1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 * 6 * Architecture independence: 7 * Copyright (c) 2005, Bull S.A. 8 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 9 */ 10 11 /* 12 * Extents support for EXT4 13 * 14 * TODO: 15 * - ext4*_error() should be used in some situations 16 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 17 * - smart tree reduction 18 */ 19 20 #include <linux/fs.h> 21 #include <linux/time.h> 22 #include <linux/jbd2.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/quotaops.h> 26 #include <linux/string.h> 27 #include <linux/slab.h> 28 #include <linux/uaccess.h> 29 #include <linux/fiemap.h> 30 #include <linux/iomap.h> 31 #include <linux/sched/mm.h> 32 #include "ext4_jbd2.h" 33 #include "ext4_extents.h" 34 #include "xattr.h" 35 36 #include <trace/events/ext4.h> 37 38 /* 39 * used by extent splitting. 40 */ 41 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 42 due to ENOSPC */ 43 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 44 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 45 46 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 47 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 48 49 static __le32 ext4_extent_block_csum(struct inode *inode, 50 struct ext4_extent_header *eh) 51 { 52 struct ext4_inode_info *ei = EXT4_I(inode); 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u32 csum; 55 56 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 57 EXT4_EXTENT_TAIL_OFFSET(eh)); 58 return cpu_to_le32(csum); 59 } 60 61 static int ext4_extent_block_csum_verify(struct inode *inode, 62 struct ext4_extent_header *eh) 63 { 64 struct ext4_extent_tail *et; 65 66 if (!ext4_has_metadata_csum(inode->i_sb)) 67 return 1; 68 69 et = find_ext4_extent_tail(eh); 70 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 71 return 0; 72 return 1; 73 } 74 75 static void ext4_extent_block_csum_set(struct inode *inode, 76 struct ext4_extent_header *eh) 77 { 78 struct ext4_extent_tail *et; 79 80 if (!ext4_has_metadata_csum(inode->i_sb)) 81 return; 82 83 et = find_ext4_extent_tail(eh); 84 et->et_checksum = ext4_extent_block_csum(inode, eh); 85 } 86 87 static int ext4_split_extent_at(handle_t *handle, 88 struct inode *inode, 89 struct ext4_ext_path **ppath, 90 ext4_lblk_t split, 91 int split_flag, 92 int flags); 93 94 static int ext4_ext_trunc_restart_fn(struct inode *inode, int *dropped) 95 { 96 /* 97 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 98 * moment, get_block can be called only for blocks inside i_size since 99 * page cache has been already dropped and writes are blocked by 100 * i_rwsem. So we can safely drop the i_data_sem here. 101 */ 102 BUG_ON(EXT4_JOURNAL(inode) == NULL); 103 ext4_discard_preallocations(inode, 0); 104 up_write(&EXT4_I(inode)->i_data_sem); 105 *dropped = 1; 106 return 0; 107 } 108 109 /* 110 * Make sure 'handle' has at least 'check_cred' credits. If not, restart 111 * transaction with 'restart_cred' credits. The function drops i_data_sem 112 * when restarting transaction and gets it after transaction is restarted. 113 * 114 * The function returns 0 on success, 1 if transaction had to be restarted, 115 * and < 0 in case of fatal error. 116 */ 117 int ext4_datasem_ensure_credits(handle_t *handle, struct inode *inode, 118 int check_cred, int restart_cred, 119 int revoke_cred) 120 { 121 int ret; 122 int dropped = 0; 123 124 ret = ext4_journal_ensure_credits_fn(handle, check_cred, restart_cred, 125 revoke_cred, ext4_ext_trunc_restart_fn(inode, &dropped)); 126 if (dropped) 127 down_write(&EXT4_I(inode)->i_data_sem); 128 return ret; 129 } 130 131 /* 132 * could return: 133 * - EROFS 134 * - ENOMEM 135 */ 136 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 137 struct ext4_ext_path *path) 138 { 139 int err = 0; 140 141 if (path->p_bh) { 142 /* path points to block */ 143 BUFFER_TRACE(path->p_bh, "get_write_access"); 144 err = ext4_journal_get_write_access(handle, inode->i_sb, 145 path->p_bh, EXT4_JTR_NONE); 146 /* 147 * The extent buffer's verified bit will be set again in 148 * __ext4_ext_dirty(). We could leave an inconsistent 149 * buffer if the extents updating procudure break off du 150 * to some error happens, force to check it again. 151 */ 152 if (!err) 153 clear_buffer_verified(path->p_bh); 154 } 155 /* path points to leaf/index in inode body */ 156 /* we use in-core data, no need to protect them */ 157 return err; 158 } 159 160 /* 161 * could return: 162 * - EROFS 163 * - ENOMEM 164 * - EIO 165 */ 166 static int __ext4_ext_dirty(const char *where, unsigned int line, 167 handle_t *handle, struct inode *inode, 168 struct ext4_ext_path *path) 169 { 170 int err; 171 172 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 173 if (path->p_bh) { 174 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 175 /* path points to block */ 176 err = __ext4_handle_dirty_metadata(where, line, handle, 177 inode, path->p_bh); 178 /* Extents updating done, re-set verified flag */ 179 if (!err) 180 set_buffer_verified(path->p_bh); 181 } else { 182 /* path points to leaf/index in inode body */ 183 err = ext4_mark_inode_dirty(handle, inode); 184 } 185 return err; 186 } 187 188 #define ext4_ext_dirty(handle, inode, path) \ 189 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) 190 191 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 192 struct ext4_ext_path *path, 193 ext4_lblk_t block) 194 { 195 if (path) { 196 int depth = path->p_depth; 197 struct ext4_extent *ex; 198 199 /* 200 * Try to predict block placement assuming that we are 201 * filling in a file which will eventually be 202 * non-sparse --- i.e., in the case of libbfd writing 203 * an ELF object sections out-of-order but in a way 204 * the eventually results in a contiguous object or 205 * executable file, or some database extending a table 206 * space file. However, this is actually somewhat 207 * non-ideal if we are writing a sparse file such as 208 * qemu or KVM writing a raw image file that is going 209 * to stay fairly sparse, since it will end up 210 * fragmenting the file system's free space. Maybe we 211 * should have some hueristics or some way to allow 212 * userspace to pass a hint to file system, 213 * especially if the latter case turns out to be 214 * common. 215 */ 216 ex = path[depth].p_ext; 217 if (ex) { 218 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 219 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 220 221 if (block > ext_block) 222 return ext_pblk + (block - ext_block); 223 else 224 return ext_pblk - (ext_block - block); 225 } 226 227 /* it looks like index is empty; 228 * try to find starting block from index itself */ 229 if (path[depth].p_bh) 230 return path[depth].p_bh->b_blocknr; 231 } 232 233 /* OK. use inode's group */ 234 return ext4_inode_to_goal_block(inode); 235 } 236 237 /* 238 * Allocation for a meta data block 239 */ 240 static ext4_fsblk_t 241 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 242 struct ext4_ext_path *path, 243 struct ext4_extent *ex, int *err, unsigned int flags) 244 { 245 ext4_fsblk_t goal, newblock; 246 247 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 248 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 249 NULL, err); 250 return newblock; 251 } 252 253 static inline int ext4_ext_space_block(struct inode *inode, int check) 254 { 255 int size; 256 257 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 258 / sizeof(struct ext4_extent); 259 #ifdef AGGRESSIVE_TEST 260 if (!check && size > 6) 261 size = 6; 262 #endif 263 return size; 264 } 265 266 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 267 { 268 int size; 269 270 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 271 / sizeof(struct ext4_extent_idx); 272 #ifdef AGGRESSIVE_TEST 273 if (!check && size > 5) 274 size = 5; 275 #endif 276 return size; 277 } 278 279 static inline int ext4_ext_space_root(struct inode *inode, int check) 280 { 281 int size; 282 283 size = sizeof(EXT4_I(inode)->i_data); 284 size -= sizeof(struct ext4_extent_header); 285 size /= sizeof(struct ext4_extent); 286 #ifdef AGGRESSIVE_TEST 287 if (!check && size > 3) 288 size = 3; 289 #endif 290 return size; 291 } 292 293 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 294 { 295 int size; 296 297 size = sizeof(EXT4_I(inode)->i_data); 298 size -= sizeof(struct ext4_extent_header); 299 size /= sizeof(struct ext4_extent_idx); 300 #ifdef AGGRESSIVE_TEST 301 if (!check && size > 4) 302 size = 4; 303 #endif 304 return size; 305 } 306 307 static inline int 308 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 309 struct ext4_ext_path **ppath, ext4_lblk_t lblk, 310 int nofail) 311 { 312 struct ext4_ext_path *path = *ppath; 313 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 314 int flags = EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO; 315 316 if (nofail) 317 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL | EXT4_EX_NOFAIL; 318 319 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ? 320 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 321 flags); 322 } 323 324 static int 325 ext4_ext_max_entries(struct inode *inode, int depth) 326 { 327 int max; 328 329 if (depth == ext_depth(inode)) { 330 if (depth == 0) 331 max = ext4_ext_space_root(inode, 1); 332 else 333 max = ext4_ext_space_root_idx(inode, 1); 334 } else { 335 if (depth == 0) 336 max = ext4_ext_space_block(inode, 1); 337 else 338 max = ext4_ext_space_block_idx(inode, 1); 339 } 340 341 return max; 342 } 343 344 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 345 { 346 ext4_fsblk_t block = ext4_ext_pblock(ext); 347 int len = ext4_ext_get_actual_len(ext); 348 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 349 350 /* 351 * We allow neither: 352 * - zero length 353 * - overflow/wrap-around 354 */ 355 if (lblock + len <= lblock) 356 return 0; 357 return ext4_inode_block_valid(inode, block, len); 358 } 359 360 static int ext4_valid_extent_idx(struct inode *inode, 361 struct ext4_extent_idx *ext_idx) 362 { 363 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 364 365 return ext4_inode_block_valid(inode, block, 1); 366 } 367 368 static int ext4_valid_extent_entries(struct inode *inode, 369 struct ext4_extent_header *eh, 370 ext4_lblk_t lblk, ext4_fsblk_t *pblk, 371 int depth) 372 { 373 unsigned short entries; 374 ext4_lblk_t lblock = 0; 375 ext4_lblk_t prev = 0; 376 377 if (eh->eh_entries == 0) 378 return 1; 379 380 entries = le16_to_cpu(eh->eh_entries); 381 382 if (depth == 0) { 383 /* leaf entries */ 384 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 385 386 /* 387 * The logical block in the first entry should equal to 388 * the number in the index block. 389 */ 390 if (depth != ext_depth(inode) && 391 lblk != le32_to_cpu(ext->ee_block)) 392 return 0; 393 while (entries) { 394 if (!ext4_valid_extent(inode, ext)) 395 return 0; 396 397 /* Check for overlapping extents */ 398 lblock = le32_to_cpu(ext->ee_block); 399 if ((lblock <= prev) && prev) { 400 *pblk = ext4_ext_pblock(ext); 401 return 0; 402 } 403 prev = lblock + ext4_ext_get_actual_len(ext) - 1; 404 ext++; 405 entries--; 406 } 407 } else { 408 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 409 410 /* 411 * The logical block in the first entry should equal to 412 * the number in the parent index block. 413 */ 414 if (depth != ext_depth(inode) && 415 lblk != le32_to_cpu(ext_idx->ei_block)) 416 return 0; 417 while (entries) { 418 if (!ext4_valid_extent_idx(inode, ext_idx)) 419 return 0; 420 421 /* Check for overlapping index extents */ 422 lblock = le32_to_cpu(ext_idx->ei_block); 423 if ((lblock <= prev) && prev) { 424 *pblk = ext4_idx_pblock(ext_idx); 425 return 0; 426 } 427 ext_idx++; 428 entries--; 429 prev = lblock; 430 } 431 } 432 return 1; 433 } 434 435 static int __ext4_ext_check(const char *function, unsigned int line, 436 struct inode *inode, struct ext4_extent_header *eh, 437 int depth, ext4_fsblk_t pblk, ext4_lblk_t lblk) 438 { 439 const char *error_msg; 440 int max = 0, err = -EFSCORRUPTED; 441 442 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 443 error_msg = "invalid magic"; 444 goto corrupted; 445 } 446 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 447 error_msg = "unexpected eh_depth"; 448 goto corrupted; 449 } 450 if (unlikely(eh->eh_max == 0)) { 451 error_msg = "invalid eh_max"; 452 goto corrupted; 453 } 454 max = ext4_ext_max_entries(inode, depth); 455 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 456 error_msg = "too large eh_max"; 457 goto corrupted; 458 } 459 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 460 error_msg = "invalid eh_entries"; 461 goto corrupted; 462 } 463 if (!ext4_valid_extent_entries(inode, eh, lblk, &pblk, depth)) { 464 error_msg = "invalid extent entries"; 465 goto corrupted; 466 } 467 if (unlikely(depth > 32)) { 468 error_msg = "too large eh_depth"; 469 goto corrupted; 470 } 471 /* Verify checksum on non-root extent tree nodes */ 472 if (ext_depth(inode) != depth && 473 !ext4_extent_block_csum_verify(inode, eh)) { 474 error_msg = "extent tree corrupted"; 475 err = -EFSBADCRC; 476 goto corrupted; 477 } 478 return 0; 479 480 corrupted: 481 ext4_error_inode_err(inode, function, line, 0, -err, 482 "pblk %llu bad header/extent: %s - magic %x, " 483 "entries %u, max %u(%u), depth %u(%u)", 484 (unsigned long long) pblk, error_msg, 485 le16_to_cpu(eh->eh_magic), 486 le16_to_cpu(eh->eh_entries), 487 le16_to_cpu(eh->eh_max), 488 max, le16_to_cpu(eh->eh_depth), depth); 489 return err; 490 } 491 492 #define ext4_ext_check(inode, eh, depth, pblk) \ 493 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk), 0) 494 495 int ext4_ext_check_inode(struct inode *inode) 496 { 497 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 498 } 499 500 static void ext4_cache_extents(struct inode *inode, 501 struct ext4_extent_header *eh) 502 { 503 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 504 ext4_lblk_t prev = 0; 505 int i; 506 507 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 508 unsigned int status = EXTENT_STATUS_WRITTEN; 509 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 510 int len = ext4_ext_get_actual_len(ex); 511 512 if (prev && (prev != lblk)) 513 ext4_es_cache_extent(inode, prev, lblk - prev, ~0, 514 EXTENT_STATUS_HOLE); 515 516 if (ext4_ext_is_unwritten(ex)) 517 status = EXTENT_STATUS_UNWRITTEN; 518 ext4_es_cache_extent(inode, lblk, len, 519 ext4_ext_pblock(ex), status); 520 prev = lblk + len; 521 } 522 } 523 524 static struct buffer_head * 525 __read_extent_tree_block(const char *function, unsigned int line, 526 struct inode *inode, struct ext4_extent_idx *idx, 527 int depth, int flags) 528 { 529 struct buffer_head *bh; 530 int err; 531 gfp_t gfp_flags = __GFP_MOVABLE | GFP_NOFS; 532 ext4_fsblk_t pblk; 533 534 if (flags & EXT4_EX_NOFAIL) 535 gfp_flags |= __GFP_NOFAIL; 536 537 pblk = ext4_idx_pblock(idx); 538 bh = sb_getblk_gfp(inode->i_sb, pblk, gfp_flags); 539 if (unlikely(!bh)) 540 return ERR_PTR(-ENOMEM); 541 542 if (!bh_uptodate_or_lock(bh)) { 543 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 544 err = ext4_read_bh(bh, 0, NULL); 545 if (err < 0) 546 goto errout; 547 } 548 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 549 return bh; 550 err = __ext4_ext_check(function, line, inode, ext_block_hdr(bh), 551 depth, pblk, le32_to_cpu(idx->ei_block)); 552 if (err) 553 goto errout; 554 set_buffer_verified(bh); 555 /* 556 * If this is a leaf block, cache all of its entries 557 */ 558 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 559 struct ext4_extent_header *eh = ext_block_hdr(bh); 560 ext4_cache_extents(inode, eh); 561 } 562 return bh; 563 errout: 564 put_bh(bh); 565 return ERR_PTR(err); 566 567 } 568 569 #define read_extent_tree_block(inode, idx, depth, flags) \ 570 __read_extent_tree_block(__func__, __LINE__, (inode), (idx), \ 571 (depth), (flags)) 572 573 /* 574 * This function is called to cache a file's extent information in the 575 * extent status tree 576 */ 577 int ext4_ext_precache(struct inode *inode) 578 { 579 struct ext4_inode_info *ei = EXT4_I(inode); 580 struct ext4_ext_path *path = NULL; 581 struct buffer_head *bh; 582 int i = 0, depth, ret = 0; 583 584 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 585 return 0; /* not an extent-mapped inode */ 586 587 down_read(&ei->i_data_sem); 588 depth = ext_depth(inode); 589 590 /* Don't cache anything if there are no external extent blocks */ 591 if (!depth) { 592 up_read(&ei->i_data_sem); 593 return ret; 594 } 595 596 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 597 GFP_NOFS); 598 if (path == NULL) { 599 up_read(&ei->i_data_sem); 600 return -ENOMEM; 601 } 602 603 path[0].p_hdr = ext_inode_hdr(inode); 604 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 605 if (ret) 606 goto out; 607 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 608 while (i >= 0) { 609 /* 610 * If this is a leaf block or we've reached the end of 611 * the index block, go up 612 */ 613 if ((i == depth) || 614 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 615 brelse(path[i].p_bh); 616 path[i].p_bh = NULL; 617 i--; 618 continue; 619 } 620 bh = read_extent_tree_block(inode, path[i].p_idx++, 621 depth - i - 1, 622 EXT4_EX_FORCE_CACHE); 623 if (IS_ERR(bh)) { 624 ret = PTR_ERR(bh); 625 break; 626 } 627 i++; 628 path[i].p_bh = bh; 629 path[i].p_hdr = ext_block_hdr(bh); 630 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 631 } 632 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 633 out: 634 up_read(&ei->i_data_sem); 635 ext4_ext_drop_refs(path); 636 kfree(path); 637 return ret; 638 } 639 640 #ifdef EXT_DEBUG 641 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 642 { 643 int k, l = path->p_depth; 644 645 ext_debug(inode, "path:"); 646 for (k = 0; k <= l; k++, path++) { 647 if (path->p_idx) { 648 ext_debug(inode, " %d->%llu", 649 le32_to_cpu(path->p_idx->ei_block), 650 ext4_idx_pblock(path->p_idx)); 651 } else if (path->p_ext) { 652 ext_debug(inode, " %d:[%d]%d:%llu ", 653 le32_to_cpu(path->p_ext->ee_block), 654 ext4_ext_is_unwritten(path->p_ext), 655 ext4_ext_get_actual_len(path->p_ext), 656 ext4_ext_pblock(path->p_ext)); 657 } else 658 ext_debug(inode, " []"); 659 } 660 ext_debug(inode, "\n"); 661 } 662 663 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 664 { 665 int depth = ext_depth(inode); 666 struct ext4_extent_header *eh; 667 struct ext4_extent *ex; 668 int i; 669 670 if (!path) 671 return; 672 673 eh = path[depth].p_hdr; 674 ex = EXT_FIRST_EXTENT(eh); 675 676 ext_debug(inode, "Displaying leaf extents\n"); 677 678 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 679 ext_debug(inode, "%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 680 ext4_ext_is_unwritten(ex), 681 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 682 } 683 ext_debug(inode, "\n"); 684 } 685 686 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 687 ext4_fsblk_t newblock, int level) 688 { 689 int depth = ext_depth(inode); 690 struct ext4_extent *ex; 691 692 if (depth != level) { 693 struct ext4_extent_idx *idx; 694 idx = path[level].p_idx; 695 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 696 ext_debug(inode, "%d: move %d:%llu in new index %llu\n", 697 level, le32_to_cpu(idx->ei_block), 698 ext4_idx_pblock(idx), newblock); 699 idx++; 700 } 701 702 return; 703 } 704 705 ex = path[depth].p_ext; 706 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 707 ext_debug(inode, "move %d:%llu:[%d]%d in new leaf %llu\n", 708 le32_to_cpu(ex->ee_block), 709 ext4_ext_pblock(ex), 710 ext4_ext_is_unwritten(ex), 711 ext4_ext_get_actual_len(ex), 712 newblock); 713 ex++; 714 } 715 } 716 717 #else 718 #define ext4_ext_show_path(inode, path) 719 #define ext4_ext_show_leaf(inode, path) 720 #define ext4_ext_show_move(inode, path, newblock, level) 721 #endif 722 723 void ext4_ext_drop_refs(struct ext4_ext_path *path) 724 { 725 int depth, i; 726 727 if (!path) 728 return; 729 depth = path->p_depth; 730 for (i = 0; i <= depth; i++, path++) { 731 brelse(path->p_bh); 732 path->p_bh = NULL; 733 } 734 } 735 736 /* 737 * ext4_ext_binsearch_idx: 738 * binary search for the closest index of the given block 739 * the header must be checked before calling this 740 */ 741 static void 742 ext4_ext_binsearch_idx(struct inode *inode, 743 struct ext4_ext_path *path, ext4_lblk_t block) 744 { 745 struct ext4_extent_header *eh = path->p_hdr; 746 struct ext4_extent_idx *r, *l, *m; 747 748 749 ext_debug(inode, "binsearch for %u(idx): ", block); 750 751 l = EXT_FIRST_INDEX(eh) + 1; 752 r = EXT_LAST_INDEX(eh); 753 while (l <= r) { 754 m = l + (r - l) / 2; 755 ext_debug(inode, "%p(%u):%p(%u):%p(%u) ", l, 756 le32_to_cpu(l->ei_block), m, le32_to_cpu(m->ei_block), 757 r, le32_to_cpu(r->ei_block)); 758 759 if (block < le32_to_cpu(m->ei_block)) 760 r = m - 1; 761 else 762 l = m + 1; 763 } 764 765 path->p_idx = l - 1; 766 ext_debug(inode, " -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 767 ext4_idx_pblock(path->p_idx)); 768 769 #ifdef CHECK_BINSEARCH 770 { 771 struct ext4_extent_idx *chix, *ix; 772 int k; 773 774 chix = ix = EXT_FIRST_INDEX(eh); 775 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 776 if (k != 0 && le32_to_cpu(ix->ei_block) <= 777 le32_to_cpu(ix[-1].ei_block)) { 778 printk(KERN_DEBUG "k=%d, ix=0x%p, " 779 "first=0x%p\n", k, 780 ix, EXT_FIRST_INDEX(eh)); 781 printk(KERN_DEBUG "%u <= %u\n", 782 le32_to_cpu(ix->ei_block), 783 le32_to_cpu(ix[-1].ei_block)); 784 } 785 BUG_ON(k && le32_to_cpu(ix->ei_block) 786 <= le32_to_cpu(ix[-1].ei_block)); 787 if (block < le32_to_cpu(ix->ei_block)) 788 break; 789 chix = ix; 790 } 791 BUG_ON(chix != path->p_idx); 792 } 793 #endif 794 795 } 796 797 /* 798 * ext4_ext_binsearch: 799 * binary search for closest extent of the given block 800 * the header must be checked before calling this 801 */ 802 static void 803 ext4_ext_binsearch(struct inode *inode, 804 struct ext4_ext_path *path, ext4_lblk_t block) 805 { 806 struct ext4_extent_header *eh = path->p_hdr; 807 struct ext4_extent *r, *l, *m; 808 809 if (eh->eh_entries == 0) { 810 /* 811 * this leaf is empty: 812 * we get such a leaf in split/add case 813 */ 814 return; 815 } 816 817 ext_debug(inode, "binsearch for %u: ", block); 818 819 l = EXT_FIRST_EXTENT(eh) + 1; 820 r = EXT_LAST_EXTENT(eh); 821 822 while (l <= r) { 823 m = l + (r - l) / 2; 824 ext_debug(inode, "%p(%u):%p(%u):%p(%u) ", l, 825 le32_to_cpu(l->ee_block), m, le32_to_cpu(m->ee_block), 826 r, le32_to_cpu(r->ee_block)); 827 828 if (block < le32_to_cpu(m->ee_block)) 829 r = m - 1; 830 else 831 l = m + 1; 832 } 833 834 path->p_ext = l - 1; 835 ext_debug(inode, " -> %d:%llu:[%d]%d ", 836 le32_to_cpu(path->p_ext->ee_block), 837 ext4_ext_pblock(path->p_ext), 838 ext4_ext_is_unwritten(path->p_ext), 839 ext4_ext_get_actual_len(path->p_ext)); 840 841 #ifdef CHECK_BINSEARCH 842 { 843 struct ext4_extent *chex, *ex; 844 int k; 845 846 chex = ex = EXT_FIRST_EXTENT(eh); 847 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 848 BUG_ON(k && le32_to_cpu(ex->ee_block) 849 <= le32_to_cpu(ex[-1].ee_block)); 850 if (block < le32_to_cpu(ex->ee_block)) 851 break; 852 chex = ex; 853 } 854 BUG_ON(chex != path->p_ext); 855 } 856 #endif 857 858 } 859 860 void ext4_ext_tree_init(handle_t *handle, struct inode *inode) 861 { 862 struct ext4_extent_header *eh; 863 864 eh = ext_inode_hdr(inode); 865 eh->eh_depth = 0; 866 eh->eh_entries = 0; 867 eh->eh_magic = EXT4_EXT_MAGIC; 868 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 869 eh->eh_generation = 0; 870 ext4_mark_inode_dirty(handle, inode); 871 } 872 873 struct ext4_ext_path * 874 ext4_find_extent(struct inode *inode, ext4_lblk_t block, 875 struct ext4_ext_path **orig_path, int flags) 876 { 877 struct ext4_extent_header *eh; 878 struct buffer_head *bh; 879 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 880 short int depth, i, ppos = 0; 881 int ret; 882 gfp_t gfp_flags = GFP_NOFS; 883 884 if (flags & EXT4_EX_NOFAIL) 885 gfp_flags |= __GFP_NOFAIL; 886 887 eh = ext_inode_hdr(inode); 888 depth = ext_depth(inode); 889 if (depth < 0 || depth > EXT4_MAX_EXTENT_DEPTH) { 890 EXT4_ERROR_INODE(inode, "inode has invalid extent depth: %d", 891 depth); 892 ret = -EFSCORRUPTED; 893 goto err; 894 } 895 896 if (path) { 897 ext4_ext_drop_refs(path); 898 if (depth > path[0].p_maxdepth) { 899 kfree(path); 900 *orig_path = path = NULL; 901 } 902 } 903 if (!path) { 904 /* account possible depth increase */ 905 path = kcalloc(depth + 2, sizeof(struct ext4_ext_path), 906 gfp_flags); 907 if (unlikely(!path)) 908 return ERR_PTR(-ENOMEM); 909 path[0].p_maxdepth = depth + 1; 910 } 911 path[0].p_hdr = eh; 912 path[0].p_bh = NULL; 913 914 i = depth; 915 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) 916 ext4_cache_extents(inode, eh); 917 /* walk through the tree */ 918 while (i) { 919 ext_debug(inode, "depth %d: num %d, max %d\n", 920 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 921 922 ext4_ext_binsearch_idx(inode, path + ppos, block); 923 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 924 path[ppos].p_depth = i; 925 path[ppos].p_ext = NULL; 926 927 bh = read_extent_tree_block(inode, path[ppos].p_idx, --i, flags); 928 if (IS_ERR(bh)) { 929 ret = PTR_ERR(bh); 930 goto err; 931 } 932 933 eh = ext_block_hdr(bh); 934 ppos++; 935 path[ppos].p_bh = bh; 936 path[ppos].p_hdr = eh; 937 } 938 939 path[ppos].p_depth = i; 940 path[ppos].p_ext = NULL; 941 path[ppos].p_idx = NULL; 942 943 /* find extent */ 944 ext4_ext_binsearch(inode, path + ppos, block); 945 /* if not an empty leaf */ 946 if (path[ppos].p_ext) 947 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 948 949 ext4_ext_show_path(inode, path); 950 951 return path; 952 953 err: 954 ext4_ext_drop_refs(path); 955 kfree(path); 956 if (orig_path) 957 *orig_path = NULL; 958 return ERR_PTR(ret); 959 } 960 961 /* 962 * ext4_ext_insert_index: 963 * insert new index [@logical;@ptr] into the block at @curp; 964 * check where to insert: before @curp or after @curp 965 */ 966 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 967 struct ext4_ext_path *curp, 968 int logical, ext4_fsblk_t ptr) 969 { 970 struct ext4_extent_idx *ix; 971 int len, err; 972 973 err = ext4_ext_get_access(handle, inode, curp); 974 if (err) 975 return err; 976 977 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 978 EXT4_ERROR_INODE(inode, 979 "logical %d == ei_block %d!", 980 logical, le32_to_cpu(curp->p_idx->ei_block)); 981 return -EFSCORRUPTED; 982 } 983 984 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 985 >= le16_to_cpu(curp->p_hdr->eh_max))) { 986 EXT4_ERROR_INODE(inode, 987 "eh_entries %d >= eh_max %d!", 988 le16_to_cpu(curp->p_hdr->eh_entries), 989 le16_to_cpu(curp->p_hdr->eh_max)); 990 return -EFSCORRUPTED; 991 } 992 993 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 994 /* insert after */ 995 ext_debug(inode, "insert new index %d after: %llu\n", 996 logical, ptr); 997 ix = curp->p_idx + 1; 998 } else { 999 /* insert before */ 1000 ext_debug(inode, "insert new index %d before: %llu\n", 1001 logical, ptr); 1002 ix = curp->p_idx; 1003 } 1004 1005 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 1006 BUG_ON(len < 0); 1007 if (len > 0) { 1008 ext_debug(inode, "insert new index %d: " 1009 "move %d indices from 0x%p to 0x%p\n", 1010 logical, len, ix, ix + 1); 1011 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 1012 } 1013 1014 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 1015 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 1016 return -EFSCORRUPTED; 1017 } 1018 1019 ix->ei_block = cpu_to_le32(logical); 1020 ext4_idx_store_pblock(ix, ptr); 1021 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 1022 1023 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 1024 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 1025 return -EFSCORRUPTED; 1026 } 1027 1028 err = ext4_ext_dirty(handle, inode, curp); 1029 ext4_std_error(inode->i_sb, err); 1030 1031 return err; 1032 } 1033 1034 /* 1035 * ext4_ext_split: 1036 * inserts new subtree into the path, using free index entry 1037 * at depth @at: 1038 * - allocates all needed blocks (new leaf and all intermediate index blocks) 1039 * - makes decision where to split 1040 * - moves remaining extents and index entries (right to the split point) 1041 * into the newly allocated blocks 1042 * - initializes subtree 1043 */ 1044 static int ext4_ext_split(handle_t *handle, struct inode *inode, 1045 unsigned int flags, 1046 struct ext4_ext_path *path, 1047 struct ext4_extent *newext, int at) 1048 { 1049 struct buffer_head *bh = NULL; 1050 int depth = ext_depth(inode); 1051 struct ext4_extent_header *neh; 1052 struct ext4_extent_idx *fidx; 1053 int i = at, k, m, a; 1054 ext4_fsblk_t newblock, oldblock; 1055 __le32 border; 1056 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1057 gfp_t gfp_flags = GFP_NOFS; 1058 int err = 0; 1059 size_t ext_size = 0; 1060 1061 if (flags & EXT4_EX_NOFAIL) 1062 gfp_flags |= __GFP_NOFAIL; 1063 1064 /* make decision: where to split? */ 1065 /* FIXME: now decision is simplest: at current extent */ 1066 1067 /* if current leaf will be split, then we should use 1068 * border from split point */ 1069 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1070 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1071 return -EFSCORRUPTED; 1072 } 1073 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1074 border = path[depth].p_ext[1].ee_block; 1075 ext_debug(inode, "leaf will be split." 1076 " next leaf starts at %d\n", 1077 le32_to_cpu(border)); 1078 } else { 1079 border = newext->ee_block; 1080 ext_debug(inode, "leaf will be added." 1081 " next leaf starts at %d\n", 1082 le32_to_cpu(border)); 1083 } 1084 1085 /* 1086 * If error occurs, then we break processing 1087 * and mark filesystem read-only. index won't 1088 * be inserted and tree will be in consistent 1089 * state. Next mount will repair buffers too. 1090 */ 1091 1092 /* 1093 * Get array to track all allocated blocks. 1094 * We need this to handle errors and free blocks 1095 * upon them. 1096 */ 1097 ablocks = kcalloc(depth, sizeof(ext4_fsblk_t), gfp_flags); 1098 if (!ablocks) 1099 return -ENOMEM; 1100 1101 /* allocate all needed blocks */ 1102 ext_debug(inode, "allocate %d blocks for indexes/leaf\n", depth - at); 1103 for (a = 0; a < depth - at; a++) { 1104 newblock = ext4_ext_new_meta_block(handle, inode, path, 1105 newext, &err, flags); 1106 if (newblock == 0) 1107 goto cleanup; 1108 ablocks[a] = newblock; 1109 } 1110 1111 /* initialize new leaf */ 1112 newblock = ablocks[--a]; 1113 if (unlikely(newblock == 0)) { 1114 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1115 err = -EFSCORRUPTED; 1116 goto cleanup; 1117 } 1118 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1119 if (unlikely(!bh)) { 1120 err = -ENOMEM; 1121 goto cleanup; 1122 } 1123 lock_buffer(bh); 1124 1125 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 1126 EXT4_JTR_NONE); 1127 if (err) 1128 goto cleanup; 1129 1130 neh = ext_block_hdr(bh); 1131 neh->eh_entries = 0; 1132 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1133 neh->eh_magic = EXT4_EXT_MAGIC; 1134 neh->eh_depth = 0; 1135 neh->eh_generation = 0; 1136 1137 /* move remainder of path[depth] to the new leaf */ 1138 if (unlikely(path[depth].p_hdr->eh_entries != 1139 path[depth].p_hdr->eh_max)) { 1140 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1141 path[depth].p_hdr->eh_entries, 1142 path[depth].p_hdr->eh_max); 1143 err = -EFSCORRUPTED; 1144 goto cleanup; 1145 } 1146 /* start copy from next extent */ 1147 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1148 ext4_ext_show_move(inode, path, newblock, depth); 1149 if (m) { 1150 struct ext4_extent *ex; 1151 ex = EXT_FIRST_EXTENT(neh); 1152 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1153 le16_add_cpu(&neh->eh_entries, m); 1154 } 1155 1156 /* zero out unused area in the extent block */ 1157 ext_size = sizeof(struct ext4_extent_header) + 1158 sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries); 1159 memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size); 1160 ext4_extent_block_csum_set(inode, neh); 1161 set_buffer_uptodate(bh); 1162 unlock_buffer(bh); 1163 1164 err = ext4_handle_dirty_metadata(handle, inode, bh); 1165 if (err) 1166 goto cleanup; 1167 brelse(bh); 1168 bh = NULL; 1169 1170 /* correct old leaf */ 1171 if (m) { 1172 err = ext4_ext_get_access(handle, inode, path + depth); 1173 if (err) 1174 goto cleanup; 1175 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1176 err = ext4_ext_dirty(handle, inode, path + depth); 1177 if (err) 1178 goto cleanup; 1179 1180 } 1181 1182 /* create intermediate indexes */ 1183 k = depth - at - 1; 1184 if (unlikely(k < 0)) { 1185 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1186 err = -EFSCORRUPTED; 1187 goto cleanup; 1188 } 1189 if (k) 1190 ext_debug(inode, "create %d intermediate indices\n", k); 1191 /* insert new index into current index block */ 1192 /* current depth stored in i var */ 1193 i = depth - 1; 1194 while (k--) { 1195 oldblock = newblock; 1196 newblock = ablocks[--a]; 1197 bh = sb_getblk(inode->i_sb, newblock); 1198 if (unlikely(!bh)) { 1199 err = -ENOMEM; 1200 goto cleanup; 1201 } 1202 lock_buffer(bh); 1203 1204 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 1205 EXT4_JTR_NONE); 1206 if (err) 1207 goto cleanup; 1208 1209 neh = ext_block_hdr(bh); 1210 neh->eh_entries = cpu_to_le16(1); 1211 neh->eh_magic = EXT4_EXT_MAGIC; 1212 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1213 neh->eh_depth = cpu_to_le16(depth - i); 1214 neh->eh_generation = 0; 1215 fidx = EXT_FIRST_INDEX(neh); 1216 fidx->ei_block = border; 1217 ext4_idx_store_pblock(fidx, oldblock); 1218 1219 ext_debug(inode, "int.index at %d (block %llu): %u -> %llu\n", 1220 i, newblock, le32_to_cpu(border), oldblock); 1221 1222 /* move remainder of path[i] to the new index block */ 1223 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1224 EXT_LAST_INDEX(path[i].p_hdr))) { 1225 EXT4_ERROR_INODE(inode, 1226 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1227 le32_to_cpu(path[i].p_ext->ee_block)); 1228 err = -EFSCORRUPTED; 1229 goto cleanup; 1230 } 1231 /* start copy indexes */ 1232 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1233 ext_debug(inode, "cur 0x%p, last 0x%p\n", path[i].p_idx, 1234 EXT_MAX_INDEX(path[i].p_hdr)); 1235 ext4_ext_show_move(inode, path, newblock, i); 1236 if (m) { 1237 memmove(++fidx, path[i].p_idx, 1238 sizeof(struct ext4_extent_idx) * m); 1239 le16_add_cpu(&neh->eh_entries, m); 1240 } 1241 /* zero out unused area in the extent block */ 1242 ext_size = sizeof(struct ext4_extent_header) + 1243 (sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries)); 1244 memset(bh->b_data + ext_size, 0, 1245 inode->i_sb->s_blocksize - ext_size); 1246 ext4_extent_block_csum_set(inode, neh); 1247 set_buffer_uptodate(bh); 1248 unlock_buffer(bh); 1249 1250 err = ext4_handle_dirty_metadata(handle, inode, bh); 1251 if (err) 1252 goto cleanup; 1253 brelse(bh); 1254 bh = NULL; 1255 1256 /* correct old index */ 1257 if (m) { 1258 err = ext4_ext_get_access(handle, inode, path + i); 1259 if (err) 1260 goto cleanup; 1261 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1262 err = ext4_ext_dirty(handle, inode, path + i); 1263 if (err) 1264 goto cleanup; 1265 } 1266 1267 i--; 1268 } 1269 1270 /* insert new index */ 1271 err = ext4_ext_insert_index(handle, inode, path + at, 1272 le32_to_cpu(border), newblock); 1273 1274 cleanup: 1275 if (bh) { 1276 if (buffer_locked(bh)) 1277 unlock_buffer(bh); 1278 brelse(bh); 1279 } 1280 1281 if (err) { 1282 /* free all allocated blocks in error case */ 1283 for (i = 0; i < depth; i++) { 1284 if (!ablocks[i]) 1285 continue; 1286 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1287 EXT4_FREE_BLOCKS_METADATA); 1288 } 1289 } 1290 kfree(ablocks); 1291 1292 return err; 1293 } 1294 1295 /* 1296 * ext4_ext_grow_indepth: 1297 * implements tree growing procedure: 1298 * - allocates new block 1299 * - moves top-level data (index block or leaf) into the new block 1300 * - initializes new top-level, creating index that points to the 1301 * just created block 1302 */ 1303 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1304 unsigned int flags) 1305 { 1306 struct ext4_extent_header *neh; 1307 struct buffer_head *bh; 1308 ext4_fsblk_t newblock, goal = 0; 1309 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 1310 int err = 0; 1311 size_t ext_size = 0; 1312 1313 /* Try to prepend new index to old one */ 1314 if (ext_depth(inode)) 1315 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); 1316 if (goal > le32_to_cpu(es->s_first_data_block)) { 1317 flags |= EXT4_MB_HINT_TRY_GOAL; 1318 goal--; 1319 } else 1320 goal = ext4_inode_to_goal_block(inode); 1321 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 1322 NULL, &err); 1323 if (newblock == 0) 1324 return err; 1325 1326 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1327 if (unlikely(!bh)) 1328 return -ENOMEM; 1329 lock_buffer(bh); 1330 1331 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 1332 EXT4_JTR_NONE); 1333 if (err) { 1334 unlock_buffer(bh); 1335 goto out; 1336 } 1337 1338 ext_size = sizeof(EXT4_I(inode)->i_data); 1339 /* move top-level index/leaf into new block */ 1340 memmove(bh->b_data, EXT4_I(inode)->i_data, ext_size); 1341 /* zero out unused area in the extent block */ 1342 memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size); 1343 1344 /* set size of new block */ 1345 neh = ext_block_hdr(bh); 1346 /* old root could have indexes or leaves 1347 * so calculate e_max right way */ 1348 if (ext_depth(inode)) 1349 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1350 else 1351 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1352 neh->eh_magic = EXT4_EXT_MAGIC; 1353 ext4_extent_block_csum_set(inode, neh); 1354 set_buffer_uptodate(bh); 1355 set_buffer_verified(bh); 1356 unlock_buffer(bh); 1357 1358 err = ext4_handle_dirty_metadata(handle, inode, bh); 1359 if (err) 1360 goto out; 1361 1362 /* Update top-level index: num,max,pointer */ 1363 neh = ext_inode_hdr(inode); 1364 neh->eh_entries = cpu_to_le16(1); 1365 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1366 if (neh->eh_depth == 0) { 1367 /* Root extent block becomes index block */ 1368 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1369 EXT_FIRST_INDEX(neh)->ei_block = 1370 EXT_FIRST_EXTENT(neh)->ee_block; 1371 } 1372 ext_debug(inode, "new root: num %d(%d), lblock %d, ptr %llu\n", 1373 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1374 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1375 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1376 1377 le16_add_cpu(&neh->eh_depth, 1); 1378 err = ext4_mark_inode_dirty(handle, inode); 1379 out: 1380 brelse(bh); 1381 1382 return err; 1383 } 1384 1385 /* 1386 * ext4_ext_create_new_leaf: 1387 * finds empty index and adds new leaf. 1388 * if no free index is found, then it requests in-depth growing. 1389 */ 1390 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1391 unsigned int mb_flags, 1392 unsigned int gb_flags, 1393 struct ext4_ext_path **ppath, 1394 struct ext4_extent *newext) 1395 { 1396 struct ext4_ext_path *path = *ppath; 1397 struct ext4_ext_path *curp; 1398 int depth, i, err = 0; 1399 1400 repeat: 1401 i = depth = ext_depth(inode); 1402 1403 /* walk up to the tree and look for free index entry */ 1404 curp = path + depth; 1405 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1406 i--; 1407 curp--; 1408 } 1409 1410 /* we use already allocated block for index block, 1411 * so subsequent data blocks should be contiguous */ 1412 if (EXT_HAS_FREE_INDEX(curp)) { 1413 /* if we found index with free entry, then use that 1414 * entry: create all needed subtree and add new leaf */ 1415 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1416 if (err) 1417 goto out; 1418 1419 /* refill path */ 1420 path = ext4_find_extent(inode, 1421 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1422 ppath, gb_flags); 1423 if (IS_ERR(path)) 1424 err = PTR_ERR(path); 1425 } else { 1426 /* tree is full, time to grow in depth */ 1427 err = ext4_ext_grow_indepth(handle, inode, mb_flags); 1428 if (err) 1429 goto out; 1430 1431 /* refill path */ 1432 path = ext4_find_extent(inode, 1433 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1434 ppath, gb_flags); 1435 if (IS_ERR(path)) { 1436 err = PTR_ERR(path); 1437 goto out; 1438 } 1439 1440 /* 1441 * only first (depth 0 -> 1) produces free space; 1442 * in all other cases we have to split the grown tree 1443 */ 1444 depth = ext_depth(inode); 1445 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1446 /* now we need to split */ 1447 goto repeat; 1448 } 1449 } 1450 1451 out: 1452 return err; 1453 } 1454 1455 /* 1456 * search the closest allocated block to the left for *logical 1457 * and returns it at @logical + it's physical address at @phys 1458 * if *logical is the smallest allocated block, the function 1459 * returns 0 at @phys 1460 * return value contains 0 (success) or error code 1461 */ 1462 static int ext4_ext_search_left(struct inode *inode, 1463 struct ext4_ext_path *path, 1464 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1465 { 1466 struct ext4_extent_idx *ix; 1467 struct ext4_extent *ex; 1468 int depth, ee_len; 1469 1470 if (unlikely(path == NULL)) { 1471 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1472 return -EFSCORRUPTED; 1473 } 1474 depth = path->p_depth; 1475 *phys = 0; 1476 1477 if (depth == 0 && path->p_ext == NULL) 1478 return 0; 1479 1480 /* usually extent in the path covers blocks smaller 1481 * then *logical, but it can be that extent is the 1482 * first one in the file */ 1483 1484 ex = path[depth].p_ext; 1485 ee_len = ext4_ext_get_actual_len(ex); 1486 if (*logical < le32_to_cpu(ex->ee_block)) { 1487 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1488 EXT4_ERROR_INODE(inode, 1489 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1490 *logical, le32_to_cpu(ex->ee_block)); 1491 return -EFSCORRUPTED; 1492 } 1493 while (--depth >= 0) { 1494 ix = path[depth].p_idx; 1495 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1496 EXT4_ERROR_INODE(inode, 1497 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1498 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1499 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block), 1500 depth); 1501 return -EFSCORRUPTED; 1502 } 1503 } 1504 return 0; 1505 } 1506 1507 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1508 EXT4_ERROR_INODE(inode, 1509 "logical %d < ee_block %d + ee_len %d!", 1510 *logical, le32_to_cpu(ex->ee_block), ee_len); 1511 return -EFSCORRUPTED; 1512 } 1513 1514 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1515 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1516 return 0; 1517 } 1518 1519 /* 1520 * Search the closest allocated block to the right for *logical 1521 * and returns it at @logical + it's physical address at @phys. 1522 * If not exists, return 0 and @phys is set to 0. We will return 1523 * 1 which means we found an allocated block and ret_ex is valid. 1524 * Or return a (< 0) error code. 1525 */ 1526 static int ext4_ext_search_right(struct inode *inode, 1527 struct ext4_ext_path *path, 1528 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1529 struct ext4_extent *ret_ex) 1530 { 1531 struct buffer_head *bh = NULL; 1532 struct ext4_extent_header *eh; 1533 struct ext4_extent_idx *ix; 1534 struct ext4_extent *ex; 1535 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1536 int ee_len; 1537 1538 if (unlikely(path == NULL)) { 1539 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1540 return -EFSCORRUPTED; 1541 } 1542 depth = path->p_depth; 1543 *phys = 0; 1544 1545 if (depth == 0 && path->p_ext == NULL) 1546 return 0; 1547 1548 /* usually extent in the path covers blocks smaller 1549 * then *logical, but it can be that extent is the 1550 * first one in the file */ 1551 1552 ex = path[depth].p_ext; 1553 ee_len = ext4_ext_get_actual_len(ex); 1554 if (*logical < le32_to_cpu(ex->ee_block)) { 1555 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1556 EXT4_ERROR_INODE(inode, 1557 "first_extent(path[%d].p_hdr) != ex", 1558 depth); 1559 return -EFSCORRUPTED; 1560 } 1561 while (--depth >= 0) { 1562 ix = path[depth].p_idx; 1563 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1564 EXT4_ERROR_INODE(inode, 1565 "ix != EXT_FIRST_INDEX *logical %d!", 1566 *logical); 1567 return -EFSCORRUPTED; 1568 } 1569 } 1570 goto found_extent; 1571 } 1572 1573 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1574 EXT4_ERROR_INODE(inode, 1575 "logical %d < ee_block %d + ee_len %d!", 1576 *logical, le32_to_cpu(ex->ee_block), ee_len); 1577 return -EFSCORRUPTED; 1578 } 1579 1580 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1581 /* next allocated block in this leaf */ 1582 ex++; 1583 goto found_extent; 1584 } 1585 1586 /* go up and search for index to the right */ 1587 while (--depth >= 0) { 1588 ix = path[depth].p_idx; 1589 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1590 goto got_index; 1591 } 1592 1593 /* we've gone up to the root and found no index to the right */ 1594 return 0; 1595 1596 got_index: 1597 /* we've found index to the right, let's 1598 * follow it and find the closest allocated 1599 * block to the right */ 1600 ix++; 1601 while (++depth < path->p_depth) { 1602 /* subtract from p_depth to get proper eh_depth */ 1603 bh = read_extent_tree_block(inode, ix, path->p_depth - depth, 0); 1604 if (IS_ERR(bh)) 1605 return PTR_ERR(bh); 1606 eh = ext_block_hdr(bh); 1607 ix = EXT_FIRST_INDEX(eh); 1608 put_bh(bh); 1609 } 1610 1611 bh = read_extent_tree_block(inode, ix, path->p_depth - depth, 0); 1612 if (IS_ERR(bh)) 1613 return PTR_ERR(bh); 1614 eh = ext_block_hdr(bh); 1615 ex = EXT_FIRST_EXTENT(eh); 1616 found_extent: 1617 *logical = le32_to_cpu(ex->ee_block); 1618 *phys = ext4_ext_pblock(ex); 1619 if (ret_ex) 1620 *ret_ex = *ex; 1621 if (bh) 1622 put_bh(bh); 1623 return 1; 1624 } 1625 1626 /* 1627 * ext4_ext_next_allocated_block: 1628 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1629 * NOTE: it considers block number from index entry as 1630 * allocated block. Thus, index entries have to be consistent 1631 * with leaves. 1632 */ 1633 ext4_lblk_t 1634 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1635 { 1636 int depth; 1637 1638 BUG_ON(path == NULL); 1639 depth = path->p_depth; 1640 1641 if (depth == 0 && path->p_ext == NULL) 1642 return EXT_MAX_BLOCKS; 1643 1644 while (depth >= 0) { 1645 struct ext4_ext_path *p = &path[depth]; 1646 1647 if (depth == path->p_depth) { 1648 /* leaf */ 1649 if (p->p_ext && p->p_ext != EXT_LAST_EXTENT(p->p_hdr)) 1650 return le32_to_cpu(p->p_ext[1].ee_block); 1651 } else { 1652 /* index */ 1653 if (p->p_idx != EXT_LAST_INDEX(p->p_hdr)) 1654 return le32_to_cpu(p->p_idx[1].ei_block); 1655 } 1656 depth--; 1657 } 1658 1659 return EXT_MAX_BLOCKS; 1660 } 1661 1662 /* 1663 * ext4_ext_next_leaf_block: 1664 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1665 */ 1666 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1667 { 1668 int depth; 1669 1670 BUG_ON(path == NULL); 1671 depth = path->p_depth; 1672 1673 /* zero-tree has no leaf blocks at all */ 1674 if (depth == 0) 1675 return EXT_MAX_BLOCKS; 1676 1677 /* go to index block */ 1678 depth--; 1679 1680 while (depth >= 0) { 1681 if (path[depth].p_idx != 1682 EXT_LAST_INDEX(path[depth].p_hdr)) 1683 return (ext4_lblk_t) 1684 le32_to_cpu(path[depth].p_idx[1].ei_block); 1685 depth--; 1686 } 1687 1688 return EXT_MAX_BLOCKS; 1689 } 1690 1691 /* 1692 * ext4_ext_correct_indexes: 1693 * if leaf gets modified and modified extent is first in the leaf, 1694 * then we have to correct all indexes above. 1695 * TODO: do we need to correct tree in all cases? 1696 */ 1697 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1698 struct ext4_ext_path *path) 1699 { 1700 struct ext4_extent_header *eh; 1701 int depth = ext_depth(inode); 1702 struct ext4_extent *ex; 1703 __le32 border; 1704 int k, err = 0; 1705 1706 eh = path[depth].p_hdr; 1707 ex = path[depth].p_ext; 1708 1709 if (unlikely(ex == NULL || eh == NULL)) { 1710 EXT4_ERROR_INODE(inode, 1711 "ex %p == NULL or eh %p == NULL", ex, eh); 1712 return -EFSCORRUPTED; 1713 } 1714 1715 if (depth == 0) { 1716 /* there is no tree at all */ 1717 return 0; 1718 } 1719 1720 if (ex != EXT_FIRST_EXTENT(eh)) { 1721 /* we correct tree if first leaf got modified only */ 1722 return 0; 1723 } 1724 1725 /* 1726 * TODO: we need correction if border is smaller than current one 1727 */ 1728 k = depth - 1; 1729 border = path[depth].p_ext->ee_block; 1730 err = ext4_ext_get_access(handle, inode, path + k); 1731 if (err) 1732 return err; 1733 path[k].p_idx->ei_block = border; 1734 err = ext4_ext_dirty(handle, inode, path + k); 1735 if (err) 1736 return err; 1737 1738 while (k--) { 1739 /* change all left-side indexes */ 1740 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1741 break; 1742 err = ext4_ext_get_access(handle, inode, path + k); 1743 if (err) 1744 break; 1745 path[k].p_idx->ei_block = border; 1746 err = ext4_ext_dirty(handle, inode, path + k); 1747 if (err) 1748 break; 1749 } 1750 1751 return err; 1752 } 1753 1754 static int ext4_can_extents_be_merged(struct inode *inode, 1755 struct ext4_extent *ex1, 1756 struct ext4_extent *ex2) 1757 { 1758 unsigned short ext1_ee_len, ext2_ee_len; 1759 1760 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1761 return 0; 1762 1763 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1764 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1765 1766 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1767 le32_to_cpu(ex2->ee_block)) 1768 return 0; 1769 1770 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1771 return 0; 1772 1773 if (ext4_ext_is_unwritten(ex1) && 1774 ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN) 1775 return 0; 1776 #ifdef AGGRESSIVE_TEST 1777 if (ext1_ee_len >= 4) 1778 return 0; 1779 #endif 1780 1781 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1782 return 1; 1783 return 0; 1784 } 1785 1786 /* 1787 * This function tries to merge the "ex" extent to the next extent in the tree. 1788 * It always tries to merge towards right. If you want to merge towards 1789 * left, pass "ex - 1" as argument instead of "ex". 1790 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1791 * 1 if they got merged. 1792 */ 1793 static int ext4_ext_try_to_merge_right(struct inode *inode, 1794 struct ext4_ext_path *path, 1795 struct ext4_extent *ex) 1796 { 1797 struct ext4_extent_header *eh; 1798 unsigned int depth, len; 1799 int merge_done = 0, unwritten; 1800 1801 depth = ext_depth(inode); 1802 BUG_ON(path[depth].p_hdr == NULL); 1803 eh = path[depth].p_hdr; 1804 1805 while (ex < EXT_LAST_EXTENT(eh)) { 1806 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1807 break; 1808 /* merge with next extent! */ 1809 unwritten = ext4_ext_is_unwritten(ex); 1810 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1811 + ext4_ext_get_actual_len(ex + 1)); 1812 if (unwritten) 1813 ext4_ext_mark_unwritten(ex); 1814 1815 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1816 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1817 * sizeof(struct ext4_extent); 1818 memmove(ex + 1, ex + 2, len); 1819 } 1820 le16_add_cpu(&eh->eh_entries, -1); 1821 merge_done = 1; 1822 WARN_ON(eh->eh_entries == 0); 1823 if (!eh->eh_entries) 1824 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1825 } 1826 1827 return merge_done; 1828 } 1829 1830 /* 1831 * This function does a very simple check to see if we can collapse 1832 * an extent tree with a single extent tree leaf block into the inode. 1833 */ 1834 static void ext4_ext_try_to_merge_up(handle_t *handle, 1835 struct inode *inode, 1836 struct ext4_ext_path *path) 1837 { 1838 size_t s; 1839 unsigned max_root = ext4_ext_space_root(inode, 0); 1840 ext4_fsblk_t blk; 1841 1842 if ((path[0].p_depth != 1) || 1843 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1844 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1845 return; 1846 1847 /* 1848 * We need to modify the block allocation bitmap and the block 1849 * group descriptor to release the extent tree block. If we 1850 * can't get the journal credits, give up. 1851 */ 1852 if (ext4_journal_extend(handle, 2, 1853 ext4_free_metadata_revoke_credits(inode->i_sb, 1))) 1854 return; 1855 1856 /* 1857 * Copy the extent data up to the inode 1858 */ 1859 blk = ext4_idx_pblock(path[0].p_idx); 1860 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1861 sizeof(struct ext4_extent_idx); 1862 s += sizeof(struct ext4_extent_header); 1863 1864 path[1].p_maxdepth = path[0].p_maxdepth; 1865 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1866 path[0].p_depth = 0; 1867 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1868 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1869 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1870 1871 brelse(path[1].p_bh); 1872 ext4_free_blocks(handle, inode, NULL, blk, 1, 1873 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1874 } 1875 1876 /* 1877 * This function tries to merge the @ex extent to neighbours in the tree, then 1878 * tries to collapse the extent tree into the inode. 1879 */ 1880 static void ext4_ext_try_to_merge(handle_t *handle, 1881 struct inode *inode, 1882 struct ext4_ext_path *path, 1883 struct ext4_extent *ex) 1884 { 1885 struct ext4_extent_header *eh; 1886 unsigned int depth; 1887 int merge_done = 0; 1888 1889 depth = ext_depth(inode); 1890 BUG_ON(path[depth].p_hdr == NULL); 1891 eh = path[depth].p_hdr; 1892 1893 if (ex > EXT_FIRST_EXTENT(eh)) 1894 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1895 1896 if (!merge_done) 1897 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1898 1899 ext4_ext_try_to_merge_up(handle, inode, path); 1900 } 1901 1902 /* 1903 * check if a portion of the "newext" extent overlaps with an 1904 * existing extent. 1905 * 1906 * If there is an overlap discovered, it updates the length of the newext 1907 * such that there will be no overlap, and then returns 1. 1908 * If there is no overlap found, it returns 0. 1909 */ 1910 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1911 struct inode *inode, 1912 struct ext4_extent *newext, 1913 struct ext4_ext_path *path) 1914 { 1915 ext4_lblk_t b1, b2; 1916 unsigned int depth, len1; 1917 unsigned int ret = 0; 1918 1919 b1 = le32_to_cpu(newext->ee_block); 1920 len1 = ext4_ext_get_actual_len(newext); 1921 depth = ext_depth(inode); 1922 if (!path[depth].p_ext) 1923 goto out; 1924 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1925 1926 /* 1927 * get the next allocated block if the extent in the path 1928 * is before the requested block(s) 1929 */ 1930 if (b2 < b1) { 1931 b2 = ext4_ext_next_allocated_block(path); 1932 if (b2 == EXT_MAX_BLOCKS) 1933 goto out; 1934 b2 = EXT4_LBLK_CMASK(sbi, b2); 1935 } 1936 1937 /* check for wrap through zero on extent logical start block*/ 1938 if (b1 + len1 < b1) { 1939 len1 = EXT_MAX_BLOCKS - b1; 1940 newext->ee_len = cpu_to_le16(len1); 1941 ret = 1; 1942 } 1943 1944 /* check for overlap */ 1945 if (b1 + len1 > b2) { 1946 newext->ee_len = cpu_to_le16(b2 - b1); 1947 ret = 1; 1948 } 1949 out: 1950 return ret; 1951 } 1952 1953 /* 1954 * ext4_ext_insert_extent: 1955 * tries to merge requested extent into the existing extent or 1956 * inserts requested extent as new one into the tree, 1957 * creating new leaf in the no-space case. 1958 */ 1959 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1960 struct ext4_ext_path **ppath, 1961 struct ext4_extent *newext, int gb_flags) 1962 { 1963 struct ext4_ext_path *path = *ppath; 1964 struct ext4_extent_header *eh; 1965 struct ext4_extent *ex, *fex; 1966 struct ext4_extent *nearex; /* nearest extent */ 1967 struct ext4_ext_path *npath = NULL; 1968 int depth, len, err; 1969 ext4_lblk_t next; 1970 int mb_flags = 0, unwritten; 1971 1972 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1973 mb_flags |= EXT4_MB_DELALLOC_RESERVED; 1974 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1975 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1976 return -EFSCORRUPTED; 1977 } 1978 depth = ext_depth(inode); 1979 ex = path[depth].p_ext; 1980 eh = path[depth].p_hdr; 1981 if (unlikely(path[depth].p_hdr == NULL)) { 1982 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1983 return -EFSCORRUPTED; 1984 } 1985 1986 /* try to insert block into found extent and return */ 1987 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1988 1989 /* 1990 * Try to see whether we should rather test the extent on 1991 * right from ex, or from the left of ex. This is because 1992 * ext4_find_extent() can return either extent on the 1993 * left, or on the right from the searched position. This 1994 * will make merging more effective. 1995 */ 1996 if (ex < EXT_LAST_EXTENT(eh) && 1997 (le32_to_cpu(ex->ee_block) + 1998 ext4_ext_get_actual_len(ex) < 1999 le32_to_cpu(newext->ee_block))) { 2000 ex += 1; 2001 goto prepend; 2002 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 2003 (le32_to_cpu(newext->ee_block) + 2004 ext4_ext_get_actual_len(newext) < 2005 le32_to_cpu(ex->ee_block))) 2006 ex -= 1; 2007 2008 /* Try to append newex to the ex */ 2009 if (ext4_can_extents_be_merged(inode, ex, newext)) { 2010 ext_debug(inode, "append [%d]%d block to %u:[%d]%d" 2011 "(from %llu)\n", 2012 ext4_ext_is_unwritten(newext), 2013 ext4_ext_get_actual_len(newext), 2014 le32_to_cpu(ex->ee_block), 2015 ext4_ext_is_unwritten(ex), 2016 ext4_ext_get_actual_len(ex), 2017 ext4_ext_pblock(ex)); 2018 err = ext4_ext_get_access(handle, inode, 2019 path + depth); 2020 if (err) 2021 return err; 2022 unwritten = ext4_ext_is_unwritten(ex); 2023 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2024 + ext4_ext_get_actual_len(newext)); 2025 if (unwritten) 2026 ext4_ext_mark_unwritten(ex); 2027 nearex = ex; 2028 goto merge; 2029 } 2030 2031 prepend: 2032 /* Try to prepend newex to the ex */ 2033 if (ext4_can_extents_be_merged(inode, newext, ex)) { 2034 ext_debug(inode, "prepend %u[%d]%d block to %u:[%d]%d" 2035 "(from %llu)\n", 2036 le32_to_cpu(newext->ee_block), 2037 ext4_ext_is_unwritten(newext), 2038 ext4_ext_get_actual_len(newext), 2039 le32_to_cpu(ex->ee_block), 2040 ext4_ext_is_unwritten(ex), 2041 ext4_ext_get_actual_len(ex), 2042 ext4_ext_pblock(ex)); 2043 err = ext4_ext_get_access(handle, inode, 2044 path + depth); 2045 if (err) 2046 return err; 2047 2048 unwritten = ext4_ext_is_unwritten(ex); 2049 ex->ee_block = newext->ee_block; 2050 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 2051 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2052 + ext4_ext_get_actual_len(newext)); 2053 if (unwritten) 2054 ext4_ext_mark_unwritten(ex); 2055 nearex = ex; 2056 goto merge; 2057 } 2058 } 2059 2060 depth = ext_depth(inode); 2061 eh = path[depth].p_hdr; 2062 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2063 goto has_space; 2064 2065 /* probably next leaf has space for us? */ 2066 fex = EXT_LAST_EXTENT(eh); 2067 next = EXT_MAX_BLOCKS; 2068 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2069 next = ext4_ext_next_leaf_block(path); 2070 if (next != EXT_MAX_BLOCKS) { 2071 ext_debug(inode, "next leaf block - %u\n", next); 2072 BUG_ON(npath != NULL); 2073 npath = ext4_find_extent(inode, next, NULL, gb_flags); 2074 if (IS_ERR(npath)) 2075 return PTR_ERR(npath); 2076 BUG_ON(npath->p_depth != path->p_depth); 2077 eh = npath[depth].p_hdr; 2078 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2079 ext_debug(inode, "next leaf isn't full(%d)\n", 2080 le16_to_cpu(eh->eh_entries)); 2081 path = npath; 2082 goto has_space; 2083 } 2084 ext_debug(inode, "next leaf has no free space(%d,%d)\n", 2085 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2086 } 2087 2088 /* 2089 * There is no free space in the found leaf. 2090 * We're gonna add a new leaf in the tree. 2091 */ 2092 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2093 mb_flags |= EXT4_MB_USE_RESERVED; 2094 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2095 ppath, newext); 2096 if (err) 2097 goto cleanup; 2098 depth = ext_depth(inode); 2099 eh = path[depth].p_hdr; 2100 2101 has_space: 2102 nearex = path[depth].p_ext; 2103 2104 err = ext4_ext_get_access(handle, inode, path + depth); 2105 if (err) 2106 goto cleanup; 2107 2108 if (!nearex) { 2109 /* there is no extent in this leaf, create first one */ 2110 ext_debug(inode, "first extent in the leaf: %u:%llu:[%d]%d\n", 2111 le32_to_cpu(newext->ee_block), 2112 ext4_ext_pblock(newext), 2113 ext4_ext_is_unwritten(newext), 2114 ext4_ext_get_actual_len(newext)); 2115 nearex = EXT_FIRST_EXTENT(eh); 2116 } else { 2117 if (le32_to_cpu(newext->ee_block) 2118 > le32_to_cpu(nearex->ee_block)) { 2119 /* Insert after */ 2120 ext_debug(inode, "insert %u:%llu:[%d]%d before: " 2121 "nearest %p\n", 2122 le32_to_cpu(newext->ee_block), 2123 ext4_ext_pblock(newext), 2124 ext4_ext_is_unwritten(newext), 2125 ext4_ext_get_actual_len(newext), 2126 nearex); 2127 nearex++; 2128 } else { 2129 /* Insert before */ 2130 BUG_ON(newext->ee_block == nearex->ee_block); 2131 ext_debug(inode, "insert %u:%llu:[%d]%d after: " 2132 "nearest %p\n", 2133 le32_to_cpu(newext->ee_block), 2134 ext4_ext_pblock(newext), 2135 ext4_ext_is_unwritten(newext), 2136 ext4_ext_get_actual_len(newext), 2137 nearex); 2138 } 2139 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2140 if (len > 0) { 2141 ext_debug(inode, "insert %u:%llu:[%d]%d: " 2142 "move %d extents from 0x%p to 0x%p\n", 2143 le32_to_cpu(newext->ee_block), 2144 ext4_ext_pblock(newext), 2145 ext4_ext_is_unwritten(newext), 2146 ext4_ext_get_actual_len(newext), 2147 len, nearex, nearex + 1); 2148 memmove(nearex + 1, nearex, 2149 len * sizeof(struct ext4_extent)); 2150 } 2151 } 2152 2153 le16_add_cpu(&eh->eh_entries, 1); 2154 path[depth].p_ext = nearex; 2155 nearex->ee_block = newext->ee_block; 2156 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2157 nearex->ee_len = newext->ee_len; 2158 2159 merge: 2160 /* try to merge extents */ 2161 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2162 ext4_ext_try_to_merge(handle, inode, path, nearex); 2163 2164 2165 /* time to correct all indexes above */ 2166 err = ext4_ext_correct_indexes(handle, inode, path); 2167 if (err) 2168 goto cleanup; 2169 2170 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2171 2172 cleanup: 2173 ext4_ext_drop_refs(npath); 2174 kfree(npath); 2175 return err; 2176 } 2177 2178 static int ext4_fill_es_cache_info(struct inode *inode, 2179 ext4_lblk_t block, ext4_lblk_t num, 2180 struct fiemap_extent_info *fieinfo) 2181 { 2182 ext4_lblk_t next, end = block + num - 1; 2183 struct extent_status es; 2184 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2185 unsigned int flags; 2186 int err; 2187 2188 while (block <= end) { 2189 next = 0; 2190 flags = 0; 2191 if (!ext4_es_lookup_extent(inode, block, &next, &es)) 2192 break; 2193 if (ext4_es_is_unwritten(&es)) 2194 flags |= FIEMAP_EXTENT_UNWRITTEN; 2195 if (ext4_es_is_delayed(&es)) 2196 flags |= (FIEMAP_EXTENT_DELALLOC | 2197 FIEMAP_EXTENT_UNKNOWN); 2198 if (ext4_es_is_hole(&es)) 2199 flags |= EXT4_FIEMAP_EXTENT_HOLE; 2200 if (next == 0) 2201 flags |= FIEMAP_EXTENT_LAST; 2202 if (flags & (FIEMAP_EXTENT_DELALLOC| 2203 EXT4_FIEMAP_EXTENT_HOLE)) 2204 es.es_pblk = 0; 2205 else 2206 es.es_pblk = ext4_es_pblock(&es); 2207 err = fiemap_fill_next_extent(fieinfo, 2208 (__u64)es.es_lblk << blksize_bits, 2209 (__u64)es.es_pblk << blksize_bits, 2210 (__u64)es.es_len << blksize_bits, 2211 flags); 2212 if (next == 0) 2213 break; 2214 block = next; 2215 if (err < 0) 2216 return err; 2217 if (err == 1) 2218 return 0; 2219 } 2220 return 0; 2221 } 2222 2223 2224 /* 2225 * ext4_ext_determine_hole - determine hole around given block 2226 * @inode: inode we lookup in 2227 * @path: path in extent tree to @lblk 2228 * @lblk: pointer to logical block around which we want to determine hole 2229 * 2230 * Determine hole length (and start if easily possible) around given logical 2231 * block. We don't try too hard to find the beginning of the hole but @path 2232 * actually points to extent before @lblk, we provide it. 2233 * 2234 * The function returns the length of a hole starting at @lblk. We update @lblk 2235 * to the beginning of the hole if we managed to find it. 2236 */ 2237 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode, 2238 struct ext4_ext_path *path, 2239 ext4_lblk_t *lblk) 2240 { 2241 int depth = ext_depth(inode); 2242 struct ext4_extent *ex; 2243 ext4_lblk_t len; 2244 2245 ex = path[depth].p_ext; 2246 if (ex == NULL) { 2247 /* there is no extent yet, so gap is [0;-] */ 2248 *lblk = 0; 2249 len = EXT_MAX_BLOCKS; 2250 } else if (*lblk < le32_to_cpu(ex->ee_block)) { 2251 len = le32_to_cpu(ex->ee_block) - *lblk; 2252 } else if (*lblk >= le32_to_cpu(ex->ee_block) 2253 + ext4_ext_get_actual_len(ex)) { 2254 ext4_lblk_t next; 2255 2256 *lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); 2257 next = ext4_ext_next_allocated_block(path); 2258 BUG_ON(next == *lblk); 2259 len = next - *lblk; 2260 } else { 2261 BUG(); 2262 } 2263 return len; 2264 } 2265 2266 /* 2267 * ext4_ext_put_gap_in_cache: 2268 * calculate boundaries of the gap that the requested block fits into 2269 * and cache this gap 2270 */ 2271 static void 2272 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start, 2273 ext4_lblk_t hole_len) 2274 { 2275 struct extent_status es; 2276 2277 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, hole_start, 2278 hole_start + hole_len - 1, &es); 2279 if (es.es_len) { 2280 /* There's delayed extent containing lblock? */ 2281 if (es.es_lblk <= hole_start) 2282 return; 2283 hole_len = min(es.es_lblk - hole_start, hole_len); 2284 } 2285 ext_debug(inode, " -> %u:%u\n", hole_start, hole_len); 2286 ext4_es_insert_extent(inode, hole_start, hole_len, ~0, 2287 EXTENT_STATUS_HOLE); 2288 } 2289 2290 /* 2291 * ext4_ext_rm_idx: 2292 * removes index from the index block. 2293 */ 2294 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2295 struct ext4_ext_path *path, int depth) 2296 { 2297 int err; 2298 ext4_fsblk_t leaf; 2299 2300 /* free index block */ 2301 depth--; 2302 path = path + depth; 2303 leaf = ext4_idx_pblock(path->p_idx); 2304 if (unlikely(path->p_hdr->eh_entries == 0)) { 2305 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2306 return -EFSCORRUPTED; 2307 } 2308 err = ext4_ext_get_access(handle, inode, path); 2309 if (err) 2310 return err; 2311 2312 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2313 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2314 len *= sizeof(struct ext4_extent_idx); 2315 memmove(path->p_idx, path->p_idx + 1, len); 2316 } 2317 2318 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2319 err = ext4_ext_dirty(handle, inode, path); 2320 if (err) 2321 return err; 2322 ext_debug(inode, "index is empty, remove it, free block %llu\n", leaf); 2323 trace_ext4_ext_rm_idx(inode, leaf); 2324 2325 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2326 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2327 2328 while (--depth >= 0) { 2329 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2330 break; 2331 path--; 2332 err = ext4_ext_get_access(handle, inode, path); 2333 if (err) 2334 break; 2335 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2336 err = ext4_ext_dirty(handle, inode, path); 2337 if (err) 2338 break; 2339 } 2340 return err; 2341 } 2342 2343 /* 2344 * ext4_ext_calc_credits_for_single_extent: 2345 * This routine returns max. credits that needed to insert an extent 2346 * to the extent tree. 2347 * When pass the actual path, the caller should calculate credits 2348 * under i_data_sem. 2349 */ 2350 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2351 struct ext4_ext_path *path) 2352 { 2353 if (path) { 2354 int depth = ext_depth(inode); 2355 int ret = 0; 2356 2357 /* probably there is space in leaf? */ 2358 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2359 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2360 2361 /* 2362 * There are some space in the leaf tree, no 2363 * need to account for leaf block credit 2364 * 2365 * bitmaps and block group descriptor blocks 2366 * and other metadata blocks still need to be 2367 * accounted. 2368 */ 2369 /* 1 bitmap, 1 block group descriptor */ 2370 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2371 return ret; 2372 } 2373 } 2374 2375 return ext4_chunk_trans_blocks(inode, nrblocks); 2376 } 2377 2378 /* 2379 * How many index/leaf blocks need to change/allocate to add @extents extents? 2380 * 2381 * If we add a single extent, then in the worse case, each tree level 2382 * index/leaf need to be changed in case of the tree split. 2383 * 2384 * If more extents are inserted, they could cause the whole tree split more 2385 * than once, but this is really rare. 2386 */ 2387 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2388 { 2389 int index; 2390 int depth; 2391 2392 /* If we are converting the inline data, only one is needed here. */ 2393 if (ext4_has_inline_data(inode)) 2394 return 1; 2395 2396 depth = ext_depth(inode); 2397 2398 if (extents <= 1) 2399 index = depth * 2; 2400 else 2401 index = depth * 3; 2402 2403 return index; 2404 } 2405 2406 static inline int get_default_free_blocks_flags(struct inode *inode) 2407 { 2408 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) || 2409 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE)) 2410 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2411 else if (ext4_should_journal_data(inode)) 2412 return EXT4_FREE_BLOCKS_FORGET; 2413 return 0; 2414 } 2415 2416 /* 2417 * ext4_rereserve_cluster - increment the reserved cluster count when 2418 * freeing a cluster with a pending reservation 2419 * 2420 * @inode - file containing the cluster 2421 * @lblk - logical block in cluster to be reserved 2422 * 2423 * Increments the reserved cluster count and adjusts quota in a bigalloc 2424 * file system when freeing a partial cluster containing at least one 2425 * delayed and unwritten block. A partial cluster meeting that 2426 * requirement will have a pending reservation. If so, the 2427 * RERESERVE_CLUSTER flag is used when calling ext4_free_blocks() to 2428 * defer reserved and allocated space accounting to a subsequent call 2429 * to this function. 2430 */ 2431 static void ext4_rereserve_cluster(struct inode *inode, ext4_lblk_t lblk) 2432 { 2433 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2434 struct ext4_inode_info *ei = EXT4_I(inode); 2435 2436 dquot_reclaim_block(inode, EXT4_C2B(sbi, 1)); 2437 2438 spin_lock(&ei->i_block_reservation_lock); 2439 ei->i_reserved_data_blocks++; 2440 percpu_counter_add(&sbi->s_dirtyclusters_counter, 1); 2441 spin_unlock(&ei->i_block_reservation_lock); 2442 2443 percpu_counter_add(&sbi->s_freeclusters_counter, 1); 2444 ext4_remove_pending(inode, lblk); 2445 } 2446 2447 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2448 struct ext4_extent *ex, 2449 struct partial_cluster *partial, 2450 ext4_lblk_t from, ext4_lblk_t to) 2451 { 2452 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2453 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2454 ext4_fsblk_t last_pblk, pblk; 2455 ext4_lblk_t num; 2456 int flags; 2457 2458 /* only extent tail removal is allowed */ 2459 if (from < le32_to_cpu(ex->ee_block) || 2460 to != le32_to_cpu(ex->ee_block) + ee_len - 1) { 2461 ext4_error(sbi->s_sb, 2462 "strange request: removal(2) %u-%u from %u:%u", 2463 from, to, le32_to_cpu(ex->ee_block), ee_len); 2464 return 0; 2465 } 2466 2467 #ifdef EXTENTS_STATS 2468 spin_lock(&sbi->s_ext_stats_lock); 2469 sbi->s_ext_blocks += ee_len; 2470 sbi->s_ext_extents++; 2471 if (ee_len < sbi->s_ext_min) 2472 sbi->s_ext_min = ee_len; 2473 if (ee_len > sbi->s_ext_max) 2474 sbi->s_ext_max = ee_len; 2475 if (ext_depth(inode) > sbi->s_depth_max) 2476 sbi->s_depth_max = ext_depth(inode); 2477 spin_unlock(&sbi->s_ext_stats_lock); 2478 #endif 2479 2480 trace_ext4_remove_blocks(inode, ex, from, to, partial); 2481 2482 /* 2483 * if we have a partial cluster, and it's different from the 2484 * cluster of the last block in the extent, we free it 2485 */ 2486 last_pblk = ext4_ext_pblock(ex) + ee_len - 1; 2487 2488 if (partial->state != initial && 2489 partial->pclu != EXT4_B2C(sbi, last_pblk)) { 2490 if (partial->state == tofree) { 2491 flags = get_default_free_blocks_flags(inode); 2492 if (ext4_is_pending(inode, partial->lblk)) 2493 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2494 ext4_free_blocks(handle, inode, NULL, 2495 EXT4_C2B(sbi, partial->pclu), 2496 sbi->s_cluster_ratio, flags); 2497 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2498 ext4_rereserve_cluster(inode, partial->lblk); 2499 } 2500 partial->state = initial; 2501 } 2502 2503 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2504 pblk = ext4_ext_pblock(ex) + ee_len - num; 2505 2506 /* 2507 * We free the partial cluster at the end of the extent (if any), 2508 * unless the cluster is used by another extent (partial_cluster 2509 * state is nofree). If a partial cluster exists here, it must be 2510 * shared with the last block in the extent. 2511 */ 2512 flags = get_default_free_blocks_flags(inode); 2513 2514 /* partial, left end cluster aligned, right end unaligned */ 2515 if ((EXT4_LBLK_COFF(sbi, to) != sbi->s_cluster_ratio - 1) && 2516 (EXT4_LBLK_CMASK(sbi, to) >= from) && 2517 (partial->state != nofree)) { 2518 if (ext4_is_pending(inode, to)) 2519 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2520 ext4_free_blocks(handle, inode, NULL, 2521 EXT4_PBLK_CMASK(sbi, last_pblk), 2522 sbi->s_cluster_ratio, flags); 2523 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2524 ext4_rereserve_cluster(inode, to); 2525 partial->state = initial; 2526 flags = get_default_free_blocks_flags(inode); 2527 } 2528 2529 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2530 2531 /* 2532 * For bigalloc file systems, we never free a partial cluster 2533 * at the beginning of the extent. Instead, we check to see if we 2534 * need to free it on a subsequent call to ext4_remove_blocks, 2535 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. 2536 */ 2537 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2538 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2539 2540 /* reset the partial cluster if we've freed past it */ 2541 if (partial->state != initial && partial->pclu != EXT4_B2C(sbi, pblk)) 2542 partial->state = initial; 2543 2544 /* 2545 * If we've freed the entire extent but the beginning is not left 2546 * cluster aligned and is not marked as ineligible for freeing we 2547 * record the partial cluster at the beginning of the extent. It 2548 * wasn't freed by the preceding ext4_free_blocks() call, and we 2549 * need to look farther to the left to determine if it's to be freed 2550 * (not shared with another extent). Else, reset the partial 2551 * cluster - we're either done freeing or the beginning of the 2552 * extent is left cluster aligned. 2553 */ 2554 if (EXT4_LBLK_COFF(sbi, from) && num == ee_len) { 2555 if (partial->state == initial) { 2556 partial->pclu = EXT4_B2C(sbi, pblk); 2557 partial->lblk = from; 2558 partial->state = tofree; 2559 } 2560 } else { 2561 partial->state = initial; 2562 } 2563 2564 return 0; 2565 } 2566 2567 /* 2568 * ext4_ext_rm_leaf() Removes the extents associated with the 2569 * blocks appearing between "start" and "end". Both "start" 2570 * and "end" must appear in the same extent or EIO is returned. 2571 * 2572 * @handle: The journal handle 2573 * @inode: The files inode 2574 * @path: The path to the leaf 2575 * @partial_cluster: The cluster which we'll have to free if all extents 2576 * has been released from it. However, if this value is 2577 * negative, it's a cluster just to the right of the 2578 * punched region and it must not be freed. 2579 * @start: The first block to remove 2580 * @end: The last block to remove 2581 */ 2582 static int 2583 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2584 struct ext4_ext_path *path, 2585 struct partial_cluster *partial, 2586 ext4_lblk_t start, ext4_lblk_t end) 2587 { 2588 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2589 int err = 0, correct_index = 0; 2590 int depth = ext_depth(inode), credits, revoke_credits; 2591 struct ext4_extent_header *eh; 2592 ext4_lblk_t a, b; 2593 unsigned num; 2594 ext4_lblk_t ex_ee_block; 2595 unsigned short ex_ee_len; 2596 unsigned unwritten = 0; 2597 struct ext4_extent *ex; 2598 ext4_fsblk_t pblk; 2599 2600 /* the header must be checked already in ext4_ext_remove_space() */ 2601 ext_debug(inode, "truncate since %u in leaf to %u\n", start, end); 2602 if (!path[depth].p_hdr) 2603 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2604 eh = path[depth].p_hdr; 2605 if (unlikely(path[depth].p_hdr == NULL)) { 2606 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2607 return -EFSCORRUPTED; 2608 } 2609 /* find where to start removing */ 2610 ex = path[depth].p_ext; 2611 if (!ex) 2612 ex = EXT_LAST_EXTENT(eh); 2613 2614 ex_ee_block = le32_to_cpu(ex->ee_block); 2615 ex_ee_len = ext4_ext_get_actual_len(ex); 2616 2617 trace_ext4_ext_rm_leaf(inode, start, ex, partial); 2618 2619 while (ex >= EXT_FIRST_EXTENT(eh) && 2620 ex_ee_block + ex_ee_len > start) { 2621 2622 if (ext4_ext_is_unwritten(ex)) 2623 unwritten = 1; 2624 else 2625 unwritten = 0; 2626 2627 ext_debug(inode, "remove ext %u:[%d]%d\n", ex_ee_block, 2628 unwritten, ex_ee_len); 2629 path[depth].p_ext = ex; 2630 2631 a = ex_ee_block > start ? ex_ee_block : start; 2632 b = ex_ee_block+ex_ee_len - 1 < end ? 2633 ex_ee_block+ex_ee_len - 1 : end; 2634 2635 ext_debug(inode, " border %u:%u\n", a, b); 2636 2637 /* If this extent is beyond the end of the hole, skip it */ 2638 if (end < ex_ee_block) { 2639 /* 2640 * We're going to skip this extent and move to another, 2641 * so note that its first cluster is in use to avoid 2642 * freeing it when removing blocks. Eventually, the 2643 * right edge of the truncated/punched region will 2644 * be just to the left. 2645 */ 2646 if (sbi->s_cluster_ratio > 1) { 2647 pblk = ext4_ext_pblock(ex); 2648 partial->pclu = EXT4_B2C(sbi, pblk); 2649 partial->state = nofree; 2650 } 2651 ex--; 2652 ex_ee_block = le32_to_cpu(ex->ee_block); 2653 ex_ee_len = ext4_ext_get_actual_len(ex); 2654 continue; 2655 } else if (b != ex_ee_block + ex_ee_len - 1) { 2656 EXT4_ERROR_INODE(inode, 2657 "can not handle truncate %u:%u " 2658 "on extent %u:%u", 2659 start, end, ex_ee_block, 2660 ex_ee_block + ex_ee_len - 1); 2661 err = -EFSCORRUPTED; 2662 goto out; 2663 } else if (a != ex_ee_block) { 2664 /* remove tail of the extent */ 2665 num = a - ex_ee_block; 2666 } else { 2667 /* remove whole extent: excellent! */ 2668 num = 0; 2669 } 2670 /* 2671 * 3 for leaf, sb, and inode plus 2 (bmap and group 2672 * descriptor) for each block group; assume two block 2673 * groups plus ex_ee_len/blocks_per_block_group for 2674 * the worst case 2675 */ 2676 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2677 if (ex == EXT_FIRST_EXTENT(eh)) { 2678 correct_index = 1; 2679 credits += (ext_depth(inode)) + 1; 2680 } 2681 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2682 /* 2683 * We may end up freeing some index blocks and data from the 2684 * punched range. Note that partial clusters are accounted for 2685 * by ext4_free_data_revoke_credits(). 2686 */ 2687 revoke_credits = 2688 ext4_free_metadata_revoke_credits(inode->i_sb, 2689 ext_depth(inode)) + 2690 ext4_free_data_revoke_credits(inode, b - a + 1); 2691 2692 err = ext4_datasem_ensure_credits(handle, inode, credits, 2693 credits, revoke_credits); 2694 if (err) { 2695 if (err > 0) 2696 err = -EAGAIN; 2697 goto out; 2698 } 2699 2700 err = ext4_ext_get_access(handle, inode, path + depth); 2701 if (err) 2702 goto out; 2703 2704 err = ext4_remove_blocks(handle, inode, ex, partial, a, b); 2705 if (err) 2706 goto out; 2707 2708 if (num == 0) 2709 /* this extent is removed; mark slot entirely unused */ 2710 ext4_ext_store_pblock(ex, 0); 2711 2712 ex->ee_len = cpu_to_le16(num); 2713 /* 2714 * Do not mark unwritten if all the blocks in the 2715 * extent have been removed. 2716 */ 2717 if (unwritten && num) 2718 ext4_ext_mark_unwritten(ex); 2719 /* 2720 * If the extent was completely released, 2721 * we need to remove it from the leaf 2722 */ 2723 if (num == 0) { 2724 if (end != EXT_MAX_BLOCKS - 1) { 2725 /* 2726 * For hole punching, we need to scoot all the 2727 * extents up when an extent is removed so that 2728 * we dont have blank extents in the middle 2729 */ 2730 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2731 sizeof(struct ext4_extent)); 2732 2733 /* Now get rid of the one at the end */ 2734 memset(EXT_LAST_EXTENT(eh), 0, 2735 sizeof(struct ext4_extent)); 2736 } 2737 le16_add_cpu(&eh->eh_entries, -1); 2738 } 2739 2740 err = ext4_ext_dirty(handle, inode, path + depth); 2741 if (err) 2742 goto out; 2743 2744 ext_debug(inode, "new extent: %u:%u:%llu\n", ex_ee_block, num, 2745 ext4_ext_pblock(ex)); 2746 ex--; 2747 ex_ee_block = le32_to_cpu(ex->ee_block); 2748 ex_ee_len = ext4_ext_get_actual_len(ex); 2749 } 2750 2751 if (correct_index && eh->eh_entries) 2752 err = ext4_ext_correct_indexes(handle, inode, path); 2753 2754 /* 2755 * If there's a partial cluster and at least one extent remains in 2756 * the leaf, free the partial cluster if it isn't shared with the 2757 * current extent. If it is shared with the current extent 2758 * we reset the partial cluster because we've reached the start of the 2759 * truncated/punched region and we're done removing blocks. 2760 */ 2761 if (partial->state == tofree && ex >= EXT_FIRST_EXTENT(eh)) { 2762 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2763 if (partial->pclu != EXT4_B2C(sbi, pblk)) { 2764 int flags = get_default_free_blocks_flags(inode); 2765 2766 if (ext4_is_pending(inode, partial->lblk)) 2767 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2768 ext4_free_blocks(handle, inode, NULL, 2769 EXT4_C2B(sbi, partial->pclu), 2770 sbi->s_cluster_ratio, flags); 2771 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2772 ext4_rereserve_cluster(inode, partial->lblk); 2773 } 2774 partial->state = initial; 2775 } 2776 2777 /* if this leaf is free, then we should 2778 * remove it from index block above */ 2779 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2780 err = ext4_ext_rm_idx(handle, inode, path, depth); 2781 2782 out: 2783 return err; 2784 } 2785 2786 /* 2787 * ext4_ext_more_to_rm: 2788 * returns 1 if current index has to be freed (even partial) 2789 */ 2790 static int 2791 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2792 { 2793 BUG_ON(path->p_idx == NULL); 2794 2795 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2796 return 0; 2797 2798 /* 2799 * if truncate on deeper level happened, it wasn't partial, 2800 * so we have to consider current index for truncation 2801 */ 2802 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2803 return 0; 2804 return 1; 2805 } 2806 2807 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2808 ext4_lblk_t end) 2809 { 2810 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2811 int depth = ext_depth(inode); 2812 struct ext4_ext_path *path = NULL; 2813 struct partial_cluster partial; 2814 handle_t *handle; 2815 int i = 0, err = 0; 2816 2817 partial.pclu = 0; 2818 partial.lblk = 0; 2819 partial.state = initial; 2820 2821 ext_debug(inode, "truncate since %u to %u\n", start, end); 2822 2823 /* probably first extent we're gonna free will be last in block */ 2824 handle = ext4_journal_start_with_revoke(inode, EXT4_HT_TRUNCATE, 2825 depth + 1, 2826 ext4_free_metadata_revoke_credits(inode->i_sb, depth)); 2827 if (IS_ERR(handle)) 2828 return PTR_ERR(handle); 2829 2830 again: 2831 trace_ext4_ext_remove_space(inode, start, end, depth); 2832 2833 /* 2834 * Check if we are removing extents inside the extent tree. If that 2835 * is the case, we are going to punch a hole inside the extent tree 2836 * so we have to check whether we need to split the extent covering 2837 * the last block to remove so we can easily remove the part of it 2838 * in ext4_ext_rm_leaf(). 2839 */ 2840 if (end < EXT_MAX_BLOCKS - 1) { 2841 struct ext4_extent *ex; 2842 ext4_lblk_t ee_block, ex_end, lblk; 2843 ext4_fsblk_t pblk; 2844 2845 /* find extent for or closest extent to this block */ 2846 path = ext4_find_extent(inode, end, NULL, 2847 EXT4_EX_NOCACHE | EXT4_EX_NOFAIL); 2848 if (IS_ERR(path)) { 2849 ext4_journal_stop(handle); 2850 return PTR_ERR(path); 2851 } 2852 depth = ext_depth(inode); 2853 /* Leaf not may not exist only if inode has no blocks at all */ 2854 ex = path[depth].p_ext; 2855 if (!ex) { 2856 if (depth) { 2857 EXT4_ERROR_INODE(inode, 2858 "path[%d].p_hdr == NULL", 2859 depth); 2860 err = -EFSCORRUPTED; 2861 } 2862 goto out; 2863 } 2864 2865 ee_block = le32_to_cpu(ex->ee_block); 2866 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1; 2867 2868 /* 2869 * See if the last block is inside the extent, if so split 2870 * the extent at 'end' block so we can easily remove the 2871 * tail of the first part of the split extent in 2872 * ext4_ext_rm_leaf(). 2873 */ 2874 if (end >= ee_block && end < ex_end) { 2875 2876 /* 2877 * If we're going to split the extent, note that 2878 * the cluster containing the block after 'end' is 2879 * in use to avoid freeing it when removing blocks. 2880 */ 2881 if (sbi->s_cluster_ratio > 1) { 2882 pblk = ext4_ext_pblock(ex) + end - ee_block + 1; 2883 partial.pclu = EXT4_B2C(sbi, pblk); 2884 partial.state = nofree; 2885 } 2886 2887 /* 2888 * Split the extent in two so that 'end' is the last 2889 * block in the first new extent. Also we should not 2890 * fail removing space due to ENOSPC so try to use 2891 * reserved block if that happens. 2892 */ 2893 err = ext4_force_split_extent_at(handle, inode, &path, 2894 end + 1, 1); 2895 if (err < 0) 2896 goto out; 2897 2898 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end && 2899 partial.state == initial) { 2900 /* 2901 * If we're punching, there's an extent to the right. 2902 * If the partial cluster hasn't been set, set it to 2903 * that extent's first cluster and its state to nofree 2904 * so it won't be freed should it contain blocks to be 2905 * removed. If it's already set (tofree/nofree), we're 2906 * retrying and keep the original partial cluster info 2907 * so a cluster marked tofree as a result of earlier 2908 * extent removal is not lost. 2909 */ 2910 lblk = ex_end + 1; 2911 err = ext4_ext_search_right(inode, path, &lblk, &pblk, 2912 NULL); 2913 if (err < 0) 2914 goto out; 2915 if (pblk) { 2916 partial.pclu = EXT4_B2C(sbi, pblk); 2917 partial.state = nofree; 2918 } 2919 } 2920 } 2921 /* 2922 * We start scanning from right side, freeing all the blocks 2923 * after i_size and walking into the tree depth-wise. 2924 */ 2925 depth = ext_depth(inode); 2926 if (path) { 2927 int k = i = depth; 2928 while (--k > 0) 2929 path[k].p_block = 2930 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2931 } else { 2932 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 2933 GFP_NOFS | __GFP_NOFAIL); 2934 if (path == NULL) { 2935 ext4_journal_stop(handle); 2936 return -ENOMEM; 2937 } 2938 path[0].p_maxdepth = path[0].p_depth = depth; 2939 path[0].p_hdr = ext_inode_hdr(inode); 2940 i = 0; 2941 2942 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2943 err = -EFSCORRUPTED; 2944 goto out; 2945 } 2946 } 2947 err = 0; 2948 2949 while (i >= 0 && err == 0) { 2950 if (i == depth) { 2951 /* this is leaf block */ 2952 err = ext4_ext_rm_leaf(handle, inode, path, 2953 &partial, start, end); 2954 /* root level has p_bh == NULL, brelse() eats this */ 2955 brelse(path[i].p_bh); 2956 path[i].p_bh = NULL; 2957 i--; 2958 continue; 2959 } 2960 2961 /* this is index block */ 2962 if (!path[i].p_hdr) { 2963 ext_debug(inode, "initialize header\n"); 2964 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2965 } 2966 2967 if (!path[i].p_idx) { 2968 /* this level hasn't been touched yet */ 2969 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2970 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2971 ext_debug(inode, "init index ptr: hdr 0x%p, num %d\n", 2972 path[i].p_hdr, 2973 le16_to_cpu(path[i].p_hdr->eh_entries)); 2974 } else { 2975 /* we were already here, see at next index */ 2976 path[i].p_idx--; 2977 } 2978 2979 ext_debug(inode, "level %d - index, first 0x%p, cur 0x%p\n", 2980 i, EXT_FIRST_INDEX(path[i].p_hdr), 2981 path[i].p_idx); 2982 if (ext4_ext_more_to_rm(path + i)) { 2983 struct buffer_head *bh; 2984 /* go to the next level */ 2985 ext_debug(inode, "move to level %d (block %llu)\n", 2986 i + 1, ext4_idx_pblock(path[i].p_idx)); 2987 memset(path + i + 1, 0, sizeof(*path)); 2988 bh = read_extent_tree_block(inode, path[i].p_idx, 2989 depth - i - 1, 2990 EXT4_EX_NOCACHE); 2991 if (IS_ERR(bh)) { 2992 /* should we reset i_size? */ 2993 err = PTR_ERR(bh); 2994 break; 2995 } 2996 /* Yield here to deal with large extent trees. 2997 * Should be a no-op if we did IO above. */ 2998 cond_resched(); 2999 if (WARN_ON(i + 1 > depth)) { 3000 err = -EFSCORRUPTED; 3001 break; 3002 } 3003 path[i + 1].p_bh = bh; 3004 3005 /* save actual number of indexes since this 3006 * number is changed at the next iteration */ 3007 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 3008 i++; 3009 } else { 3010 /* we finished processing this index, go up */ 3011 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 3012 /* index is empty, remove it; 3013 * handle must be already prepared by the 3014 * truncatei_leaf() */ 3015 err = ext4_ext_rm_idx(handle, inode, path, i); 3016 } 3017 /* root level has p_bh == NULL, brelse() eats this */ 3018 brelse(path[i].p_bh); 3019 path[i].p_bh = NULL; 3020 i--; 3021 ext_debug(inode, "return to level %d\n", i); 3022 } 3023 } 3024 3025 trace_ext4_ext_remove_space_done(inode, start, end, depth, &partial, 3026 path->p_hdr->eh_entries); 3027 3028 /* 3029 * if there's a partial cluster and we have removed the first extent 3030 * in the file, then we also free the partial cluster, if any 3031 */ 3032 if (partial.state == tofree && err == 0) { 3033 int flags = get_default_free_blocks_flags(inode); 3034 3035 if (ext4_is_pending(inode, partial.lblk)) 3036 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 3037 ext4_free_blocks(handle, inode, NULL, 3038 EXT4_C2B(sbi, partial.pclu), 3039 sbi->s_cluster_ratio, flags); 3040 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 3041 ext4_rereserve_cluster(inode, partial.lblk); 3042 partial.state = initial; 3043 } 3044 3045 /* TODO: flexible tree reduction should be here */ 3046 if (path->p_hdr->eh_entries == 0) { 3047 /* 3048 * truncate to zero freed all the tree, 3049 * so we need to correct eh_depth 3050 */ 3051 err = ext4_ext_get_access(handle, inode, path); 3052 if (err == 0) { 3053 ext_inode_hdr(inode)->eh_depth = 0; 3054 ext_inode_hdr(inode)->eh_max = 3055 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3056 err = ext4_ext_dirty(handle, inode, path); 3057 } 3058 } 3059 out: 3060 ext4_ext_drop_refs(path); 3061 kfree(path); 3062 path = NULL; 3063 if (err == -EAGAIN) 3064 goto again; 3065 ext4_journal_stop(handle); 3066 3067 return err; 3068 } 3069 3070 /* 3071 * called at mount time 3072 */ 3073 void ext4_ext_init(struct super_block *sb) 3074 { 3075 /* 3076 * possible initialization would be here 3077 */ 3078 3079 if (ext4_has_feature_extents(sb)) { 3080 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3081 printk(KERN_INFO "EXT4-fs: file extents enabled" 3082 #ifdef AGGRESSIVE_TEST 3083 ", aggressive tests" 3084 #endif 3085 #ifdef CHECK_BINSEARCH 3086 ", check binsearch" 3087 #endif 3088 #ifdef EXTENTS_STATS 3089 ", stats" 3090 #endif 3091 "\n"); 3092 #endif 3093 #ifdef EXTENTS_STATS 3094 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3095 EXT4_SB(sb)->s_ext_min = 1 << 30; 3096 EXT4_SB(sb)->s_ext_max = 0; 3097 #endif 3098 } 3099 } 3100 3101 /* 3102 * called at umount time 3103 */ 3104 void ext4_ext_release(struct super_block *sb) 3105 { 3106 if (!ext4_has_feature_extents(sb)) 3107 return; 3108 3109 #ifdef EXTENTS_STATS 3110 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3111 struct ext4_sb_info *sbi = EXT4_SB(sb); 3112 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3113 sbi->s_ext_blocks, sbi->s_ext_extents, 3114 sbi->s_ext_blocks / sbi->s_ext_extents); 3115 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3116 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3117 } 3118 #endif 3119 } 3120 3121 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3122 { 3123 ext4_lblk_t ee_block; 3124 ext4_fsblk_t ee_pblock; 3125 unsigned int ee_len; 3126 3127 ee_block = le32_to_cpu(ex->ee_block); 3128 ee_len = ext4_ext_get_actual_len(ex); 3129 ee_pblock = ext4_ext_pblock(ex); 3130 3131 if (ee_len == 0) 3132 return 0; 3133 3134 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3135 EXTENT_STATUS_WRITTEN); 3136 } 3137 3138 /* FIXME!! we need to try to merge to left or right after zero-out */ 3139 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3140 { 3141 ext4_fsblk_t ee_pblock; 3142 unsigned int ee_len; 3143 3144 ee_len = ext4_ext_get_actual_len(ex); 3145 ee_pblock = ext4_ext_pblock(ex); 3146 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock, 3147 ee_len); 3148 } 3149 3150 /* 3151 * ext4_split_extent_at() splits an extent at given block. 3152 * 3153 * @handle: the journal handle 3154 * @inode: the file inode 3155 * @path: the path to the extent 3156 * @split: the logical block where the extent is splitted. 3157 * @split_flags: indicates if the extent could be zeroout if split fails, and 3158 * the states(init or unwritten) of new extents. 3159 * @flags: flags used to insert new extent to extent tree. 3160 * 3161 * 3162 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3163 * of which are determined by split_flag. 3164 * 3165 * There are two cases: 3166 * a> the extent are splitted into two extent. 3167 * b> split is not needed, and just mark the extent. 3168 * 3169 * return 0 on success. 3170 */ 3171 static int ext4_split_extent_at(handle_t *handle, 3172 struct inode *inode, 3173 struct ext4_ext_path **ppath, 3174 ext4_lblk_t split, 3175 int split_flag, 3176 int flags) 3177 { 3178 struct ext4_ext_path *path = *ppath; 3179 ext4_fsblk_t newblock; 3180 ext4_lblk_t ee_block; 3181 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3182 struct ext4_extent *ex2 = NULL; 3183 unsigned int ee_len, depth; 3184 int err = 0; 3185 3186 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3187 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3188 3189 ext_debug(inode, "logical block %llu\n", (unsigned long long)split); 3190 3191 ext4_ext_show_leaf(inode, path); 3192 3193 depth = ext_depth(inode); 3194 ex = path[depth].p_ext; 3195 ee_block = le32_to_cpu(ex->ee_block); 3196 ee_len = ext4_ext_get_actual_len(ex); 3197 newblock = split - ee_block + ext4_ext_pblock(ex); 3198 3199 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3200 BUG_ON(!ext4_ext_is_unwritten(ex) && 3201 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3202 EXT4_EXT_MARK_UNWRIT1 | 3203 EXT4_EXT_MARK_UNWRIT2)); 3204 3205 err = ext4_ext_get_access(handle, inode, path + depth); 3206 if (err) 3207 goto out; 3208 3209 if (split == ee_block) { 3210 /* 3211 * case b: block @split is the block that the extent begins with 3212 * then we just change the state of the extent, and splitting 3213 * is not needed. 3214 */ 3215 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3216 ext4_ext_mark_unwritten(ex); 3217 else 3218 ext4_ext_mark_initialized(ex); 3219 3220 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3221 ext4_ext_try_to_merge(handle, inode, path, ex); 3222 3223 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3224 goto out; 3225 } 3226 3227 /* case a */ 3228 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3229 ex->ee_len = cpu_to_le16(split - ee_block); 3230 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3231 ext4_ext_mark_unwritten(ex); 3232 3233 /* 3234 * path may lead to new leaf, not to original leaf any more 3235 * after ext4_ext_insert_extent() returns, 3236 */ 3237 err = ext4_ext_dirty(handle, inode, path + depth); 3238 if (err) 3239 goto fix_extent_len; 3240 3241 ex2 = &newex; 3242 ex2->ee_block = cpu_to_le32(split); 3243 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3244 ext4_ext_store_pblock(ex2, newblock); 3245 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3246 ext4_ext_mark_unwritten(ex2); 3247 3248 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags); 3249 if (err != -ENOSPC && err != -EDQUOT) 3250 goto out; 3251 3252 if (EXT4_EXT_MAY_ZEROOUT & split_flag) { 3253 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3254 if (split_flag & EXT4_EXT_DATA_VALID1) { 3255 err = ext4_ext_zeroout(inode, ex2); 3256 zero_ex.ee_block = ex2->ee_block; 3257 zero_ex.ee_len = cpu_to_le16( 3258 ext4_ext_get_actual_len(ex2)); 3259 ext4_ext_store_pblock(&zero_ex, 3260 ext4_ext_pblock(ex2)); 3261 } else { 3262 err = ext4_ext_zeroout(inode, ex); 3263 zero_ex.ee_block = ex->ee_block; 3264 zero_ex.ee_len = cpu_to_le16( 3265 ext4_ext_get_actual_len(ex)); 3266 ext4_ext_store_pblock(&zero_ex, 3267 ext4_ext_pblock(ex)); 3268 } 3269 } else { 3270 err = ext4_ext_zeroout(inode, &orig_ex); 3271 zero_ex.ee_block = orig_ex.ee_block; 3272 zero_ex.ee_len = cpu_to_le16( 3273 ext4_ext_get_actual_len(&orig_ex)); 3274 ext4_ext_store_pblock(&zero_ex, 3275 ext4_ext_pblock(&orig_ex)); 3276 } 3277 3278 if (!err) { 3279 /* update the extent length and mark as initialized */ 3280 ex->ee_len = cpu_to_le16(ee_len); 3281 ext4_ext_try_to_merge(handle, inode, path, ex); 3282 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3283 if (!err) 3284 /* update extent status tree */ 3285 err = ext4_zeroout_es(inode, &zero_ex); 3286 /* If we failed at this point, we don't know in which 3287 * state the extent tree exactly is so don't try to fix 3288 * length of the original extent as it may do even more 3289 * damage. 3290 */ 3291 goto out; 3292 } 3293 } 3294 3295 fix_extent_len: 3296 ex->ee_len = orig_ex.ee_len; 3297 /* 3298 * Ignore ext4_ext_dirty return value since we are already in error path 3299 * and err is a non-zero error code. 3300 */ 3301 ext4_ext_dirty(handle, inode, path + path->p_depth); 3302 return err; 3303 out: 3304 ext4_ext_show_leaf(inode, path); 3305 return err; 3306 } 3307 3308 /* 3309 * ext4_split_extents() splits an extent and mark extent which is covered 3310 * by @map as split_flags indicates 3311 * 3312 * It may result in splitting the extent into multiple extents (up to three) 3313 * There are three possibilities: 3314 * a> There is no split required 3315 * b> Splits in two extents: Split is happening at either end of the extent 3316 * c> Splits in three extents: Somone is splitting in middle of the extent 3317 * 3318 */ 3319 static int ext4_split_extent(handle_t *handle, 3320 struct inode *inode, 3321 struct ext4_ext_path **ppath, 3322 struct ext4_map_blocks *map, 3323 int split_flag, 3324 int flags) 3325 { 3326 struct ext4_ext_path *path = *ppath; 3327 ext4_lblk_t ee_block; 3328 struct ext4_extent *ex; 3329 unsigned int ee_len, depth; 3330 int err = 0; 3331 int unwritten; 3332 int split_flag1, flags1; 3333 int allocated = map->m_len; 3334 3335 depth = ext_depth(inode); 3336 ex = path[depth].p_ext; 3337 ee_block = le32_to_cpu(ex->ee_block); 3338 ee_len = ext4_ext_get_actual_len(ex); 3339 unwritten = ext4_ext_is_unwritten(ex); 3340 3341 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3342 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3343 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3344 if (unwritten) 3345 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3346 EXT4_EXT_MARK_UNWRIT2; 3347 if (split_flag & EXT4_EXT_DATA_VALID2) 3348 split_flag1 |= EXT4_EXT_DATA_VALID1; 3349 err = ext4_split_extent_at(handle, inode, ppath, 3350 map->m_lblk + map->m_len, split_flag1, flags1); 3351 if (err) 3352 goto out; 3353 } else { 3354 allocated = ee_len - (map->m_lblk - ee_block); 3355 } 3356 /* 3357 * Update path is required because previous ext4_split_extent_at() may 3358 * result in split of original leaf or extent zeroout. 3359 */ 3360 path = ext4_find_extent(inode, map->m_lblk, ppath, flags); 3361 if (IS_ERR(path)) 3362 return PTR_ERR(path); 3363 depth = ext_depth(inode); 3364 ex = path[depth].p_ext; 3365 if (!ex) { 3366 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3367 (unsigned long) map->m_lblk); 3368 return -EFSCORRUPTED; 3369 } 3370 unwritten = ext4_ext_is_unwritten(ex); 3371 3372 if (map->m_lblk >= ee_block) { 3373 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3374 if (unwritten) { 3375 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3376 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3377 EXT4_EXT_MARK_UNWRIT2); 3378 } 3379 err = ext4_split_extent_at(handle, inode, ppath, 3380 map->m_lblk, split_flag1, flags); 3381 if (err) 3382 goto out; 3383 } 3384 3385 ext4_ext_show_leaf(inode, path); 3386 out: 3387 return err ? err : allocated; 3388 } 3389 3390 /* 3391 * This function is called by ext4_ext_map_blocks() if someone tries to write 3392 * to an unwritten extent. It may result in splitting the unwritten 3393 * extent into multiple extents (up to three - one initialized and two 3394 * unwritten). 3395 * There are three possibilities: 3396 * a> There is no split required: Entire extent should be initialized 3397 * b> Splits in two extents: Write is happening at either end of the extent 3398 * c> Splits in three extents: Somone is writing in middle of the extent 3399 * 3400 * Pre-conditions: 3401 * - The extent pointed to by 'path' is unwritten. 3402 * - The extent pointed to by 'path' contains a superset 3403 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3404 * 3405 * Post-conditions on success: 3406 * - the returned value is the number of blocks beyond map->l_lblk 3407 * that are allocated and initialized. 3408 * It is guaranteed to be >= map->m_len. 3409 */ 3410 static int ext4_ext_convert_to_initialized(handle_t *handle, 3411 struct inode *inode, 3412 struct ext4_map_blocks *map, 3413 struct ext4_ext_path **ppath, 3414 int flags) 3415 { 3416 struct ext4_ext_path *path = *ppath; 3417 struct ext4_sb_info *sbi; 3418 struct ext4_extent_header *eh; 3419 struct ext4_map_blocks split_map; 3420 struct ext4_extent zero_ex1, zero_ex2; 3421 struct ext4_extent *ex, *abut_ex; 3422 ext4_lblk_t ee_block, eof_block; 3423 unsigned int ee_len, depth, map_len = map->m_len; 3424 int allocated = 0, max_zeroout = 0; 3425 int err = 0; 3426 int split_flag = EXT4_EXT_DATA_VALID2; 3427 3428 ext_debug(inode, "logical block %llu, max_blocks %u\n", 3429 (unsigned long long)map->m_lblk, map_len); 3430 3431 sbi = EXT4_SB(inode->i_sb); 3432 eof_block = (EXT4_I(inode)->i_disksize + inode->i_sb->s_blocksize - 1) 3433 >> inode->i_sb->s_blocksize_bits; 3434 if (eof_block < map->m_lblk + map_len) 3435 eof_block = map->m_lblk + map_len; 3436 3437 depth = ext_depth(inode); 3438 eh = path[depth].p_hdr; 3439 ex = path[depth].p_ext; 3440 ee_block = le32_to_cpu(ex->ee_block); 3441 ee_len = ext4_ext_get_actual_len(ex); 3442 zero_ex1.ee_len = 0; 3443 zero_ex2.ee_len = 0; 3444 3445 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3446 3447 /* Pre-conditions */ 3448 BUG_ON(!ext4_ext_is_unwritten(ex)); 3449 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3450 3451 /* 3452 * Attempt to transfer newly initialized blocks from the currently 3453 * unwritten extent to its neighbor. This is much cheaper 3454 * than an insertion followed by a merge as those involve costly 3455 * memmove() calls. Transferring to the left is the common case in 3456 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3457 * followed by append writes. 3458 * 3459 * Limitations of the current logic: 3460 * - L1: we do not deal with writes covering the whole extent. 3461 * This would require removing the extent if the transfer 3462 * is possible. 3463 * - L2: we only attempt to merge with an extent stored in the 3464 * same extent tree node. 3465 */ 3466 if ((map->m_lblk == ee_block) && 3467 /* See if we can merge left */ 3468 (map_len < ee_len) && /*L1*/ 3469 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3470 ext4_lblk_t prev_lblk; 3471 ext4_fsblk_t prev_pblk, ee_pblk; 3472 unsigned int prev_len; 3473 3474 abut_ex = ex - 1; 3475 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3476 prev_len = ext4_ext_get_actual_len(abut_ex); 3477 prev_pblk = ext4_ext_pblock(abut_ex); 3478 ee_pblk = ext4_ext_pblock(ex); 3479 3480 /* 3481 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3482 * upon those conditions: 3483 * - C1: abut_ex is initialized, 3484 * - C2: abut_ex is logically abutting ex, 3485 * - C3: abut_ex is physically abutting ex, 3486 * - C4: abut_ex can receive the additional blocks without 3487 * overflowing the (initialized) length limit. 3488 */ 3489 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3490 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3491 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3492 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3493 err = ext4_ext_get_access(handle, inode, path + depth); 3494 if (err) 3495 goto out; 3496 3497 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3498 map, ex, abut_ex); 3499 3500 /* Shift the start of ex by 'map_len' blocks */ 3501 ex->ee_block = cpu_to_le32(ee_block + map_len); 3502 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3503 ex->ee_len = cpu_to_le16(ee_len - map_len); 3504 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3505 3506 /* Extend abut_ex by 'map_len' blocks */ 3507 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3508 3509 /* Result: number of initialized blocks past m_lblk */ 3510 allocated = map_len; 3511 } 3512 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3513 (map_len < ee_len) && /*L1*/ 3514 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3515 /* See if we can merge right */ 3516 ext4_lblk_t next_lblk; 3517 ext4_fsblk_t next_pblk, ee_pblk; 3518 unsigned int next_len; 3519 3520 abut_ex = ex + 1; 3521 next_lblk = le32_to_cpu(abut_ex->ee_block); 3522 next_len = ext4_ext_get_actual_len(abut_ex); 3523 next_pblk = ext4_ext_pblock(abut_ex); 3524 ee_pblk = ext4_ext_pblock(ex); 3525 3526 /* 3527 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3528 * upon those conditions: 3529 * - C1: abut_ex is initialized, 3530 * - C2: abut_ex is logically abutting ex, 3531 * - C3: abut_ex is physically abutting ex, 3532 * - C4: abut_ex can receive the additional blocks without 3533 * overflowing the (initialized) length limit. 3534 */ 3535 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3536 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3537 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3538 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3539 err = ext4_ext_get_access(handle, inode, path + depth); 3540 if (err) 3541 goto out; 3542 3543 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3544 map, ex, abut_ex); 3545 3546 /* Shift the start of abut_ex by 'map_len' blocks */ 3547 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3548 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3549 ex->ee_len = cpu_to_le16(ee_len - map_len); 3550 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3551 3552 /* Extend abut_ex by 'map_len' blocks */ 3553 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3554 3555 /* Result: number of initialized blocks past m_lblk */ 3556 allocated = map_len; 3557 } 3558 } 3559 if (allocated) { 3560 /* Mark the block containing both extents as dirty */ 3561 err = ext4_ext_dirty(handle, inode, path + depth); 3562 3563 /* Update path to point to the right extent */ 3564 path[depth].p_ext = abut_ex; 3565 goto out; 3566 } else 3567 allocated = ee_len - (map->m_lblk - ee_block); 3568 3569 WARN_ON(map->m_lblk < ee_block); 3570 /* 3571 * It is safe to convert extent to initialized via explicit 3572 * zeroout only if extent is fully inside i_size or new_size. 3573 */ 3574 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3575 3576 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3577 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3578 (inode->i_sb->s_blocksize_bits - 10); 3579 3580 /* 3581 * five cases: 3582 * 1. split the extent into three extents. 3583 * 2. split the extent into two extents, zeroout the head of the first 3584 * extent. 3585 * 3. split the extent into two extents, zeroout the tail of the second 3586 * extent. 3587 * 4. split the extent into two extents with out zeroout. 3588 * 5. no splitting needed, just possibly zeroout the head and / or the 3589 * tail of the extent. 3590 */ 3591 split_map.m_lblk = map->m_lblk; 3592 split_map.m_len = map->m_len; 3593 3594 if (max_zeroout && (allocated > split_map.m_len)) { 3595 if (allocated <= max_zeroout) { 3596 /* case 3 or 5 */ 3597 zero_ex1.ee_block = 3598 cpu_to_le32(split_map.m_lblk + 3599 split_map.m_len); 3600 zero_ex1.ee_len = 3601 cpu_to_le16(allocated - split_map.m_len); 3602 ext4_ext_store_pblock(&zero_ex1, 3603 ext4_ext_pblock(ex) + split_map.m_lblk + 3604 split_map.m_len - ee_block); 3605 err = ext4_ext_zeroout(inode, &zero_ex1); 3606 if (err) 3607 goto fallback; 3608 split_map.m_len = allocated; 3609 } 3610 if (split_map.m_lblk - ee_block + split_map.m_len < 3611 max_zeroout) { 3612 /* case 2 or 5 */ 3613 if (split_map.m_lblk != ee_block) { 3614 zero_ex2.ee_block = ex->ee_block; 3615 zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk - 3616 ee_block); 3617 ext4_ext_store_pblock(&zero_ex2, 3618 ext4_ext_pblock(ex)); 3619 err = ext4_ext_zeroout(inode, &zero_ex2); 3620 if (err) 3621 goto fallback; 3622 } 3623 3624 split_map.m_len += split_map.m_lblk - ee_block; 3625 split_map.m_lblk = ee_block; 3626 allocated = map->m_len; 3627 } 3628 } 3629 3630 fallback: 3631 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag, 3632 flags); 3633 if (err > 0) 3634 err = 0; 3635 out: 3636 /* If we have gotten a failure, don't zero out status tree */ 3637 if (!err) { 3638 err = ext4_zeroout_es(inode, &zero_ex1); 3639 if (!err) 3640 err = ext4_zeroout_es(inode, &zero_ex2); 3641 } 3642 return err ? err : allocated; 3643 } 3644 3645 /* 3646 * This function is called by ext4_ext_map_blocks() from 3647 * ext4_get_blocks_dio_write() when DIO to write 3648 * to an unwritten extent. 3649 * 3650 * Writing to an unwritten extent may result in splitting the unwritten 3651 * extent into multiple initialized/unwritten extents (up to three) 3652 * There are three possibilities: 3653 * a> There is no split required: Entire extent should be unwritten 3654 * b> Splits in two extents: Write is happening at either end of the extent 3655 * c> Splits in three extents: Somone is writing in middle of the extent 3656 * 3657 * This works the same way in the case of initialized -> unwritten conversion. 3658 * 3659 * One of more index blocks maybe needed if the extent tree grow after 3660 * the unwritten extent split. To prevent ENOSPC occur at the IO 3661 * complete, we need to split the unwritten extent before DIO submit 3662 * the IO. The unwritten extent called at this time will be split 3663 * into three unwritten extent(at most). After IO complete, the part 3664 * being filled will be convert to initialized by the end_io callback function 3665 * via ext4_convert_unwritten_extents(). 3666 * 3667 * Returns the size of unwritten extent to be written on success. 3668 */ 3669 static int ext4_split_convert_extents(handle_t *handle, 3670 struct inode *inode, 3671 struct ext4_map_blocks *map, 3672 struct ext4_ext_path **ppath, 3673 int flags) 3674 { 3675 struct ext4_ext_path *path = *ppath; 3676 ext4_lblk_t eof_block; 3677 ext4_lblk_t ee_block; 3678 struct ext4_extent *ex; 3679 unsigned int ee_len; 3680 int split_flag = 0, depth; 3681 3682 ext_debug(inode, "logical block %llu, max_blocks %u\n", 3683 (unsigned long long)map->m_lblk, map->m_len); 3684 3685 eof_block = (EXT4_I(inode)->i_disksize + inode->i_sb->s_blocksize - 1) 3686 >> inode->i_sb->s_blocksize_bits; 3687 if (eof_block < map->m_lblk + map->m_len) 3688 eof_block = map->m_lblk + map->m_len; 3689 /* 3690 * It is safe to convert extent to initialized via explicit 3691 * zeroout only if extent is fully inside i_size or new_size. 3692 */ 3693 depth = ext_depth(inode); 3694 ex = path[depth].p_ext; 3695 ee_block = le32_to_cpu(ex->ee_block); 3696 ee_len = ext4_ext_get_actual_len(ex); 3697 3698 /* Convert to unwritten */ 3699 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3700 split_flag |= EXT4_EXT_DATA_VALID1; 3701 /* Convert to initialized */ 3702 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3703 split_flag |= ee_block + ee_len <= eof_block ? 3704 EXT4_EXT_MAY_ZEROOUT : 0; 3705 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3706 } 3707 flags |= EXT4_GET_BLOCKS_PRE_IO; 3708 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags); 3709 } 3710 3711 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3712 struct inode *inode, 3713 struct ext4_map_blocks *map, 3714 struct ext4_ext_path **ppath) 3715 { 3716 struct ext4_ext_path *path = *ppath; 3717 struct ext4_extent *ex; 3718 ext4_lblk_t ee_block; 3719 unsigned int ee_len; 3720 int depth; 3721 int err = 0; 3722 3723 depth = ext_depth(inode); 3724 ex = path[depth].p_ext; 3725 ee_block = le32_to_cpu(ex->ee_block); 3726 ee_len = ext4_ext_get_actual_len(ex); 3727 3728 ext_debug(inode, "logical block %llu, max_blocks %u\n", 3729 (unsigned long long)ee_block, ee_len); 3730 3731 /* If extent is larger than requested it is a clear sign that we still 3732 * have some extent state machine issues left. So extent_split is still 3733 * required. 3734 * TODO: Once all related issues will be fixed this situation should be 3735 * illegal. 3736 */ 3737 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3738 #ifdef CONFIG_EXT4_DEBUG 3739 ext4_warning(inode->i_sb, "Inode (%ld) finished: extent logical block %llu," 3740 " len %u; IO logical block %llu, len %u", 3741 inode->i_ino, (unsigned long long)ee_block, ee_len, 3742 (unsigned long long)map->m_lblk, map->m_len); 3743 #endif 3744 err = ext4_split_convert_extents(handle, inode, map, ppath, 3745 EXT4_GET_BLOCKS_CONVERT); 3746 if (err < 0) 3747 return err; 3748 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3749 if (IS_ERR(path)) 3750 return PTR_ERR(path); 3751 depth = ext_depth(inode); 3752 ex = path[depth].p_ext; 3753 } 3754 3755 err = ext4_ext_get_access(handle, inode, path + depth); 3756 if (err) 3757 goto out; 3758 /* first mark the extent as initialized */ 3759 ext4_ext_mark_initialized(ex); 3760 3761 /* note: ext4_ext_correct_indexes() isn't needed here because 3762 * borders are not changed 3763 */ 3764 ext4_ext_try_to_merge(handle, inode, path, ex); 3765 3766 /* Mark modified extent as dirty */ 3767 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3768 out: 3769 ext4_ext_show_leaf(inode, path); 3770 return err; 3771 } 3772 3773 static int 3774 convert_initialized_extent(handle_t *handle, struct inode *inode, 3775 struct ext4_map_blocks *map, 3776 struct ext4_ext_path **ppath, 3777 unsigned int *allocated) 3778 { 3779 struct ext4_ext_path *path = *ppath; 3780 struct ext4_extent *ex; 3781 ext4_lblk_t ee_block; 3782 unsigned int ee_len; 3783 int depth; 3784 int err = 0; 3785 3786 /* 3787 * Make sure that the extent is no bigger than we support with 3788 * unwritten extent 3789 */ 3790 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3791 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3792 3793 depth = ext_depth(inode); 3794 ex = path[depth].p_ext; 3795 ee_block = le32_to_cpu(ex->ee_block); 3796 ee_len = ext4_ext_get_actual_len(ex); 3797 3798 ext_debug(inode, "logical block %llu, max_blocks %u\n", 3799 (unsigned long long)ee_block, ee_len); 3800 3801 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3802 err = ext4_split_convert_extents(handle, inode, map, ppath, 3803 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3804 if (err < 0) 3805 return err; 3806 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3807 if (IS_ERR(path)) 3808 return PTR_ERR(path); 3809 depth = ext_depth(inode); 3810 ex = path[depth].p_ext; 3811 if (!ex) { 3812 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3813 (unsigned long) map->m_lblk); 3814 return -EFSCORRUPTED; 3815 } 3816 } 3817 3818 err = ext4_ext_get_access(handle, inode, path + depth); 3819 if (err) 3820 return err; 3821 /* first mark the extent as unwritten */ 3822 ext4_ext_mark_unwritten(ex); 3823 3824 /* note: ext4_ext_correct_indexes() isn't needed here because 3825 * borders are not changed 3826 */ 3827 ext4_ext_try_to_merge(handle, inode, path, ex); 3828 3829 /* Mark modified extent as dirty */ 3830 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3831 if (err) 3832 return err; 3833 ext4_ext_show_leaf(inode, path); 3834 3835 ext4_update_inode_fsync_trans(handle, inode, 1); 3836 3837 map->m_flags |= EXT4_MAP_UNWRITTEN; 3838 if (*allocated > map->m_len) 3839 *allocated = map->m_len; 3840 map->m_len = *allocated; 3841 return 0; 3842 } 3843 3844 static int 3845 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 3846 struct ext4_map_blocks *map, 3847 struct ext4_ext_path **ppath, int flags, 3848 unsigned int allocated, ext4_fsblk_t newblock) 3849 { 3850 struct ext4_ext_path __maybe_unused *path = *ppath; 3851 int ret = 0; 3852 int err = 0; 3853 3854 ext_debug(inode, "logical block %llu, max_blocks %u, flags 0x%x, allocated %u\n", 3855 (unsigned long long)map->m_lblk, map->m_len, flags, 3856 allocated); 3857 ext4_ext_show_leaf(inode, path); 3858 3859 /* 3860 * When writing into unwritten space, we should not fail to 3861 * allocate metadata blocks for the new extent block if needed. 3862 */ 3863 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 3864 3865 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 3866 allocated, newblock); 3867 3868 /* get_block() before submitting IO, split the extent */ 3869 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 3870 ret = ext4_split_convert_extents(handle, inode, map, ppath, 3871 flags | EXT4_GET_BLOCKS_CONVERT); 3872 if (ret < 0) { 3873 err = ret; 3874 goto out2; 3875 } 3876 /* 3877 * shouldn't get a 0 return when splitting an extent unless 3878 * m_len is 0 (bug) or extent has been corrupted 3879 */ 3880 if (unlikely(ret == 0)) { 3881 EXT4_ERROR_INODE(inode, 3882 "unexpected ret == 0, m_len = %u", 3883 map->m_len); 3884 err = -EFSCORRUPTED; 3885 goto out2; 3886 } 3887 map->m_flags |= EXT4_MAP_UNWRITTEN; 3888 goto out; 3889 } 3890 /* IO end_io complete, convert the filled extent to written */ 3891 if (flags & EXT4_GET_BLOCKS_CONVERT) { 3892 err = ext4_convert_unwritten_extents_endio(handle, inode, map, 3893 ppath); 3894 if (err < 0) 3895 goto out2; 3896 ext4_update_inode_fsync_trans(handle, inode, 1); 3897 goto map_out; 3898 } 3899 /* buffered IO cases */ 3900 /* 3901 * repeat fallocate creation request 3902 * we already have an unwritten extent 3903 */ 3904 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 3905 map->m_flags |= EXT4_MAP_UNWRITTEN; 3906 goto map_out; 3907 } 3908 3909 /* buffered READ or buffered write_begin() lookup */ 3910 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3911 /* 3912 * We have blocks reserved already. We 3913 * return allocated blocks so that delalloc 3914 * won't do block reservation for us. But 3915 * the buffer head will be unmapped so that 3916 * a read from the block returns 0s. 3917 */ 3918 map->m_flags |= EXT4_MAP_UNWRITTEN; 3919 goto out1; 3920 } 3921 3922 /* 3923 * Default case when (flags & EXT4_GET_BLOCKS_CREATE) == 1. 3924 * For buffered writes, at writepage time, etc. Convert a 3925 * discovered unwritten extent to written. 3926 */ 3927 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags); 3928 if (ret < 0) { 3929 err = ret; 3930 goto out2; 3931 } 3932 ext4_update_inode_fsync_trans(handle, inode, 1); 3933 /* 3934 * shouldn't get a 0 return when converting an unwritten extent 3935 * unless m_len is 0 (bug) or extent has been corrupted 3936 */ 3937 if (unlikely(ret == 0)) { 3938 EXT4_ERROR_INODE(inode, "unexpected ret == 0, m_len = %u", 3939 map->m_len); 3940 err = -EFSCORRUPTED; 3941 goto out2; 3942 } 3943 3944 out: 3945 allocated = ret; 3946 map->m_flags |= EXT4_MAP_NEW; 3947 map_out: 3948 map->m_flags |= EXT4_MAP_MAPPED; 3949 out1: 3950 map->m_pblk = newblock; 3951 if (allocated > map->m_len) 3952 allocated = map->m_len; 3953 map->m_len = allocated; 3954 ext4_ext_show_leaf(inode, path); 3955 out2: 3956 return err ? err : allocated; 3957 } 3958 3959 /* 3960 * get_implied_cluster_alloc - check to see if the requested 3961 * allocation (in the map structure) overlaps with a cluster already 3962 * allocated in an extent. 3963 * @sb The filesystem superblock structure 3964 * @map The requested lblk->pblk mapping 3965 * @ex The extent structure which might contain an implied 3966 * cluster allocation 3967 * 3968 * This function is called by ext4_ext_map_blocks() after we failed to 3969 * find blocks that were already in the inode's extent tree. Hence, 3970 * we know that the beginning of the requested region cannot overlap 3971 * the extent from the inode's extent tree. There are three cases we 3972 * want to catch. The first is this case: 3973 * 3974 * |--- cluster # N--| 3975 * |--- extent ---| |---- requested region ---| 3976 * |==========| 3977 * 3978 * The second case that we need to test for is this one: 3979 * 3980 * |--------- cluster # N ----------------| 3981 * |--- requested region --| |------- extent ----| 3982 * |=======================| 3983 * 3984 * The third case is when the requested region lies between two extents 3985 * within the same cluster: 3986 * |------------- cluster # N-------------| 3987 * |----- ex -----| |---- ex_right ----| 3988 * |------ requested region ------| 3989 * |================| 3990 * 3991 * In each of the above cases, we need to set the map->m_pblk and 3992 * map->m_len so it corresponds to the return the extent labelled as 3993 * "|====|" from cluster #N, since it is already in use for data in 3994 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 3995 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 3996 * as a new "allocated" block region. Otherwise, we will return 0 and 3997 * ext4_ext_map_blocks() will then allocate one or more new clusters 3998 * by calling ext4_mb_new_blocks(). 3999 */ 4000 static int get_implied_cluster_alloc(struct super_block *sb, 4001 struct ext4_map_blocks *map, 4002 struct ext4_extent *ex, 4003 struct ext4_ext_path *path) 4004 { 4005 struct ext4_sb_info *sbi = EXT4_SB(sb); 4006 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4007 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4008 ext4_lblk_t rr_cluster_start; 4009 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4010 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4011 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4012 4013 /* The extent passed in that we are trying to match */ 4014 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4015 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4016 4017 /* The requested region passed into ext4_map_blocks() */ 4018 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4019 4020 if ((rr_cluster_start == ex_cluster_end) || 4021 (rr_cluster_start == ex_cluster_start)) { 4022 if (rr_cluster_start == ex_cluster_end) 4023 ee_start += ee_len - 1; 4024 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 4025 map->m_len = min(map->m_len, 4026 (unsigned) sbi->s_cluster_ratio - c_offset); 4027 /* 4028 * Check for and handle this case: 4029 * 4030 * |--------- cluster # N-------------| 4031 * |------- extent ----| 4032 * |--- requested region ---| 4033 * |===========| 4034 */ 4035 4036 if (map->m_lblk < ee_block) 4037 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4038 4039 /* 4040 * Check for the case where there is already another allocated 4041 * block to the right of 'ex' but before the end of the cluster. 4042 * 4043 * |------------- cluster # N-------------| 4044 * |----- ex -----| |---- ex_right ----| 4045 * |------ requested region ------| 4046 * |================| 4047 */ 4048 if (map->m_lblk > ee_block) { 4049 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4050 map->m_len = min(map->m_len, next - map->m_lblk); 4051 } 4052 4053 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4054 return 1; 4055 } 4056 4057 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4058 return 0; 4059 } 4060 4061 4062 /* 4063 * Block allocation/map/preallocation routine for extents based files 4064 * 4065 * 4066 * Need to be called with 4067 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4068 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4069 * 4070 * return > 0, number of blocks already mapped/allocated 4071 * if create == 0 and these are pre-allocated blocks 4072 * buffer head is unmapped 4073 * otherwise blocks are mapped 4074 * 4075 * return = 0, if plain look up failed (blocks have not been allocated) 4076 * buffer head is unmapped 4077 * 4078 * return < 0, error case. 4079 */ 4080 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4081 struct ext4_map_blocks *map, int flags) 4082 { 4083 struct ext4_ext_path *path = NULL; 4084 struct ext4_extent newex, *ex, ex2; 4085 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4086 ext4_fsblk_t newblock = 0, pblk; 4087 int err = 0, depth, ret; 4088 unsigned int allocated = 0, offset = 0; 4089 unsigned int allocated_clusters = 0; 4090 struct ext4_allocation_request ar; 4091 ext4_lblk_t cluster_offset; 4092 4093 ext_debug(inode, "blocks %u/%u requested\n", map->m_lblk, map->m_len); 4094 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4095 4096 /* find extent for this block */ 4097 path = ext4_find_extent(inode, map->m_lblk, NULL, 0); 4098 if (IS_ERR(path)) { 4099 err = PTR_ERR(path); 4100 path = NULL; 4101 goto out; 4102 } 4103 4104 depth = ext_depth(inode); 4105 4106 /* 4107 * consistent leaf must not be empty; 4108 * this situation is possible, though, _during_ tree modification; 4109 * this is why assert can't be put in ext4_find_extent() 4110 */ 4111 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4112 EXT4_ERROR_INODE(inode, "bad extent address " 4113 "lblock: %lu, depth: %d pblock %lld", 4114 (unsigned long) map->m_lblk, depth, 4115 path[depth].p_block); 4116 err = -EFSCORRUPTED; 4117 goto out; 4118 } 4119 4120 ex = path[depth].p_ext; 4121 if (ex) { 4122 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4123 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4124 unsigned short ee_len; 4125 4126 4127 /* 4128 * unwritten extents are treated as holes, except that 4129 * we split out initialized portions during a write. 4130 */ 4131 ee_len = ext4_ext_get_actual_len(ex); 4132 4133 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4134 4135 /* if found extent covers block, simply return it */ 4136 if (in_range(map->m_lblk, ee_block, ee_len)) { 4137 newblock = map->m_lblk - ee_block + ee_start; 4138 /* number of remaining blocks in the extent */ 4139 allocated = ee_len - (map->m_lblk - ee_block); 4140 ext_debug(inode, "%u fit into %u:%d -> %llu\n", 4141 map->m_lblk, ee_block, ee_len, newblock); 4142 4143 /* 4144 * If the extent is initialized check whether the 4145 * caller wants to convert it to unwritten. 4146 */ 4147 if ((!ext4_ext_is_unwritten(ex)) && 4148 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4149 err = convert_initialized_extent(handle, 4150 inode, map, &path, &allocated); 4151 goto out; 4152 } else if (!ext4_ext_is_unwritten(ex)) { 4153 map->m_flags |= EXT4_MAP_MAPPED; 4154 map->m_pblk = newblock; 4155 if (allocated > map->m_len) 4156 allocated = map->m_len; 4157 map->m_len = allocated; 4158 ext4_ext_show_leaf(inode, path); 4159 goto out; 4160 } 4161 4162 ret = ext4_ext_handle_unwritten_extents( 4163 handle, inode, map, &path, flags, 4164 allocated, newblock); 4165 if (ret < 0) 4166 err = ret; 4167 else 4168 allocated = ret; 4169 goto out; 4170 } 4171 } 4172 4173 /* 4174 * requested block isn't allocated yet; 4175 * we couldn't try to create block if create flag is zero 4176 */ 4177 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4178 ext4_lblk_t hole_start, hole_len; 4179 4180 hole_start = map->m_lblk; 4181 hole_len = ext4_ext_determine_hole(inode, path, &hole_start); 4182 /* 4183 * put just found gap into cache to speed up 4184 * subsequent requests 4185 */ 4186 ext4_ext_put_gap_in_cache(inode, hole_start, hole_len); 4187 4188 /* Update hole_len to reflect hole size after map->m_lblk */ 4189 if (hole_start != map->m_lblk) 4190 hole_len -= map->m_lblk - hole_start; 4191 map->m_pblk = 0; 4192 map->m_len = min_t(unsigned int, map->m_len, hole_len); 4193 4194 goto out; 4195 } 4196 4197 /* 4198 * Okay, we need to do block allocation. 4199 */ 4200 newex.ee_block = cpu_to_le32(map->m_lblk); 4201 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4202 4203 /* 4204 * If we are doing bigalloc, check to see if the extent returned 4205 * by ext4_find_extent() implies a cluster we can use. 4206 */ 4207 if (cluster_offset && ex && 4208 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4209 ar.len = allocated = map->m_len; 4210 newblock = map->m_pblk; 4211 goto got_allocated_blocks; 4212 } 4213 4214 /* find neighbour allocated blocks */ 4215 ar.lleft = map->m_lblk; 4216 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4217 if (err) 4218 goto out; 4219 ar.lright = map->m_lblk; 4220 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4221 if (err < 0) 4222 goto out; 4223 4224 /* Check if the extent after searching to the right implies a 4225 * cluster we can use. */ 4226 if ((sbi->s_cluster_ratio > 1) && err && 4227 get_implied_cluster_alloc(inode->i_sb, map, &ex2, path)) { 4228 ar.len = allocated = map->m_len; 4229 newblock = map->m_pblk; 4230 goto got_allocated_blocks; 4231 } 4232 4233 /* 4234 * See if request is beyond maximum number of blocks we can have in 4235 * a single extent. For an initialized extent this limit is 4236 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4237 * EXT_UNWRITTEN_MAX_LEN. 4238 */ 4239 if (map->m_len > EXT_INIT_MAX_LEN && 4240 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4241 map->m_len = EXT_INIT_MAX_LEN; 4242 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4243 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4244 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4245 4246 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4247 newex.ee_len = cpu_to_le16(map->m_len); 4248 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4249 if (err) 4250 allocated = ext4_ext_get_actual_len(&newex); 4251 else 4252 allocated = map->m_len; 4253 4254 /* allocate new block */ 4255 ar.inode = inode; 4256 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4257 ar.logical = map->m_lblk; 4258 /* 4259 * We calculate the offset from the beginning of the cluster 4260 * for the logical block number, since when we allocate a 4261 * physical cluster, the physical block should start at the 4262 * same offset from the beginning of the cluster. This is 4263 * needed so that future calls to get_implied_cluster_alloc() 4264 * work correctly. 4265 */ 4266 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4267 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4268 ar.goal -= offset; 4269 ar.logical -= offset; 4270 if (S_ISREG(inode->i_mode)) 4271 ar.flags = EXT4_MB_HINT_DATA; 4272 else 4273 /* disable in-core preallocation for non-regular files */ 4274 ar.flags = 0; 4275 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4276 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4277 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4278 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 4279 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 4280 ar.flags |= EXT4_MB_USE_RESERVED; 4281 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4282 if (!newblock) 4283 goto out; 4284 allocated_clusters = ar.len; 4285 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4286 ext_debug(inode, "allocate new block: goal %llu, found %llu/%u, requested %u\n", 4287 ar.goal, newblock, ar.len, allocated); 4288 if (ar.len > allocated) 4289 ar.len = allocated; 4290 4291 got_allocated_blocks: 4292 /* try to insert new extent into found leaf and return */ 4293 pblk = newblock + offset; 4294 ext4_ext_store_pblock(&newex, pblk); 4295 newex.ee_len = cpu_to_le16(ar.len); 4296 /* Mark unwritten */ 4297 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4298 ext4_ext_mark_unwritten(&newex); 4299 map->m_flags |= EXT4_MAP_UNWRITTEN; 4300 } 4301 4302 err = ext4_ext_insert_extent(handle, inode, &path, &newex, flags); 4303 if (err) { 4304 if (allocated_clusters) { 4305 int fb_flags = 0; 4306 4307 /* 4308 * free data blocks we just allocated. 4309 * not a good idea to call discard here directly, 4310 * but otherwise we'd need to call it every free(). 4311 */ 4312 ext4_discard_preallocations(inode, 0); 4313 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4314 fb_flags = EXT4_FREE_BLOCKS_NO_QUOT_UPDATE; 4315 ext4_free_blocks(handle, inode, NULL, newblock, 4316 EXT4_C2B(sbi, allocated_clusters), 4317 fb_flags); 4318 } 4319 goto out; 4320 } 4321 4322 /* 4323 * Reduce the reserved cluster count to reflect successful deferred 4324 * allocation of delayed allocated clusters or direct allocation of 4325 * clusters discovered to be delayed allocated. Once allocated, a 4326 * cluster is not included in the reserved count. 4327 */ 4328 if (test_opt(inode->i_sb, DELALLOC) && allocated_clusters) { 4329 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4330 /* 4331 * When allocating delayed allocated clusters, simply 4332 * reduce the reserved cluster count and claim quota 4333 */ 4334 ext4_da_update_reserve_space(inode, allocated_clusters, 4335 1); 4336 } else { 4337 ext4_lblk_t lblk, len; 4338 unsigned int n; 4339 4340 /* 4341 * When allocating non-delayed allocated clusters 4342 * (from fallocate, filemap, DIO, or clusters 4343 * allocated when delalloc has been disabled by 4344 * ext4_nonda_switch), reduce the reserved cluster 4345 * count by the number of allocated clusters that 4346 * have previously been delayed allocated. Quota 4347 * has been claimed by ext4_mb_new_blocks() above, 4348 * so release the quota reservations made for any 4349 * previously delayed allocated clusters. 4350 */ 4351 lblk = EXT4_LBLK_CMASK(sbi, map->m_lblk); 4352 len = allocated_clusters << sbi->s_cluster_bits; 4353 n = ext4_es_delayed_clu(inode, lblk, len); 4354 if (n > 0) 4355 ext4_da_update_reserve_space(inode, (int) n, 0); 4356 } 4357 } 4358 4359 /* 4360 * Cache the extent and update transaction to commit on fdatasync only 4361 * when it is _not_ an unwritten extent. 4362 */ 4363 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4364 ext4_update_inode_fsync_trans(handle, inode, 1); 4365 else 4366 ext4_update_inode_fsync_trans(handle, inode, 0); 4367 4368 map->m_flags |= (EXT4_MAP_NEW | EXT4_MAP_MAPPED); 4369 map->m_pblk = pblk; 4370 map->m_len = ar.len; 4371 allocated = map->m_len; 4372 ext4_ext_show_leaf(inode, path); 4373 out: 4374 ext4_ext_drop_refs(path); 4375 kfree(path); 4376 4377 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4378 err ? err : allocated); 4379 return err ? err : allocated; 4380 } 4381 4382 int ext4_ext_truncate(handle_t *handle, struct inode *inode) 4383 { 4384 struct super_block *sb = inode->i_sb; 4385 ext4_lblk_t last_block; 4386 int err = 0; 4387 4388 /* 4389 * TODO: optimization is possible here. 4390 * Probably we need not scan at all, 4391 * because page truncation is enough. 4392 */ 4393 4394 /* we have to know where to truncate from in crash case */ 4395 EXT4_I(inode)->i_disksize = inode->i_size; 4396 err = ext4_mark_inode_dirty(handle, inode); 4397 if (err) 4398 return err; 4399 4400 last_block = (inode->i_size + sb->s_blocksize - 1) 4401 >> EXT4_BLOCK_SIZE_BITS(sb); 4402 retry: 4403 err = ext4_es_remove_extent(inode, last_block, 4404 EXT_MAX_BLOCKS - last_block); 4405 if (err == -ENOMEM) { 4406 memalloc_retry_wait(GFP_ATOMIC); 4407 goto retry; 4408 } 4409 if (err) 4410 return err; 4411 retry_remove_space: 4412 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4413 if (err == -ENOMEM) { 4414 memalloc_retry_wait(GFP_ATOMIC); 4415 goto retry_remove_space; 4416 } 4417 return err; 4418 } 4419 4420 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4421 ext4_lblk_t len, loff_t new_size, 4422 int flags) 4423 { 4424 struct inode *inode = file_inode(file); 4425 handle_t *handle; 4426 int ret = 0, ret2 = 0, ret3 = 0; 4427 int retries = 0; 4428 int depth = 0; 4429 struct ext4_map_blocks map; 4430 unsigned int credits; 4431 loff_t epos; 4432 4433 BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)); 4434 map.m_lblk = offset; 4435 map.m_len = len; 4436 /* 4437 * Don't normalize the request if it can fit in one extent so 4438 * that it doesn't get unnecessarily split into multiple 4439 * extents. 4440 */ 4441 if (len <= EXT_UNWRITTEN_MAX_LEN) 4442 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4443 4444 /* 4445 * credits to insert 1 extent into extent tree 4446 */ 4447 credits = ext4_chunk_trans_blocks(inode, len); 4448 depth = ext_depth(inode); 4449 4450 retry: 4451 while (len) { 4452 /* 4453 * Recalculate credits when extent tree depth changes. 4454 */ 4455 if (depth != ext_depth(inode)) { 4456 credits = ext4_chunk_trans_blocks(inode, len); 4457 depth = ext_depth(inode); 4458 } 4459 4460 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4461 credits); 4462 if (IS_ERR(handle)) { 4463 ret = PTR_ERR(handle); 4464 break; 4465 } 4466 ret = ext4_map_blocks(handle, inode, &map, flags); 4467 if (ret <= 0) { 4468 ext4_debug("inode #%lu: block %u: len %u: " 4469 "ext4_ext_map_blocks returned %d", 4470 inode->i_ino, map.m_lblk, 4471 map.m_len, ret); 4472 ext4_mark_inode_dirty(handle, inode); 4473 ext4_journal_stop(handle); 4474 break; 4475 } 4476 /* 4477 * allow a full retry cycle for any remaining allocations 4478 */ 4479 retries = 0; 4480 map.m_lblk += ret; 4481 map.m_len = len = len - ret; 4482 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4483 inode->i_ctime = current_time(inode); 4484 if (new_size) { 4485 if (epos > new_size) 4486 epos = new_size; 4487 if (ext4_update_inode_size(inode, epos) & 0x1) 4488 inode->i_mtime = inode->i_ctime; 4489 } 4490 ret2 = ext4_mark_inode_dirty(handle, inode); 4491 ext4_update_inode_fsync_trans(handle, inode, 1); 4492 ret3 = ext4_journal_stop(handle); 4493 ret2 = ret3 ? ret3 : ret2; 4494 if (unlikely(ret2)) 4495 break; 4496 } 4497 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 4498 goto retry; 4499 4500 return ret > 0 ? ret2 : ret; 4501 } 4502 4503 static int ext4_collapse_range(struct file *file, loff_t offset, loff_t len); 4504 4505 static int ext4_insert_range(struct file *file, loff_t offset, loff_t len); 4506 4507 static long ext4_zero_range(struct file *file, loff_t offset, 4508 loff_t len, int mode) 4509 { 4510 struct inode *inode = file_inode(file); 4511 struct address_space *mapping = file->f_mapping; 4512 handle_t *handle = NULL; 4513 unsigned int max_blocks; 4514 loff_t new_size = 0; 4515 int ret = 0; 4516 int flags; 4517 int credits; 4518 int partial_begin, partial_end; 4519 loff_t start, end; 4520 ext4_lblk_t lblk; 4521 unsigned int blkbits = inode->i_blkbits; 4522 4523 trace_ext4_zero_range(inode, offset, len, mode); 4524 4525 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4526 if (ext4_should_journal_data(inode)) { 4527 ret = ext4_force_commit(inode->i_sb); 4528 if (ret) 4529 return ret; 4530 } 4531 4532 /* 4533 * Round up offset. This is not fallocate, we need to zero out 4534 * blocks, so convert interior block aligned part of the range to 4535 * unwritten and possibly manually zero out unaligned parts of the 4536 * range. 4537 */ 4538 start = round_up(offset, 1 << blkbits); 4539 end = round_down((offset + len), 1 << blkbits); 4540 4541 if (start < offset || end > offset + len) 4542 return -EINVAL; 4543 partial_begin = offset & ((1 << blkbits) - 1); 4544 partial_end = (offset + len) & ((1 << blkbits) - 1); 4545 4546 lblk = start >> blkbits; 4547 max_blocks = (end >> blkbits); 4548 if (max_blocks < lblk) 4549 max_blocks = 0; 4550 else 4551 max_blocks -= lblk; 4552 4553 inode_lock(inode); 4554 4555 /* 4556 * Indirect files do not support unwritten extents 4557 */ 4558 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4559 ret = -EOPNOTSUPP; 4560 goto out_mutex; 4561 } 4562 4563 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4564 (offset + len > inode->i_size || 4565 offset + len > EXT4_I(inode)->i_disksize)) { 4566 new_size = offset + len; 4567 ret = inode_newsize_ok(inode, new_size); 4568 if (ret) 4569 goto out_mutex; 4570 } 4571 4572 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4573 4574 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 4575 inode_dio_wait(inode); 4576 4577 ret = file_modified(file); 4578 if (ret) 4579 goto out_mutex; 4580 4581 /* Preallocate the range including the unaligned edges */ 4582 if (partial_begin || partial_end) { 4583 ret = ext4_alloc_file_blocks(file, 4584 round_down(offset, 1 << blkbits) >> blkbits, 4585 (round_up((offset + len), 1 << blkbits) - 4586 round_down(offset, 1 << blkbits)) >> blkbits, 4587 new_size, flags); 4588 if (ret) 4589 goto out_mutex; 4590 4591 } 4592 4593 /* Zero range excluding the unaligned edges */ 4594 if (max_blocks > 0) { 4595 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4596 EXT4_EX_NOCACHE); 4597 4598 /* 4599 * Prevent page faults from reinstantiating pages we have 4600 * released from page cache. 4601 */ 4602 filemap_invalidate_lock(mapping); 4603 4604 ret = ext4_break_layouts(inode); 4605 if (ret) { 4606 filemap_invalidate_unlock(mapping); 4607 goto out_mutex; 4608 } 4609 4610 ret = ext4_update_disksize_before_punch(inode, offset, len); 4611 if (ret) { 4612 filemap_invalidate_unlock(mapping); 4613 goto out_mutex; 4614 } 4615 /* Now release the pages and zero block aligned part of pages */ 4616 truncate_pagecache_range(inode, start, end - 1); 4617 inode->i_mtime = inode->i_ctime = current_time(inode); 4618 4619 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4620 flags); 4621 filemap_invalidate_unlock(mapping); 4622 if (ret) 4623 goto out_mutex; 4624 } 4625 if (!partial_begin && !partial_end) 4626 goto out_mutex; 4627 4628 /* 4629 * In worst case we have to writeout two nonadjacent unwritten 4630 * blocks and update the inode 4631 */ 4632 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4633 if (ext4_should_journal_data(inode)) 4634 credits += 2; 4635 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4636 if (IS_ERR(handle)) { 4637 ret = PTR_ERR(handle); 4638 ext4_std_error(inode->i_sb, ret); 4639 goto out_mutex; 4640 } 4641 4642 inode->i_mtime = inode->i_ctime = current_time(inode); 4643 if (new_size) 4644 ext4_update_inode_size(inode, new_size); 4645 ret = ext4_mark_inode_dirty(handle, inode); 4646 if (unlikely(ret)) 4647 goto out_handle; 4648 /* Zero out partial block at the edges of the range */ 4649 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4650 if (ret >= 0) 4651 ext4_update_inode_fsync_trans(handle, inode, 1); 4652 4653 if (file->f_flags & O_SYNC) 4654 ext4_handle_sync(handle); 4655 4656 out_handle: 4657 ext4_journal_stop(handle); 4658 out_mutex: 4659 inode_unlock(inode); 4660 return ret; 4661 } 4662 4663 /* 4664 * preallocate space for a file. This implements ext4's fallocate file 4665 * operation, which gets called from sys_fallocate system call. 4666 * For block-mapped files, posix_fallocate should fall back to the method 4667 * of writing zeroes to the required new blocks (the same behavior which is 4668 * expected for file systems which do not support fallocate() system call). 4669 */ 4670 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4671 { 4672 struct inode *inode = file_inode(file); 4673 loff_t new_size = 0; 4674 unsigned int max_blocks; 4675 int ret = 0; 4676 int flags; 4677 ext4_lblk_t lblk; 4678 unsigned int blkbits = inode->i_blkbits; 4679 4680 /* 4681 * Encrypted inodes can't handle collapse range or insert 4682 * range since we would need to re-encrypt blocks with a 4683 * different IV or XTS tweak (which are based on the logical 4684 * block number). 4685 */ 4686 if (IS_ENCRYPTED(inode) && 4687 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 4688 return -EOPNOTSUPP; 4689 4690 /* Return error if mode is not supported */ 4691 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4692 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 4693 FALLOC_FL_INSERT_RANGE)) 4694 return -EOPNOTSUPP; 4695 4696 if (mode & FALLOC_FL_PUNCH_HOLE) { 4697 ret = ext4_punch_hole(file, offset, len); 4698 goto exit; 4699 } 4700 4701 ret = ext4_convert_inline_data(inode); 4702 if (ret) 4703 goto exit; 4704 4705 if (mode & FALLOC_FL_COLLAPSE_RANGE) { 4706 ret = ext4_collapse_range(file, offset, len); 4707 goto exit; 4708 } 4709 4710 if (mode & FALLOC_FL_INSERT_RANGE) { 4711 ret = ext4_insert_range(file, offset, len); 4712 goto exit; 4713 } 4714 4715 if (mode & FALLOC_FL_ZERO_RANGE) { 4716 ret = ext4_zero_range(file, offset, len, mode); 4717 goto exit; 4718 } 4719 trace_ext4_fallocate_enter(inode, offset, len, mode); 4720 lblk = offset >> blkbits; 4721 4722 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 4723 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4724 4725 inode_lock(inode); 4726 4727 /* 4728 * We only support preallocation for extent-based files only 4729 */ 4730 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4731 ret = -EOPNOTSUPP; 4732 goto out; 4733 } 4734 4735 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4736 (offset + len > inode->i_size || 4737 offset + len > EXT4_I(inode)->i_disksize)) { 4738 new_size = offset + len; 4739 ret = inode_newsize_ok(inode, new_size); 4740 if (ret) 4741 goto out; 4742 } 4743 4744 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 4745 inode_dio_wait(inode); 4746 4747 ret = file_modified(file); 4748 if (ret) 4749 goto out; 4750 4751 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags); 4752 if (ret) 4753 goto out; 4754 4755 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 4756 ret = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 4757 EXT4_I(inode)->i_sync_tid); 4758 } 4759 out: 4760 inode_unlock(inode); 4761 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4762 exit: 4763 return ret; 4764 } 4765 4766 /* 4767 * This function convert a range of blocks to written extents 4768 * The caller of this function will pass the start offset and the size. 4769 * all unwritten extents within this range will be converted to 4770 * written extents. 4771 * 4772 * This function is called from the direct IO end io call back 4773 * function, to convert the fallocated extents after IO is completed. 4774 * Returns 0 on success. 4775 */ 4776 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4777 loff_t offset, ssize_t len) 4778 { 4779 unsigned int max_blocks; 4780 int ret = 0, ret2 = 0, ret3 = 0; 4781 struct ext4_map_blocks map; 4782 unsigned int blkbits = inode->i_blkbits; 4783 unsigned int credits = 0; 4784 4785 map.m_lblk = offset >> blkbits; 4786 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 4787 4788 if (!handle) { 4789 /* 4790 * credits to insert 1 extent into extent tree 4791 */ 4792 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4793 } 4794 while (ret >= 0 && ret < max_blocks) { 4795 map.m_lblk += ret; 4796 map.m_len = (max_blocks -= ret); 4797 if (credits) { 4798 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4799 credits); 4800 if (IS_ERR(handle)) { 4801 ret = PTR_ERR(handle); 4802 break; 4803 } 4804 } 4805 ret = ext4_map_blocks(handle, inode, &map, 4806 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4807 if (ret <= 0) 4808 ext4_warning(inode->i_sb, 4809 "inode #%lu: block %u: len %u: " 4810 "ext4_ext_map_blocks returned %d", 4811 inode->i_ino, map.m_lblk, 4812 map.m_len, ret); 4813 ret2 = ext4_mark_inode_dirty(handle, inode); 4814 if (credits) { 4815 ret3 = ext4_journal_stop(handle); 4816 if (unlikely(ret3)) 4817 ret2 = ret3; 4818 } 4819 4820 if (ret <= 0 || ret2) 4821 break; 4822 } 4823 return ret > 0 ? ret2 : ret; 4824 } 4825 4826 int ext4_convert_unwritten_io_end_vec(handle_t *handle, ext4_io_end_t *io_end) 4827 { 4828 int ret = 0, err = 0; 4829 struct ext4_io_end_vec *io_end_vec; 4830 4831 /* 4832 * This is somewhat ugly but the idea is clear: When transaction is 4833 * reserved, everything goes into it. Otherwise we rather start several 4834 * smaller transactions for conversion of each extent separately. 4835 */ 4836 if (handle) { 4837 handle = ext4_journal_start_reserved(handle, 4838 EXT4_HT_EXT_CONVERT); 4839 if (IS_ERR(handle)) 4840 return PTR_ERR(handle); 4841 } 4842 4843 list_for_each_entry(io_end_vec, &io_end->list_vec, list) { 4844 ret = ext4_convert_unwritten_extents(handle, io_end->inode, 4845 io_end_vec->offset, 4846 io_end_vec->size); 4847 if (ret) 4848 break; 4849 } 4850 4851 if (handle) 4852 err = ext4_journal_stop(handle); 4853 4854 return ret < 0 ? ret : err; 4855 } 4856 4857 static int ext4_iomap_xattr_fiemap(struct inode *inode, struct iomap *iomap) 4858 { 4859 __u64 physical = 0; 4860 __u64 length = 0; 4861 int blockbits = inode->i_sb->s_blocksize_bits; 4862 int error = 0; 4863 u16 iomap_type; 4864 4865 /* in-inode? */ 4866 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4867 struct ext4_iloc iloc; 4868 int offset; /* offset of xattr in inode */ 4869 4870 error = ext4_get_inode_loc(inode, &iloc); 4871 if (error) 4872 return error; 4873 physical = (__u64)iloc.bh->b_blocknr << blockbits; 4874 offset = EXT4_GOOD_OLD_INODE_SIZE + 4875 EXT4_I(inode)->i_extra_isize; 4876 physical += offset; 4877 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4878 brelse(iloc.bh); 4879 iomap_type = IOMAP_INLINE; 4880 } else if (EXT4_I(inode)->i_file_acl) { /* external block */ 4881 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 4882 length = inode->i_sb->s_blocksize; 4883 iomap_type = IOMAP_MAPPED; 4884 } else { 4885 /* no in-inode or external block for xattr, so return -ENOENT */ 4886 error = -ENOENT; 4887 goto out; 4888 } 4889 4890 iomap->addr = physical; 4891 iomap->offset = 0; 4892 iomap->length = length; 4893 iomap->type = iomap_type; 4894 iomap->flags = 0; 4895 out: 4896 return error; 4897 } 4898 4899 static int ext4_iomap_xattr_begin(struct inode *inode, loff_t offset, 4900 loff_t length, unsigned flags, 4901 struct iomap *iomap, struct iomap *srcmap) 4902 { 4903 int error; 4904 4905 error = ext4_iomap_xattr_fiemap(inode, iomap); 4906 if (error == 0 && (offset >= iomap->length)) 4907 error = -ENOENT; 4908 return error; 4909 } 4910 4911 static const struct iomap_ops ext4_iomap_xattr_ops = { 4912 .iomap_begin = ext4_iomap_xattr_begin, 4913 }; 4914 4915 static int ext4_fiemap_check_ranges(struct inode *inode, u64 start, u64 *len) 4916 { 4917 u64 maxbytes; 4918 4919 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4920 maxbytes = inode->i_sb->s_maxbytes; 4921 else 4922 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 4923 4924 if (*len == 0) 4925 return -EINVAL; 4926 if (start > maxbytes) 4927 return -EFBIG; 4928 4929 /* 4930 * Shrink request scope to what the fs can actually handle. 4931 */ 4932 if (*len > maxbytes || (maxbytes - *len) < start) 4933 *len = maxbytes - start; 4934 return 0; 4935 } 4936 4937 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4938 u64 start, u64 len) 4939 { 4940 int error = 0; 4941 4942 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 4943 error = ext4_ext_precache(inode); 4944 if (error) 4945 return error; 4946 fieinfo->fi_flags &= ~FIEMAP_FLAG_CACHE; 4947 } 4948 4949 /* 4950 * For bitmap files the maximum size limit could be smaller than 4951 * s_maxbytes, so check len here manually instead of just relying on the 4952 * generic check. 4953 */ 4954 error = ext4_fiemap_check_ranges(inode, start, &len); 4955 if (error) 4956 return error; 4957 4958 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 4959 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR; 4960 return iomap_fiemap(inode, fieinfo, start, len, 4961 &ext4_iomap_xattr_ops); 4962 } 4963 4964 return iomap_fiemap(inode, fieinfo, start, len, &ext4_iomap_report_ops); 4965 } 4966 4967 int ext4_get_es_cache(struct inode *inode, struct fiemap_extent_info *fieinfo, 4968 __u64 start, __u64 len) 4969 { 4970 ext4_lblk_t start_blk, len_blks; 4971 __u64 last_blk; 4972 int error = 0; 4973 4974 if (ext4_has_inline_data(inode)) { 4975 int has_inline; 4976 4977 down_read(&EXT4_I(inode)->xattr_sem); 4978 has_inline = ext4_has_inline_data(inode); 4979 up_read(&EXT4_I(inode)->xattr_sem); 4980 if (has_inline) 4981 return 0; 4982 } 4983 4984 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 4985 error = ext4_ext_precache(inode); 4986 if (error) 4987 return error; 4988 fieinfo->fi_flags &= ~FIEMAP_FLAG_CACHE; 4989 } 4990 4991 error = fiemap_prep(inode, fieinfo, start, &len, 0); 4992 if (error) 4993 return error; 4994 4995 error = ext4_fiemap_check_ranges(inode, start, &len); 4996 if (error) 4997 return error; 4998 4999 start_blk = start >> inode->i_sb->s_blocksize_bits; 5000 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5001 if (last_blk >= EXT_MAX_BLOCKS) 5002 last_blk = EXT_MAX_BLOCKS-1; 5003 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5004 5005 /* 5006 * Walk the extent tree gathering extent information 5007 * and pushing extents back to the user. 5008 */ 5009 return ext4_fill_es_cache_info(inode, start_blk, len_blks, fieinfo); 5010 } 5011 5012 /* 5013 * ext4_ext_shift_path_extents: 5014 * Shift the extents of a path structure lying between path[depth].p_ext 5015 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells 5016 * if it is right shift or left shift operation. 5017 */ 5018 static int 5019 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5020 struct inode *inode, handle_t *handle, 5021 enum SHIFT_DIRECTION SHIFT) 5022 { 5023 int depth, err = 0; 5024 struct ext4_extent *ex_start, *ex_last; 5025 bool update = false; 5026 int credits, restart_credits; 5027 depth = path->p_depth; 5028 5029 while (depth >= 0) { 5030 if (depth == path->p_depth) { 5031 ex_start = path[depth].p_ext; 5032 if (!ex_start) 5033 return -EFSCORRUPTED; 5034 5035 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5036 /* leaf + sb + inode */ 5037 credits = 3; 5038 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) { 5039 update = true; 5040 /* extent tree + sb + inode */ 5041 credits = depth + 2; 5042 } 5043 5044 restart_credits = ext4_writepage_trans_blocks(inode); 5045 err = ext4_datasem_ensure_credits(handle, inode, credits, 5046 restart_credits, 0); 5047 if (err) { 5048 if (err > 0) 5049 err = -EAGAIN; 5050 goto out; 5051 } 5052 5053 err = ext4_ext_get_access(handle, inode, path + depth); 5054 if (err) 5055 goto out; 5056 5057 while (ex_start <= ex_last) { 5058 if (SHIFT == SHIFT_LEFT) { 5059 le32_add_cpu(&ex_start->ee_block, 5060 -shift); 5061 /* Try to merge to the left. */ 5062 if ((ex_start > 5063 EXT_FIRST_EXTENT(path[depth].p_hdr)) 5064 && 5065 ext4_ext_try_to_merge_right(inode, 5066 path, ex_start - 1)) 5067 ex_last--; 5068 else 5069 ex_start++; 5070 } else { 5071 le32_add_cpu(&ex_last->ee_block, shift); 5072 ext4_ext_try_to_merge_right(inode, path, 5073 ex_last); 5074 ex_last--; 5075 } 5076 } 5077 err = ext4_ext_dirty(handle, inode, path + depth); 5078 if (err) 5079 goto out; 5080 5081 if (--depth < 0 || !update) 5082 break; 5083 } 5084 5085 /* Update index too */ 5086 err = ext4_ext_get_access(handle, inode, path + depth); 5087 if (err) 5088 goto out; 5089 5090 if (SHIFT == SHIFT_LEFT) 5091 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5092 else 5093 le32_add_cpu(&path[depth].p_idx->ei_block, shift); 5094 err = ext4_ext_dirty(handle, inode, path + depth); 5095 if (err) 5096 goto out; 5097 5098 /* we are done if current index is not a starting index */ 5099 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5100 break; 5101 5102 depth--; 5103 } 5104 5105 out: 5106 return err; 5107 } 5108 5109 /* 5110 * ext4_ext_shift_extents: 5111 * All the extents which lies in the range from @start to the last allocated 5112 * block for the @inode are shifted either towards left or right (depending 5113 * upon @SHIFT) by @shift blocks. 5114 * On success, 0 is returned, error otherwise. 5115 */ 5116 static int 5117 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5118 ext4_lblk_t start, ext4_lblk_t shift, 5119 enum SHIFT_DIRECTION SHIFT) 5120 { 5121 struct ext4_ext_path *path; 5122 int ret = 0, depth; 5123 struct ext4_extent *extent; 5124 ext4_lblk_t stop, *iterator, ex_start, ex_end; 5125 ext4_lblk_t tmp = EXT_MAX_BLOCKS; 5126 5127 /* Let path point to the last extent */ 5128 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 5129 EXT4_EX_NOCACHE); 5130 if (IS_ERR(path)) 5131 return PTR_ERR(path); 5132 5133 depth = path->p_depth; 5134 extent = path[depth].p_ext; 5135 if (!extent) 5136 goto out; 5137 5138 stop = le32_to_cpu(extent->ee_block); 5139 5140 /* 5141 * For left shifts, make sure the hole on the left is big enough to 5142 * accommodate the shift. For right shifts, make sure the last extent 5143 * won't be shifted beyond EXT_MAX_BLOCKS. 5144 */ 5145 if (SHIFT == SHIFT_LEFT) { 5146 path = ext4_find_extent(inode, start - 1, &path, 5147 EXT4_EX_NOCACHE); 5148 if (IS_ERR(path)) 5149 return PTR_ERR(path); 5150 depth = path->p_depth; 5151 extent = path[depth].p_ext; 5152 if (extent) { 5153 ex_start = le32_to_cpu(extent->ee_block); 5154 ex_end = le32_to_cpu(extent->ee_block) + 5155 ext4_ext_get_actual_len(extent); 5156 } else { 5157 ex_start = 0; 5158 ex_end = 0; 5159 } 5160 5161 if ((start == ex_start && shift > ex_start) || 5162 (shift > start - ex_end)) { 5163 ret = -EINVAL; 5164 goto out; 5165 } 5166 } else { 5167 if (shift > EXT_MAX_BLOCKS - 5168 (stop + ext4_ext_get_actual_len(extent))) { 5169 ret = -EINVAL; 5170 goto out; 5171 } 5172 } 5173 5174 /* 5175 * In case of left shift, iterator points to start and it is increased 5176 * till we reach stop. In case of right shift, iterator points to stop 5177 * and it is decreased till we reach start. 5178 */ 5179 again: 5180 if (SHIFT == SHIFT_LEFT) 5181 iterator = &start; 5182 else 5183 iterator = &stop; 5184 5185 if (tmp != EXT_MAX_BLOCKS) 5186 *iterator = tmp; 5187 5188 /* 5189 * Its safe to start updating extents. Start and stop are unsigned, so 5190 * in case of right shift if extent with 0 block is reached, iterator 5191 * becomes NULL to indicate the end of the loop. 5192 */ 5193 while (iterator && start <= stop) { 5194 path = ext4_find_extent(inode, *iterator, &path, 5195 EXT4_EX_NOCACHE); 5196 if (IS_ERR(path)) 5197 return PTR_ERR(path); 5198 depth = path->p_depth; 5199 extent = path[depth].p_ext; 5200 if (!extent) { 5201 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5202 (unsigned long) *iterator); 5203 return -EFSCORRUPTED; 5204 } 5205 if (SHIFT == SHIFT_LEFT && *iterator > 5206 le32_to_cpu(extent->ee_block)) { 5207 /* Hole, move to the next extent */ 5208 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5209 path[depth].p_ext++; 5210 } else { 5211 *iterator = ext4_ext_next_allocated_block(path); 5212 continue; 5213 } 5214 } 5215 5216 tmp = *iterator; 5217 if (SHIFT == SHIFT_LEFT) { 5218 extent = EXT_LAST_EXTENT(path[depth].p_hdr); 5219 *iterator = le32_to_cpu(extent->ee_block) + 5220 ext4_ext_get_actual_len(extent); 5221 } else { 5222 extent = EXT_FIRST_EXTENT(path[depth].p_hdr); 5223 if (le32_to_cpu(extent->ee_block) > 0) 5224 *iterator = le32_to_cpu(extent->ee_block) - 1; 5225 else 5226 /* Beginning is reached, end of the loop */ 5227 iterator = NULL; 5228 /* Update path extent in case we need to stop */ 5229 while (le32_to_cpu(extent->ee_block) < start) 5230 extent++; 5231 path[depth].p_ext = extent; 5232 } 5233 ret = ext4_ext_shift_path_extents(path, shift, inode, 5234 handle, SHIFT); 5235 /* iterator can be NULL which means we should break */ 5236 if (ret == -EAGAIN) 5237 goto again; 5238 if (ret) 5239 break; 5240 } 5241 out: 5242 ext4_ext_drop_refs(path); 5243 kfree(path); 5244 return ret; 5245 } 5246 5247 /* 5248 * ext4_collapse_range: 5249 * This implements the fallocate's collapse range functionality for ext4 5250 * Returns: 0 and non-zero on error. 5251 */ 5252 static int ext4_collapse_range(struct file *file, loff_t offset, loff_t len) 5253 { 5254 struct inode *inode = file_inode(file); 5255 struct super_block *sb = inode->i_sb; 5256 struct address_space *mapping = inode->i_mapping; 5257 ext4_lblk_t punch_start, punch_stop; 5258 handle_t *handle; 5259 unsigned int credits; 5260 loff_t new_size, ioffset; 5261 int ret; 5262 5263 /* 5264 * We need to test this early because xfstests assumes that a 5265 * collapse range of (0, 1) will return EOPNOTSUPP if the file 5266 * system does not support collapse range. 5267 */ 5268 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5269 return -EOPNOTSUPP; 5270 5271 /* Collapse range works only on fs cluster size aligned regions. */ 5272 if (!IS_ALIGNED(offset | len, EXT4_CLUSTER_SIZE(sb))) 5273 return -EINVAL; 5274 5275 trace_ext4_collapse_range(inode, offset, len); 5276 5277 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5278 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5279 5280 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5281 if (ext4_should_journal_data(inode)) { 5282 ret = ext4_force_commit(inode->i_sb); 5283 if (ret) 5284 return ret; 5285 } 5286 5287 inode_lock(inode); 5288 /* 5289 * There is no need to overlap collapse range with EOF, in which case 5290 * it is effectively a truncate operation 5291 */ 5292 if (offset + len >= inode->i_size) { 5293 ret = -EINVAL; 5294 goto out_mutex; 5295 } 5296 5297 /* Currently just for extent based files */ 5298 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5299 ret = -EOPNOTSUPP; 5300 goto out_mutex; 5301 } 5302 5303 /* Wait for existing dio to complete */ 5304 inode_dio_wait(inode); 5305 5306 ret = file_modified(file); 5307 if (ret) 5308 goto out_mutex; 5309 5310 /* 5311 * Prevent page faults from reinstantiating pages we have released from 5312 * page cache. 5313 */ 5314 filemap_invalidate_lock(mapping); 5315 5316 ret = ext4_break_layouts(inode); 5317 if (ret) 5318 goto out_mmap; 5319 5320 /* 5321 * Need to round down offset to be aligned with page size boundary 5322 * for page size > block size. 5323 */ 5324 ioffset = round_down(offset, PAGE_SIZE); 5325 /* 5326 * Write tail of the last page before removed range since it will get 5327 * removed from the page cache below. 5328 */ 5329 ret = filemap_write_and_wait_range(mapping, ioffset, offset); 5330 if (ret) 5331 goto out_mmap; 5332 /* 5333 * Write data that will be shifted to preserve them when discarding 5334 * page cache below. We are also protected from pages becoming dirty 5335 * by i_rwsem and invalidate_lock. 5336 */ 5337 ret = filemap_write_and_wait_range(mapping, offset + len, 5338 LLONG_MAX); 5339 if (ret) 5340 goto out_mmap; 5341 truncate_pagecache(inode, ioffset); 5342 5343 credits = ext4_writepage_trans_blocks(inode); 5344 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5345 if (IS_ERR(handle)) { 5346 ret = PTR_ERR(handle); 5347 goto out_mmap; 5348 } 5349 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_FALLOC_RANGE, handle); 5350 5351 down_write(&EXT4_I(inode)->i_data_sem); 5352 ext4_discard_preallocations(inode, 0); 5353 5354 ret = ext4_es_remove_extent(inode, punch_start, 5355 EXT_MAX_BLOCKS - punch_start); 5356 if (ret) { 5357 up_write(&EXT4_I(inode)->i_data_sem); 5358 goto out_stop; 5359 } 5360 5361 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5362 if (ret) { 5363 up_write(&EXT4_I(inode)->i_data_sem); 5364 goto out_stop; 5365 } 5366 ext4_discard_preallocations(inode, 0); 5367 5368 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5369 punch_stop - punch_start, SHIFT_LEFT); 5370 if (ret) { 5371 up_write(&EXT4_I(inode)->i_data_sem); 5372 goto out_stop; 5373 } 5374 5375 new_size = inode->i_size - len; 5376 i_size_write(inode, new_size); 5377 EXT4_I(inode)->i_disksize = new_size; 5378 5379 up_write(&EXT4_I(inode)->i_data_sem); 5380 if (IS_SYNC(inode)) 5381 ext4_handle_sync(handle); 5382 inode->i_mtime = inode->i_ctime = current_time(inode); 5383 ret = ext4_mark_inode_dirty(handle, inode); 5384 ext4_update_inode_fsync_trans(handle, inode, 1); 5385 5386 out_stop: 5387 ext4_journal_stop(handle); 5388 out_mmap: 5389 filemap_invalidate_unlock(mapping); 5390 out_mutex: 5391 inode_unlock(inode); 5392 return ret; 5393 } 5394 5395 /* 5396 * ext4_insert_range: 5397 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate. 5398 * The data blocks starting from @offset to the EOF are shifted by @len 5399 * towards right to create a hole in the @inode. Inode size is increased 5400 * by len bytes. 5401 * Returns 0 on success, error otherwise. 5402 */ 5403 static int ext4_insert_range(struct file *file, loff_t offset, loff_t len) 5404 { 5405 struct inode *inode = file_inode(file); 5406 struct super_block *sb = inode->i_sb; 5407 struct address_space *mapping = inode->i_mapping; 5408 handle_t *handle; 5409 struct ext4_ext_path *path; 5410 struct ext4_extent *extent; 5411 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0; 5412 unsigned int credits, ee_len; 5413 int ret = 0, depth, split_flag = 0; 5414 loff_t ioffset; 5415 5416 /* 5417 * We need to test this early because xfstests assumes that an 5418 * insert range of (0, 1) will return EOPNOTSUPP if the file 5419 * system does not support insert range. 5420 */ 5421 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5422 return -EOPNOTSUPP; 5423 5424 /* Insert range works only on fs cluster size aligned regions. */ 5425 if (!IS_ALIGNED(offset | len, EXT4_CLUSTER_SIZE(sb))) 5426 return -EINVAL; 5427 5428 trace_ext4_insert_range(inode, offset, len); 5429 5430 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5431 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb); 5432 5433 /* Call ext4_force_commit to flush all data in case of data=journal */ 5434 if (ext4_should_journal_data(inode)) { 5435 ret = ext4_force_commit(inode->i_sb); 5436 if (ret) 5437 return ret; 5438 } 5439 5440 inode_lock(inode); 5441 /* Currently just for extent based files */ 5442 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5443 ret = -EOPNOTSUPP; 5444 goto out_mutex; 5445 } 5446 5447 /* Check whether the maximum file size would be exceeded */ 5448 if (len > inode->i_sb->s_maxbytes - inode->i_size) { 5449 ret = -EFBIG; 5450 goto out_mutex; 5451 } 5452 5453 /* Offset must be less than i_size */ 5454 if (offset >= inode->i_size) { 5455 ret = -EINVAL; 5456 goto out_mutex; 5457 } 5458 5459 /* Wait for existing dio to complete */ 5460 inode_dio_wait(inode); 5461 5462 ret = file_modified(file); 5463 if (ret) 5464 goto out_mutex; 5465 5466 /* 5467 * Prevent page faults from reinstantiating pages we have released from 5468 * page cache. 5469 */ 5470 filemap_invalidate_lock(mapping); 5471 5472 ret = ext4_break_layouts(inode); 5473 if (ret) 5474 goto out_mmap; 5475 5476 /* 5477 * Need to round down to align start offset to page size boundary 5478 * for page size > block size. 5479 */ 5480 ioffset = round_down(offset, PAGE_SIZE); 5481 /* Write out all dirty pages */ 5482 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5483 LLONG_MAX); 5484 if (ret) 5485 goto out_mmap; 5486 truncate_pagecache(inode, ioffset); 5487 5488 credits = ext4_writepage_trans_blocks(inode); 5489 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5490 if (IS_ERR(handle)) { 5491 ret = PTR_ERR(handle); 5492 goto out_mmap; 5493 } 5494 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_FALLOC_RANGE, handle); 5495 5496 /* Expand file to avoid data loss if there is error while shifting */ 5497 inode->i_size += len; 5498 EXT4_I(inode)->i_disksize += len; 5499 inode->i_mtime = inode->i_ctime = current_time(inode); 5500 ret = ext4_mark_inode_dirty(handle, inode); 5501 if (ret) 5502 goto out_stop; 5503 5504 down_write(&EXT4_I(inode)->i_data_sem); 5505 ext4_discard_preallocations(inode, 0); 5506 5507 path = ext4_find_extent(inode, offset_lblk, NULL, 0); 5508 if (IS_ERR(path)) { 5509 up_write(&EXT4_I(inode)->i_data_sem); 5510 goto out_stop; 5511 } 5512 5513 depth = ext_depth(inode); 5514 extent = path[depth].p_ext; 5515 if (extent) { 5516 ee_start_lblk = le32_to_cpu(extent->ee_block); 5517 ee_len = ext4_ext_get_actual_len(extent); 5518 5519 /* 5520 * If offset_lblk is not the starting block of extent, split 5521 * the extent @offset_lblk 5522 */ 5523 if ((offset_lblk > ee_start_lblk) && 5524 (offset_lblk < (ee_start_lblk + ee_len))) { 5525 if (ext4_ext_is_unwritten(extent)) 5526 split_flag = EXT4_EXT_MARK_UNWRIT1 | 5527 EXT4_EXT_MARK_UNWRIT2; 5528 ret = ext4_split_extent_at(handle, inode, &path, 5529 offset_lblk, split_flag, 5530 EXT4_EX_NOCACHE | 5531 EXT4_GET_BLOCKS_PRE_IO | 5532 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5533 } 5534 5535 ext4_ext_drop_refs(path); 5536 kfree(path); 5537 if (ret < 0) { 5538 up_write(&EXT4_I(inode)->i_data_sem); 5539 goto out_stop; 5540 } 5541 } else { 5542 ext4_ext_drop_refs(path); 5543 kfree(path); 5544 } 5545 5546 ret = ext4_es_remove_extent(inode, offset_lblk, 5547 EXT_MAX_BLOCKS - offset_lblk); 5548 if (ret) { 5549 up_write(&EXT4_I(inode)->i_data_sem); 5550 goto out_stop; 5551 } 5552 5553 /* 5554 * if offset_lblk lies in a hole which is at start of file, use 5555 * ee_start_lblk to shift extents 5556 */ 5557 ret = ext4_ext_shift_extents(inode, handle, 5558 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk, 5559 len_lblk, SHIFT_RIGHT); 5560 5561 up_write(&EXT4_I(inode)->i_data_sem); 5562 if (IS_SYNC(inode)) 5563 ext4_handle_sync(handle); 5564 if (ret >= 0) 5565 ext4_update_inode_fsync_trans(handle, inode, 1); 5566 5567 out_stop: 5568 ext4_journal_stop(handle); 5569 out_mmap: 5570 filemap_invalidate_unlock(mapping); 5571 out_mutex: 5572 inode_unlock(inode); 5573 return ret; 5574 } 5575 5576 /** 5577 * ext4_swap_extents() - Swap extents between two inodes 5578 * @handle: handle for this transaction 5579 * @inode1: First inode 5580 * @inode2: Second inode 5581 * @lblk1: Start block for first inode 5582 * @lblk2: Start block for second inode 5583 * @count: Number of blocks to swap 5584 * @unwritten: Mark second inode's extents as unwritten after swap 5585 * @erp: Pointer to save error value 5586 * 5587 * This helper routine does exactly what is promise "swap extents". All other 5588 * stuff such as page-cache locking consistency, bh mapping consistency or 5589 * extent's data copying must be performed by caller. 5590 * Locking: 5591 * i_rwsem is held for both inodes 5592 * i_data_sem is locked for write for both inodes 5593 * Assumptions: 5594 * All pages from requested range are locked for both inodes 5595 */ 5596 int 5597 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5598 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5599 ext4_lblk_t count, int unwritten, int *erp) 5600 { 5601 struct ext4_ext_path *path1 = NULL; 5602 struct ext4_ext_path *path2 = NULL; 5603 int replaced_count = 0; 5604 5605 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5606 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5607 BUG_ON(!inode_is_locked(inode1)); 5608 BUG_ON(!inode_is_locked(inode2)); 5609 5610 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5611 if (unlikely(*erp)) 5612 return 0; 5613 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5614 if (unlikely(*erp)) 5615 return 0; 5616 5617 while (count) { 5618 struct ext4_extent *ex1, *ex2, tmp_ex; 5619 ext4_lblk_t e1_blk, e2_blk; 5620 int e1_len, e2_len, len; 5621 int split = 0; 5622 5623 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5624 if (IS_ERR(path1)) { 5625 *erp = PTR_ERR(path1); 5626 path1 = NULL; 5627 finish: 5628 count = 0; 5629 goto repeat; 5630 } 5631 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5632 if (IS_ERR(path2)) { 5633 *erp = PTR_ERR(path2); 5634 path2 = NULL; 5635 goto finish; 5636 } 5637 ex1 = path1[path1->p_depth].p_ext; 5638 ex2 = path2[path2->p_depth].p_ext; 5639 /* Do we have something to swap ? */ 5640 if (unlikely(!ex2 || !ex1)) 5641 goto finish; 5642 5643 e1_blk = le32_to_cpu(ex1->ee_block); 5644 e2_blk = le32_to_cpu(ex2->ee_block); 5645 e1_len = ext4_ext_get_actual_len(ex1); 5646 e2_len = ext4_ext_get_actual_len(ex2); 5647 5648 /* Hole handling */ 5649 if (!in_range(lblk1, e1_blk, e1_len) || 5650 !in_range(lblk2, e2_blk, e2_len)) { 5651 ext4_lblk_t next1, next2; 5652 5653 /* if hole after extent, then go to next extent */ 5654 next1 = ext4_ext_next_allocated_block(path1); 5655 next2 = ext4_ext_next_allocated_block(path2); 5656 /* If hole before extent, then shift to that extent */ 5657 if (e1_blk > lblk1) 5658 next1 = e1_blk; 5659 if (e2_blk > lblk2) 5660 next2 = e2_blk; 5661 /* Do we have something to swap */ 5662 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5663 goto finish; 5664 /* Move to the rightest boundary */ 5665 len = next1 - lblk1; 5666 if (len < next2 - lblk2) 5667 len = next2 - lblk2; 5668 if (len > count) 5669 len = count; 5670 lblk1 += len; 5671 lblk2 += len; 5672 count -= len; 5673 goto repeat; 5674 } 5675 5676 /* Prepare left boundary */ 5677 if (e1_blk < lblk1) { 5678 split = 1; 5679 *erp = ext4_force_split_extent_at(handle, inode1, 5680 &path1, lblk1, 0); 5681 if (unlikely(*erp)) 5682 goto finish; 5683 } 5684 if (e2_blk < lblk2) { 5685 split = 1; 5686 *erp = ext4_force_split_extent_at(handle, inode2, 5687 &path2, lblk2, 0); 5688 if (unlikely(*erp)) 5689 goto finish; 5690 } 5691 /* ext4_split_extent_at() may result in leaf extent split, 5692 * path must to be revalidated. */ 5693 if (split) 5694 goto repeat; 5695 5696 /* Prepare right boundary */ 5697 len = count; 5698 if (len > e1_blk + e1_len - lblk1) 5699 len = e1_blk + e1_len - lblk1; 5700 if (len > e2_blk + e2_len - lblk2) 5701 len = e2_blk + e2_len - lblk2; 5702 5703 if (len != e1_len) { 5704 split = 1; 5705 *erp = ext4_force_split_extent_at(handle, inode1, 5706 &path1, lblk1 + len, 0); 5707 if (unlikely(*erp)) 5708 goto finish; 5709 } 5710 if (len != e2_len) { 5711 split = 1; 5712 *erp = ext4_force_split_extent_at(handle, inode2, 5713 &path2, lblk2 + len, 0); 5714 if (*erp) 5715 goto finish; 5716 } 5717 /* ext4_split_extent_at() may result in leaf extent split, 5718 * path must to be revalidated. */ 5719 if (split) 5720 goto repeat; 5721 5722 BUG_ON(e2_len != e1_len); 5723 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5724 if (unlikely(*erp)) 5725 goto finish; 5726 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5727 if (unlikely(*erp)) 5728 goto finish; 5729 5730 /* Both extents are fully inside boundaries. Swap it now */ 5731 tmp_ex = *ex1; 5732 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5733 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5734 ex1->ee_len = cpu_to_le16(e2_len); 5735 ex2->ee_len = cpu_to_le16(e1_len); 5736 if (unwritten) 5737 ext4_ext_mark_unwritten(ex2); 5738 if (ext4_ext_is_unwritten(&tmp_ex)) 5739 ext4_ext_mark_unwritten(ex1); 5740 5741 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5742 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5743 *erp = ext4_ext_dirty(handle, inode2, path2 + 5744 path2->p_depth); 5745 if (unlikely(*erp)) 5746 goto finish; 5747 *erp = ext4_ext_dirty(handle, inode1, path1 + 5748 path1->p_depth); 5749 /* 5750 * Looks scarry ah..? second inode already points to new blocks, 5751 * and it was successfully dirtied. But luckily error may happen 5752 * only due to journal error, so full transaction will be 5753 * aborted anyway. 5754 */ 5755 if (unlikely(*erp)) 5756 goto finish; 5757 lblk1 += len; 5758 lblk2 += len; 5759 replaced_count += len; 5760 count -= len; 5761 5762 repeat: 5763 ext4_ext_drop_refs(path1); 5764 kfree(path1); 5765 ext4_ext_drop_refs(path2); 5766 kfree(path2); 5767 path1 = path2 = NULL; 5768 } 5769 return replaced_count; 5770 } 5771 5772 /* 5773 * ext4_clu_mapped - determine whether any block in a logical cluster has 5774 * been mapped to a physical cluster 5775 * 5776 * @inode - file containing the logical cluster 5777 * @lclu - logical cluster of interest 5778 * 5779 * Returns 1 if any block in the logical cluster is mapped, signifying 5780 * that a physical cluster has been allocated for it. Otherwise, 5781 * returns 0. Can also return negative error codes. Derived from 5782 * ext4_ext_map_blocks(). 5783 */ 5784 int ext4_clu_mapped(struct inode *inode, ext4_lblk_t lclu) 5785 { 5786 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5787 struct ext4_ext_path *path; 5788 int depth, mapped = 0, err = 0; 5789 struct ext4_extent *extent; 5790 ext4_lblk_t first_lblk, first_lclu, last_lclu; 5791 5792 /* search for the extent closest to the first block in the cluster */ 5793 path = ext4_find_extent(inode, EXT4_C2B(sbi, lclu), NULL, 0); 5794 if (IS_ERR(path)) { 5795 err = PTR_ERR(path); 5796 path = NULL; 5797 goto out; 5798 } 5799 5800 depth = ext_depth(inode); 5801 5802 /* 5803 * A consistent leaf must not be empty. This situation is possible, 5804 * though, _during_ tree modification, and it's why an assert can't 5805 * be put in ext4_find_extent(). 5806 */ 5807 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 5808 EXT4_ERROR_INODE(inode, 5809 "bad extent address - lblock: %lu, depth: %d, pblock: %lld", 5810 (unsigned long) EXT4_C2B(sbi, lclu), 5811 depth, path[depth].p_block); 5812 err = -EFSCORRUPTED; 5813 goto out; 5814 } 5815 5816 extent = path[depth].p_ext; 5817 5818 /* can't be mapped if the extent tree is empty */ 5819 if (extent == NULL) 5820 goto out; 5821 5822 first_lblk = le32_to_cpu(extent->ee_block); 5823 first_lclu = EXT4_B2C(sbi, first_lblk); 5824 5825 /* 5826 * Three possible outcomes at this point - found extent spanning 5827 * the target cluster, to the left of the target cluster, or to the 5828 * right of the target cluster. The first two cases are handled here. 5829 * The last case indicates the target cluster is not mapped. 5830 */ 5831 if (lclu >= first_lclu) { 5832 last_lclu = EXT4_B2C(sbi, first_lblk + 5833 ext4_ext_get_actual_len(extent) - 1); 5834 if (lclu <= last_lclu) { 5835 mapped = 1; 5836 } else { 5837 first_lblk = ext4_ext_next_allocated_block(path); 5838 first_lclu = EXT4_B2C(sbi, first_lblk); 5839 if (lclu == first_lclu) 5840 mapped = 1; 5841 } 5842 } 5843 5844 out: 5845 ext4_ext_drop_refs(path); 5846 kfree(path); 5847 5848 return err ? err : mapped; 5849 } 5850 5851 /* 5852 * Updates physical block address and unwritten status of extent 5853 * starting at lblk start and of len. If such an extent doesn't exist, 5854 * this function splits the extent tree appropriately to create an 5855 * extent like this. This function is called in the fast commit 5856 * replay path. Returns 0 on success and error on failure. 5857 */ 5858 int ext4_ext_replay_update_ex(struct inode *inode, ext4_lblk_t start, 5859 int len, int unwritten, ext4_fsblk_t pblk) 5860 { 5861 struct ext4_ext_path *path = NULL, *ppath; 5862 struct ext4_extent *ex; 5863 int ret; 5864 5865 path = ext4_find_extent(inode, start, NULL, 0); 5866 if (IS_ERR(path)) 5867 return PTR_ERR(path); 5868 ex = path[path->p_depth].p_ext; 5869 if (!ex) { 5870 ret = -EFSCORRUPTED; 5871 goto out; 5872 } 5873 5874 if (le32_to_cpu(ex->ee_block) != start || 5875 ext4_ext_get_actual_len(ex) != len) { 5876 /* We need to split this extent to match our extent first */ 5877 ppath = path; 5878 down_write(&EXT4_I(inode)->i_data_sem); 5879 ret = ext4_force_split_extent_at(NULL, inode, &ppath, start, 1); 5880 up_write(&EXT4_I(inode)->i_data_sem); 5881 if (ret) 5882 goto out; 5883 kfree(path); 5884 path = ext4_find_extent(inode, start, NULL, 0); 5885 if (IS_ERR(path)) 5886 return -1; 5887 ppath = path; 5888 ex = path[path->p_depth].p_ext; 5889 WARN_ON(le32_to_cpu(ex->ee_block) != start); 5890 if (ext4_ext_get_actual_len(ex) != len) { 5891 down_write(&EXT4_I(inode)->i_data_sem); 5892 ret = ext4_force_split_extent_at(NULL, inode, &ppath, 5893 start + len, 1); 5894 up_write(&EXT4_I(inode)->i_data_sem); 5895 if (ret) 5896 goto out; 5897 kfree(path); 5898 path = ext4_find_extent(inode, start, NULL, 0); 5899 if (IS_ERR(path)) 5900 return -EINVAL; 5901 ex = path[path->p_depth].p_ext; 5902 } 5903 } 5904 if (unwritten) 5905 ext4_ext_mark_unwritten(ex); 5906 else 5907 ext4_ext_mark_initialized(ex); 5908 ext4_ext_store_pblock(ex, pblk); 5909 down_write(&EXT4_I(inode)->i_data_sem); 5910 ret = ext4_ext_dirty(NULL, inode, &path[path->p_depth]); 5911 up_write(&EXT4_I(inode)->i_data_sem); 5912 out: 5913 ext4_ext_drop_refs(path); 5914 kfree(path); 5915 ext4_mark_inode_dirty(NULL, inode); 5916 return ret; 5917 } 5918 5919 /* Try to shrink the extent tree */ 5920 void ext4_ext_replay_shrink_inode(struct inode *inode, ext4_lblk_t end) 5921 { 5922 struct ext4_ext_path *path = NULL; 5923 struct ext4_extent *ex; 5924 ext4_lblk_t old_cur, cur = 0; 5925 5926 while (cur < end) { 5927 path = ext4_find_extent(inode, cur, NULL, 0); 5928 if (IS_ERR(path)) 5929 return; 5930 ex = path[path->p_depth].p_ext; 5931 if (!ex) { 5932 ext4_ext_drop_refs(path); 5933 kfree(path); 5934 ext4_mark_inode_dirty(NULL, inode); 5935 return; 5936 } 5937 old_cur = cur; 5938 cur = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); 5939 if (cur <= old_cur) 5940 cur = old_cur + 1; 5941 ext4_ext_try_to_merge(NULL, inode, path, ex); 5942 down_write(&EXT4_I(inode)->i_data_sem); 5943 ext4_ext_dirty(NULL, inode, &path[path->p_depth]); 5944 up_write(&EXT4_I(inode)->i_data_sem); 5945 ext4_mark_inode_dirty(NULL, inode); 5946 ext4_ext_drop_refs(path); 5947 kfree(path); 5948 } 5949 } 5950 5951 /* Check if *cur is a hole and if it is, skip it */ 5952 static int skip_hole(struct inode *inode, ext4_lblk_t *cur) 5953 { 5954 int ret; 5955 struct ext4_map_blocks map; 5956 5957 map.m_lblk = *cur; 5958 map.m_len = ((inode->i_size) >> inode->i_sb->s_blocksize_bits) - *cur; 5959 5960 ret = ext4_map_blocks(NULL, inode, &map, 0); 5961 if (ret < 0) 5962 return ret; 5963 if (ret != 0) 5964 return 0; 5965 *cur = *cur + map.m_len; 5966 return 0; 5967 } 5968 5969 /* Count number of blocks used by this inode and update i_blocks */ 5970 int ext4_ext_replay_set_iblocks(struct inode *inode) 5971 { 5972 struct ext4_ext_path *path = NULL, *path2 = NULL; 5973 struct ext4_extent *ex; 5974 ext4_lblk_t cur = 0, end; 5975 int numblks = 0, i, ret = 0; 5976 ext4_fsblk_t cmp1, cmp2; 5977 struct ext4_map_blocks map; 5978 5979 /* Determin the size of the file first */ 5980 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 5981 EXT4_EX_NOCACHE); 5982 if (IS_ERR(path)) 5983 return PTR_ERR(path); 5984 ex = path[path->p_depth].p_ext; 5985 if (!ex) { 5986 ext4_ext_drop_refs(path); 5987 kfree(path); 5988 goto out; 5989 } 5990 end = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); 5991 ext4_ext_drop_refs(path); 5992 kfree(path); 5993 5994 /* Count the number of data blocks */ 5995 cur = 0; 5996 while (cur < end) { 5997 map.m_lblk = cur; 5998 map.m_len = end - cur; 5999 ret = ext4_map_blocks(NULL, inode, &map, 0); 6000 if (ret < 0) 6001 break; 6002 if (ret > 0) 6003 numblks += ret; 6004 cur = cur + map.m_len; 6005 } 6006 6007 /* 6008 * Count the number of extent tree blocks. We do it by looking up 6009 * two successive extents and determining the difference between 6010 * their paths. When path is different for 2 successive extents 6011 * we compare the blocks in the path at each level and increment 6012 * iblocks by total number of differences found. 6013 */ 6014 cur = 0; 6015 ret = skip_hole(inode, &cur); 6016 if (ret < 0) 6017 goto out; 6018 path = ext4_find_extent(inode, cur, NULL, 0); 6019 if (IS_ERR(path)) 6020 goto out; 6021 numblks += path->p_depth; 6022 ext4_ext_drop_refs(path); 6023 kfree(path); 6024 while (cur < end) { 6025 path = ext4_find_extent(inode, cur, NULL, 0); 6026 if (IS_ERR(path)) 6027 break; 6028 ex = path[path->p_depth].p_ext; 6029 if (!ex) { 6030 ext4_ext_drop_refs(path); 6031 kfree(path); 6032 return 0; 6033 } 6034 cur = max(cur + 1, le32_to_cpu(ex->ee_block) + 6035 ext4_ext_get_actual_len(ex)); 6036 ret = skip_hole(inode, &cur); 6037 if (ret < 0) { 6038 ext4_ext_drop_refs(path); 6039 kfree(path); 6040 break; 6041 } 6042 path2 = ext4_find_extent(inode, cur, NULL, 0); 6043 if (IS_ERR(path2)) { 6044 ext4_ext_drop_refs(path); 6045 kfree(path); 6046 break; 6047 } 6048 for (i = 0; i <= max(path->p_depth, path2->p_depth); i++) { 6049 cmp1 = cmp2 = 0; 6050 if (i <= path->p_depth) 6051 cmp1 = path[i].p_bh ? 6052 path[i].p_bh->b_blocknr : 0; 6053 if (i <= path2->p_depth) 6054 cmp2 = path2[i].p_bh ? 6055 path2[i].p_bh->b_blocknr : 0; 6056 if (cmp1 != cmp2 && cmp2 != 0) 6057 numblks++; 6058 } 6059 ext4_ext_drop_refs(path); 6060 ext4_ext_drop_refs(path2); 6061 kfree(path); 6062 kfree(path2); 6063 } 6064 6065 out: 6066 inode->i_blocks = numblks << (inode->i_sb->s_blocksize_bits - 9); 6067 ext4_mark_inode_dirty(NULL, inode); 6068 return 0; 6069 } 6070 6071 int ext4_ext_clear_bb(struct inode *inode) 6072 { 6073 struct ext4_ext_path *path = NULL; 6074 struct ext4_extent *ex; 6075 ext4_lblk_t cur = 0, end; 6076 int j, ret = 0; 6077 struct ext4_map_blocks map; 6078 6079 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 6080 return 0; 6081 6082 /* Determin the size of the file first */ 6083 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 6084 EXT4_EX_NOCACHE); 6085 if (IS_ERR(path)) 6086 return PTR_ERR(path); 6087 ex = path[path->p_depth].p_ext; 6088 if (!ex) { 6089 ext4_ext_drop_refs(path); 6090 kfree(path); 6091 return 0; 6092 } 6093 end = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); 6094 ext4_ext_drop_refs(path); 6095 kfree(path); 6096 6097 cur = 0; 6098 while (cur < end) { 6099 map.m_lblk = cur; 6100 map.m_len = end - cur; 6101 ret = ext4_map_blocks(NULL, inode, &map, 0); 6102 if (ret < 0) 6103 break; 6104 if (ret > 0) { 6105 path = ext4_find_extent(inode, map.m_lblk, NULL, 0); 6106 if (!IS_ERR_OR_NULL(path)) { 6107 for (j = 0; j < path->p_depth; j++) { 6108 6109 ext4_mb_mark_bb(inode->i_sb, 6110 path[j].p_block, 1, 0); 6111 ext4_fc_record_regions(inode->i_sb, inode->i_ino, 6112 0, path[j].p_block, 1, 1); 6113 } 6114 ext4_ext_drop_refs(path); 6115 kfree(path); 6116 } 6117 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); 6118 ext4_fc_record_regions(inode->i_sb, inode->i_ino, 6119 map.m_lblk, map.m_pblk, map.m_len, 1); 6120 } 6121 cur = cur + map.m_len; 6122 } 6123 6124 return 0; 6125 } 6126