1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 * 6 * Architecture independence: 7 * Copyright (c) 2005, Bull S.A. 8 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 9 */ 10 11 /* 12 * Extents support for EXT4 13 * 14 * TODO: 15 * - ext4*_error() should be used in some situations 16 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 17 * - smart tree reduction 18 */ 19 20 #include <linux/fs.h> 21 #include <linux/time.h> 22 #include <linux/jbd2.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/quotaops.h> 26 #include <linux/string.h> 27 #include <linux/slab.h> 28 #include <linux/uaccess.h> 29 #include <linux/fiemap.h> 30 #include <linux/backing-dev.h> 31 #include "ext4_jbd2.h" 32 #include "ext4_extents.h" 33 #include "xattr.h" 34 35 #include <trace/events/ext4.h> 36 37 /* 38 * used by extent splitting. 39 */ 40 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 41 due to ENOSPC */ 42 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 43 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 44 45 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 46 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 47 48 static __le32 ext4_extent_block_csum(struct inode *inode, 49 struct ext4_extent_header *eh) 50 { 51 struct ext4_inode_info *ei = EXT4_I(inode); 52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 53 __u32 csum; 54 55 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 56 EXT4_EXTENT_TAIL_OFFSET(eh)); 57 return cpu_to_le32(csum); 58 } 59 60 static int ext4_extent_block_csum_verify(struct inode *inode, 61 struct ext4_extent_header *eh) 62 { 63 struct ext4_extent_tail *et; 64 65 if (!ext4_has_metadata_csum(inode->i_sb)) 66 return 1; 67 68 et = find_ext4_extent_tail(eh); 69 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 70 return 0; 71 return 1; 72 } 73 74 static void ext4_extent_block_csum_set(struct inode *inode, 75 struct ext4_extent_header *eh) 76 { 77 struct ext4_extent_tail *et; 78 79 if (!ext4_has_metadata_csum(inode->i_sb)) 80 return; 81 82 et = find_ext4_extent_tail(eh); 83 et->et_checksum = ext4_extent_block_csum(inode, eh); 84 } 85 86 static int ext4_split_extent(handle_t *handle, 87 struct inode *inode, 88 struct ext4_ext_path **ppath, 89 struct ext4_map_blocks *map, 90 int split_flag, 91 int flags); 92 93 static int ext4_split_extent_at(handle_t *handle, 94 struct inode *inode, 95 struct ext4_ext_path **ppath, 96 ext4_lblk_t split, 97 int split_flag, 98 int flags); 99 100 static int ext4_find_delayed_extent(struct inode *inode, 101 struct extent_status *newes); 102 103 static int ext4_ext_trunc_restart_fn(struct inode *inode, int *dropped) 104 { 105 /* 106 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 107 * moment, get_block can be called only for blocks inside i_size since 108 * page cache has been already dropped and writes are blocked by 109 * i_mutex. So we can safely drop the i_data_sem here. 110 */ 111 BUG_ON(EXT4_JOURNAL(inode) == NULL); 112 ext4_discard_preallocations(inode); 113 up_write(&EXT4_I(inode)->i_data_sem); 114 *dropped = 1; 115 return 0; 116 } 117 118 /* 119 * Make sure 'handle' has at least 'check_cred' credits. If not, restart 120 * transaction with 'restart_cred' credits. The function drops i_data_sem 121 * when restarting transaction and gets it after transaction is restarted. 122 * 123 * The function returns 0 on success, 1 if transaction had to be restarted, 124 * and < 0 in case of fatal error. 125 */ 126 int ext4_datasem_ensure_credits(handle_t *handle, struct inode *inode, 127 int check_cred, int restart_cred, 128 int revoke_cred) 129 { 130 int ret; 131 int dropped = 0; 132 133 ret = ext4_journal_ensure_credits_fn(handle, check_cred, restart_cred, 134 revoke_cred, ext4_ext_trunc_restart_fn(inode, &dropped)); 135 if (dropped) 136 down_write(&EXT4_I(inode)->i_data_sem); 137 return ret; 138 } 139 140 /* 141 * could return: 142 * - EROFS 143 * - ENOMEM 144 */ 145 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 146 struct ext4_ext_path *path) 147 { 148 if (path->p_bh) { 149 /* path points to block */ 150 BUFFER_TRACE(path->p_bh, "get_write_access"); 151 return ext4_journal_get_write_access(handle, path->p_bh); 152 } 153 /* path points to leaf/index in inode body */ 154 /* we use in-core data, no need to protect them */ 155 return 0; 156 } 157 158 /* 159 * could return: 160 * - EROFS 161 * - ENOMEM 162 * - EIO 163 */ 164 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 165 struct inode *inode, struct ext4_ext_path *path) 166 { 167 int err; 168 169 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 170 if (path->p_bh) { 171 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 172 /* path points to block */ 173 err = __ext4_handle_dirty_metadata(where, line, handle, 174 inode, path->p_bh); 175 } else { 176 /* path points to leaf/index in inode body */ 177 err = ext4_mark_inode_dirty(handle, inode); 178 } 179 return err; 180 } 181 182 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 183 struct ext4_ext_path *path, 184 ext4_lblk_t block) 185 { 186 if (path) { 187 int depth = path->p_depth; 188 struct ext4_extent *ex; 189 190 /* 191 * Try to predict block placement assuming that we are 192 * filling in a file which will eventually be 193 * non-sparse --- i.e., in the case of libbfd writing 194 * an ELF object sections out-of-order but in a way 195 * the eventually results in a contiguous object or 196 * executable file, or some database extending a table 197 * space file. However, this is actually somewhat 198 * non-ideal if we are writing a sparse file such as 199 * qemu or KVM writing a raw image file that is going 200 * to stay fairly sparse, since it will end up 201 * fragmenting the file system's free space. Maybe we 202 * should have some hueristics or some way to allow 203 * userspace to pass a hint to file system, 204 * especially if the latter case turns out to be 205 * common. 206 */ 207 ex = path[depth].p_ext; 208 if (ex) { 209 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 210 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 211 212 if (block > ext_block) 213 return ext_pblk + (block - ext_block); 214 else 215 return ext_pblk - (ext_block - block); 216 } 217 218 /* it looks like index is empty; 219 * try to find starting block from index itself */ 220 if (path[depth].p_bh) 221 return path[depth].p_bh->b_blocknr; 222 } 223 224 /* OK. use inode's group */ 225 return ext4_inode_to_goal_block(inode); 226 } 227 228 /* 229 * Allocation for a meta data block 230 */ 231 static ext4_fsblk_t 232 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 233 struct ext4_ext_path *path, 234 struct ext4_extent *ex, int *err, unsigned int flags) 235 { 236 ext4_fsblk_t goal, newblock; 237 238 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 239 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 240 NULL, err); 241 return newblock; 242 } 243 244 static inline int ext4_ext_space_block(struct inode *inode, int check) 245 { 246 int size; 247 248 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 249 / sizeof(struct ext4_extent); 250 #ifdef AGGRESSIVE_TEST 251 if (!check && size > 6) 252 size = 6; 253 #endif 254 return size; 255 } 256 257 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 258 { 259 int size; 260 261 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 262 / sizeof(struct ext4_extent_idx); 263 #ifdef AGGRESSIVE_TEST 264 if (!check && size > 5) 265 size = 5; 266 #endif 267 return size; 268 } 269 270 static inline int ext4_ext_space_root(struct inode *inode, int check) 271 { 272 int size; 273 274 size = sizeof(EXT4_I(inode)->i_data); 275 size -= sizeof(struct ext4_extent_header); 276 size /= sizeof(struct ext4_extent); 277 #ifdef AGGRESSIVE_TEST 278 if (!check && size > 3) 279 size = 3; 280 #endif 281 return size; 282 } 283 284 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 285 { 286 int size; 287 288 size = sizeof(EXT4_I(inode)->i_data); 289 size -= sizeof(struct ext4_extent_header); 290 size /= sizeof(struct ext4_extent_idx); 291 #ifdef AGGRESSIVE_TEST 292 if (!check && size > 4) 293 size = 4; 294 #endif 295 return size; 296 } 297 298 static inline int 299 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 300 struct ext4_ext_path **ppath, ext4_lblk_t lblk, 301 int nofail) 302 { 303 struct ext4_ext_path *path = *ppath; 304 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 305 306 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ? 307 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 308 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO | 309 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0)); 310 } 311 312 /* 313 * Calculate the number of metadata blocks needed 314 * to allocate @blocks 315 * Worse case is one block per extent 316 */ 317 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 318 { 319 struct ext4_inode_info *ei = EXT4_I(inode); 320 int idxs; 321 322 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 323 / sizeof(struct ext4_extent_idx)); 324 325 /* 326 * If the new delayed allocation block is contiguous with the 327 * previous da block, it can share index blocks with the 328 * previous block, so we only need to allocate a new index 329 * block every idxs leaf blocks. At ldxs**2 blocks, we need 330 * an additional index block, and at ldxs**3 blocks, yet 331 * another index blocks. 332 */ 333 if (ei->i_da_metadata_calc_len && 334 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 335 int num = 0; 336 337 if ((ei->i_da_metadata_calc_len % idxs) == 0) 338 num++; 339 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 340 num++; 341 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 342 num++; 343 ei->i_da_metadata_calc_len = 0; 344 } else 345 ei->i_da_metadata_calc_len++; 346 ei->i_da_metadata_calc_last_lblock++; 347 return num; 348 } 349 350 /* 351 * In the worst case we need a new set of index blocks at 352 * every level of the inode's extent tree. 353 */ 354 ei->i_da_metadata_calc_len = 1; 355 ei->i_da_metadata_calc_last_lblock = lblock; 356 return ext_depth(inode) + 1; 357 } 358 359 static int 360 ext4_ext_max_entries(struct inode *inode, int depth) 361 { 362 int max; 363 364 if (depth == ext_depth(inode)) { 365 if (depth == 0) 366 max = ext4_ext_space_root(inode, 1); 367 else 368 max = ext4_ext_space_root_idx(inode, 1); 369 } else { 370 if (depth == 0) 371 max = ext4_ext_space_block(inode, 1); 372 else 373 max = ext4_ext_space_block_idx(inode, 1); 374 } 375 376 return max; 377 } 378 379 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 380 { 381 ext4_fsblk_t block = ext4_ext_pblock(ext); 382 int len = ext4_ext_get_actual_len(ext); 383 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 384 385 /* 386 * We allow neither: 387 * - zero length 388 * - overflow/wrap-around 389 */ 390 if (lblock + len <= lblock) 391 return 0; 392 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 393 } 394 395 static int ext4_valid_extent_idx(struct inode *inode, 396 struct ext4_extent_idx *ext_idx) 397 { 398 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 399 400 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 401 } 402 403 static int ext4_valid_extent_entries(struct inode *inode, 404 struct ext4_extent_header *eh, 405 int depth) 406 { 407 unsigned short entries; 408 if (eh->eh_entries == 0) 409 return 1; 410 411 entries = le16_to_cpu(eh->eh_entries); 412 413 if (depth == 0) { 414 /* leaf entries */ 415 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 416 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 417 ext4_fsblk_t pblock = 0; 418 ext4_lblk_t lblock = 0; 419 ext4_lblk_t prev = 0; 420 int len = 0; 421 while (entries) { 422 if (!ext4_valid_extent(inode, ext)) 423 return 0; 424 425 /* Check for overlapping extents */ 426 lblock = le32_to_cpu(ext->ee_block); 427 len = ext4_ext_get_actual_len(ext); 428 if ((lblock <= prev) && prev) { 429 pblock = ext4_ext_pblock(ext); 430 es->s_last_error_block = cpu_to_le64(pblock); 431 return 0; 432 } 433 ext++; 434 entries--; 435 prev = lblock + len - 1; 436 } 437 } else { 438 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 439 while (entries) { 440 if (!ext4_valid_extent_idx(inode, ext_idx)) 441 return 0; 442 ext_idx++; 443 entries--; 444 } 445 } 446 return 1; 447 } 448 449 static int __ext4_ext_check(const char *function, unsigned int line, 450 struct inode *inode, struct ext4_extent_header *eh, 451 int depth, ext4_fsblk_t pblk) 452 { 453 const char *error_msg; 454 int max = 0, err = -EFSCORRUPTED; 455 456 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 457 error_msg = "invalid magic"; 458 goto corrupted; 459 } 460 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 461 error_msg = "unexpected eh_depth"; 462 goto corrupted; 463 } 464 if (unlikely(eh->eh_max == 0)) { 465 error_msg = "invalid eh_max"; 466 goto corrupted; 467 } 468 max = ext4_ext_max_entries(inode, depth); 469 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 470 error_msg = "too large eh_max"; 471 goto corrupted; 472 } 473 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 474 error_msg = "invalid eh_entries"; 475 goto corrupted; 476 } 477 if (!ext4_valid_extent_entries(inode, eh, depth)) { 478 error_msg = "invalid extent entries"; 479 goto corrupted; 480 } 481 if (unlikely(depth > 32)) { 482 error_msg = "too large eh_depth"; 483 goto corrupted; 484 } 485 /* Verify checksum on non-root extent tree nodes */ 486 if (ext_depth(inode) != depth && 487 !ext4_extent_block_csum_verify(inode, eh)) { 488 error_msg = "extent tree corrupted"; 489 err = -EFSBADCRC; 490 goto corrupted; 491 } 492 return 0; 493 494 corrupted: 495 ext4_error_inode(inode, function, line, 0, 496 "pblk %llu bad header/extent: %s - magic %x, " 497 "entries %u, max %u(%u), depth %u(%u)", 498 (unsigned long long) pblk, error_msg, 499 le16_to_cpu(eh->eh_magic), 500 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 501 max, le16_to_cpu(eh->eh_depth), depth); 502 return err; 503 } 504 505 #define ext4_ext_check(inode, eh, depth, pblk) \ 506 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 507 508 int ext4_ext_check_inode(struct inode *inode) 509 { 510 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 511 } 512 513 static struct buffer_head * 514 __read_extent_tree_block(const char *function, unsigned int line, 515 struct inode *inode, ext4_fsblk_t pblk, int depth, 516 int flags) 517 { 518 struct buffer_head *bh; 519 int err; 520 521 bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS); 522 if (unlikely(!bh)) 523 return ERR_PTR(-ENOMEM); 524 525 if (!bh_uptodate_or_lock(bh)) { 526 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 527 err = bh_submit_read(bh); 528 if (err < 0) 529 goto errout; 530 } 531 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 532 return bh; 533 if (!ext4_has_feature_journal(inode->i_sb) || 534 (inode->i_ino != 535 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) { 536 err = __ext4_ext_check(function, line, inode, 537 ext_block_hdr(bh), depth, pblk); 538 if (err) 539 goto errout; 540 } 541 set_buffer_verified(bh); 542 /* 543 * If this is a leaf block, cache all of its entries 544 */ 545 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 546 struct ext4_extent_header *eh = ext_block_hdr(bh); 547 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 548 ext4_lblk_t prev = 0; 549 int i; 550 551 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 552 unsigned int status = EXTENT_STATUS_WRITTEN; 553 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 554 int len = ext4_ext_get_actual_len(ex); 555 556 if (prev && (prev != lblk)) 557 ext4_es_cache_extent(inode, prev, 558 lblk - prev, ~0, 559 EXTENT_STATUS_HOLE); 560 561 if (ext4_ext_is_unwritten(ex)) 562 status = EXTENT_STATUS_UNWRITTEN; 563 ext4_es_cache_extent(inode, lblk, len, 564 ext4_ext_pblock(ex), status); 565 prev = lblk + len; 566 } 567 } 568 return bh; 569 errout: 570 put_bh(bh); 571 return ERR_PTR(err); 572 573 } 574 575 #define read_extent_tree_block(inode, pblk, depth, flags) \ 576 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 577 (depth), (flags)) 578 579 /* 580 * This function is called to cache a file's extent information in the 581 * extent status tree 582 */ 583 int ext4_ext_precache(struct inode *inode) 584 { 585 struct ext4_inode_info *ei = EXT4_I(inode); 586 struct ext4_ext_path *path = NULL; 587 struct buffer_head *bh; 588 int i = 0, depth, ret = 0; 589 590 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 591 return 0; /* not an extent-mapped inode */ 592 593 down_read(&ei->i_data_sem); 594 depth = ext_depth(inode); 595 596 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 597 GFP_NOFS); 598 if (path == NULL) { 599 up_read(&ei->i_data_sem); 600 return -ENOMEM; 601 } 602 603 /* Don't cache anything if there are no external extent blocks */ 604 if (depth == 0) 605 goto out; 606 path[0].p_hdr = ext_inode_hdr(inode); 607 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 608 if (ret) 609 goto out; 610 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 611 while (i >= 0) { 612 /* 613 * If this is a leaf block or we've reached the end of 614 * the index block, go up 615 */ 616 if ((i == depth) || 617 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 618 brelse(path[i].p_bh); 619 path[i].p_bh = NULL; 620 i--; 621 continue; 622 } 623 bh = read_extent_tree_block(inode, 624 ext4_idx_pblock(path[i].p_idx++), 625 depth - i - 1, 626 EXT4_EX_FORCE_CACHE); 627 if (IS_ERR(bh)) { 628 ret = PTR_ERR(bh); 629 break; 630 } 631 i++; 632 path[i].p_bh = bh; 633 path[i].p_hdr = ext_block_hdr(bh); 634 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 635 } 636 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 637 out: 638 up_read(&ei->i_data_sem); 639 ext4_ext_drop_refs(path); 640 kfree(path); 641 return ret; 642 } 643 644 #ifdef EXT_DEBUG 645 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 646 { 647 int k, l = path->p_depth; 648 649 ext_debug("path:"); 650 for (k = 0; k <= l; k++, path++) { 651 if (path->p_idx) { 652 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 653 ext4_idx_pblock(path->p_idx)); 654 } else if (path->p_ext) { 655 ext_debug(" %d:[%d]%d:%llu ", 656 le32_to_cpu(path->p_ext->ee_block), 657 ext4_ext_is_unwritten(path->p_ext), 658 ext4_ext_get_actual_len(path->p_ext), 659 ext4_ext_pblock(path->p_ext)); 660 } else 661 ext_debug(" []"); 662 } 663 ext_debug("\n"); 664 } 665 666 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 667 { 668 int depth = ext_depth(inode); 669 struct ext4_extent_header *eh; 670 struct ext4_extent *ex; 671 int i; 672 673 if (!path) 674 return; 675 676 eh = path[depth].p_hdr; 677 ex = EXT_FIRST_EXTENT(eh); 678 679 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 680 681 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 682 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 683 ext4_ext_is_unwritten(ex), 684 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 685 } 686 ext_debug("\n"); 687 } 688 689 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 690 ext4_fsblk_t newblock, int level) 691 { 692 int depth = ext_depth(inode); 693 struct ext4_extent *ex; 694 695 if (depth != level) { 696 struct ext4_extent_idx *idx; 697 idx = path[level].p_idx; 698 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 699 ext_debug("%d: move %d:%llu in new index %llu\n", level, 700 le32_to_cpu(idx->ei_block), 701 ext4_idx_pblock(idx), 702 newblock); 703 idx++; 704 } 705 706 return; 707 } 708 709 ex = path[depth].p_ext; 710 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 711 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 712 le32_to_cpu(ex->ee_block), 713 ext4_ext_pblock(ex), 714 ext4_ext_is_unwritten(ex), 715 ext4_ext_get_actual_len(ex), 716 newblock); 717 ex++; 718 } 719 } 720 721 #else 722 #define ext4_ext_show_path(inode, path) 723 #define ext4_ext_show_leaf(inode, path) 724 #define ext4_ext_show_move(inode, path, newblock, level) 725 #endif 726 727 void ext4_ext_drop_refs(struct ext4_ext_path *path) 728 { 729 int depth, i; 730 731 if (!path) 732 return; 733 depth = path->p_depth; 734 for (i = 0; i <= depth; i++, path++) 735 if (path->p_bh) { 736 brelse(path->p_bh); 737 path->p_bh = NULL; 738 } 739 } 740 741 /* 742 * ext4_ext_binsearch_idx: 743 * binary search for the closest index of the given block 744 * the header must be checked before calling this 745 */ 746 static void 747 ext4_ext_binsearch_idx(struct inode *inode, 748 struct ext4_ext_path *path, ext4_lblk_t block) 749 { 750 struct ext4_extent_header *eh = path->p_hdr; 751 struct ext4_extent_idx *r, *l, *m; 752 753 754 ext_debug("binsearch for %u(idx): ", block); 755 756 l = EXT_FIRST_INDEX(eh) + 1; 757 r = EXT_LAST_INDEX(eh); 758 while (l <= r) { 759 m = l + (r - l) / 2; 760 if (block < le32_to_cpu(m->ei_block)) 761 r = m - 1; 762 else 763 l = m + 1; 764 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 765 m, le32_to_cpu(m->ei_block), 766 r, le32_to_cpu(r->ei_block)); 767 } 768 769 path->p_idx = l - 1; 770 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 771 ext4_idx_pblock(path->p_idx)); 772 773 #ifdef CHECK_BINSEARCH 774 { 775 struct ext4_extent_idx *chix, *ix; 776 int k; 777 778 chix = ix = EXT_FIRST_INDEX(eh); 779 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 780 if (k != 0 && 781 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 782 printk(KERN_DEBUG "k=%d, ix=0x%p, " 783 "first=0x%p\n", k, 784 ix, EXT_FIRST_INDEX(eh)); 785 printk(KERN_DEBUG "%u <= %u\n", 786 le32_to_cpu(ix->ei_block), 787 le32_to_cpu(ix[-1].ei_block)); 788 } 789 BUG_ON(k && le32_to_cpu(ix->ei_block) 790 <= le32_to_cpu(ix[-1].ei_block)); 791 if (block < le32_to_cpu(ix->ei_block)) 792 break; 793 chix = ix; 794 } 795 BUG_ON(chix != path->p_idx); 796 } 797 #endif 798 799 } 800 801 /* 802 * ext4_ext_binsearch: 803 * binary search for closest extent of the given block 804 * the header must be checked before calling this 805 */ 806 static void 807 ext4_ext_binsearch(struct inode *inode, 808 struct ext4_ext_path *path, ext4_lblk_t block) 809 { 810 struct ext4_extent_header *eh = path->p_hdr; 811 struct ext4_extent *r, *l, *m; 812 813 if (eh->eh_entries == 0) { 814 /* 815 * this leaf is empty: 816 * we get such a leaf in split/add case 817 */ 818 return; 819 } 820 821 ext_debug("binsearch for %u: ", block); 822 823 l = EXT_FIRST_EXTENT(eh) + 1; 824 r = EXT_LAST_EXTENT(eh); 825 826 while (l <= r) { 827 m = l + (r - l) / 2; 828 if (block < le32_to_cpu(m->ee_block)) 829 r = m - 1; 830 else 831 l = m + 1; 832 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 833 m, le32_to_cpu(m->ee_block), 834 r, le32_to_cpu(r->ee_block)); 835 } 836 837 path->p_ext = l - 1; 838 ext_debug(" -> %d:%llu:[%d]%d ", 839 le32_to_cpu(path->p_ext->ee_block), 840 ext4_ext_pblock(path->p_ext), 841 ext4_ext_is_unwritten(path->p_ext), 842 ext4_ext_get_actual_len(path->p_ext)); 843 844 #ifdef CHECK_BINSEARCH 845 { 846 struct ext4_extent *chex, *ex; 847 int k; 848 849 chex = ex = EXT_FIRST_EXTENT(eh); 850 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 851 BUG_ON(k && le32_to_cpu(ex->ee_block) 852 <= le32_to_cpu(ex[-1].ee_block)); 853 if (block < le32_to_cpu(ex->ee_block)) 854 break; 855 chex = ex; 856 } 857 BUG_ON(chex != path->p_ext); 858 } 859 #endif 860 861 } 862 863 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 864 { 865 struct ext4_extent_header *eh; 866 867 eh = ext_inode_hdr(inode); 868 eh->eh_depth = 0; 869 eh->eh_entries = 0; 870 eh->eh_magic = EXT4_EXT_MAGIC; 871 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 872 ext4_mark_inode_dirty(handle, inode); 873 return 0; 874 } 875 876 struct ext4_ext_path * 877 ext4_find_extent(struct inode *inode, ext4_lblk_t block, 878 struct ext4_ext_path **orig_path, int flags) 879 { 880 struct ext4_extent_header *eh; 881 struct buffer_head *bh; 882 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 883 short int depth, i, ppos = 0; 884 int ret; 885 886 eh = ext_inode_hdr(inode); 887 depth = ext_depth(inode); 888 if (depth < 0 || depth > EXT4_MAX_EXTENT_DEPTH) { 889 EXT4_ERROR_INODE(inode, "inode has invalid extent depth: %d", 890 depth); 891 ret = -EFSCORRUPTED; 892 goto err; 893 } 894 895 if (path) { 896 ext4_ext_drop_refs(path); 897 if (depth > path[0].p_maxdepth) { 898 kfree(path); 899 *orig_path = path = NULL; 900 } 901 } 902 if (!path) { 903 /* account possible depth increase */ 904 path = kcalloc(depth + 2, sizeof(struct ext4_ext_path), 905 GFP_NOFS); 906 if (unlikely(!path)) 907 return ERR_PTR(-ENOMEM); 908 path[0].p_maxdepth = depth + 1; 909 } 910 path[0].p_hdr = eh; 911 path[0].p_bh = NULL; 912 913 i = depth; 914 /* walk through the tree */ 915 while (i) { 916 ext_debug("depth %d: num %d, max %d\n", 917 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 918 919 ext4_ext_binsearch_idx(inode, path + ppos, block); 920 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 921 path[ppos].p_depth = i; 922 path[ppos].p_ext = NULL; 923 924 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 925 flags); 926 if (IS_ERR(bh)) { 927 ret = PTR_ERR(bh); 928 goto err; 929 } 930 931 eh = ext_block_hdr(bh); 932 ppos++; 933 path[ppos].p_bh = bh; 934 path[ppos].p_hdr = eh; 935 } 936 937 path[ppos].p_depth = i; 938 path[ppos].p_ext = NULL; 939 path[ppos].p_idx = NULL; 940 941 /* find extent */ 942 ext4_ext_binsearch(inode, path + ppos, block); 943 /* if not an empty leaf */ 944 if (path[ppos].p_ext) 945 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 946 947 ext4_ext_show_path(inode, path); 948 949 return path; 950 951 err: 952 ext4_ext_drop_refs(path); 953 kfree(path); 954 if (orig_path) 955 *orig_path = NULL; 956 return ERR_PTR(ret); 957 } 958 959 /* 960 * ext4_ext_insert_index: 961 * insert new index [@logical;@ptr] into the block at @curp; 962 * check where to insert: before @curp or after @curp 963 */ 964 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 965 struct ext4_ext_path *curp, 966 int logical, ext4_fsblk_t ptr) 967 { 968 struct ext4_extent_idx *ix; 969 int len, err; 970 971 err = ext4_ext_get_access(handle, inode, curp); 972 if (err) 973 return err; 974 975 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 976 EXT4_ERROR_INODE(inode, 977 "logical %d == ei_block %d!", 978 logical, le32_to_cpu(curp->p_idx->ei_block)); 979 return -EFSCORRUPTED; 980 } 981 982 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 983 >= le16_to_cpu(curp->p_hdr->eh_max))) { 984 EXT4_ERROR_INODE(inode, 985 "eh_entries %d >= eh_max %d!", 986 le16_to_cpu(curp->p_hdr->eh_entries), 987 le16_to_cpu(curp->p_hdr->eh_max)); 988 return -EFSCORRUPTED; 989 } 990 991 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 992 /* insert after */ 993 ext_debug("insert new index %d after: %llu\n", logical, ptr); 994 ix = curp->p_idx + 1; 995 } else { 996 /* insert before */ 997 ext_debug("insert new index %d before: %llu\n", logical, ptr); 998 ix = curp->p_idx; 999 } 1000 1001 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 1002 BUG_ON(len < 0); 1003 if (len > 0) { 1004 ext_debug("insert new index %d: " 1005 "move %d indices from 0x%p to 0x%p\n", 1006 logical, len, ix, ix + 1); 1007 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 1008 } 1009 1010 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 1011 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 1012 return -EFSCORRUPTED; 1013 } 1014 1015 ix->ei_block = cpu_to_le32(logical); 1016 ext4_idx_store_pblock(ix, ptr); 1017 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 1018 1019 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 1020 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 1021 return -EFSCORRUPTED; 1022 } 1023 1024 err = ext4_ext_dirty(handle, inode, curp); 1025 ext4_std_error(inode->i_sb, err); 1026 1027 return err; 1028 } 1029 1030 /* 1031 * ext4_ext_split: 1032 * inserts new subtree into the path, using free index entry 1033 * at depth @at: 1034 * - allocates all needed blocks (new leaf and all intermediate index blocks) 1035 * - makes decision where to split 1036 * - moves remaining extents and index entries (right to the split point) 1037 * into the newly allocated blocks 1038 * - initializes subtree 1039 */ 1040 static int ext4_ext_split(handle_t *handle, struct inode *inode, 1041 unsigned int flags, 1042 struct ext4_ext_path *path, 1043 struct ext4_extent *newext, int at) 1044 { 1045 struct buffer_head *bh = NULL; 1046 int depth = ext_depth(inode); 1047 struct ext4_extent_header *neh; 1048 struct ext4_extent_idx *fidx; 1049 int i = at, k, m, a; 1050 ext4_fsblk_t newblock, oldblock; 1051 __le32 border; 1052 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1053 int err = 0; 1054 size_t ext_size = 0; 1055 1056 /* make decision: where to split? */ 1057 /* FIXME: now decision is simplest: at current extent */ 1058 1059 /* if current leaf will be split, then we should use 1060 * border from split point */ 1061 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1062 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1063 return -EFSCORRUPTED; 1064 } 1065 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1066 border = path[depth].p_ext[1].ee_block; 1067 ext_debug("leaf will be split." 1068 " next leaf starts at %d\n", 1069 le32_to_cpu(border)); 1070 } else { 1071 border = newext->ee_block; 1072 ext_debug("leaf will be added." 1073 " next leaf starts at %d\n", 1074 le32_to_cpu(border)); 1075 } 1076 1077 /* 1078 * If error occurs, then we break processing 1079 * and mark filesystem read-only. index won't 1080 * be inserted and tree will be in consistent 1081 * state. Next mount will repair buffers too. 1082 */ 1083 1084 /* 1085 * Get array to track all allocated blocks. 1086 * We need this to handle errors and free blocks 1087 * upon them. 1088 */ 1089 ablocks = kcalloc(depth, sizeof(ext4_fsblk_t), GFP_NOFS); 1090 if (!ablocks) 1091 return -ENOMEM; 1092 1093 /* allocate all needed blocks */ 1094 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1095 for (a = 0; a < depth - at; a++) { 1096 newblock = ext4_ext_new_meta_block(handle, inode, path, 1097 newext, &err, flags); 1098 if (newblock == 0) 1099 goto cleanup; 1100 ablocks[a] = newblock; 1101 } 1102 1103 /* initialize new leaf */ 1104 newblock = ablocks[--a]; 1105 if (unlikely(newblock == 0)) { 1106 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1107 err = -EFSCORRUPTED; 1108 goto cleanup; 1109 } 1110 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1111 if (unlikely(!bh)) { 1112 err = -ENOMEM; 1113 goto cleanup; 1114 } 1115 lock_buffer(bh); 1116 1117 err = ext4_journal_get_create_access(handle, bh); 1118 if (err) 1119 goto cleanup; 1120 1121 neh = ext_block_hdr(bh); 1122 neh->eh_entries = 0; 1123 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1124 neh->eh_magic = EXT4_EXT_MAGIC; 1125 neh->eh_depth = 0; 1126 1127 /* move remainder of path[depth] to the new leaf */ 1128 if (unlikely(path[depth].p_hdr->eh_entries != 1129 path[depth].p_hdr->eh_max)) { 1130 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1131 path[depth].p_hdr->eh_entries, 1132 path[depth].p_hdr->eh_max); 1133 err = -EFSCORRUPTED; 1134 goto cleanup; 1135 } 1136 /* start copy from next extent */ 1137 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1138 ext4_ext_show_move(inode, path, newblock, depth); 1139 if (m) { 1140 struct ext4_extent *ex; 1141 ex = EXT_FIRST_EXTENT(neh); 1142 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1143 le16_add_cpu(&neh->eh_entries, m); 1144 } 1145 1146 /* zero out unused area in the extent block */ 1147 ext_size = sizeof(struct ext4_extent_header) + 1148 sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries); 1149 memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size); 1150 ext4_extent_block_csum_set(inode, neh); 1151 set_buffer_uptodate(bh); 1152 unlock_buffer(bh); 1153 1154 err = ext4_handle_dirty_metadata(handle, inode, bh); 1155 if (err) 1156 goto cleanup; 1157 brelse(bh); 1158 bh = NULL; 1159 1160 /* correct old leaf */ 1161 if (m) { 1162 err = ext4_ext_get_access(handle, inode, path + depth); 1163 if (err) 1164 goto cleanup; 1165 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1166 err = ext4_ext_dirty(handle, inode, path + depth); 1167 if (err) 1168 goto cleanup; 1169 1170 } 1171 1172 /* create intermediate indexes */ 1173 k = depth - at - 1; 1174 if (unlikely(k < 0)) { 1175 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1176 err = -EFSCORRUPTED; 1177 goto cleanup; 1178 } 1179 if (k) 1180 ext_debug("create %d intermediate indices\n", k); 1181 /* insert new index into current index block */ 1182 /* current depth stored in i var */ 1183 i = depth - 1; 1184 while (k--) { 1185 oldblock = newblock; 1186 newblock = ablocks[--a]; 1187 bh = sb_getblk(inode->i_sb, newblock); 1188 if (unlikely(!bh)) { 1189 err = -ENOMEM; 1190 goto cleanup; 1191 } 1192 lock_buffer(bh); 1193 1194 err = ext4_journal_get_create_access(handle, bh); 1195 if (err) 1196 goto cleanup; 1197 1198 neh = ext_block_hdr(bh); 1199 neh->eh_entries = cpu_to_le16(1); 1200 neh->eh_magic = EXT4_EXT_MAGIC; 1201 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1202 neh->eh_depth = cpu_to_le16(depth - i); 1203 fidx = EXT_FIRST_INDEX(neh); 1204 fidx->ei_block = border; 1205 ext4_idx_store_pblock(fidx, oldblock); 1206 1207 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1208 i, newblock, le32_to_cpu(border), oldblock); 1209 1210 /* move remainder of path[i] to the new index block */ 1211 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1212 EXT_LAST_INDEX(path[i].p_hdr))) { 1213 EXT4_ERROR_INODE(inode, 1214 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1215 le32_to_cpu(path[i].p_ext->ee_block)); 1216 err = -EFSCORRUPTED; 1217 goto cleanup; 1218 } 1219 /* start copy indexes */ 1220 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1221 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1222 EXT_MAX_INDEX(path[i].p_hdr)); 1223 ext4_ext_show_move(inode, path, newblock, i); 1224 if (m) { 1225 memmove(++fidx, path[i].p_idx, 1226 sizeof(struct ext4_extent_idx) * m); 1227 le16_add_cpu(&neh->eh_entries, m); 1228 } 1229 /* zero out unused area in the extent block */ 1230 ext_size = sizeof(struct ext4_extent_header) + 1231 (sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries)); 1232 memset(bh->b_data + ext_size, 0, 1233 inode->i_sb->s_blocksize - ext_size); 1234 ext4_extent_block_csum_set(inode, neh); 1235 set_buffer_uptodate(bh); 1236 unlock_buffer(bh); 1237 1238 err = ext4_handle_dirty_metadata(handle, inode, bh); 1239 if (err) 1240 goto cleanup; 1241 brelse(bh); 1242 bh = NULL; 1243 1244 /* correct old index */ 1245 if (m) { 1246 err = ext4_ext_get_access(handle, inode, path + i); 1247 if (err) 1248 goto cleanup; 1249 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1250 err = ext4_ext_dirty(handle, inode, path + i); 1251 if (err) 1252 goto cleanup; 1253 } 1254 1255 i--; 1256 } 1257 1258 /* insert new index */ 1259 err = ext4_ext_insert_index(handle, inode, path + at, 1260 le32_to_cpu(border), newblock); 1261 1262 cleanup: 1263 if (bh) { 1264 if (buffer_locked(bh)) 1265 unlock_buffer(bh); 1266 brelse(bh); 1267 } 1268 1269 if (err) { 1270 /* free all allocated blocks in error case */ 1271 for (i = 0; i < depth; i++) { 1272 if (!ablocks[i]) 1273 continue; 1274 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1275 EXT4_FREE_BLOCKS_METADATA); 1276 } 1277 } 1278 kfree(ablocks); 1279 1280 return err; 1281 } 1282 1283 /* 1284 * ext4_ext_grow_indepth: 1285 * implements tree growing procedure: 1286 * - allocates new block 1287 * - moves top-level data (index block or leaf) into the new block 1288 * - initializes new top-level, creating index that points to the 1289 * just created block 1290 */ 1291 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1292 unsigned int flags) 1293 { 1294 struct ext4_extent_header *neh; 1295 struct buffer_head *bh; 1296 ext4_fsblk_t newblock, goal = 0; 1297 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 1298 int err = 0; 1299 size_t ext_size = 0; 1300 1301 /* Try to prepend new index to old one */ 1302 if (ext_depth(inode)) 1303 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); 1304 if (goal > le32_to_cpu(es->s_first_data_block)) { 1305 flags |= EXT4_MB_HINT_TRY_GOAL; 1306 goal--; 1307 } else 1308 goal = ext4_inode_to_goal_block(inode); 1309 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 1310 NULL, &err); 1311 if (newblock == 0) 1312 return err; 1313 1314 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1315 if (unlikely(!bh)) 1316 return -ENOMEM; 1317 lock_buffer(bh); 1318 1319 err = ext4_journal_get_create_access(handle, bh); 1320 if (err) { 1321 unlock_buffer(bh); 1322 goto out; 1323 } 1324 1325 ext_size = sizeof(EXT4_I(inode)->i_data); 1326 /* move top-level index/leaf into new block */ 1327 memmove(bh->b_data, EXT4_I(inode)->i_data, ext_size); 1328 /* zero out unused area in the extent block */ 1329 memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size); 1330 1331 /* set size of new block */ 1332 neh = ext_block_hdr(bh); 1333 /* old root could have indexes or leaves 1334 * so calculate e_max right way */ 1335 if (ext_depth(inode)) 1336 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1337 else 1338 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1339 neh->eh_magic = EXT4_EXT_MAGIC; 1340 ext4_extent_block_csum_set(inode, neh); 1341 set_buffer_uptodate(bh); 1342 unlock_buffer(bh); 1343 1344 err = ext4_handle_dirty_metadata(handle, inode, bh); 1345 if (err) 1346 goto out; 1347 1348 /* Update top-level index: num,max,pointer */ 1349 neh = ext_inode_hdr(inode); 1350 neh->eh_entries = cpu_to_le16(1); 1351 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1352 if (neh->eh_depth == 0) { 1353 /* Root extent block becomes index block */ 1354 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1355 EXT_FIRST_INDEX(neh)->ei_block = 1356 EXT_FIRST_EXTENT(neh)->ee_block; 1357 } 1358 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1359 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1360 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1361 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1362 1363 le16_add_cpu(&neh->eh_depth, 1); 1364 ext4_mark_inode_dirty(handle, inode); 1365 out: 1366 brelse(bh); 1367 1368 return err; 1369 } 1370 1371 /* 1372 * ext4_ext_create_new_leaf: 1373 * finds empty index and adds new leaf. 1374 * if no free index is found, then it requests in-depth growing. 1375 */ 1376 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1377 unsigned int mb_flags, 1378 unsigned int gb_flags, 1379 struct ext4_ext_path **ppath, 1380 struct ext4_extent *newext) 1381 { 1382 struct ext4_ext_path *path = *ppath; 1383 struct ext4_ext_path *curp; 1384 int depth, i, err = 0; 1385 1386 repeat: 1387 i = depth = ext_depth(inode); 1388 1389 /* walk up to the tree and look for free index entry */ 1390 curp = path + depth; 1391 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1392 i--; 1393 curp--; 1394 } 1395 1396 /* we use already allocated block for index block, 1397 * so subsequent data blocks should be contiguous */ 1398 if (EXT_HAS_FREE_INDEX(curp)) { 1399 /* if we found index with free entry, then use that 1400 * entry: create all needed subtree and add new leaf */ 1401 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1402 if (err) 1403 goto out; 1404 1405 /* refill path */ 1406 path = ext4_find_extent(inode, 1407 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1408 ppath, gb_flags); 1409 if (IS_ERR(path)) 1410 err = PTR_ERR(path); 1411 } else { 1412 /* tree is full, time to grow in depth */ 1413 err = ext4_ext_grow_indepth(handle, inode, mb_flags); 1414 if (err) 1415 goto out; 1416 1417 /* refill path */ 1418 path = ext4_find_extent(inode, 1419 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1420 ppath, gb_flags); 1421 if (IS_ERR(path)) { 1422 err = PTR_ERR(path); 1423 goto out; 1424 } 1425 1426 /* 1427 * only first (depth 0 -> 1) produces free space; 1428 * in all other cases we have to split the grown tree 1429 */ 1430 depth = ext_depth(inode); 1431 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1432 /* now we need to split */ 1433 goto repeat; 1434 } 1435 } 1436 1437 out: 1438 return err; 1439 } 1440 1441 /* 1442 * search the closest allocated block to the left for *logical 1443 * and returns it at @logical + it's physical address at @phys 1444 * if *logical is the smallest allocated block, the function 1445 * returns 0 at @phys 1446 * return value contains 0 (success) or error code 1447 */ 1448 static int ext4_ext_search_left(struct inode *inode, 1449 struct ext4_ext_path *path, 1450 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1451 { 1452 struct ext4_extent_idx *ix; 1453 struct ext4_extent *ex; 1454 int depth, ee_len; 1455 1456 if (unlikely(path == NULL)) { 1457 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1458 return -EFSCORRUPTED; 1459 } 1460 depth = path->p_depth; 1461 *phys = 0; 1462 1463 if (depth == 0 && path->p_ext == NULL) 1464 return 0; 1465 1466 /* usually extent in the path covers blocks smaller 1467 * then *logical, but it can be that extent is the 1468 * first one in the file */ 1469 1470 ex = path[depth].p_ext; 1471 ee_len = ext4_ext_get_actual_len(ex); 1472 if (*logical < le32_to_cpu(ex->ee_block)) { 1473 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1474 EXT4_ERROR_INODE(inode, 1475 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1476 *logical, le32_to_cpu(ex->ee_block)); 1477 return -EFSCORRUPTED; 1478 } 1479 while (--depth >= 0) { 1480 ix = path[depth].p_idx; 1481 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1482 EXT4_ERROR_INODE(inode, 1483 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1484 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1485 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1486 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1487 depth); 1488 return -EFSCORRUPTED; 1489 } 1490 } 1491 return 0; 1492 } 1493 1494 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1495 EXT4_ERROR_INODE(inode, 1496 "logical %d < ee_block %d + ee_len %d!", 1497 *logical, le32_to_cpu(ex->ee_block), ee_len); 1498 return -EFSCORRUPTED; 1499 } 1500 1501 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1502 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1503 return 0; 1504 } 1505 1506 /* 1507 * search the closest allocated block to the right for *logical 1508 * and returns it at @logical + it's physical address at @phys 1509 * if *logical is the largest allocated block, the function 1510 * returns 0 at @phys 1511 * return value contains 0 (success) or error code 1512 */ 1513 static int ext4_ext_search_right(struct inode *inode, 1514 struct ext4_ext_path *path, 1515 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1516 struct ext4_extent **ret_ex) 1517 { 1518 struct buffer_head *bh = NULL; 1519 struct ext4_extent_header *eh; 1520 struct ext4_extent_idx *ix; 1521 struct ext4_extent *ex; 1522 ext4_fsblk_t block; 1523 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1524 int ee_len; 1525 1526 if (unlikely(path == NULL)) { 1527 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1528 return -EFSCORRUPTED; 1529 } 1530 depth = path->p_depth; 1531 *phys = 0; 1532 1533 if (depth == 0 && path->p_ext == NULL) 1534 return 0; 1535 1536 /* usually extent in the path covers blocks smaller 1537 * then *logical, but it can be that extent is the 1538 * first one in the file */ 1539 1540 ex = path[depth].p_ext; 1541 ee_len = ext4_ext_get_actual_len(ex); 1542 if (*logical < le32_to_cpu(ex->ee_block)) { 1543 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1544 EXT4_ERROR_INODE(inode, 1545 "first_extent(path[%d].p_hdr) != ex", 1546 depth); 1547 return -EFSCORRUPTED; 1548 } 1549 while (--depth >= 0) { 1550 ix = path[depth].p_idx; 1551 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1552 EXT4_ERROR_INODE(inode, 1553 "ix != EXT_FIRST_INDEX *logical %d!", 1554 *logical); 1555 return -EFSCORRUPTED; 1556 } 1557 } 1558 goto found_extent; 1559 } 1560 1561 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1562 EXT4_ERROR_INODE(inode, 1563 "logical %d < ee_block %d + ee_len %d!", 1564 *logical, le32_to_cpu(ex->ee_block), ee_len); 1565 return -EFSCORRUPTED; 1566 } 1567 1568 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1569 /* next allocated block in this leaf */ 1570 ex++; 1571 goto found_extent; 1572 } 1573 1574 /* go up and search for index to the right */ 1575 while (--depth >= 0) { 1576 ix = path[depth].p_idx; 1577 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1578 goto got_index; 1579 } 1580 1581 /* we've gone up to the root and found no index to the right */ 1582 return 0; 1583 1584 got_index: 1585 /* we've found index to the right, let's 1586 * follow it and find the closest allocated 1587 * block to the right */ 1588 ix++; 1589 block = ext4_idx_pblock(ix); 1590 while (++depth < path->p_depth) { 1591 /* subtract from p_depth to get proper eh_depth */ 1592 bh = read_extent_tree_block(inode, block, 1593 path->p_depth - depth, 0); 1594 if (IS_ERR(bh)) 1595 return PTR_ERR(bh); 1596 eh = ext_block_hdr(bh); 1597 ix = EXT_FIRST_INDEX(eh); 1598 block = ext4_idx_pblock(ix); 1599 put_bh(bh); 1600 } 1601 1602 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1603 if (IS_ERR(bh)) 1604 return PTR_ERR(bh); 1605 eh = ext_block_hdr(bh); 1606 ex = EXT_FIRST_EXTENT(eh); 1607 found_extent: 1608 *logical = le32_to_cpu(ex->ee_block); 1609 *phys = ext4_ext_pblock(ex); 1610 *ret_ex = ex; 1611 if (bh) 1612 put_bh(bh); 1613 return 0; 1614 } 1615 1616 /* 1617 * ext4_ext_next_allocated_block: 1618 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1619 * NOTE: it considers block number from index entry as 1620 * allocated block. Thus, index entries have to be consistent 1621 * with leaves. 1622 */ 1623 ext4_lblk_t 1624 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1625 { 1626 int depth; 1627 1628 BUG_ON(path == NULL); 1629 depth = path->p_depth; 1630 1631 if (depth == 0 && path->p_ext == NULL) 1632 return EXT_MAX_BLOCKS; 1633 1634 while (depth >= 0) { 1635 if (depth == path->p_depth) { 1636 /* leaf */ 1637 if (path[depth].p_ext && 1638 path[depth].p_ext != 1639 EXT_LAST_EXTENT(path[depth].p_hdr)) 1640 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1641 } else { 1642 /* index */ 1643 if (path[depth].p_idx != 1644 EXT_LAST_INDEX(path[depth].p_hdr)) 1645 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1646 } 1647 depth--; 1648 } 1649 1650 return EXT_MAX_BLOCKS; 1651 } 1652 1653 /* 1654 * ext4_ext_next_leaf_block: 1655 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1656 */ 1657 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1658 { 1659 int depth; 1660 1661 BUG_ON(path == NULL); 1662 depth = path->p_depth; 1663 1664 /* zero-tree has no leaf blocks at all */ 1665 if (depth == 0) 1666 return EXT_MAX_BLOCKS; 1667 1668 /* go to index block */ 1669 depth--; 1670 1671 while (depth >= 0) { 1672 if (path[depth].p_idx != 1673 EXT_LAST_INDEX(path[depth].p_hdr)) 1674 return (ext4_lblk_t) 1675 le32_to_cpu(path[depth].p_idx[1].ei_block); 1676 depth--; 1677 } 1678 1679 return EXT_MAX_BLOCKS; 1680 } 1681 1682 /* 1683 * ext4_ext_correct_indexes: 1684 * if leaf gets modified and modified extent is first in the leaf, 1685 * then we have to correct all indexes above. 1686 * TODO: do we need to correct tree in all cases? 1687 */ 1688 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1689 struct ext4_ext_path *path) 1690 { 1691 struct ext4_extent_header *eh; 1692 int depth = ext_depth(inode); 1693 struct ext4_extent *ex; 1694 __le32 border; 1695 int k, err = 0; 1696 1697 eh = path[depth].p_hdr; 1698 ex = path[depth].p_ext; 1699 1700 if (unlikely(ex == NULL || eh == NULL)) { 1701 EXT4_ERROR_INODE(inode, 1702 "ex %p == NULL or eh %p == NULL", ex, eh); 1703 return -EFSCORRUPTED; 1704 } 1705 1706 if (depth == 0) { 1707 /* there is no tree at all */ 1708 return 0; 1709 } 1710 1711 if (ex != EXT_FIRST_EXTENT(eh)) { 1712 /* we correct tree if first leaf got modified only */ 1713 return 0; 1714 } 1715 1716 /* 1717 * TODO: we need correction if border is smaller than current one 1718 */ 1719 k = depth - 1; 1720 border = path[depth].p_ext->ee_block; 1721 err = ext4_ext_get_access(handle, inode, path + k); 1722 if (err) 1723 return err; 1724 path[k].p_idx->ei_block = border; 1725 err = ext4_ext_dirty(handle, inode, path + k); 1726 if (err) 1727 return err; 1728 1729 while (k--) { 1730 /* change all left-side indexes */ 1731 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1732 break; 1733 err = ext4_ext_get_access(handle, inode, path + k); 1734 if (err) 1735 break; 1736 path[k].p_idx->ei_block = border; 1737 err = ext4_ext_dirty(handle, inode, path + k); 1738 if (err) 1739 break; 1740 } 1741 1742 return err; 1743 } 1744 1745 int 1746 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1747 struct ext4_extent *ex2) 1748 { 1749 unsigned short ext1_ee_len, ext2_ee_len; 1750 1751 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1752 return 0; 1753 1754 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1755 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1756 1757 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1758 le32_to_cpu(ex2->ee_block)) 1759 return 0; 1760 1761 /* 1762 * To allow future support for preallocated extents to be added 1763 * as an RO_COMPAT feature, refuse to merge to extents if 1764 * this can result in the top bit of ee_len being set. 1765 */ 1766 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1767 return 0; 1768 1769 if (ext4_ext_is_unwritten(ex1) && 1770 ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN) 1771 return 0; 1772 #ifdef AGGRESSIVE_TEST 1773 if (ext1_ee_len >= 4) 1774 return 0; 1775 #endif 1776 1777 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1778 return 1; 1779 return 0; 1780 } 1781 1782 /* 1783 * This function tries to merge the "ex" extent to the next extent in the tree. 1784 * It always tries to merge towards right. If you want to merge towards 1785 * left, pass "ex - 1" as argument instead of "ex". 1786 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1787 * 1 if they got merged. 1788 */ 1789 static int ext4_ext_try_to_merge_right(struct inode *inode, 1790 struct ext4_ext_path *path, 1791 struct ext4_extent *ex) 1792 { 1793 struct ext4_extent_header *eh; 1794 unsigned int depth, len; 1795 int merge_done = 0, unwritten; 1796 1797 depth = ext_depth(inode); 1798 BUG_ON(path[depth].p_hdr == NULL); 1799 eh = path[depth].p_hdr; 1800 1801 while (ex < EXT_LAST_EXTENT(eh)) { 1802 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1803 break; 1804 /* merge with next extent! */ 1805 unwritten = ext4_ext_is_unwritten(ex); 1806 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1807 + ext4_ext_get_actual_len(ex + 1)); 1808 if (unwritten) 1809 ext4_ext_mark_unwritten(ex); 1810 1811 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1812 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1813 * sizeof(struct ext4_extent); 1814 memmove(ex + 1, ex + 2, len); 1815 } 1816 le16_add_cpu(&eh->eh_entries, -1); 1817 merge_done = 1; 1818 WARN_ON(eh->eh_entries == 0); 1819 if (!eh->eh_entries) 1820 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1821 } 1822 1823 return merge_done; 1824 } 1825 1826 /* 1827 * This function does a very simple check to see if we can collapse 1828 * an extent tree with a single extent tree leaf block into the inode. 1829 */ 1830 static void ext4_ext_try_to_merge_up(handle_t *handle, 1831 struct inode *inode, 1832 struct ext4_ext_path *path) 1833 { 1834 size_t s; 1835 unsigned max_root = ext4_ext_space_root(inode, 0); 1836 ext4_fsblk_t blk; 1837 1838 if ((path[0].p_depth != 1) || 1839 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1840 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1841 return; 1842 1843 /* 1844 * We need to modify the block allocation bitmap and the block 1845 * group descriptor to release the extent tree block. If we 1846 * can't get the journal credits, give up. 1847 */ 1848 if (ext4_journal_extend(handle, 2, 1849 ext4_free_metadata_revoke_credits(inode->i_sb, 1))) 1850 return; 1851 1852 /* 1853 * Copy the extent data up to the inode 1854 */ 1855 blk = ext4_idx_pblock(path[0].p_idx); 1856 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1857 sizeof(struct ext4_extent_idx); 1858 s += sizeof(struct ext4_extent_header); 1859 1860 path[1].p_maxdepth = path[0].p_maxdepth; 1861 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1862 path[0].p_depth = 0; 1863 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1864 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1865 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1866 1867 brelse(path[1].p_bh); 1868 ext4_free_blocks(handle, inode, NULL, blk, 1, 1869 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1870 } 1871 1872 /* 1873 * This function tries to merge the @ex extent to neighbours in the tree. 1874 * return 1 if merge left else 0. 1875 */ 1876 static void ext4_ext_try_to_merge(handle_t *handle, 1877 struct inode *inode, 1878 struct ext4_ext_path *path, 1879 struct ext4_extent *ex) { 1880 struct ext4_extent_header *eh; 1881 unsigned int depth; 1882 int merge_done = 0; 1883 1884 depth = ext_depth(inode); 1885 BUG_ON(path[depth].p_hdr == NULL); 1886 eh = path[depth].p_hdr; 1887 1888 if (ex > EXT_FIRST_EXTENT(eh)) 1889 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1890 1891 if (!merge_done) 1892 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1893 1894 ext4_ext_try_to_merge_up(handle, inode, path); 1895 } 1896 1897 /* 1898 * check if a portion of the "newext" extent overlaps with an 1899 * existing extent. 1900 * 1901 * If there is an overlap discovered, it updates the length of the newext 1902 * such that there will be no overlap, and then returns 1. 1903 * If there is no overlap found, it returns 0. 1904 */ 1905 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1906 struct inode *inode, 1907 struct ext4_extent *newext, 1908 struct ext4_ext_path *path) 1909 { 1910 ext4_lblk_t b1, b2; 1911 unsigned int depth, len1; 1912 unsigned int ret = 0; 1913 1914 b1 = le32_to_cpu(newext->ee_block); 1915 len1 = ext4_ext_get_actual_len(newext); 1916 depth = ext_depth(inode); 1917 if (!path[depth].p_ext) 1918 goto out; 1919 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1920 1921 /* 1922 * get the next allocated block if the extent in the path 1923 * is before the requested block(s) 1924 */ 1925 if (b2 < b1) { 1926 b2 = ext4_ext_next_allocated_block(path); 1927 if (b2 == EXT_MAX_BLOCKS) 1928 goto out; 1929 b2 = EXT4_LBLK_CMASK(sbi, b2); 1930 } 1931 1932 /* check for wrap through zero on extent logical start block*/ 1933 if (b1 + len1 < b1) { 1934 len1 = EXT_MAX_BLOCKS - b1; 1935 newext->ee_len = cpu_to_le16(len1); 1936 ret = 1; 1937 } 1938 1939 /* check for overlap */ 1940 if (b1 + len1 > b2) { 1941 newext->ee_len = cpu_to_le16(b2 - b1); 1942 ret = 1; 1943 } 1944 out: 1945 return ret; 1946 } 1947 1948 /* 1949 * ext4_ext_insert_extent: 1950 * tries to merge requsted extent into the existing extent or 1951 * inserts requested extent as new one into the tree, 1952 * creating new leaf in the no-space case. 1953 */ 1954 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1955 struct ext4_ext_path **ppath, 1956 struct ext4_extent *newext, int gb_flags) 1957 { 1958 struct ext4_ext_path *path = *ppath; 1959 struct ext4_extent_header *eh; 1960 struct ext4_extent *ex, *fex; 1961 struct ext4_extent *nearex; /* nearest extent */ 1962 struct ext4_ext_path *npath = NULL; 1963 int depth, len, err; 1964 ext4_lblk_t next; 1965 int mb_flags = 0, unwritten; 1966 1967 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1968 mb_flags |= EXT4_MB_DELALLOC_RESERVED; 1969 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1970 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1971 return -EFSCORRUPTED; 1972 } 1973 depth = ext_depth(inode); 1974 ex = path[depth].p_ext; 1975 eh = path[depth].p_hdr; 1976 if (unlikely(path[depth].p_hdr == NULL)) { 1977 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1978 return -EFSCORRUPTED; 1979 } 1980 1981 /* try to insert block into found extent and return */ 1982 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1983 1984 /* 1985 * Try to see whether we should rather test the extent on 1986 * right from ex, or from the left of ex. This is because 1987 * ext4_find_extent() can return either extent on the 1988 * left, or on the right from the searched position. This 1989 * will make merging more effective. 1990 */ 1991 if (ex < EXT_LAST_EXTENT(eh) && 1992 (le32_to_cpu(ex->ee_block) + 1993 ext4_ext_get_actual_len(ex) < 1994 le32_to_cpu(newext->ee_block))) { 1995 ex += 1; 1996 goto prepend; 1997 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1998 (le32_to_cpu(newext->ee_block) + 1999 ext4_ext_get_actual_len(newext) < 2000 le32_to_cpu(ex->ee_block))) 2001 ex -= 1; 2002 2003 /* Try to append newex to the ex */ 2004 if (ext4_can_extents_be_merged(inode, ex, newext)) { 2005 ext_debug("append [%d]%d block to %u:[%d]%d" 2006 "(from %llu)\n", 2007 ext4_ext_is_unwritten(newext), 2008 ext4_ext_get_actual_len(newext), 2009 le32_to_cpu(ex->ee_block), 2010 ext4_ext_is_unwritten(ex), 2011 ext4_ext_get_actual_len(ex), 2012 ext4_ext_pblock(ex)); 2013 err = ext4_ext_get_access(handle, inode, 2014 path + depth); 2015 if (err) 2016 return err; 2017 unwritten = ext4_ext_is_unwritten(ex); 2018 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2019 + ext4_ext_get_actual_len(newext)); 2020 if (unwritten) 2021 ext4_ext_mark_unwritten(ex); 2022 eh = path[depth].p_hdr; 2023 nearex = ex; 2024 goto merge; 2025 } 2026 2027 prepend: 2028 /* Try to prepend newex to the ex */ 2029 if (ext4_can_extents_be_merged(inode, newext, ex)) { 2030 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 2031 "(from %llu)\n", 2032 le32_to_cpu(newext->ee_block), 2033 ext4_ext_is_unwritten(newext), 2034 ext4_ext_get_actual_len(newext), 2035 le32_to_cpu(ex->ee_block), 2036 ext4_ext_is_unwritten(ex), 2037 ext4_ext_get_actual_len(ex), 2038 ext4_ext_pblock(ex)); 2039 err = ext4_ext_get_access(handle, inode, 2040 path + depth); 2041 if (err) 2042 return err; 2043 2044 unwritten = ext4_ext_is_unwritten(ex); 2045 ex->ee_block = newext->ee_block; 2046 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 2047 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2048 + ext4_ext_get_actual_len(newext)); 2049 if (unwritten) 2050 ext4_ext_mark_unwritten(ex); 2051 eh = path[depth].p_hdr; 2052 nearex = ex; 2053 goto merge; 2054 } 2055 } 2056 2057 depth = ext_depth(inode); 2058 eh = path[depth].p_hdr; 2059 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2060 goto has_space; 2061 2062 /* probably next leaf has space for us? */ 2063 fex = EXT_LAST_EXTENT(eh); 2064 next = EXT_MAX_BLOCKS; 2065 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2066 next = ext4_ext_next_leaf_block(path); 2067 if (next != EXT_MAX_BLOCKS) { 2068 ext_debug("next leaf block - %u\n", next); 2069 BUG_ON(npath != NULL); 2070 npath = ext4_find_extent(inode, next, NULL, 0); 2071 if (IS_ERR(npath)) 2072 return PTR_ERR(npath); 2073 BUG_ON(npath->p_depth != path->p_depth); 2074 eh = npath[depth].p_hdr; 2075 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2076 ext_debug("next leaf isn't full(%d)\n", 2077 le16_to_cpu(eh->eh_entries)); 2078 path = npath; 2079 goto has_space; 2080 } 2081 ext_debug("next leaf has no free space(%d,%d)\n", 2082 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2083 } 2084 2085 /* 2086 * There is no free space in the found leaf. 2087 * We're gonna add a new leaf in the tree. 2088 */ 2089 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2090 mb_flags |= EXT4_MB_USE_RESERVED; 2091 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2092 ppath, newext); 2093 if (err) 2094 goto cleanup; 2095 depth = ext_depth(inode); 2096 eh = path[depth].p_hdr; 2097 2098 has_space: 2099 nearex = path[depth].p_ext; 2100 2101 err = ext4_ext_get_access(handle, inode, path + depth); 2102 if (err) 2103 goto cleanup; 2104 2105 if (!nearex) { 2106 /* there is no extent in this leaf, create first one */ 2107 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2108 le32_to_cpu(newext->ee_block), 2109 ext4_ext_pblock(newext), 2110 ext4_ext_is_unwritten(newext), 2111 ext4_ext_get_actual_len(newext)); 2112 nearex = EXT_FIRST_EXTENT(eh); 2113 } else { 2114 if (le32_to_cpu(newext->ee_block) 2115 > le32_to_cpu(nearex->ee_block)) { 2116 /* Insert after */ 2117 ext_debug("insert %u:%llu:[%d]%d before: " 2118 "nearest %p\n", 2119 le32_to_cpu(newext->ee_block), 2120 ext4_ext_pblock(newext), 2121 ext4_ext_is_unwritten(newext), 2122 ext4_ext_get_actual_len(newext), 2123 nearex); 2124 nearex++; 2125 } else { 2126 /* Insert before */ 2127 BUG_ON(newext->ee_block == nearex->ee_block); 2128 ext_debug("insert %u:%llu:[%d]%d after: " 2129 "nearest %p\n", 2130 le32_to_cpu(newext->ee_block), 2131 ext4_ext_pblock(newext), 2132 ext4_ext_is_unwritten(newext), 2133 ext4_ext_get_actual_len(newext), 2134 nearex); 2135 } 2136 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2137 if (len > 0) { 2138 ext_debug("insert %u:%llu:[%d]%d: " 2139 "move %d extents from 0x%p to 0x%p\n", 2140 le32_to_cpu(newext->ee_block), 2141 ext4_ext_pblock(newext), 2142 ext4_ext_is_unwritten(newext), 2143 ext4_ext_get_actual_len(newext), 2144 len, nearex, nearex + 1); 2145 memmove(nearex + 1, nearex, 2146 len * sizeof(struct ext4_extent)); 2147 } 2148 } 2149 2150 le16_add_cpu(&eh->eh_entries, 1); 2151 path[depth].p_ext = nearex; 2152 nearex->ee_block = newext->ee_block; 2153 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2154 nearex->ee_len = newext->ee_len; 2155 2156 merge: 2157 /* try to merge extents */ 2158 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2159 ext4_ext_try_to_merge(handle, inode, path, nearex); 2160 2161 2162 /* time to correct all indexes above */ 2163 err = ext4_ext_correct_indexes(handle, inode, path); 2164 if (err) 2165 goto cleanup; 2166 2167 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2168 2169 cleanup: 2170 ext4_ext_drop_refs(npath); 2171 kfree(npath); 2172 return err; 2173 } 2174 2175 static int ext4_fill_fiemap_extents(struct inode *inode, 2176 ext4_lblk_t block, ext4_lblk_t num, 2177 struct fiemap_extent_info *fieinfo) 2178 { 2179 struct ext4_ext_path *path = NULL; 2180 struct ext4_extent *ex; 2181 struct extent_status es; 2182 ext4_lblk_t next, next_del, start = 0, end = 0; 2183 ext4_lblk_t last = block + num; 2184 int exists, depth = 0, err = 0; 2185 unsigned int flags = 0; 2186 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2187 2188 while (block < last && block != EXT_MAX_BLOCKS) { 2189 num = last - block; 2190 /* find extent for this block */ 2191 down_read(&EXT4_I(inode)->i_data_sem); 2192 2193 path = ext4_find_extent(inode, block, &path, 0); 2194 if (IS_ERR(path)) { 2195 up_read(&EXT4_I(inode)->i_data_sem); 2196 err = PTR_ERR(path); 2197 path = NULL; 2198 break; 2199 } 2200 2201 depth = ext_depth(inode); 2202 if (unlikely(path[depth].p_hdr == NULL)) { 2203 up_read(&EXT4_I(inode)->i_data_sem); 2204 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2205 err = -EFSCORRUPTED; 2206 break; 2207 } 2208 ex = path[depth].p_ext; 2209 next = ext4_ext_next_allocated_block(path); 2210 2211 flags = 0; 2212 exists = 0; 2213 if (!ex) { 2214 /* there is no extent yet, so try to allocate 2215 * all requested space */ 2216 start = block; 2217 end = block + num; 2218 } else if (le32_to_cpu(ex->ee_block) > block) { 2219 /* need to allocate space before found extent */ 2220 start = block; 2221 end = le32_to_cpu(ex->ee_block); 2222 if (block + num < end) 2223 end = block + num; 2224 } else if (block >= le32_to_cpu(ex->ee_block) 2225 + ext4_ext_get_actual_len(ex)) { 2226 /* need to allocate space after found extent */ 2227 start = block; 2228 end = block + num; 2229 if (end >= next) 2230 end = next; 2231 } else if (block >= le32_to_cpu(ex->ee_block)) { 2232 /* 2233 * some part of requested space is covered 2234 * by found extent 2235 */ 2236 start = block; 2237 end = le32_to_cpu(ex->ee_block) 2238 + ext4_ext_get_actual_len(ex); 2239 if (block + num < end) 2240 end = block + num; 2241 exists = 1; 2242 } else { 2243 BUG(); 2244 } 2245 BUG_ON(end <= start); 2246 2247 if (!exists) { 2248 es.es_lblk = start; 2249 es.es_len = end - start; 2250 es.es_pblk = 0; 2251 } else { 2252 es.es_lblk = le32_to_cpu(ex->ee_block); 2253 es.es_len = ext4_ext_get_actual_len(ex); 2254 es.es_pblk = ext4_ext_pblock(ex); 2255 if (ext4_ext_is_unwritten(ex)) 2256 flags |= FIEMAP_EXTENT_UNWRITTEN; 2257 } 2258 2259 /* 2260 * Find delayed extent and update es accordingly. We call 2261 * it even in !exists case to find out whether es is the 2262 * last existing extent or not. 2263 */ 2264 next_del = ext4_find_delayed_extent(inode, &es); 2265 if (!exists && next_del) { 2266 exists = 1; 2267 flags |= (FIEMAP_EXTENT_DELALLOC | 2268 FIEMAP_EXTENT_UNKNOWN); 2269 } 2270 up_read(&EXT4_I(inode)->i_data_sem); 2271 2272 if (unlikely(es.es_len == 0)) { 2273 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2274 err = -EFSCORRUPTED; 2275 break; 2276 } 2277 2278 /* 2279 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2280 * we need to check next == EXT_MAX_BLOCKS because it is 2281 * possible that an extent is with unwritten and delayed 2282 * status due to when an extent is delayed allocated and 2283 * is allocated by fallocate status tree will track both of 2284 * them in a extent. 2285 * 2286 * So we could return a unwritten and delayed extent, and 2287 * its block is equal to 'next'. 2288 */ 2289 if (next == next_del && next == EXT_MAX_BLOCKS) { 2290 flags |= FIEMAP_EXTENT_LAST; 2291 if (unlikely(next_del != EXT_MAX_BLOCKS || 2292 next != EXT_MAX_BLOCKS)) { 2293 EXT4_ERROR_INODE(inode, 2294 "next extent == %u, next " 2295 "delalloc extent = %u", 2296 next, next_del); 2297 err = -EFSCORRUPTED; 2298 break; 2299 } 2300 } 2301 2302 if (exists) { 2303 err = fiemap_fill_next_extent(fieinfo, 2304 (__u64)es.es_lblk << blksize_bits, 2305 (__u64)es.es_pblk << blksize_bits, 2306 (__u64)es.es_len << blksize_bits, 2307 flags); 2308 if (err < 0) 2309 break; 2310 if (err == 1) { 2311 err = 0; 2312 break; 2313 } 2314 } 2315 2316 block = es.es_lblk + es.es_len; 2317 } 2318 2319 ext4_ext_drop_refs(path); 2320 kfree(path); 2321 return err; 2322 } 2323 2324 static int ext4_fill_es_cache_info(struct inode *inode, 2325 ext4_lblk_t block, ext4_lblk_t num, 2326 struct fiemap_extent_info *fieinfo) 2327 { 2328 ext4_lblk_t next, end = block + num - 1; 2329 struct extent_status es; 2330 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2331 unsigned int flags; 2332 int err; 2333 2334 while (block <= end) { 2335 next = 0; 2336 flags = 0; 2337 if (!ext4_es_lookup_extent(inode, block, &next, &es)) 2338 break; 2339 if (ext4_es_is_unwritten(&es)) 2340 flags |= FIEMAP_EXTENT_UNWRITTEN; 2341 if (ext4_es_is_delayed(&es)) 2342 flags |= (FIEMAP_EXTENT_DELALLOC | 2343 FIEMAP_EXTENT_UNKNOWN); 2344 if (ext4_es_is_hole(&es)) 2345 flags |= EXT4_FIEMAP_EXTENT_HOLE; 2346 if (next == 0) 2347 flags |= FIEMAP_EXTENT_LAST; 2348 if (flags & (FIEMAP_EXTENT_DELALLOC| 2349 EXT4_FIEMAP_EXTENT_HOLE)) 2350 es.es_pblk = 0; 2351 else 2352 es.es_pblk = ext4_es_pblock(&es); 2353 err = fiemap_fill_next_extent(fieinfo, 2354 (__u64)es.es_lblk << blksize_bits, 2355 (__u64)es.es_pblk << blksize_bits, 2356 (__u64)es.es_len << blksize_bits, 2357 flags); 2358 if (next == 0) 2359 break; 2360 block = next; 2361 if (err < 0) 2362 return err; 2363 if (err == 1) 2364 return 0; 2365 } 2366 return 0; 2367 } 2368 2369 2370 /* 2371 * ext4_ext_determine_hole - determine hole around given block 2372 * @inode: inode we lookup in 2373 * @path: path in extent tree to @lblk 2374 * @lblk: pointer to logical block around which we want to determine hole 2375 * 2376 * Determine hole length (and start if easily possible) around given logical 2377 * block. We don't try too hard to find the beginning of the hole but @path 2378 * actually points to extent before @lblk, we provide it. 2379 * 2380 * The function returns the length of a hole starting at @lblk. We update @lblk 2381 * to the beginning of the hole if we managed to find it. 2382 */ 2383 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode, 2384 struct ext4_ext_path *path, 2385 ext4_lblk_t *lblk) 2386 { 2387 int depth = ext_depth(inode); 2388 struct ext4_extent *ex; 2389 ext4_lblk_t len; 2390 2391 ex = path[depth].p_ext; 2392 if (ex == NULL) { 2393 /* there is no extent yet, so gap is [0;-] */ 2394 *lblk = 0; 2395 len = EXT_MAX_BLOCKS; 2396 } else if (*lblk < le32_to_cpu(ex->ee_block)) { 2397 len = le32_to_cpu(ex->ee_block) - *lblk; 2398 } else if (*lblk >= le32_to_cpu(ex->ee_block) 2399 + ext4_ext_get_actual_len(ex)) { 2400 ext4_lblk_t next; 2401 2402 *lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); 2403 next = ext4_ext_next_allocated_block(path); 2404 BUG_ON(next == *lblk); 2405 len = next - *lblk; 2406 } else { 2407 BUG(); 2408 } 2409 return len; 2410 } 2411 2412 /* 2413 * ext4_ext_put_gap_in_cache: 2414 * calculate boundaries of the gap that the requested block fits into 2415 * and cache this gap 2416 */ 2417 static void 2418 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start, 2419 ext4_lblk_t hole_len) 2420 { 2421 struct extent_status es; 2422 2423 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, hole_start, 2424 hole_start + hole_len - 1, &es); 2425 if (es.es_len) { 2426 /* There's delayed extent containing lblock? */ 2427 if (es.es_lblk <= hole_start) 2428 return; 2429 hole_len = min(es.es_lblk - hole_start, hole_len); 2430 } 2431 ext_debug(" -> %u:%u\n", hole_start, hole_len); 2432 ext4_es_insert_extent(inode, hole_start, hole_len, ~0, 2433 EXTENT_STATUS_HOLE); 2434 } 2435 2436 /* 2437 * ext4_ext_rm_idx: 2438 * removes index from the index block. 2439 */ 2440 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2441 struct ext4_ext_path *path, int depth) 2442 { 2443 int err; 2444 ext4_fsblk_t leaf; 2445 2446 /* free index block */ 2447 depth--; 2448 path = path + depth; 2449 leaf = ext4_idx_pblock(path->p_idx); 2450 if (unlikely(path->p_hdr->eh_entries == 0)) { 2451 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2452 return -EFSCORRUPTED; 2453 } 2454 err = ext4_ext_get_access(handle, inode, path); 2455 if (err) 2456 return err; 2457 2458 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2459 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2460 len *= sizeof(struct ext4_extent_idx); 2461 memmove(path->p_idx, path->p_idx + 1, len); 2462 } 2463 2464 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2465 err = ext4_ext_dirty(handle, inode, path); 2466 if (err) 2467 return err; 2468 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2469 trace_ext4_ext_rm_idx(inode, leaf); 2470 2471 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2472 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2473 2474 while (--depth >= 0) { 2475 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2476 break; 2477 path--; 2478 err = ext4_ext_get_access(handle, inode, path); 2479 if (err) 2480 break; 2481 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2482 err = ext4_ext_dirty(handle, inode, path); 2483 if (err) 2484 break; 2485 } 2486 return err; 2487 } 2488 2489 /* 2490 * ext4_ext_calc_credits_for_single_extent: 2491 * This routine returns max. credits that needed to insert an extent 2492 * to the extent tree. 2493 * When pass the actual path, the caller should calculate credits 2494 * under i_data_sem. 2495 */ 2496 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2497 struct ext4_ext_path *path) 2498 { 2499 if (path) { 2500 int depth = ext_depth(inode); 2501 int ret = 0; 2502 2503 /* probably there is space in leaf? */ 2504 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2505 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2506 2507 /* 2508 * There are some space in the leaf tree, no 2509 * need to account for leaf block credit 2510 * 2511 * bitmaps and block group descriptor blocks 2512 * and other metadata blocks still need to be 2513 * accounted. 2514 */ 2515 /* 1 bitmap, 1 block group descriptor */ 2516 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2517 return ret; 2518 } 2519 } 2520 2521 return ext4_chunk_trans_blocks(inode, nrblocks); 2522 } 2523 2524 /* 2525 * How many index/leaf blocks need to change/allocate to add @extents extents? 2526 * 2527 * If we add a single extent, then in the worse case, each tree level 2528 * index/leaf need to be changed in case of the tree split. 2529 * 2530 * If more extents are inserted, they could cause the whole tree split more 2531 * than once, but this is really rare. 2532 */ 2533 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2534 { 2535 int index; 2536 int depth; 2537 2538 /* If we are converting the inline data, only one is needed here. */ 2539 if (ext4_has_inline_data(inode)) 2540 return 1; 2541 2542 depth = ext_depth(inode); 2543 2544 if (extents <= 1) 2545 index = depth * 2; 2546 else 2547 index = depth * 3; 2548 2549 return index; 2550 } 2551 2552 static inline int get_default_free_blocks_flags(struct inode *inode) 2553 { 2554 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) || 2555 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE)) 2556 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2557 else if (ext4_should_journal_data(inode)) 2558 return EXT4_FREE_BLOCKS_FORGET; 2559 return 0; 2560 } 2561 2562 /* 2563 * ext4_rereserve_cluster - increment the reserved cluster count when 2564 * freeing a cluster with a pending reservation 2565 * 2566 * @inode - file containing the cluster 2567 * @lblk - logical block in cluster to be reserved 2568 * 2569 * Increments the reserved cluster count and adjusts quota in a bigalloc 2570 * file system when freeing a partial cluster containing at least one 2571 * delayed and unwritten block. A partial cluster meeting that 2572 * requirement will have a pending reservation. If so, the 2573 * RERESERVE_CLUSTER flag is used when calling ext4_free_blocks() to 2574 * defer reserved and allocated space accounting to a subsequent call 2575 * to this function. 2576 */ 2577 static void ext4_rereserve_cluster(struct inode *inode, ext4_lblk_t lblk) 2578 { 2579 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2580 struct ext4_inode_info *ei = EXT4_I(inode); 2581 2582 dquot_reclaim_block(inode, EXT4_C2B(sbi, 1)); 2583 2584 spin_lock(&ei->i_block_reservation_lock); 2585 ei->i_reserved_data_blocks++; 2586 percpu_counter_add(&sbi->s_dirtyclusters_counter, 1); 2587 spin_unlock(&ei->i_block_reservation_lock); 2588 2589 percpu_counter_add(&sbi->s_freeclusters_counter, 1); 2590 ext4_remove_pending(inode, lblk); 2591 } 2592 2593 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2594 struct ext4_extent *ex, 2595 struct partial_cluster *partial, 2596 ext4_lblk_t from, ext4_lblk_t to) 2597 { 2598 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2599 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2600 ext4_fsblk_t last_pblk, pblk; 2601 ext4_lblk_t num; 2602 int flags; 2603 2604 /* only extent tail removal is allowed */ 2605 if (from < le32_to_cpu(ex->ee_block) || 2606 to != le32_to_cpu(ex->ee_block) + ee_len - 1) { 2607 ext4_error(sbi->s_sb, 2608 "strange request: removal(2) %u-%u from %u:%u", 2609 from, to, le32_to_cpu(ex->ee_block), ee_len); 2610 return 0; 2611 } 2612 2613 #ifdef EXTENTS_STATS 2614 spin_lock(&sbi->s_ext_stats_lock); 2615 sbi->s_ext_blocks += ee_len; 2616 sbi->s_ext_extents++; 2617 if (ee_len < sbi->s_ext_min) 2618 sbi->s_ext_min = ee_len; 2619 if (ee_len > sbi->s_ext_max) 2620 sbi->s_ext_max = ee_len; 2621 if (ext_depth(inode) > sbi->s_depth_max) 2622 sbi->s_depth_max = ext_depth(inode); 2623 spin_unlock(&sbi->s_ext_stats_lock); 2624 #endif 2625 2626 trace_ext4_remove_blocks(inode, ex, from, to, partial); 2627 2628 /* 2629 * if we have a partial cluster, and it's different from the 2630 * cluster of the last block in the extent, we free it 2631 */ 2632 last_pblk = ext4_ext_pblock(ex) + ee_len - 1; 2633 2634 if (partial->state != initial && 2635 partial->pclu != EXT4_B2C(sbi, last_pblk)) { 2636 if (partial->state == tofree) { 2637 flags = get_default_free_blocks_flags(inode); 2638 if (ext4_is_pending(inode, partial->lblk)) 2639 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2640 ext4_free_blocks(handle, inode, NULL, 2641 EXT4_C2B(sbi, partial->pclu), 2642 sbi->s_cluster_ratio, flags); 2643 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2644 ext4_rereserve_cluster(inode, partial->lblk); 2645 } 2646 partial->state = initial; 2647 } 2648 2649 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2650 pblk = ext4_ext_pblock(ex) + ee_len - num; 2651 2652 /* 2653 * We free the partial cluster at the end of the extent (if any), 2654 * unless the cluster is used by another extent (partial_cluster 2655 * state is nofree). If a partial cluster exists here, it must be 2656 * shared with the last block in the extent. 2657 */ 2658 flags = get_default_free_blocks_flags(inode); 2659 2660 /* partial, left end cluster aligned, right end unaligned */ 2661 if ((EXT4_LBLK_COFF(sbi, to) != sbi->s_cluster_ratio - 1) && 2662 (EXT4_LBLK_CMASK(sbi, to) >= from) && 2663 (partial->state != nofree)) { 2664 if (ext4_is_pending(inode, to)) 2665 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2666 ext4_free_blocks(handle, inode, NULL, 2667 EXT4_PBLK_CMASK(sbi, last_pblk), 2668 sbi->s_cluster_ratio, flags); 2669 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2670 ext4_rereserve_cluster(inode, to); 2671 partial->state = initial; 2672 flags = get_default_free_blocks_flags(inode); 2673 } 2674 2675 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2676 2677 /* 2678 * For bigalloc file systems, we never free a partial cluster 2679 * at the beginning of the extent. Instead, we check to see if we 2680 * need to free it on a subsequent call to ext4_remove_blocks, 2681 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. 2682 */ 2683 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2684 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2685 2686 /* reset the partial cluster if we've freed past it */ 2687 if (partial->state != initial && partial->pclu != EXT4_B2C(sbi, pblk)) 2688 partial->state = initial; 2689 2690 /* 2691 * If we've freed the entire extent but the beginning is not left 2692 * cluster aligned and is not marked as ineligible for freeing we 2693 * record the partial cluster at the beginning of the extent. It 2694 * wasn't freed by the preceding ext4_free_blocks() call, and we 2695 * need to look farther to the left to determine if it's to be freed 2696 * (not shared with another extent). Else, reset the partial 2697 * cluster - we're either done freeing or the beginning of the 2698 * extent is left cluster aligned. 2699 */ 2700 if (EXT4_LBLK_COFF(sbi, from) && num == ee_len) { 2701 if (partial->state == initial) { 2702 partial->pclu = EXT4_B2C(sbi, pblk); 2703 partial->lblk = from; 2704 partial->state = tofree; 2705 } 2706 } else { 2707 partial->state = initial; 2708 } 2709 2710 return 0; 2711 } 2712 2713 /* 2714 * ext4_ext_rm_leaf() Removes the extents associated with the 2715 * blocks appearing between "start" and "end". Both "start" 2716 * and "end" must appear in the same extent or EIO is returned. 2717 * 2718 * @handle: The journal handle 2719 * @inode: The files inode 2720 * @path: The path to the leaf 2721 * @partial_cluster: The cluster which we'll have to free if all extents 2722 * has been released from it. However, if this value is 2723 * negative, it's a cluster just to the right of the 2724 * punched region and it must not be freed. 2725 * @start: The first block to remove 2726 * @end: The last block to remove 2727 */ 2728 static int 2729 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2730 struct ext4_ext_path *path, 2731 struct partial_cluster *partial, 2732 ext4_lblk_t start, ext4_lblk_t end) 2733 { 2734 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2735 int err = 0, correct_index = 0; 2736 int depth = ext_depth(inode), credits, revoke_credits; 2737 struct ext4_extent_header *eh; 2738 ext4_lblk_t a, b; 2739 unsigned num; 2740 ext4_lblk_t ex_ee_block; 2741 unsigned short ex_ee_len; 2742 unsigned unwritten = 0; 2743 struct ext4_extent *ex; 2744 ext4_fsblk_t pblk; 2745 2746 /* the header must be checked already in ext4_ext_remove_space() */ 2747 ext_debug("truncate since %u in leaf to %u\n", start, end); 2748 if (!path[depth].p_hdr) 2749 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2750 eh = path[depth].p_hdr; 2751 if (unlikely(path[depth].p_hdr == NULL)) { 2752 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2753 return -EFSCORRUPTED; 2754 } 2755 /* find where to start removing */ 2756 ex = path[depth].p_ext; 2757 if (!ex) 2758 ex = EXT_LAST_EXTENT(eh); 2759 2760 ex_ee_block = le32_to_cpu(ex->ee_block); 2761 ex_ee_len = ext4_ext_get_actual_len(ex); 2762 2763 trace_ext4_ext_rm_leaf(inode, start, ex, partial); 2764 2765 while (ex >= EXT_FIRST_EXTENT(eh) && 2766 ex_ee_block + ex_ee_len > start) { 2767 2768 if (ext4_ext_is_unwritten(ex)) 2769 unwritten = 1; 2770 else 2771 unwritten = 0; 2772 2773 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2774 unwritten, ex_ee_len); 2775 path[depth].p_ext = ex; 2776 2777 a = ex_ee_block > start ? ex_ee_block : start; 2778 b = ex_ee_block+ex_ee_len - 1 < end ? 2779 ex_ee_block+ex_ee_len - 1 : end; 2780 2781 ext_debug(" border %u:%u\n", a, b); 2782 2783 /* If this extent is beyond the end of the hole, skip it */ 2784 if (end < ex_ee_block) { 2785 /* 2786 * We're going to skip this extent and move to another, 2787 * so note that its first cluster is in use to avoid 2788 * freeing it when removing blocks. Eventually, the 2789 * right edge of the truncated/punched region will 2790 * be just to the left. 2791 */ 2792 if (sbi->s_cluster_ratio > 1) { 2793 pblk = ext4_ext_pblock(ex); 2794 partial->pclu = EXT4_B2C(sbi, pblk); 2795 partial->state = nofree; 2796 } 2797 ex--; 2798 ex_ee_block = le32_to_cpu(ex->ee_block); 2799 ex_ee_len = ext4_ext_get_actual_len(ex); 2800 continue; 2801 } else if (b != ex_ee_block + ex_ee_len - 1) { 2802 EXT4_ERROR_INODE(inode, 2803 "can not handle truncate %u:%u " 2804 "on extent %u:%u", 2805 start, end, ex_ee_block, 2806 ex_ee_block + ex_ee_len - 1); 2807 err = -EFSCORRUPTED; 2808 goto out; 2809 } else if (a != ex_ee_block) { 2810 /* remove tail of the extent */ 2811 num = a - ex_ee_block; 2812 } else { 2813 /* remove whole extent: excellent! */ 2814 num = 0; 2815 } 2816 /* 2817 * 3 for leaf, sb, and inode plus 2 (bmap and group 2818 * descriptor) for each block group; assume two block 2819 * groups plus ex_ee_len/blocks_per_block_group for 2820 * the worst case 2821 */ 2822 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2823 if (ex == EXT_FIRST_EXTENT(eh)) { 2824 correct_index = 1; 2825 credits += (ext_depth(inode)) + 1; 2826 } 2827 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2828 /* 2829 * We may end up freeing some index blocks and data from the 2830 * punched range. Note that partial clusters are accounted for 2831 * by ext4_free_data_revoke_credits(). 2832 */ 2833 revoke_credits = 2834 ext4_free_metadata_revoke_credits(inode->i_sb, 2835 ext_depth(inode)) + 2836 ext4_free_data_revoke_credits(inode, b - a + 1); 2837 2838 err = ext4_datasem_ensure_credits(handle, inode, credits, 2839 credits, revoke_credits); 2840 if (err) { 2841 if (err > 0) 2842 err = -EAGAIN; 2843 goto out; 2844 } 2845 2846 err = ext4_ext_get_access(handle, inode, path + depth); 2847 if (err) 2848 goto out; 2849 2850 err = ext4_remove_blocks(handle, inode, ex, partial, a, b); 2851 if (err) 2852 goto out; 2853 2854 if (num == 0) 2855 /* this extent is removed; mark slot entirely unused */ 2856 ext4_ext_store_pblock(ex, 0); 2857 2858 ex->ee_len = cpu_to_le16(num); 2859 /* 2860 * Do not mark unwritten if all the blocks in the 2861 * extent have been removed. 2862 */ 2863 if (unwritten && num) 2864 ext4_ext_mark_unwritten(ex); 2865 /* 2866 * If the extent was completely released, 2867 * we need to remove it from the leaf 2868 */ 2869 if (num == 0) { 2870 if (end != EXT_MAX_BLOCKS - 1) { 2871 /* 2872 * For hole punching, we need to scoot all the 2873 * extents up when an extent is removed so that 2874 * we dont have blank extents in the middle 2875 */ 2876 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2877 sizeof(struct ext4_extent)); 2878 2879 /* Now get rid of the one at the end */ 2880 memset(EXT_LAST_EXTENT(eh), 0, 2881 sizeof(struct ext4_extent)); 2882 } 2883 le16_add_cpu(&eh->eh_entries, -1); 2884 } 2885 2886 err = ext4_ext_dirty(handle, inode, path + depth); 2887 if (err) 2888 goto out; 2889 2890 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2891 ext4_ext_pblock(ex)); 2892 ex--; 2893 ex_ee_block = le32_to_cpu(ex->ee_block); 2894 ex_ee_len = ext4_ext_get_actual_len(ex); 2895 } 2896 2897 if (correct_index && eh->eh_entries) 2898 err = ext4_ext_correct_indexes(handle, inode, path); 2899 2900 /* 2901 * If there's a partial cluster and at least one extent remains in 2902 * the leaf, free the partial cluster if it isn't shared with the 2903 * current extent. If it is shared with the current extent 2904 * we reset the partial cluster because we've reached the start of the 2905 * truncated/punched region and we're done removing blocks. 2906 */ 2907 if (partial->state == tofree && ex >= EXT_FIRST_EXTENT(eh)) { 2908 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2909 if (partial->pclu != EXT4_B2C(sbi, pblk)) { 2910 int flags = get_default_free_blocks_flags(inode); 2911 2912 if (ext4_is_pending(inode, partial->lblk)) 2913 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2914 ext4_free_blocks(handle, inode, NULL, 2915 EXT4_C2B(sbi, partial->pclu), 2916 sbi->s_cluster_ratio, flags); 2917 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2918 ext4_rereserve_cluster(inode, partial->lblk); 2919 } 2920 partial->state = initial; 2921 } 2922 2923 /* if this leaf is free, then we should 2924 * remove it from index block above */ 2925 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2926 err = ext4_ext_rm_idx(handle, inode, path, depth); 2927 2928 out: 2929 return err; 2930 } 2931 2932 /* 2933 * ext4_ext_more_to_rm: 2934 * returns 1 if current index has to be freed (even partial) 2935 */ 2936 static int 2937 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2938 { 2939 BUG_ON(path->p_idx == NULL); 2940 2941 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2942 return 0; 2943 2944 /* 2945 * if truncate on deeper level happened, it wasn't partial, 2946 * so we have to consider current index for truncation 2947 */ 2948 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2949 return 0; 2950 return 1; 2951 } 2952 2953 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2954 ext4_lblk_t end) 2955 { 2956 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2957 int depth = ext_depth(inode); 2958 struct ext4_ext_path *path = NULL; 2959 struct partial_cluster partial; 2960 handle_t *handle; 2961 int i = 0, err = 0; 2962 2963 partial.pclu = 0; 2964 partial.lblk = 0; 2965 partial.state = initial; 2966 2967 ext_debug("truncate since %u to %u\n", start, end); 2968 2969 /* probably first extent we're gonna free will be last in block */ 2970 handle = ext4_journal_start_with_revoke(inode, EXT4_HT_TRUNCATE, 2971 depth + 1, 2972 ext4_free_metadata_revoke_credits(inode->i_sb, depth)); 2973 if (IS_ERR(handle)) 2974 return PTR_ERR(handle); 2975 2976 again: 2977 trace_ext4_ext_remove_space(inode, start, end, depth); 2978 2979 /* 2980 * Check if we are removing extents inside the extent tree. If that 2981 * is the case, we are going to punch a hole inside the extent tree 2982 * so we have to check whether we need to split the extent covering 2983 * the last block to remove so we can easily remove the part of it 2984 * in ext4_ext_rm_leaf(). 2985 */ 2986 if (end < EXT_MAX_BLOCKS - 1) { 2987 struct ext4_extent *ex; 2988 ext4_lblk_t ee_block, ex_end, lblk; 2989 ext4_fsblk_t pblk; 2990 2991 /* find extent for or closest extent to this block */ 2992 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2993 if (IS_ERR(path)) { 2994 ext4_journal_stop(handle); 2995 return PTR_ERR(path); 2996 } 2997 depth = ext_depth(inode); 2998 /* Leaf not may not exist only if inode has no blocks at all */ 2999 ex = path[depth].p_ext; 3000 if (!ex) { 3001 if (depth) { 3002 EXT4_ERROR_INODE(inode, 3003 "path[%d].p_hdr == NULL", 3004 depth); 3005 err = -EFSCORRUPTED; 3006 } 3007 goto out; 3008 } 3009 3010 ee_block = le32_to_cpu(ex->ee_block); 3011 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1; 3012 3013 /* 3014 * See if the last block is inside the extent, if so split 3015 * the extent at 'end' block so we can easily remove the 3016 * tail of the first part of the split extent in 3017 * ext4_ext_rm_leaf(). 3018 */ 3019 if (end >= ee_block && end < ex_end) { 3020 3021 /* 3022 * If we're going to split the extent, note that 3023 * the cluster containing the block after 'end' is 3024 * in use to avoid freeing it when removing blocks. 3025 */ 3026 if (sbi->s_cluster_ratio > 1) { 3027 pblk = ext4_ext_pblock(ex) + end - ee_block + 2; 3028 partial.pclu = EXT4_B2C(sbi, pblk); 3029 partial.state = nofree; 3030 } 3031 3032 /* 3033 * Split the extent in two so that 'end' is the last 3034 * block in the first new extent. Also we should not 3035 * fail removing space due to ENOSPC so try to use 3036 * reserved block if that happens. 3037 */ 3038 err = ext4_force_split_extent_at(handle, inode, &path, 3039 end + 1, 1); 3040 if (err < 0) 3041 goto out; 3042 3043 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end && 3044 partial.state == initial) { 3045 /* 3046 * If we're punching, there's an extent to the right. 3047 * If the partial cluster hasn't been set, set it to 3048 * that extent's first cluster and its state to nofree 3049 * so it won't be freed should it contain blocks to be 3050 * removed. If it's already set (tofree/nofree), we're 3051 * retrying and keep the original partial cluster info 3052 * so a cluster marked tofree as a result of earlier 3053 * extent removal is not lost. 3054 */ 3055 lblk = ex_end + 1; 3056 err = ext4_ext_search_right(inode, path, &lblk, &pblk, 3057 &ex); 3058 if (err) 3059 goto out; 3060 if (pblk) { 3061 partial.pclu = EXT4_B2C(sbi, pblk); 3062 partial.state = nofree; 3063 } 3064 } 3065 } 3066 /* 3067 * We start scanning from right side, freeing all the blocks 3068 * after i_size and walking into the tree depth-wise. 3069 */ 3070 depth = ext_depth(inode); 3071 if (path) { 3072 int k = i = depth; 3073 while (--k > 0) 3074 path[k].p_block = 3075 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 3076 } else { 3077 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 3078 GFP_NOFS); 3079 if (path == NULL) { 3080 ext4_journal_stop(handle); 3081 return -ENOMEM; 3082 } 3083 path[0].p_maxdepth = path[0].p_depth = depth; 3084 path[0].p_hdr = ext_inode_hdr(inode); 3085 i = 0; 3086 3087 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 3088 err = -EFSCORRUPTED; 3089 goto out; 3090 } 3091 } 3092 err = 0; 3093 3094 while (i >= 0 && err == 0) { 3095 if (i == depth) { 3096 /* this is leaf block */ 3097 err = ext4_ext_rm_leaf(handle, inode, path, 3098 &partial, start, end); 3099 /* root level has p_bh == NULL, brelse() eats this */ 3100 brelse(path[i].p_bh); 3101 path[i].p_bh = NULL; 3102 i--; 3103 continue; 3104 } 3105 3106 /* this is index block */ 3107 if (!path[i].p_hdr) { 3108 ext_debug("initialize header\n"); 3109 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 3110 } 3111 3112 if (!path[i].p_idx) { 3113 /* this level hasn't been touched yet */ 3114 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 3115 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 3116 ext_debug("init index ptr: hdr 0x%p, num %d\n", 3117 path[i].p_hdr, 3118 le16_to_cpu(path[i].p_hdr->eh_entries)); 3119 } else { 3120 /* we were already here, see at next index */ 3121 path[i].p_idx--; 3122 } 3123 3124 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 3125 i, EXT_FIRST_INDEX(path[i].p_hdr), 3126 path[i].p_idx); 3127 if (ext4_ext_more_to_rm(path + i)) { 3128 struct buffer_head *bh; 3129 /* go to the next level */ 3130 ext_debug("move to level %d (block %llu)\n", 3131 i + 1, ext4_idx_pblock(path[i].p_idx)); 3132 memset(path + i + 1, 0, sizeof(*path)); 3133 bh = read_extent_tree_block(inode, 3134 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 3135 EXT4_EX_NOCACHE); 3136 if (IS_ERR(bh)) { 3137 /* should we reset i_size? */ 3138 err = PTR_ERR(bh); 3139 break; 3140 } 3141 /* Yield here to deal with large extent trees. 3142 * Should be a no-op if we did IO above. */ 3143 cond_resched(); 3144 if (WARN_ON(i + 1 > depth)) { 3145 err = -EFSCORRUPTED; 3146 break; 3147 } 3148 path[i + 1].p_bh = bh; 3149 3150 /* save actual number of indexes since this 3151 * number is changed at the next iteration */ 3152 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 3153 i++; 3154 } else { 3155 /* we finished processing this index, go up */ 3156 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 3157 /* index is empty, remove it; 3158 * handle must be already prepared by the 3159 * truncatei_leaf() */ 3160 err = ext4_ext_rm_idx(handle, inode, path, i); 3161 } 3162 /* root level has p_bh == NULL, brelse() eats this */ 3163 brelse(path[i].p_bh); 3164 path[i].p_bh = NULL; 3165 i--; 3166 ext_debug("return to level %d\n", i); 3167 } 3168 } 3169 3170 trace_ext4_ext_remove_space_done(inode, start, end, depth, &partial, 3171 path->p_hdr->eh_entries); 3172 3173 /* 3174 * if there's a partial cluster and we have removed the first extent 3175 * in the file, then we also free the partial cluster, if any 3176 */ 3177 if (partial.state == tofree && err == 0) { 3178 int flags = get_default_free_blocks_flags(inode); 3179 3180 if (ext4_is_pending(inode, partial.lblk)) 3181 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 3182 ext4_free_blocks(handle, inode, NULL, 3183 EXT4_C2B(sbi, partial.pclu), 3184 sbi->s_cluster_ratio, flags); 3185 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 3186 ext4_rereserve_cluster(inode, partial.lblk); 3187 partial.state = initial; 3188 } 3189 3190 /* TODO: flexible tree reduction should be here */ 3191 if (path->p_hdr->eh_entries == 0) { 3192 /* 3193 * truncate to zero freed all the tree, 3194 * so we need to correct eh_depth 3195 */ 3196 err = ext4_ext_get_access(handle, inode, path); 3197 if (err == 0) { 3198 ext_inode_hdr(inode)->eh_depth = 0; 3199 ext_inode_hdr(inode)->eh_max = 3200 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3201 err = ext4_ext_dirty(handle, inode, path); 3202 } 3203 } 3204 out: 3205 ext4_ext_drop_refs(path); 3206 kfree(path); 3207 path = NULL; 3208 if (err == -EAGAIN) 3209 goto again; 3210 ext4_journal_stop(handle); 3211 3212 return err; 3213 } 3214 3215 /* 3216 * called at mount time 3217 */ 3218 void ext4_ext_init(struct super_block *sb) 3219 { 3220 /* 3221 * possible initialization would be here 3222 */ 3223 3224 if (ext4_has_feature_extents(sb)) { 3225 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3226 printk(KERN_INFO "EXT4-fs: file extents enabled" 3227 #ifdef AGGRESSIVE_TEST 3228 ", aggressive tests" 3229 #endif 3230 #ifdef CHECK_BINSEARCH 3231 ", check binsearch" 3232 #endif 3233 #ifdef EXTENTS_STATS 3234 ", stats" 3235 #endif 3236 "\n"); 3237 #endif 3238 #ifdef EXTENTS_STATS 3239 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3240 EXT4_SB(sb)->s_ext_min = 1 << 30; 3241 EXT4_SB(sb)->s_ext_max = 0; 3242 #endif 3243 } 3244 } 3245 3246 /* 3247 * called at umount time 3248 */ 3249 void ext4_ext_release(struct super_block *sb) 3250 { 3251 if (!ext4_has_feature_extents(sb)) 3252 return; 3253 3254 #ifdef EXTENTS_STATS 3255 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3256 struct ext4_sb_info *sbi = EXT4_SB(sb); 3257 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3258 sbi->s_ext_blocks, sbi->s_ext_extents, 3259 sbi->s_ext_blocks / sbi->s_ext_extents); 3260 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3261 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3262 } 3263 #endif 3264 } 3265 3266 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3267 { 3268 ext4_lblk_t ee_block; 3269 ext4_fsblk_t ee_pblock; 3270 unsigned int ee_len; 3271 3272 ee_block = le32_to_cpu(ex->ee_block); 3273 ee_len = ext4_ext_get_actual_len(ex); 3274 ee_pblock = ext4_ext_pblock(ex); 3275 3276 if (ee_len == 0) 3277 return 0; 3278 3279 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3280 EXTENT_STATUS_WRITTEN); 3281 } 3282 3283 /* FIXME!! we need to try to merge to left or right after zero-out */ 3284 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3285 { 3286 ext4_fsblk_t ee_pblock; 3287 unsigned int ee_len; 3288 3289 ee_len = ext4_ext_get_actual_len(ex); 3290 ee_pblock = ext4_ext_pblock(ex); 3291 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock, 3292 ee_len); 3293 } 3294 3295 /* 3296 * ext4_split_extent_at() splits an extent at given block. 3297 * 3298 * @handle: the journal handle 3299 * @inode: the file inode 3300 * @path: the path to the extent 3301 * @split: the logical block where the extent is splitted. 3302 * @split_flags: indicates if the extent could be zeroout if split fails, and 3303 * the states(init or unwritten) of new extents. 3304 * @flags: flags used to insert new extent to extent tree. 3305 * 3306 * 3307 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3308 * of which are deterimined by split_flag. 3309 * 3310 * There are two cases: 3311 * a> the extent are splitted into two extent. 3312 * b> split is not needed, and just mark the extent. 3313 * 3314 * return 0 on success. 3315 */ 3316 static int ext4_split_extent_at(handle_t *handle, 3317 struct inode *inode, 3318 struct ext4_ext_path **ppath, 3319 ext4_lblk_t split, 3320 int split_flag, 3321 int flags) 3322 { 3323 struct ext4_ext_path *path = *ppath; 3324 ext4_fsblk_t newblock; 3325 ext4_lblk_t ee_block; 3326 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3327 struct ext4_extent *ex2 = NULL; 3328 unsigned int ee_len, depth; 3329 int err = 0; 3330 3331 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3332 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3333 3334 ext_debug("ext4_split_extents_at: inode %lu, logical" 3335 "block %llu\n", inode->i_ino, (unsigned long long)split); 3336 3337 ext4_ext_show_leaf(inode, path); 3338 3339 depth = ext_depth(inode); 3340 ex = path[depth].p_ext; 3341 ee_block = le32_to_cpu(ex->ee_block); 3342 ee_len = ext4_ext_get_actual_len(ex); 3343 newblock = split - ee_block + ext4_ext_pblock(ex); 3344 3345 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3346 BUG_ON(!ext4_ext_is_unwritten(ex) && 3347 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3348 EXT4_EXT_MARK_UNWRIT1 | 3349 EXT4_EXT_MARK_UNWRIT2)); 3350 3351 err = ext4_ext_get_access(handle, inode, path + depth); 3352 if (err) 3353 goto out; 3354 3355 if (split == ee_block) { 3356 /* 3357 * case b: block @split is the block that the extent begins with 3358 * then we just change the state of the extent, and splitting 3359 * is not needed. 3360 */ 3361 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3362 ext4_ext_mark_unwritten(ex); 3363 else 3364 ext4_ext_mark_initialized(ex); 3365 3366 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3367 ext4_ext_try_to_merge(handle, inode, path, ex); 3368 3369 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3370 goto out; 3371 } 3372 3373 /* case a */ 3374 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3375 ex->ee_len = cpu_to_le16(split - ee_block); 3376 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3377 ext4_ext_mark_unwritten(ex); 3378 3379 /* 3380 * path may lead to new leaf, not to original leaf any more 3381 * after ext4_ext_insert_extent() returns, 3382 */ 3383 err = ext4_ext_dirty(handle, inode, path + depth); 3384 if (err) 3385 goto fix_extent_len; 3386 3387 ex2 = &newex; 3388 ex2->ee_block = cpu_to_le32(split); 3389 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3390 ext4_ext_store_pblock(ex2, newblock); 3391 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3392 ext4_ext_mark_unwritten(ex2); 3393 3394 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags); 3395 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3396 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3397 if (split_flag & EXT4_EXT_DATA_VALID1) { 3398 err = ext4_ext_zeroout(inode, ex2); 3399 zero_ex.ee_block = ex2->ee_block; 3400 zero_ex.ee_len = cpu_to_le16( 3401 ext4_ext_get_actual_len(ex2)); 3402 ext4_ext_store_pblock(&zero_ex, 3403 ext4_ext_pblock(ex2)); 3404 } else { 3405 err = ext4_ext_zeroout(inode, ex); 3406 zero_ex.ee_block = ex->ee_block; 3407 zero_ex.ee_len = cpu_to_le16( 3408 ext4_ext_get_actual_len(ex)); 3409 ext4_ext_store_pblock(&zero_ex, 3410 ext4_ext_pblock(ex)); 3411 } 3412 } else { 3413 err = ext4_ext_zeroout(inode, &orig_ex); 3414 zero_ex.ee_block = orig_ex.ee_block; 3415 zero_ex.ee_len = cpu_to_le16( 3416 ext4_ext_get_actual_len(&orig_ex)); 3417 ext4_ext_store_pblock(&zero_ex, 3418 ext4_ext_pblock(&orig_ex)); 3419 } 3420 3421 if (err) 3422 goto fix_extent_len; 3423 /* update the extent length and mark as initialized */ 3424 ex->ee_len = cpu_to_le16(ee_len); 3425 ext4_ext_try_to_merge(handle, inode, path, ex); 3426 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3427 if (err) 3428 goto fix_extent_len; 3429 3430 /* update extent status tree */ 3431 err = ext4_zeroout_es(inode, &zero_ex); 3432 3433 goto out; 3434 } else if (err) 3435 goto fix_extent_len; 3436 3437 out: 3438 ext4_ext_show_leaf(inode, path); 3439 return err; 3440 3441 fix_extent_len: 3442 ex->ee_len = orig_ex.ee_len; 3443 ext4_ext_dirty(handle, inode, path + path->p_depth); 3444 return err; 3445 } 3446 3447 /* 3448 * ext4_split_extents() splits an extent and mark extent which is covered 3449 * by @map as split_flags indicates 3450 * 3451 * It may result in splitting the extent into multiple extents (up to three) 3452 * There are three possibilities: 3453 * a> There is no split required 3454 * b> Splits in two extents: Split is happening at either end of the extent 3455 * c> Splits in three extents: Somone is splitting in middle of the extent 3456 * 3457 */ 3458 static int ext4_split_extent(handle_t *handle, 3459 struct inode *inode, 3460 struct ext4_ext_path **ppath, 3461 struct ext4_map_blocks *map, 3462 int split_flag, 3463 int flags) 3464 { 3465 struct ext4_ext_path *path = *ppath; 3466 ext4_lblk_t ee_block; 3467 struct ext4_extent *ex; 3468 unsigned int ee_len, depth; 3469 int err = 0; 3470 int unwritten; 3471 int split_flag1, flags1; 3472 int allocated = map->m_len; 3473 3474 depth = ext_depth(inode); 3475 ex = path[depth].p_ext; 3476 ee_block = le32_to_cpu(ex->ee_block); 3477 ee_len = ext4_ext_get_actual_len(ex); 3478 unwritten = ext4_ext_is_unwritten(ex); 3479 3480 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3481 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3482 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3483 if (unwritten) 3484 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3485 EXT4_EXT_MARK_UNWRIT2; 3486 if (split_flag & EXT4_EXT_DATA_VALID2) 3487 split_flag1 |= EXT4_EXT_DATA_VALID1; 3488 err = ext4_split_extent_at(handle, inode, ppath, 3489 map->m_lblk + map->m_len, split_flag1, flags1); 3490 if (err) 3491 goto out; 3492 } else { 3493 allocated = ee_len - (map->m_lblk - ee_block); 3494 } 3495 /* 3496 * Update path is required because previous ext4_split_extent_at() may 3497 * result in split of original leaf or extent zeroout. 3498 */ 3499 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3500 if (IS_ERR(path)) 3501 return PTR_ERR(path); 3502 depth = ext_depth(inode); 3503 ex = path[depth].p_ext; 3504 if (!ex) { 3505 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3506 (unsigned long) map->m_lblk); 3507 return -EFSCORRUPTED; 3508 } 3509 unwritten = ext4_ext_is_unwritten(ex); 3510 split_flag1 = 0; 3511 3512 if (map->m_lblk >= ee_block) { 3513 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3514 if (unwritten) { 3515 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3516 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3517 EXT4_EXT_MARK_UNWRIT2); 3518 } 3519 err = ext4_split_extent_at(handle, inode, ppath, 3520 map->m_lblk, split_flag1, flags); 3521 if (err) 3522 goto out; 3523 } 3524 3525 ext4_ext_show_leaf(inode, path); 3526 out: 3527 return err ? err : allocated; 3528 } 3529 3530 /* 3531 * This function is called by ext4_ext_map_blocks() if someone tries to write 3532 * to an unwritten extent. It may result in splitting the unwritten 3533 * extent into multiple extents (up to three - one initialized and two 3534 * unwritten). 3535 * There are three possibilities: 3536 * a> There is no split required: Entire extent should be initialized 3537 * b> Splits in two extents: Write is happening at either end of the extent 3538 * c> Splits in three extents: Somone is writing in middle of the extent 3539 * 3540 * Pre-conditions: 3541 * - The extent pointed to by 'path' is unwritten. 3542 * - The extent pointed to by 'path' contains a superset 3543 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3544 * 3545 * Post-conditions on success: 3546 * - the returned value is the number of blocks beyond map->l_lblk 3547 * that are allocated and initialized. 3548 * It is guaranteed to be >= map->m_len. 3549 */ 3550 static int ext4_ext_convert_to_initialized(handle_t *handle, 3551 struct inode *inode, 3552 struct ext4_map_blocks *map, 3553 struct ext4_ext_path **ppath, 3554 int flags) 3555 { 3556 struct ext4_ext_path *path = *ppath; 3557 struct ext4_sb_info *sbi; 3558 struct ext4_extent_header *eh; 3559 struct ext4_map_blocks split_map; 3560 struct ext4_extent zero_ex1, zero_ex2; 3561 struct ext4_extent *ex, *abut_ex; 3562 ext4_lblk_t ee_block, eof_block; 3563 unsigned int ee_len, depth, map_len = map->m_len; 3564 int allocated = 0, max_zeroout = 0; 3565 int err = 0; 3566 int split_flag = EXT4_EXT_DATA_VALID2; 3567 3568 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3569 "block %llu, max_blocks %u\n", inode->i_ino, 3570 (unsigned long long)map->m_lblk, map_len); 3571 3572 sbi = EXT4_SB(inode->i_sb); 3573 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3574 inode->i_sb->s_blocksize_bits; 3575 if (eof_block < map->m_lblk + map_len) 3576 eof_block = map->m_lblk + map_len; 3577 3578 depth = ext_depth(inode); 3579 eh = path[depth].p_hdr; 3580 ex = path[depth].p_ext; 3581 ee_block = le32_to_cpu(ex->ee_block); 3582 ee_len = ext4_ext_get_actual_len(ex); 3583 zero_ex1.ee_len = 0; 3584 zero_ex2.ee_len = 0; 3585 3586 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3587 3588 /* Pre-conditions */ 3589 BUG_ON(!ext4_ext_is_unwritten(ex)); 3590 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3591 3592 /* 3593 * Attempt to transfer newly initialized blocks from the currently 3594 * unwritten extent to its neighbor. This is much cheaper 3595 * than an insertion followed by a merge as those involve costly 3596 * memmove() calls. Transferring to the left is the common case in 3597 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3598 * followed by append writes. 3599 * 3600 * Limitations of the current logic: 3601 * - L1: we do not deal with writes covering the whole extent. 3602 * This would require removing the extent if the transfer 3603 * is possible. 3604 * - L2: we only attempt to merge with an extent stored in the 3605 * same extent tree node. 3606 */ 3607 if ((map->m_lblk == ee_block) && 3608 /* See if we can merge left */ 3609 (map_len < ee_len) && /*L1*/ 3610 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3611 ext4_lblk_t prev_lblk; 3612 ext4_fsblk_t prev_pblk, ee_pblk; 3613 unsigned int prev_len; 3614 3615 abut_ex = ex - 1; 3616 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3617 prev_len = ext4_ext_get_actual_len(abut_ex); 3618 prev_pblk = ext4_ext_pblock(abut_ex); 3619 ee_pblk = ext4_ext_pblock(ex); 3620 3621 /* 3622 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3623 * upon those conditions: 3624 * - C1: abut_ex is initialized, 3625 * - C2: abut_ex is logically abutting ex, 3626 * - C3: abut_ex is physically abutting ex, 3627 * - C4: abut_ex can receive the additional blocks without 3628 * overflowing the (initialized) length limit. 3629 */ 3630 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3631 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3632 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3633 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3634 err = ext4_ext_get_access(handle, inode, path + depth); 3635 if (err) 3636 goto out; 3637 3638 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3639 map, ex, abut_ex); 3640 3641 /* Shift the start of ex by 'map_len' blocks */ 3642 ex->ee_block = cpu_to_le32(ee_block + map_len); 3643 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3644 ex->ee_len = cpu_to_le16(ee_len - map_len); 3645 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3646 3647 /* Extend abut_ex by 'map_len' blocks */ 3648 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3649 3650 /* Result: number of initialized blocks past m_lblk */ 3651 allocated = map_len; 3652 } 3653 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3654 (map_len < ee_len) && /*L1*/ 3655 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3656 /* See if we can merge right */ 3657 ext4_lblk_t next_lblk; 3658 ext4_fsblk_t next_pblk, ee_pblk; 3659 unsigned int next_len; 3660 3661 abut_ex = ex + 1; 3662 next_lblk = le32_to_cpu(abut_ex->ee_block); 3663 next_len = ext4_ext_get_actual_len(abut_ex); 3664 next_pblk = ext4_ext_pblock(abut_ex); 3665 ee_pblk = ext4_ext_pblock(ex); 3666 3667 /* 3668 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3669 * upon those conditions: 3670 * - C1: abut_ex is initialized, 3671 * - C2: abut_ex is logically abutting ex, 3672 * - C3: abut_ex is physically abutting ex, 3673 * - C4: abut_ex can receive the additional blocks without 3674 * overflowing the (initialized) length limit. 3675 */ 3676 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3677 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3678 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3679 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3680 err = ext4_ext_get_access(handle, inode, path + depth); 3681 if (err) 3682 goto out; 3683 3684 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3685 map, ex, abut_ex); 3686 3687 /* Shift the start of abut_ex by 'map_len' blocks */ 3688 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3689 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3690 ex->ee_len = cpu_to_le16(ee_len - map_len); 3691 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3692 3693 /* Extend abut_ex by 'map_len' blocks */ 3694 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3695 3696 /* Result: number of initialized blocks past m_lblk */ 3697 allocated = map_len; 3698 } 3699 } 3700 if (allocated) { 3701 /* Mark the block containing both extents as dirty */ 3702 ext4_ext_dirty(handle, inode, path + depth); 3703 3704 /* Update path to point to the right extent */ 3705 path[depth].p_ext = abut_ex; 3706 goto out; 3707 } else 3708 allocated = ee_len - (map->m_lblk - ee_block); 3709 3710 WARN_ON(map->m_lblk < ee_block); 3711 /* 3712 * It is safe to convert extent to initialized via explicit 3713 * zeroout only if extent is fully inside i_size or new_size. 3714 */ 3715 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3716 3717 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3718 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3719 (inode->i_sb->s_blocksize_bits - 10); 3720 3721 if (IS_ENCRYPTED(inode)) 3722 max_zeroout = 0; 3723 3724 /* 3725 * five cases: 3726 * 1. split the extent into three extents. 3727 * 2. split the extent into two extents, zeroout the head of the first 3728 * extent. 3729 * 3. split the extent into two extents, zeroout the tail of the second 3730 * extent. 3731 * 4. split the extent into two extents with out zeroout. 3732 * 5. no splitting needed, just possibly zeroout the head and / or the 3733 * tail of the extent. 3734 */ 3735 split_map.m_lblk = map->m_lblk; 3736 split_map.m_len = map->m_len; 3737 3738 if (max_zeroout && (allocated > split_map.m_len)) { 3739 if (allocated <= max_zeroout) { 3740 /* case 3 or 5 */ 3741 zero_ex1.ee_block = 3742 cpu_to_le32(split_map.m_lblk + 3743 split_map.m_len); 3744 zero_ex1.ee_len = 3745 cpu_to_le16(allocated - split_map.m_len); 3746 ext4_ext_store_pblock(&zero_ex1, 3747 ext4_ext_pblock(ex) + split_map.m_lblk + 3748 split_map.m_len - ee_block); 3749 err = ext4_ext_zeroout(inode, &zero_ex1); 3750 if (err) 3751 goto out; 3752 split_map.m_len = allocated; 3753 } 3754 if (split_map.m_lblk - ee_block + split_map.m_len < 3755 max_zeroout) { 3756 /* case 2 or 5 */ 3757 if (split_map.m_lblk != ee_block) { 3758 zero_ex2.ee_block = ex->ee_block; 3759 zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk - 3760 ee_block); 3761 ext4_ext_store_pblock(&zero_ex2, 3762 ext4_ext_pblock(ex)); 3763 err = ext4_ext_zeroout(inode, &zero_ex2); 3764 if (err) 3765 goto out; 3766 } 3767 3768 split_map.m_len += split_map.m_lblk - ee_block; 3769 split_map.m_lblk = ee_block; 3770 allocated = map->m_len; 3771 } 3772 } 3773 3774 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag, 3775 flags); 3776 if (err > 0) 3777 err = 0; 3778 out: 3779 /* If we have gotten a failure, don't zero out status tree */ 3780 if (!err) { 3781 err = ext4_zeroout_es(inode, &zero_ex1); 3782 if (!err) 3783 err = ext4_zeroout_es(inode, &zero_ex2); 3784 } 3785 return err ? err : allocated; 3786 } 3787 3788 /* 3789 * This function is called by ext4_ext_map_blocks() from 3790 * ext4_get_blocks_dio_write() when DIO to write 3791 * to an unwritten extent. 3792 * 3793 * Writing to an unwritten extent may result in splitting the unwritten 3794 * extent into multiple initialized/unwritten extents (up to three) 3795 * There are three possibilities: 3796 * a> There is no split required: Entire extent should be unwritten 3797 * b> Splits in two extents: Write is happening at either end of the extent 3798 * c> Splits in three extents: Somone is writing in middle of the extent 3799 * 3800 * This works the same way in the case of initialized -> unwritten conversion. 3801 * 3802 * One of more index blocks maybe needed if the extent tree grow after 3803 * the unwritten extent split. To prevent ENOSPC occur at the IO 3804 * complete, we need to split the unwritten extent before DIO submit 3805 * the IO. The unwritten extent called at this time will be split 3806 * into three unwritten extent(at most). After IO complete, the part 3807 * being filled will be convert to initialized by the end_io callback function 3808 * via ext4_convert_unwritten_extents(). 3809 * 3810 * Returns the size of unwritten extent to be written on success. 3811 */ 3812 static int ext4_split_convert_extents(handle_t *handle, 3813 struct inode *inode, 3814 struct ext4_map_blocks *map, 3815 struct ext4_ext_path **ppath, 3816 int flags) 3817 { 3818 struct ext4_ext_path *path = *ppath; 3819 ext4_lblk_t eof_block; 3820 ext4_lblk_t ee_block; 3821 struct ext4_extent *ex; 3822 unsigned int ee_len; 3823 int split_flag = 0, depth; 3824 3825 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3826 __func__, inode->i_ino, 3827 (unsigned long long)map->m_lblk, map->m_len); 3828 3829 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3830 inode->i_sb->s_blocksize_bits; 3831 if (eof_block < map->m_lblk + map->m_len) 3832 eof_block = map->m_lblk + map->m_len; 3833 /* 3834 * It is safe to convert extent to initialized via explicit 3835 * zeroout only if extent is fully insde i_size or new_size. 3836 */ 3837 depth = ext_depth(inode); 3838 ex = path[depth].p_ext; 3839 ee_block = le32_to_cpu(ex->ee_block); 3840 ee_len = ext4_ext_get_actual_len(ex); 3841 3842 /* Convert to unwritten */ 3843 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3844 split_flag |= EXT4_EXT_DATA_VALID1; 3845 /* Convert to initialized */ 3846 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3847 split_flag |= ee_block + ee_len <= eof_block ? 3848 EXT4_EXT_MAY_ZEROOUT : 0; 3849 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3850 } 3851 flags |= EXT4_GET_BLOCKS_PRE_IO; 3852 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags); 3853 } 3854 3855 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3856 struct inode *inode, 3857 struct ext4_map_blocks *map, 3858 struct ext4_ext_path **ppath) 3859 { 3860 struct ext4_ext_path *path = *ppath; 3861 struct ext4_extent *ex; 3862 ext4_lblk_t ee_block; 3863 unsigned int ee_len; 3864 int depth; 3865 int err = 0; 3866 3867 depth = ext_depth(inode); 3868 ex = path[depth].p_ext; 3869 ee_block = le32_to_cpu(ex->ee_block); 3870 ee_len = ext4_ext_get_actual_len(ex); 3871 3872 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3873 "block %llu, max_blocks %u\n", inode->i_ino, 3874 (unsigned long long)ee_block, ee_len); 3875 3876 /* If extent is larger than requested it is a clear sign that we still 3877 * have some extent state machine issues left. So extent_split is still 3878 * required. 3879 * TODO: Once all related issues will be fixed this situation should be 3880 * illegal. 3881 */ 3882 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3883 #ifdef CONFIG_EXT4_DEBUG 3884 ext4_warning(inode->i_sb, "Inode (%ld) finished: extent logical block %llu," 3885 " len %u; IO logical block %llu, len %u", 3886 inode->i_ino, (unsigned long long)ee_block, ee_len, 3887 (unsigned long long)map->m_lblk, map->m_len); 3888 #endif 3889 err = ext4_split_convert_extents(handle, inode, map, ppath, 3890 EXT4_GET_BLOCKS_CONVERT); 3891 if (err < 0) 3892 return err; 3893 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3894 if (IS_ERR(path)) 3895 return PTR_ERR(path); 3896 depth = ext_depth(inode); 3897 ex = path[depth].p_ext; 3898 } 3899 3900 err = ext4_ext_get_access(handle, inode, path + depth); 3901 if (err) 3902 goto out; 3903 /* first mark the extent as initialized */ 3904 ext4_ext_mark_initialized(ex); 3905 3906 /* note: ext4_ext_correct_indexes() isn't needed here because 3907 * borders are not changed 3908 */ 3909 ext4_ext_try_to_merge(handle, inode, path, ex); 3910 3911 /* Mark modified extent as dirty */ 3912 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3913 out: 3914 ext4_ext_show_leaf(inode, path); 3915 return err; 3916 } 3917 3918 /* 3919 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3920 */ 3921 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3922 ext4_lblk_t lblk, 3923 struct ext4_ext_path *path, 3924 unsigned int len) 3925 { 3926 int i, depth; 3927 struct ext4_extent_header *eh; 3928 struct ext4_extent *last_ex; 3929 3930 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3931 return 0; 3932 3933 depth = ext_depth(inode); 3934 eh = path[depth].p_hdr; 3935 3936 /* 3937 * We're going to remove EOFBLOCKS_FL entirely in future so we 3938 * do not care for this case anymore. Simply remove the flag 3939 * if there are no extents. 3940 */ 3941 if (unlikely(!eh->eh_entries)) 3942 goto out; 3943 last_ex = EXT_LAST_EXTENT(eh); 3944 /* 3945 * We should clear the EOFBLOCKS_FL flag if we are writing the 3946 * last block in the last extent in the file. We test this by 3947 * first checking to see if the caller to 3948 * ext4_ext_get_blocks() was interested in the last block (or 3949 * a block beyond the last block) in the current extent. If 3950 * this turns out to be false, we can bail out from this 3951 * function immediately. 3952 */ 3953 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3954 ext4_ext_get_actual_len(last_ex)) 3955 return 0; 3956 /* 3957 * If the caller does appear to be planning to write at or 3958 * beyond the end of the current extent, we then test to see 3959 * if the current extent is the last extent in the file, by 3960 * checking to make sure it was reached via the rightmost node 3961 * at each level of the tree. 3962 */ 3963 for (i = depth-1; i >= 0; i--) 3964 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3965 return 0; 3966 out: 3967 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3968 return ext4_mark_inode_dirty(handle, inode); 3969 } 3970 3971 static int 3972 convert_initialized_extent(handle_t *handle, struct inode *inode, 3973 struct ext4_map_blocks *map, 3974 struct ext4_ext_path **ppath, 3975 unsigned int allocated) 3976 { 3977 struct ext4_ext_path *path = *ppath; 3978 struct ext4_extent *ex; 3979 ext4_lblk_t ee_block; 3980 unsigned int ee_len; 3981 int depth; 3982 int err = 0; 3983 3984 /* 3985 * Make sure that the extent is no bigger than we support with 3986 * unwritten extent 3987 */ 3988 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3989 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3990 3991 depth = ext_depth(inode); 3992 ex = path[depth].p_ext; 3993 ee_block = le32_to_cpu(ex->ee_block); 3994 ee_len = ext4_ext_get_actual_len(ex); 3995 3996 ext_debug("%s: inode %lu, logical" 3997 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3998 (unsigned long long)ee_block, ee_len); 3999 4000 if (ee_block != map->m_lblk || ee_len > map->m_len) { 4001 err = ext4_split_convert_extents(handle, inode, map, ppath, 4002 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 4003 if (err < 0) 4004 return err; 4005 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 4006 if (IS_ERR(path)) 4007 return PTR_ERR(path); 4008 depth = ext_depth(inode); 4009 ex = path[depth].p_ext; 4010 if (!ex) { 4011 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 4012 (unsigned long) map->m_lblk); 4013 return -EFSCORRUPTED; 4014 } 4015 } 4016 4017 err = ext4_ext_get_access(handle, inode, path + depth); 4018 if (err) 4019 return err; 4020 /* first mark the extent as unwritten */ 4021 ext4_ext_mark_unwritten(ex); 4022 4023 /* note: ext4_ext_correct_indexes() isn't needed here because 4024 * borders are not changed 4025 */ 4026 ext4_ext_try_to_merge(handle, inode, path, ex); 4027 4028 /* Mark modified extent as dirty */ 4029 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 4030 if (err) 4031 return err; 4032 ext4_ext_show_leaf(inode, path); 4033 4034 ext4_update_inode_fsync_trans(handle, inode, 1); 4035 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len); 4036 if (err) 4037 return err; 4038 map->m_flags |= EXT4_MAP_UNWRITTEN; 4039 if (allocated > map->m_len) 4040 allocated = map->m_len; 4041 map->m_len = allocated; 4042 return allocated; 4043 } 4044 4045 static int 4046 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 4047 struct ext4_map_blocks *map, 4048 struct ext4_ext_path **ppath, int flags, 4049 unsigned int allocated, ext4_fsblk_t newblock) 4050 { 4051 struct ext4_ext_path *path = *ppath; 4052 int ret = 0; 4053 int err = 0; 4054 4055 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 4056 "block %llu, max_blocks %u, flags %x, allocated %u\n", 4057 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 4058 flags, allocated); 4059 ext4_ext_show_leaf(inode, path); 4060 4061 /* 4062 * When writing into unwritten space, we should not fail to 4063 * allocate metadata blocks for the new extent block if needed. 4064 */ 4065 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 4066 4067 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 4068 allocated, newblock); 4069 4070 /* get_block() before submit the IO, split the extent */ 4071 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 4072 ret = ext4_split_convert_extents(handle, inode, map, ppath, 4073 flags | EXT4_GET_BLOCKS_CONVERT); 4074 if (ret <= 0) 4075 goto out; 4076 map->m_flags |= EXT4_MAP_UNWRITTEN; 4077 goto out; 4078 } 4079 /* IO end_io complete, convert the filled extent to written */ 4080 if (flags & EXT4_GET_BLOCKS_CONVERT) { 4081 if (flags & EXT4_GET_BLOCKS_ZERO) { 4082 if (allocated > map->m_len) 4083 allocated = map->m_len; 4084 err = ext4_issue_zeroout(inode, map->m_lblk, newblock, 4085 allocated); 4086 if (err < 0) 4087 goto out2; 4088 } 4089 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 4090 ppath); 4091 if (ret >= 0) { 4092 ext4_update_inode_fsync_trans(handle, inode, 1); 4093 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4094 path, map->m_len); 4095 } else 4096 err = ret; 4097 map->m_flags |= EXT4_MAP_MAPPED; 4098 map->m_pblk = newblock; 4099 if (allocated > map->m_len) 4100 allocated = map->m_len; 4101 map->m_len = allocated; 4102 goto out2; 4103 } 4104 /* buffered IO case */ 4105 /* 4106 * repeat fallocate creation request 4107 * we already have an unwritten extent 4108 */ 4109 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4110 map->m_flags |= EXT4_MAP_UNWRITTEN; 4111 goto map_out; 4112 } 4113 4114 /* buffered READ or buffered write_begin() lookup */ 4115 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4116 /* 4117 * We have blocks reserved already. We 4118 * return allocated blocks so that delalloc 4119 * won't do block reservation for us. But 4120 * the buffer head will be unmapped so that 4121 * a read from the block returns 0s. 4122 */ 4123 map->m_flags |= EXT4_MAP_UNWRITTEN; 4124 goto out1; 4125 } 4126 4127 /* buffered write, writepage time, convert*/ 4128 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags); 4129 if (ret >= 0) 4130 ext4_update_inode_fsync_trans(handle, inode, 1); 4131 out: 4132 if (ret <= 0) { 4133 err = ret; 4134 goto out2; 4135 } else 4136 allocated = ret; 4137 map->m_flags |= EXT4_MAP_NEW; 4138 if (allocated > map->m_len) 4139 allocated = map->m_len; 4140 map->m_len = allocated; 4141 4142 map_out: 4143 map->m_flags |= EXT4_MAP_MAPPED; 4144 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 4145 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 4146 map->m_len); 4147 if (err < 0) 4148 goto out2; 4149 } 4150 out1: 4151 if (allocated > map->m_len) 4152 allocated = map->m_len; 4153 ext4_ext_show_leaf(inode, path); 4154 map->m_pblk = newblock; 4155 map->m_len = allocated; 4156 out2: 4157 return err ? err : allocated; 4158 } 4159 4160 /* 4161 * get_implied_cluster_alloc - check to see if the requested 4162 * allocation (in the map structure) overlaps with a cluster already 4163 * allocated in an extent. 4164 * @sb The filesystem superblock structure 4165 * @map The requested lblk->pblk mapping 4166 * @ex The extent structure which might contain an implied 4167 * cluster allocation 4168 * 4169 * This function is called by ext4_ext_map_blocks() after we failed to 4170 * find blocks that were already in the inode's extent tree. Hence, 4171 * we know that the beginning of the requested region cannot overlap 4172 * the extent from the inode's extent tree. There are three cases we 4173 * want to catch. The first is this case: 4174 * 4175 * |--- cluster # N--| 4176 * |--- extent ---| |---- requested region ---| 4177 * |==========| 4178 * 4179 * The second case that we need to test for is this one: 4180 * 4181 * |--------- cluster # N ----------------| 4182 * |--- requested region --| |------- extent ----| 4183 * |=======================| 4184 * 4185 * The third case is when the requested region lies between two extents 4186 * within the same cluster: 4187 * |------------- cluster # N-------------| 4188 * |----- ex -----| |---- ex_right ----| 4189 * |------ requested region ------| 4190 * |================| 4191 * 4192 * In each of the above cases, we need to set the map->m_pblk and 4193 * map->m_len so it corresponds to the return the extent labelled as 4194 * "|====|" from cluster #N, since it is already in use for data in 4195 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 4196 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 4197 * as a new "allocated" block region. Otherwise, we will return 0 and 4198 * ext4_ext_map_blocks() will then allocate one or more new clusters 4199 * by calling ext4_mb_new_blocks(). 4200 */ 4201 static int get_implied_cluster_alloc(struct super_block *sb, 4202 struct ext4_map_blocks *map, 4203 struct ext4_extent *ex, 4204 struct ext4_ext_path *path) 4205 { 4206 struct ext4_sb_info *sbi = EXT4_SB(sb); 4207 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4208 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4209 ext4_lblk_t rr_cluster_start; 4210 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4211 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4212 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4213 4214 /* The extent passed in that we are trying to match */ 4215 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4216 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4217 4218 /* The requested region passed into ext4_map_blocks() */ 4219 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4220 4221 if ((rr_cluster_start == ex_cluster_end) || 4222 (rr_cluster_start == ex_cluster_start)) { 4223 if (rr_cluster_start == ex_cluster_end) 4224 ee_start += ee_len - 1; 4225 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 4226 map->m_len = min(map->m_len, 4227 (unsigned) sbi->s_cluster_ratio - c_offset); 4228 /* 4229 * Check for and handle this case: 4230 * 4231 * |--------- cluster # N-------------| 4232 * |------- extent ----| 4233 * |--- requested region ---| 4234 * |===========| 4235 */ 4236 4237 if (map->m_lblk < ee_block) 4238 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4239 4240 /* 4241 * Check for the case where there is already another allocated 4242 * block to the right of 'ex' but before the end of the cluster. 4243 * 4244 * |------------- cluster # N-------------| 4245 * |----- ex -----| |---- ex_right ----| 4246 * |------ requested region ------| 4247 * |================| 4248 */ 4249 if (map->m_lblk > ee_block) { 4250 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4251 map->m_len = min(map->m_len, next - map->m_lblk); 4252 } 4253 4254 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4255 return 1; 4256 } 4257 4258 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4259 return 0; 4260 } 4261 4262 4263 /* 4264 * Block allocation/map/preallocation routine for extents based files 4265 * 4266 * 4267 * Need to be called with 4268 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4269 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4270 * 4271 * return > 0, number of of blocks already mapped/allocated 4272 * if create == 0 and these are pre-allocated blocks 4273 * buffer head is unmapped 4274 * otherwise blocks are mapped 4275 * 4276 * return = 0, if plain look up failed (blocks have not been allocated) 4277 * buffer head is unmapped 4278 * 4279 * return < 0, error case. 4280 */ 4281 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4282 struct ext4_map_blocks *map, int flags) 4283 { 4284 struct ext4_ext_path *path = NULL; 4285 struct ext4_extent newex, *ex, *ex2; 4286 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4287 ext4_fsblk_t newblock = 0; 4288 int free_on_err = 0, err = 0, depth, ret; 4289 unsigned int allocated = 0, offset = 0; 4290 unsigned int allocated_clusters = 0; 4291 struct ext4_allocation_request ar; 4292 ext4_lblk_t cluster_offset; 4293 bool map_from_cluster = false; 4294 4295 ext_debug("blocks %u/%u requested for inode %lu\n", 4296 map->m_lblk, map->m_len, inode->i_ino); 4297 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4298 4299 /* find extent for this block */ 4300 path = ext4_find_extent(inode, map->m_lblk, NULL, 0); 4301 if (IS_ERR(path)) { 4302 err = PTR_ERR(path); 4303 path = NULL; 4304 goto out2; 4305 } 4306 4307 depth = ext_depth(inode); 4308 4309 /* 4310 * consistent leaf must not be empty; 4311 * this situation is possible, though, _during_ tree modification; 4312 * this is why assert can't be put in ext4_find_extent() 4313 */ 4314 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4315 EXT4_ERROR_INODE(inode, "bad extent address " 4316 "lblock: %lu, depth: %d pblock %lld", 4317 (unsigned long) map->m_lblk, depth, 4318 path[depth].p_block); 4319 err = -EFSCORRUPTED; 4320 goto out2; 4321 } 4322 4323 ex = path[depth].p_ext; 4324 if (ex) { 4325 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4326 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4327 unsigned short ee_len; 4328 4329 4330 /* 4331 * unwritten extents are treated as holes, except that 4332 * we split out initialized portions during a write. 4333 */ 4334 ee_len = ext4_ext_get_actual_len(ex); 4335 4336 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4337 4338 /* if found extent covers block, simply return it */ 4339 if (in_range(map->m_lblk, ee_block, ee_len)) { 4340 newblock = map->m_lblk - ee_block + ee_start; 4341 /* number of remaining blocks in the extent */ 4342 allocated = ee_len - (map->m_lblk - ee_block); 4343 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4344 ee_block, ee_len, newblock); 4345 4346 /* 4347 * If the extent is initialized check whether the 4348 * caller wants to convert it to unwritten. 4349 */ 4350 if ((!ext4_ext_is_unwritten(ex)) && 4351 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4352 allocated = convert_initialized_extent( 4353 handle, inode, map, &path, 4354 allocated); 4355 goto out2; 4356 } else if (!ext4_ext_is_unwritten(ex)) 4357 goto out; 4358 4359 ret = ext4_ext_handle_unwritten_extents( 4360 handle, inode, map, &path, flags, 4361 allocated, newblock); 4362 if (ret < 0) 4363 err = ret; 4364 else 4365 allocated = ret; 4366 goto out2; 4367 } 4368 } 4369 4370 /* 4371 * requested block isn't allocated yet; 4372 * we couldn't try to create block if create flag is zero 4373 */ 4374 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4375 ext4_lblk_t hole_start, hole_len; 4376 4377 hole_start = map->m_lblk; 4378 hole_len = ext4_ext_determine_hole(inode, path, &hole_start); 4379 /* 4380 * put just found gap into cache to speed up 4381 * subsequent requests 4382 */ 4383 ext4_ext_put_gap_in_cache(inode, hole_start, hole_len); 4384 4385 /* Update hole_len to reflect hole size after map->m_lblk */ 4386 if (hole_start != map->m_lblk) 4387 hole_len -= map->m_lblk - hole_start; 4388 map->m_pblk = 0; 4389 map->m_len = min_t(unsigned int, map->m_len, hole_len); 4390 4391 goto out2; 4392 } 4393 4394 /* 4395 * Okay, we need to do block allocation. 4396 */ 4397 newex.ee_block = cpu_to_le32(map->m_lblk); 4398 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4399 4400 /* 4401 * If we are doing bigalloc, check to see if the extent returned 4402 * by ext4_find_extent() implies a cluster we can use. 4403 */ 4404 if (cluster_offset && ex && 4405 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4406 ar.len = allocated = map->m_len; 4407 newblock = map->m_pblk; 4408 map_from_cluster = true; 4409 goto got_allocated_blocks; 4410 } 4411 4412 /* find neighbour allocated blocks */ 4413 ar.lleft = map->m_lblk; 4414 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4415 if (err) 4416 goto out2; 4417 ar.lright = map->m_lblk; 4418 ex2 = NULL; 4419 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4420 if (err) 4421 goto out2; 4422 4423 /* Check if the extent after searching to the right implies a 4424 * cluster we can use. */ 4425 if ((sbi->s_cluster_ratio > 1) && ex2 && 4426 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4427 ar.len = allocated = map->m_len; 4428 newblock = map->m_pblk; 4429 map_from_cluster = true; 4430 goto got_allocated_blocks; 4431 } 4432 4433 /* 4434 * See if request is beyond maximum number of blocks we can have in 4435 * a single extent. For an initialized extent this limit is 4436 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4437 * EXT_UNWRITTEN_MAX_LEN. 4438 */ 4439 if (map->m_len > EXT_INIT_MAX_LEN && 4440 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4441 map->m_len = EXT_INIT_MAX_LEN; 4442 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4443 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4444 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4445 4446 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4447 newex.ee_len = cpu_to_le16(map->m_len); 4448 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4449 if (err) 4450 allocated = ext4_ext_get_actual_len(&newex); 4451 else 4452 allocated = map->m_len; 4453 4454 /* allocate new block */ 4455 ar.inode = inode; 4456 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4457 ar.logical = map->m_lblk; 4458 /* 4459 * We calculate the offset from the beginning of the cluster 4460 * for the logical block number, since when we allocate a 4461 * physical cluster, the physical block should start at the 4462 * same offset from the beginning of the cluster. This is 4463 * needed so that future calls to get_implied_cluster_alloc() 4464 * work correctly. 4465 */ 4466 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4467 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4468 ar.goal -= offset; 4469 ar.logical -= offset; 4470 if (S_ISREG(inode->i_mode)) 4471 ar.flags = EXT4_MB_HINT_DATA; 4472 else 4473 /* disable in-core preallocation for non-regular files */ 4474 ar.flags = 0; 4475 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4476 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4477 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4478 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 4479 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 4480 ar.flags |= EXT4_MB_USE_RESERVED; 4481 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4482 if (!newblock) 4483 goto out2; 4484 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4485 ar.goal, newblock, allocated); 4486 free_on_err = 1; 4487 allocated_clusters = ar.len; 4488 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4489 if (ar.len > allocated) 4490 ar.len = allocated; 4491 4492 got_allocated_blocks: 4493 /* try to insert new extent into found leaf and return */ 4494 ext4_ext_store_pblock(&newex, newblock + offset); 4495 newex.ee_len = cpu_to_le16(ar.len); 4496 /* Mark unwritten */ 4497 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){ 4498 ext4_ext_mark_unwritten(&newex); 4499 map->m_flags |= EXT4_MAP_UNWRITTEN; 4500 } 4501 4502 err = 0; 4503 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4504 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4505 path, ar.len); 4506 if (!err) 4507 err = ext4_ext_insert_extent(handle, inode, &path, 4508 &newex, flags); 4509 4510 if (err && free_on_err) { 4511 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4512 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4513 /* free data blocks we just allocated */ 4514 /* not a good idea to call discard here directly, 4515 * but otherwise we'd need to call it every free() */ 4516 ext4_discard_preallocations(inode); 4517 ext4_free_blocks(handle, inode, NULL, newblock, 4518 EXT4_C2B(sbi, allocated_clusters), fb_flags); 4519 goto out2; 4520 } 4521 4522 /* previous routine could use block we allocated */ 4523 newblock = ext4_ext_pblock(&newex); 4524 allocated = ext4_ext_get_actual_len(&newex); 4525 if (allocated > map->m_len) 4526 allocated = map->m_len; 4527 map->m_flags |= EXT4_MAP_NEW; 4528 4529 /* 4530 * Reduce the reserved cluster count to reflect successful deferred 4531 * allocation of delayed allocated clusters or direct allocation of 4532 * clusters discovered to be delayed allocated. Once allocated, a 4533 * cluster is not included in the reserved count. 4534 */ 4535 if (test_opt(inode->i_sb, DELALLOC) && !map_from_cluster) { 4536 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4537 /* 4538 * When allocating delayed allocated clusters, simply 4539 * reduce the reserved cluster count and claim quota 4540 */ 4541 ext4_da_update_reserve_space(inode, allocated_clusters, 4542 1); 4543 } else { 4544 ext4_lblk_t lblk, len; 4545 unsigned int n; 4546 4547 /* 4548 * When allocating non-delayed allocated clusters 4549 * (from fallocate, filemap, DIO, or clusters 4550 * allocated when delalloc has been disabled by 4551 * ext4_nonda_switch), reduce the reserved cluster 4552 * count by the number of allocated clusters that 4553 * have previously been delayed allocated. Quota 4554 * has been claimed by ext4_mb_new_blocks() above, 4555 * so release the quota reservations made for any 4556 * previously delayed allocated clusters. 4557 */ 4558 lblk = EXT4_LBLK_CMASK(sbi, map->m_lblk); 4559 len = allocated_clusters << sbi->s_cluster_bits; 4560 n = ext4_es_delayed_clu(inode, lblk, len); 4561 if (n > 0) 4562 ext4_da_update_reserve_space(inode, (int) n, 0); 4563 } 4564 } 4565 4566 /* 4567 * Cache the extent and update transaction to commit on fdatasync only 4568 * when it is _not_ an unwritten extent. 4569 */ 4570 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4571 ext4_update_inode_fsync_trans(handle, inode, 1); 4572 else 4573 ext4_update_inode_fsync_trans(handle, inode, 0); 4574 out: 4575 if (allocated > map->m_len) 4576 allocated = map->m_len; 4577 ext4_ext_show_leaf(inode, path); 4578 map->m_flags |= EXT4_MAP_MAPPED; 4579 map->m_pblk = newblock; 4580 map->m_len = allocated; 4581 out2: 4582 ext4_ext_drop_refs(path); 4583 kfree(path); 4584 4585 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4586 err ? err : allocated); 4587 return err ? err : allocated; 4588 } 4589 4590 int ext4_ext_truncate(handle_t *handle, struct inode *inode) 4591 { 4592 struct super_block *sb = inode->i_sb; 4593 ext4_lblk_t last_block; 4594 int err = 0; 4595 4596 /* 4597 * TODO: optimization is possible here. 4598 * Probably we need not scan at all, 4599 * because page truncation is enough. 4600 */ 4601 4602 /* we have to know where to truncate from in crash case */ 4603 EXT4_I(inode)->i_disksize = inode->i_size; 4604 err = ext4_mark_inode_dirty(handle, inode); 4605 if (err) 4606 return err; 4607 4608 last_block = (inode->i_size + sb->s_blocksize - 1) 4609 >> EXT4_BLOCK_SIZE_BITS(sb); 4610 retry: 4611 err = ext4_es_remove_extent(inode, last_block, 4612 EXT_MAX_BLOCKS - last_block); 4613 if (err == -ENOMEM) { 4614 cond_resched(); 4615 congestion_wait(BLK_RW_ASYNC, HZ/50); 4616 goto retry; 4617 } 4618 if (err) 4619 return err; 4620 return ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4621 } 4622 4623 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4624 ext4_lblk_t len, loff_t new_size, 4625 int flags) 4626 { 4627 struct inode *inode = file_inode(file); 4628 handle_t *handle; 4629 int ret = 0; 4630 int ret2 = 0; 4631 int retries = 0; 4632 int depth = 0; 4633 struct ext4_map_blocks map; 4634 unsigned int credits; 4635 loff_t epos; 4636 4637 BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)); 4638 map.m_lblk = offset; 4639 map.m_len = len; 4640 /* 4641 * Don't normalize the request if it can fit in one extent so 4642 * that it doesn't get unnecessarily split into multiple 4643 * extents. 4644 */ 4645 if (len <= EXT_UNWRITTEN_MAX_LEN) 4646 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4647 4648 /* 4649 * credits to insert 1 extent into extent tree 4650 */ 4651 credits = ext4_chunk_trans_blocks(inode, len); 4652 depth = ext_depth(inode); 4653 4654 retry: 4655 while (ret >= 0 && len) { 4656 /* 4657 * Recalculate credits when extent tree depth changes. 4658 */ 4659 if (depth != ext_depth(inode)) { 4660 credits = ext4_chunk_trans_blocks(inode, len); 4661 depth = ext_depth(inode); 4662 } 4663 4664 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4665 credits); 4666 if (IS_ERR(handle)) { 4667 ret = PTR_ERR(handle); 4668 break; 4669 } 4670 ret = ext4_map_blocks(handle, inode, &map, flags); 4671 if (ret <= 0) { 4672 ext4_debug("inode #%lu: block %u: len %u: " 4673 "ext4_ext_map_blocks returned %d", 4674 inode->i_ino, map.m_lblk, 4675 map.m_len, ret); 4676 ext4_mark_inode_dirty(handle, inode); 4677 ret2 = ext4_journal_stop(handle); 4678 break; 4679 } 4680 map.m_lblk += ret; 4681 map.m_len = len = len - ret; 4682 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4683 inode->i_ctime = current_time(inode); 4684 if (new_size) { 4685 if (epos > new_size) 4686 epos = new_size; 4687 if (ext4_update_inode_size(inode, epos) & 0x1) 4688 inode->i_mtime = inode->i_ctime; 4689 } else { 4690 if (epos > inode->i_size) 4691 ext4_set_inode_flag(inode, 4692 EXT4_INODE_EOFBLOCKS); 4693 } 4694 ext4_mark_inode_dirty(handle, inode); 4695 ext4_update_inode_fsync_trans(handle, inode, 1); 4696 ret2 = ext4_journal_stop(handle); 4697 if (ret2) 4698 break; 4699 } 4700 if (ret == -ENOSPC && 4701 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4702 ret = 0; 4703 goto retry; 4704 } 4705 4706 return ret > 0 ? ret2 : ret; 4707 } 4708 4709 static long ext4_zero_range(struct file *file, loff_t offset, 4710 loff_t len, int mode) 4711 { 4712 struct inode *inode = file_inode(file); 4713 handle_t *handle = NULL; 4714 unsigned int max_blocks; 4715 loff_t new_size = 0; 4716 int ret = 0; 4717 int flags; 4718 int credits; 4719 int partial_begin, partial_end; 4720 loff_t start, end; 4721 ext4_lblk_t lblk; 4722 unsigned int blkbits = inode->i_blkbits; 4723 4724 trace_ext4_zero_range(inode, offset, len, mode); 4725 4726 if (!S_ISREG(inode->i_mode)) 4727 return -EINVAL; 4728 4729 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4730 if (ext4_should_journal_data(inode)) { 4731 ret = ext4_force_commit(inode->i_sb); 4732 if (ret) 4733 return ret; 4734 } 4735 4736 /* 4737 * Round up offset. This is not fallocate, we neet to zero out 4738 * blocks, so convert interior block aligned part of the range to 4739 * unwritten and possibly manually zero out unaligned parts of the 4740 * range. 4741 */ 4742 start = round_up(offset, 1 << blkbits); 4743 end = round_down((offset + len), 1 << blkbits); 4744 4745 if (start < offset || end > offset + len) 4746 return -EINVAL; 4747 partial_begin = offset & ((1 << blkbits) - 1); 4748 partial_end = (offset + len) & ((1 << blkbits) - 1); 4749 4750 lblk = start >> blkbits; 4751 max_blocks = (end >> blkbits); 4752 if (max_blocks < lblk) 4753 max_blocks = 0; 4754 else 4755 max_blocks -= lblk; 4756 4757 inode_lock(inode); 4758 4759 /* 4760 * Indirect files do not support unwritten extnets 4761 */ 4762 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4763 ret = -EOPNOTSUPP; 4764 goto out_mutex; 4765 } 4766 4767 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4768 (offset + len > i_size_read(inode) || 4769 offset + len > EXT4_I(inode)->i_disksize)) { 4770 new_size = offset + len; 4771 ret = inode_newsize_ok(inode, new_size); 4772 if (ret) 4773 goto out_mutex; 4774 } 4775 4776 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4777 if (mode & FALLOC_FL_KEEP_SIZE) 4778 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4779 4780 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4781 inode_dio_wait(inode); 4782 4783 /* Preallocate the range including the unaligned edges */ 4784 if (partial_begin || partial_end) { 4785 ret = ext4_alloc_file_blocks(file, 4786 round_down(offset, 1 << blkbits) >> blkbits, 4787 (round_up((offset + len), 1 << blkbits) - 4788 round_down(offset, 1 << blkbits)) >> blkbits, 4789 new_size, flags); 4790 if (ret) 4791 goto out_mutex; 4792 4793 } 4794 4795 /* Zero range excluding the unaligned edges */ 4796 if (max_blocks > 0) { 4797 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4798 EXT4_EX_NOCACHE); 4799 4800 /* 4801 * Prevent page faults from reinstantiating pages we have 4802 * released from page cache. 4803 */ 4804 down_write(&EXT4_I(inode)->i_mmap_sem); 4805 4806 ret = ext4_break_layouts(inode); 4807 if (ret) { 4808 up_write(&EXT4_I(inode)->i_mmap_sem); 4809 goto out_mutex; 4810 } 4811 4812 ret = ext4_update_disksize_before_punch(inode, offset, len); 4813 if (ret) { 4814 up_write(&EXT4_I(inode)->i_mmap_sem); 4815 goto out_mutex; 4816 } 4817 /* Now release the pages and zero block aligned part of pages */ 4818 truncate_pagecache_range(inode, start, end - 1); 4819 inode->i_mtime = inode->i_ctime = current_time(inode); 4820 4821 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4822 flags); 4823 up_write(&EXT4_I(inode)->i_mmap_sem); 4824 if (ret) 4825 goto out_mutex; 4826 } 4827 if (!partial_begin && !partial_end) 4828 goto out_mutex; 4829 4830 /* 4831 * In worst case we have to writeout two nonadjacent unwritten 4832 * blocks and update the inode 4833 */ 4834 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4835 if (ext4_should_journal_data(inode)) 4836 credits += 2; 4837 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4838 if (IS_ERR(handle)) { 4839 ret = PTR_ERR(handle); 4840 ext4_std_error(inode->i_sb, ret); 4841 goto out_mutex; 4842 } 4843 4844 inode->i_mtime = inode->i_ctime = current_time(inode); 4845 if (new_size) { 4846 ext4_update_inode_size(inode, new_size); 4847 } else { 4848 /* 4849 * Mark that we allocate beyond EOF so the subsequent truncate 4850 * can proceed even if the new size is the same as i_size. 4851 */ 4852 if ((offset + len) > i_size_read(inode)) 4853 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4854 } 4855 ext4_mark_inode_dirty(handle, inode); 4856 4857 /* Zero out partial block at the edges of the range */ 4858 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4859 if (ret >= 0) 4860 ext4_update_inode_fsync_trans(handle, inode, 1); 4861 4862 if (file->f_flags & O_SYNC) 4863 ext4_handle_sync(handle); 4864 4865 ext4_journal_stop(handle); 4866 out_mutex: 4867 inode_unlock(inode); 4868 return ret; 4869 } 4870 4871 /* 4872 * preallocate space for a file. This implements ext4's fallocate file 4873 * operation, which gets called from sys_fallocate system call. 4874 * For block-mapped files, posix_fallocate should fall back to the method 4875 * of writing zeroes to the required new blocks (the same behavior which is 4876 * expected for file systems which do not support fallocate() system call). 4877 */ 4878 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4879 { 4880 struct inode *inode = file_inode(file); 4881 loff_t new_size = 0; 4882 unsigned int max_blocks; 4883 int ret = 0; 4884 int flags; 4885 ext4_lblk_t lblk; 4886 unsigned int blkbits = inode->i_blkbits; 4887 4888 /* 4889 * Encrypted inodes can't handle collapse range or insert 4890 * range since we would need to re-encrypt blocks with a 4891 * different IV or XTS tweak (which are based on the logical 4892 * block number). 4893 * 4894 * XXX It's not clear why zero range isn't working, but we'll 4895 * leave it disabled for encrypted inodes for now. This is a 4896 * bug we should fix.... 4897 */ 4898 if (IS_ENCRYPTED(inode) && 4899 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE | 4900 FALLOC_FL_ZERO_RANGE))) 4901 return -EOPNOTSUPP; 4902 4903 /* Return error if mode is not supported */ 4904 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4905 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 4906 FALLOC_FL_INSERT_RANGE)) 4907 return -EOPNOTSUPP; 4908 4909 if (mode & FALLOC_FL_PUNCH_HOLE) 4910 return ext4_punch_hole(inode, offset, len); 4911 4912 ret = ext4_convert_inline_data(inode); 4913 if (ret) 4914 return ret; 4915 4916 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4917 return ext4_collapse_range(inode, offset, len); 4918 4919 if (mode & FALLOC_FL_INSERT_RANGE) 4920 return ext4_insert_range(inode, offset, len); 4921 4922 if (mode & FALLOC_FL_ZERO_RANGE) 4923 return ext4_zero_range(file, offset, len, mode); 4924 4925 trace_ext4_fallocate_enter(inode, offset, len, mode); 4926 lblk = offset >> blkbits; 4927 4928 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 4929 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4930 if (mode & FALLOC_FL_KEEP_SIZE) 4931 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4932 4933 inode_lock(inode); 4934 4935 /* 4936 * We only support preallocation for extent-based files only 4937 */ 4938 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4939 ret = -EOPNOTSUPP; 4940 goto out; 4941 } 4942 4943 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4944 (offset + len > i_size_read(inode) || 4945 offset + len > EXT4_I(inode)->i_disksize)) { 4946 new_size = offset + len; 4947 ret = inode_newsize_ok(inode, new_size); 4948 if (ret) 4949 goto out; 4950 } 4951 4952 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4953 inode_dio_wait(inode); 4954 4955 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags); 4956 if (ret) 4957 goto out; 4958 4959 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 4960 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 4961 EXT4_I(inode)->i_sync_tid); 4962 } 4963 out: 4964 inode_unlock(inode); 4965 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4966 return ret; 4967 } 4968 4969 /* 4970 * This function convert a range of blocks to written extents 4971 * The caller of this function will pass the start offset and the size. 4972 * all unwritten extents within this range will be converted to 4973 * written extents. 4974 * 4975 * This function is called from the direct IO end io call back 4976 * function, to convert the fallocated extents after IO is completed. 4977 * Returns 0 on success. 4978 */ 4979 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4980 loff_t offset, ssize_t len) 4981 { 4982 unsigned int max_blocks; 4983 int ret = 0; 4984 int ret2 = 0; 4985 struct ext4_map_blocks map; 4986 unsigned int blkbits = inode->i_blkbits; 4987 unsigned int credits = 0; 4988 4989 map.m_lblk = offset >> blkbits; 4990 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 4991 4992 if (!handle) { 4993 /* 4994 * credits to insert 1 extent into extent tree 4995 */ 4996 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4997 } 4998 while (ret >= 0 && ret < max_blocks) { 4999 map.m_lblk += ret; 5000 map.m_len = (max_blocks -= ret); 5001 if (credits) { 5002 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 5003 credits); 5004 if (IS_ERR(handle)) { 5005 ret = PTR_ERR(handle); 5006 break; 5007 } 5008 } 5009 ret = ext4_map_blocks(handle, inode, &map, 5010 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 5011 if (ret <= 0) 5012 ext4_warning(inode->i_sb, 5013 "inode #%lu: block %u: len %u: " 5014 "ext4_ext_map_blocks returned %d", 5015 inode->i_ino, map.m_lblk, 5016 map.m_len, ret); 5017 ext4_mark_inode_dirty(handle, inode); 5018 if (credits) 5019 ret2 = ext4_journal_stop(handle); 5020 if (ret <= 0 || ret2) 5021 break; 5022 } 5023 return ret > 0 ? ret2 : ret; 5024 } 5025 5026 int ext4_convert_unwritten_io_end_vec(handle_t *handle, ext4_io_end_t *io_end) 5027 { 5028 int ret, err = 0; 5029 struct ext4_io_end_vec *io_end_vec; 5030 5031 /* 5032 * This is somewhat ugly but the idea is clear: When transaction is 5033 * reserved, everything goes into it. Otherwise we rather start several 5034 * smaller transactions for conversion of each extent separately. 5035 */ 5036 if (handle) { 5037 handle = ext4_journal_start_reserved(handle, 5038 EXT4_HT_EXT_CONVERT); 5039 if (IS_ERR(handle)) 5040 return PTR_ERR(handle); 5041 } 5042 5043 list_for_each_entry(io_end_vec, &io_end->list_vec, list) { 5044 ret = ext4_convert_unwritten_extents(handle, io_end->inode, 5045 io_end_vec->offset, 5046 io_end_vec->size); 5047 if (ret) 5048 break; 5049 } 5050 5051 if (handle) 5052 err = ext4_journal_stop(handle); 5053 5054 return ret < 0 ? ret : err; 5055 } 5056 5057 /* 5058 * If newes is not existing extent (newes->ec_pblk equals zero) find 5059 * delayed extent at start of newes and update newes accordingly and 5060 * return start of the next delayed extent. 5061 * 5062 * If newes is existing extent (newes->ec_pblk is not equal zero) 5063 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 5064 * extent found. Leave newes unmodified. 5065 */ 5066 static int ext4_find_delayed_extent(struct inode *inode, 5067 struct extent_status *newes) 5068 { 5069 struct extent_status es; 5070 ext4_lblk_t block, next_del; 5071 5072 if (newes->es_pblk == 0) { 5073 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 5074 newes->es_lblk, 5075 newes->es_lblk + newes->es_len - 1, 5076 &es); 5077 5078 /* 5079 * No extent in extent-tree contains block @newes->es_pblk, 5080 * then the block may stay in 1)a hole or 2)delayed-extent. 5081 */ 5082 if (es.es_len == 0) 5083 /* A hole found. */ 5084 return 0; 5085 5086 if (es.es_lblk > newes->es_lblk) { 5087 /* A hole found. */ 5088 newes->es_len = min(es.es_lblk - newes->es_lblk, 5089 newes->es_len); 5090 return 0; 5091 } 5092 5093 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 5094 } 5095 5096 block = newes->es_lblk + newes->es_len; 5097 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, block, 5098 EXT_MAX_BLOCKS, &es); 5099 if (es.es_len == 0) 5100 next_del = EXT_MAX_BLOCKS; 5101 else 5102 next_del = es.es_lblk; 5103 5104 return next_del; 5105 } 5106 5107 static int ext4_xattr_fiemap(struct inode *inode, 5108 struct fiemap_extent_info *fieinfo) 5109 { 5110 __u64 physical = 0; 5111 __u64 length; 5112 __u32 flags = FIEMAP_EXTENT_LAST; 5113 int blockbits = inode->i_sb->s_blocksize_bits; 5114 int error = 0; 5115 5116 /* in-inode? */ 5117 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 5118 struct ext4_iloc iloc; 5119 int offset; /* offset of xattr in inode */ 5120 5121 error = ext4_get_inode_loc(inode, &iloc); 5122 if (error) 5123 return error; 5124 physical = (__u64)iloc.bh->b_blocknr << blockbits; 5125 offset = EXT4_GOOD_OLD_INODE_SIZE + 5126 EXT4_I(inode)->i_extra_isize; 5127 physical += offset; 5128 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 5129 flags |= FIEMAP_EXTENT_DATA_INLINE; 5130 brelse(iloc.bh); 5131 } else { /* external block */ 5132 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 5133 length = inode->i_sb->s_blocksize; 5134 } 5135 5136 if (physical) 5137 error = fiemap_fill_next_extent(fieinfo, 0, physical, 5138 length, flags); 5139 return (error < 0 ? error : 0); 5140 } 5141 5142 static int _ext4_fiemap(struct inode *inode, 5143 struct fiemap_extent_info *fieinfo, 5144 __u64 start, __u64 len, 5145 int (*fill)(struct inode *, ext4_lblk_t, 5146 ext4_lblk_t, 5147 struct fiemap_extent_info *)) 5148 { 5149 ext4_lblk_t start_blk; 5150 u32 ext4_fiemap_flags = FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR; 5151 5152 int error = 0; 5153 5154 if (ext4_has_inline_data(inode)) { 5155 int has_inline = 1; 5156 5157 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline, 5158 start, len); 5159 5160 if (has_inline) 5161 return error; 5162 } 5163 5164 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 5165 error = ext4_ext_precache(inode); 5166 if (error) 5167 return error; 5168 fieinfo->fi_flags &= ~FIEMAP_FLAG_CACHE; 5169 } 5170 5171 /* fallback to generic here if not in extents fmt */ 5172 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 5173 fill == ext4_fill_fiemap_extents) 5174 return generic_block_fiemap(inode, fieinfo, start, len, 5175 ext4_get_block); 5176 5177 if (fill == ext4_fill_es_cache_info) 5178 ext4_fiemap_flags &= FIEMAP_FLAG_XATTR; 5179 if (fiemap_check_flags(fieinfo, ext4_fiemap_flags)) 5180 return -EBADR; 5181 5182 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 5183 error = ext4_xattr_fiemap(inode, fieinfo); 5184 } else { 5185 ext4_lblk_t len_blks; 5186 __u64 last_blk; 5187 5188 start_blk = start >> inode->i_sb->s_blocksize_bits; 5189 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5190 if (last_blk >= EXT_MAX_BLOCKS) 5191 last_blk = EXT_MAX_BLOCKS-1; 5192 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5193 5194 /* 5195 * Walk the extent tree gathering extent information 5196 * and pushing extents back to the user. 5197 */ 5198 error = fill(inode, start_blk, len_blks, fieinfo); 5199 } 5200 return error; 5201 } 5202 5203 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5204 __u64 start, __u64 len) 5205 { 5206 return _ext4_fiemap(inode, fieinfo, start, len, 5207 ext4_fill_fiemap_extents); 5208 } 5209 5210 int ext4_get_es_cache(struct inode *inode, struct fiemap_extent_info *fieinfo, 5211 __u64 start, __u64 len) 5212 { 5213 if (ext4_has_inline_data(inode)) { 5214 int has_inline; 5215 5216 down_read(&EXT4_I(inode)->xattr_sem); 5217 has_inline = ext4_has_inline_data(inode); 5218 up_read(&EXT4_I(inode)->xattr_sem); 5219 if (has_inline) 5220 return 0; 5221 } 5222 5223 return _ext4_fiemap(inode, fieinfo, start, len, 5224 ext4_fill_es_cache_info); 5225 } 5226 5227 5228 /* 5229 * ext4_access_path: 5230 * Function to access the path buffer for marking it dirty. 5231 * It also checks if there are sufficient credits left in the journal handle 5232 * to update path. 5233 */ 5234 static int 5235 ext4_access_path(handle_t *handle, struct inode *inode, 5236 struct ext4_ext_path *path) 5237 { 5238 int credits, err; 5239 5240 if (!ext4_handle_valid(handle)) 5241 return 0; 5242 5243 /* 5244 * Check if need to extend journal credits 5245 * 3 for leaf, sb, and inode plus 2 (bmap and group 5246 * descriptor) for each block group; assume two block 5247 * groups 5248 */ 5249 credits = ext4_writepage_trans_blocks(inode); 5250 err = ext4_datasem_ensure_credits(handle, inode, 7, credits, 0); 5251 if (err < 0) 5252 return err; 5253 5254 err = ext4_ext_get_access(handle, inode, path); 5255 return err; 5256 } 5257 5258 /* 5259 * ext4_ext_shift_path_extents: 5260 * Shift the extents of a path structure lying between path[depth].p_ext 5261 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells 5262 * if it is right shift or left shift operation. 5263 */ 5264 static int 5265 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5266 struct inode *inode, handle_t *handle, 5267 enum SHIFT_DIRECTION SHIFT) 5268 { 5269 int depth, err = 0; 5270 struct ext4_extent *ex_start, *ex_last; 5271 bool update = 0; 5272 depth = path->p_depth; 5273 5274 while (depth >= 0) { 5275 if (depth == path->p_depth) { 5276 ex_start = path[depth].p_ext; 5277 if (!ex_start) 5278 return -EFSCORRUPTED; 5279 5280 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5281 5282 err = ext4_access_path(handle, inode, path + depth); 5283 if (err) 5284 goto out; 5285 5286 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 5287 update = 1; 5288 5289 while (ex_start <= ex_last) { 5290 if (SHIFT == SHIFT_LEFT) { 5291 le32_add_cpu(&ex_start->ee_block, 5292 -shift); 5293 /* Try to merge to the left. */ 5294 if ((ex_start > 5295 EXT_FIRST_EXTENT(path[depth].p_hdr)) 5296 && 5297 ext4_ext_try_to_merge_right(inode, 5298 path, ex_start - 1)) 5299 ex_last--; 5300 else 5301 ex_start++; 5302 } else { 5303 le32_add_cpu(&ex_last->ee_block, shift); 5304 ext4_ext_try_to_merge_right(inode, path, 5305 ex_last); 5306 ex_last--; 5307 } 5308 } 5309 err = ext4_ext_dirty(handle, inode, path + depth); 5310 if (err) 5311 goto out; 5312 5313 if (--depth < 0 || !update) 5314 break; 5315 } 5316 5317 /* Update index too */ 5318 err = ext4_access_path(handle, inode, path + depth); 5319 if (err) 5320 goto out; 5321 5322 if (SHIFT == SHIFT_LEFT) 5323 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5324 else 5325 le32_add_cpu(&path[depth].p_idx->ei_block, shift); 5326 err = ext4_ext_dirty(handle, inode, path + depth); 5327 if (err) 5328 goto out; 5329 5330 /* we are done if current index is not a starting index */ 5331 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5332 break; 5333 5334 depth--; 5335 } 5336 5337 out: 5338 return err; 5339 } 5340 5341 /* 5342 * ext4_ext_shift_extents: 5343 * All the extents which lies in the range from @start to the last allocated 5344 * block for the @inode are shifted either towards left or right (depending 5345 * upon @SHIFT) by @shift blocks. 5346 * On success, 0 is returned, error otherwise. 5347 */ 5348 static int 5349 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5350 ext4_lblk_t start, ext4_lblk_t shift, 5351 enum SHIFT_DIRECTION SHIFT) 5352 { 5353 struct ext4_ext_path *path; 5354 int ret = 0, depth; 5355 struct ext4_extent *extent; 5356 ext4_lblk_t stop, *iterator, ex_start, ex_end; 5357 5358 /* Let path point to the last extent */ 5359 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 5360 EXT4_EX_NOCACHE); 5361 if (IS_ERR(path)) 5362 return PTR_ERR(path); 5363 5364 depth = path->p_depth; 5365 extent = path[depth].p_ext; 5366 if (!extent) 5367 goto out; 5368 5369 stop = le32_to_cpu(extent->ee_block); 5370 5371 /* 5372 * For left shifts, make sure the hole on the left is big enough to 5373 * accommodate the shift. For right shifts, make sure the last extent 5374 * won't be shifted beyond EXT_MAX_BLOCKS. 5375 */ 5376 if (SHIFT == SHIFT_LEFT) { 5377 path = ext4_find_extent(inode, start - 1, &path, 5378 EXT4_EX_NOCACHE); 5379 if (IS_ERR(path)) 5380 return PTR_ERR(path); 5381 depth = path->p_depth; 5382 extent = path[depth].p_ext; 5383 if (extent) { 5384 ex_start = le32_to_cpu(extent->ee_block); 5385 ex_end = le32_to_cpu(extent->ee_block) + 5386 ext4_ext_get_actual_len(extent); 5387 } else { 5388 ex_start = 0; 5389 ex_end = 0; 5390 } 5391 5392 if ((start == ex_start && shift > ex_start) || 5393 (shift > start - ex_end)) { 5394 ret = -EINVAL; 5395 goto out; 5396 } 5397 } else { 5398 if (shift > EXT_MAX_BLOCKS - 5399 (stop + ext4_ext_get_actual_len(extent))) { 5400 ret = -EINVAL; 5401 goto out; 5402 } 5403 } 5404 5405 /* 5406 * In case of left shift, iterator points to start and it is increased 5407 * till we reach stop. In case of right shift, iterator points to stop 5408 * and it is decreased till we reach start. 5409 */ 5410 if (SHIFT == SHIFT_LEFT) 5411 iterator = &start; 5412 else 5413 iterator = &stop; 5414 5415 /* 5416 * Its safe to start updating extents. Start and stop are unsigned, so 5417 * in case of right shift if extent with 0 block is reached, iterator 5418 * becomes NULL to indicate the end of the loop. 5419 */ 5420 while (iterator && start <= stop) { 5421 path = ext4_find_extent(inode, *iterator, &path, 5422 EXT4_EX_NOCACHE); 5423 if (IS_ERR(path)) 5424 return PTR_ERR(path); 5425 depth = path->p_depth; 5426 extent = path[depth].p_ext; 5427 if (!extent) { 5428 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5429 (unsigned long) *iterator); 5430 return -EFSCORRUPTED; 5431 } 5432 if (SHIFT == SHIFT_LEFT && *iterator > 5433 le32_to_cpu(extent->ee_block)) { 5434 /* Hole, move to the next extent */ 5435 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5436 path[depth].p_ext++; 5437 } else { 5438 *iterator = ext4_ext_next_allocated_block(path); 5439 continue; 5440 } 5441 } 5442 5443 if (SHIFT == SHIFT_LEFT) { 5444 extent = EXT_LAST_EXTENT(path[depth].p_hdr); 5445 *iterator = le32_to_cpu(extent->ee_block) + 5446 ext4_ext_get_actual_len(extent); 5447 } else { 5448 extent = EXT_FIRST_EXTENT(path[depth].p_hdr); 5449 if (le32_to_cpu(extent->ee_block) > 0) 5450 *iterator = le32_to_cpu(extent->ee_block) - 1; 5451 else 5452 /* Beginning is reached, end of the loop */ 5453 iterator = NULL; 5454 /* Update path extent in case we need to stop */ 5455 while (le32_to_cpu(extent->ee_block) < start) 5456 extent++; 5457 path[depth].p_ext = extent; 5458 } 5459 ret = ext4_ext_shift_path_extents(path, shift, inode, 5460 handle, SHIFT); 5461 if (ret) 5462 break; 5463 } 5464 out: 5465 ext4_ext_drop_refs(path); 5466 kfree(path); 5467 return ret; 5468 } 5469 5470 /* 5471 * ext4_collapse_range: 5472 * This implements the fallocate's collapse range functionality for ext4 5473 * Returns: 0 and non-zero on error. 5474 */ 5475 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5476 { 5477 struct super_block *sb = inode->i_sb; 5478 ext4_lblk_t punch_start, punch_stop; 5479 handle_t *handle; 5480 unsigned int credits; 5481 loff_t new_size, ioffset; 5482 int ret; 5483 5484 /* 5485 * We need to test this early because xfstests assumes that a 5486 * collapse range of (0, 1) will return EOPNOTSUPP if the file 5487 * system does not support collapse range. 5488 */ 5489 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5490 return -EOPNOTSUPP; 5491 5492 /* Collapse range works only on fs block size aligned offsets. */ 5493 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5494 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5495 return -EINVAL; 5496 5497 if (!S_ISREG(inode->i_mode)) 5498 return -EINVAL; 5499 5500 trace_ext4_collapse_range(inode, offset, len); 5501 5502 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5503 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5504 5505 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5506 if (ext4_should_journal_data(inode)) { 5507 ret = ext4_force_commit(inode->i_sb); 5508 if (ret) 5509 return ret; 5510 } 5511 5512 inode_lock(inode); 5513 /* 5514 * There is no need to overlap collapse range with EOF, in which case 5515 * it is effectively a truncate operation 5516 */ 5517 if (offset + len >= i_size_read(inode)) { 5518 ret = -EINVAL; 5519 goto out_mutex; 5520 } 5521 5522 /* Currently just for extent based files */ 5523 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5524 ret = -EOPNOTSUPP; 5525 goto out_mutex; 5526 } 5527 5528 /* Wait for existing dio to complete */ 5529 inode_dio_wait(inode); 5530 5531 /* 5532 * Prevent page faults from reinstantiating pages we have released from 5533 * page cache. 5534 */ 5535 down_write(&EXT4_I(inode)->i_mmap_sem); 5536 5537 ret = ext4_break_layouts(inode); 5538 if (ret) 5539 goto out_mmap; 5540 5541 /* 5542 * Need to round down offset to be aligned with page size boundary 5543 * for page size > block size. 5544 */ 5545 ioffset = round_down(offset, PAGE_SIZE); 5546 /* 5547 * Write tail of the last page before removed range since it will get 5548 * removed from the page cache below. 5549 */ 5550 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset); 5551 if (ret) 5552 goto out_mmap; 5553 /* 5554 * Write data that will be shifted to preserve them when discarding 5555 * page cache below. We are also protected from pages becoming dirty 5556 * by i_mmap_sem. 5557 */ 5558 ret = filemap_write_and_wait_range(inode->i_mapping, offset + len, 5559 LLONG_MAX); 5560 if (ret) 5561 goto out_mmap; 5562 truncate_pagecache(inode, ioffset); 5563 5564 credits = ext4_writepage_trans_blocks(inode); 5565 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5566 if (IS_ERR(handle)) { 5567 ret = PTR_ERR(handle); 5568 goto out_mmap; 5569 } 5570 5571 down_write(&EXT4_I(inode)->i_data_sem); 5572 ext4_discard_preallocations(inode); 5573 5574 ret = ext4_es_remove_extent(inode, punch_start, 5575 EXT_MAX_BLOCKS - punch_start); 5576 if (ret) { 5577 up_write(&EXT4_I(inode)->i_data_sem); 5578 goto out_stop; 5579 } 5580 5581 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5582 if (ret) { 5583 up_write(&EXT4_I(inode)->i_data_sem); 5584 goto out_stop; 5585 } 5586 ext4_discard_preallocations(inode); 5587 5588 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5589 punch_stop - punch_start, SHIFT_LEFT); 5590 if (ret) { 5591 up_write(&EXT4_I(inode)->i_data_sem); 5592 goto out_stop; 5593 } 5594 5595 new_size = i_size_read(inode) - len; 5596 i_size_write(inode, new_size); 5597 EXT4_I(inode)->i_disksize = new_size; 5598 5599 up_write(&EXT4_I(inode)->i_data_sem); 5600 if (IS_SYNC(inode)) 5601 ext4_handle_sync(handle); 5602 inode->i_mtime = inode->i_ctime = current_time(inode); 5603 ext4_mark_inode_dirty(handle, inode); 5604 ext4_update_inode_fsync_trans(handle, inode, 1); 5605 5606 out_stop: 5607 ext4_journal_stop(handle); 5608 out_mmap: 5609 up_write(&EXT4_I(inode)->i_mmap_sem); 5610 out_mutex: 5611 inode_unlock(inode); 5612 return ret; 5613 } 5614 5615 /* 5616 * ext4_insert_range: 5617 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate. 5618 * The data blocks starting from @offset to the EOF are shifted by @len 5619 * towards right to create a hole in the @inode. Inode size is increased 5620 * by len bytes. 5621 * Returns 0 on success, error otherwise. 5622 */ 5623 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len) 5624 { 5625 struct super_block *sb = inode->i_sb; 5626 handle_t *handle; 5627 struct ext4_ext_path *path; 5628 struct ext4_extent *extent; 5629 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0; 5630 unsigned int credits, ee_len; 5631 int ret = 0, depth, split_flag = 0; 5632 loff_t ioffset; 5633 5634 /* 5635 * We need to test this early because xfstests assumes that an 5636 * insert range of (0, 1) will return EOPNOTSUPP if the file 5637 * system does not support insert range. 5638 */ 5639 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5640 return -EOPNOTSUPP; 5641 5642 /* Insert range works only on fs block size aligned offsets. */ 5643 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5644 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5645 return -EINVAL; 5646 5647 if (!S_ISREG(inode->i_mode)) 5648 return -EOPNOTSUPP; 5649 5650 trace_ext4_insert_range(inode, offset, len); 5651 5652 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5653 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb); 5654 5655 /* Call ext4_force_commit to flush all data in case of data=journal */ 5656 if (ext4_should_journal_data(inode)) { 5657 ret = ext4_force_commit(inode->i_sb); 5658 if (ret) 5659 return ret; 5660 } 5661 5662 inode_lock(inode); 5663 /* Currently just for extent based files */ 5664 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5665 ret = -EOPNOTSUPP; 5666 goto out_mutex; 5667 } 5668 5669 /* Check for wrap through zero */ 5670 if (inode->i_size + len > inode->i_sb->s_maxbytes) { 5671 ret = -EFBIG; 5672 goto out_mutex; 5673 } 5674 5675 /* Offset should be less than i_size */ 5676 if (offset >= i_size_read(inode)) { 5677 ret = -EINVAL; 5678 goto out_mutex; 5679 } 5680 5681 /* Wait for existing dio to complete */ 5682 inode_dio_wait(inode); 5683 5684 /* 5685 * Prevent page faults from reinstantiating pages we have released from 5686 * page cache. 5687 */ 5688 down_write(&EXT4_I(inode)->i_mmap_sem); 5689 5690 ret = ext4_break_layouts(inode); 5691 if (ret) 5692 goto out_mmap; 5693 5694 /* 5695 * Need to round down to align start offset to page size boundary 5696 * for page size > block size. 5697 */ 5698 ioffset = round_down(offset, PAGE_SIZE); 5699 /* Write out all dirty pages */ 5700 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5701 LLONG_MAX); 5702 if (ret) 5703 goto out_mmap; 5704 truncate_pagecache(inode, ioffset); 5705 5706 credits = ext4_writepage_trans_blocks(inode); 5707 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5708 if (IS_ERR(handle)) { 5709 ret = PTR_ERR(handle); 5710 goto out_mmap; 5711 } 5712 5713 /* Expand file to avoid data loss if there is error while shifting */ 5714 inode->i_size += len; 5715 EXT4_I(inode)->i_disksize += len; 5716 inode->i_mtime = inode->i_ctime = current_time(inode); 5717 ret = ext4_mark_inode_dirty(handle, inode); 5718 if (ret) 5719 goto out_stop; 5720 5721 down_write(&EXT4_I(inode)->i_data_sem); 5722 ext4_discard_preallocations(inode); 5723 5724 path = ext4_find_extent(inode, offset_lblk, NULL, 0); 5725 if (IS_ERR(path)) { 5726 up_write(&EXT4_I(inode)->i_data_sem); 5727 goto out_stop; 5728 } 5729 5730 depth = ext_depth(inode); 5731 extent = path[depth].p_ext; 5732 if (extent) { 5733 ee_start_lblk = le32_to_cpu(extent->ee_block); 5734 ee_len = ext4_ext_get_actual_len(extent); 5735 5736 /* 5737 * If offset_lblk is not the starting block of extent, split 5738 * the extent @offset_lblk 5739 */ 5740 if ((offset_lblk > ee_start_lblk) && 5741 (offset_lblk < (ee_start_lblk + ee_len))) { 5742 if (ext4_ext_is_unwritten(extent)) 5743 split_flag = EXT4_EXT_MARK_UNWRIT1 | 5744 EXT4_EXT_MARK_UNWRIT2; 5745 ret = ext4_split_extent_at(handle, inode, &path, 5746 offset_lblk, split_flag, 5747 EXT4_EX_NOCACHE | 5748 EXT4_GET_BLOCKS_PRE_IO | 5749 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5750 } 5751 5752 ext4_ext_drop_refs(path); 5753 kfree(path); 5754 if (ret < 0) { 5755 up_write(&EXT4_I(inode)->i_data_sem); 5756 goto out_stop; 5757 } 5758 } else { 5759 ext4_ext_drop_refs(path); 5760 kfree(path); 5761 } 5762 5763 ret = ext4_es_remove_extent(inode, offset_lblk, 5764 EXT_MAX_BLOCKS - offset_lblk); 5765 if (ret) { 5766 up_write(&EXT4_I(inode)->i_data_sem); 5767 goto out_stop; 5768 } 5769 5770 /* 5771 * if offset_lblk lies in a hole which is at start of file, use 5772 * ee_start_lblk to shift extents 5773 */ 5774 ret = ext4_ext_shift_extents(inode, handle, 5775 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk, 5776 len_lblk, SHIFT_RIGHT); 5777 5778 up_write(&EXT4_I(inode)->i_data_sem); 5779 if (IS_SYNC(inode)) 5780 ext4_handle_sync(handle); 5781 if (ret >= 0) 5782 ext4_update_inode_fsync_trans(handle, inode, 1); 5783 5784 out_stop: 5785 ext4_journal_stop(handle); 5786 out_mmap: 5787 up_write(&EXT4_I(inode)->i_mmap_sem); 5788 out_mutex: 5789 inode_unlock(inode); 5790 return ret; 5791 } 5792 5793 /** 5794 * ext4_swap_extents() - Swap extents between two inodes 5795 * @handle: handle for this transaction 5796 * @inode1: First inode 5797 * @inode2: Second inode 5798 * @lblk1: Start block for first inode 5799 * @lblk2: Start block for second inode 5800 * @count: Number of blocks to swap 5801 * @unwritten: Mark second inode's extents as unwritten after swap 5802 * @erp: Pointer to save error value 5803 * 5804 * This helper routine does exactly what is promise "swap extents". All other 5805 * stuff such as page-cache locking consistency, bh mapping consistency or 5806 * extent's data copying must be performed by caller. 5807 * Locking: 5808 * i_mutex is held for both inodes 5809 * i_data_sem is locked for write for both inodes 5810 * Assumptions: 5811 * All pages from requested range are locked for both inodes 5812 */ 5813 int 5814 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5815 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5816 ext4_lblk_t count, int unwritten, int *erp) 5817 { 5818 struct ext4_ext_path *path1 = NULL; 5819 struct ext4_ext_path *path2 = NULL; 5820 int replaced_count = 0; 5821 5822 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5823 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5824 BUG_ON(!inode_is_locked(inode1)); 5825 BUG_ON(!inode_is_locked(inode2)); 5826 5827 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5828 if (unlikely(*erp)) 5829 return 0; 5830 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5831 if (unlikely(*erp)) 5832 return 0; 5833 5834 while (count) { 5835 struct ext4_extent *ex1, *ex2, tmp_ex; 5836 ext4_lblk_t e1_blk, e2_blk; 5837 int e1_len, e2_len, len; 5838 int split = 0; 5839 5840 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5841 if (IS_ERR(path1)) { 5842 *erp = PTR_ERR(path1); 5843 path1 = NULL; 5844 finish: 5845 count = 0; 5846 goto repeat; 5847 } 5848 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5849 if (IS_ERR(path2)) { 5850 *erp = PTR_ERR(path2); 5851 path2 = NULL; 5852 goto finish; 5853 } 5854 ex1 = path1[path1->p_depth].p_ext; 5855 ex2 = path2[path2->p_depth].p_ext; 5856 /* Do we have somthing to swap ? */ 5857 if (unlikely(!ex2 || !ex1)) 5858 goto finish; 5859 5860 e1_blk = le32_to_cpu(ex1->ee_block); 5861 e2_blk = le32_to_cpu(ex2->ee_block); 5862 e1_len = ext4_ext_get_actual_len(ex1); 5863 e2_len = ext4_ext_get_actual_len(ex2); 5864 5865 /* Hole handling */ 5866 if (!in_range(lblk1, e1_blk, e1_len) || 5867 !in_range(lblk2, e2_blk, e2_len)) { 5868 ext4_lblk_t next1, next2; 5869 5870 /* if hole after extent, then go to next extent */ 5871 next1 = ext4_ext_next_allocated_block(path1); 5872 next2 = ext4_ext_next_allocated_block(path2); 5873 /* If hole before extent, then shift to that extent */ 5874 if (e1_blk > lblk1) 5875 next1 = e1_blk; 5876 if (e2_blk > lblk2) 5877 next2 = e2_blk; 5878 /* Do we have something to swap */ 5879 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5880 goto finish; 5881 /* Move to the rightest boundary */ 5882 len = next1 - lblk1; 5883 if (len < next2 - lblk2) 5884 len = next2 - lblk2; 5885 if (len > count) 5886 len = count; 5887 lblk1 += len; 5888 lblk2 += len; 5889 count -= len; 5890 goto repeat; 5891 } 5892 5893 /* Prepare left boundary */ 5894 if (e1_blk < lblk1) { 5895 split = 1; 5896 *erp = ext4_force_split_extent_at(handle, inode1, 5897 &path1, lblk1, 0); 5898 if (unlikely(*erp)) 5899 goto finish; 5900 } 5901 if (e2_blk < lblk2) { 5902 split = 1; 5903 *erp = ext4_force_split_extent_at(handle, inode2, 5904 &path2, lblk2, 0); 5905 if (unlikely(*erp)) 5906 goto finish; 5907 } 5908 /* ext4_split_extent_at() may result in leaf extent split, 5909 * path must to be revalidated. */ 5910 if (split) 5911 goto repeat; 5912 5913 /* Prepare right boundary */ 5914 len = count; 5915 if (len > e1_blk + e1_len - lblk1) 5916 len = e1_blk + e1_len - lblk1; 5917 if (len > e2_blk + e2_len - lblk2) 5918 len = e2_blk + e2_len - lblk2; 5919 5920 if (len != e1_len) { 5921 split = 1; 5922 *erp = ext4_force_split_extent_at(handle, inode1, 5923 &path1, lblk1 + len, 0); 5924 if (unlikely(*erp)) 5925 goto finish; 5926 } 5927 if (len != e2_len) { 5928 split = 1; 5929 *erp = ext4_force_split_extent_at(handle, inode2, 5930 &path2, lblk2 + len, 0); 5931 if (*erp) 5932 goto finish; 5933 } 5934 /* ext4_split_extent_at() may result in leaf extent split, 5935 * path must to be revalidated. */ 5936 if (split) 5937 goto repeat; 5938 5939 BUG_ON(e2_len != e1_len); 5940 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5941 if (unlikely(*erp)) 5942 goto finish; 5943 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5944 if (unlikely(*erp)) 5945 goto finish; 5946 5947 /* Both extents are fully inside boundaries. Swap it now */ 5948 tmp_ex = *ex1; 5949 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5950 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5951 ex1->ee_len = cpu_to_le16(e2_len); 5952 ex2->ee_len = cpu_to_le16(e1_len); 5953 if (unwritten) 5954 ext4_ext_mark_unwritten(ex2); 5955 if (ext4_ext_is_unwritten(&tmp_ex)) 5956 ext4_ext_mark_unwritten(ex1); 5957 5958 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5959 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5960 *erp = ext4_ext_dirty(handle, inode2, path2 + 5961 path2->p_depth); 5962 if (unlikely(*erp)) 5963 goto finish; 5964 *erp = ext4_ext_dirty(handle, inode1, path1 + 5965 path1->p_depth); 5966 /* 5967 * Looks scarry ah..? second inode already points to new blocks, 5968 * and it was successfully dirtied. But luckily error may happen 5969 * only due to journal error, so full transaction will be 5970 * aborted anyway. 5971 */ 5972 if (unlikely(*erp)) 5973 goto finish; 5974 lblk1 += len; 5975 lblk2 += len; 5976 replaced_count += len; 5977 count -= len; 5978 5979 repeat: 5980 ext4_ext_drop_refs(path1); 5981 kfree(path1); 5982 ext4_ext_drop_refs(path2); 5983 kfree(path2); 5984 path1 = path2 = NULL; 5985 } 5986 return replaced_count; 5987 } 5988 5989 /* 5990 * ext4_clu_mapped - determine whether any block in a logical cluster has 5991 * been mapped to a physical cluster 5992 * 5993 * @inode - file containing the logical cluster 5994 * @lclu - logical cluster of interest 5995 * 5996 * Returns 1 if any block in the logical cluster is mapped, signifying 5997 * that a physical cluster has been allocated for it. Otherwise, 5998 * returns 0. Can also return negative error codes. Derived from 5999 * ext4_ext_map_blocks(). 6000 */ 6001 int ext4_clu_mapped(struct inode *inode, ext4_lblk_t lclu) 6002 { 6003 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6004 struct ext4_ext_path *path; 6005 int depth, mapped = 0, err = 0; 6006 struct ext4_extent *extent; 6007 ext4_lblk_t first_lblk, first_lclu, last_lclu; 6008 6009 /* search for the extent closest to the first block in the cluster */ 6010 path = ext4_find_extent(inode, EXT4_C2B(sbi, lclu), NULL, 0); 6011 if (IS_ERR(path)) { 6012 err = PTR_ERR(path); 6013 path = NULL; 6014 goto out; 6015 } 6016 6017 depth = ext_depth(inode); 6018 6019 /* 6020 * A consistent leaf must not be empty. This situation is possible, 6021 * though, _during_ tree modification, and it's why an assert can't 6022 * be put in ext4_find_extent(). 6023 */ 6024 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 6025 EXT4_ERROR_INODE(inode, 6026 "bad extent address - lblock: %lu, depth: %d, pblock: %lld", 6027 (unsigned long) EXT4_C2B(sbi, lclu), 6028 depth, path[depth].p_block); 6029 err = -EFSCORRUPTED; 6030 goto out; 6031 } 6032 6033 extent = path[depth].p_ext; 6034 6035 /* can't be mapped if the extent tree is empty */ 6036 if (extent == NULL) 6037 goto out; 6038 6039 first_lblk = le32_to_cpu(extent->ee_block); 6040 first_lclu = EXT4_B2C(sbi, first_lblk); 6041 6042 /* 6043 * Three possible outcomes at this point - found extent spanning 6044 * the target cluster, to the left of the target cluster, or to the 6045 * right of the target cluster. The first two cases are handled here. 6046 * The last case indicates the target cluster is not mapped. 6047 */ 6048 if (lclu >= first_lclu) { 6049 last_lclu = EXT4_B2C(sbi, first_lblk + 6050 ext4_ext_get_actual_len(extent) - 1); 6051 if (lclu <= last_lclu) { 6052 mapped = 1; 6053 } else { 6054 first_lblk = ext4_ext_next_allocated_block(path); 6055 first_lclu = EXT4_B2C(sbi, first_lblk); 6056 if (lclu == first_lclu) 6057 mapped = 1; 6058 } 6059 } 6060 6061 out: 6062 ext4_ext_drop_refs(path); 6063 kfree(path); 6064 6065 return err ? err : mapped; 6066 } 6067