 		lblk_to = lblk_from + c_offset - 1;
3923 
3924 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3925 			allocated_clusters--;
3926 	}
3927 
3928 	/* Now check towards right. */
3929 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3930 	if (allocated_clusters && c_offset) {
3931 		lblk_from = lblk_start + num_blks;
3932 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3933 
3934 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3935 			allocated_clusters--;
3936 	}
3937 
3938 	return allocated_clusters;
3939 }
3940 
3941 static int
3942 convert_initialized_extent(handle_t *handle, struct inode *inode,
3943 			   struct ext4_map_blocks *map,
3944 			   struct ext4_ext_path **ppath,
3945 			   unsigned int allocated)
3946 {
3947 	struct ext4_ext_path *path = *ppath;
3948 	struct ext4_extent *ex;
3949 	ext4_lblk_t ee_block;
3950 	unsigned int ee_len;
3951 	int depth;
3952 	int err = 0;
3953 
3954 	/*
3955 	 * Make sure that the extent is no bigger than we support with
3956 	 * unwritten extent
3957 	 */
3958 	if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3959 		map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3960 
3961 	depth = ext_depth(inode);
3962 	ex = path[depth].p_ext;
3963 	ee_block = le32_to_cpu(ex->ee_block);
3964 	ee_len = ext4_ext_get_actual_len(ex);
3965 
3966 	ext_debug("%s: inode %lu, logical"
3967 		"block %llu, max_blocks %u\n", __func__, inode->i_ino,
3968 		  (unsigned long long)ee_block, ee_len);
3969 
3970 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3971 		err = ext4_split_convert_extents(handle, inode, map, ppath,
3972 				EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3973 		if (err < 0)
3974 			return err;
3975 		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3976 		if (IS_ERR(path))
3977 			return PTR_ERR(path);
3978 		depth = ext_depth(inode);
3979 		ex = path[depth].p_ext;
3980 		if (!ex) {
3981 			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3982 					 (unsigned long) map->m_lblk);
3983 			return -EFSCORRUPTED;
3984 		}
3985 	}
3986 
3987 	err = ext4_ext_get_access(handle, inode, path + depth);
3988 	if (err)
3989 		return err;
3990 	/* first mark the extent as unwritten */
3991 	ext4_ext_mark_unwritten(ex);
3992 
3993 	/* note: ext4_ext_correct_indexes() isn't needed here because
3994 	 * borders are not changed
3995 	 */
3996 	ext4_ext_try_to_merge(handle, inode, path, ex);
3997 
3998 	/* Mark modified extent as dirty */
3999 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
4000 	if (err)
4001 		return err;
4002 	ext4_ext_show_leaf(inode, path);
4003 
4004 	ext4_update_inode_fsync_trans(handle, inode, 1);
4005 	err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
4006 	if (err)
4007 		return err;
4008 	map->m_flags |= EXT4_MAP_UNWRITTEN;
4009 	if (allocated > map->m_len)
4010 		allocated = map->m_len;
4011 	map->m_len = allocated;
4012 	return allocated;
4013 }
4014 
4015 static int
4016 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
4017 			struct ext4_map_blocks *map,
4018 			struct ext4_ext_path **ppath, int flags,
4019 			unsigned int allocated, ext4_fsblk_t newblock)
4020 {
4021 	struct ext4_ext_path *path = *ppath;
4022 	int ret = 0;
4023 	int err = 0;
4024 
4025 	ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4026 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
4027 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4028 		  flags, allocated);
4029 	ext4_ext_show_leaf(inode, path);
4030 
4031 	/*
4032 	 * When writing into unwritten space, we should not fail to
4033 	 * allocate metadata blocks for the new extent block if needed.
4034 	 */
4035 	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4036 
4037 	trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4038 						    allocated, newblock);
4039 
4040 	/* get_block() before submit the IO, split the extent */
4041 	if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4042 		ret = ext4_split_convert_extents(handle, inode, map, ppath,
4043 					 flags | EXT4_GET_BLOCKS_CONVERT);
4044 		if (ret <= 0)
4045 			goto out;
4046 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4047 		goto out;
4048 	}
4049 	/* IO end_io complete, convert the filled extent to written */
4050 	if (flags & EXT4_GET_BLOCKS_CONVERT) {
4051 		if (flags & EXT4_GET_BLOCKS_ZERO) {
4052 			if (allocated > map->m_len)
4053 				allocated = map->m_len;
4054 			err = ext4_issue_zeroout(inode, map->m_lblk, newblock,
4055 						 allocated);
4056 			if (err < 0)
4057 				goto out2;
4058 		}
4059 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4060 							   ppath);
4061 		if (ret >= 0) {
4062 			ext4_update_inode_fsync_trans(handle, inode, 1);
4063 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
4064 						 path, map->m_len);
4065 		} else
4066 			err = ret;
4067 		map->m_flags |= EXT4_MAP_MAPPED;
4068 		map->m_pblk = newblock;
4069 		if (allocated > map->m_len)
4070 			allocated = map->m_len;
4071 		map->m_len = allocated;
4072 		goto out2;
4073 	}
4074 	/* buffered IO case */
4075 	/*
4076 	 * repeat fallocate creation request
4077 	 * we already have an unwritten extent
4078 	 */
4079 	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4080 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4081 		goto map_out;
4082 	}
4083 
4084 	/* buffered READ or buffered write_begin() lookup */
4085 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4086 		/*
4087 		 * We have blocks reserved already.  We
4088 		 * return allocated blocks so that delalloc
4089 		 * won't do block reservation for us.  But
4090 		 * the buffer head will be unmapped so that
4091 		 * a read from the block returns 0s.
4092 		 */
4093 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4094 		goto out1;
4095 	}
4096 
4097 	/* buffered write, writepage time, convert*/
4098 	ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
4099 	if (ret >= 0)
4100 		ext4_update_inode_fsync_trans(handle, inode, 1);
4101 out:
4102 	if (ret <= 0) {
4103 		err = ret;
4104 		goto out2;
4105 	} else
4106 		allocated = ret;
4107 	map->m_flags |= EXT4_MAP_NEW;
4108 	/*
4109 	 * if we allocated more blocks than requested
4110 	 * we need to make sure we unmap the extra block
4111 	 * allocated. The actual needed block will get
4112 	 * unmapped later when we find the buffer_head marked
4113 	 * new.
4114 	 */
4115 	if (allocated > map->m_len) {
4116 		clean_bdev_aliases(inode->i_sb->s_bdev, newblock + map->m_len,
4117 				   allocated - map->m_len);
4118 		allocated = map->m_len;
4119 	}
4120 	map->m_len = allocated;
4121 
4122 	/*
4123 	 * If we have done fallocate with the offset that is already
4124 	 * delayed allocated, we would have block reservation
4125 	 * and quota reservation done in the delayed write path.
4126 	 * But fallocate would have already updated quota and block
4127 	 * count for this offset. So cancel these reservation
4128 	 */
4129 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4130 		unsigned int reserved_clusters;
4131 		reserved_clusters = get_reserved_cluster_alloc(inode,
4132 				map->m_lblk, map->m_len);
4133 		if (reserved_clusters)
4134 			ext4_da_update_reserve_space(inode,
4135 						     reserved_clusters,
4136 						     0);
4137 	}
4138 
4139 map_out:
4140 	map->m_flags |= EXT4_MAP_MAPPED;
4141 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4142 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4143 					 map->m_len);
4144 		if (err < 0)
4145 			goto out2;
4146 	}
4147 out1:
4148 	if (allocated > map->m_len)
4149 		allocated = map->m_len;
4150 	ext4_ext_show_leaf(inode, path);
4151 	map->m_pblk = newblock;
4152 	map->m_len = allocated;
4153 out2:
4154 	return err ? err : allocated;
4155 }
4156 
4157 /*
4158  * get_implied_cluster_alloc - check to see if the requested
4159  * allocation (in the map structure) overlaps with a cluster already
4160  * allocated in an extent.
4161  *	@sb	The filesystem superblock structure
4162  *	@map	The requested lblk->pblk mapping
4163  *	@ex	The extent structure which might contain an implied
4164  *			cluster allocation
4165  *
4166  * This function is called by ext4_ext_map_blocks() after we failed to
4167  * find blocks that were already in the inode's extent tree.  Hence,
4168  * we know that the beginning of the requested region cannot overlap
4169  * the extent from the inode's extent tree.  There are three cases we
4170  * want to catch.  The first is this case:
4171  *
4172  *		 |--- cluster # N--|
4173  *    |--- extent ---|	|---- requested region ---|
4174  *			|==========|
4175  *
4176  * The second case that we need to test for is this one:
4177  *
4178  *   |--------- cluster # N ----------------|
4179  *	   |--- requested region --|   |------- extent ----|
4180  *	   |=======================|
4181  *
4182  * The third case is when the requested region lies between two extents
4183  * within the same cluster:
4184  *          |------------- cluster # N-------------|
4185  * |----- ex -----|                  |---- ex_right ----|
4186  *                  |------ requested region ------|
4187  *                  |================|
4188  *
4189  * In each of the above cases, we need to set the map->m_pblk and
4190  * map->m_len so it corresponds to the return the extent labelled as
4191  * "|====|" from cluster #N, since it is already in use for data in
4192  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4193  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4194  * as a new "allocated" block region.  Otherwise, we will return 0 and
4195  * ext4_ext_map_blocks() will then allocate one or more new clusters
4196  * by calling ext4_mb_new_blocks().
4197  */
4198 static int get_implied_cluster_alloc(struct super_block *sb,
4199 				     struct ext4_map_blocks *map,
4200 				     struct ext4_extent *ex,
4201 				     struct ext4_ext_path *path)
4202 {
4203 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4204 	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4205 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4206 	ext4_lblk_t rr_cluster_start;
4207 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4208 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4209 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4210 
4211 	/* The extent passed in that we are trying to match */
4212 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4213 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4214 
4215 	/* The requested region passed into ext4_map_blocks() */
4216 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4217 
4218 	if ((rr_cluster_start == ex_cluster_end) ||
4219 	    (rr_cluster_start == ex_cluster_start)) {
4220 		if (rr_cluster_start == ex_cluster_end)
4221 			ee_start += ee_len - 1;
4222 		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4223 		map->m_len = min(map->m_len,
4224 				 (unsigned) sbi->s_cluster_ratio - c_offset);
4225 		/*
4226 		 * Check for and handle this case:
4227 		 *
4228 		 *   |--------- cluster # N-------------|
4229 		 *		       |------- extent ----|
4230 		 *	   |--- requested region ---|
4231 		 *	   |===========|
4232 		 */
4233 
4234 		if (map->m_lblk < ee_block)
4235 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4236 
4237 		/*
4238 		 * Check for the case where there is already another allocated
4239 		 * block to the right of 'ex' but before the end of the cluster.
4240 		 *
4241 		 *          |------------- cluster # N-------------|
4242 		 * |----- ex -----|                  |---- ex_right ----|
4243 		 *                  |------ requested region ------|
4244 		 *                  |================|
4245 		 */
4246 		if (map->m_lblk > ee_block) {
4247 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4248 			map->m_len = min(map->m_len, next - map->m_lblk);
4249 		}
4250 
4251 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4252 		return 1;
4253 	}
4254 
4255 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4256 	return 0;
4257 }
4258 
4259 
4260 /*
4261  * Block allocation/map/preallocation routine for extents based files
4262  *
4263  *
4264  * Need to be called with
4265  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4266  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4267  *
4268  * return > 0, number of of blocks already mapped/allocated
4269  *          if create == 0 and these are pre-allocated blocks
4270  *          	buffer head is unmapped
4271  *          otherwise blocks are mapped
4272  *
4273  * return = 0, if plain look up failed (blocks have not been allocated)
4274  *          buffer head is unmapped
4275  *
4276  * return < 0, error case.
4277  */
4278 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4279 			struct ext4_map_blocks *map, int flags)
4280 {
4281 	struct ext4_ext_path *path = NULL;
4282 	struct ext4_extent newex, *ex, *ex2;
4283 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4284 	ext4_fsblk_t newblock = 0;
4285 	int free_on_err = 0, err = 0, depth, ret;
4286 	unsigned int allocated = 0, offset = 0;
4287 	unsigned int allocated_clusters = 0;
4288 	struct ext4_allocation_request ar;
4289 	ext4_lblk_t cluster_offset;
4290 	bool map_from_cluster = false;
4291 
4292 	ext_debug("blocks %u/%u requested for inode %lu\n",
4293 		  map->m_lblk, map->m_len, inode->i_ino);
4294 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4295 
4296 	/* find extent for this block */
4297 	path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
4298 	if (IS_ERR(path)) {
4299 		err = PTR_ERR(path);
4300 		path = NULL;
4301 		goto out2;
4302 	}
4303 
4304 	depth = ext_depth(inode);
4305 
4306 	/*
4307 	 * consistent leaf must not be empty;
4308 	 * this situation is possible, though, _during_ tree modification;
4309 	 * this is why assert can't be put in ext4_find_extent()
4310 	 */
4311 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4312 		EXT4_ERROR_INODE(inode, "bad extent address "
4313 				 "lblock: %lu, depth: %d pblock %lld",
4314 				 (unsigned long) map->m_lblk, depth,
4315 				 path[depth].p_block);
4316 		err = -EFSCORRUPTED;
4317 		goto out2;
4318 	}
4319 
4320 	ex = path[depth].p_ext;
4321 	if (ex) {
4322 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4323 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4324 		unsigned short ee_len;
4325 
4326 
4327 		/*
4328 		 * unwritten extents are treated as holes, except that
4329 		 * we split out initialized portions during a write.
4330 		 */
4331 		ee_len = ext4_ext_get_actual_len(ex);
4332 
4333 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4334 
4335 		/* if found extent covers block, simply return it */
4336 		if (in_range(map->m_lblk, ee_block, ee_len)) {
4337 			newblock = map->m_lblk - ee_block + ee_start;
4338 			/* number of remaining blocks in the extent */
4339 			allocated = ee_len - (map->m_lblk - ee_block);
4340 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4341 				  ee_block, ee_len, newblock);
4342 
4343 			/*
4344 			 * If the extent is initialized check whether the
4345 			 * caller wants to convert it to unwritten.
4346 			 */
4347 			if ((!ext4_ext_is_unwritten(ex)) &&
4348 			    (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4349 				allocated = convert_initialized_extent(
4350 						handle, inode, map, &path,
4351 						allocated);
4352 				goto out2;
4353 			} else if (!ext4_ext_is_unwritten(ex))
4354 				goto out;
4355 
4356 			ret = ext4_ext_handle_unwritten_extents(
4357 				handle, inode, map, &path, flags,
4358 				allocated, newblock);
4359 			if (ret < 0)
4360 				err = ret;
4361 			else
4362 				allocated = ret;
4363 			goto out2;
4364 		}
4365 	}
4366 
4367 	/*
4368 	 * requested block isn't allocated yet;
4369 	 * we couldn't try to create block if create flag is zero
4370 	 */
4371 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4372 		ext4_lblk_t hole_start, hole_len;
4373 
4374 		hole_start = map->m_lblk;
4375 		hole_len = ext4_ext_determine_hole(inode, path, &hole_start);
4376 		/*
4377 		 * put just found gap into cache to speed up
4378 		 * subsequent requests
4379 		 */
4380 		ext4_ext_put_gap_in_cache(inode, hole_start, hole_len);
4381 
4382 		/* Update hole_len to reflect hole size after map->m_lblk */
4383 		if (hole_start != map->m_lblk)
4384 			hole_len -= map->m_lblk - hole_start;
4385 		map->m_pblk = 0;
4386 		map->m_len = min_t(unsigned int, map->m_len, hole_len);
4387 
4388 		goto out2;
4389 	}
4390 
4391 	/*
4392 	 * Okay, we need to do block allocation.
4393 	 */
4394 	newex.ee_block = cpu_to_le32(map->m_lblk);
4395 	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4396 
4397 	/*
4398 	 * If we are doing bigalloc, check to see if the extent returned
4399 	 * by ext4_find_extent() implies a cluster we can use.
4400 	 */
4401 	if (cluster_offset && ex &&
4402 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4403 		ar.len = allocated = map->m_len;
4404 		newblock = map->m_pblk;
4405 		map_from_cluster = true;
4406 		goto got_allocated_blocks;
4407 	}
4408 
4409 	/* find neighbour allocated blocks */
4410 	ar.lleft = map->m_lblk;
4411 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4412 	if (err)
4413 		goto out2;
4414 	ar.lright = map->m_lblk;
4415 	ex2 = NULL;
4416 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4417 	if (err)
4418 		goto out2;
4419 
4420 	/* Check if the extent after searching to the right implies a
4421 	 * cluster we can use. */
4422 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4423 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4424 		ar.len = allocated = map->m_len;
4425 		newblock = map->m_pblk;
4426 		map_from_cluster = true;
4427 		goto got_allocated_blocks;
4428 	}
4429 
4430 	/*
4431 	 * See if request is beyond maximum number of blocks we can have in
4432 	 * a single extent. For an initialized extent this limit is
4433 	 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4434 	 * EXT_UNWRITTEN_MAX_LEN.
4435 	 */
4436 	if (map->m_len > EXT_INIT_MAX_LEN &&
4437 	    !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4438 		map->m_len = EXT_INIT_MAX_LEN;
4439 	else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4440 		 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4441 		map->m_len = EXT_UNWRITTEN_MAX_LEN;
4442 
4443 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4444 	newex.ee_len = cpu_to_le16(map->m_len);
4445 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4446 	if (err)
4447 		allocated = ext4_ext_get_actual_len(&newex);
4448 	else
4449 		allocated = map->m_len;
4450 
4451 	/* allocate new block */
4452 	ar.inode = inode;
4453 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4454 	ar.logical = map->m_lblk;
4455 	/*
4456 	 * We calculate the offset from the beginning of the cluster
4457 	 * for the logical block number, since when we allocate a
4458 	 * physical cluster, the physical block should start at the
4459 	 * same offset from the beginning of the cluster.  This is
4460 	 * needed so that future calls to get_implied_cluster_alloc()
4461 	 * work correctly.
4462 	 */
4463 	offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4464 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4465 	ar.goal -= offset;
4466 	ar.logical -= offset;
4467 	if (S_ISREG(inode->i_mode))
4468 		ar.flags = EXT4_MB_HINT_DATA;
4469 	else
4470 		/* disable in-core preallocation for non-regular files */
4471 		ar.flags = 0;
4472 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4473 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4474 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4475 		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
4476 	if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
4477 		ar.flags |= EXT4_MB_USE_RESERVED;
4478 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4479 	if (!newblock)
4480 		goto out2;
4481 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4482 		  ar.goal, newblock, allocated);
4483 	free_on_err = 1;
4484 	allocated_clusters = ar.len;
4485 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4486 	if (ar.len > allocated)
4487 		ar.len = allocated;
4488 
4489 got_allocated_blocks:
4490 	/* try to insert new extent into found leaf and return */
4491 	ext4_ext_store_pblock(&newex, newblock + offset);
4492 	newex.ee_len = cpu_to_le16(ar.len);
4493 	/* Mark unwritten */
4494 	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4495 		ext4_ext_mark_unwritten(&newex);
4496 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4497 	}
4498 
4499 	err = 0;
4500 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4501 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4502 					 path, ar.len);
4503 	if (!err)
4504 		err = ext4_ext_insert_extent(handle, inode, &path,
4505 					     &newex, flags);
4506 
4507 	if (err && free_on_err) {
4508 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4509 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4510 		/* free data blocks we just allocated */
4511 		/* not a good idea to call discard here directly,
4512 		 * but otherwise we'd need to call it every free() */
4513 		ext4_discard_preallocations(inode);
4514 		ext4_free_blocks(handle, inode, NULL, newblock,
4515 				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4516 		goto out2;
4517 	}
4518 
4519 	/* previous routine could use block we allocated */
4520 	newblock = ext4_ext_pblock(&newex);
4521 	allocated = ext4_ext_get_actual_len(&newex);
4522 	if (allocated > map->m_len)
4523 		allocated = map->m_len;
4524 	map->m_flags |= EXT4_MAP_NEW;
4525 
4526 	/*
4527 	 * Update reserved blocks/metadata blocks after successful
4528 	 * block allocation which had been deferred till now.
4529 	 */
4530 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4531 		unsigned int reserved_clusters;
4532 		/*
4533 		 * Check how many clusters we had reserved this allocated range
4534 		 */
4535 		reserved_clusters = get_reserved_cluster_alloc(inode,
4536 						map->m_lblk, allocated);
4537 		if (!map_from_cluster) {
4538 			BUG_ON(allocated_clusters < reserved_clusters);
4539 			if (reserved_clusters < allocated_clusters) {
4540 				struct ext4_inode_info *ei = EXT4_I(inode);
4541 				int reservation = allocated_clusters -
4542 						  reserved_clusters;
4543 				/*
4544 				 * It seems we claimed few clusters outside of
4545 				 * the range of this allocation. We should give
4546 				 * it back to the reservation pool. This can
4547 				 * happen in the following case:
4548 				 *
4549 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4550 				 *   cluster has 4 blocks. Thus, the clusters
4551 				 *   are [0-3],[4-7],[8-11]...
4552 				 * * First comes delayed allocation write for
4553 				 *   logical blocks 10 & 11. Since there were no
4554 				 *   previous delayed allocated blocks in the
4555 				 *   range [8-11], we would reserve 1 cluster
4556 				 *   for this write.
4557 				 * * Next comes write for logical blocks 3 to 8.
4558 				 *   In this case, we will reserve 2 clusters
4559 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4560 				 *   that range has a delayed allocated blocks.
4561 				 *   Thus total reserved clusters now becomes 3.
4562 				 * * Now, during the delayed allocation writeout
4563 				 *   time, we will first write blocks [3-8] and
4564 				 *   allocate 3 clusters for writing these
4565 				 *   blocks. Also, we would claim all these
4566 				 *   three clusters above.
4567 				 * * Now when we come here to writeout the
4568 				 *   blocks [10-11], we would expect to claim
4569 				 *   the reservation of 1 cluster we had made
4570 				 *   (and we would claim it since there are no
4571 				 *   more delayed allocated blocks in the range
4572 				 *   [8-11]. But our reserved cluster count had
4573 				 *   already gone to 0.
4574 				 *
4575 				 *   Thus, at the step 4 above when we determine
4576 				 *   that there are still some unwritten delayed
4577 				 *   allocated blocks outside of our current
4578 				 *   block range, we should increment the
4579 				 *   reserved clusters count so that when the
4580 				 *   remaining blocks finally gets written, we
4581 				 *   could claim them.
4582 				 */
4583 				dquot_reserve_block(inode,
4584 						EXT4_C2B(sbi, reservation));
4585 				spin_lock(&ei->i_block_reservation_lock);
4586 				ei->i_reserved_data_blocks += reservation;
4587 				spin_unlock(&ei->i_block_reservation_lock);
4588 			}
4589 			/*
4590 			 * We will claim quota for all newly allocated blocks.
4591 			 * We're updating the reserved space *after* the
4592 			 * correction above so we do not accidentally free
4593 			 * all the metadata reservation because we might
4594 			 * actually need it later on.
4595 			 */
4596 			ext4_da_update_reserve_space(inode, allocated_clusters,
4597 							1);
4598 		}
4599 	}
4600 
4601 	/*
4602 	 * Cache the extent and update transaction to commit on fdatasync only
4603 	 * when it is _not_ an unwritten extent.
4604 	 */
4605 	if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4606 		ext4_update_inode_fsync_trans(handle, inode, 1);
4607 	else
4608 		ext4_update_inode_fsync_trans(handle, inode, 0);
4609 out:
4610 	if (allocated > map->m_len)
4611 		allocated = map->m_len;
4612 	ext4_ext_show_leaf(inode, path);
4613 	map->m_flags |= EXT4_MAP_MAPPED;
4614 	map->m_pblk = newblock;
4615 	map->m_len = allocated;
4616 out2:
4617 	ext4_ext_drop_refs(path);
4618 	kfree(path);
4619 
4620 	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4621 				       err ? err : allocated);
4622 	return err ? err : allocated;
4623 }
4624 
4625 int ext4_ext_truncate(handle_t *handle, struct inode *inode)
4626 {
4627 	struct super_block *sb = inode->i_sb;
4628 	ext4_lblk_t last_block;
4629 	int err = 0;
4630 
4631 	/*
4632 	 * TODO: optimization is possible here.
4633 	 * Probably we need not scan at all,
4634 	 * because page truncation is enough.
4635 	 */
4636 
4637 	/* we have to know where to truncate from in crash case */
4638 	EXT4_I(inode)->i_disksize = inode->i_size;
4639 	err = ext4_mark_inode_dirty(handle, inode);
4640 	if (err)
4641 		return err;
4642 
4643 	last_block = (inode->i_size + sb->s_blocksize - 1)
4644 			>> EXT4_BLOCK_SIZE_BITS(sb);
4645 retry:
4646 	err = ext4_es_remove_extent(inode, last_block,
4647 				    EXT_MAX_BLOCKS - last_block);
4648 	if (err == -ENOMEM) {
4649 		cond_resched();
4650 		congestion_wait(BLK_RW_ASYNC, HZ/50);
4651 		goto retry;
4652 	}
4653 	if (err)
4654 		return err;
4655 	return ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4656 }
4657 
4658 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4659 				  ext4_lblk_t len, loff_t new_size,
4660 				  int flags, int mode)
4661 {
4662 	struct inode *inode = file_inode(file);
4663 	handle_t *handle;
4664 	int ret = 0;
4665 	int ret2 = 0;
4666 	int retries = 0;
4667 	int depth = 0;
4668 	struct ext4_map_blocks map;
4669 	unsigned int credits;
4670 	loff_t epos;
4671 
4672 	BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS));
4673 	map.m_lblk = offset;
4674 	map.m_len = len;
4675 	/*
4676 	 * Don't normalize the request if it can fit in one extent so
4677 	 * that it doesn't get unnecessarily split into multiple
4678 	 * extents.
4679 	 */
4680 	if (len <= EXT_UNWRITTEN_MAX_LEN)
4681 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4682 
4683 	/*
4684 	 * credits to insert 1 extent into extent tree
4685 	 */
4686 	credits = ext4_chunk_trans_blocks(inode, len);
4687 	depth = ext_depth(inode);
4688 
4689 retry:
4690 	while (ret >= 0 && len) {
4691 		/*
4692 		 * Recalculate credits when extent tree depth changes.
4693 		 */
4694 		if (depth != ext_depth(inode)) {
4695 			credits = ext4_chunk_trans_blocks(inode, len);
4696 			depth = ext_depth(inode);
4697 		}
4698 
4699 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4700 					    credits);
4701 		if (IS_ERR(handle)) {
4702 			ret = PTR_ERR(handle);
4703 			break;
4704 		}
4705 		ret = ext4_map_blocks(handle, inode, &map, flags);
4706 		if (ret <= 0) {
4707 			ext4_debug("inode #%lu: block %u: len %u: "
4708 				   "ext4_ext_map_blocks returned %d",
4709 				   inode->i_ino, map.m_lblk,
4710 				   map.m_len, ret);
4711 			ext4_mark_inode_dirty(handle, inode);
4712 			ret2 = ext4_journal_stop(handle);
4713 			break;
4714 		}
4715 		map.m_lblk += ret;
4716 		map.m_len = len = len - ret;
4717 		epos = (loff_t)map.m_lblk << inode->i_blkbits;
4718 		inode->i_ctime = current_time(inode);
4719 		if (new_size) {
4720 			if (epos > new_size)
4721 				epos = new_size;
4722 			if (ext4_update_inode_size(inode, epos) & 0x1)
4723 				inode->i_mtime = inode->i_ctime;
4724 		} else {
4725 			if (epos > inode->i_size)
4726 				ext4_set_inode_flag(inode,
4727 						    EXT4_INODE_EOFBLOCKS);
4728 		}
4729 		ext4_mark_inode_dirty(handle, inode);
4730 		ret2 = ext4_journal_stop(handle);
4731 		if (ret2)
4732 			break;
4733 	}
4734 	if (ret == -ENOSPC &&
4735 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4736 		ret = 0;
4737 		goto retry;
4738 	}
4739 
4740 	return ret > 0 ? ret2 : ret;
4741 }
4742 
4743 static long ext4_zero_range(struct file *file, loff_t offset,
4744 			    loff_t len, int mode)
4745 {
4746 	struct inode *inode = file_inode(file);
4747 	handle_t *handle = NULL;
4748 	unsigned int max_blocks;
4749 	loff_t new_size = 0;
4750 	int ret = 0;
4751 	int flags;
4752 	int credits;
4753 	int partial_begin, partial_end;
4754 	loff_t start, end;
4755 	ext4_lblk_t lblk;
4756 	unsigned int blkbits = inode->i_blkbits;
4757 
4758 	trace_ext4_zero_range(inode, offset, len, mode);
4759 
4760 	if (!S_ISREG(inode->i_mode))
4761 		return -EINVAL;
4762 
4763 	/* Call ext4_force_commit to flush all data in case of data=journal. */
4764 	if (ext4_should_journal_data(inode)) {
4765 		ret = ext4_force_commit(inode->i_sb);
4766 		if (ret)
4767 			return ret;
4768 	}
4769 
4770 	/*
4771 	 * Round up offset. This is not fallocate, we neet to zero out
4772 	 * blocks, so convert interior block aligned part of the range to
4773 	 * unwritten and possibly manually zero out unaligned parts of the
4774 	 * range.
4775 	 */
4776 	start = round_up(offset, 1 << blkbits);
4777 	end = round_down((offset + len), 1 << blkbits);
4778 
4779 	if (start < offset || end > offset + len)
4780 		return -EINVAL;
4781 	partial_begin = offset & ((1 << blkbits) - 1);
4782 	partial_end = (offset + len) & ((1 << blkbits) - 1);
4783 
4784 	lblk = start >> blkbits;
4785 	max_blocks = (end >> blkbits);
4786 	if (max_blocks < lblk)
4787 		max_blocks = 0;
4788 	else
4789 		max_blocks -= lblk;
4790 
4791 	inode_lock(inode);
4792 
4793 	/*
4794 	 * Indirect files do not support unwritten extnets
4795 	 */
4796 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4797 		ret = -EOPNOTSUPP;
4798 		goto out_mutex;
4799 	}
4800 
4801 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4802 	     offset + len > i_size_read(inode)) {
4803 		new_size = offset + len;
4804 		ret = inode_newsize_ok(inode, new_size);
4805 		if (ret)
4806 			goto out_mutex;
4807 	}
4808 
4809 	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4810 	if (mode & FALLOC_FL_KEEP_SIZE)
4811 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4812 
4813 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4814 	ext4_inode_block_unlocked_dio(inode);
4815 	inode_dio_wait(inode);
4816 
4817 	/* Preallocate the range including the unaligned edges */
4818 	if (partial_begin || partial_end) {
4819 		ret = ext4_alloc_file_blocks(file,
4820 				round_down(offset, 1 << blkbits) >> blkbits,
4821 				(round_up((offset + len), 1 << blkbits) -
4822 				 round_down(offset, 1 << blkbits)) >> blkbits,
4823 				new_size, flags, mode);
4824 		if (ret)
4825 			goto out_dio;
4826 
4827 	}
4828 
4829 	/* Zero range excluding the unaligned edges */
4830 	if (max_blocks > 0) {
4831 		flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4832 			  EXT4_EX_NOCACHE);
4833 
4834 		/*
4835 		 * Prevent page faults from reinstantiating pages we have
4836 		 * released from page cache.
4837 		 */
4838 		down_write(&EXT4_I(inode)->i_mmap_sem);
4839 		ret = ext4_update_disksize_before_punch(inode, offset, len);
4840 		if (ret) {
4841 			up_write(&EXT4_I(inode)->i_mmap_sem);
4842 			goto out_dio;
4843 		}
4844 		/* Now release the pages and zero block aligned part of pages */
4845 		truncate_pagecache_range(inode, start, end - 1);
4846 		inode->i_mtime = inode->i_ctime = current_time(inode);
4847 
4848 		ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4849 					     flags, mode);
4850 		up_write(&EXT4_I(inode)->i_mmap_sem);
4851 		if (ret)
4852 			goto out_dio;
4853 	}
4854 	if (!partial_begin && !partial_end)
4855 		goto out_dio;
4856 
4857 	/*
4858 	 * In worst case we have to writeout two nonadjacent unwritten
4859 	 * blocks and update the inode
4860 	 */
4861 	credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4862 	if (ext4_should_journal_data(inode))
4863 		credits += 2;
4864 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4865 	if (IS_ERR(handle)) {
4866 		ret = PTR_ERR(handle);
4867 		ext4_std_error(inode->i_sb, ret);
4868 		goto out_dio;
4869 	}
4870 
4871 	inode->i_mtime = inode->i_ctime = current_time(inode);
4872 	if (new_size) {
4873 		ext4_update_inode_size(inode, new_size);
4874 	} else {
4875 		/*
4876 		* Mark that we allocate beyond EOF so the subsequent truncate
4877 		* can proceed even if the new size is the same as i_size.
4878 		*/
4879 		if ((offset + len) > i_size_read(inode))
4880 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4881 	}
4882 	ext4_mark_inode_dirty(handle, inode);
4883 
4884 	/* Zero out partial block at the edges of the range */
4885 	ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4886 
4887 	if (file->f_flags & O_SYNC)
4888 		ext4_handle_sync(handle);
4889 
4890 	ext4_journal_stop(handle);
4891 out_dio:
4892 	ext4_inode_resume_unlocked_dio(inode);
4893 out_mutex:
4894 	inode_unlock(inode);
4895 	return ret;
4896 }
4897 
4898 /*
4899  * preallocate space for a file. This implements ext4's fallocate file
4900  * operation, which gets called from sys_fallocate system call.
4901  * For block-mapped files, posix_fallocate should fall back to the method
4902  * of writing zeroes to the required new blocks (the same behavior which is
4903  * expected for file systems which do not support fallocate() system call).
4904  */
4905 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4906 {
4907 	struct inode *inode = file_inode(file);
4908 	loff_t new_size = 0;
4909 	unsigned int max_blocks;
4910 	int ret = 0;
4911 	int flags;
4912 	ext4_lblk_t lblk;
4913 	unsigned int blkbits = inode->i_blkbits;
4914 
4915 	/*
4916 	 * Encrypted inodes can't handle collapse range or insert
4917 	 * range since we would need to re-encrypt blocks with a
4918 	 * different IV or XTS tweak (which are based on the logical
4919 	 * block number).
4920 	 *
4921 	 * XXX It's not clear why zero range isn't working, but we'll
4922 	 * leave it disabled for encrypted inodes for now.  This is a
4923 	 * bug we should fix....
4924 	 */
4925 	if (ext4_encrypted_inode(inode) &&
4926 	    (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE |
4927 		     FALLOC_FL_ZERO_RANGE)))
4928 		return -EOPNOTSUPP;
4929 
4930 	/* Return error if mode is not supported */
4931 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4932 		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
4933 		     FALLOC_FL_INSERT_RANGE))
4934 		return -EOPNOTSUPP;
4935 
4936 	if (mode & FALLOC_FL_PUNCH_HOLE)
4937 		return ext4_punch_hole(inode, offset, len);
4938 
4939 	ret = ext4_convert_inline_data(inode);
4940 	if (ret)
4941 		return ret;
4942 
4943 	if (mode & FALLOC_FL_COLLAPSE_RANGE)
4944 		return ext4_collapse_range(inode, offset, len);
4945 
4946 	if (mode & FALLOC_FL_INSERT_RANGE)
4947 		return ext4_insert_range(inode, offset, len);
4948 
4949 	if (mode & FALLOC_FL_ZERO_RANGE)
4950 		return ext4_zero_range(file, offset, len, mode);
4951 
4952 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4953 	lblk = offset >> blkbits;
4954 
4955 	max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
4956 	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4957 	if (mode & FALLOC_FL_KEEP_SIZE)
4958 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4959 
4960 	inode_lock(inode);
4961 
4962 	/*
4963 	 * We only support preallocation for extent-based files only
4964 	 */
4965 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4966 		ret = -EOPNOTSUPP;
4967 		goto out;
4968 	}
4969 
4970 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4971 	     offset + len > i_size_read(inode)) {
4972 		new_size = offset + len;
4973 		ret = inode_newsize_ok(inode, new_size);
4974 		if (ret)
4975 			goto out;
4976 	}
4977 
4978 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4979 	ext4_inode_block_unlocked_dio(inode);
4980 	inode_dio_wait(inode);
4981 
4982 	ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4983 				     flags, mode);
4984 	ext4_inode_resume_unlocked_dio(inode);
4985 	if (ret)
4986 		goto out;
4987 
4988 	if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
4989 		ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
4990 						EXT4_I(inode)->i_sync_tid);
4991 	}
4992 out:
4993 	inode_unlock(inode);
4994 	trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4995 	return ret;
4996 }
4997 
4998 /*
4999  * This function convert a range of blocks to written extents
5000  * The caller of this function will pass the start offset and the size.
5001  * all unwritten extents within this range will be converted to
5002  * written extents.
5003  *
5004  * This function is called from the direct IO end io call back
5005  * function, to convert the fallocated extents after IO is completed.
5006  * Returns 0 on success.
5007  */
5008 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
5009 				   loff_t offset, ssize_t len)
5010 {
5011 	unsigned int max_blocks;
5012 	int ret = 0;
5013 	int ret2 = 0;
5014 	struct ext4_map_blocks map;
5015 	unsigned int credits, blkbits = inode->i_blkbits;
5016 
5017 	map.m_lblk = offset >> blkbits;
5018 	max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
5019 
5020 	/*
5021 	 * This is somewhat ugly but the idea is clear: When transaction is
5022 	 * reserved, everything goes into it. Otherwise we rather start several
5023 	 * smaller transactions for conversion of each extent separately.
5024 	 */
5025 	if (handle) {
5026 		handle = ext4_journal_start_reserved(handle,
5027 						     EXT4_HT_EXT_CONVERT);
5028 		if (IS_ERR(handle))
5029 			return PTR_ERR(handle);
5030 		credits = 0;
5031 	} else {
5032 		/*
5033 		 * credits to insert 1 extent into extent tree
5034 		 */
5035 		credits = ext4_chunk_trans_blocks(inode, max_blocks);
5036 	}
5037 	while (ret >= 0 && ret < max_blocks) {
5038 		map.m_lblk += ret;
5039 		map.m_len = (max_blocks -= ret);
5040 		if (credits) {
5041 			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5042 						    credits);
5043 			if (IS_ERR(handle)) {
5044 				ret = PTR_ERR(handle);
5045 				break;
5046 			}
5047 		}
5048 		ret = ext4_map_blocks(handle, inode, &map,
5049 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5050 		if (ret <= 0)
5051 			ext4_warning(inode->i_sb,
5052 				     "inode #%lu: block %u: len %u: "
5053 				     "ext4_ext_map_blocks returned %d",
5054 				     inode->i_ino, map.m_lblk,
5055 				     map.m_len, ret);
5056 		ext4_mark_inode_dirty(handle, inode);
5057 		if (credits)
5058 			ret2 = ext4_journal_stop(handle);
5059 		if (ret <= 0 || ret2)
5060 			break;
5061 	}
5062 	if (!credits)
5063 		ret2 = ext4_journal_stop(handle);
5064 	return ret > 0 ? ret2 : ret;
5065 }
5066 
5067 /*
5068  * If newes is not existing extent (newes->ec_pblk equals zero) find
5069  * delayed extent at start of newes and update newes accordingly and
5070  * return start of the next delayed extent.
5071  *
5072  * If newes is existing extent (newes->ec_pblk is not equal zero)
5073  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5074  * extent found. Leave newes unmodified.
5075  */
5076 static int ext4_find_delayed_extent(struct inode *inode,
5077 				    struct extent_status *newes)
5078 {
5079 	struct extent_status es;
5080 	ext4_lblk_t block, next_del;
5081 
5082 	if (newes->es_pblk == 0) {
5083 		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5084 				newes->es_lblk + newes->es_len - 1, &es);
5085 
5086 		/*
5087 		 * No extent in extent-tree contains block @newes->es_pblk,
5088 		 * then the block may stay in 1)a hole or 2)delayed-extent.
5089 		 */
5090 		if (es.es_len == 0)
5091 			/* A hole found. */
5092 			return 0;
5093 
5094 		if (es.es_lblk > newes->es_lblk) {
5095 			/* A hole found. */
5096 			newes->es_len = min(es.es_lblk - newes->es_lblk,
5097 					    newes->es_len);
5098 			return 0;
5099 		}
5100 
5101 		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5102 	}
5103 
5104 	block = newes->es_lblk + newes->es_len;
5105 	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5106 	if (es.es_len == 0)
5107 		next_del = EXT_MAX_BLOCKS;
5108 	else
5109 		next_del = es.es_lblk;
5110 
5111 	return next_del;
5112 }
5113 /* fiemap flags we can handle specified here */
5114 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5115 
5116 static int ext4_xattr_fiemap(struct inode *inode,
5117 				struct fiemap_extent_info *fieinfo)
5118 {
5119 	__u64 physical = 0;
5120 	__u64 length;
5121 	__u32 flags = FIEMAP_EXTENT_LAST;
5122 	int blockbits = inode->i_sb->s_blocksize_bits;
5123 	int error = 0;
5124 
5125 	/* in-inode? */
5126 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5127 		struct ext4_iloc iloc;
5128 		int offset;	/* offset of xattr in inode */
5129 
5130 		error = ext4_get_inode_loc(inode, &iloc);
5131 		if (error)
5132 			return error;
5133 		physical = (__u64)iloc.bh->b_blocknr << blockbits;
5134 		offset = EXT4_GOOD_OLD_INODE_SIZE +
5135 				EXT4_I(inode)->i_extra_isize;
5136 		physical += offset;
5137 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5138 		flags |= FIEMAP_EXTENT_DATA_INLINE;
5139 		brelse(iloc.bh);
5140 	} else { /* external block */
5141 		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5142 		length = inode->i_sb->s_blocksize;
5143 	}
5144 
5145 	if (physical)
5146 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
5147 						length, flags);
5148 	return (error < 0 ? error : 0);
5149 }
5150 
5151 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5152 		__u64 start, __u64 len)
5153 {
5154 	ext4_lblk_t start_blk;
5155 	int error = 0;
5156 
5157 	if (ext4_has_inline_data(inode)) {
5158 		int has_inline = 1;
5159 
5160 		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline,
5161 						start, len);
5162 
5163 		if (has_inline)
5164 			return error;
5165 	}
5166 
5167 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5168 		error = ext4_ext_precache(inode);
5169 		if (error)
5170 			return error;
5171 	}
5172 
5173 	/* fallback to generic here if not in extents fmt */
5174 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5175 		return generic_block_fiemap(inode, fieinfo, start, len,
5176 			ext4_get_block);
5177 
5178 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5179 		return -EBADR;
5180 
5181 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5182 		error = ext4_xattr_fiemap(inode, fieinfo);
5183 	} else {
5184 		ext4_lblk_t len_blks;
5185 		__u64 last_blk;
5186 
5187 		start_blk = start >> inode->i_sb->s_blocksize_bits;
5188 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5189 		if (last_blk >= EXT_MAX_BLOCKS)
5190 			last_blk = EXT_MAX_BLOCKS-1;
5191 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5192 
5193 		/*
5194 		 * Walk the extent tree gathering extent information
5195 		 * and pushing extents back to the user.
5196 		 */
5197 		error = ext4_fill_fiemap_extents(inode, start_blk,
5198 						 len_blks, fieinfo);
5199 	}
5200 	return error;
5201 }
5202 
5203 /*
5204  * ext4_access_path:
5205  * Function to access the path buffer for marking it dirty.
5206  * It also checks if there are sufficient credits left in the journal handle
5207  * to update path.
5208  */
5209 static int
5210 ext4_access_path(handle_t *handle, struct inode *inode,
5211 		struct ext4_ext_path *path)
5212 {
5213 	int credits, err;
5214 
5215 	if (!ext4_handle_valid(handle))
5216 		return 0;
5217 
5218 	/*
5219 	 * Check if need to extend journal credits
5220 	 * 3 for leaf, sb, and inode plus 2 (bmap and group
5221 	 * descriptor) for each block group; assume two block
5222 	 * groups
5223 	 */
5224 	if (handle->h_buffer_credits < 7) {
5225 		credits = ext4_writepage_trans_blocks(inode);
5226 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5227 		/* EAGAIN is success */
5228 		if (err && err != -EAGAIN)
5229 			return err;
5230 	}
5231 
5232 	err = ext4_ext_get_access(handle, inode, path);
5233 	return err;
5234 }
5235 
5236 /*
5237  * ext4_ext_shift_path_extents:
5238  * Shift the extents of a path structure lying between path[depth].p_ext
5239  * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells
5240  * if it is right shift or left shift operation.
5241  */
5242 static int
5243 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5244 			    struct inode *inode, handle_t *handle,
5245 			    enum SHIFT_DIRECTION SHIFT)
5246 {
5247 	int depth, err = 0;
5248 	struct ext4_extent *ex_start, *ex_last;
5249 	bool update = 0;
5250 	depth = path->p_depth;
5251 
5252 	while (depth >= 0) {
5253 		if (depth == path->p_depth) {
5254 			ex_start = path[depth].p_ext;
5255 			if (!ex_start)
5256 				return -EFSCORRUPTED;
5257 
5258 			ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5259 
5260 			err = ext4_access_path(handle, inode, path + depth);
5261 			if (err)
5262 				goto out;
5263 
5264 			if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5265 				update = 1;
5266 
5267 			while (ex_start <= ex_last) {
5268 				if (SHIFT == SHIFT_LEFT) {
5269 					le32_add_cpu(&ex_start->ee_block,
5270 						-shift);
5271 					/* Try to merge to the left. */
5272 					if ((ex_start >
5273 					    EXT_FIRST_EXTENT(path[depth].p_hdr))
5274 					    &&
5275 					    ext4_ext_try_to_merge_right(inode,
5276 					    path, ex_start - 1))
5277 						ex_last--;
5278 					else
5279 						ex_start++;
5280 				} else {
5281 					le32_add_cpu(&ex_last->ee_block, shift);
5282 					ext4_ext_try_to_merge_right(inode, path,
5283 						ex_last);
5284 					ex_last--;
5285 				}
5286 			}
5287 			err = ext4_ext_dirty(handle, inode, path + depth);
5288 			if (err)
5289 				goto out;
5290 
5291 			if (--depth < 0 || !update)
5292 				break;
5293 		}
5294 
5295 		/* Update index too */
5296 		err = ext4_access_path(handle, inode, path + depth);
5297 		if (err)
5298 			goto out;
5299 
5300 		if (SHIFT == SHIFT_LEFT)
5301 			le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5302 		else
5303 			le32_add_cpu(&path[depth].p_idx->ei_block, shift);
5304 		err = ext4_ext_dirty(handle, inode, path + depth);
5305 		if (err)
5306 			goto out;
5307 
5308 		/* we are done if current index is not a starting index */
5309 		if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5310 			break;
5311 
5312 		depth--;
5313 	}
5314 
5315 out:
5316 	return err;
5317 }
5318 
5319 /*
5320  * ext4_ext_shift_extents:
5321  * All the extents which lies in the range from @start to the last allocated
5322  * block for the @inode are shifted either towards left or right (depending
5323  * upon @SHIFT) by @shift blocks.
5324  * On success, 0 is returned, error otherwise.
5325  */
5326 static int
5327 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5328 		       ext4_lblk_t start, ext4_lblk_t shift,
5329 		       enum SHIFT_DIRECTION SHIFT)
5330 {
5331 	struct ext4_ext_path *path;
5332 	int ret = 0, depth;
5333 	struct ext4_extent *extent;
5334 	ext4_lblk_t stop, *iterator, ex_start, ex_end;
5335 
5336 	/* Let path point to the last extent */
5337 	path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL,
5338 				EXT4_EX_NOCACHE);
5339 	if (IS_ERR(path))
5340 		return PTR_ERR(path);
5341 
5342 	depth = path->p_depth;
5343 	extent = path[depth].p_ext;
5344 	if (!extent)
5345 		goto out;
5346 
5347 	stop = le32_to_cpu(extent->ee_block);
5348 
5349        /*
5350 	 * In case of left shift, Don't start shifting extents until we make
5351 	 * sure the hole is big enough to accommodate the shift.
5352 	*/
5353 	if (SHIFT == SHIFT_LEFT) {
5354 		path = ext4_find_extent(inode, start - 1, &path,
5355 					EXT4_EX_NOCACHE);
5356 		if (IS_ERR(path))
5357 			return PTR_ERR(path);
5358 		depth = path->p_depth;
5359 		extent =  path[depth].p_ext;
5360 		if (extent) {
5361 			ex_start = le32_to_cpu(extent->ee_block);
5362 			ex_end = le32_to_cpu(extent->ee_block) +
5363 				ext4_ext_get_actual_len(extent);
5364 		} else {
5365 			ex_start = 0;
5366 			ex_end = 0;
5367 		}
5368 
5369 		if ((start == ex_start && shift > ex_start) ||
5370 		    (shift > start - ex_end)) {
5371 			ext4_ext_drop_refs(path);
5372 			kfree(path);
5373 			return -EINVAL;
5374 		}
5375 	}
5376 
5377 	/*
5378 	 * In case of left shift, iterator points to start and it is increased
5379 	 * till we reach stop. In case of right shift, iterator points to stop
5380 	 * and it is decreased till we reach start.
5381 	 */
5382 	if (SHIFT == SHIFT_LEFT)
5383 		iterator = &start;
5384 	else
5385 		iterator = &stop;
5386 
5387 	/*
5388 	 * Its safe to start updating extents.  Start and stop are unsigned, so
5389 	 * in case of right shift if extent with 0 block is reached, iterator
5390 	 * becomes NULL to indicate the end of the loop.
5391 	 */
5392 	while (iterator && start <= stop) {
5393 		path = ext4_find_extent(inode, *iterator, &path,
5394 					EXT4_EX_NOCACHE);
5395 		if (IS_ERR(path))
5396 			return PTR_ERR(path);
5397 		depth = path->p_depth;
5398 		extent = path[depth].p_ext;
5399 		if (!extent) {
5400 			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5401 					 (unsigned long) *iterator);
5402 			return -EFSCORRUPTED;
5403 		}
5404 		if (SHIFT == SHIFT_LEFT && *iterator >
5405 		    le32_to_cpu(extent->ee_block)) {
5406 			/* Hole, move to the next extent */
5407 			if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5408 				path[depth].p_ext++;
5409 			} else {
5410 				*iterator = ext4_ext_next_allocated_block(path);
5411 				continue;
5412 			}
5413 		}
5414 
5415 		if (SHIFT == SHIFT_LEFT) {
5416 			extent = EXT_LAST_EXTENT(path[depth].p_hdr);
5417 			*iterator = le32_to_cpu(extent->ee_block) +
5418 					ext4_ext_get_actual_len(extent);
5419 		} else {
5420 			extent = EXT_FIRST_EXTENT(path[depth].p_hdr);
5421 			if (le32_to_cpu(extent->ee_block) > 0)
5422 				*iterator = le32_to_cpu(extent->ee_block) - 1;
5423 			else
5424 				/* Beginning is reached, end of the loop */
5425 				iterator = NULL;
5426 			/* Update path extent in case we need to stop */
5427 			while (le32_to_cpu(extent->ee_block) < start)
5428 				extent++;
5429 			path[depth].p_ext = extent;
5430 		}
5431 		ret = ext4_ext_shift_path_extents(path, shift, inode,
5432 				handle, SHIFT);
5433 		if (ret)
5434 			break;
5435 	}
5436 out:
5437 	ext4_ext_drop_refs(path);
5438 	kfree(path);
5439 	return ret;
5440 }
5441 
5442 /*
5443  * ext4_collapse_range:
5444  * This implements the fallocate's collapse range functionality for ext4
5445  * Returns: 0 and non-zero on error.
5446  */
5447 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5448 {
5449 	struct super_block *sb = inode->i_sb;
5450 	ext4_lblk_t punch_start, punch_stop;
5451 	handle_t *handle;
5452 	unsigned int credits;
5453 	loff_t new_size, ioffset;
5454 	int ret;
5455 
5456 	/*
5457 	 * We need to test this early because xfstests assumes that a
5458 	 * collapse range of (0, 1) will return EOPNOTSUPP if the file
5459 	 * system does not support collapse range.
5460 	 */
5461 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5462 		return -EOPNOTSUPP;
5463 
5464 	/* Collapse range works only on fs block size aligned offsets. */
5465 	if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5466 	    len & (EXT4_CLUSTER_SIZE(sb) - 1))
5467 		return -EINVAL;
5468 
5469 	if (!S_ISREG(inode->i_mode))
5470 		return -EINVAL;
5471 
5472 	trace_ext4_collapse_range(inode, offset, len);
5473 
5474 	punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5475 	punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5476 
5477 	/* Call ext4_force_commit to flush all data in case of data=journal. */
5478 	if (ext4_should_journal_data(inode)) {
5479 		ret = ext4_force_commit(inode->i_sb);
5480 		if (ret)
5481 			return ret;
5482 	}
5483 
5484 	inode_lock(inode);
5485 	/*
5486 	 * There is no need to overlap collapse range with EOF, in which case
5487 	 * it is effectively a truncate operation
5488 	 */
5489 	if (offset + len >= i_size_read(inode)) {
5490 		ret = -EINVAL;
5491 		goto out_mutex;
5492 	}
5493 
5494 	/* Currently just for extent based files */
5495 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5496 		ret = -EOPNOTSUPP;
5497 		goto out_mutex;
5498 	}
5499 
5500 	/* Wait for existing dio to complete */
5501 	ext4_inode_block_unlocked_dio(inode);
5502 	inode_dio_wait(inode);
5503 
5504 	/*
5505 	 * Prevent page faults from reinstantiating pages we have released from
5506 	 * page cache.
5507 	 */
5508 	down_write(&EXT4_I(inode)->i_mmap_sem);
5509 	/*
5510 	 * Need to round down offset to be aligned with page size boundary
5511 	 * for page size > block size.
5512 	 */
5513 	ioffset = round_down(offset, PAGE_SIZE);
5514 	/*
5515 	 * Write tail of the last page before removed range since it will get
5516 	 * removed from the page cache below.
5517 	 */
5518 	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset);
5519 	if (ret)
5520 		goto out_mmap;
5521 	/*
5522 	 * Write data that will be shifted to preserve them when discarding
5523 	 * page cache below. We are also protected from pages becoming dirty
5524 	 * by i_mmap_sem.
5525 	 */
5526 	ret = filemap_write_and_wait_range(inode->i_mapping, offset + len,
5527 					   LLONG_MAX);
5528 	if (ret)
5529 		goto out_mmap;
5530 	truncate_pagecache(inode, ioffset);
5531 
5532 	credits = ext4_writepage_trans_blocks(inode);
5533 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5534 	if (IS_ERR(handle)) {
5535 		ret = PTR_ERR(handle);
5536 		goto out_mmap;
5537 	}
5538 
5539 	down_write(&EXT4_I(inode)->i_data_sem);
5540 	ext4_discard_preallocations(inode);
5541 
5542 	ret = ext4_es_remove_extent(inode, punch_start,
5543 				    EXT_MAX_BLOCKS - punch_start);
5544 	if (ret) {
5545 		up_write(&EXT4_I(inode)->i_data_sem);
5546 		goto out_stop;
5547 	}
5548 
5549 	ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5550 	if (ret) {
5551 		up_write(&EXT4_I(inode)->i_data_sem);
5552 		goto out_stop;
5553 	}
5554 	ext4_discard_preallocations(inode);
5555 
5556 	ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5557 				     punch_stop - punch_start, SHIFT_LEFT);
5558 	if (ret) {
5559 		up_write(&EXT4_I(inode)->i_data_sem);
5560 		goto out_stop;
5561 	}
5562 
5563 	new_size = i_size_read(inode) - len;
5564 	i_size_write(inode, new_size);
5565 	EXT4_I(inode)->i_disksize = new_size;
5566 
5567 	up_write(&EXT4_I(inode)->i_data_sem);
5568 	if (IS_SYNC(inode))
5569 		ext4_handle_sync(handle);
5570 	inode->i_mtime = inode->i_ctime = current_time(inode);
5571 	ext4_mark_inode_dirty(handle, inode);
5572 
5573 out_stop:
5574 	ext4_journal_stop(handle);
5575 out_mmap:
5576 	up_write(&EXT4_I(inode)->i_mmap_sem);
5577 	ext4_inode_resume_unlocked_dio(inode);
5578 out_mutex:
5579 	inode_unlock(inode);
5580 	return ret;
5581 }
5582 
5583 /*
5584  * ext4_insert_range:
5585  * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate.
5586  * The data blocks starting from @offset to the EOF are shifted by @len
5587  * towards right to create a hole in the @inode. Inode size is increased
5588  * by len bytes.
5589  * Returns 0 on success, error otherwise.
5590  */
5591 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len)
5592 {
5593 	struct super_block *sb = inode->i_sb;
5594 	handle_t *handle;
5595 	struct ext4_ext_path *path;
5596 	struct ext4_extent *extent;
5597 	ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0;
5598 	unsigned int credits, ee_len;
5599 	int ret = 0, depth, split_flag = 0;
5600 	loff_t ioffset;
5601 
5602 	/*
5603 	 * We need to test this early because xfstests assumes that an
5604 	 * insert range of (0, 1) will return EOPNOTSUPP if the file
5605 	 * system does not support insert range.
5606 	 */
5607 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5608 		return -EOPNOTSUPP;
5609 
5610 	/* Insert range works only on fs block size aligned offsets. */
5611 	if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5612 			len & (EXT4_CLUSTER_SIZE(sb) - 1))
5613 		return -EINVAL;
5614 
5615 	if (!S_ISREG(inode->i_mode))
5616 		return -EOPNOTSUPP;
5617 
5618 	trace_ext4_insert_range(inode, offset, len);
5619 
5620 	offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5621 	len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb);
5622 
5623 	/* Call ext4_force_commit to flush all data in case of data=journal */
5624 	if (ext4_should_journal_data(inode)) {
5625 		ret = ext4_force_commit(inode->i_sb);
5626 		if (ret)
5627 			return ret;
5628 	}
5629 
5630 	inode_lock(inode);
5631 	/* Currently just for extent based files */
5632 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5633 		ret = -EOPNOTSUPP;
5634 		goto out_mutex;
5635 	}
5636 
5637 	/* Check for wrap through zero */
5638 	if (inode->i_size + len > inode->i_sb->s_maxbytes) {
5639 		ret = -EFBIG;
5640 		goto out_mutex;
5641 	}
5642 
5643 	/* Offset should be less than i_size */
5644 	if (offset >= i_size_read(inode)) {
5645 		ret = -EINVAL;
5646 		goto out_mutex;
5647 	}
5648 
5649 	/* Wait for existing dio to complete */
5650 	ext4_inode_block_unlocked_dio(inode);
5651 	inode_dio_wait(inode);
5652 
5653 	/*
5654 	 * Prevent page faults from reinstantiating pages we have released from
5655 	 * page cache.
5656 	 */
5657 	down_write(&EXT4_I(inode)->i_mmap_sem);
5658 	/*
5659 	 * Need to round down to align start offset to page size boundary
5660 	 * for page size > block size.
5661 	 */
5662 	ioffset = round_down(offset, PAGE_SIZE);
5663 	/* Write out all dirty pages */
5664 	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5665 			LLONG_MAX);
5666 	if (ret)
5667 		goto out_mmap;
5668 	truncate_pagecache(inode, ioffset);
5669 
5670 	credits = ext4_writepage_trans_blocks(inode);
5671 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5672 	if (IS_ERR(handle)) {
5673 		ret = PTR_ERR(handle);
5674 		goto out_mmap;
5675 	}
5676 
5677 	/* Expand file to avoid data loss if there is error while shifting */
5678 	inode->i_size += len;
5679 	EXT4_I(inode)->i_disksize += len;
5680 	inode->i_mtime = inode->i_ctime = current_time(inode);
5681 	ret = ext4_mark_inode_dirty(handle, inode);
5682 	if (ret)
5683 		goto out_stop;
5684 
5685 	down_write(&EXT4_I(inode)->i_data_sem);
5686 	ext4_discard_preallocations(inode);
5687 
5688 	path = ext4_find_extent(inode, offset_lblk, NULL, 0);
5689 	if (IS_ERR(path)) {
5690 		up_write(&EXT4_I(inode)->i_data_sem);
5691 		goto out_stop;
5692 	}
5693 
5694 	depth = ext_depth(inode);
5695 	extent = path[depth].p_ext;
5696 	if (extent) {
5697 		ee_start_lblk = le32_to_cpu(extent->ee_block);
5698 		ee_len = ext4_ext_get_actual_len(extent);
5699 
5700 		/*
5701 		 * If offset_lblk is not the starting block of extent, split
5702 		 * the extent @offset_lblk
5703 		 */
5704 		if ((offset_lblk > ee_start_lblk) &&
5705 				(offset_lblk < (ee_start_lblk + ee_len))) {
5706 			if (ext4_ext_is_unwritten(extent))
5707 				split_flag = EXT4_EXT_MARK_UNWRIT1 |
5708 					EXT4_EXT_MARK_UNWRIT2;
5709 			ret = ext4_split_extent_at(handle, inode, &path,
5710 					offset_lblk, split_flag,
5711 					EXT4_EX_NOCACHE |
5712 					EXT4_GET_BLOCKS_PRE_IO |
5713 					EXT4_GET_BLOCKS_METADATA_NOFAIL);
5714 		}
5715 
5716 		ext4_ext_drop_refs(path);
5717 		kfree(path);
5718 		if (ret < 0) {
5719 			up_write(&EXT4_I(inode)->i_data_sem);
5720 			goto out_stop;
5721 		}
5722 	} else {
5723 		ext4_ext_drop_refs(path);
5724 		kfree(path);
5725 	}
5726 
5727 	ret = ext4_es_remove_extent(inode, offset_lblk,
5728 			EXT_MAX_BLOCKS - offset_lblk);
5729 	if (ret) {
5730 		up_write(&EXT4_I(inode)->i_data_sem);
5731 		goto out_stop;
5732 	}
5733 
5734 	/*
5735 	 * if offset_lblk lies in a hole which is at start of file, use
5736 	 * ee_start_lblk to shift extents
5737 	 */
5738 	ret = ext4_ext_shift_extents(inode, handle,
5739 		ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk,
5740 		len_lblk, SHIFT_RIGHT);
5741 
5742 	up_write(&EXT4_I(inode)->i_data_sem);
5743 	if (IS_SYNC(inode))
5744 		ext4_handle_sync(handle);
5745 
5746 out_stop:
5747 	ext4_journal_stop(handle);
5748 out_mmap:
5749 	up_write(&EXT4_I(inode)->i_mmap_sem);
5750 	ext4_inode_resume_unlocked_dio(inode);
5751 out_mutex:
5752 	inode_unlock(inode);
5753 	return ret;
5754 }
5755 
5756 /**
5757  * ext4_swap_extents - Swap extents between two inodes
5758  *
5759  * @inode1:	First inode
5760  * @inode2:	Second inode
5761  * @lblk1:	Start block for first inode
5762  * @lblk2:	Start block for second inode
5763  * @count:	Number of blocks to swap
5764  * @mark_unwritten: Mark second inode's extents as unwritten after swap
5765  * @erp:	Pointer to save error value
5766  *
5767  * This helper routine does exactly what is promise "swap extents". All other
5768  * stuff such as page-cache locking consistency, bh mapping consistency or
5769  * extent's data copying must be performed by caller.
5770  * Locking:
5771  * 		i_mutex is held for both inodes
5772  * 		i_data_sem is locked for write for both inodes
5773  * Assumptions:
5774  *		All pages from requested range are locked for both inodes
5775  */
5776 int
5777 ext4_swap_extents(handle_t *handle, struct inode *inode1,
5778 		     struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5779 		  ext4_lblk_t count, int unwritten, int *erp)
5780 {
5781 	struct ext4_ext_path *path1 = NULL;
5782 	struct ext4_ext_path *path2 = NULL;
5783 	int replaced_count = 0;
5784 
5785 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5786 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5787 	BUG_ON(!inode_is_locked(inode1));
5788 	BUG_ON(!inode_is_locked(inode2));
5789 
5790 	*erp = ext4_es_remove_extent(inode1, lblk1, count);
5791 	if (unlikely(*erp))
5792 		return 0;
5793 	*erp = ext4_es_remove_extent(inode2, lblk2, count);
5794 	if (unlikely(*erp))
5795 		return 0;
5796 
5797 	while (count) {
5798 		struct ext4_extent *ex1, *ex2, tmp_ex;
5799 		ext4_lblk_t e1_blk, e2_blk;
5800 		int e1_len, e2_len, len;
5801 		int split = 0;
5802 
5803 		path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5804 		if (IS_ERR(path1)) {
5805 			*erp = PTR_ERR(path1);
5806 			path1 = NULL;
5807 		finish:
5808 			count = 0;
5809 			goto repeat;
5810 		}
5811 		path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5812 		if (IS_ERR(path2)) {
5813 			*erp = PTR_ERR(path2);
5814 			path2 = NULL;
5815 			goto finish;
5816 		}
5817 		ex1 = path1[path1->p_depth].p_ext;
5818 		ex2 = path2[path2->p_depth].p_ext;
5819 		/* Do we have somthing to swap ? */
5820 		if (unlikely(!ex2 || !ex1))
5821 			goto finish;
5822 
5823 		e1_blk = le32_to_cpu(ex1->ee_block);
5824 		e2_blk = le32_to_cpu(ex2->ee_block);
5825 		e1_len = ext4_ext_get_actual_len(ex1);
5826 		e2_len = ext4_ext_get_actual_len(ex2);
5827 
5828 		/* Hole handling */
5829 		if (!in_range(lblk1, e1_blk, e1_len) ||
5830 		    !in_range(lblk2, e2_blk, e2_len)) {
5831 			ext4_lblk_t next1, next2;
5832 
5833 			/* if hole after extent, then go to next extent */
5834 			next1 = ext4_ext_next_allocated_block(path1);
5835 			next2 = ext4_ext_next_allocated_block(path2);
5836 			/* If hole before extent, then shift to that extent */
5837 			if (e1_blk > lblk1)
5838 				next1 = e1_blk;
5839 			if (e2_blk > lblk2)
5840 				next2 = e1_blk;
5841 			/* Do we have something to swap */
5842 			if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5843 				goto finish;
5844 			/* Move to the rightest boundary */
5845 			len = next1 - lblk1;
5846 			if (len < next2 - lblk2)
5847 				len = next2 - lblk2;
5848 			if (len > count)
5849 				len = count;
5850 			lblk1 += len;
5851 			lblk2 += len;
5852 			count -= len;
5853 			goto repeat;
5854 		}
5855 
5856 		/* Prepare left boundary */
5857 		if (e1_blk < lblk1) {
5858 			split = 1;
5859 			*erp = ext4_force_split_extent_at(handle, inode1,
5860 						&path1, lblk1, 0);
5861 			if (unlikely(*erp))
5862 				goto finish;
5863 		}
5864 		if (e2_blk < lblk2) {
5865 			split = 1;
5866 			*erp = ext4_force_split_extent_at(handle, inode2,
5867 						&path2,  lblk2, 0);
5868 			if (unlikely(*erp))
5869 				goto finish;
5870 		}
5871 		/* ext4_split_extent_at() may result in leaf extent split,
5872 		 * path must to be revalidated. */
5873 		if (split)
5874 			goto repeat;
5875 
5876 		/* Prepare right boundary */
5877 		len = count;
5878 		if (len > e1_blk + e1_len - lblk1)
5879 			len = e1_blk + e1_len - lblk1;
5880 		if (len > e2_blk + e2_len - lblk2)
5881 			len = e2_blk + e2_len - lblk2;
5882 
5883 		if (len != e1_len) {
5884 			split = 1;
5885 			*erp = ext4_force_split_extent_at(handle, inode1,
5886 						&path1, lblk1 + len, 0);
5887 			if (unlikely(*erp))
5888 				goto finish;
5889 		}
5890 		if (len != e2_len) {
5891 			split = 1;
5892 			*erp = ext4_force_split_extent_at(handle, inode2,
5893 						&path2, lblk2 + len, 0);
5894 			if (*erp)
5895 				goto finish;
5896 		}
5897 		/* ext4_split_extent_at() may result in leaf extent split,
5898 		 * path must to be revalidated. */
5899 		if (split)
5900 			goto repeat;
5901 
5902 		BUG_ON(e2_len != e1_len);
5903 		*erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5904 		if (unlikely(*erp))
5905 			goto finish;
5906 		*erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5907 		if (unlikely(*erp))
5908 			goto finish;
5909 
5910 		/* Both extents are fully inside boundaries. Swap it now */
5911 		tmp_ex = *ex1;
5912 		ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5913 		ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5914 		ex1->ee_len = cpu_to_le16(e2_len);
5915 		ex2->ee_len = cpu_to_le16(e1_len);
5916 		if (unwritten)
5917 			ext4_ext_mark_unwritten(ex2);
5918 		if (ext4_ext_is_unwritten(&tmp_ex))
5919 			ext4_ext_mark_unwritten(ex1);
5920 
5921 		ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5922 		ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5923 		*erp = ext4_ext_dirty(handle, inode2, path2 +
5924 				      path2->p_depth);
5925 		if (unlikely(*erp))
5926 			goto finish;
5927 		*erp = ext4_ext_dirty(handle, inode1, path1 +
5928 				      path1->p_depth);
5929 		/*
5930 		 * Looks scarry ah..? second inode already points to new blocks,
5931 		 * and it was successfully dirtied. But luckily error may happen
5932 		 * only due to journal error, so full transaction will be
5933 		 * aborted anyway.
5934 		 */
5935 		if (unlikely(*erp))
5936 			goto finish;
5937 		lblk1 += len;
5938 		lblk2 += len;
5939 		replaced_count += len;
5940 		count -= len;
5941 
5942 	repeat:
5943 		ext4_ext_drop_refs(path1);
5944 		kfree(path1);
5945 		ext4_ext_drop_refs(path2);
5946 		kfree(path2);
5947 		path1 = path2 = NULL;
5948 	}
5949 	return replaced_count;
5950 }
5951