xref: /openbmc/linux/fs/ext4/extents.c (revision 4e5e4705)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46 
47 #include <trace/events/ext4.h>
48 
49 /*
50  * used by extent splitting.
51  */
52 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
53 					due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
56 
57 #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
59 
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 				     struct ext4_extent_header *eh)
62 {
63 	struct ext4_inode_info *ei = EXT4_I(inode);
64 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 	__u32 csum;
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 			   EXT4_EXTENT_TAIL_OFFSET(eh));
69 	return cpu_to_le32(csum);
70 }
71 
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 					 struct ext4_extent_header *eh)
74 {
75 	struct ext4_extent_tail *et;
76 
77 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 		return 1;
80 
81 	et = find_ext4_extent_tail(eh);
82 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 		return 0;
84 	return 1;
85 }
86 
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 				       struct ext4_extent_header *eh)
89 {
90 	struct ext4_extent_tail *et;
91 
92 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 		return;
95 
96 	et = find_ext4_extent_tail(eh);
97 	et->et_checksum = ext4_extent_block_csum(inode, eh);
98 }
99 
100 static int ext4_split_extent(handle_t *handle,
101 				struct inode *inode,
102 				struct ext4_ext_path *path,
103 				struct ext4_map_blocks *map,
104 				int split_flag,
105 				int flags);
106 
107 static int ext4_split_extent_at(handle_t *handle,
108 			     struct inode *inode,
109 			     struct ext4_ext_path *path,
110 			     ext4_lblk_t split,
111 			     int split_flag,
112 			     int flags);
113 
114 static int ext4_find_delayed_extent(struct inode *inode,
115 				    struct extent_status *newes);
116 
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 					    struct inode *inode,
119 					    int needed)
120 {
121 	int err;
122 
123 	if (!ext4_handle_valid(handle))
124 		return 0;
125 	if (handle->h_buffer_credits > needed)
126 		return 0;
127 	err = ext4_journal_extend(handle, needed);
128 	if (err <= 0)
129 		return err;
130 	err = ext4_truncate_restart_trans(handle, inode, needed);
131 	if (err == 0)
132 		err = -EAGAIN;
133 
134 	return err;
135 }
136 
137 /*
138  * could return:
139  *  - EROFS
140  *  - ENOMEM
141  */
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 				struct ext4_ext_path *path)
144 {
145 	if (path->p_bh) {
146 		/* path points to block */
147 		return ext4_journal_get_write_access(handle, path->p_bh);
148 	}
149 	/* path points to leaf/index in inode body */
150 	/* we use in-core data, no need to protect them */
151 	return 0;
152 }
153 
154 /*
155  * could return:
156  *  - EROFS
157  *  - ENOMEM
158  *  - EIO
159  */
160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161 		     struct inode *inode, struct ext4_ext_path *path)
162 {
163 	int err;
164 	if (path->p_bh) {
165 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166 		/* path points to block */
167 		err = __ext4_handle_dirty_metadata(where, line, handle,
168 						   inode, path->p_bh);
169 	} else {
170 		/* path points to leaf/index in inode body */
171 		err = ext4_mark_inode_dirty(handle, inode);
172 	}
173 	return err;
174 }
175 
176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177 			      struct ext4_ext_path *path,
178 			      ext4_lblk_t block)
179 {
180 	if (path) {
181 		int depth = path->p_depth;
182 		struct ext4_extent *ex;
183 
184 		/*
185 		 * Try to predict block placement assuming that we are
186 		 * filling in a file which will eventually be
187 		 * non-sparse --- i.e., in the case of libbfd writing
188 		 * an ELF object sections out-of-order but in a way
189 		 * the eventually results in a contiguous object or
190 		 * executable file, or some database extending a table
191 		 * space file.  However, this is actually somewhat
192 		 * non-ideal if we are writing a sparse file such as
193 		 * qemu or KVM writing a raw image file that is going
194 		 * to stay fairly sparse, since it will end up
195 		 * fragmenting the file system's free space.  Maybe we
196 		 * should have some hueristics or some way to allow
197 		 * userspace to pass a hint to file system,
198 		 * especially if the latter case turns out to be
199 		 * common.
200 		 */
201 		ex = path[depth].p_ext;
202 		if (ex) {
203 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
205 
206 			if (block > ext_block)
207 				return ext_pblk + (block - ext_block);
208 			else
209 				return ext_pblk - (ext_block - block);
210 		}
211 
212 		/* it looks like index is empty;
213 		 * try to find starting block from index itself */
214 		if (path[depth].p_bh)
215 			return path[depth].p_bh->b_blocknr;
216 	}
217 
218 	/* OK. use inode's group */
219 	return ext4_inode_to_goal_block(inode);
220 }
221 
222 /*
223  * Allocation for a meta data block
224  */
225 static ext4_fsblk_t
226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227 			struct ext4_ext_path *path,
228 			struct ext4_extent *ex, int *err, unsigned int flags)
229 {
230 	ext4_fsblk_t goal, newblock;
231 
232 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234 					NULL, err);
235 	return newblock;
236 }
237 
238 static inline int ext4_ext_space_block(struct inode *inode, int check)
239 {
240 	int size;
241 
242 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243 			/ sizeof(struct ext4_extent);
244 #ifdef AGGRESSIVE_TEST
245 	if (!check && size > 6)
246 		size = 6;
247 #endif
248 	return size;
249 }
250 
251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
252 {
253 	int size;
254 
255 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256 			/ sizeof(struct ext4_extent_idx);
257 #ifdef AGGRESSIVE_TEST
258 	if (!check && size > 5)
259 		size = 5;
260 #endif
261 	return size;
262 }
263 
264 static inline int ext4_ext_space_root(struct inode *inode, int check)
265 {
266 	int size;
267 
268 	size = sizeof(EXT4_I(inode)->i_data);
269 	size -= sizeof(struct ext4_extent_header);
270 	size /= sizeof(struct ext4_extent);
271 #ifdef AGGRESSIVE_TEST
272 	if (!check && size > 3)
273 		size = 3;
274 #endif
275 	return size;
276 }
277 
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279 {
280 	int size;
281 
282 	size = sizeof(EXT4_I(inode)->i_data);
283 	size -= sizeof(struct ext4_extent_header);
284 	size /= sizeof(struct ext4_extent_idx);
285 #ifdef AGGRESSIVE_TEST
286 	if (!check && size > 4)
287 		size = 4;
288 #endif
289 	return size;
290 }
291 
292 /*
293  * Calculate the number of metadata blocks needed
294  * to allocate @blocks
295  * Worse case is one block per extent
296  */
297 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
298 {
299 	struct ext4_inode_info *ei = EXT4_I(inode);
300 	int idxs;
301 
302 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
303 		/ sizeof(struct ext4_extent_idx));
304 
305 	/*
306 	 * If the new delayed allocation block is contiguous with the
307 	 * previous da block, it can share index blocks with the
308 	 * previous block, so we only need to allocate a new index
309 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
310 	 * an additional index block, and at ldxs**3 blocks, yet
311 	 * another index blocks.
312 	 */
313 	if (ei->i_da_metadata_calc_len &&
314 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
315 		int num = 0;
316 
317 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
318 			num++;
319 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
320 			num++;
321 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
322 			num++;
323 			ei->i_da_metadata_calc_len = 0;
324 		} else
325 			ei->i_da_metadata_calc_len++;
326 		ei->i_da_metadata_calc_last_lblock++;
327 		return num;
328 	}
329 
330 	/*
331 	 * In the worst case we need a new set of index blocks at
332 	 * every level of the inode's extent tree.
333 	 */
334 	ei->i_da_metadata_calc_len = 1;
335 	ei->i_da_metadata_calc_last_lblock = lblock;
336 	return ext_depth(inode) + 1;
337 }
338 
339 static int
340 ext4_ext_max_entries(struct inode *inode, int depth)
341 {
342 	int max;
343 
344 	if (depth == ext_depth(inode)) {
345 		if (depth == 0)
346 			max = ext4_ext_space_root(inode, 1);
347 		else
348 			max = ext4_ext_space_root_idx(inode, 1);
349 	} else {
350 		if (depth == 0)
351 			max = ext4_ext_space_block(inode, 1);
352 		else
353 			max = ext4_ext_space_block_idx(inode, 1);
354 	}
355 
356 	return max;
357 }
358 
359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
360 {
361 	ext4_fsblk_t block = ext4_ext_pblock(ext);
362 	int len = ext4_ext_get_actual_len(ext);
363 
364 	if (len == 0)
365 		return 0;
366 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
367 }
368 
369 static int ext4_valid_extent_idx(struct inode *inode,
370 				struct ext4_extent_idx *ext_idx)
371 {
372 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
373 
374 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
375 }
376 
377 static int ext4_valid_extent_entries(struct inode *inode,
378 				struct ext4_extent_header *eh,
379 				int depth)
380 {
381 	unsigned short entries;
382 	if (eh->eh_entries == 0)
383 		return 1;
384 
385 	entries = le16_to_cpu(eh->eh_entries);
386 
387 	if (depth == 0) {
388 		/* leaf entries */
389 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
390 		while (entries) {
391 			if (!ext4_valid_extent(inode, ext))
392 				return 0;
393 			ext++;
394 			entries--;
395 		}
396 	} else {
397 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
398 		while (entries) {
399 			if (!ext4_valid_extent_idx(inode, ext_idx))
400 				return 0;
401 			ext_idx++;
402 			entries--;
403 		}
404 	}
405 	return 1;
406 }
407 
408 static int __ext4_ext_check(const char *function, unsigned int line,
409 			    struct inode *inode, struct ext4_extent_header *eh,
410 			    int depth, ext4_fsblk_t pblk)
411 {
412 	const char *error_msg;
413 	int max = 0;
414 
415 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
416 		error_msg = "invalid magic";
417 		goto corrupted;
418 	}
419 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
420 		error_msg = "unexpected eh_depth";
421 		goto corrupted;
422 	}
423 	if (unlikely(eh->eh_max == 0)) {
424 		error_msg = "invalid eh_max";
425 		goto corrupted;
426 	}
427 	max = ext4_ext_max_entries(inode, depth);
428 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
429 		error_msg = "too large eh_max";
430 		goto corrupted;
431 	}
432 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
433 		error_msg = "invalid eh_entries";
434 		goto corrupted;
435 	}
436 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
437 		error_msg = "invalid extent entries";
438 		goto corrupted;
439 	}
440 	/* Verify checksum on non-root extent tree nodes */
441 	if (ext_depth(inode) != depth &&
442 	    !ext4_extent_block_csum_verify(inode, eh)) {
443 		error_msg = "extent tree corrupted";
444 		goto corrupted;
445 	}
446 	return 0;
447 
448 corrupted:
449 	ext4_error_inode(inode, function, line, 0,
450 			 "pblk %llu bad header/extent: %s - magic %x, "
451 			 "entries %u, max %u(%u), depth %u(%u)",
452 			 (unsigned long long) pblk, error_msg,
453 			 le16_to_cpu(eh->eh_magic),
454 			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
455 			 max, le16_to_cpu(eh->eh_depth), depth);
456 	return -EIO;
457 }
458 
459 #define ext4_ext_check(inode, eh, depth, pblk)			\
460 	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
461 
462 int ext4_ext_check_inode(struct inode *inode)
463 {
464 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
465 }
466 
467 static struct buffer_head *
468 __read_extent_tree_block(const char *function, unsigned int line,
469 			 struct inode *inode, ext4_fsblk_t pblk, int depth,
470 			 int flags)
471 {
472 	struct buffer_head		*bh;
473 	int				err;
474 
475 	bh = sb_getblk(inode->i_sb, pblk);
476 	if (unlikely(!bh))
477 		return ERR_PTR(-ENOMEM);
478 
479 	if (!bh_uptodate_or_lock(bh)) {
480 		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
481 		err = bh_submit_read(bh);
482 		if (err < 0)
483 			goto errout;
484 	}
485 	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
486 		return bh;
487 	err = __ext4_ext_check(function, line, inode,
488 			       ext_block_hdr(bh), depth, pblk);
489 	if (err)
490 		goto errout;
491 	set_buffer_verified(bh);
492 	/*
493 	 * If this is a leaf block, cache all of its entries
494 	 */
495 	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
496 		struct ext4_extent_header *eh = ext_block_hdr(bh);
497 		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
498 		ext4_lblk_t prev = 0;
499 		int i;
500 
501 		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
502 			unsigned int status = EXTENT_STATUS_WRITTEN;
503 			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
504 			int len = ext4_ext_get_actual_len(ex);
505 
506 			if (prev && (prev != lblk))
507 				ext4_es_cache_extent(inode, prev,
508 						     lblk - prev, ~0,
509 						     EXTENT_STATUS_HOLE);
510 
511 			if (ext4_ext_is_uninitialized(ex))
512 				status = EXTENT_STATUS_UNWRITTEN;
513 			ext4_es_cache_extent(inode, lblk, len,
514 					     ext4_ext_pblock(ex), status);
515 			prev = lblk + len;
516 		}
517 	}
518 	return bh;
519 errout:
520 	put_bh(bh);
521 	return ERR_PTR(err);
522 
523 }
524 
525 #define read_extent_tree_block(inode, pblk, depth, flags)		\
526 	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
527 				 (depth), (flags))
528 
529 /*
530  * This function is called to cache a file's extent information in the
531  * extent status tree
532  */
533 int ext4_ext_precache(struct inode *inode)
534 {
535 	struct ext4_inode_info *ei = EXT4_I(inode);
536 	struct ext4_ext_path *path = NULL;
537 	struct buffer_head *bh;
538 	int i = 0, depth, ret = 0;
539 
540 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
541 		return 0;	/* not an extent-mapped inode */
542 
543 	down_read(&ei->i_data_sem);
544 	depth = ext_depth(inode);
545 
546 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
547 		       GFP_NOFS);
548 	if (path == NULL) {
549 		up_read(&ei->i_data_sem);
550 		return -ENOMEM;
551 	}
552 
553 	/* Don't cache anything if there are no external extent blocks */
554 	if (depth == 0)
555 		goto out;
556 	path[0].p_hdr = ext_inode_hdr(inode);
557 	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
558 	if (ret)
559 		goto out;
560 	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
561 	while (i >= 0) {
562 		/*
563 		 * If this is a leaf block or we've reached the end of
564 		 * the index block, go up
565 		 */
566 		if ((i == depth) ||
567 		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
568 			brelse(path[i].p_bh);
569 			path[i].p_bh = NULL;
570 			i--;
571 			continue;
572 		}
573 		bh = read_extent_tree_block(inode,
574 					    ext4_idx_pblock(path[i].p_idx++),
575 					    depth - i - 1,
576 					    EXT4_EX_FORCE_CACHE);
577 		if (IS_ERR(bh)) {
578 			ret = PTR_ERR(bh);
579 			break;
580 		}
581 		i++;
582 		path[i].p_bh = bh;
583 		path[i].p_hdr = ext_block_hdr(bh);
584 		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
585 	}
586 	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
587 out:
588 	up_read(&ei->i_data_sem);
589 	ext4_ext_drop_refs(path);
590 	kfree(path);
591 	return ret;
592 }
593 
594 #ifdef EXT_DEBUG
595 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
596 {
597 	int k, l = path->p_depth;
598 
599 	ext_debug("path:");
600 	for (k = 0; k <= l; k++, path++) {
601 		if (path->p_idx) {
602 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
603 			    ext4_idx_pblock(path->p_idx));
604 		} else if (path->p_ext) {
605 			ext_debug("  %d:[%d]%d:%llu ",
606 				  le32_to_cpu(path->p_ext->ee_block),
607 				  ext4_ext_is_uninitialized(path->p_ext),
608 				  ext4_ext_get_actual_len(path->p_ext),
609 				  ext4_ext_pblock(path->p_ext));
610 		} else
611 			ext_debug("  []");
612 	}
613 	ext_debug("\n");
614 }
615 
616 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
617 {
618 	int depth = ext_depth(inode);
619 	struct ext4_extent_header *eh;
620 	struct ext4_extent *ex;
621 	int i;
622 
623 	if (!path)
624 		return;
625 
626 	eh = path[depth].p_hdr;
627 	ex = EXT_FIRST_EXTENT(eh);
628 
629 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
630 
631 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
632 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
633 			  ext4_ext_is_uninitialized(ex),
634 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
635 	}
636 	ext_debug("\n");
637 }
638 
639 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
640 			ext4_fsblk_t newblock, int level)
641 {
642 	int depth = ext_depth(inode);
643 	struct ext4_extent *ex;
644 
645 	if (depth != level) {
646 		struct ext4_extent_idx *idx;
647 		idx = path[level].p_idx;
648 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
649 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
650 					le32_to_cpu(idx->ei_block),
651 					ext4_idx_pblock(idx),
652 					newblock);
653 			idx++;
654 		}
655 
656 		return;
657 	}
658 
659 	ex = path[depth].p_ext;
660 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
661 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
662 				le32_to_cpu(ex->ee_block),
663 				ext4_ext_pblock(ex),
664 				ext4_ext_is_uninitialized(ex),
665 				ext4_ext_get_actual_len(ex),
666 				newblock);
667 		ex++;
668 	}
669 }
670 
671 #else
672 #define ext4_ext_show_path(inode, path)
673 #define ext4_ext_show_leaf(inode, path)
674 #define ext4_ext_show_move(inode, path, newblock, level)
675 #endif
676 
677 void ext4_ext_drop_refs(struct ext4_ext_path *path)
678 {
679 	int depth = path->p_depth;
680 	int i;
681 
682 	for (i = 0; i <= depth; i++, path++)
683 		if (path->p_bh) {
684 			brelse(path->p_bh);
685 			path->p_bh = NULL;
686 		}
687 }
688 
689 /*
690  * ext4_ext_binsearch_idx:
691  * binary search for the closest index of the given block
692  * the header must be checked before calling this
693  */
694 static void
695 ext4_ext_binsearch_idx(struct inode *inode,
696 			struct ext4_ext_path *path, ext4_lblk_t block)
697 {
698 	struct ext4_extent_header *eh = path->p_hdr;
699 	struct ext4_extent_idx *r, *l, *m;
700 
701 
702 	ext_debug("binsearch for %u(idx):  ", block);
703 
704 	l = EXT_FIRST_INDEX(eh) + 1;
705 	r = EXT_LAST_INDEX(eh);
706 	while (l <= r) {
707 		m = l + (r - l) / 2;
708 		if (block < le32_to_cpu(m->ei_block))
709 			r = m - 1;
710 		else
711 			l = m + 1;
712 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
713 				m, le32_to_cpu(m->ei_block),
714 				r, le32_to_cpu(r->ei_block));
715 	}
716 
717 	path->p_idx = l - 1;
718 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
719 		  ext4_idx_pblock(path->p_idx));
720 
721 #ifdef CHECK_BINSEARCH
722 	{
723 		struct ext4_extent_idx *chix, *ix;
724 		int k;
725 
726 		chix = ix = EXT_FIRST_INDEX(eh);
727 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
728 		  if (k != 0 &&
729 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
730 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
731 				       "first=0x%p\n", k,
732 				       ix, EXT_FIRST_INDEX(eh));
733 				printk(KERN_DEBUG "%u <= %u\n",
734 				       le32_to_cpu(ix->ei_block),
735 				       le32_to_cpu(ix[-1].ei_block));
736 			}
737 			BUG_ON(k && le32_to_cpu(ix->ei_block)
738 					   <= le32_to_cpu(ix[-1].ei_block));
739 			if (block < le32_to_cpu(ix->ei_block))
740 				break;
741 			chix = ix;
742 		}
743 		BUG_ON(chix != path->p_idx);
744 	}
745 #endif
746 
747 }
748 
749 /*
750  * ext4_ext_binsearch:
751  * binary search for closest extent of the given block
752  * the header must be checked before calling this
753  */
754 static void
755 ext4_ext_binsearch(struct inode *inode,
756 		struct ext4_ext_path *path, ext4_lblk_t block)
757 {
758 	struct ext4_extent_header *eh = path->p_hdr;
759 	struct ext4_extent *r, *l, *m;
760 
761 	if (eh->eh_entries == 0) {
762 		/*
763 		 * this leaf is empty:
764 		 * we get such a leaf in split/add case
765 		 */
766 		return;
767 	}
768 
769 	ext_debug("binsearch for %u:  ", block);
770 
771 	l = EXT_FIRST_EXTENT(eh) + 1;
772 	r = EXT_LAST_EXTENT(eh);
773 
774 	while (l <= r) {
775 		m = l + (r - l) / 2;
776 		if (block < le32_to_cpu(m->ee_block))
777 			r = m - 1;
778 		else
779 			l = m + 1;
780 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
781 				m, le32_to_cpu(m->ee_block),
782 				r, le32_to_cpu(r->ee_block));
783 	}
784 
785 	path->p_ext = l - 1;
786 	ext_debug("  -> %d:%llu:[%d]%d ",
787 			le32_to_cpu(path->p_ext->ee_block),
788 			ext4_ext_pblock(path->p_ext),
789 			ext4_ext_is_uninitialized(path->p_ext),
790 			ext4_ext_get_actual_len(path->p_ext));
791 
792 #ifdef CHECK_BINSEARCH
793 	{
794 		struct ext4_extent *chex, *ex;
795 		int k;
796 
797 		chex = ex = EXT_FIRST_EXTENT(eh);
798 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
799 			BUG_ON(k && le32_to_cpu(ex->ee_block)
800 					  <= le32_to_cpu(ex[-1].ee_block));
801 			if (block < le32_to_cpu(ex->ee_block))
802 				break;
803 			chex = ex;
804 		}
805 		BUG_ON(chex != path->p_ext);
806 	}
807 #endif
808 
809 }
810 
811 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
812 {
813 	struct ext4_extent_header *eh;
814 
815 	eh = ext_inode_hdr(inode);
816 	eh->eh_depth = 0;
817 	eh->eh_entries = 0;
818 	eh->eh_magic = EXT4_EXT_MAGIC;
819 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
820 	ext4_mark_inode_dirty(handle, inode);
821 	return 0;
822 }
823 
824 struct ext4_ext_path *
825 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
826 		     struct ext4_ext_path *path, int flags)
827 {
828 	struct ext4_extent_header *eh;
829 	struct buffer_head *bh;
830 	short int depth, i, ppos = 0, alloc = 0;
831 	int ret;
832 
833 	eh = ext_inode_hdr(inode);
834 	depth = ext_depth(inode);
835 
836 	/* account possible depth increase */
837 	if (!path) {
838 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
839 				GFP_NOFS);
840 		if (!path)
841 			return ERR_PTR(-ENOMEM);
842 		alloc = 1;
843 	}
844 	path[0].p_hdr = eh;
845 	path[0].p_bh = NULL;
846 
847 	i = depth;
848 	/* walk through the tree */
849 	while (i) {
850 		ext_debug("depth %d: num %d, max %d\n",
851 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
852 
853 		ext4_ext_binsearch_idx(inode, path + ppos, block);
854 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
855 		path[ppos].p_depth = i;
856 		path[ppos].p_ext = NULL;
857 
858 		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
859 					    flags);
860 		if (IS_ERR(bh)) {
861 			ret = PTR_ERR(bh);
862 			goto err;
863 		}
864 
865 		eh = ext_block_hdr(bh);
866 		ppos++;
867 		if (unlikely(ppos > depth)) {
868 			put_bh(bh);
869 			EXT4_ERROR_INODE(inode,
870 					 "ppos %d > depth %d", ppos, depth);
871 			ret = -EIO;
872 			goto err;
873 		}
874 		path[ppos].p_bh = bh;
875 		path[ppos].p_hdr = eh;
876 	}
877 
878 	path[ppos].p_depth = i;
879 	path[ppos].p_ext = NULL;
880 	path[ppos].p_idx = NULL;
881 
882 	/* find extent */
883 	ext4_ext_binsearch(inode, path + ppos, block);
884 	/* if not an empty leaf */
885 	if (path[ppos].p_ext)
886 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
887 
888 	ext4_ext_show_path(inode, path);
889 
890 	return path;
891 
892 err:
893 	ext4_ext_drop_refs(path);
894 	if (alloc)
895 		kfree(path);
896 	return ERR_PTR(ret);
897 }
898 
899 /*
900  * ext4_ext_insert_index:
901  * insert new index [@logical;@ptr] into the block at @curp;
902  * check where to insert: before @curp or after @curp
903  */
904 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
905 				 struct ext4_ext_path *curp,
906 				 int logical, ext4_fsblk_t ptr)
907 {
908 	struct ext4_extent_idx *ix;
909 	int len, err;
910 
911 	err = ext4_ext_get_access(handle, inode, curp);
912 	if (err)
913 		return err;
914 
915 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
916 		EXT4_ERROR_INODE(inode,
917 				 "logical %d == ei_block %d!",
918 				 logical, le32_to_cpu(curp->p_idx->ei_block));
919 		return -EIO;
920 	}
921 
922 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
923 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
924 		EXT4_ERROR_INODE(inode,
925 				 "eh_entries %d >= eh_max %d!",
926 				 le16_to_cpu(curp->p_hdr->eh_entries),
927 				 le16_to_cpu(curp->p_hdr->eh_max));
928 		return -EIO;
929 	}
930 
931 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
932 		/* insert after */
933 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
934 		ix = curp->p_idx + 1;
935 	} else {
936 		/* insert before */
937 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
938 		ix = curp->p_idx;
939 	}
940 
941 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
942 	BUG_ON(len < 0);
943 	if (len > 0) {
944 		ext_debug("insert new index %d: "
945 				"move %d indices from 0x%p to 0x%p\n",
946 				logical, len, ix, ix + 1);
947 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
948 	}
949 
950 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
951 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
952 		return -EIO;
953 	}
954 
955 	ix->ei_block = cpu_to_le32(logical);
956 	ext4_idx_store_pblock(ix, ptr);
957 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
958 
959 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
960 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
961 		return -EIO;
962 	}
963 
964 	err = ext4_ext_dirty(handle, inode, curp);
965 	ext4_std_error(inode->i_sb, err);
966 
967 	return err;
968 }
969 
970 /*
971  * ext4_ext_split:
972  * inserts new subtree into the path, using free index entry
973  * at depth @at:
974  * - allocates all needed blocks (new leaf and all intermediate index blocks)
975  * - makes decision where to split
976  * - moves remaining extents and index entries (right to the split point)
977  *   into the newly allocated blocks
978  * - initializes subtree
979  */
980 static int ext4_ext_split(handle_t *handle, struct inode *inode,
981 			  unsigned int flags,
982 			  struct ext4_ext_path *path,
983 			  struct ext4_extent *newext, int at)
984 {
985 	struct buffer_head *bh = NULL;
986 	int depth = ext_depth(inode);
987 	struct ext4_extent_header *neh;
988 	struct ext4_extent_idx *fidx;
989 	int i = at, k, m, a;
990 	ext4_fsblk_t newblock, oldblock;
991 	__le32 border;
992 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
993 	int err = 0;
994 
995 	/* make decision: where to split? */
996 	/* FIXME: now decision is simplest: at current extent */
997 
998 	/* if current leaf will be split, then we should use
999 	 * border from split point */
1000 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1001 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1002 		return -EIO;
1003 	}
1004 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1005 		border = path[depth].p_ext[1].ee_block;
1006 		ext_debug("leaf will be split."
1007 				" next leaf starts at %d\n",
1008 				  le32_to_cpu(border));
1009 	} else {
1010 		border = newext->ee_block;
1011 		ext_debug("leaf will be added."
1012 				" next leaf starts at %d\n",
1013 				le32_to_cpu(border));
1014 	}
1015 
1016 	/*
1017 	 * If error occurs, then we break processing
1018 	 * and mark filesystem read-only. index won't
1019 	 * be inserted and tree will be in consistent
1020 	 * state. Next mount will repair buffers too.
1021 	 */
1022 
1023 	/*
1024 	 * Get array to track all allocated blocks.
1025 	 * We need this to handle errors and free blocks
1026 	 * upon them.
1027 	 */
1028 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1029 	if (!ablocks)
1030 		return -ENOMEM;
1031 
1032 	/* allocate all needed blocks */
1033 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1034 	for (a = 0; a < depth - at; a++) {
1035 		newblock = ext4_ext_new_meta_block(handle, inode, path,
1036 						   newext, &err, flags);
1037 		if (newblock == 0)
1038 			goto cleanup;
1039 		ablocks[a] = newblock;
1040 	}
1041 
1042 	/* initialize new leaf */
1043 	newblock = ablocks[--a];
1044 	if (unlikely(newblock == 0)) {
1045 		EXT4_ERROR_INODE(inode, "newblock == 0!");
1046 		err = -EIO;
1047 		goto cleanup;
1048 	}
1049 	bh = sb_getblk(inode->i_sb, newblock);
1050 	if (unlikely(!bh)) {
1051 		err = -ENOMEM;
1052 		goto cleanup;
1053 	}
1054 	lock_buffer(bh);
1055 
1056 	err = ext4_journal_get_create_access(handle, bh);
1057 	if (err)
1058 		goto cleanup;
1059 
1060 	neh = ext_block_hdr(bh);
1061 	neh->eh_entries = 0;
1062 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1063 	neh->eh_magic = EXT4_EXT_MAGIC;
1064 	neh->eh_depth = 0;
1065 
1066 	/* move remainder of path[depth] to the new leaf */
1067 	if (unlikely(path[depth].p_hdr->eh_entries !=
1068 		     path[depth].p_hdr->eh_max)) {
1069 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1070 				 path[depth].p_hdr->eh_entries,
1071 				 path[depth].p_hdr->eh_max);
1072 		err = -EIO;
1073 		goto cleanup;
1074 	}
1075 	/* start copy from next extent */
1076 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1077 	ext4_ext_show_move(inode, path, newblock, depth);
1078 	if (m) {
1079 		struct ext4_extent *ex;
1080 		ex = EXT_FIRST_EXTENT(neh);
1081 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1082 		le16_add_cpu(&neh->eh_entries, m);
1083 	}
1084 
1085 	ext4_extent_block_csum_set(inode, neh);
1086 	set_buffer_uptodate(bh);
1087 	unlock_buffer(bh);
1088 
1089 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1090 	if (err)
1091 		goto cleanup;
1092 	brelse(bh);
1093 	bh = NULL;
1094 
1095 	/* correct old leaf */
1096 	if (m) {
1097 		err = ext4_ext_get_access(handle, inode, path + depth);
1098 		if (err)
1099 			goto cleanup;
1100 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1101 		err = ext4_ext_dirty(handle, inode, path + depth);
1102 		if (err)
1103 			goto cleanup;
1104 
1105 	}
1106 
1107 	/* create intermediate indexes */
1108 	k = depth - at - 1;
1109 	if (unlikely(k < 0)) {
1110 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1111 		err = -EIO;
1112 		goto cleanup;
1113 	}
1114 	if (k)
1115 		ext_debug("create %d intermediate indices\n", k);
1116 	/* insert new index into current index block */
1117 	/* current depth stored in i var */
1118 	i = depth - 1;
1119 	while (k--) {
1120 		oldblock = newblock;
1121 		newblock = ablocks[--a];
1122 		bh = sb_getblk(inode->i_sb, newblock);
1123 		if (unlikely(!bh)) {
1124 			err = -ENOMEM;
1125 			goto cleanup;
1126 		}
1127 		lock_buffer(bh);
1128 
1129 		err = ext4_journal_get_create_access(handle, bh);
1130 		if (err)
1131 			goto cleanup;
1132 
1133 		neh = ext_block_hdr(bh);
1134 		neh->eh_entries = cpu_to_le16(1);
1135 		neh->eh_magic = EXT4_EXT_MAGIC;
1136 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1137 		neh->eh_depth = cpu_to_le16(depth - i);
1138 		fidx = EXT_FIRST_INDEX(neh);
1139 		fidx->ei_block = border;
1140 		ext4_idx_store_pblock(fidx, oldblock);
1141 
1142 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1143 				i, newblock, le32_to_cpu(border), oldblock);
1144 
1145 		/* move remainder of path[i] to the new index block */
1146 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1147 					EXT_LAST_INDEX(path[i].p_hdr))) {
1148 			EXT4_ERROR_INODE(inode,
1149 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1150 					 le32_to_cpu(path[i].p_ext->ee_block));
1151 			err = -EIO;
1152 			goto cleanup;
1153 		}
1154 		/* start copy indexes */
1155 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1156 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1157 				EXT_MAX_INDEX(path[i].p_hdr));
1158 		ext4_ext_show_move(inode, path, newblock, i);
1159 		if (m) {
1160 			memmove(++fidx, path[i].p_idx,
1161 				sizeof(struct ext4_extent_idx) * m);
1162 			le16_add_cpu(&neh->eh_entries, m);
1163 		}
1164 		ext4_extent_block_csum_set(inode, neh);
1165 		set_buffer_uptodate(bh);
1166 		unlock_buffer(bh);
1167 
1168 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1169 		if (err)
1170 			goto cleanup;
1171 		brelse(bh);
1172 		bh = NULL;
1173 
1174 		/* correct old index */
1175 		if (m) {
1176 			err = ext4_ext_get_access(handle, inode, path + i);
1177 			if (err)
1178 				goto cleanup;
1179 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1180 			err = ext4_ext_dirty(handle, inode, path + i);
1181 			if (err)
1182 				goto cleanup;
1183 		}
1184 
1185 		i--;
1186 	}
1187 
1188 	/* insert new index */
1189 	err = ext4_ext_insert_index(handle, inode, path + at,
1190 				    le32_to_cpu(border), newblock);
1191 
1192 cleanup:
1193 	if (bh) {
1194 		if (buffer_locked(bh))
1195 			unlock_buffer(bh);
1196 		brelse(bh);
1197 	}
1198 
1199 	if (err) {
1200 		/* free all allocated blocks in error case */
1201 		for (i = 0; i < depth; i++) {
1202 			if (!ablocks[i])
1203 				continue;
1204 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1205 					 EXT4_FREE_BLOCKS_METADATA);
1206 		}
1207 	}
1208 	kfree(ablocks);
1209 
1210 	return err;
1211 }
1212 
1213 /*
1214  * ext4_ext_grow_indepth:
1215  * implements tree growing procedure:
1216  * - allocates new block
1217  * - moves top-level data (index block or leaf) into the new block
1218  * - initializes new top-level, creating index that points to the
1219  *   just created block
1220  */
1221 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1222 				 unsigned int flags,
1223 				 struct ext4_extent *newext)
1224 {
1225 	struct ext4_extent_header *neh;
1226 	struct buffer_head *bh;
1227 	ext4_fsblk_t newblock;
1228 	int err = 0;
1229 
1230 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1231 		newext, &err, flags);
1232 	if (newblock == 0)
1233 		return err;
1234 
1235 	bh = sb_getblk(inode->i_sb, newblock);
1236 	if (unlikely(!bh))
1237 		return -ENOMEM;
1238 	lock_buffer(bh);
1239 
1240 	err = ext4_journal_get_create_access(handle, bh);
1241 	if (err) {
1242 		unlock_buffer(bh);
1243 		goto out;
1244 	}
1245 
1246 	/* move top-level index/leaf into new block */
1247 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1248 		sizeof(EXT4_I(inode)->i_data));
1249 
1250 	/* set size of new block */
1251 	neh = ext_block_hdr(bh);
1252 	/* old root could have indexes or leaves
1253 	 * so calculate e_max right way */
1254 	if (ext_depth(inode))
1255 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1256 	else
1257 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1258 	neh->eh_magic = EXT4_EXT_MAGIC;
1259 	ext4_extent_block_csum_set(inode, neh);
1260 	set_buffer_uptodate(bh);
1261 	unlock_buffer(bh);
1262 
1263 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1264 	if (err)
1265 		goto out;
1266 
1267 	/* Update top-level index: num,max,pointer */
1268 	neh = ext_inode_hdr(inode);
1269 	neh->eh_entries = cpu_to_le16(1);
1270 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1271 	if (neh->eh_depth == 0) {
1272 		/* Root extent block becomes index block */
1273 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1274 		EXT_FIRST_INDEX(neh)->ei_block =
1275 			EXT_FIRST_EXTENT(neh)->ee_block;
1276 	}
1277 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1278 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1279 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1280 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1281 
1282 	le16_add_cpu(&neh->eh_depth, 1);
1283 	ext4_mark_inode_dirty(handle, inode);
1284 out:
1285 	brelse(bh);
1286 
1287 	return err;
1288 }
1289 
1290 /*
1291  * ext4_ext_create_new_leaf:
1292  * finds empty index and adds new leaf.
1293  * if no free index is found, then it requests in-depth growing.
1294  */
1295 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1296 				    unsigned int mb_flags,
1297 				    unsigned int gb_flags,
1298 				    struct ext4_ext_path *path,
1299 				    struct ext4_extent *newext)
1300 {
1301 	struct ext4_ext_path *curp;
1302 	int depth, i, err = 0;
1303 
1304 repeat:
1305 	i = depth = ext_depth(inode);
1306 
1307 	/* walk up to the tree and look for free index entry */
1308 	curp = path + depth;
1309 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1310 		i--;
1311 		curp--;
1312 	}
1313 
1314 	/* we use already allocated block for index block,
1315 	 * so subsequent data blocks should be contiguous */
1316 	if (EXT_HAS_FREE_INDEX(curp)) {
1317 		/* if we found index with free entry, then use that
1318 		 * entry: create all needed subtree and add new leaf */
1319 		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1320 		if (err)
1321 			goto out;
1322 
1323 		/* refill path */
1324 		ext4_ext_drop_refs(path);
1325 		path = ext4_ext_find_extent(inode,
1326 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1327 				    path, gb_flags);
1328 		if (IS_ERR(path))
1329 			err = PTR_ERR(path);
1330 	} else {
1331 		/* tree is full, time to grow in depth */
1332 		err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1333 		if (err)
1334 			goto out;
1335 
1336 		/* refill path */
1337 		ext4_ext_drop_refs(path);
1338 		path = ext4_ext_find_extent(inode,
1339 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1340 				    path, gb_flags);
1341 		if (IS_ERR(path)) {
1342 			err = PTR_ERR(path);
1343 			goto out;
1344 		}
1345 
1346 		/*
1347 		 * only first (depth 0 -> 1) produces free space;
1348 		 * in all other cases we have to split the grown tree
1349 		 */
1350 		depth = ext_depth(inode);
1351 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1352 			/* now we need to split */
1353 			goto repeat;
1354 		}
1355 	}
1356 
1357 out:
1358 	return err;
1359 }
1360 
1361 /*
1362  * search the closest allocated block to the left for *logical
1363  * and returns it at @logical + it's physical address at @phys
1364  * if *logical is the smallest allocated block, the function
1365  * returns 0 at @phys
1366  * return value contains 0 (success) or error code
1367  */
1368 static int ext4_ext_search_left(struct inode *inode,
1369 				struct ext4_ext_path *path,
1370 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1371 {
1372 	struct ext4_extent_idx *ix;
1373 	struct ext4_extent *ex;
1374 	int depth, ee_len;
1375 
1376 	if (unlikely(path == NULL)) {
1377 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1378 		return -EIO;
1379 	}
1380 	depth = path->p_depth;
1381 	*phys = 0;
1382 
1383 	if (depth == 0 && path->p_ext == NULL)
1384 		return 0;
1385 
1386 	/* usually extent in the path covers blocks smaller
1387 	 * then *logical, but it can be that extent is the
1388 	 * first one in the file */
1389 
1390 	ex = path[depth].p_ext;
1391 	ee_len = ext4_ext_get_actual_len(ex);
1392 	if (*logical < le32_to_cpu(ex->ee_block)) {
1393 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1394 			EXT4_ERROR_INODE(inode,
1395 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1396 					 *logical, le32_to_cpu(ex->ee_block));
1397 			return -EIO;
1398 		}
1399 		while (--depth >= 0) {
1400 			ix = path[depth].p_idx;
1401 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1402 				EXT4_ERROR_INODE(inode,
1403 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1404 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1405 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1406 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1407 				  depth);
1408 				return -EIO;
1409 			}
1410 		}
1411 		return 0;
1412 	}
1413 
1414 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1415 		EXT4_ERROR_INODE(inode,
1416 				 "logical %d < ee_block %d + ee_len %d!",
1417 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1418 		return -EIO;
1419 	}
1420 
1421 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1422 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1423 	return 0;
1424 }
1425 
1426 /*
1427  * search the closest allocated block to the right for *logical
1428  * and returns it at @logical + it's physical address at @phys
1429  * if *logical is the largest allocated block, the function
1430  * returns 0 at @phys
1431  * return value contains 0 (success) or error code
1432  */
1433 static int ext4_ext_search_right(struct inode *inode,
1434 				 struct ext4_ext_path *path,
1435 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1436 				 struct ext4_extent **ret_ex)
1437 {
1438 	struct buffer_head *bh = NULL;
1439 	struct ext4_extent_header *eh;
1440 	struct ext4_extent_idx *ix;
1441 	struct ext4_extent *ex;
1442 	ext4_fsblk_t block;
1443 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1444 	int ee_len;
1445 
1446 	if (unlikely(path == NULL)) {
1447 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1448 		return -EIO;
1449 	}
1450 	depth = path->p_depth;
1451 	*phys = 0;
1452 
1453 	if (depth == 0 && path->p_ext == NULL)
1454 		return 0;
1455 
1456 	/* usually extent in the path covers blocks smaller
1457 	 * then *logical, but it can be that extent is the
1458 	 * first one in the file */
1459 
1460 	ex = path[depth].p_ext;
1461 	ee_len = ext4_ext_get_actual_len(ex);
1462 	if (*logical < le32_to_cpu(ex->ee_block)) {
1463 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1464 			EXT4_ERROR_INODE(inode,
1465 					 "first_extent(path[%d].p_hdr) != ex",
1466 					 depth);
1467 			return -EIO;
1468 		}
1469 		while (--depth >= 0) {
1470 			ix = path[depth].p_idx;
1471 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1472 				EXT4_ERROR_INODE(inode,
1473 						 "ix != EXT_FIRST_INDEX *logical %d!",
1474 						 *logical);
1475 				return -EIO;
1476 			}
1477 		}
1478 		goto found_extent;
1479 	}
1480 
1481 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1482 		EXT4_ERROR_INODE(inode,
1483 				 "logical %d < ee_block %d + ee_len %d!",
1484 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1485 		return -EIO;
1486 	}
1487 
1488 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1489 		/* next allocated block in this leaf */
1490 		ex++;
1491 		goto found_extent;
1492 	}
1493 
1494 	/* go up and search for index to the right */
1495 	while (--depth >= 0) {
1496 		ix = path[depth].p_idx;
1497 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1498 			goto got_index;
1499 	}
1500 
1501 	/* we've gone up to the root and found no index to the right */
1502 	return 0;
1503 
1504 got_index:
1505 	/* we've found index to the right, let's
1506 	 * follow it and find the closest allocated
1507 	 * block to the right */
1508 	ix++;
1509 	block = ext4_idx_pblock(ix);
1510 	while (++depth < path->p_depth) {
1511 		/* subtract from p_depth to get proper eh_depth */
1512 		bh = read_extent_tree_block(inode, block,
1513 					    path->p_depth - depth, 0);
1514 		if (IS_ERR(bh))
1515 			return PTR_ERR(bh);
1516 		eh = ext_block_hdr(bh);
1517 		ix = EXT_FIRST_INDEX(eh);
1518 		block = ext4_idx_pblock(ix);
1519 		put_bh(bh);
1520 	}
1521 
1522 	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1523 	if (IS_ERR(bh))
1524 		return PTR_ERR(bh);
1525 	eh = ext_block_hdr(bh);
1526 	ex = EXT_FIRST_EXTENT(eh);
1527 found_extent:
1528 	*logical = le32_to_cpu(ex->ee_block);
1529 	*phys = ext4_ext_pblock(ex);
1530 	*ret_ex = ex;
1531 	if (bh)
1532 		put_bh(bh);
1533 	return 0;
1534 }
1535 
1536 /*
1537  * ext4_ext_next_allocated_block:
1538  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1539  * NOTE: it considers block number from index entry as
1540  * allocated block. Thus, index entries have to be consistent
1541  * with leaves.
1542  */
1543 static ext4_lblk_t
1544 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1545 {
1546 	int depth;
1547 
1548 	BUG_ON(path == NULL);
1549 	depth = path->p_depth;
1550 
1551 	if (depth == 0 && path->p_ext == NULL)
1552 		return EXT_MAX_BLOCKS;
1553 
1554 	while (depth >= 0) {
1555 		if (depth == path->p_depth) {
1556 			/* leaf */
1557 			if (path[depth].p_ext &&
1558 				path[depth].p_ext !=
1559 					EXT_LAST_EXTENT(path[depth].p_hdr))
1560 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1561 		} else {
1562 			/* index */
1563 			if (path[depth].p_idx !=
1564 					EXT_LAST_INDEX(path[depth].p_hdr))
1565 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1566 		}
1567 		depth--;
1568 	}
1569 
1570 	return EXT_MAX_BLOCKS;
1571 }
1572 
1573 /*
1574  * ext4_ext_next_leaf_block:
1575  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1576  */
1577 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1578 {
1579 	int depth;
1580 
1581 	BUG_ON(path == NULL);
1582 	depth = path->p_depth;
1583 
1584 	/* zero-tree has no leaf blocks at all */
1585 	if (depth == 0)
1586 		return EXT_MAX_BLOCKS;
1587 
1588 	/* go to index block */
1589 	depth--;
1590 
1591 	while (depth >= 0) {
1592 		if (path[depth].p_idx !=
1593 				EXT_LAST_INDEX(path[depth].p_hdr))
1594 			return (ext4_lblk_t)
1595 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1596 		depth--;
1597 	}
1598 
1599 	return EXT_MAX_BLOCKS;
1600 }
1601 
1602 /*
1603  * ext4_ext_correct_indexes:
1604  * if leaf gets modified and modified extent is first in the leaf,
1605  * then we have to correct all indexes above.
1606  * TODO: do we need to correct tree in all cases?
1607  */
1608 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1609 				struct ext4_ext_path *path)
1610 {
1611 	struct ext4_extent_header *eh;
1612 	int depth = ext_depth(inode);
1613 	struct ext4_extent *ex;
1614 	__le32 border;
1615 	int k, err = 0;
1616 
1617 	eh = path[depth].p_hdr;
1618 	ex = path[depth].p_ext;
1619 
1620 	if (unlikely(ex == NULL || eh == NULL)) {
1621 		EXT4_ERROR_INODE(inode,
1622 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1623 		return -EIO;
1624 	}
1625 
1626 	if (depth == 0) {
1627 		/* there is no tree at all */
1628 		return 0;
1629 	}
1630 
1631 	if (ex != EXT_FIRST_EXTENT(eh)) {
1632 		/* we correct tree if first leaf got modified only */
1633 		return 0;
1634 	}
1635 
1636 	/*
1637 	 * TODO: we need correction if border is smaller than current one
1638 	 */
1639 	k = depth - 1;
1640 	border = path[depth].p_ext->ee_block;
1641 	err = ext4_ext_get_access(handle, inode, path + k);
1642 	if (err)
1643 		return err;
1644 	path[k].p_idx->ei_block = border;
1645 	err = ext4_ext_dirty(handle, inode, path + k);
1646 	if (err)
1647 		return err;
1648 
1649 	while (k--) {
1650 		/* change all left-side indexes */
1651 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1652 			break;
1653 		err = ext4_ext_get_access(handle, inode, path + k);
1654 		if (err)
1655 			break;
1656 		path[k].p_idx->ei_block = border;
1657 		err = ext4_ext_dirty(handle, inode, path + k);
1658 		if (err)
1659 			break;
1660 	}
1661 
1662 	return err;
1663 }
1664 
1665 int
1666 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1667 				struct ext4_extent *ex2)
1668 {
1669 	unsigned short ext1_ee_len, ext2_ee_len;
1670 
1671 	/*
1672 	 * Make sure that both extents are initialized. We don't merge
1673 	 * uninitialized extents so that we can be sure that end_io code has
1674 	 * the extent that was written properly split out and conversion to
1675 	 * initialized is trivial.
1676 	 */
1677 	if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1678 		return 0;
1679 
1680 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1681 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1682 
1683 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1684 			le32_to_cpu(ex2->ee_block))
1685 		return 0;
1686 
1687 	/*
1688 	 * To allow future support for preallocated extents to be added
1689 	 * as an RO_COMPAT feature, refuse to merge to extents if
1690 	 * this can result in the top bit of ee_len being set.
1691 	 */
1692 	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1693 		return 0;
1694 #ifdef AGGRESSIVE_TEST
1695 	if (ext1_ee_len >= 4)
1696 		return 0;
1697 #endif
1698 
1699 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1700 		return 1;
1701 	return 0;
1702 }
1703 
1704 /*
1705  * This function tries to merge the "ex" extent to the next extent in the tree.
1706  * It always tries to merge towards right. If you want to merge towards
1707  * left, pass "ex - 1" as argument instead of "ex".
1708  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1709  * 1 if they got merged.
1710  */
1711 static int ext4_ext_try_to_merge_right(struct inode *inode,
1712 				 struct ext4_ext_path *path,
1713 				 struct ext4_extent *ex)
1714 {
1715 	struct ext4_extent_header *eh;
1716 	unsigned int depth, len;
1717 	int merge_done = 0;
1718 
1719 	depth = ext_depth(inode);
1720 	BUG_ON(path[depth].p_hdr == NULL);
1721 	eh = path[depth].p_hdr;
1722 
1723 	while (ex < EXT_LAST_EXTENT(eh)) {
1724 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1725 			break;
1726 		/* merge with next extent! */
1727 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1728 				+ ext4_ext_get_actual_len(ex + 1));
1729 
1730 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1731 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1732 				* sizeof(struct ext4_extent);
1733 			memmove(ex + 1, ex + 2, len);
1734 		}
1735 		le16_add_cpu(&eh->eh_entries, -1);
1736 		merge_done = 1;
1737 		WARN_ON(eh->eh_entries == 0);
1738 		if (!eh->eh_entries)
1739 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1740 	}
1741 
1742 	return merge_done;
1743 }
1744 
1745 /*
1746  * This function does a very simple check to see if we can collapse
1747  * an extent tree with a single extent tree leaf block into the inode.
1748  */
1749 static void ext4_ext_try_to_merge_up(handle_t *handle,
1750 				     struct inode *inode,
1751 				     struct ext4_ext_path *path)
1752 {
1753 	size_t s;
1754 	unsigned max_root = ext4_ext_space_root(inode, 0);
1755 	ext4_fsblk_t blk;
1756 
1757 	if ((path[0].p_depth != 1) ||
1758 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1759 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1760 		return;
1761 
1762 	/*
1763 	 * We need to modify the block allocation bitmap and the block
1764 	 * group descriptor to release the extent tree block.  If we
1765 	 * can't get the journal credits, give up.
1766 	 */
1767 	if (ext4_journal_extend(handle, 2))
1768 		return;
1769 
1770 	/*
1771 	 * Copy the extent data up to the inode
1772 	 */
1773 	blk = ext4_idx_pblock(path[0].p_idx);
1774 	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1775 		sizeof(struct ext4_extent_idx);
1776 	s += sizeof(struct ext4_extent_header);
1777 
1778 	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1779 	path[0].p_depth = 0;
1780 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1781 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1782 	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1783 
1784 	brelse(path[1].p_bh);
1785 	ext4_free_blocks(handle, inode, NULL, blk, 1,
1786 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET |
1787 			 EXT4_FREE_BLOCKS_RESERVE);
1788 }
1789 
1790 /*
1791  * This function tries to merge the @ex extent to neighbours in the tree.
1792  * return 1 if merge left else 0.
1793  */
1794 static void ext4_ext_try_to_merge(handle_t *handle,
1795 				  struct inode *inode,
1796 				  struct ext4_ext_path *path,
1797 				  struct ext4_extent *ex) {
1798 	struct ext4_extent_header *eh;
1799 	unsigned int depth;
1800 	int merge_done = 0;
1801 
1802 	depth = ext_depth(inode);
1803 	BUG_ON(path[depth].p_hdr == NULL);
1804 	eh = path[depth].p_hdr;
1805 
1806 	if (ex > EXT_FIRST_EXTENT(eh))
1807 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1808 
1809 	if (!merge_done)
1810 		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1811 
1812 	ext4_ext_try_to_merge_up(handle, inode, path);
1813 }
1814 
1815 /*
1816  * check if a portion of the "newext" extent overlaps with an
1817  * existing extent.
1818  *
1819  * If there is an overlap discovered, it updates the length of the newext
1820  * such that there will be no overlap, and then returns 1.
1821  * If there is no overlap found, it returns 0.
1822  */
1823 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1824 					   struct inode *inode,
1825 					   struct ext4_extent *newext,
1826 					   struct ext4_ext_path *path)
1827 {
1828 	ext4_lblk_t b1, b2;
1829 	unsigned int depth, len1;
1830 	unsigned int ret = 0;
1831 
1832 	b1 = le32_to_cpu(newext->ee_block);
1833 	len1 = ext4_ext_get_actual_len(newext);
1834 	depth = ext_depth(inode);
1835 	if (!path[depth].p_ext)
1836 		goto out;
1837 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1838 	b2 &= ~(sbi->s_cluster_ratio - 1);
1839 
1840 	/*
1841 	 * get the next allocated block if the extent in the path
1842 	 * is before the requested block(s)
1843 	 */
1844 	if (b2 < b1) {
1845 		b2 = ext4_ext_next_allocated_block(path);
1846 		if (b2 == EXT_MAX_BLOCKS)
1847 			goto out;
1848 		b2 &= ~(sbi->s_cluster_ratio - 1);
1849 	}
1850 
1851 	/* check for wrap through zero on extent logical start block*/
1852 	if (b1 + len1 < b1) {
1853 		len1 = EXT_MAX_BLOCKS - b1;
1854 		newext->ee_len = cpu_to_le16(len1);
1855 		ret = 1;
1856 	}
1857 
1858 	/* check for overlap */
1859 	if (b1 + len1 > b2) {
1860 		newext->ee_len = cpu_to_le16(b2 - b1);
1861 		ret = 1;
1862 	}
1863 out:
1864 	return ret;
1865 }
1866 
1867 /*
1868  * ext4_ext_insert_extent:
1869  * tries to merge requsted extent into the existing extent or
1870  * inserts requested extent as new one into the tree,
1871  * creating new leaf in the no-space case.
1872  */
1873 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1874 				struct ext4_ext_path *path,
1875 				struct ext4_extent *newext, int gb_flags)
1876 {
1877 	struct ext4_extent_header *eh;
1878 	struct ext4_extent *ex, *fex;
1879 	struct ext4_extent *nearex; /* nearest extent */
1880 	struct ext4_ext_path *npath = NULL;
1881 	int depth, len, err;
1882 	ext4_lblk_t next;
1883 	int mb_flags = 0;
1884 
1885 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1886 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1887 		return -EIO;
1888 	}
1889 	depth = ext_depth(inode);
1890 	ex = path[depth].p_ext;
1891 	eh = path[depth].p_hdr;
1892 	if (unlikely(path[depth].p_hdr == NULL)) {
1893 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1894 		return -EIO;
1895 	}
1896 
1897 	/* try to insert block into found extent and return */
1898 	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1899 
1900 		/*
1901 		 * Try to see whether we should rather test the extent on
1902 		 * right from ex, or from the left of ex. This is because
1903 		 * ext4_ext_find_extent() can return either extent on the
1904 		 * left, or on the right from the searched position. This
1905 		 * will make merging more effective.
1906 		 */
1907 		if (ex < EXT_LAST_EXTENT(eh) &&
1908 		    (le32_to_cpu(ex->ee_block) +
1909 		    ext4_ext_get_actual_len(ex) <
1910 		    le32_to_cpu(newext->ee_block))) {
1911 			ex += 1;
1912 			goto prepend;
1913 		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1914 			   (le32_to_cpu(newext->ee_block) +
1915 			   ext4_ext_get_actual_len(newext) <
1916 			   le32_to_cpu(ex->ee_block)))
1917 			ex -= 1;
1918 
1919 		/* Try to append newex to the ex */
1920 		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1921 			ext_debug("append [%d]%d block to %u:[%d]%d"
1922 				  "(from %llu)\n",
1923 				  ext4_ext_is_uninitialized(newext),
1924 				  ext4_ext_get_actual_len(newext),
1925 				  le32_to_cpu(ex->ee_block),
1926 				  ext4_ext_is_uninitialized(ex),
1927 				  ext4_ext_get_actual_len(ex),
1928 				  ext4_ext_pblock(ex));
1929 			err = ext4_ext_get_access(handle, inode,
1930 						  path + depth);
1931 			if (err)
1932 				return err;
1933 
1934 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1935 					+ ext4_ext_get_actual_len(newext));
1936 			eh = path[depth].p_hdr;
1937 			nearex = ex;
1938 			goto merge;
1939 		}
1940 
1941 prepend:
1942 		/* Try to prepend newex to the ex */
1943 		if (ext4_can_extents_be_merged(inode, newext, ex)) {
1944 			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1945 				  "(from %llu)\n",
1946 				  le32_to_cpu(newext->ee_block),
1947 				  ext4_ext_is_uninitialized(newext),
1948 				  ext4_ext_get_actual_len(newext),
1949 				  le32_to_cpu(ex->ee_block),
1950 				  ext4_ext_is_uninitialized(ex),
1951 				  ext4_ext_get_actual_len(ex),
1952 				  ext4_ext_pblock(ex));
1953 			err = ext4_ext_get_access(handle, inode,
1954 						  path + depth);
1955 			if (err)
1956 				return err;
1957 
1958 			ex->ee_block = newext->ee_block;
1959 			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1960 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1961 					+ ext4_ext_get_actual_len(newext));
1962 			eh = path[depth].p_hdr;
1963 			nearex = ex;
1964 			goto merge;
1965 		}
1966 	}
1967 
1968 	depth = ext_depth(inode);
1969 	eh = path[depth].p_hdr;
1970 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1971 		goto has_space;
1972 
1973 	/* probably next leaf has space for us? */
1974 	fex = EXT_LAST_EXTENT(eh);
1975 	next = EXT_MAX_BLOCKS;
1976 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1977 		next = ext4_ext_next_leaf_block(path);
1978 	if (next != EXT_MAX_BLOCKS) {
1979 		ext_debug("next leaf block - %u\n", next);
1980 		BUG_ON(npath != NULL);
1981 		npath = ext4_ext_find_extent(inode, next, NULL, 0);
1982 		if (IS_ERR(npath))
1983 			return PTR_ERR(npath);
1984 		BUG_ON(npath->p_depth != path->p_depth);
1985 		eh = npath[depth].p_hdr;
1986 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1987 			ext_debug("next leaf isn't full(%d)\n",
1988 				  le16_to_cpu(eh->eh_entries));
1989 			path = npath;
1990 			goto has_space;
1991 		}
1992 		ext_debug("next leaf has no free space(%d,%d)\n",
1993 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1994 	}
1995 
1996 	/*
1997 	 * There is no free space in the found leaf.
1998 	 * We're gonna add a new leaf in the tree.
1999 	 */
2000 	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2001 		mb_flags = EXT4_MB_USE_RESERVED;
2002 	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2003 				       path, newext);
2004 	if (err)
2005 		goto cleanup;
2006 	depth = ext_depth(inode);
2007 	eh = path[depth].p_hdr;
2008 
2009 has_space:
2010 	nearex = path[depth].p_ext;
2011 
2012 	err = ext4_ext_get_access(handle, inode, path + depth);
2013 	if (err)
2014 		goto cleanup;
2015 
2016 	if (!nearex) {
2017 		/* there is no extent in this leaf, create first one */
2018 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2019 				le32_to_cpu(newext->ee_block),
2020 				ext4_ext_pblock(newext),
2021 				ext4_ext_is_uninitialized(newext),
2022 				ext4_ext_get_actual_len(newext));
2023 		nearex = EXT_FIRST_EXTENT(eh);
2024 	} else {
2025 		if (le32_to_cpu(newext->ee_block)
2026 			   > le32_to_cpu(nearex->ee_block)) {
2027 			/* Insert after */
2028 			ext_debug("insert %u:%llu:[%d]%d before: "
2029 					"nearest %p\n",
2030 					le32_to_cpu(newext->ee_block),
2031 					ext4_ext_pblock(newext),
2032 					ext4_ext_is_uninitialized(newext),
2033 					ext4_ext_get_actual_len(newext),
2034 					nearex);
2035 			nearex++;
2036 		} else {
2037 			/* Insert before */
2038 			BUG_ON(newext->ee_block == nearex->ee_block);
2039 			ext_debug("insert %u:%llu:[%d]%d after: "
2040 					"nearest %p\n",
2041 					le32_to_cpu(newext->ee_block),
2042 					ext4_ext_pblock(newext),
2043 					ext4_ext_is_uninitialized(newext),
2044 					ext4_ext_get_actual_len(newext),
2045 					nearex);
2046 		}
2047 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2048 		if (len > 0) {
2049 			ext_debug("insert %u:%llu:[%d]%d: "
2050 					"move %d extents from 0x%p to 0x%p\n",
2051 					le32_to_cpu(newext->ee_block),
2052 					ext4_ext_pblock(newext),
2053 					ext4_ext_is_uninitialized(newext),
2054 					ext4_ext_get_actual_len(newext),
2055 					len, nearex, nearex + 1);
2056 			memmove(nearex + 1, nearex,
2057 				len * sizeof(struct ext4_extent));
2058 		}
2059 	}
2060 
2061 	le16_add_cpu(&eh->eh_entries, 1);
2062 	path[depth].p_ext = nearex;
2063 	nearex->ee_block = newext->ee_block;
2064 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2065 	nearex->ee_len = newext->ee_len;
2066 
2067 merge:
2068 	/* try to merge extents */
2069 	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2070 		ext4_ext_try_to_merge(handle, inode, path, nearex);
2071 
2072 
2073 	/* time to correct all indexes above */
2074 	err = ext4_ext_correct_indexes(handle, inode, path);
2075 	if (err)
2076 		goto cleanup;
2077 
2078 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2079 
2080 cleanup:
2081 	if (npath) {
2082 		ext4_ext_drop_refs(npath);
2083 		kfree(npath);
2084 	}
2085 	return err;
2086 }
2087 
2088 static int ext4_fill_fiemap_extents(struct inode *inode,
2089 				    ext4_lblk_t block, ext4_lblk_t num,
2090 				    struct fiemap_extent_info *fieinfo)
2091 {
2092 	struct ext4_ext_path *path = NULL;
2093 	struct ext4_extent *ex;
2094 	struct extent_status es;
2095 	ext4_lblk_t next, next_del, start = 0, end = 0;
2096 	ext4_lblk_t last = block + num;
2097 	int exists, depth = 0, err = 0;
2098 	unsigned int flags = 0;
2099 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2100 
2101 	while (block < last && block != EXT_MAX_BLOCKS) {
2102 		num = last - block;
2103 		/* find extent for this block */
2104 		down_read(&EXT4_I(inode)->i_data_sem);
2105 
2106 		if (path && ext_depth(inode) != depth) {
2107 			/* depth was changed. we have to realloc path */
2108 			kfree(path);
2109 			path = NULL;
2110 		}
2111 
2112 		path = ext4_ext_find_extent(inode, block, path, 0);
2113 		if (IS_ERR(path)) {
2114 			up_read(&EXT4_I(inode)->i_data_sem);
2115 			err = PTR_ERR(path);
2116 			path = NULL;
2117 			break;
2118 		}
2119 
2120 		depth = ext_depth(inode);
2121 		if (unlikely(path[depth].p_hdr == NULL)) {
2122 			up_read(&EXT4_I(inode)->i_data_sem);
2123 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2124 			err = -EIO;
2125 			break;
2126 		}
2127 		ex = path[depth].p_ext;
2128 		next = ext4_ext_next_allocated_block(path);
2129 		ext4_ext_drop_refs(path);
2130 
2131 		flags = 0;
2132 		exists = 0;
2133 		if (!ex) {
2134 			/* there is no extent yet, so try to allocate
2135 			 * all requested space */
2136 			start = block;
2137 			end = block + num;
2138 		} else if (le32_to_cpu(ex->ee_block) > block) {
2139 			/* need to allocate space before found extent */
2140 			start = block;
2141 			end = le32_to_cpu(ex->ee_block);
2142 			if (block + num < end)
2143 				end = block + num;
2144 		} else if (block >= le32_to_cpu(ex->ee_block)
2145 					+ ext4_ext_get_actual_len(ex)) {
2146 			/* need to allocate space after found extent */
2147 			start = block;
2148 			end = block + num;
2149 			if (end >= next)
2150 				end = next;
2151 		} else if (block >= le32_to_cpu(ex->ee_block)) {
2152 			/*
2153 			 * some part of requested space is covered
2154 			 * by found extent
2155 			 */
2156 			start = block;
2157 			end = le32_to_cpu(ex->ee_block)
2158 				+ ext4_ext_get_actual_len(ex);
2159 			if (block + num < end)
2160 				end = block + num;
2161 			exists = 1;
2162 		} else {
2163 			BUG();
2164 		}
2165 		BUG_ON(end <= start);
2166 
2167 		if (!exists) {
2168 			es.es_lblk = start;
2169 			es.es_len = end - start;
2170 			es.es_pblk = 0;
2171 		} else {
2172 			es.es_lblk = le32_to_cpu(ex->ee_block);
2173 			es.es_len = ext4_ext_get_actual_len(ex);
2174 			es.es_pblk = ext4_ext_pblock(ex);
2175 			if (ext4_ext_is_uninitialized(ex))
2176 				flags |= FIEMAP_EXTENT_UNWRITTEN;
2177 		}
2178 
2179 		/*
2180 		 * Find delayed extent and update es accordingly. We call
2181 		 * it even in !exists case to find out whether es is the
2182 		 * last existing extent or not.
2183 		 */
2184 		next_del = ext4_find_delayed_extent(inode, &es);
2185 		if (!exists && next_del) {
2186 			exists = 1;
2187 			flags |= (FIEMAP_EXTENT_DELALLOC |
2188 				  FIEMAP_EXTENT_UNKNOWN);
2189 		}
2190 		up_read(&EXT4_I(inode)->i_data_sem);
2191 
2192 		if (unlikely(es.es_len == 0)) {
2193 			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2194 			err = -EIO;
2195 			break;
2196 		}
2197 
2198 		/*
2199 		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2200 		 * we need to check next == EXT_MAX_BLOCKS because it is
2201 		 * possible that an extent is with unwritten and delayed
2202 		 * status due to when an extent is delayed allocated and
2203 		 * is allocated by fallocate status tree will track both of
2204 		 * them in a extent.
2205 		 *
2206 		 * So we could return a unwritten and delayed extent, and
2207 		 * its block is equal to 'next'.
2208 		 */
2209 		if (next == next_del && next == EXT_MAX_BLOCKS) {
2210 			flags |= FIEMAP_EXTENT_LAST;
2211 			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2212 				     next != EXT_MAX_BLOCKS)) {
2213 				EXT4_ERROR_INODE(inode,
2214 						 "next extent == %u, next "
2215 						 "delalloc extent = %u",
2216 						 next, next_del);
2217 				err = -EIO;
2218 				break;
2219 			}
2220 		}
2221 
2222 		if (exists) {
2223 			err = fiemap_fill_next_extent(fieinfo,
2224 				(__u64)es.es_lblk << blksize_bits,
2225 				(__u64)es.es_pblk << blksize_bits,
2226 				(__u64)es.es_len << blksize_bits,
2227 				flags);
2228 			if (err < 0)
2229 				break;
2230 			if (err == 1) {
2231 				err = 0;
2232 				break;
2233 			}
2234 		}
2235 
2236 		block = es.es_lblk + es.es_len;
2237 	}
2238 
2239 	if (path) {
2240 		ext4_ext_drop_refs(path);
2241 		kfree(path);
2242 	}
2243 
2244 	return err;
2245 }
2246 
2247 /*
2248  * ext4_ext_put_gap_in_cache:
2249  * calculate boundaries of the gap that the requested block fits into
2250  * and cache this gap
2251  */
2252 static void
2253 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2254 				ext4_lblk_t block)
2255 {
2256 	int depth = ext_depth(inode);
2257 	unsigned long len = 0;
2258 	ext4_lblk_t lblock = 0;
2259 	struct ext4_extent *ex;
2260 
2261 	ex = path[depth].p_ext;
2262 	if (ex == NULL) {
2263 		/*
2264 		 * there is no extent yet, so gap is [0;-] and we
2265 		 * don't cache it
2266 		 */
2267 		ext_debug("cache gap(whole file):");
2268 	} else if (block < le32_to_cpu(ex->ee_block)) {
2269 		lblock = block;
2270 		len = le32_to_cpu(ex->ee_block) - block;
2271 		ext_debug("cache gap(before): %u [%u:%u]",
2272 				block,
2273 				le32_to_cpu(ex->ee_block),
2274 				 ext4_ext_get_actual_len(ex));
2275 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2276 			ext4_es_insert_extent(inode, lblock, len, ~0,
2277 					      EXTENT_STATUS_HOLE);
2278 	} else if (block >= le32_to_cpu(ex->ee_block)
2279 			+ ext4_ext_get_actual_len(ex)) {
2280 		ext4_lblk_t next;
2281 		lblock = le32_to_cpu(ex->ee_block)
2282 			+ ext4_ext_get_actual_len(ex);
2283 
2284 		next = ext4_ext_next_allocated_block(path);
2285 		ext_debug("cache gap(after): [%u:%u] %u",
2286 				le32_to_cpu(ex->ee_block),
2287 				ext4_ext_get_actual_len(ex),
2288 				block);
2289 		BUG_ON(next == lblock);
2290 		len = next - lblock;
2291 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2292 			ext4_es_insert_extent(inode, lblock, len, ~0,
2293 					      EXTENT_STATUS_HOLE);
2294 	} else {
2295 		BUG();
2296 	}
2297 
2298 	ext_debug(" -> %u:%lu\n", lblock, len);
2299 }
2300 
2301 /*
2302  * ext4_ext_rm_idx:
2303  * removes index from the index block.
2304  */
2305 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2306 			struct ext4_ext_path *path, int depth)
2307 {
2308 	int err;
2309 	ext4_fsblk_t leaf;
2310 
2311 	/* free index block */
2312 	depth--;
2313 	path = path + depth;
2314 	leaf = ext4_idx_pblock(path->p_idx);
2315 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2316 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2317 		return -EIO;
2318 	}
2319 	err = ext4_ext_get_access(handle, inode, path);
2320 	if (err)
2321 		return err;
2322 
2323 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2324 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2325 		len *= sizeof(struct ext4_extent_idx);
2326 		memmove(path->p_idx, path->p_idx + 1, len);
2327 	}
2328 
2329 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2330 	err = ext4_ext_dirty(handle, inode, path);
2331 	if (err)
2332 		return err;
2333 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2334 	trace_ext4_ext_rm_idx(inode, leaf);
2335 
2336 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2337 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2338 
2339 	while (--depth >= 0) {
2340 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2341 			break;
2342 		path--;
2343 		err = ext4_ext_get_access(handle, inode, path);
2344 		if (err)
2345 			break;
2346 		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2347 		err = ext4_ext_dirty(handle, inode, path);
2348 		if (err)
2349 			break;
2350 	}
2351 	return err;
2352 }
2353 
2354 /*
2355  * ext4_ext_calc_credits_for_single_extent:
2356  * This routine returns max. credits that needed to insert an extent
2357  * to the extent tree.
2358  * When pass the actual path, the caller should calculate credits
2359  * under i_data_sem.
2360  */
2361 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2362 						struct ext4_ext_path *path)
2363 {
2364 	if (path) {
2365 		int depth = ext_depth(inode);
2366 		int ret = 0;
2367 
2368 		/* probably there is space in leaf? */
2369 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2370 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2371 
2372 			/*
2373 			 *  There are some space in the leaf tree, no
2374 			 *  need to account for leaf block credit
2375 			 *
2376 			 *  bitmaps and block group descriptor blocks
2377 			 *  and other metadata blocks still need to be
2378 			 *  accounted.
2379 			 */
2380 			/* 1 bitmap, 1 block group descriptor */
2381 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2382 			return ret;
2383 		}
2384 	}
2385 
2386 	return ext4_chunk_trans_blocks(inode, nrblocks);
2387 }
2388 
2389 /*
2390  * How many index/leaf blocks need to change/allocate to add @extents extents?
2391  *
2392  * If we add a single extent, then in the worse case, each tree level
2393  * index/leaf need to be changed in case of the tree split.
2394  *
2395  * If more extents are inserted, they could cause the whole tree split more
2396  * than once, but this is really rare.
2397  */
2398 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2399 {
2400 	int index;
2401 	int depth;
2402 
2403 	/* If we are converting the inline data, only one is needed here. */
2404 	if (ext4_has_inline_data(inode))
2405 		return 1;
2406 
2407 	depth = ext_depth(inode);
2408 
2409 	if (extents <= 1)
2410 		index = depth * 2;
2411 	else
2412 		index = depth * 3;
2413 
2414 	return index;
2415 }
2416 
2417 static inline int get_default_free_blocks_flags(struct inode *inode)
2418 {
2419 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2420 		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2421 	else if (ext4_should_journal_data(inode))
2422 		return EXT4_FREE_BLOCKS_FORGET;
2423 	return 0;
2424 }
2425 
2426 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2427 			      struct ext4_extent *ex,
2428 			      long long *partial_cluster,
2429 			      ext4_lblk_t from, ext4_lblk_t to)
2430 {
2431 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2432 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2433 	ext4_fsblk_t pblk;
2434 	int flags = get_default_free_blocks_flags(inode);
2435 
2436 	/*
2437 	 * For bigalloc file systems, we never free a partial cluster
2438 	 * at the beginning of the extent.  Instead, we make a note
2439 	 * that we tried freeing the cluster, and check to see if we
2440 	 * need to free it on a subsequent call to ext4_remove_blocks,
2441 	 * or at the end of the ext4_truncate() operation.
2442 	 */
2443 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2444 
2445 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2446 	/*
2447 	 * If we have a partial cluster, and it's different from the
2448 	 * cluster of the last block, we need to explicitly free the
2449 	 * partial cluster here.
2450 	 */
2451 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2452 	if ((*partial_cluster > 0) &&
2453 	    (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2454 		ext4_free_blocks(handle, inode, NULL,
2455 				 EXT4_C2B(sbi, *partial_cluster),
2456 				 sbi->s_cluster_ratio, flags);
2457 		*partial_cluster = 0;
2458 	}
2459 
2460 #ifdef EXTENTS_STATS
2461 	{
2462 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2463 		spin_lock(&sbi->s_ext_stats_lock);
2464 		sbi->s_ext_blocks += ee_len;
2465 		sbi->s_ext_extents++;
2466 		if (ee_len < sbi->s_ext_min)
2467 			sbi->s_ext_min = ee_len;
2468 		if (ee_len > sbi->s_ext_max)
2469 			sbi->s_ext_max = ee_len;
2470 		if (ext_depth(inode) > sbi->s_depth_max)
2471 			sbi->s_depth_max = ext_depth(inode);
2472 		spin_unlock(&sbi->s_ext_stats_lock);
2473 	}
2474 #endif
2475 	if (from >= le32_to_cpu(ex->ee_block)
2476 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2477 		/* tail removal */
2478 		ext4_lblk_t num;
2479 		unsigned int unaligned;
2480 
2481 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2482 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2483 		/*
2484 		 * Usually we want to free partial cluster at the end of the
2485 		 * extent, except for the situation when the cluster is still
2486 		 * used by any other extent (partial_cluster is negative).
2487 		 */
2488 		if (*partial_cluster < 0 &&
2489 		    -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2490 			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2491 
2492 		ext_debug("free last %u blocks starting %llu partial %lld\n",
2493 			  num, pblk, *partial_cluster);
2494 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2495 		/*
2496 		 * If the block range to be freed didn't start at the
2497 		 * beginning of a cluster, and we removed the entire
2498 		 * extent and the cluster is not used by any other extent,
2499 		 * save the partial cluster here, since we might need to
2500 		 * delete if we determine that the truncate operation has
2501 		 * removed all of the blocks in the cluster.
2502 		 *
2503 		 * On the other hand, if we did not manage to free the whole
2504 		 * extent, we have to mark the cluster as used (store negative
2505 		 * cluster number in partial_cluster).
2506 		 */
2507 		unaligned = pblk & (sbi->s_cluster_ratio - 1);
2508 		if (unaligned && (ee_len == num) &&
2509 		    (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2510 			*partial_cluster = EXT4_B2C(sbi, pblk);
2511 		else if (unaligned)
2512 			*partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2513 		else if (*partial_cluster > 0)
2514 			*partial_cluster = 0;
2515 	} else
2516 		ext4_error(sbi->s_sb, "strange request: removal(2) "
2517 			   "%u-%u from %u:%u\n",
2518 			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2519 	return 0;
2520 }
2521 
2522 
2523 /*
2524  * ext4_ext_rm_leaf() Removes the extents associated with the
2525  * blocks appearing between "start" and "end", and splits the extents
2526  * if "start" and "end" appear in the same extent
2527  *
2528  * @handle: The journal handle
2529  * @inode:  The files inode
2530  * @path:   The path to the leaf
2531  * @partial_cluster: The cluster which we'll have to free if all extents
2532  *                   has been released from it. It gets negative in case
2533  *                   that the cluster is still used.
2534  * @start:  The first block to remove
2535  * @end:   The last block to remove
2536  */
2537 static int
2538 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2539 		 struct ext4_ext_path *path,
2540 		 long long *partial_cluster,
2541 		 ext4_lblk_t start, ext4_lblk_t end)
2542 {
2543 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2544 	int err = 0, correct_index = 0;
2545 	int depth = ext_depth(inode), credits;
2546 	struct ext4_extent_header *eh;
2547 	ext4_lblk_t a, b;
2548 	unsigned num;
2549 	ext4_lblk_t ex_ee_block;
2550 	unsigned short ex_ee_len;
2551 	unsigned uninitialized = 0;
2552 	struct ext4_extent *ex;
2553 	ext4_fsblk_t pblk;
2554 
2555 	/* the header must be checked already in ext4_ext_remove_space() */
2556 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2557 	if (!path[depth].p_hdr)
2558 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2559 	eh = path[depth].p_hdr;
2560 	if (unlikely(path[depth].p_hdr == NULL)) {
2561 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2562 		return -EIO;
2563 	}
2564 	/* find where to start removing */
2565 	ex = path[depth].p_ext;
2566 	if (!ex)
2567 		ex = EXT_LAST_EXTENT(eh);
2568 
2569 	ex_ee_block = le32_to_cpu(ex->ee_block);
2570 	ex_ee_len = ext4_ext_get_actual_len(ex);
2571 
2572 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2573 
2574 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2575 			ex_ee_block + ex_ee_len > start) {
2576 
2577 		if (ext4_ext_is_uninitialized(ex))
2578 			uninitialized = 1;
2579 		else
2580 			uninitialized = 0;
2581 
2582 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2583 			 uninitialized, ex_ee_len);
2584 		path[depth].p_ext = ex;
2585 
2586 		a = ex_ee_block > start ? ex_ee_block : start;
2587 		b = ex_ee_block+ex_ee_len - 1 < end ?
2588 			ex_ee_block+ex_ee_len - 1 : end;
2589 
2590 		ext_debug("  border %u:%u\n", a, b);
2591 
2592 		/* If this extent is beyond the end of the hole, skip it */
2593 		if (end < ex_ee_block) {
2594 			/*
2595 			 * We're going to skip this extent and move to another,
2596 			 * so if this extent is not cluster aligned we have
2597 			 * to mark the current cluster as used to avoid
2598 			 * accidentally freeing it later on
2599 			 */
2600 			pblk = ext4_ext_pblock(ex);
2601 			if (pblk & (sbi->s_cluster_ratio - 1))
2602 				*partial_cluster =
2603 					-((long long)EXT4_B2C(sbi, pblk));
2604 			ex--;
2605 			ex_ee_block = le32_to_cpu(ex->ee_block);
2606 			ex_ee_len = ext4_ext_get_actual_len(ex);
2607 			continue;
2608 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2609 			EXT4_ERROR_INODE(inode,
2610 					 "can not handle truncate %u:%u "
2611 					 "on extent %u:%u",
2612 					 start, end, ex_ee_block,
2613 					 ex_ee_block + ex_ee_len - 1);
2614 			err = -EIO;
2615 			goto out;
2616 		} else if (a != ex_ee_block) {
2617 			/* remove tail of the extent */
2618 			num = a - ex_ee_block;
2619 		} else {
2620 			/* remove whole extent: excellent! */
2621 			num = 0;
2622 		}
2623 		/*
2624 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2625 		 * descriptor) for each block group; assume two block
2626 		 * groups plus ex_ee_len/blocks_per_block_group for
2627 		 * the worst case
2628 		 */
2629 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2630 		if (ex == EXT_FIRST_EXTENT(eh)) {
2631 			correct_index = 1;
2632 			credits += (ext_depth(inode)) + 1;
2633 		}
2634 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2635 
2636 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2637 		if (err)
2638 			goto out;
2639 
2640 		err = ext4_ext_get_access(handle, inode, path + depth);
2641 		if (err)
2642 			goto out;
2643 
2644 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2645 					 a, b);
2646 		if (err)
2647 			goto out;
2648 
2649 		if (num == 0)
2650 			/* this extent is removed; mark slot entirely unused */
2651 			ext4_ext_store_pblock(ex, 0);
2652 
2653 		ex->ee_len = cpu_to_le16(num);
2654 		/*
2655 		 * Do not mark uninitialized if all the blocks in the
2656 		 * extent have been removed.
2657 		 */
2658 		if (uninitialized && num)
2659 			ext4_ext_mark_uninitialized(ex);
2660 		/*
2661 		 * If the extent was completely released,
2662 		 * we need to remove it from the leaf
2663 		 */
2664 		if (num == 0) {
2665 			if (end != EXT_MAX_BLOCKS - 1) {
2666 				/*
2667 				 * For hole punching, we need to scoot all the
2668 				 * extents up when an extent is removed so that
2669 				 * we dont have blank extents in the middle
2670 				 */
2671 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2672 					sizeof(struct ext4_extent));
2673 
2674 				/* Now get rid of the one at the end */
2675 				memset(EXT_LAST_EXTENT(eh), 0,
2676 					sizeof(struct ext4_extent));
2677 			}
2678 			le16_add_cpu(&eh->eh_entries, -1);
2679 		} else if (*partial_cluster > 0)
2680 			*partial_cluster = 0;
2681 
2682 		err = ext4_ext_dirty(handle, inode, path + depth);
2683 		if (err)
2684 			goto out;
2685 
2686 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2687 				ext4_ext_pblock(ex));
2688 		ex--;
2689 		ex_ee_block = le32_to_cpu(ex->ee_block);
2690 		ex_ee_len = ext4_ext_get_actual_len(ex);
2691 	}
2692 
2693 	if (correct_index && eh->eh_entries)
2694 		err = ext4_ext_correct_indexes(handle, inode, path);
2695 
2696 	/*
2697 	 * Free the partial cluster only if the current extent does not
2698 	 * reference it. Otherwise we might free used cluster.
2699 	 */
2700 	if (*partial_cluster > 0 &&
2701 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2702 	     *partial_cluster)) {
2703 		int flags = get_default_free_blocks_flags(inode);
2704 
2705 		ext4_free_blocks(handle, inode, NULL,
2706 				 EXT4_C2B(sbi, *partial_cluster),
2707 				 sbi->s_cluster_ratio, flags);
2708 		*partial_cluster = 0;
2709 	}
2710 
2711 	/* if this leaf is free, then we should
2712 	 * remove it from index block above */
2713 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2714 		err = ext4_ext_rm_idx(handle, inode, path, depth);
2715 
2716 out:
2717 	return err;
2718 }
2719 
2720 /*
2721  * ext4_ext_more_to_rm:
2722  * returns 1 if current index has to be freed (even partial)
2723  */
2724 static int
2725 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2726 {
2727 	BUG_ON(path->p_idx == NULL);
2728 
2729 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2730 		return 0;
2731 
2732 	/*
2733 	 * if truncate on deeper level happened, it wasn't partial,
2734 	 * so we have to consider current index for truncation
2735 	 */
2736 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2737 		return 0;
2738 	return 1;
2739 }
2740 
2741 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2742 			  ext4_lblk_t end)
2743 {
2744 	struct super_block *sb = inode->i_sb;
2745 	int depth = ext_depth(inode);
2746 	struct ext4_ext_path *path = NULL;
2747 	long long partial_cluster = 0;
2748 	handle_t *handle;
2749 	int i = 0, err = 0;
2750 
2751 	ext_debug("truncate since %u to %u\n", start, end);
2752 
2753 	/* probably first extent we're gonna free will be last in block */
2754 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2755 	if (IS_ERR(handle))
2756 		return PTR_ERR(handle);
2757 
2758 again:
2759 	trace_ext4_ext_remove_space(inode, start, end, depth);
2760 
2761 	/*
2762 	 * Check if we are removing extents inside the extent tree. If that
2763 	 * is the case, we are going to punch a hole inside the extent tree
2764 	 * so we have to check whether we need to split the extent covering
2765 	 * the last block to remove so we can easily remove the part of it
2766 	 * in ext4_ext_rm_leaf().
2767 	 */
2768 	if (end < EXT_MAX_BLOCKS - 1) {
2769 		struct ext4_extent *ex;
2770 		ext4_lblk_t ee_block;
2771 
2772 		/* find extent for this block */
2773 		path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2774 		if (IS_ERR(path)) {
2775 			ext4_journal_stop(handle);
2776 			return PTR_ERR(path);
2777 		}
2778 		depth = ext_depth(inode);
2779 		/* Leaf not may not exist only if inode has no blocks at all */
2780 		ex = path[depth].p_ext;
2781 		if (!ex) {
2782 			if (depth) {
2783 				EXT4_ERROR_INODE(inode,
2784 						 "path[%d].p_hdr == NULL",
2785 						 depth);
2786 				err = -EIO;
2787 			}
2788 			goto out;
2789 		}
2790 
2791 		ee_block = le32_to_cpu(ex->ee_block);
2792 
2793 		/*
2794 		 * See if the last block is inside the extent, if so split
2795 		 * the extent at 'end' block so we can easily remove the
2796 		 * tail of the first part of the split extent in
2797 		 * ext4_ext_rm_leaf().
2798 		 */
2799 		if (end >= ee_block &&
2800 		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2801 			int split_flag = 0;
2802 
2803 			if (ext4_ext_is_uninitialized(ex))
2804 				split_flag = EXT4_EXT_MARK_UNINIT1 |
2805 					     EXT4_EXT_MARK_UNINIT2;
2806 
2807 			/*
2808 			 * Split the extent in two so that 'end' is the last
2809 			 * block in the first new extent. Also we should not
2810 			 * fail removing space due to ENOSPC so try to use
2811 			 * reserved block if that happens.
2812 			 */
2813 			err = ext4_split_extent_at(handle, inode, path,
2814 					end + 1, split_flag,
2815 					EXT4_EX_NOCACHE |
2816 					EXT4_GET_BLOCKS_PRE_IO |
2817 					EXT4_GET_BLOCKS_METADATA_NOFAIL);
2818 
2819 			if (err < 0)
2820 				goto out;
2821 		}
2822 	}
2823 	/*
2824 	 * We start scanning from right side, freeing all the blocks
2825 	 * after i_size and walking into the tree depth-wise.
2826 	 */
2827 	depth = ext_depth(inode);
2828 	if (path) {
2829 		int k = i = depth;
2830 		while (--k > 0)
2831 			path[k].p_block =
2832 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2833 	} else {
2834 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2835 			       GFP_NOFS);
2836 		if (path == NULL) {
2837 			ext4_journal_stop(handle);
2838 			return -ENOMEM;
2839 		}
2840 		path[0].p_depth = depth;
2841 		path[0].p_hdr = ext_inode_hdr(inode);
2842 		i = 0;
2843 
2844 		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2845 			err = -EIO;
2846 			goto out;
2847 		}
2848 	}
2849 	err = 0;
2850 
2851 	while (i >= 0 && err == 0) {
2852 		if (i == depth) {
2853 			/* this is leaf block */
2854 			err = ext4_ext_rm_leaf(handle, inode, path,
2855 					       &partial_cluster, start,
2856 					       end);
2857 			/* root level has p_bh == NULL, brelse() eats this */
2858 			brelse(path[i].p_bh);
2859 			path[i].p_bh = NULL;
2860 			i--;
2861 			continue;
2862 		}
2863 
2864 		/* this is index block */
2865 		if (!path[i].p_hdr) {
2866 			ext_debug("initialize header\n");
2867 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2868 		}
2869 
2870 		if (!path[i].p_idx) {
2871 			/* this level hasn't been touched yet */
2872 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2873 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2874 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2875 				  path[i].p_hdr,
2876 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2877 		} else {
2878 			/* we were already here, see at next index */
2879 			path[i].p_idx--;
2880 		}
2881 
2882 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2883 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2884 				path[i].p_idx);
2885 		if (ext4_ext_more_to_rm(path + i)) {
2886 			struct buffer_head *bh;
2887 			/* go to the next level */
2888 			ext_debug("move to level %d (block %llu)\n",
2889 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2890 			memset(path + i + 1, 0, sizeof(*path));
2891 			bh = read_extent_tree_block(inode,
2892 				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2893 				EXT4_EX_NOCACHE);
2894 			if (IS_ERR(bh)) {
2895 				/* should we reset i_size? */
2896 				err = PTR_ERR(bh);
2897 				break;
2898 			}
2899 			/* Yield here to deal with large extent trees.
2900 			 * Should be a no-op if we did IO above. */
2901 			cond_resched();
2902 			if (WARN_ON(i + 1 > depth)) {
2903 				err = -EIO;
2904 				break;
2905 			}
2906 			path[i + 1].p_bh = bh;
2907 
2908 			/* save actual number of indexes since this
2909 			 * number is changed at the next iteration */
2910 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2911 			i++;
2912 		} else {
2913 			/* we finished processing this index, go up */
2914 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2915 				/* index is empty, remove it;
2916 				 * handle must be already prepared by the
2917 				 * truncatei_leaf() */
2918 				err = ext4_ext_rm_idx(handle, inode, path, i);
2919 			}
2920 			/* root level has p_bh == NULL, brelse() eats this */
2921 			brelse(path[i].p_bh);
2922 			path[i].p_bh = NULL;
2923 			i--;
2924 			ext_debug("return to level %d\n", i);
2925 		}
2926 	}
2927 
2928 	trace_ext4_ext_remove_space_done(inode, start, end, depth,
2929 			partial_cluster, path->p_hdr->eh_entries);
2930 
2931 	/* If we still have something in the partial cluster and we have removed
2932 	 * even the first extent, then we should free the blocks in the partial
2933 	 * cluster as well. */
2934 	if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2935 		int flags = get_default_free_blocks_flags(inode);
2936 
2937 		ext4_free_blocks(handle, inode, NULL,
2938 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2939 				 EXT4_SB(sb)->s_cluster_ratio, flags);
2940 		partial_cluster = 0;
2941 	}
2942 
2943 	/* TODO: flexible tree reduction should be here */
2944 	if (path->p_hdr->eh_entries == 0) {
2945 		/*
2946 		 * truncate to zero freed all the tree,
2947 		 * so we need to correct eh_depth
2948 		 */
2949 		err = ext4_ext_get_access(handle, inode, path);
2950 		if (err == 0) {
2951 			ext_inode_hdr(inode)->eh_depth = 0;
2952 			ext_inode_hdr(inode)->eh_max =
2953 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2954 			err = ext4_ext_dirty(handle, inode, path);
2955 		}
2956 	}
2957 out:
2958 	ext4_ext_drop_refs(path);
2959 	kfree(path);
2960 	if (err == -EAGAIN) {
2961 		path = NULL;
2962 		goto again;
2963 	}
2964 	ext4_journal_stop(handle);
2965 
2966 	return err;
2967 }
2968 
2969 /*
2970  * called at mount time
2971  */
2972 void ext4_ext_init(struct super_block *sb)
2973 {
2974 	/*
2975 	 * possible initialization would be here
2976 	 */
2977 
2978 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2979 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2980 		printk(KERN_INFO "EXT4-fs: file extents enabled"
2981 #ifdef AGGRESSIVE_TEST
2982 		       ", aggressive tests"
2983 #endif
2984 #ifdef CHECK_BINSEARCH
2985 		       ", check binsearch"
2986 #endif
2987 #ifdef EXTENTS_STATS
2988 		       ", stats"
2989 #endif
2990 		       "\n");
2991 #endif
2992 #ifdef EXTENTS_STATS
2993 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2994 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2995 		EXT4_SB(sb)->s_ext_max = 0;
2996 #endif
2997 	}
2998 }
2999 
3000 /*
3001  * called at umount time
3002  */
3003 void ext4_ext_release(struct super_block *sb)
3004 {
3005 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3006 		return;
3007 
3008 #ifdef EXTENTS_STATS
3009 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3010 		struct ext4_sb_info *sbi = EXT4_SB(sb);
3011 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3012 			sbi->s_ext_blocks, sbi->s_ext_extents,
3013 			sbi->s_ext_blocks / sbi->s_ext_extents);
3014 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3015 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3016 	}
3017 #endif
3018 }
3019 
3020 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3021 {
3022 	ext4_lblk_t  ee_block;
3023 	ext4_fsblk_t ee_pblock;
3024 	unsigned int ee_len;
3025 
3026 	ee_block  = le32_to_cpu(ex->ee_block);
3027 	ee_len    = ext4_ext_get_actual_len(ex);
3028 	ee_pblock = ext4_ext_pblock(ex);
3029 
3030 	if (ee_len == 0)
3031 		return 0;
3032 
3033 	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3034 				     EXTENT_STATUS_WRITTEN);
3035 }
3036 
3037 /* FIXME!! we need to try to merge to left or right after zero-out  */
3038 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3039 {
3040 	ext4_fsblk_t ee_pblock;
3041 	unsigned int ee_len;
3042 	int ret;
3043 
3044 	ee_len    = ext4_ext_get_actual_len(ex);
3045 	ee_pblock = ext4_ext_pblock(ex);
3046 
3047 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3048 	if (ret > 0)
3049 		ret = 0;
3050 
3051 	return ret;
3052 }
3053 
3054 /*
3055  * ext4_split_extent_at() splits an extent at given block.
3056  *
3057  * @handle: the journal handle
3058  * @inode: the file inode
3059  * @path: the path to the extent
3060  * @split: the logical block where the extent is splitted.
3061  * @split_flags: indicates if the extent could be zeroout if split fails, and
3062  *		 the states(init or uninit) of new extents.
3063  * @flags: flags used to insert new extent to extent tree.
3064  *
3065  *
3066  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3067  * of which are deterimined by split_flag.
3068  *
3069  * There are two cases:
3070  *  a> the extent are splitted into two extent.
3071  *  b> split is not needed, and just mark the extent.
3072  *
3073  * return 0 on success.
3074  */
3075 static int ext4_split_extent_at(handle_t *handle,
3076 			     struct inode *inode,
3077 			     struct ext4_ext_path *path,
3078 			     ext4_lblk_t split,
3079 			     int split_flag,
3080 			     int flags)
3081 {
3082 	ext4_fsblk_t newblock;
3083 	ext4_lblk_t ee_block;
3084 	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3085 	struct ext4_extent *ex2 = NULL;
3086 	unsigned int ee_len, depth;
3087 	int err = 0;
3088 
3089 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3090 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3091 
3092 	ext_debug("ext4_split_extents_at: inode %lu, logical"
3093 		"block %llu\n", inode->i_ino, (unsigned long long)split);
3094 
3095 	ext4_ext_show_leaf(inode, path);
3096 
3097 	depth = ext_depth(inode);
3098 	ex = path[depth].p_ext;
3099 	ee_block = le32_to_cpu(ex->ee_block);
3100 	ee_len = ext4_ext_get_actual_len(ex);
3101 	newblock = split - ee_block + ext4_ext_pblock(ex);
3102 
3103 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3104 	BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3105 	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3106 			     EXT4_EXT_MARK_UNINIT1 |
3107 			     EXT4_EXT_MARK_UNINIT2));
3108 
3109 	err = ext4_ext_get_access(handle, inode, path + depth);
3110 	if (err)
3111 		goto out;
3112 
3113 	if (split == ee_block) {
3114 		/*
3115 		 * case b: block @split is the block that the extent begins with
3116 		 * then we just change the state of the extent, and splitting
3117 		 * is not needed.
3118 		 */
3119 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3120 			ext4_ext_mark_uninitialized(ex);
3121 		else
3122 			ext4_ext_mark_initialized(ex);
3123 
3124 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3125 			ext4_ext_try_to_merge(handle, inode, path, ex);
3126 
3127 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3128 		goto out;
3129 	}
3130 
3131 	/* case a */
3132 	memcpy(&orig_ex, ex, sizeof(orig_ex));
3133 	ex->ee_len = cpu_to_le16(split - ee_block);
3134 	if (split_flag & EXT4_EXT_MARK_UNINIT1)
3135 		ext4_ext_mark_uninitialized(ex);
3136 
3137 	/*
3138 	 * path may lead to new leaf, not to original leaf any more
3139 	 * after ext4_ext_insert_extent() returns,
3140 	 */
3141 	err = ext4_ext_dirty(handle, inode, path + depth);
3142 	if (err)
3143 		goto fix_extent_len;
3144 
3145 	ex2 = &newex;
3146 	ex2->ee_block = cpu_to_le32(split);
3147 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3148 	ext4_ext_store_pblock(ex2, newblock);
3149 	if (split_flag & EXT4_EXT_MARK_UNINIT2)
3150 		ext4_ext_mark_uninitialized(ex2);
3151 
3152 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3153 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3154 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3155 			if (split_flag & EXT4_EXT_DATA_VALID1) {
3156 				err = ext4_ext_zeroout(inode, ex2);
3157 				zero_ex.ee_block = ex2->ee_block;
3158 				zero_ex.ee_len = cpu_to_le16(
3159 						ext4_ext_get_actual_len(ex2));
3160 				ext4_ext_store_pblock(&zero_ex,
3161 						      ext4_ext_pblock(ex2));
3162 			} else {
3163 				err = ext4_ext_zeroout(inode, ex);
3164 				zero_ex.ee_block = ex->ee_block;
3165 				zero_ex.ee_len = cpu_to_le16(
3166 						ext4_ext_get_actual_len(ex));
3167 				ext4_ext_store_pblock(&zero_ex,
3168 						      ext4_ext_pblock(ex));
3169 			}
3170 		} else {
3171 			err = ext4_ext_zeroout(inode, &orig_ex);
3172 			zero_ex.ee_block = orig_ex.ee_block;
3173 			zero_ex.ee_len = cpu_to_le16(
3174 						ext4_ext_get_actual_len(&orig_ex));
3175 			ext4_ext_store_pblock(&zero_ex,
3176 					      ext4_ext_pblock(&orig_ex));
3177 		}
3178 
3179 		if (err)
3180 			goto fix_extent_len;
3181 		/* update the extent length and mark as initialized */
3182 		ex->ee_len = cpu_to_le16(ee_len);
3183 		ext4_ext_try_to_merge(handle, inode, path, ex);
3184 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3185 		if (err)
3186 			goto fix_extent_len;
3187 
3188 		/* update extent status tree */
3189 		err = ext4_zeroout_es(inode, &zero_ex);
3190 
3191 		goto out;
3192 	} else if (err)
3193 		goto fix_extent_len;
3194 
3195 out:
3196 	ext4_ext_show_leaf(inode, path);
3197 	return err;
3198 
3199 fix_extent_len:
3200 	ex->ee_len = orig_ex.ee_len;
3201 	ext4_ext_dirty(handle, inode, path + depth);
3202 	return err;
3203 }
3204 
3205 /*
3206  * ext4_split_extents() splits an extent and mark extent which is covered
3207  * by @map as split_flags indicates
3208  *
3209  * It may result in splitting the extent into multiple extents (up to three)
3210  * There are three possibilities:
3211  *   a> There is no split required
3212  *   b> Splits in two extents: Split is happening at either end of the extent
3213  *   c> Splits in three extents: Somone is splitting in middle of the extent
3214  *
3215  */
3216 static int ext4_split_extent(handle_t *handle,
3217 			      struct inode *inode,
3218 			      struct ext4_ext_path *path,
3219 			      struct ext4_map_blocks *map,
3220 			      int split_flag,
3221 			      int flags)
3222 {
3223 	ext4_lblk_t ee_block;
3224 	struct ext4_extent *ex;
3225 	unsigned int ee_len, depth;
3226 	int err = 0;
3227 	int uninitialized;
3228 	int split_flag1, flags1;
3229 	int allocated = map->m_len;
3230 
3231 	depth = ext_depth(inode);
3232 	ex = path[depth].p_ext;
3233 	ee_block = le32_to_cpu(ex->ee_block);
3234 	ee_len = ext4_ext_get_actual_len(ex);
3235 	uninitialized = ext4_ext_is_uninitialized(ex);
3236 
3237 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3238 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3239 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3240 		if (uninitialized)
3241 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3242 				       EXT4_EXT_MARK_UNINIT2;
3243 		if (split_flag & EXT4_EXT_DATA_VALID2)
3244 			split_flag1 |= EXT4_EXT_DATA_VALID1;
3245 		err = ext4_split_extent_at(handle, inode, path,
3246 				map->m_lblk + map->m_len, split_flag1, flags1);
3247 		if (err)
3248 			goto out;
3249 	} else {
3250 		allocated = ee_len - (map->m_lblk - ee_block);
3251 	}
3252 	/*
3253 	 * Update path is required because previous ext4_split_extent_at() may
3254 	 * result in split of original leaf or extent zeroout.
3255 	 */
3256 	ext4_ext_drop_refs(path);
3257 	path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3258 	if (IS_ERR(path))
3259 		return PTR_ERR(path);
3260 	depth = ext_depth(inode);
3261 	ex = path[depth].p_ext;
3262 	uninitialized = ext4_ext_is_uninitialized(ex);
3263 	split_flag1 = 0;
3264 
3265 	if (map->m_lblk >= ee_block) {
3266 		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3267 		if (uninitialized) {
3268 			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3269 			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3270 						     EXT4_EXT_MARK_UNINIT2);
3271 		}
3272 		err = ext4_split_extent_at(handle, inode, path,
3273 				map->m_lblk, split_flag1, flags);
3274 		if (err)
3275 			goto out;
3276 	}
3277 
3278 	ext4_ext_show_leaf(inode, path);
3279 out:
3280 	return err ? err : allocated;
3281 }
3282 
3283 /*
3284  * This function is called by ext4_ext_map_blocks() if someone tries to write
3285  * to an uninitialized extent. It may result in splitting the uninitialized
3286  * extent into multiple extents (up to three - one initialized and two
3287  * uninitialized).
3288  * There are three possibilities:
3289  *   a> There is no split required: Entire extent should be initialized
3290  *   b> Splits in two extents: Write is happening at either end of the extent
3291  *   c> Splits in three extents: Somone is writing in middle of the extent
3292  *
3293  * Pre-conditions:
3294  *  - The extent pointed to by 'path' is uninitialized.
3295  *  - The extent pointed to by 'path' contains a superset
3296  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3297  *
3298  * Post-conditions on success:
3299  *  - the returned value is the number of blocks beyond map->l_lblk
3300  *    that are allocated and initialized.
3301  *    It is guaranteed to be >= map->m_len.
3302  */
3303 static int ext4_ext_convert_to_initialized(handle_t *handle,
3304 					   struct inode *inode,
3305 					   struct ext4_map_blocks *map,
3306 					   struct ext4_ext_path *path,
3307 					   int flags)
3308 {
3309 	struct ext4_sb_info *sbi;
3310 	struct ext4_extent_header *eh;
3311 	struct ext4_map_blocks split_map;
3312 	struct ext4_extent zero_ex;
3313 	struct ext4_extent *ex, *abut_ex;
3314 	ext4_lblk_t ee_block, eof_block;
3315 	unsigned int ee_len, depth, map_len = map->m_len;
3316 	int allocated = 0, max_zeroout = 0;
3317 	int err = 0;
3318 	int split_flag = 0;
3319 
3320 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3321 		"block %llu, max_blocks %u\n", inode->i_ino,
3322 		(unsigned long long)map->m_lblk, map_len);
3323 
3324 	sbi = EXT4_SB(inode->i_sb);
3325 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3326 		inode->i_sb->s_blocksize_bits;
3327 	if (eof_block < map->m_lblk + map_len)
3328 		eof_block = map->m_lblk + map_len;
3329 
3330 	depth = ext_depth(inode);
3331 	eh = path[depth].p_hdr;
3332 	ex = path[depth].p_ext;
3333 	ee_block = le32_to_cpu(ex->ee_block);
3334 	ee_len = ext4_ext_get_actual_len(ex);
3335 	zero_ex.ee_len = 0;
3336 
3337 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3338 
3339 	/* Pre-conditions */
3340 	BUG_ON(!ext4_ext_is_uninitialized(ex));
3341 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3342 
3343 	/*
3344 	 * Attempt to transfer newly initialized blocks from the currently
3345 	 * uninitialized extent to its neighbor. This is much cheaper
3346 	 * than an insertion followed by a merge as those involve costly
3347 	 * memmove() calls. Transferring to the left is the common case in
3348 	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3349 	 * followed by append writes.
3350 	 *
3351 	 * Limitations of the current logic:
3352 	 *  - L1: we do not deal with writes covering the whole extent.
3353 	 *    This would require removing the extent if the transfer
3354 	 *    is possible.
3355 	 *  - L2: we only attempt to merge with an extent stored in the
3356 	 *    same extent tree node.
3357 	 */
3358 	if ((map->m_lblk == ee_block) &&
3359 		/* See if we can merge left */
3360 		(map_len < ee_len) &&		/*L1*/
3361 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3362 		ext4_lblk_t prev_lblk;
3363 		ext4_fsblk_t prev_pblk, ee_pblk;
3364 		unsigned int prev_len;
3365 
3366 		abut_ex = ex - 1;
3367 		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3368 		prev_len = ext4_ext_get_actual_len(abut_ex);
3369 		prev_pblk = ext4_ext_pblock(abut_ex);
3370 		ee_pblk = ext4_ext_pblock(ex);
3371 
3372 		/*
3373 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3374 		 * upon those conditions:
3375 		 * - C1: abut_ex is initialized,
3376 		 * - C2: abut_ex is logically abutting ex,
3377 		 * - C3: abut_ex is physically abutting ex,
3378 		 * - C4: abut_ex can receive the additional blocks without
3379 		 *   overflowing the (initialized) length limit.
3380 		 */
3381 		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3382 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3383 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3384 			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3385 			err = ext4_ext_get_access(handle, inode, path + depth);
3386 			if (err)
3387 				goto out;
3388 
3389 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3390 				map, ex, abut_ex);
3391 
3392 			/* Shift the start of ex by 'map_len' blocks */
3393 			ex->ee_block = cpu_to_le32(ee_block + map_len);
3394 			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3395 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3396 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3397 
3398 			/* Extend abut_ex by 'map_len' blocks */
3399 			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3400 
3401 			/* Result: number of initialized blocks past m_lblk */
3402 			allocated = map_len;
3403 		}
3404 	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3405 		   (map_len < ee_len) &&	/*L1*/
3406 		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3407 		/* See if we can merge right */
3408 		ext4_lblk_t next_lblk;
3409 		ext4_fsblk_t next_pblk, ee_pblk;
3410 		unsigned int next_len;
3411 
3412 		abut_ex = ex + 1;
3413 		next_lblk = le32_to_cpu(abut_ex->ee_block);
3414 		next_len = ext4_ext_get_actual_len(abut_ex);
3415 		next_pblk = ext4_ext_pblock(abut_ex);
3416 		ee_pblk = ext4_ext_pblock(ex);
3417 
3418 		/*
3419 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3420 		 * upon those conditions:
3421 		 * - C1: abut_ex is initialized,
3422 		 * - C2: abut_ex is logically abutting ex,
3423 		 * - C3: abut_ex is physically abutting ex,
3424 		 * - C4: abut_ex can receive the additional blocks without
3425 		 *   overflowing the (initialized) length limit.
3426 		 */
3427 		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3428 		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3429 		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3430 		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3431 			err = ext4_ext_get_access(handle, inode, path + depth);
3432 			if (err)
3433 				goto out;
3434 
3435 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3436 				map, ex, abut_ex);
3437 
3438 			/* Shift the start of abut_ex by 'map_len' blocks */
3439 			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3440 			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3441 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3442 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3443 
3444 			/* Extend abut_ex by 'map_len' blocks */
3445 			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3446 
3447 			/* Result: number of initialized blocks past m_lblk */
3448 			allocated = map_len;
3449 		}
3450 	}
3451 	if (allocated) {
3452 		/* Mark the block containing both extents as dirty */
3453 		ext4_ext_dirty(handle, inode, path + depth);
3454 
3455 		/* Update path to point to the right extent */
3456 		path[depth].p_ext = abut_ex;
3457 		goto out;
3458 	} else
3459 		allocated = ee_len - (map->m_lblk - ee_block);
3460 
3461 	WARN_ON(map->m_lblk < ee_block);
3462 	/*
3463 	 * It is safe to convert extent to initialized via explicit
3464 	 * zeroout only if extent is fully insde i_size or new_size.
3465 	 */
3466 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3467 
3468 	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3469 		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3470 			(inode->i_sb->s_blocksize_bits - 10);
3471 
3472 	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3473 	if (max_zeroout && (ee_len <= max_zeroout)) {
3474 		err = ext4_ext_zeroout(inode, ex);
3475 		if (err)
3476 			goto out;
3477 		zero_ex.ee_block = ex->ee_block;
3478 		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3479 		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3480 
3481 		err = ext4_ext_get_access(handle, inode, path + depth);
3482 		if (err)
3483 			goto out;
3484 		ext4_ext_mark_initialized(ex);
3485 		ext4_ext_try_to_merge(handle, inode, path, ex);
3486 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3487 		goto out;
3488 	}
3489 
3490 	/*
3491 	 * four cases:
3492 	 * 1. split the extent into three extents.
3493 	 * 2. split the extent into two extents, zeroout the first half.
3494 	 * 3. split the extent into two extents, zeroout the second half.
3495 	 * 4. split the extent into two extents with out zeroout.
3496 	 */
3497 	split_map.m_lblk = map->m_lblk;
3498 	split_map.m_len = map->m_len;
3499 
3500 	if (max_zeroout && (allocated > map->m_len)) {
3501 		if (allocated <= max_zeroout) {
3502 			/* case 3 */
3503 			zero_ex.ee_block =
3504 					 cpu_to_le32(map->m_lblk);
3505 			zero_ex.ee_len = cpu_to_le16(allocated);
3506 			ext4_ext_store_pblock(&zero_ex,
3507 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3508 			err = ext4_ext_zeroout(inode, &zero_ex);
3509 			if (err)
3510 				goto out;
3511 			split_map.m_lblk = map->m_lblk;
3512 			split_map.m_len = allocated;
3513 		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3514 			/* case 2 */
3515 			if (map->m_lblk != ee_block) {
3516 				zero_ex.ee_block = ex->ee_block;
3517 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3518 							ee_block);
3519 				ext4_ext_store_pblock(&zero_ex,
3520 						      ext4_ext_pblock(ex));
3521 				err = ext4_ext_zeroout(inode, &zero_ex);
3522 				if (err)
3523 					goto out;
3524 			}
3525 
3526 			split_map.m_lblk = ee_block;
3527 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3528 			allocated = map->m_len;
3529 		}
3530 	}
3531 
3532 	allocated = ext4_split_extent(handle, inode, path,
3533 				      &split_map, split_flag, flags);
3534 	if (allocated < 0)
3535 		err = allocated;
3536 
3537 out:
3538 	/* If we have gotten a failure, don't zero out status tree */
3539 	if (!err)
3540 		err = ext4_zeroout_es(inode, &zero_ex);
3541 	return err ? err : allocated;
3542 }
3543 
3544 /*
3545  * This function is called by ext4_ext_map_blocks() from
3546  * ext4_get_blocks_dio_write() when DIO to write
3547  * to an uninitialized extent.
3548  *
3549  * Writing to an uninitialized extent may result in splitting the uninitialized
3550  * extent into multiple initialized/uninitialized extents (up to three)
3551  * There are three possibilities:
3552  *   a> There is no split required: Entire extent should be uninitialized
3553  *   b> Splits in two extents: Write is happening at either end of the extent
3554  *   c> Splits in three extents: Somone is writing in middle of the extent
3555  *
3556  * One of more index blocks maybe needed if the extent tree grow after
3557  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3558  * complete, we need to split the uninitialized extent before DIO submit
3559  * the IO. The uninitialized extent called at this time will be split
3560  * into three uninitialized extent(at most). After IO complete, the part
3561  * being filled will be convert to initialized by the end_io callback function
3562  * via ext4_convert_unwritten_extents().
3563  *
3564  * Returns the size of uninitialized extent to be written on success.
3565  */
3566 static int ext4_split_unwritten_extents(handle_t *handle,
3567 					struct inode *inode,
3568 					struct ext4_map_blocks *map,
3569 					struct ext4_ext_path *path,
3570 					int flags)
3571 {
3572 	ext4_lblk_t eof_block;
3573 	ext4_lblk_t ee_block;
3574 	struct ext4_extent *ex;
3575 	unsigned int ee_len;
3576 	int split_flag = 0, depth;
3577 
3578 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3579 		"block %llu, max_blocks %u\n", inode->i_ino,
3580 		(unsigned long long)map->m_lblk, map->m_len);
3581 
3582 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3583 		inode->i_sb->s_blocksize_bits;
3584 	if (eof_block < map->m_lblk + map->m_len)
3585 		eof_block = map->m_lblk + map->m_len;
3586 	/*
3587 	 * It is safe to convert extent to initialized via explicit
3588 	 * zeroout only if extent is fully insde i_size or new_size.
3589 	 */
3590 	depth = ext_depth(inode);
3591 	ex = path[depth].p_ext;
3592 	ee_block = le32_to_cpu(ex->ee_block);
3593 	ee_len = ext4_ext_get_actual_len(ex);
3594 
3595 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3596 	split_flag |= EXT4_EXT_MARK_UNINIT2;
3597 	if (flags & EXT4_GET_BLOCKS_CONVERT)
3598 		split_flag |= EXT4_EXT_DATA_VALID2;
3599 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3600 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3601 }
3602 
3603 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3604 						struct inode *inode,
3605 						struct ext4_map_blocks *map,
3606 						struct ext4_ext_path *path)
3607 {
3608 	struct ext4_extent *ex;
3609 	ext4_lblk_t ee_block;
3610 	unsigned int ee_len;
3611 	int depth;
3612 	int err = 0;
3613 
3614 	depth = ext_depth(inode);
3615 	ex = path[depth].p_ext;
3616 	ee_block = le32_to_cpu(ex->ee_block);
3617 	ee_len = ext4_ext_get_actual_len(ex);
3618 
3619 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3620 		"block %llu, max_blocks %u\n", inode->i_ino,
3621 		  (unsigned long long)ee_block, ee_len);
3622 
3623 	/* If extent is larger than requested it is a clear sign that we still
3624 	 * have some extent state machine issues left. So extent_split is still
3625 	 * required.
3626 	 * TODO: Once all related issues will be fixed this situation should be
3627 	 * illegal.
3628 	 */
3629 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3630 #ifdef EXT4_DEBUG
3631 		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3632 			     " len %u; IO logical block %llu, len %u\n",
3633 			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3634 			     (unsigned long long)map->m_lblk, map->m_len);
3635 #endif
3636 		err = ext4_split_unwritten_extents(handle, inode, map, path,
3637 						   EXT4_GET_BLOCKS_CONVERT);
3638 		if (err < 0)
3639 			goto out;
3640 		ext4_ext_drop_refs(path);
3641 		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3642 		if (IS_ERR(path)) {
3643 			err = PTR_ERR(path);
3644 			goto out;
3645 		}
3646 		depth = ext_depth(inode);
3647 		ex = path[depth].p_ext;
3648 	}
3649 
3650 	err = ext4_ext_get_access(handle, inode, path + depth);
3651 	if (err)
3652 		goto out;
3653 	/* first mark the extent as initialized */
3654 	ext4_ext_mark_initialized(ex);
3655 
3656 	/* note: ext4_ext_correct_indexes() isn't needed here because
3657 	 * borders are not changed
3658 	 */
3659 	ext4_ext_try_to_merge(handle, inode, path, ex);
3660 
3661 	/* Mark modified extent as dirty */
3662 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3663 out:
3664 	ext4_ext_show_leaf(inode, path);
3665 	return err;
3666 }
3667 
3668 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3669 			sector_t block, int count)
3670 {
3671 	int i;
3672 	for (i = 0; i < count; i++)
3673                 unmap_underlying_metadata(bdev, block + i);
3674 }
3675 
3676 /*
3677  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3678  */
3679 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3680 			      ext4_lblk_t lblk,
3681 			      struct ext4_ext_path *path,
3682 			      unsigned int len)
3683 {
3684 	int i, depth;
3685 	struct ext4_extent_header *eh;
3686 	struct ext4_extent *last_ex;
3687 
3688 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3689 		return 0;
3690 
3691 	depth = ext_depth(inode);
3692 	eh = path[depth].p_hdr;
3693 
3694 	/*
3695 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3696 	 * do not care for this case anymore. Simply remove the flag
3697 	 * if there are no extents.
3698 	 */
3699 	if (unlikely(!eh->eh_entries))
3700 		goto out;
3701 	last_ex = EXT_LAST_EXTENT(eh);
3702 	/*
3703 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3704 	 * last block in the last extent in the file.  We test this by
3705 	 * first checking to see if the caller to
3706 	 * ext4_ext_get_blocks() was interested in the last block (or
3707 	 * a block beyond the last block) in the current extent.  If
3708 	 * this turns out to be false, we can bail out from this
3709 	 * function immediately.
3710 	 */
3711 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3712 	    ext4_ext_get_actual_len(last_ex))
3713 		return 0;
3714 	/*
3715 	 * If the caller does appear to be planning to write at or
3716 	 * beyond the end of the current extent, we then test to see
3717 	 * if the current extent is the last extent in the file, by
3718 	 * checking to make sure it was reached via the rightmost node
3719 	 * at each level of the tree.
3720 	 */
3721 	for (i = depth-1; i >= 0; i--)
3722 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3723 			return 0;
3724 out:
3725 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3726 	return ext4_mark_inode_dirty(handle, inode);
3727 }
3728 
3729 /**
3730  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3731  *
3732  * Return 1 if there is a delalloc block in the range, otherwise 0.
3733  */
3734 int ext4_find_delalloc_range(struct inode *inode,
3735 			     ext4_lblk_t lblk_start,
3736 			     ext4_lblk_t lblk_end)
3737 {
3738 	struct extent_status es;
3739 
3740 	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3741 	if (es.es_len == 0)
3742 		return 0; /* there is no delay extent in this tree */
3743 	else if (es.es_lblk <= lblk_start &&
3744 		 lblk_start < es.es_lblk + es.es_len)
3745 		return 1;
3746 	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3747 		return 1;
3748 	else
3749 		return 0;
3750 }
3751 
3752 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3753 {
3754 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3755 	ext4_lblk_t lblk_start, lblk_end;
3756 	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3757 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3758 
3759 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3760 }
3761 
3762 /**
3763  * Determines how many complete clusters (out of those specified by the 'map')
3764  * are under delalloc and were reserved quota for.
3765  * This function is called when we are writing out the blocks that were
3766  * originally written with their allocation delayed, but then the space was
3767  * allocated using fallocate() before the delayed allocation could be resolved.
3768  * The cases to look for are:
3769  * ('=' indicated delayed allocated blocks
3770  *  '-' indicates non-delayed allocated blocks)
3771  * (a) partial clusters towards beginning and/or end outside of allocated range
3772  *     are not delalloc'ed.
3773  *	Ex:
3774  *	|----c---=|====c====|====c====|===-c----|
3775  *	         |++++++ allocated ++++++|
3776  *	==> 4 complete clusters in above example
3777  *
3778  * (b) partial cluster (outside of allocated range) towards either end is
3779  *     marked for delayed allocation. In this case, we will exclude that
3780  *     cluster.
3781  *	Ex:
3782  *	|----====c========|========c========|
3783  *	     |++++++ allocated ++++++|
3784  *	==> 1 complete clusters in above example
3785  *
3786  *	Ex:
3787  *	|================c================|
3788  *            |++++++ allocated ++++++|
3789  *	==> 0 complete clusters in above example
3790  *
3791  * The ext4_da_update_reserve_space will be called only if we
3792  * determine here that there were some "entire" clusters that span
3793  * this 'allocated' range.
3794  * In the non-bigalloc case, this function will just end up returning num_blks
3795  * without ever calling ext4_find_delalloc_range.
3796  */
3797 static unsigned int
3798 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3799 			   unsigned int num_blks)
3800 {
3801 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3802 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3803 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3804 	unsigned int allocated_clusters = 0;
3805 
3806 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3807 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3808 
3809 	/* max possible clusters for this allocation */
3810 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3811 
3812 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3813 
3814 	/* Check towards left side */
3815 	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3816 	if (c_offset) {
3817 		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3818 		lblk_to = lblk_from + c_offset - 1;
3819 
3820 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3821 			allocated_clusters--;
3822 	}
3823 
3824 	/* Now check towards right. */
3825 	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3826 	if (allocated_clusters && c_offset) {
3827 		lblk_from = lblk_start + num_blks;
3828 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3829 
3830 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3831 			allocated_clusters--;
3832 	}
3833 
3834 	return allocated_clusters;
3835 }
3836 
3837 static int
3838 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3839 			struct ext4_map_blocks *map,
3840 			struct ext4_ext_path *path, int flags,
3841 			unsigned int allocated, ext4_fsblk_t newblock)
3842 {
3843 	int ret = 0;
3844 	int err = 0;
3845 	ext4_io_end_t *io = ext4_inode_aio(inode);
3846 
3847 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3848 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3849 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3850 		  flags, allocated);
3851 	ext4_ext_show_leaf(inode, path);
3852 
3853 	/*
3854 	 * When writing into uninitialized space, we should not fail to
3855 	 * allocate metadata blocks for the new extent block if needed.
3856 	 */
3857 	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3858 
3859 	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3860 						    allocated, newblock);
3861 
3862 	/* get_block() before submit the IO, split the extent */
3863 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3864 		ret = ext4_split_unwritten_extents(handle, inode, map,
3865 						   path, flags);
3866 		if (ret <= 0)
3867 			goto out;
3868 		/*
3869 		 * Flag the inode(non aio case) or end_io struct (aio case)
3870 		 * that this IO needs to conversion to written when IO is
3871 		 * completed
3872 		 */
3873 		if (io)
3874 			ext4_set_io_unwritten_flag(inode, io);
3875 		else
3876 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3877 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3878 		if (ext4_should_dioread_nolock(inode))
3879 			map->m_flags |= EXT4_MAP_UNINIT;
3880 		goto out;
3881 	}
3882 	/* IO end_io complete, convert the filled extent to written */
3883 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3884 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3885 							path);
3886 		if (ret >= 0) {
3887 			ext4_update_inode_fsync_trans(handle, inode, 1);
3888 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3889 						 path, map->m_len);
3890 		} else
3891 			err = ret;
3892 		map->m_flags |= EXT4_MAP_MAPPED;
3893 		if (allocated > map->m_len)
3894 			allocated = map->m_len;
3895 		map->m_len = allocated;
3896 		goto out2;
3897 	}
3898 	/* buffered IO case */
3899 	/*
3900 	 * repeat fallocate creation request
3901 	 * we already have an unwritten extent
3902 	 */
3903 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3904 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3905 		goto map_out;
3906 	}
3907 
3908 	/* buffered READ or buffered write_begin() lookup */
3909 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3910 		/*
3911 		 * We have blocks reserved already.  We
3912 		 * return allocated blocks so that delalloc
3913 		 * won't do block reservation for us.  But
3914 		 * the buffer head will be unmapped so that
3915 		 * a read from the block returns 0s.
3916 		 */
3917 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3918 		goto out1;
3919 	}
3920 
3921 	/* buffered write, writepage time, convert*/
3922 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
3923 	if (ret >= 0)
3924 		ext4_update_inode_fsync_trans(handle, inode, 1);
3925 out:
3926 	if (ret <= 0) {
3927 		err = ret;
3928 		goto out2;
3929 	} else
3930 		allocated = ret;
3931 	map->m_flags |= EXT4_MAP_NEW;
3932 	/*
3933 	 * if we allocated more blocks than requested
3934 	 * we need to make sure we unmap the extra block
3935 	 * allocated. The actual needed block will get
3936 	 * unmapped later when we find the buffer_head marked
3937 	 * new.
3938 	 */
3939 	if (allocated > map->m_len) {
3940 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3941 					newblock + map->m_len,
3942 					allocated - map->m_len);
3943 		allocated = map->m_len;
3944 	}
3945 	map->m_len = allocated;
3946 
3947 	/*
3948 	 * If we have done fallocate with the offset that is already
3949 	 * delayed allocated, we would have block reservation
3950 	 * and quota reservation done in the delayed write path.
3951 	 * But fallocate would have already updated quota and block
3952 	 * count for this offset. So cancel these reservation
3953 	 */
3954 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3955 		unsigned int reserved_clusters;
3956 		reserved_clusters = get_reserved_cluster_alloc(inode,
3957 				map->m_lblk, map->m_len);
3958 		if (reserved_clusters)
3959 			ext4_da_update_reserve_space(inode,
3960 						     reserved_clusters,
3961 						     0);
3962 	}
3963 
3964 map_out:
3965 	map->m_flags |= EXT4_MAP_MAPPED;
3966 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3967 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3968 					 map->m_len);
3969 		if (err < 0)
3970 			goto out2;
3971 	}
3972 out1:
3973 	if (allocated > map->m_len)
3974 		allocated = map->m_len;
3975 	ext4_ext_show_leaf(inode, path);
3976 	map->m_pblk = newblock;
3977 	map->m_len = allocated;
3978 out2:
3979 	if (path) {
3980 		ext4_ext_drop_refs(path);
3981 		kfree(path);
3982 	}
3983 	return err ? err : allocated;
3984 }
3985 
3986 /*
3987  * get_implied_cluster_alloc - check to see if the requested
3988  * allocation (in the map structure) overlaps with a cluster already
3989  * allocated in an extent.
3990  *	@sb	The filesystem superblock structure
3991  *	@map	The requested lblk->pblk mapping
3992  *	@ex	The extent structure which might contain an implied
3993  *			cluster allocation
3994  *
3995  * This function is called by ext4_ext_map_blocks() after we failed to
3996  * find blocks that were already in the inode's extent tree.  Hence,
3997  * we know that the beginning of the requested region cannot overlap
3998  * the extent from the inode's extent tree.  There are three cases we
3999  * want to catch.  The first is this case:
4000  *
4001  *		 |--- cluster # N--|
4002  *    |--- extent ---|	|---- requested region ---|
4003  *			|==========|
4004  *
4005  * The second case that we need to test for is this one:
4006  *
4007  *   |--------- cluster # N ----------------|
4008  *	   |--- requested region --|   |------- extent ----|
4009  *	   |=======================|
4010  *
4011  * The third case is when the requested region lies between two extents
4012  * within the same cluster:
4013  *          |------------- cluster # N-------------|
4014  * |----- ex -----|                  |---- ex_right ----|
4015  *                  |------ requested region ------|
4016  *                  |================|
4017  *
4018  * In each of the above cases, we need to set the map->m_pblk and
4019  * map->m_len so it corresponds to the return the extent labelled as
4020  * "|====|" from cluster #N, since it is already in use for data in
4021  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4022  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4023  * as a new "allocated" block region.  Otherwise, we will return 0 and
4024  * ext4_ext_map_blocks() will then allocate one or more new clusters
4025  * by calling ext4_mb_new_blocks().
4026  */
4027 static int get_implied_cluster_alloc(struct super_block *sb,
4028 				     struct ext4_map_blocks *map,
4029 				     struct ext4_extent *ex,
4030 				     struct ext4_ext_path *path)
4031 {
4032 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4033 	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4034 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4035 	ext4_lblk_t rr_cluster_start;
4036 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4037 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4038 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4039 
4040 	/* The extent passed in that we are trying to match */
4041 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4042 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4043 
4044 	/* The requested region passed into ext4_map_blocks() */
4045 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4046 
4047 	if ((rr_cluster_start == ex_cluster_end) ||
4048 	    (rr_cluster_start == ex_cluster_start)) {
4049 		if (rr_cluster_start == ex_cluster_end)
4050 			ee_start += ee_len - 1;
4051 		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
4052 			c_offset;
4053 		map->m_len = min(map->m_len,
4054 				 (unsigned) sbi->s_cluster_ratio - c_offset);
4055 		/*
4056 		 * Check for and handle this case:
4057 		 *
4058 		 *   |--------- cluster # N-------------|
4059 		 *		       |------- extent ----|
4060 		 *	   |--- requested region ---|
4061 		 *	   |===========|
4062 		 */
4063 
4064 		if (map->m_lblk < ee_block)
4065 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4066 
4067 		/*
4068 		 * Check for the case where there is already another allocated
4069 		 * block to the right of 'ex' but before the end of the cluster.
4070 		 *
4071 		 *          |------------- cluster # N-------------|
4072 		 * |----- ex -----|                  |---- ex_right ----|
4073 		 *                  |------ requested region ------|
4074 		 *                  |================|
4075 		 */
4076 		if (map->m_lblk > ee_block) {
4077 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4078 			map->m_len = min(map->m_len, next - map->m_lblk);
4079 		}
4080 
4081 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4082 		return 1;
4083 	}
4084 
4085 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4086 	return 0;
4087 }
4088 
4089 
4090 /*
4091  * Block allocation/map/preallocation routine for extents based files
4092  *
4093  *
4094  * Need to be called with
4095  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4096  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4097  *
4098  * return > 0, number of of blocks already mapped/allocated
4099  *          if create == 0 and these are pre-allocated blocks
4100  *          	buffer head is unmapped
4101  *          otherwise blocks are mapped
4102  *
4103  * return = 0, if plain look up failed (blocks have not been allocated)
4104  *          buffer head is unmapped
4105  *
4106  * return < 0, error case.
4107  */
4108 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4109 			struct ext4_map_blocks *map, int flags)
4110 {
4111 	struct ext4_ext_path *path = NULL;
4112 	struct ext4_extent newex, *ex, *ex2;
4113 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4114 	ext4_fsblk_t newblock = 0;
4115 	int free_on_err = 0, err = 0, depth;
4116 	unsigned int allocated = 0, offset = 0;
4117 	unsigned int allocated_clusters = 0;
4118 	struct ext4_allocation_request ar;
4119 	ext4_io_end_t *io = ext4_inode_aio(inode);
4120 	ext4_lblk_t cluster_offset;
4121 	int set_unwritten = 0;
4122 
4123 	ext_debug("blocks %u/%u requested for inode %lu\n",
4124 		  map->m_lblk, map->m_len, inode->i_ino);
4125 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4126 
4127 	/* find extent for this block */
4128 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4129 	if (IS_ERR(path)) {
4130 		err = PTR_ERR(path);
4131 		path = NULL;
4132 		goto out2;
4133 	}
4134 
4135 	depth = ext_depth(inode);
4136 
4137 	/*
4138 	 * consistent leaf must not be empty;
4139 	 * this situation is possible, though, _during_ tree modification;
4140 	 * this is why assert can't be put in ext4_ext_find_extent()
4141 	 */
4142 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4143 		EXT4_ERROR_INODE(inode, "bad extent address "
4144 				 "lblock: %lu, depth: %d pblock %lld",
4145 				 (unsigned long) map->m_lblk, depth,
4146 				 path[depth].p_block);
4147 		err = -EIO;
4148 		goto out2;
4149 	}
4150 
4151 	ex = path[depth].p_ext;
4152 	if (ex) {
4153 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4154 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4155 		unsigned short ee_len;
4156 
4157 		/*
4158 		 * Uninitialized extents are treated as holes, except that
4159 		 * we split out initialized portions during a write.
4160 		 */
4161 		ee_len = ext4_ext_get_actual_len(ex);
4162 
4163 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4164 
4165 		/* if found extent covers block, simply return it */
4166 		if (in_range(map->m_lblk, ee_block, ee_len)) {
4167 			newblock = map->m_lblk - ee_block + ee_start;
4168 			/* number of remaining blocks in the extent */
4169 			allocated = ee_len - (map->m_lblk - ee_block);
4170 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4171 				  ee_block, ee_len, newblock);
4172 
4173 			if (!ext4_ext_is_uninitialized(ex))
4174 				goto out;
4175 
4176 			allocated = ext4_ext_handle_uninitialized_extents(
4177 				handle, inode, map, path, flags,
4178 				allocated, newblock);
4179 			goto out3;
4180 		}
4181 	}
4182 
4183 	if ((sbi->s_cluster_ratio > 1) &&
4184 	    ext4_find_delalloc_cluster(inode, map->m_lblk))
4185 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4186 
4187 	/*
4188 	 * requested block isn't allocated yet;
4189 	 * we couldn't try to create block if create flag is zero
4190 	 */
4191 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4192 		/*
4193 		 * put just found gap into cache to speed up
4194 		 * subsequent requests
4195 		 */
4196 		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4197 			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4198 		goto out2;
4199 	}
4200 
4201 	/*
4202 	 * Okay, we need to do block allocation.
4203 	 */
4204 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4205 	newex.ee_block = cpu_to_le32(map->m_lblk);
4206 	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4207 
4208 	/*
4209 	 * If we are doing bigalloc, check to see if the extent returned
4210 	 * by ext4_ext_find_extent() implies a cluster we can use.
4211 	 */
4212 	if (cluster_offset && ex &&
4213 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4214 		ar.len = allocated = map->m_len;
4215 		newblock = map->m_pblk;
4216 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4217 		goto got_allocated_blocks;
4218 	}
4219 
4220 	/* find neighbour allocated blocks */
4221 	ar.lleft = map->m_lblk;
4222 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4223 	if (err)
4224 		goto out2;
4225 	ar.lright = map->m_lblk;
4226 	ex2 = NULL;
4227 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4228 	if (err)
4229 		goto out2;
4230 
4231 	/* Check if the extent after searching to the right implies a
4232 	 * cluster we can use. */
4233 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4234 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4235 		ar.len = allocated = map->m_len;
4236 		newblock = map->m_pblk;
4237 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4238 		goto got_allocated_blocks;
4239 	}
4240 
4241 	/*
4242 	 * See if request is beyond maximum number of blocks we can have in
4243 	 * a single extent. For an initialized extent this limit is
4244 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4245 	 * EXT_UNINIT_MAX_LEN.
4246 	 */
4247 	if (map->m_len > EXT_INIT_MAX_LEN &&
4248 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4249 		map->m_len = EXT_INIT_MAX_LEN;
4250 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4251 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4252 		map->m_len = EXT_UNINIT_MAX_LEN;
4253 
4254 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4255 	newex.ee_len = cpu_to_le16(map->m_len);
4256 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4257 	if (err)
4258 		allocated = ext4_ext_get_actual_len(&newex);
4259 	else
4260 		allocated = map->m_len;
4261 
4262 	/* allocate new block */
4263 	ar.inode = inode;
4264 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4265 	ar.logical = map->m_lblk;
4266 	/*
4267 	 * We calculate the offset from the beginning of the cluster
4268 	 * for the logical block number, since when we allocate a
4269 	 * physical cluster, the physical block should start at the
4270 	 * same offset from the beginning of the cluster.  This is
4271 	 * needed so that future calls to get_implied_cluster_alloc()
4272 	 * work correctly.
4273 	 */
4274 	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4275 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4276 	ar.goal -= offset;
4277 	ar.logical -= offset;
4278 	if (S_ISREG(inode->i_mode))
4279 		ar.flags = EXT4_MB_HINT_DATA;
4280 	else
4281 		/* disable in-core preallocation for non-regular files */
4282 		ar.flags = 0;
4283 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4284 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4285 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4286 	if (!newblock)
4287 		goto out2;
4288 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4289 		  ar.goal, newblock, allocated);
4290 	free_on_err = 1;
4291 	allocated_clusters = ar.len;
4292 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4293 	if (ar.len > allocated)
4294 		ar.len = allocated;
4295 
4296 got_allocated_blocks:
4297 	/* try to insert new extent into found leaf and return */
4298 	ext4_ext_store_pblock(&newex, newblock + offset);
4299 	newex.ee_len = cpu_to_le16(ar.len);
4300 	/* Mark uninitialized */
4301 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4302 		ext4_ext_mark_uninitialized(&newex);
4303 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4304 		/*
4305 		 * io_end structure was created for every IO write to an
4306 		 * uninitialized extent. To avoid unnecessary conversion,
4307 		 * here we flag the IO that really needs the conversion.
4308 		 * For non asycn direct IO case, flag the inode state
4309 		 * that we need to perform conversion when IO is done.
4310 		 */
4311 		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4312 			set_unwritten = 1;
4313 		if (ext4_should_dioread_nolock(inode))
4314 			map->m_flags |= EXT4_MAP_UNINIT;
4315 	}
4316 
4317 	err = 0;
4318 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4319 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4320 					 path, ar.len);
4321 	if (!err)
4322 		err = ext4_ext_insert_extent(handle, inode, path,
4323 					     &newex, flags);
4324 
4325 	if (!err && set_unwritten) {
4326 		if (io)
4327 			ext4_set_io_unwritten_flag(inode, io);
4328 		else
4329 			ext4_set_inode_state(inode,
4330 					     EXT4_STATE_DIO_UNWRITTEN);
4331 	}
4332 
4333 	if (err && free_on_err) {
4334 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4335 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4336 		/* free data blocks we just allocated */
4337 		/* not a good idea to call discard here directly,
4338 		 * but otherwise we'd need to call it every free() */
4339 		ext4_discard_preallocations(inode);
4340 		ext4_free_blocks(handle, inode, NULL, newblock,
4341 				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4342 		goto out2;
4343 	}
4344 
4345 	/* previous routine could use block we allocated */
4346 	newblock = ext4_ext_pblock(&newex);
4347 	allocated = ext4_ext_get_actual_len(&newex);
4348 	if (allocated > map->m_len)
4349 		allocated = map->m_len;
4350 	map->m_flags |= EXT4_MAP_NEW;
4351 
4352 	/*
4353 	 * Update reserved blocks/metadata blocks after successful
4354 	 * block allocation which had been deferred till now.
4355 	 */
4356 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4357 		unsigned int reserved_clusters;
4358 		/*
4359 		 * Check how many clusters we had reserved this allocated range
4360 		 */
4361 		reserved_clusters = get_reserved_cluster_alloc(inode,
4362 						map->m_lblk, allocated);
4363 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4364 			if (reserved_clusters) {
4365 				/*
4366 				 * We have clusters reserved for this range.
4367 				 * But since we are not doing actual allocation
4368 				 * and are simply using blocks from previously
4369 				 * allocated cluster, we should release the
4370 				 * reservation and not claim quota.
4371 				 */
4372 				ext4_da_update_reserve_space(inode,
4373 						reserved_clusters, 0);
4374 			}
4375 		} else {
4376 			BUG_ON(allocated_clusters < reserved_clusters);
4377 			if (reserved_clusters < allocated_clusters) {
4378 				struct ext4_inode_info *ei = EXT4_I(inode);
4379 				int reservation = allocated_clusters -
4380 						  reserved_clusters;
4381 				/*
4382 				 * It seems we claimed few clusters outside of
4383 				 * the range of this allocation. We should give
4384 				 * it back to the reservation pool. This can
4385 				 * happen in the following case:
4386 				 *
4387 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4388 				 *   cluster has 4 blocks. Thus, the clusters
4389 				 *   are [0-3],[4-7],[8-11]...
4390 				 * * First comes delayed allocation write for
4391 				 *   logical blocks 10 & 11. Since there were no
4392 				 *   previous delayed allocated blocks in the
4393 				 *   range [8-11], we would reserve 1 cluster
4394 				 *   for this write.
4395 				 * * Next comes write for logical blocks 3 to 8.
4396 				 *   In this case, we will reserve 2 clusters
4397 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4398 				 *   that range has a delayed allocated blocks.
4399 				 *   Thus total reserved clusters now becomes 3.
4400 				 * * Now, during the delayed allocation writeout
4401 				 *   time, we will first write blocks [3-8] and
4402 				 *   allocate 3 clusters for writing these
4403 				 *   blocks. Also, we would claim all these
4404 				 *   three clusters above.
4405 				 * * Now when we come here to writeout the
4406 				 *   blocks [10-11], we would expect to claim
4407 				 *   the reservation of 1 cluster we had made
4408 				 *   (and we would claim it since there are no
4409 				 *   more delayed allocated blocks in the range
4410 				 *   [8-11]. But our reserved cluster count had
4411 				 *   already gone to 0.
4412 				 *
4413 				 *   Thus, at the step 4 above when we determine
4414 				 *   that there are still some unwritten delayed
4415 				 *   allocated blocks outside of our current
4416 				 *   block range, we should increment the
4417 				 *   reserved clusters count so that when the
4418 				 *   remaining blocks finally gets written, we
4419 				 *   could claim them.
4420 				 */
4421 				dquot_reserve_block(inode,
4422 						EXT4_C2B(sbi, reservation));
4423 				spin_lock(&ei->i_block_reservation_lock);
4424 				ei->i_reserved_data_blocks += reservation;
4425 				spin_unlock(&ei->i_block_reservation_lock);
4426 			}
4427 			/*
4428 			 * We will claim quota for all newly allocated blocks.
4429 			 * We're updating the reserved space *after* the
4430 			 * correction above so we do not accidentally free
4431 			 * all the metadata reservation because we might
4432 			 * actually need it later on.
4433 			 */
4434 			ext4_da_update_reserve_space(inode, allocated_clusters,
4435 							1);
4436 		}
4437 	}
4438 
4439 	/*
4440 	 * Cache the extent and update transaction to commit on fdatasync only
4441 	 * when it is _not_ an uninitialized extent.
4442 	 */
4443 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4444 		ext4_update_inode_fsync_trans(handle, inode, 1);
4445 	else
4446 		ext4_update_inode_fsync_trans(handle, inode, 0);
4447 out:
4448 	if (allocated > map->m_len)
4449 		allocated = map->m_len;
4450 	ext4_ext_show_leaf(inode, path);
4451 	map->m_flags |= EXT4_MAP_MAPPED;
4452 	map->m_pblk = newblock;
4453 	map->m_len = allocated;
4454 out2:
4455 	if (path) {
4456 		ext4_ext_drop_refs(path);
4457 		kfree(path);
4458 	}
4459 
4460 out3:
4461 	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4462 				       err ? err : allocated);
4463 	ext4_es_lru_add(inode);
4464 	return err ? err : allocated;
4465 }
4466 
4467 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4468 {
4469 	struct super_block *sb = inode->i_sb;
4470 	ext4_lblk_t last_block;
4471 	int err = 0;
4472 
4473 	/*
4474 	 * TODO: optimization is possible here.
4475 	 * Probably we need not scan at all,
4476 	 * because page truncation is enough.
4477 	 */
4478 
4479 	/* we have to know where to truncate from in crash case */
4480 	EXT4_I(inode)->i_disksize = inode->i_size;
4481 	ext4_mark_inode_dirty(handle, inode);
4482 
4483 	last_block = (inode->i_size + sb->s_blocksize - 1)
4484 			>> EXT4_BLOCK_SIZE_BITS(sb);
4485 retry:
4486 	err = ext4_es_remove_extent(inode, last_block,
4487 				    EXT_MAX_BLOCKS - last_block);
4488 	if (err == -ENOMEM) {
4489 		cond_resched();
4490 		congestion_wait(BLK_RW_ASYNC, HZ/50);
4491 		goto retry;
4492 	}
4493 	if (err) {
4494 		ext4_std_error(inode->i_sb, err);
4495 		return;
4496 	}
4497 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4498 	ext4_std_error(inode->i_sb, err);
4499 }
4500 
4501 static void ext4_falloc_update_inode(struct inode *inode,
4502 				int mode, loff_t new_size, int update_ctime)
4503 {
4504 	struct timespec now;
4505 
4506 	if (update_ctime) {
4507 		now = current_fs_time(inode->i_sb);
4508 		if (!timespec_equal(&inode->i_ctime, &now))
4509 			inode->i_ctime = now;
4510 	}
4511 	/*
4512 	 * Update only when preallocation was requested beyond
4513 	 * the file size.
4514 	 */
4515 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4516 		if (new_size > i_size_read(inode))
4517 			i_size_write(inode, new_size);
4518 		if (new_size > EXT4_I(inode)->i_disksize)
4519 			ext4_update_i_disksize(inode, new_size);
4520 	} else {
4521 		/*
4522 		 * Mark that we allocate beyond EOF so the subsequent truncate
4523 		 * can proceed even if the new size is the same as i_size.
4524 		 */
4525 		if (new_size > i_size_read(inode))
4526 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4527 	}
4528 
4529 }
4530 
4531 /*
4532  * preallocate space for a file. This implements ext4's fallocate file
4533  * operation, which gets called from sys_fallocate system call.
4534  * For block-mapped files, posix_fallocate should fall back to the method
4535  * of writing zeroes to the required new blocks (the same behavior which is
4536  * expected for file systems which do not support fallocate() system call).
4537  */
4538 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4539 {
4540 	struct inode *inode = file_inode(file);
4541 	handle_t *handle;
4542 	loff_t new_size;
4543 	unsigned int max_blocks;
4544 	int ret = 0;
4545 	int ret2 = 0;
4546 	int retries = 0;
4547 	int flags;
4548 	struct ext4_map_blocks map;
4549 	unsigned int credits, blkbits = inode->i_blkbits;
4550 
4551 	/* Return error if mode is not supported */
4552 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4553 		return -EOPNOTSUPP;
4554 
4555 	if (mode & FALLOC_FL_PUNCH_HOLE)
4556 		return ext4_punch_hole(inode, offset, len);
4557 
4558 	ret = ext4_convert_inline_data(inode);
4559 	if (ret)
4560 		return ret;
4561 
4562 	/*
4563 	 * currently supporting (pre)allocate mode for extent-based
4564 	 * files _only_
4565 	 */
4566 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4567 		return -EOPNOTSUPP;
4568 
4569 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4570 	map.m_lblk = offset >> blkbits;
4571 	/*
4572 	 * We can't just convert len to max_blocks because
4573 	 * If blocksize = 4096 offset = 3072 and len = 2048
4574 	 */
4575 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4576 		- map.m_lblk;
4577 	/*
4578 	 * credits to insert 1 extent into extent tree
4579 	 */
4580 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4581 	mutex_lock(&inode->i_mutex);
4582 	ret = inode_newsize_ok(inode, (len + offset));
4583 	if (ret) {
4584 		mutex_unlock(&inode->i_mutex);
4585 		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4586 		return ret;
4587 	}
4588 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4589 	if (mode & FALLOC_FL_KEEP_SIZE)
4590 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4591 	/*
4592 	 * Don't normalize the request if it can fit in one extent so
4593 	 * that it doesn't get unnecessarily split into multiple
4594 	 * extents.
4595 	 */
4596 	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4597 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4598 
4599 retry:
4600 	while (ret >= 0 && ret < max_blocks) {
4601 		map.m_lblk = map.m_lblk + ret;
4602 		map.m_len = max_blocks = max_blocks - ret;
4603 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4604 					    credits);
4605 		if (IS_ERR(handle)) {
4606 			ret = PTR_ERR(handle);
4607 			break;
4608 		}
4609 		ret = ext4_map_blocks(handle, inode, &map, flags);
4610 		if (ret <= 0) {
4611 #ifdef EXT4FS_DEBUG
4612 			ext4_warning(inode->i_sb,
4613 				     "inode #%lu: block %u: len %u: "
4614 				     "ext4_ext_map_blocks returned %d",
4615 				     inode->i_ino, map.m_lblk,
4616 				     map.m_len, ret);
4617 #endif
4618 			ext4_mark_inode_dirty(handle, inode);
4619 			ret2 = ext4_journal_stop(handle);
4620 			break;
4621 		}
4622 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4623 						blkbits) >> blkbits))
4624 			new_size = offset + len;
4625 		else
4626 			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4627 
4628 		ext4_falloc_update_inode(inode, mode, new_size,
4629 					 (map.m_flags & EXT4_MAP_NEW));
4630 		ext4_mark_inode_dirty(handle, inode);
4631 		if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4632 			ext4_handle_sync(handle);
4633 		ret2 = ext4_journal_stop(handle);
4634 		if (ret2)
4635 			break;
4636 	}
4637 	if (ret == -ENOSPC &&
4638 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4639 		ret = 0;
4640 		goto retry;
4641 	}
4642 	mutex_unlock(&inode->i_mutex);
4643 	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4644 				ret > 0 ? ret2 : ret);
4645 	return ret > 0 ? ret2 : ret;
4646 }
4647 
4648 /*
4649  * This function convert a range of blocks to written extents
4650  * The caller of this function will pass the start offset and the size.
4651  * all unwritten extents within this range will be converted to
4652  * written extents.
4653  *
4654  * This function is called from the direct IO end io call back
4655  * function, to convert the fallocated extents after IO is completed.
4656  * Returns 0 on success.
4657  */
4658 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4659 				   loff_t offset, ssize_t len)
4660 {
4661 	unsigned int max_blocks;
4662 	int ret = 0;
4663 	int ret2 = 0;
4664 	struct ext4_map_blocks map;
4665 	unsigned int credits, blkbits = inode->i_blkbits;
4666 
4667 	map.m_lblk = offset >> blkbits;
4668 	/*
4669 	 * We can't just convert len to max_blocks because
4670 	 * If blocksize = 4096 offset = 3072 and len = 2048
4671 	 */
4672 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4673 		      map.m_lblk);
4674 	/*
4675 	 * This is somewhat ugly but the idea is clear: When transaction is
4676 	 * reserved, everything goes into it. Otherwise we rather start several
4677 	 * smaller transactions for conversion of each extent separately.
4678 	 */
4679 	if (handle) {
4680 		handle = ext4_journal_start_reserved(handle,
4681 						     EXT4_HT_EXT_CONVERT);
4682 		if (IS_ERR(handle))
4683 			return PTR_ERR(handle);
4684 		credits = 0;
4685 	} else {
4686 		/*
4687 		 * credits to insert 1 extent into extent tree
4688 		 */
4689 		credits = ext4_chunk_trans_blocks(inode, max_blocks);
4690 	}
4691 	while (ret >= 0 && ret < max_blocks) {
4692 		map.m_lblk += ret;
4693 		map.m_len = (max_blocks -= ret);
4694 		if (credits) {
4695 			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4696 						    credits);
4697 			if (IS_ERR(handle)) {
4698 				ret = PTR_ERR(handle);
4699 				break;
4700 			}
4701 		}
4702 		ret = ext4_map_blocks(handle, inode, &map,
4703 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4704 		if (ret <= 0)
4705 			ext4_warning(inode->i_sb,
4706 				     "inode #%lu: block %u: len %u: "
4707 				     "ext4_ext_map_blocks returned %d",
4708 				     inode->i_ino, map.m_lblk,
4709 				     map.m_len, ret);
4710 		ext4_mark_inode_dirty(handle, inode);
4711 		if (credits)
4712 			ret2 = ext4_journal_stop(handle);
4713 		if (ret <= 0 || ret2)
4714 			break;
4715 	}
4716 	if (!credits)
4717 		ret2 = ext4_journal_stop(handle);
4718 	return ret > 0 ? ret2 : ret;
4719 }
4720 
4721 /*
4722  * If newes is not existing extent (newes->ec_pblk equals zero) find
4723  * delayed extent at start of newes and update newes accordingly and
4724  * return start of the next delayed extent.
4725  *
4726  * If newes is existing extent (newes->ec_pblk is not equal zero)
4727  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4728  * extent found. Leave newes unmodified.
4729  */
4730 static int ext4_find_delayed_extent(struct inode *inode,
4731 				    struct extent_status *newes)
4732 {
4733 	struct extent_status es;
4734 	ext4_lblk_t block, next_del;
4735 
4736 	if (newes->es_pblk == 0) {
4737 		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
4738 				newes->es_lblk + newes->es_len - 1, &es);
4739 
4740 		/*
4741 		 * No extent in extent-tree contains block @newes->es_pblk,
4742 		 * then the block may stay in 1)a hole or 2)delayed-extent.
4743 		 */
4744 		if (es.es_len == 0)
4745 			/* A hole found. */
4746 			return 0;
4747 
4748 		if (es.es_lblk > newes->es_lblk) {
4749 			/* A hole found. */
4750 			newes->es_len = min(es.es_lblk - newes->es_lblk,
4751 					    newes->es_len);
4752 			return 0;
4753 		}
4754 
4755 		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4756 	}
4757 
4758 	block = newes->es_lblk + newes->es_len;
4759 	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
4760 	if (es.es_len == 0)
4761 		next_del = EXT_MAX_BLOCKS;
4762 	else
4763 		next_del = es.es_lblk;
4764 
4765 	return next_del;
4766 }
4767 /* fiemap flags we can handle specified here */
4768 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4769 
4770 static int ext4_xattr_fiemap(struct inode *inode,
4771 				struct fiemap_extent_info *fieinfo)
4772 {
4773 	__u64 physical = 0;
4774 	__u64 length;
4775 	__u32 flags = FIEMAP_EXTENT_LAST;
4776 	int blockbits = inode->i_sb->s_blocksize_bits;
4777 	int error = 0;
4778 
4779 	/* in-inode? */
4780 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4781 		struct ext4_iloc iloc;
4782 		int offset;	/* offset of xattr in inode */
4783 
4784 		error = ext4_get_inode_loc(inode, &iloc);
4785 		if (error)
4786 			return error;
4787 		physical = (__u64)iloc.bh->b_blocknr << blockbits;
4788 		offset = EXT4_GOOD_OLD_INODE_SIZE +
4789 				EXT4_I(inode)->i_extra_isize;
4790 		physical += offset;
4791 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4792 		flags |= FIEMAP_EXTENT_DATA_INLINE;
4793 		brelse(iloc.bh);
4794 	} else { /* external block */
4795 		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4796 		length = inode->i_sb->s_blocksize;
4797 	}
4798 
4799 	if (physical)
4800 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4801 						length, flags);
4802 	return (error < 0 ? error : 0);
4803 }
4804 
4805 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4806 		__u64 start, __u64 len)
4807 {
4808 	ext4_lblk_t start_blk;
4809 	int error = 0;
4810 
4811 	if (ext4_has_inline_data(inode)) {
4812 		int has_inline = 1;
4813 
4814 		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4815 
4816 		if (has_inline)
4817 			return error;
4818 	}
4819 
4820 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
4821 		error = ext4_ext_precache(inode);
4822 		if (error)
4823 			return error;
4824 	}
4825 
4826 	/* fallback to generic here if not in extents fmt */
4827 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4828 		return generic_block_fiemap(inode, fieinfo, start, len,
4829 			ext4_get_block);
4830 
4831 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4832 		return -EBADR;
4833 
4834 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4835 		error = ext4_xattr_fiemap(inode, fieinfo);
4836 	} else {
4837 		ext4_lblk_t len_blks;
4838 		__u64 last_blk;
4839 
4840 		start_blk = start >> inode->i_sb->s_blocksize_bits;
4841 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4842 		if (last_blk >= EXT_MAX_BLOCKS)
4843 			last_blk = EXT_MAX_BLOCKS-1;
4844 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4845 
4846 		/*
4847 		 * Walk the extent tree gathering extent information
4848 		 * and pushing extents back to the user.
4849 		 */
4850 		error = ext4_fill_fiemap_extents(inode, start_blk,
4851 						 len_blks, fieinfo);
4852 	}
4853 	ext4_es_lru_add(inode);
4854 	return error;
4855 }
4856