xref: /openbmc/linux/fs/ext4/extents.c (revision 275876e2)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <asm/uaccess.h>
41 #include <linux/fiemap.h>
42 #include "ext4_jbd2.h"
43 #include "ext4_extents.h"
44 #include "xattr.h"
45 
46 #include <trace/events/ext4.h>
47 
48 /*
49  * used by extent splitting.
50  */
51 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
52 					due to ENOSPC */
53 #define EXT4_EXT_MARK_UNWRIT1	0x2  /* mark first half unwritten */
54 #define EXT4_EXT_MARK_UNWRIT2	0x4  /* mark second half unwritten */
55 
56 #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
57 #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
58 
59 static __le32 ext4_extent_block_csum(struct inode *inode,
60 				     struct ext4_extent_header *eh)
61 {
62 	struct ext4_inode_info *ei = EXT4_I(inode);
63 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
64 	__u32 csum;
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
67 			   EXT4_EXTENT_TAIL_OFFSET(eh));
68 	return cpu_to_le32(csum);
69 }
70 
71 static int ext4_extent_block_csum_verify(struct inode *inode,
72 					 struct ext4_extent_header *eh)
73 {
74 	struct ext4_extent_tail *et;
75 
76 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
77 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
78 		return 1;
79 
80 	et = find_ext4_extent_tail(eh);
81 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
82 		return 0;
83 	return 1;
84 }
85 
86 static void ext4_extent_block_csum_set(struct inode *inode,
87 				       struct ext4_extent_header *eh)
88 {
89 	struct ext4_extent_tail *et;
90 
91 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
92 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
93 		return;
94 
95 	et = find_ext4_extent_tail(eh);
96 	et->et_checksum = ext4_extent_block_csum(inode, eh);
97 }
98 
99 static int ext4_split_extent(handle_t *handle,
100 				struct inode *inode,
101 				struct ext4_ext_path *path,
102 				struct ext4_map_blocks *map,
103 				int split_flag,
104 				int flags);
105 
106 static int ext4_split_extent_at(handle_t *handle,
107 			     struct inode *inode,
108 			     struct ext4_ext_path *path,
109 			     ext4_lblk_t split,
110 			     int split_flag,
111 			     int flags);
112 
113 static int ext4_find_delayed_extent(struct inode *inode,
114 				    struct extent_status *newes);
115 
116 static int ext4_ext_truncate_extend_restart(handle_t *handle,
117 					    struct inode *inode,
118 					    int needed)
119 {
120 	int err;
121 
122 	if (!ext4_handle_valid(handle))
123 		return 0;
124 	if (handle->h_buffer_credits > needed)
125 		return 0;
126 	err = ext4_journal_extend(handle, needed);
127 	if (err <= 0)
128 		return err;
129 	err = ext4_truncate_restart_trans(handle, inode, needed);
130 	if (err == 0)
131 		err = -EAGAIN;
132 
133 	return err;
134 }
135 
136 /*
137  * could return:
138  *  - EROFS
139  *  - ENOMEM
140  */
141 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
142 				struct ext4_ext_path *path)
143 {
144 	if (path->p_bh) {
145 		/* path points to block */
146 		BUFFER_TRACE(path->p_bh, "get_write_access");
147 		return ext4_journal_get_write_access(handle, path->p_bh);
148 	}
149 	/* path points to leaf/index in inode body */
150 	/* we use in-core data, no need to protect them */
151 	return 0;
152 }
153 
154 /*
155  * could return:
156  *  - EROFS
157  *  - ENOMEM
158  *  - EIO
159  */
160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161 		     struct inode *inode, struct ext4_ext_path *path)
162 {
163 	int err;
164 
165 	WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
166 	if (path->p_bh) {
167 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
168 		/* path points to block */
169 		err = __ext4_handle_dirty_metadata(where, line, handle,
170 						   inode, path->p_bh);
171 	} else {
172 		/* path points to leaf/index in inode body */
173 		err = ext4_mark_inode_dirty(handle, inode);
174 	}
175 	return err;
176 }
177 
178 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
179 			      struct ext4_ext_path *path,
180 			      ext4_lblk_t block)
181 {
182 	if (path) {
183 		int depth = path->p_depth;
184 		struct ext4_extent *ex;
185 
186 		/*
187 		 * Try to predict block placement assuming that we are
188 		 * filling in a file which will eventually be
189 		 * non-sparse --- i.e., in the case of libbfd writing
190 		 * an ELF object sections out-of-order but in a way
191 		 * the eventually results in a contiguous object or
192 		 * executable file, or some database extending a table
193 		 * space file.  However, this is actually somewhat
194 		 * non-ideal if we are writing a sparse file such as
195 		 * qemu or KVM writing a raw image file that is going
196 		 * to stay fairly sparse, since it will end up
197 		 * fragmenting the file system's free space.  Maybe we
198 		 * should have some hueristics or some way to allow
199 		 * userspace to pass a hint to file system,
200 		 * especially if the latter case turns out to be
201 		 * common.
202 		 */
203 		ex = path[depth].p_ext;
204 		if (ex) {
205 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
206 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
207 
208 			if (block > ext_block)
209 				return ext_pblk + (block - ext_block);
210 			else
211 				return ext_pblk - (ext_block - block);
212 		}
213 
214 		/* it looks like index is empty;
215 		 * try to find starting block from index itself */
216 		if (path[depth].p_bh)
217 			return path[depth].p_bh->b_blocknr;
218 	}
219 
220 	/* OK. use inode's group */
221 	return ext4_inode_to_goal_block(inode);
222 }
223 
224 /*
225  * Allocation for a meta data block
226  */
227 static ext4_fsblk_t
228 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
229 			struct ext4_ext_path *path,
230 			struct ext4_extent *ex, int *err, unsigned int flags)
231 {
232 	ext4_fsblk_t goal, newblock;
233 
234 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
235 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
236 					NULL, err);
237 	return newblock;
238 }
239 
240 static inline int ext4_ext_space_block(struct inode *inode, int check)
241 {
242 	int size;
243 
244 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
245 			/ sizeof(struct ext4_extent);
246 #ifdef AGGRESSIVE_TEST
247 	if (!check && size > 6)
248 		size = 6;
249 #endif
250 	return size;
251 }
252 
253 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
254 {
255 	int size;
256 
257 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
258 			/ sizeof(struct ext4_extent_idx);
259 #ifdef AGGRESSIVE_TEST
260 	if (!check && size > 5)
261 		size = 5;
262 #endif
263 	return size;
264 }
265 
266 static inline int ext4_ext_space_root(struct inode *inode, int check)
267 {
268 	int size;
269 
270 	size = sizeof(EXT4_I(inode)->i_data);
271 	size -= sizeof(struct ext4_extent_header);
272 	size /= sizeof(struct ext4_extent);
273 #ifdef AGGRESSIVE_TEST
274 	if (!check && size > 3)
275 		size = 3;
276 #endif
277 	return size;
278 }
279 
280 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
281 {
282 	int size;
283 
284 	size = sizeof(EXT4_I(inode)->i_data);
285 	size -= sizeof(struct ext4_extent_header);
286 	size /= sizeof(struct ext4_extent_idx);
287 #ifdef AGGRESSIVE_TEST
288 	if (!check && size > 4)
289 		size = 4;
290 #endif
291 	return size;
292 }
293 
294 /*
295  * Calculate the number of metadata blocks needed
296  * to allocate @blocks
297  * Worse case is one block per extent
298  */
299 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
300 {
301 	struct ext4_inode_info *ei = EXT4_I(inode);
302 	int idxs;
303 
304 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
305 		/ sizeof(struct ext4_extent_idx));
306 
307 	/*
308 	 * If the new delayed allocation block is contiguous with the
309 	 * previous da block, it can share index blocks with the
310 	 * previous block, so we only need to allocate a new index
311 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
312 	 * an additional index block, and at ldxs**3 blocks, yet
313 	 * another index blocks.
314 	 */
315 	if (ei->i_da_metadata_calc_len &&
316 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
317 		int num = 0;
318 
319 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
320 			num++;
321 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
322 			num++;
323 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
324 			num++;
325 			ei->i_da_metadata_calc_len = 0;
326 		} else
327 			ei->i_da_metadata_calc_len++;
328 		ei->i_da_metadata_calc_last_lblock++;
329 		return num;
330 	}
331 
332 	/*
333 	 * In the worst case we need a new set of index blocks at
334 	 * every level of the inode's extent tree.
335 	 */
336 	ei->i_da_metadata_calc_len = 1;
337 	ei->i_da_metadata_calc_last_lblock = lblock;
338 	return ext_depth(inode) + 1;
339 }
340 
341 static int
342 ext4_ext_max_entries(struct inode *inode, int depth)
343 {
344 	int max;
345 
346 	if (depth == ext_depth(inode)) {
347 		if (depth == 0)
348 			max = ext4_ext_space_root(inode, 1);
349 		else
350 			max = ext4_ext_space_root_idx(inode, 1);
351 	} else {
352 		if (depth == 0)
353 			max = ext4_ext_space_block(inode, 1);
354 		else
355 			max = ext4_ext_space_block_idx(inode, 1);
356 	}
357 
358 	return max;
359 }
360 
361 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
362 {
363 	ext4_fsblk_t block = ext4_ext_pblock(ext);
364 	int len = ext4_ext_get_actual_len(ext);
365 	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
366 	ext4_lblk_t last = lblock + len - 1;
367 
368 	if (lblock > last)
369 		return 0;
370 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
371 }
372 
373 static int ext4_valid_extent_idx(struct inode *inode,
374 				struct ext4_extent_idx *ext_idx)
375 {
376 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
377 
378 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
379 }
380 
381 static int ext4_valid_extent_entries(struct inode *inode,
382 				struct ext4_extent_header *eh,
383 				int depth)
384 {
385 	unsigned short entries;
386 	if (eh->eh_entries == 0)
387 		return 1;
388 
389 	entries = le16_to_cpu(eh->eh_entries);
390 
391 	if (depth == 0) {
392 		/* leaf entries */
393 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
394 		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
395 		ext4_fsblk_t pblock = 0;
396 		ext4_lblk_t lblock = 0;
397 		ext4_lblk_t prev = 0;
398 		int len = 0;
399 		while (entries) {
400 			if (!ext4_valid_extent(inode, ext))
401 				return 0;
402 
403 			/* Check for overlapping extents */
404 			lblock = le32_to_cpu(ext->ee_block);
405 			len = ext4_ext_get_actual_len(ext);
406 			if ((lblock <= prev) && prev) {
407 				pblock = ext4_ext_pblock(ext);
408 				es->s_last_error_block = cpu_to_le64(pblock);
409 				return 0;
410 			}
411 			ext++;
412 			entries--;
413 			prev = lblock + len - 1;
414 		}
415 	} else {
416 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
417 		while (entries) {
418 			if (!ext4_valid_extent_idx(inode, ext_idx))
419 				return 0;
420 			ext_idx++;
421 			entries--;
422 		}
423 	}
424 	return 1;
425 }
426 
427 static int __ext4_ext_check(const char *function, unsigned int line,
428 			    struct inode *inode, struct ext4_extent_header *eh,
429 			    int depth, ext4_fsblk_t pblk)
430 {
431 	const char *error_msg;
432 	int max = 0;
433 
434 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
435 		error_msg = "invalid magic";
436 		goto corrupted;
437 	}
438 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
439 		error_msg = "unexpected eh_depth";
440 		goto corrupted;
441 	}
442 	if (unlikely(eh->eh_max == 0)) {
443 		error_msg = "invalid eh_max";
444 		goto corrupted;
445 	}
446 	max = ext4_ext_max_entries(inode, depth);
447 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
448 		error_msg = "too large eh_max";
449 		goto corrupted;
450 	}
451 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
452 		error_msg = "invalid eh_entries";
453 		goto corrupted;
454 	}
455 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
456 		error_msg = "invalid extent entries";
457 		goto corrupted;
458 	}
459 	/* Verify checksum on non-root extent tree nodes */
460 	if (ext_depth(inode) != depth &&
461 	    !ext4_extent_block_csum_verify(inode, eh)) {
462 		error_msg = "extent tree corrupted";
463 		goto corrupted;
464 	}
465 	return 0;
466 
467 corrupted:
468 	ext4_error_inode(inode, function, line, 0,
469 			 "pblk %llu bad header/extent: %s - magic %x, "
470 			 "entries %u, max %u(%u), depth %u(%u)",
471 			 (unsigned long long) pblk, error_msg,
472 			 le16_to_cpu(eh->eh_magic),
473 			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
474 			 max, le16_to_cpu(eh->eh_depth), depth);
475 	return -EIO;
476 }
477 
478 #define ext4_ext_check(inode, eh, depth, pblk)			\
479 	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
480 
481 int ext4_ext_check_inode(struct inode *inode)
482 {
483 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
484 }
485 
486 static struct buffer_head *
487 __read_extent_tree_block(const char *function, unsigned int line,
488 			 struct inode *inode, ext4_fsblk_t pblk, int depth,
489 			 int flags)
490 {
491 	struct buffer_head		*bh;
492 	int				err;
493 
494 	bh = sb_getblk(inode->i_sb, pblk);
495 	if (unlikely(!bh))
496 		return ERR_PTR(-ENOMEM);
497 
498 	if (!bh_uptodate_or_lock(bh)) {
499 		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
500 		err = bh_submit_read(bh);
501 		if (err < 0)
502 			goto errout;
503 	}
504 	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
505 		return bh;
506 	err = __ext4_ext_check(function, line, inode,
507 			       ext_block_hdr(bh), depth, pblk);
508 	if (err)
509 		goto errout;
510 	set_buffer_verified(bh);
511 	/*
512 	 * If this is a leaf block, cache all of its entries
513 	 */
514 	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
515 		struct ext4_extent_header *eh = ext_block_hdr(bh);
516 		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
517 		ext4_lblk_t prev = 0;
518 		int i;
519 
520 		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
521 			unsigned int status = EXTENT_STATUS_WRITTEN;
522 			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
523 			int len = ext4_ext_get_actual_len(ex);
524 
525 			if (prev && (prev != lblk))
526 				ext4_es_cache_extent(inode, prev,
527 						     lblk - prev, ~0,
528 						     EXTENT_STATUS_HOLE);
529 
530 			if (ext4_ext_is_unwritten(ex))
531 				status = EXTENT_STATUS_UNWRITTEN;
532 			ext4_es_cache_extent(inode, lblk, len,
533 					     ext4_ext_pblock(ex), status);
534 			prev = lblk + len;
535 		}
536 	}
537 	return bh;
538 errout:
539 	put_bh(bh);
540 	return ERR_PTR(err);
541 
542 }
543 
544 #define read_extent_tree_block(inode, pblk, depth, flags)		\
545 	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
546 				 (depth), (flags))
547 
548 /*
549  * This function is called to cache a file's extent information in the
550  * extent status tree
551  */
552 int ext4_ext_precache(struct inode *inode)
553 {
554 	struct ext4_inode_info *ei = EXT4_I(inode);
555 	struct ext4_ext_path *path = NULL;
556 	struct buffer_head *bh;
557 	int i = 0, depth, ret = 0;
558 
559 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
560 		return 0;	/* not an extent-mapped inode */
561 
562 	down_read(&ei->i_data_sem);
563 	depth = ext_depth(inode);
564 
565 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
566 		       GFP_NOFS);
567 	if (path == NULL) {
568 		up_read(&ei->i_data_sem);
569 		return -ENOMEM;
570 	}
571 
572 	/* Don't cache anything if there are no external extent blocks */
573 	if (depth == 0)
574 		goto out;
575 	path[0].p_hdr = ext_inode_hdr(inode);
576 	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
577 	if (ret)
578 		goto out;
579 	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
580 	while (i >= 0) {
581 		/*
582 		 * If this is a leaf block or we've reached the end of
583 		 * the index block, go up
584 		 */
585 		if ((i == depth) ||
586 		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
587 			brelse(path[i].p_bh);
588 			path[i].p_bh = NULL;
589 			i--;
590 			continue;
591 		}
592 		bh = read_extent_tree_block(inode,
593 					    ext4_idx_pblock(path[i].p_idx++),
594 					    depth - i - 1,
595 					    EXT4_EX_FORCE_CACHE);
596 		if (IS_ERR(bh)) {
597 			ret = PTR_ERR(bh);
598 			break;
599 		}
600 		i++;
601 		path[i].p_bh = bh;
602 		path[i].p_hdr = ext_block_hdr(bh);
603 		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
604 	}
605 	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
606 out:
607 	up_read(&ei->i_data_sem);
608 	ext4_ext_drop_refs(path);
609 	kfree(path);
610 	return ret;
611 }
612 
613 #ifdef EXT_DEBUG
614 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
615 {
616 	int k, l = path->p_depth;
617 
618 	ext_debug("path:");
619 	for (k = 0; k <= l; k++, path++) {
620 		if (path->p_idx) {
621 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
622 			    ext4_idx_pblock(path->p_idx));
623 		} else if (path->p_ext) {
624 			ext_debug("  %d:[%d]%d:%llu ",
625 				  le32_to_cpu(path->p_ext->ee_block),
626 				  ext4_ext_is_unwritten(path->p_ext),
627 				  ext4_ext_get_actual_len(path->p_ext),
628 				  ext4_ext_pblock(path->p_ext));
629 		} else
630 			ext_debug("  []");
631 	}
632 	ext_debug("\n");
633 }
634 
635 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
636 {
637 	int depth = ext_depth(inode);
638 	struct ext4_extent_header *eh;
639 	struct ext4_extent *ex;
640 	int i;
641 
642 	if (!path)
643 		return;
644 
645 	eh = path[depth].p_hdr;
646 	ex = EXT_FIRST_EXTENT(eh);
647 
648 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
649 
650 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
651 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
652 			  ext4_ext_is_unwritten(ex),
653 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
654 	}
655 	ext_debug("\n");
656 }
657 
658 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
659 			ext4_fsblk_t newblock, int level)
660 {
661 	int depth = ext_depth(inode);
662 	struct ext4_extent *ex;
663 
664 	if (depth != level) {
665 		struct ext4_extent_idx *idx;
666 		idx = path[level].p_idx;
667 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
668 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
669 					le32_to_cpu(idx->ei_block),
670 					ext4_idx_pblock(idx),
671 					newblock);
672 			idx++;
673 		}
674 
675 		return;
676 	}
677 
678 	ex = path[depth].p_ext;
679 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
680 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
681 				le32_to_cpu(ex->ee_block),
682 				ext4_ext_pblock(ex),
683 				ext4_ext_is_unwritten(ex),
684 				ext4_ext_get_actual_len(ex),
685 				newblock);
686 		ex++;
687 	}
688 }
689 
690 #else
691 #define ext4_ext_show_path(inode, path)
692 #define ext4_ext_show_leaf(inode, path)
693 #define ext4_ext_show_move(inode, path, newblock, level)
694 #endif
695 
696 void ext4_ext_drop_refs(struct ext4_ext_path *path)
697 {
698 	int depth = path->p_depth;
699 	int i;
700 
701 	for (i = 0; i <= depth; i++, path++)
702 		if (path->p_bh) {
703 			brelse(path->p_bh);
704 			path->p_bh = NULL;
705 		}
706 }
707 
708 /*
709  * ext4_ext_binsearch_idx:
710  * binary search for the closest index of the given block
711  * the header must be checked before calling this
712  */
713 static void
714 ext4_ext_binsearch_idx(struct inode *inode,
715 			struct ext4_ext_path *path, ext4_lblk_t block)
716 {
717 	struct ext4_extent_header *eh = path->p_hdr;
718 	struct ext4_extent_idx *r, *l, *m;
719 
720 
721 	ext_debug("binsearch for %u(idx):  ", block);
722 
723 	l = EXT_FIRST_INDEX(eh) + 1;
724 	r = EXT_LAST_INDEX(eh);
725 	while (l <= r) {
726 		m = l + (r - l) / 2;
727 		if (block < le32_to_cpu(m->ei_block))
728 			r = m - 1;
729 		else
730 			l = m + 1;
731 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
732 				m, le32_to_cpu(m->ei_block),
733 				r, le32_to_cpu(r->ei_block));
734 	}
735 
736 	path->p_idx = l - 1;
737 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
738 		  ext4_idx_pblock(path->p_idx));
739 
740 #ifdef CHECK_BINSEARCH
741 	{
742 		struct ext4_extent_idx *chix, *ix;
743 		int k;
744 
745 		chix = ix = EXT_FIRST_INDEX(eh);
746 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
747 		  if (k != 0 &&
748 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
749 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
750 				       "first=0x%p\n", k,
751 				       ix, EXT_FIRST_INDEX(eh));
752 				printk(KERN_DEBUG "%u <= %u\n",
753 				       le32_to_cpu(ix->ei_block),
754 				       le32_to_cpu(ix[-1].ei_block));
755 			}
756 			BUG_ON(k && le32_to_cpu(ix->ei_block)
757 					   <= le32_to_cpu(ix[-1].ei_block));
758 			if (block < le32_to_cpu(ix->ei_block))
759 				break;
760 			chix = ix;
761 		}
762 		BUG_ON(chix != path->p_idx);
763 	}
764 #endif
765 
766 }
767 
768 /*
769  * ext4_ext_binsearch:
770  * binary search for closest extent of the given block
771  * the header must be checked before calling this
772  */
773 static void
774 ext4_ext_binsearch(struct inode *inode,
775 		struct ext4_ext_path *path, ext4_lblk_t block)
776 {
777 	struct ext4_extent_header *eh = path->p_hdr;
778 	struct ext4_extent *r, *l, *m;
779 
780 	if (eh->eh_entries == 0) {
781 		/*
782 		 * this leaf is empty:
783 		 * we get such a leaf in split/add case
784 		 */
785 		return;
786 	}
787 
788 	ext_debug("binsearch for %u:  ", block);
789 
790 	l = EXT_FIRST_EXTENT(eh) + 1;
791 	r = EXT_LAST_EXTENT(eh);
792 
793 	while (l <= r) {
794 		m = l + (r - l) / 2;
795 		if (block < le32_to_cpu(m->ee_block))
796 			r = m - 1;
797 		else
798 			l = m + 1;
799 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
800 				m, le32_to_cpu(m->ee_block),
801 				r, le32_to_cpu(r->ee_block));
802 	}
803 
804 	path->p_ext = l - 1;
805 	ext_debug("  -> %d:%llu:[%d]%d ",
806 			le32_to_cpu(path->p_ext->ee_block),
807 			ext4_ext_pblock(path->p_ext),
808 			ext4_ext_is_unwritten(path->p_ext),
809 			ext4_ext_get_actual_len(path->p_ext));
810 
811 #ifdef CHECK_BINSEARCH
812 	{
813 		struct ext4_extent *chex, *ex;
814 		int k;
815 
816 		chex = ex = EXT_FIRST_EXTENT(eh);
817 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
818 			BUG_ON(k && le32_to_cpu(ex->ee_block)
819 					  <= le32_to_cpu(ex[-1].ee_block));
820 			if (block < le32_to_cpu(ex->ee_block))
821 				break;
822 			chex = ex;
823 		}
824 		BUG_ON(chex != path->p_ext);
825 	}
826 #endif
827 
828 }
829 
830 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
831 {
832 	struct ext4_extent_header *eh;
833 
834 	eh = ext_inode_hdr(inode);
835 	eh->eh_depth = 0;
836 	eh->eh_entries = 0;
837 	eh->eh_magic = EXT4_EXT_MAGIC;
838 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
839 	ext4_mark_inode_dirty(handle, inode);
840 	return 0;
841 }
842 
843 struct ext4_ext_path *
844 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
845 		     struct ext4_ext_path *path, int flags)
846 {
847 	struct ext4_extent_header *eh;
848 	struct buffer_head *bh;
849 	short int depth, i, ppos = 0, alloc = 0;
850 	int ret;
851 
852 	eh = ext_inode_hdr(inode);
853 	depth = ext_depth(inode);
854 
855 	/* account possible depth increase */
856 	if (!path) {
857 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
858 				GFP_NOFS);
859 		if (!path)
860 			return ERR_PTR(-ENOMEM);
861 		alloc = 1;
862 	}
863 	path[0].p_hdr = eh;
864 	path[0].p_bh = NULL;
865 
866 	i = depth;
867 	/* walk through the tree */
868 	while (i) {
869 		ext_debug("depth %d: num %d, max %d\n",
870 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
871 
872 		ext4_ext_binsearch_idx(inode, path + ppos, block);
873 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
874 		path[ppos].p_depth = i;
875 		path[ppos].p_ext = NULL;
876 
877 		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
878 					    flags);
879 		if (IS_ERR(bh)) {
880 			ret = PTR_ERR(bh);
881 			goto err;
882 		}
883 
884 		eh = ext_block_hdr(bh);
885 		ppos++;
886 		if (unlikely(ppos > depth)) {
887 			put_bh(bh);
888 			EXT4_ERROR_INODE(inode,
889 					 "ppos %d > depth %d", ppos, depth);
890 			ret = -EIO;
891 			goto err;
892 		}
893 		path[ppos].p_bh = bh;
894 		path[ppos].p_hdr = eh;
895 	}
896 
897 	path[ppos].p_depth = i;
898 	path[ppos].p_ext = NULL;
899 	path[ppos].p_idx = NULL;
900 
901 	/* find extent */
902 	ext4_ext_binsearch(inode, path + ppos, block);
903 	/* if not an empty leaf */
904 	if (path[ppos].p_ext)
905 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
906 
907 	ext4_ext_show_path(inode, path);
908 
909 	return path;
910 
911 err:
912 	ext4_ext_drop_refs(path);
913 	if (alloc)
914 		kfree(path);
915 	return ERR_PTR(ret);
916 }
917 
918 /*
919  * ext4_ext_insert_index:
920  * insert new index [@logical;@ptr] into the block at @curp;
921  * check where to insert: before @curp or after @curp
922  */
923 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
924 				 struct ext4_ext_path *curp,
925 				 int logical, ext4_fsblk_t ptr)
926 {
927 	struct ext4_extent_idx *ix;
928 	int len, err;
929 
930 	err = ext4_ext_get_access(handle, inode, curp);
931 	if (err)
932 		return err;
933 
934 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
935 		EXT4_ERROR_INODE(inode,
936 				 "logical %d == ei_block %d!",
937 				 logical, le32_to_cpu(curp->p_idx->ei_block));
938 		return -EIO;
939 	}
940 
941 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
942 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
943 		EXT4_ERROR_INODE(inode,
944 				 "eh_entries %d >= eh_max %d!",
945 				 le16_to_cpu(curp->p_hdr->eh_entries),
946 				 le16_to_cpu(curp->p_hdr->eh_max));
947 		return -EIO;
948 	}
949 
950 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
951 		/* insert after */
952 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
953 		ix = curp->p_idx + 1;
954 	} else {
955 		/* insert before */
956 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
957 		ix = curp->p_idx;
958 	}
959 
960 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
961 	BUG_ON(len < 0);
962 	if (len > 0) {
963 		ext_debug("insert new index %d: "
964 				"move %d indices from 0x%p to 0x%p\n",
965 				logical, len, ix, ix + 1);
966 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
967 	}
968 
969 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
970 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
971 		return -EIO;
972 	}
973 
974 	ix->ei_block = cpu_to_le32(logical);
975 	ext4_idx_store_pblock(ix, ptr);
976 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
977 
978 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
979 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
980 		return -EIO;
981 	}
982 
983 	err = ext4_ext_dirty(handle, inode, curp);
984 	ext4_std_error(inode->i_sb, err);
985 
986 	return err;
987 }
988 
989 /*
990  * ext4_ext_split:
991  * inserts new subtree into the path, using free index entry
992  * at depth @at:
993  * - allocates all needed blocks (new leaf and all intermediate index blocks)
994  * - makes decision where to split
995  * - moves remaining extents and index entries (right to the split point)
996  *   into the newly allocated blocks
997  * - initializes subtree
998  */
999 static int ext4_ext_split(handle_t *handle, struct inode *inode,
1000 			  unsigned int flags,
1001 			  struct ext4_ext_path *path,
1002 			  struct ext4_extent *newext, int at)
1003 {
1004 	struct buffer_head *bh = NULL;
1005 	int depth = ext_depth(inode);
1006 	struct ext4_extent_header *neh;
1007 	struct ext4_extent_idx *fidx;
1008 	int i = at, k, m, a;
1009 	ext4_fsblk_t newblock, oldblock;
1010 	__le32 border;
1011 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1012 	int err = 0;
1013 
1014 	/* make decision: where to split? */
1015 	/* FIXME: now decision is simplest: at current extent */
1016 
1017 	/* if current leaf will be split, then we should use
1018 	 * border from split point */
1019 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1020 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1021 		return -EIO;
1022 	}
1023 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1024 		border = path[depth].p_ext[1].ee_block;
1025 		ext_debug("leaf will be split."
1026 				" next leaf starts at %d\n",
1027 				  le32_to_cpu(border));
1028 	} else {
1029 		border = newext->ee_block;
1030 		ext_debug("leaf will be added."
1031 				" next leaf starts at %d\n",
1032 				le32_to_cpu(border));
1033 	}
1034 
1035 	/*
1036 	 * If error occurs, then we break processing
1037 	 * and mark filesystem read-only. index won't
1038 	 * be inserted and tree will be in consistent
1039 	 * state. Next mount will repair buffers too.
1040 	 */
1041 
1042 	/*
1043 	 * Get array to track all allocated blocks.
1044 	 * We need this to handle errors and free blocks
1045 	 * upon them.
1046 	 */
1047 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1048 	if (!ablocks)
1049 		return -ENOMEM;
1050 
1051 	/* allocate all needed blocks */
1052 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1053 	for (a = 0; a < depth - at; a++) {
1054 		newblock = ext4_ext_new_meta_block(handle, inode, path,
1055 						   newext, &err, flags);
1056 		if (newblock == 0)
1057 			goto cleanup;
1058 		ablocks[a] = newblock;
1059 	}
1060 
1061 	/* initialize new leaf */
1062 	newblock = ablocks[--a];
1063 	if (unlikely(newblock == 0)) {
1064 		EXT4_ERROR_INODE(inode, "newblock == 0!");
1065 		err = -EIO;
1066 		goto cleanup;
1067 	}
1068 	bh = sb_getblk(inode->i_sb, newblock);
1069 	if (unlikely(!bh)) {
1070 		err = -ENOMEM;
1071 		goto cleanup;
1072 	}
1073 	lock_buffer(bh);
1074 
1075 	err = ext4_journal_get_create_access(handle, bh);
1076 	if (err)
1077 		goto cleanup;
1078 
1079 	neh = ext_block_hdr(bh);
1080 	neh->eh_entries = 0;
1081 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1082 	neh->eh_magic = EXT4_EXT_MAGIC;
1083 	neh->eh_depth = 0;
1084 
1085 	/* move remainder of path[depth] to the new leaf */
1086 	if (unlikely(path[depth].p_hdr->eh_entries !=
1087 		     path[depth].p_hdr->eh_max)) {
1088 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1089 				 path[depth].p_hdr->eh_entries,
1090 				 path[depth].p_hdr->eh_max);
1091 		err = -EIO;
1092 		goto cleanup;
1093 	}
1094 	/* start copy from next extent */
1095 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1096 	ext4_ext_show_move(inode, path, newblock, depth);
1097 	if (m) {
1098 		struct ext4_extent *ex;
1099 		ex = EXT_FIRST_EXTENT(neh);
1100 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1101 		le16_add_cpu(&neh->eh_entries, m);
1102 	}
1103 
1104 	ext4_extent_block_csum_set(inode, neh);
1105 	set_buffer_uptodate(bh);
1106 	unlock_buffer(bh);
1107 
1108 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1109 	if (err)
1110 		goto cleanup;
1111 	brelse(bh);
1112 	bh = NULL;
1113 
1114 	/* correct old leaf */
1115 	if (m) {
1116 		err = ext4_ext_get_access(handle, inode, path + depth);
1117 		if (err)
1118 			goto cleanup;
1119 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1120 		err = ext4_ext_dirty(handle, inode, path + depth);
1121 		if (err)
1122 			goto cleanup;
1123 
1124 	}
1125 
1126 	/* create intermediate indexes */
1127 	k = depth - at - 1;
1128 	if (unlikely(k < 0)) {
1129 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1130 		err = -EIO;
1131 		goto cleanup;
1132 	}
1133 	if (k)
1134 		ext_debug("create %d intermediate indices\n", k);
1135 	/* insert new index into current index block */
1136 	/* current depth stored in i var */
1137 	i = depth - 1;
1138 	while (k--) {
1139 		oldblock = newblock;
1140 		newblock = ablocks[--a];
1141 		bh = sb_getblk(inode->i_sb, newblock);
1142 		if (unlikely(!bh)) {
1143 			err = -ENOMEM;
1144 			goto cleanup;
1145 		}
1146 		lock_buffer(bh);
1147 
1148 		err = ext4_journal_get_create_access(handle, bh);
1149 		if (err)
1150 			goto cleanup;
1151 
1152 		neh = ext_block_hdr(bh);
1153 		neh->eh_entries = cpu_to_le16(1);
1154 		neh->eh_magic = EXT4_EXT_MAGIC;
1155 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1156 		neh->eh_depth = cpu_to_le16(depth - i);
1157 		fidx = EXT_FIRST_INDEX(neh);
1158 		fidx->ei_block = border;
1159 		ext4_idx_store_pblock(fidx, oldblock);
1160 
1161 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1162 				i, newblock, le32_to_cpu(border), oldblock);
1163 
1164 		/* move remainder of path[i] to the new index block */
1165 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1166 					EXT_LAST_INDEX(path[i].p_hdr))) {
1167 			EXT4_ERROR_INODE(inode,
1168 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1169 					 le32_to_cpu(path[i].p_ext->ee_block));
1170 			err = -EIO;
1171 			goto cleanup;
1172 		}
1173 		/* start copy indexes */
1174 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1175 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1176 				EXT_MAX_INDEX(path[i].p_hdr));
1177 		ext4_ext_show_move(inode, path, newblock, i);
1178 		if (m) {
1179 			memmove(++fidx, path[i].p_idx,
1180 				sizeof(struct ext4_extent_idx) * m);
1181 			le16_add_cpu(&neh->eh_entries, m);
1182 		}
1183 		ext4_extent_block_csum_set(inode, neh);
1184 		set_buffer_uptodate(bh);
1185 		unlock_buffer(bh);
1186 
1187 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1188 		if (err)
1189 			goto cleanup;
1190 		brelse(bh);
1191 		bh = NULL;
1192 
1193 		/* correct old index */
1194 		if (m) {
1195 			err = ext4_ext_get_access(handle, inode, path + i);
1196 			if (err)
1197 				goto cleanup;
1198 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1199 			err = ext4_ext_dirty(handle, inode, path + i);
1200 			if (err)
1201 				goto cleanup;
1202 		}
1203 
1204 		i--;
1205 	}
1206 
1207 	/* insert new index */
1208 	err = ext4_ext_insert_index(handle, inode, path + at,
1209 				    le32_to_cpu(border), newblock);
1210 
1211 cleanup:
1212 	if (bh) {
1213 		if (buffer_locked(bh))
1214 			unlock_buffer(bh);
1215 		brelse(bh);
1216 	}
1217 
1218 	if (err) {
1219 		/* free all allocated blocks in error case */
1220 		for (i = 0; i < depth; i++) {
1221 			if (!ablocks[i])
1222 				continue;
1223 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1224 					 EXT4_FREE_BLOCKS_METADATA);
1225 		}
1226 	}
1227 	kfree(ablocks);
1228 
1229 	return err;
1230 }
1231 
1232 /*
1233  * ext4_ext_grow_indepth:
1234  * implements tree growing procedure:
1235  * - allocates new block
1236  * - moves top-level data (index block or leaf) into the new block
1237  * - initializes new top-level, creating index that points to the
1238  *   just created block
1239  */
1240 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1241 				 unsigned int flags,
1242 				 struct ext4_extent *newext)
1243 {
1244 	struct ext4_extent_header *neh;
1245 	struct buffer_head *bh;
1246 	ext4_fsblk_t newblock;
1247 	int err = 0;
1248 
1249 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1250 		newext, &err, flags);
1251 	if (newblock == 0)
1252 		return err;
1253 
1254 	bh = sb_getblk(inode->i_sb, newblock);
1255 	if (unlikely(!bh))
1256 		return -ENOMEM;
1257 	lock_buffer(bh);
1258 
1259 	err = ext4_journal_get_create_access(handle, bh);
1260 	if (err) {
1261 		unlock_buffer(bh);
1262 		goto out;
1263 	}
1264 
1265 	/* move top-level index/leaf into new block */
1266 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1267 		sizeof(EXT4_I(inode)->i_data));
1268 
1269 	/* set size of new block */
1270 	neh = ext_block_hdr(bh);
1271 	/* old root could have indexes or leaves
1272 	 * so calculate e_max right way */
1273 	if (ext_depth(inode))
1274 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1275 	else
1276 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1277 	neh->eh_magic = EXT4_EXT_MAGIC;
1278 	ext4_extent_block_csum_set(inode, neh);
1279 	set_buffer_uptodate(bh);
1280 	unlock_buffer(bh);
1281 
1282 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1283 	if (err)
1284 		goto out;
1285 
1286 	/* Update top-level index: num,max,pointer */
1287 	neh = ext_inode_hdr(inode);
1288 	neh->eh_entries = cpu_to_le16(1);
1289 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1290 	if (neh->eh_depth == 0) {
1291 		/* Root extent block becomes index block */
1292 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1293 		EXT_FIRST_INDEX(neh)->ei_block =
1294 			EXT_FIRST_EXTENT(neh)->ee_block;
1295 	}
1296 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1297 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1298 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1299 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1300 
1301 	le16_add_cpu(&neh->eh_depth, 1);
1302 	ext4_mark_inode_dirty(handle, inode);
1303 out:
1304 	brelse(bh);
1305 
1306 	return err;
1307 }
1308 
1309 /*
1310  * ext4_ext_create_new_leaf:
1311  * finds empty index and adds new leaf.
1312  * if no free index is found, then it requests in-depth growing.
1313  */
1314 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1315 				    unsigned int mb_flags,
1316 				    unsigned int gb_flags,
1317 				    struct ext4_ext_path *path,
1318 				    struct ext4_extent *newext)
1319 {
1320 	struct ext4_ext_path *curp;
1321 	int depth, i, err = 0;
1322 
1323 repeat:
1324 	i = depth = ext_depth(inode);
1325 
1326 	/* walk up to the tree and look for free index entry */
1327 	curp = path + depth;
1328 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1329 		i--;
1330 		curp--;
1331 	}
1332 
1333 	/* we use already allocated block for index block,
1334 	 * so subsequent data blocks should be contiguous */
1335 	if (EXT_HAS_FREE_INDEX(curp)) {
1336 		/* if we found index with free entry, then use that
1337 		 * entry: create all needed subtree and add new leaf */
1338 		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1339 		if (err)
1340 			goto out;
1341 
1342 		/* refill path */
1343 		ext4_ext_drop_refs(path);
1344 		path = ext4_ext_find_extent(inode,
1345 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1346 				    path, gb_flags);
1347 		if (IS_ERR(path))
1348 			err = PTR_ERR(path);
1349 	} else {
1350 		/* tree is full, time to grow in depth */
1351 		err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1352 		if (err)
1353 			goto out;
1354 
1355 		/* refill path */
1356 		ext4_ext_drop_refs(path);
1357 		path = ext4_ext_find_extent(inode,
1358 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1359 				    path, gb_flags);
1360 		if (IS_ERR(path)) {
1361 			err = PTR_ERR(path);
1362 			goto out;
1363 		}
1364 
1365 		/*
1366 		 * only first (depth 0 -> 1) produces free space;
1367 		 * in all other cases we have to split the grown tree
1368 		 */
1369 		depth = ext_depth(inode);
1370 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1371 			/* now we need to split */
1372 			goto repeat;
1373 		}
1374 	}
1375 
1376 out:
1377 	return err;
1378 }
1379 
1380 /*
1381  * search the closest allocated block to the left for *logical
1382  * and returns it at @logical + it's physical address at @phys
1383  * if *logical is the smallest allocated block, the function
1384  * returns 0 at @phys
1385  * return value contains 0 (success) or error code
1386  */
1387 static int ext4_ext_search_left(struct inode *inode,
1388 				struct ext4_ext_path *path,
1389 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1390 {
1391 	struct ext4_extent_idx *ix;
1392 	struct ext4_extent *ex;
1393 	int depth, ee_len;
1394 
1395 	if (unlikely(path == NULL)) {
1396 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1397 		return -EIO;
1398 	}
1399 	depth = path->p_depth;
1400 	*phys = 0;
1401 
1402 	if (depth == 0 && path->p_ext == NULL)
1403 		return 0;
1404 
1405 	/* usually extent in the path covers blocks smaller
1406 	 * then *logical, but it can be that extent is the
1407 	 * first one in the file */
1408 
1409 	ex = path[depth].p_ext;
1410 	ee_len = ext4_ext_get_actual_len(ex);
1411 	if (*logical < le32_to_cpu(ex->ee_block)) {
1412 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1413 			EXT4_ERROR_INODE(inode,
1414 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1415 					 *logical, le32_to_cpu(ex->ee_block));
1416 			return -EIO;
1417 		}
1418 		while (--depth >= 0) {
1419 			ix = path[depth].p_idx;
1420 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1421 				EXT4_ERROR_INODE(inode,
1422 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1423 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1424 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1425 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1426 				  depth);
1427 				return -EIO;
1428 			}
1429 		}
1430 		return 0;
1431 	}
1432 
1433 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1434 		EXT4_ERROR_INODE(inode,
1435 				 "logical %d < ee_block %d + ee_len %d!",
1436 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1437 		return -EIO;
1438 	}
1439 
1440 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1441 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1442 	return 0;
1443 }
1444 
1445 /*
1446  * search the closest allocated block to the right for *logical
1447  * and returns it at @logical + it's physical address at @phys
1448  * if *logical is the largest allocated block, the function
1449  * returns 0 at @phys
1450  * return value contains 0 (success) or error code
1451  */
1452 static int ext4_ext_search_right(struct inode *inode,
1453 				 struct ext4_ext_path *path,
1454 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1455 				 struct ext4_extent **ret_ex)
1456 {
1457 	struct buffer_head *bh = NULL;
1458 	struct ext4_extent_header *eh;
1459 	struct ext4_extent_idx *ix;
1460 	struct ext4_extent *ex;
1461 	ext4_fsblk_t block;
1462 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1463 	int ee_len;
1464 
1465 	if (unlikely(path == NULL)) {
1466 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1467 		return -EIO;
1468 	}
1469 	depth = path->p_depth;
1470 	*phys = 0;
1471 
1472 	if (depth == 0 && path->p_ext == NULL)
1473 		return 0;
1474 
1475 	/* usually extent in the path covers blocks smaller
1476 	 * then *logical, but it can be that extent is the
1477 	 * first one in the file */
1478 
1479 	ex = path[depth].p_ext;
1480 	ee_len = ext4_ext_get_actual_len(ex);
1481 	if (*logical < le32_to_cpu(ex->ee_block)) {
1482 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1483 			EXT4_ERROR_INODE(inode,
1484 					 "first_extent(path[%d].p_hdr) != ex",
1485 					 depth);
1486 			return -EIO;
1487 		}
1488 		while (--depth >= 0) {
1489 			ix = path[depth].p_idx;
1490 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1491 				EXT4_ERROR_INODE(inode,
1492 						 "ix != EXT_FIRST_INDEX *logical %d!",
1493 						 *logical);
1494 				return -EIO;
1495 			}
1496 		}
1497 		goto found_extent;
1498 	}
1499 
1500 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1501 		EXT4_ERROR_INODE(inode,
1502 				 "logical %d < ee_block %d + ee_len %d!",
1503 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1504 		return -EIO;
1505 	}
1506 
1507 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1508 		/* next allocated block in this leaf */
1509 		ex++;
1510 		goto found_extent;
1511 	}
1512 
1513 	/* go up and search for index to the right */
1514 	while (--depth >= 0) {
1515 		ix = path[depth].p_idx;
1516 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1517 			goto got_index;
1518 	}
1519 
1520 	/* we've gone up to the root and found no index to the right */
1521 	return 0;
1522 
1523 got_index:
1524 	/* we've found index to the right, let's
1525 	 * follow it and find the closest allocated
1526 	 * block to the right */
1527 	ix++;
1528 	block = ext4_idx_pblock(ix);
1529 	while (++depth < path->p_depth) {
1530 		/* subtract from p_depth to get proper eh_depth */
1531 		bh = read_extent_tree_block(inode, block,
1532 					    path->p_depth - depth, 0);
1533 		if (IS_ERR(bh))
1534 			return PTR_ERR(bh);
1535 		eh = ext_block_hdr(bh);
1536 		ix = EXT_FIRST_INDEX(eh);
1537 		block = ext4_idx_pblock(ix);
1538 		put_bh(bh);
1539 	}
1540 
1541 	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1542 	if (IS_ERR(bh))
1543 		return PTR_ERR(bh);
1544 	eh = ext_block_hdr(bh);
1545 	ex = EXT_FIRST_EXTENT(eh);
1546 found_extent:
1547 	*logical = le32_to_cpu(ex->ee_block);
1548 	*phys = ext4_ext_pblock(ex);
1549 	*ret_ex = ex;
1550 	if (bh)
1551 		put_bh(bh);
1552 	return 0;
1553 }
1554 
1555 /*
1556  * ext4_ext_next_allocated_block:
1557  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1558  * NOTE: it considers block number from index entry as
1559  * allocated block. Thus, index entries have to be consistent
1560  * with leaves.
1561  */
1562 static ext4_lblk_t
1563 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1564 {
1565 	int depth;
1566 
1567 	BUG_ON(path == NULL);
1568 	depth = path->p_depth;
1569 
1570 	if (depth == 0 && path->p_ext == NULL)
1571 		return EXT_MAX_BLOCKS;
1572 
1573 	while (depth >= 0) {
1574 		if (depth == path->p_depth) {
1575 			/* leaf */
1576 			if (path[depth].p_ext &&
1577 				path[depth].p_ext !=
1578 					EXT_LAST_EXTENT(path[depth].p_hdr))
1579 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1580 		} else {
1581 			/* index */
1582 			if (path[depth].p_idx !=
1583 					EXT_LAST_INDEX(path[depth].p_hdr))
1584 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1585 		}
1586 		depth--;
1587 	}
1588 
1589 	return EXT_MAX_BLOCKS;
1590 }
1591 
1592 /*
1593  * ext4_ext_next_leaf_block:
1594  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1595  */
1596 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1597 {
1598 	int depth;
1599 
1600 	BUG_ON(path == NULL);
1601 	depth = path->p_depth;
1602 
1603 	/* zero-tree has no leaf blocks at all */
1604 	if (depth == 0)
1605 		return EXT_MAX_BLOCKS;
1606 
1607 	/* go to index block */
1608 	depth--;
1609 
1610 	while (depth >= 0) {
1611 		if (path[depth].p_idx !=
1612 				EXT_LAST_INDEX(path[depth].p_hdr))
1613 			return (ext4_lblk_t)
1614 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1615 		depth--;
1616 	}
1617 
1618 	return EXT_MAX_BLOCKS;
1619 }
1620 
1621 /*
1622  * ext4_ext_correct_indexes:
1623  * if leaf gets modified and modified extent is first in the leaf,
1624  * then we have to correct all indexes above.
1625  * TODO: do we need to correct tree in all cases?
1626  */
1627 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1628 				struct ext4_ext_path *path)
1629 {
1630 	struct ext4_extent_header *eh;
1631 	int depth = ext_depth(inode);
1632 	struct ext4_extent *ex;
1633 	__le32 border;
1634 	int k, err = 0;
1635 
1636 	eh = path[depth].p_hdr;
1637 	ex = path[depth].p_ext;
1638 
1639 	if (unlikely(ex == NULL || eh == NULL)) {
1640 		EXT4_ERROR_INODE(inode,
1641 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1642 		return -EIO;
1643 	}
1644 
1645 	if (depth == 0) {
1646 		/* there is no tree at all */
1647 		return 0;
1648 	}
1649 
1650 	if (ex != EXT_FIRST_EXTENT(eh)) {
1651 		/* we correct tree if first leaf got modified only */
1652 		return 0;
1653 	}
1654 
1655 	/*
1656 	 * TODO: we need correction if border is smaller than current one
1657 	 */
1658 	k = depth - 1;
1659 	border = path[depth].p_ext->ee_block;
1660 	err = ext4_ext_get_access(handle, inode, path + k);
1661 	if (err)
1662 		return err;
1663 	path[k].p_idx->ei_block = border;
1664 	err = ext4_ext_dirty(handle, inode, path + k);
1665 	if (err)
1666 		return err;
1667 
1668 	while (k--) {
1669 		/* change all left-side indexes */
1670 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1671 			break;
1672 		err = ext4_ext_get_access(handle, inode, path + k);
1673 		if (err)
1674 			break;
1675 		path[k].p_idx->ei_block = border;
1676 		err = ext4_ext_dirty(handle, inode, path + k);
1677 		if (err)
1678 			break;
1679 	}
1680 
1681 	return err;
1682 }
1683 
1684 int
1685 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1686 				struct ext4_extent *ex2)
1687 {
1688 	unsigned short ext1_ee_len, ext2_ee_len;
1689 
1690 	/*
1691 	 * Make sure that both extents are initialized. We don't merge
1692 	 * unwritten extents so that we can be sure that end_io code has
1693 	 * the extent that was written properly split out and conversion to
1694 	 * initialized is trivial.
1695 	 */
1696 	if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1697 		return 0;
1698 
1699 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1700 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1701 
1702 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1703 			le32_to_cpu(ex2->ee_block))
1704 		return 0;
1705 
1706 	/*
1707 	 * To allow future support for preallocated extents to be added
1708 	 * as an RO_COMPAT feature, refuse to merge to extents if
1709 	 * this can result in the top bit of ee_len being set.
1710 	 */
1711 	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1712 		return 0;
1713 	if (ext4_ext_is_unwritten(ex1) &&
1714 	    (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1715 	     atomic_read(&EXT4_I(inode)->i_unwritten) ||
1716 	     (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1717 		return 0;
1718 #ifdef AGGRESSIVE_TEST
1719 	if (ext1_ee_len >= 4)
1720 		return 0;
1721 #endif
1722 
1723 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1724 		return 1;
1725 	return 0;
1726 }
1727 
1728 /*
1729  * This function tries to merge the "ex" extent to the next extent in the tree.
1730  * It always tries to merge towards right. If you want to merge towards
1731  * left, pass "ex - 1" as argument instead of "ex".
1732  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1733  * 1 if they got merged.
1734  */
1735 static int ext4_ext_try_to_merge_right(struct inode *inode,
1736 				 struct ext4_ext_path *path,
1737 				 struct ext4_extent *ex)
1738 {
1739 	struct ext4_extent_header *eh;
1740 	unsigned int depth, len;
1741 	int merge_done = 0, unwritten;
1742 
1743 	depth = ext_depth(inode);
1744 	BUG_ON(path[depth].p_hdr == NULL);
1745 	eh = path[depth].p_hdr;
1746 
1747 	while (ex < EXT_LAST_EXTENT(eh)) {
1748 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1749 			break;
1750 		/* merge with next extent! */
1751 		unwritten = ext4_ext_is_unwritten(ex);
1752 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1753 				+ ext4_ext_get_actual_len(ex + 1));
1754 		if (unwritten)
1755 			ext4_ext_mark_unwritten(ex);
1756 
1757 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1758 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1759 				* sizeof(struct ext4_extent);
1760 			memmove(ex + 1, ex + 2, len);
1761 		}
1762 		le16_add_cpu(&eh->eh_entries, -1);
1763 		merge_done = 1;
1764 		WARN_ON(eh->eh_entries == 0);
1765 		if (!eh->eh_entries)
1766 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1767 	}
1768 
1769 	return merge_done;
1770 }
1771 
1772 /*
1773  * This function does a very simple check to see if we can collapse
1774  * an extent tree with a single extent tree leaf block into the inode.
1775  */
1776 static void ext4_ext_try_to_merge_up(handle_t *handle,
1777 				     struct inode *inode,
1778 				     struct ext4_ext_path *path)
1779 {
1780 	size_t s;
1781 	unsigned max_root = ext4_ext_space_root(inode, 0);
1782 	ext4_fsblk_t blk;
1783 
1784 	if ((path[0].p_depth != 1) ||
1785 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1786 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1787 		return;
1788 
1789 	/*
1790 	 * We need to modify the block allocation bitmap and the block
1791 	 * group descriptor to release the extent tree block.  If we
1792 	 * can't get the journal credits, give up.
1793 	 */
1794 	if (ext4_journal_extend(handle, 2))
1795 		return;
1796 
1797 	/*
1798 	 * Copy the extent data up to the inode
1799 	 */
1800 	blk = ext4_idx_pblock(path[0].p_idx);
1801 	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1802 		sizeof(struct ext4_extent_idx);
1803 	s += sizeof(struct ext4_extent_header);
1804 
1805 	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1806 	path[0].p_depth = 0;
1807 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1808 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1809 	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1810 
1811 	brelse(path[1].p_bh);
1812 	ext4_free_blocks(handle, inode, NULL, blk, 1,
1813 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1814 }
1815 
1816 /*
1817  * This function tries to merge the @ex extent to neighbours in the tree.
1818  * return 1 if merge left else 0.
1819  */
1820 static void ext4_ext_try_to_merge(handle_t *handle,
1821 				  struct inode *inode,
1822 				  struct ext4_ext_path *path,
1823 				  struct ext4_extent *ex) {
1824 	struct ext4_extent_header *eh;
1825 	unsigned int depth;
1826 	int merge_done = 0;
1827 
1828 	depth = ext_depth(inode);
1829 	BUG_ON(path[depth].p_hdr == NULL);
1830 	eh = path[depth].p_hdr;
1831 
1832 	if (ex > EXT_FIRST_EXTENT(eh))
1833 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1834 
1835 	if (!merge_done)
1836 		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1837 
1838 	ext4_ext_try_to_merge_up(handle, inode, path);
1839 }
1840 
1841 /*
1842  * check if a portion of the "newext" extent overlaps with an
1843  * existing extent.
1844  *
1845  * If there is an overlap discovered, it updates the length of the newext
1846  * such that there will be no overlap, and then returns 1.
1847  * If there is no overlap found, it returns 0.
1848  */
1849 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1850 					   struct inode *inode,
1851 					   struct ext4_extent *newext,
1852 					   struct ext4_ext_path *path)
1853 {
1854 	ext4_lblk_t b1, b2;
1855 	unsigned int depth, len1;
1856 	unsigned int ret = 0;
1857 
1858 	b1 = le32_to_cpu(newext->ee_block);
1859 	len1 = ext4_ext_get_actual_len(newext);
1860 	depth = ext_depth(inode);
1861 	if (!path[depth].p_ext)
1862 		goto out;
1863 	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1864 
1865 	/*
1866 	 * get the next allocated block if the extent in the path
1867 	 * is before the requested block(s)
1868 	 */
1869 	if (b2 < b1) {
1870 		b2 = ext4_ext_next_allocated_block(path);
1871 		if (b2 == EXT_MAX_BLOCKS)
1872 			goto out;
1873 		b2 = EXT4_LBLK_CMASK(sbi, b2);
1874 	}
1875 
1876 	/* check for wrap through zero on extent logical start block*/
1877 	if (b1 + len1 < b1) {
1878 		len1 = EXT_MAX_BLOCKS - b1;
1879 		newext->ee_len = cpu_to_le16(len1);
1880 		ret = 1;
1881 	}
1882 
1883 	/* check for overlap */
1884 	if (b1 + len1 > b2) {
1885 		newext->ee_len = cpu_to_le16(b2 - b1);
1886 		ret = 1;
1887 	}
1888 out:
1889 	return ret;
1890 }
1891 
1892 /*
1893  * ext4_ext_insert_extent:
1894  * tries to merge requsted extent into the existing extent or
1895  * inserts requested extent as new one into the tree,
1896  * creating new leaf in the no-space case.
1897  */
1898 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1899 				struct ext4_ext_path *path,
1900 				struct ext4_extent *newext, int gb_flags)
1901 {
1902 	struct ext4_extent_header *eh;
1903 	struct ext4_extent *ex, *fex;
1904 	struct ext4_extent *nearex; /* nearest extent */
1905 	struct ext4_ext_path *npath = NULL;
1906 	int depth, len, err;
1907 	ext4_lblk_t next;
1908 	int mb_flags = 0, unwritten;
1909 
1910 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1911 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1912 		return -EIO;
1913 	}
1914 	depth = ext_depth(inode);
1915 	ex = path[depth].p_ext;
1916 	eh = path[depth].p_hdr;
1917 	if (unlikely(path[depth].p_hdr == NULL)) {
1918 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1919 		return -EIO;
1920 	}
1921 
1922 	/* try to insert block into found extent and return */
1923 	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1924 
1925 		/*
1926 		 * Try to see whether we should rather test the extent on
1927 		 * right from ex, or from the left of ex. This is because
1928 		 * ext4_ext_find_extent() can return either extent on the
1929 		 * left, or on the right from the searched position. This
1930 		 * will make merging more effective.
1931 		 */
1932 		if (ex < EXT_LAST_EXTENT(eh) &&
1933 		    (le32_to_cpu(ex->ee_block) +
1934 		    ext4_ext_get_actual_len(ex) <
1935 		    le32_to_cpu(newext->ee_block))) {
1936 			ex += 1;
1937 			goto prepend;
1938 		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1939 			   (le32_to_cpu(newext->ee_block) +
1940 			   ext4_ext_get_actual_len(newext) <
1941 			   le32_to_cpu(ex->ee_block)))
1942 			ex -= 1;
1943 
1944 		/* Try to append newex to the ex */
1945 		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1946 			ext_debug("append [%d]%d block to %u:[%d]%d"
1947 				  "(from %llu)\n",
1948 				  ext4_ext_is_unwritten(newext),
1949 				  ext4_ext_get_actual_len(newext),
1950 				  le32_to_cpu(ex->ee_block),
1951 				  ext4_ext_is_unwritten(ex),
1952 				  ext4_ext_get_actual_len(ex),
1953 				  ext4_ext_pblock(ex));
1954 			err = ext4_ext_get_access(handle, inode,
1955 						  path + depth);
1956 			if (err)
1957 				return err;
1958 			unwritten = ext4_ext_is_unwritten(ex);
1959 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1960 					+ ext4_ext_get_actual_len(newext));
1961 			if (unwritten)
1962 				ext4_ext_mark_unwritten(ex);
1963 			eh = path[depth].p_hdr;
1964 			nearex = ex;
1965 			goto merge;
1966 		}
1967 
1968 prepend:
1969 		/* Try to prepend newex to the ex */
1970 		if (ext4_can_extents_be_merged(inode, newext, ex)) {
1971 			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1972 				  "(from %llu)\n",
1973 				  le32_to_cpu(newext->ee_block),
1974 				  ext4_ext_is_unwritten(newext),
1975 				  ext4_ext_get_actual_len(newext),
1976 				  le32_to_cpu(ex->ee_block),
1977 				  ext4_ext_is_unwritten(ex),
1978 				  ext4_ext_get_actual_len(ex),
1979 				  ext4_ext_pblock(ex));
1980 			err = ext4_ext_get_access(handle, inode,
1981 						  path + depth);
1982 			if (err)
1983 				return err;
1984 
1985 			unwritten = ext4_ext_is_unwritten(ex);
1986 			ex->ee_block = newext->ee_block;
1987 			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1988 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1989 					+ ext4_ext_get_actual_len(newext));
1990 			if (unwritten)
1991 				ext4_ext_mark_unwritten(ex);
1992 			eh = path[depth].p_hdr;
1993 			nearex = ex;
1994 			goto merge;
1995 		}
1996 	}
1997 
1998 	depth = ext_depth(inode);
1999 	eh = path[depth].p_hdr;
2000 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2001 		goto has_space;
2002 
2003 	/* probably next leaf has space for us? */
2004 	fex = EXT_LAST_EXTENT(eh);
2005 	next = EXT_MAX_BLOCKS;
2006 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2007 		next = ext4_ext_next_leaf_block(path);
2008 	if (next != EXT_MAX_BLOCKS) {
2009 		ext_debug("next leaf block - %u\n", next);
2010 		BUG_ON(npath != NULL);
2011 		npath = ext4_ext_find_extent(inode, next, NULL, 0);
2012 		if (IS_ERR(npath))
2013 			return PTR_ERR(npath);
2014 		BUG_ON(npath->p_depth != path->p_depth);
2015 		eh = npath[depth].p_hdr;
2016 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2017 			ext_debug("next leaf isn't full(%d)\n",
2018 				  le16_to_cpu(eh->eh_entries));
2019 			path = npath;
2020 			goto has_space;
2021 		}
2022 		ext_debug("next leaf has no free space(%d,%d)\n",
2023 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2024 	}
2025 
2026 	/*
2027 	 * There is no free space in the found leaf.
2028 	 * We're gonna add a new leaf in the tree.
2029 	 */
2030 	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2031 		mb_flags = EXT4_MB_USE_RESERVED;
2032 	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2033 				       path, newext);
2034 	if (err)
2035 		goto cleanup;
2036 	depth = ext_depth(inode);
2037 	eh = path[depth].p_hdr;
2038 
2039 has_space:
2040 	nearex = path[depth].p_ext;
2041 
2042 	err = ext4_ext_get_access(handle, inode, path + depth);
2043 	if (err)
2044 		goto cleanup;
2045 
2046 	if (!nearex) {
2047 		/* there is no extent in this leaf, create first one */
2048 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2049 				le32_to_cpu(newext->ee_block),
2050 				ext4_ext_pblock(newext),
2051 				ext4_ext_is_unwritten(newext),
2052 				ext4_ext_get_actual_len(newext));
2053 		nearex = EXT_FIRST_EXTENT(eh);
2054 	} else {
2055 		if (le32_to_cpu(newext->ee_block)
2056 			   > le32_to_cpu(nearex->ee_block)) {
2057 			/* Insert after */
2058 			ext_debug("insert %u:%llu:[%d]%d before: "
2059 					"nearest %p\n",
2060 					le32_to_cpu(newext->ee_block),
2061 					ext4_ext_pblock(newext),
2062 					ext4_ext_is_unwritten(newext),
2063 					ext4_ext_get_actual_len(newext),
2064 					nearex);
2065 			nearex++;
2066 		} else {
2067 			/* Insert before */
2068 			BUG_ON(newext->ee_block == nearex->ee_block);
2069 			ext_debug("insert %u:%llu:[%d]%d after: "
2070 					"nearest %p\n",
2071 					le32_to_cpu(newext->ee_block),
2072 					ext4_ext_pblock(newext),
2073 					ext4_ext_is_unwritten(newext),
2074 					ext4_ext_get_actual_len(newext),
2075 					nearex);
2076 		}
2077 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2078 		if (len > 0) {
2079 			ext_debug("insert %u:%llu:[%d]%d: "
2080 					"move %d extents from 0x%p to 0x%p\n",
2081 					le32_to_cpu(newext->ee_block),
2082 					ext4_ext_pblock(newext),
2083 					ext4_ext_is_unwritten(newext),
2084 					ext4_ext_get_actual_len(newext),
2085 					len, nearex, nearex + 1);
2086 			memmove(nearex + 1, nearex,
2087 				len * sizeof(struct ext4_extent));
2088 		}
2089 	}
2090 
2091 	le16_add_cpu(&eh->eh_entries, 1);
2092 	path[depth].p_ext = nearex;
2093 	nearex->ee_block = newext->ee_block;
2094 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2095 	nearex->ee_len = newext->ee_len;
2096 
2097 merge:
2098 	/* try to merge extents */
2099 	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2100 		ext4_ext_try_to_merge(handle, inode, path, nearex);
2101 
2102 
2103 	/* time to correct all indexes above */
2104 	err = ext4_ext_correct_indexes(handle, inode, path);
2105 	if (err)
2106 		goto cleanup;
2107 
2108 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2109 
2110 cleanup:
2111 	if (npath) {
2112 		ext4_ext_drop_refs(npath);
2113 		kfree(npath);
2114 	}
2115 	return err;
2116 }
2117 
2118 static int ext4_fill_fiemap_extents(struct inode *inode,
2119 				    ext4_lblk_t block, ext4_lblk_t num,
2120 				    struct fiemap_extent_info *fieinfo)
2121 {
2122 	struct ext4_ext_path *path = NULL;
2123 	struct ext4_extent *ex;
2124 	struct extent_status es;
2125 	ext4_lblk_t next, next_del, start = 0, end = 0;
2126 	ext4_lblk_t last = block + num;
2127 	int exists, depth = 0, err = 0;
2128 	unsigned int flags = 0;
2129 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2130 
2131 	while (block < last && block != EXT_MAX_BLOCKS) {
2132 		num = last - block;
2133 		/* find extent for this block */
2134 		down_read(&EXT4_I(inode)->i_data_sem);
2135 
2136 		if (path && ext_depth(inode) != depth) {
2137 			/* depth was changed. we have to realloc path */
2138 			kfree(path);
2139 			path = NULL;
2140 		}
2141 
2142 		path = ext4_ext_find_extent(inode, block, path, 0);
2143 		if (IS_ERR(path)) {
2144 			up_read(&EXT4_I(inode)->i_data_sem);
2145 			err = PTR_ERR(path);
2146 			path = NULL;
2147 			break;
2148 		}
2149 
2150 		depth = ext_depth(inode);
2151 		if (unlikely(path[depth].p_hdr == NULL)) {
2152 			up_read(&EXT4_I(inode)->i_data_sem);
2153 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2154 			err = -EIO;
2155 			break;
2156 		}
2157 		ex = path[depth].p_ext;
2158 		next = ext4_ext_next_allocated_block(path);
2159 		ext4_ext_drop_refs(path);
2160 
2161 		flags = 0;
2162 		exists = 0;
2163 		if (!ex) {
2164 			/* there is no extent yet, so try to allocate
2165 			 * all requested space */
2166 			start = block;
2167 			end = block + num;
2168 		} else if (le32_to_cpu(ex->ee_block) > block) {
2169 			/* need to allocate space before found extent */
2170 			start = block;
2171 			end = le32_to_cpu(ex->ee_block);
2172 			if (block + num < end)
2173 				end = block + num;
2174 		} else if (block >= le32_to_cpu(ex->ee_block)
2175 					+ ext4_ext_get_actual_len(ex)) {
2176 			/* need to allocate space after found extent */
2177 			start = block;
2178 			end = block + num;
2179 			if (end >= next)
2180 				end = next;
2181 		} else if (block >= le32_to_cpu(ex->ee_block)) {
2182 			/*
2183 			 * some part of requested space is covered
2184 			 * by found extent
2185 			 */
2186 			start = block;
2187 			end = le32_to_cpu(ex->ee_block)
2188 				+ ext4_ext_get_actual_len(ex);
2189 			if (block + num < end)
2190 				end = block + num;
2191 			exists = 1;
2192 		} else {
2193 			BUG();
2194 		}
2195 		BUG_ON(end <= start);
2196 
2197 		if (!exists) {
2198 			es.es_lblk = start;
2199 			es.es_len = end - start;
2200 			es.es_pblk = 0;
2201 		} else {
2202 			es.es_lblk = le32_to_cpu(ex->ee_block);
2203 			es.es_len = ext4_ext_get_actual_len(ex);
2204 			es.es_pblk = ext4_ext_pblock(ex);
2205 			if (ext4_ext_is_unwritten(ex))
2206 				flags |= FIEMAP_EXTENT_UNWRITTEN;
2207 		}
2208 
2209 		/*
2210 		 * Find delayed extent and update es accordingly. We call
2211 		 * it even in !exists case to find out whether es is the
2212 		 * last existing extent or not.
2213 		 */
2214 		next_del = ext4_find_delayed_extent(inode, &es);
2215 		if (!exists && next_del) {
2216 			exists = 1;
2217 			flags |= (FIEMAP_EXTENT_DELALLOC |
2218 				  FIEMAP_EXTENT_UNKNOWN);
2219 		}
2220 		up_read(&EXT4_I(inode)->i_data_sem);
2221 
2222 		if (unlikely(es.es_len == 0)) {
2223 			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2224 			err = -EIO;
2225 			break;
2226 		}
2227 
2228 		/*
2229 		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2230 		 * we need to check next == EXT_MAX_BLOCKS because it is
2231 		 * possible that an extent is with unwritten and delayed
2232 		 * status due to when an extent is delayed allocated and
2233 		 * is allocated by fallocate status tree will track both of
2234 		 * them in a extent.
2235 		 *
2236 		 * So we could return a unwritten and delayed extent, and
2237 		 * its block is equal to 'next'.
2238 		 */
2239 		if (next == next_del && next == EXT_MAX_BLOCKS) {
2240 			flags |= FIEMAP_EXTENT_LAST;
2241 			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2242 				     next != EXT_MAX_BLOCKS)) {
2243 				EXT4_ERROR_INODE(inode,
2244 						 "next extent == %u, next "
2245 						 "delalloc extent = %u",
2246 						 next, next_del);
2247 				err = -EIO;
2248 				break;
2249 			}
2250 		}
2251 
2252 		if (exists) {
2253 			err = fiemap_fill_next_extent(fieinfo,
2254 				(__u64)es.es_lblk << blksize_bits,
2255 				(__u64)es.es_pblk << blksize_bits,
2256 				(__u64)es.es_len << blksize_bits,
2257 				flags);
2258 			if (err < 0)
2259 				break;
2260 			if (err == 1) {
2261 				err = 0;
2262 				break;
2263 			}
2264 		}
2265 
2266 		block = es.es_lblk + es.es_len;
2267 	}
2268 
2269 	if (path) {
2270 		ext4_ext_drop_refs(path);
2271 		kfree(path);
2272 	}
2273 
2274 	return err;
2275 }
2276 
2277 /*
2278  * ext4_ext_put_gap_in_cache:
2279  * calculate boundaries of the gap that the requested block fits into
2280  * and cache this gap
2281  */
2282 static void
2283 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2284 				ext4_lblk_t block)
2285 {
2286 	int depth = ext_depth(inode);
2287 	unsigned long len = 0;
2288 	ext4_lblk_t lblock = 0;
2289 	struct ext4_extent *ex;
2290 
2291 	ex = path[depth].p_ext;
2292 	if (ex == NULL) {
2293 		/*
2294 		 * there is no extent yet, so gap is [0;-] and we
2295 		 * don't cache it
2296 		 */
2297 		ext_debug("cache gap(whole file):");
2298 	} else if (block < le32_to_cpu(ex->ee_block)) {
2299 		lblock = block;
2300 		len = le32_to_cpu(ex->ee_block) - block;
2301 		ext_debug("cache gap(before): %u [%u:%u]",
2302 				block,
2303 				le32_to_cpu(ex->ee_block),
2304 				 ext4_ext_get_actual_len(ex));
2305 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2306 			ext4_es_insert_extent(inode, lblock, len, ~0,
2307 					      EXTENT_STATUS_HOLE);
2308 	} else if (block >= le32_to_cpu(ex->ee_block)
2309 			+ ext4_ext_get_actual_len(ex)) {
2310 		ext4_lblk_t next;
2311 		lblock = le32_to_cpu(ex->ee_block)
2312 			+ ext4_ext_get_actual_len(ex);
2313 
2314 		next = ext4_ext_next_allocated_block(path);
2315 		ext_debug("cache gap(after): [%u:%u] %u",
2316 				le32_to_cpu(ex->ee_block),
2317 				ext4_ext_get_actual_len(ex),
2318 				block);
2319 		BUG_ON(next == lblock);
2320 		len = next - lblock;
2321 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2322 			ext4_es_insert_extent(inode, lblock, len, ~0,
2323 					      EXTENT_STATUS_HOLE);
2324 	} else {
2325 		BUG();
2326 	}
2327 
2328 	ext_debug(" -> %u:%lu\n", lblock, len);
2329 }
2330 
2331 /*
2332  * ext4_ext_rm_idx:
2333  * removes index from the index block.
2334  */
2335 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2336 			struct ext4_ext_path *path, int depth)
2337 {
2338 	int err;
2339 	ext4_fsblk_t leaf;
2340 
2341 	/* free index block */
2342 	depth--;
2343 	path = path + depth;
2344 	leaf = ext4_idx_pblock(path->p_idx);
2345 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2346 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2347 		return -EIO;
2348 	}
2349 	err = ext4_ext_get_access(handle, inode, path);
2350 	if (err)
2351 		return err;
2352 
2353 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2354 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2355 		len *= sizeof(struct ext4_extent_idx);
2356 		memmove(path->p_idx, path->p_idx + 1, len);
2357 	}
2358 
2359 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2360 	err = ext4_ext_dirty(handle, inode, path);
2361 	if (err)
2362 		return err;
2363 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2364 	trace_ext4_ext_rm_idx(inode, leaf);
2365 
2366 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2367 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2368 
2369 	while (--depth >= 0) {
2370 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2371 			break;
2372 		path--;
2373 		err = ext4_ext_get_access(handle, inode, path);
2374 		if (err)
2375 			break;
2376 		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2377 		err = ext4_ext_dirty(handle, inode, path);
2378 		if (err)
2379 			break;
2380 	}
2381 	return err;
2382 }
2383 
2384 /*
2385  * ext4_ext_calc_credits_for_single_extent:
2386  * This routine returns max. credits that needed to insert an extent
2387  * to the extent tree.
2388  * When pass the actual path, the caller should calculate credits
2389  * under i_data_sem.
2390  */
2391 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2392 						struct ext4_ext_path *path)
2393 {
2394 	if (path) {
2395 		int depth = ext_depth(inode);
2396 		int ret = 0;
2397 
2398 		/* probably there is space in leaf? */
2399 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2400 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2401 
2402 			/*
2403 			 *  There are some space in the leaf tree, no
2404 			 *  need to account for leaf block credit
2405 			 *
2406 			 *  bitmaps and block group descriptor blocks
2407 			 *  and other metadata blocks still need to be
2408 			 *  accounted.
2409 			 */
2410 			/* 1 bitmap, 1 block group descriptor */
2411 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2412 			return ret;
2413 		}
2414 	}
2415 
2416 	return ext4_chunk_trans_blocks(inode, nrblocks);
2417 }
2418 
2419 /*
2420  * How many index/leaf blocks need to change/allocate to add @extents extents?
2421  *
2422  * If we add a single extent, then in the worse case, each tree level
2423  * index/leaf need to be changed in case of the tree split.
2424  *
2425  * If more extents are inserted, they could cause the whole tree split more
2426  * than once, but this is really rare.
2427  */
2428 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2429 {
2430 	int index;
2431 	int depth;
2432 
2433 	/* If we are converting the inline data, only one is needed here. */
2434 	if (ext4_has_inline_data(inode))
2435 		return 1;
2436 
2437 	depth = ext_depth(inode);
2438 
2439 	if (extents <= 1)
2440 		index = depth * 2;
2441 	else
2442 		index = depth * 3;
2443 
2444 	return index;
2445 }
2446 
2447 static inline int get_default_free_blocks_flags(struct inode *inode)
2448 {
2449 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2450 		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2451 	else if (ext4_should_journal_data(inode))
2452 		return EXT4_FREE_BLOCKS_FORGET;
2453 	return 0;
2454 }
2455 
2456 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2457 			      struct ext4_extent *ex,
2458 			      long long *partial_cluster,
2459 			      ext4_lblk_t from, ext4_lblk_t to)
2460 {
2461 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2462 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2463 	ext4_fsblk_t pblk;
2464 	int flags = get_default_free_blocks_flags(inode);
2465 
2466 	/*
2467 	 * For bigalloc file systems, we never free a partial cluster
2468 	 * at the beginning of the extent.  Instead, we make a note
2469 	 * that we tried freeing the cluster, and check to see if we
2470 	 * need to free it on a subsequent call to ext4_remove_blocks,
2471 	 * or at the end of the ext4_truncate() operation.
2472 	 */
2473 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2474 
2475 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2476 	/*
2477 	 * If we have a partial cluster, and it's different from the
2478 	 * cluster of the last block, we need to explicitly free the
2479 	 * partial cluster here.
2480 	 */
2481 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2482 	if ((*partial_cluster > 0) &&
2483 	    (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2484 		ext4_free_blocks(handle, inode, NULL,
2485 				 EXT4_C2B(sbi, *partial_cluster),
2486 				 sbi->s_cluster_ratio, flags);
2487 		*partial_cluster = 0;
2488 	}
2489 
2490 #ifdef EXTENTS_STATS
2491 	{
2492 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2493 		spin_lock(&sbi->s_ext_stats_lock);
2494 		sbi->s_ext_blocks += ee_len;
2495 		sbi->s_ext_extents++;
2496 		if (ee_len < sbi->s_ext_min)
2497 			sbi->s_ext_min = ee_len;
2498 		if (ee_len > sbi->s_ext_max)
2499 			sbi->s_ext_max = ee_len;
2500 		if (ext_depth(inode) > sbi->s_depth_max)
2501 			sbi->s_depth_max = ext_depth(inode);
2502 		spin_unlock(&sbi->s_ext_stats_lock);
2503 	}
2504 #endif
2505 	if (from >= le32_to_cpu(ex->ee_block)
2506 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2507 		/* tail removal */
2508 		ext4_lblk_t num;
2509 		unsigned int unaligned;
2510 
2511 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2512 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2513 		/*
2514 		 * Usually we want to free partial cluster at the end of the
2515 		 * extent, except for the situation when the cluster is still
2516 		 * used by any other extent (partial_cluster is negative).
2517 		 */
2518 		if (*partial_cluster < 0 &&
2519 		    -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2520 			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2521 
2522 		ext_debug("free last %u blocks starting %llu partial %lld\n",
2523 			  num, pblk, *partial_cluster);
2524 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2525 		/*
2526 		 * If the block range to be freed didn't start at the
2527 		 * beginning of a cluster, and we removed the entire
2528 		 * extent and the cluster is not used by any other extent,
2529 		 * save the partial cluster here, since we might need to
2530 		 * delete if we determine that the truncate operation has
2531 		 * removed all of the blocks in the cluster.
2532 		 *
2533 		 * On the other hand, if we did not manage to free the whole
2534 		 * extent, we have to mark the cluster as used (store negative
2535 		 * cluster number in partial_cluster).
2536 		 */
2537 		unaligned = EXT4_PBLK_COFF(sbi, pblk);
2538 		if (unaligned && (ee_len == num) &&
2539 		    (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2540 			*partial_cluster = EXT4_B2C(sbi, pblk);
2541 		else if (unaligned)
2542 			*partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2543 		else if (*partial_cluster > 0)
2544 			*partial_cluster = 0;
2545 	} else
2546 		ext4_error(sbi->s_sb, "strange request: removal(2) "
2547 			   "%u-%u from %u:%u\n",
2548 			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2549 	return 0;
2550 }
2551 
2552 
2553 /*
2554  * ext4_ext_rm_leaf() Removes the extents associated with the
2555  * blocks appearing between "start" and "end", and splits the extents
2556  * if "start" and "end" appear in the same extent
2557  *
2558  * @handle: The journal handle
2559  * @inode:  The files inode
2560  * @path:   The path to the leaf
2561  * @partial_cluster: The cluster which we'll have to free if all extents
2562  *                   has been released from it. It gets negative in case
2563  *                   that the cluster is still used.
2564  * @start:  The first block to remove
2565  * @end:   The last block to remove
2566  */
2567 static int
2568 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2569 		 struct ext4_ext_path *path,
2570 		 long long *partial_cluster,
2571 		 ext4_lblk_t start, ext4_lblk_t end)
2572 {
2573 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2574 	int err = 0, correct_index = 0;
2575 	int depth = ext_depth(inode), credits;
2576 	struct ext4_extent_header *eh;
2577 	ext4_lblk_t a, b;
2578 	unsigned num;
2579 	ext4_lblk_t ex_ee_block;
2580 	unsigned short ex_ee_len;
2581 	unsigned unwritten = 0;
2582 	struct ext4_extent *ex;
2583 	ext4_fsblk_t pblk;
2584 
2585 	/* the header must be checked already in ext4_ext_remove_space() */
2586 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2587 	if (!path[depth].p_hdr)
2588 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2589 	eh = path[depth].p_hdr;
2590 	if (unlikely(path[depth].p_hdr == NULL)) {
2591 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2592 		return -EIO;
2593 	}
2594 	/* find where to start removing */
2595 	ex = path[depth].p_ext;
2596 	if (!ex)
2597 		ex = EXT_LAST_EXTENT(eh);
2598 
2599 	ex_ee_block = le32_to_cpu(ex->ee_block);
2600 	ex_ee_len = ext4_ext_get_actual_len(ex);
2601 
2602 	/*
2603 	 * If we're starting with an extent other than the last one in the
2604 	 * node, we need to see if it shares a cluster with the extent to
2605 	 * the right (towards the end of the file). If its leftmost cluster
2606 	 * is this extent's rightmost cluster and it is not cluster aligned,
2607 	 * we'll mark it as a partial that is not to be deallocated.
2608 	 */
2609 
2610 	if (ex != EXT_LAST_EXTENT(eh)) {
2611 		ext4_fsblk_t current_pblk, right_pblk;
2612 		long long current_cluster, right_cluster;
2613 
2614 		current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2615 		current_cluster = (long long)EXT4_B2C(sbi, current_pblk);
2616 		right_pblk = ext4_ext_pblock(ex + 1);
2617 		right_cluster = (long long)EXT4_B2C(sbi, right_pblk);
2618 		if (current_cluster == right_cluster &&
2619 			EXT4_PBLK_COFF(sbi, right_pblk))
2620 			*partial_cluster = -right_cluster;
2621 	}
2622 
2623 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2624 
2625 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2626 			ex_ee_block + ex_ee_len > start) {
2627 
2628 		if (ext4_ext_is_unwritten(ex))
2629 			unwritten = 1;
2630 		else
2631 			unwritten = 0;
2632 
2633 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2634 			  unwritten, ex_ee_len);
2635 		path[depth].p_ext = ex;
2636 
2637 		a = ex_ee_block > start ? ex_ee_block : start;
2638 		b = ex_ee_block+ex_ee_len - 1 < end ?
2639 			ex_ee_block+ex_ee_len - 1 : end;
2640 
2641 		ext_debug("  border %u:%u\n", a, b);
2642 
2643 		/* If this extent is beyond the end of the hole, skip it */
2644 		if (end < ex_ee_block) {
2645 			/*
2646 			 * We're going to skip this extent and move to another,
2647 			 * so if this extent is not cluster aligned we have
2648 			 * to mark the current cluster as used to avoid
2649 			 * accidentally freeing it later on
2650 			 */
2651 			pblk = ext4_ext_pblock(ex);
2652 			if (EXT4_PBLK_COFF(sbi, pblk))
2653 				*partial_cluster =
2654 					-((long long)EXT4_B2C(sbi, pblk));
2655 			ex--;
2656 			ex_ee_block = le32_to_cpu(ex->ee_block);
2657 			ex_ee_len = ext4_ext_get_actual_len(ex);
2658 			continue;
2659 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2660 			EXT4_ERROR_INODE(inode,
2661 					 "can not handle truncate %u:%u "
2662 					 "on extent %u:%u",
2663 					 start, end, ex_ee_block,
2664 					 ex_ee_block + ex_ee_len - 1);
2665 			err = -EIO;
2666 			goto out;
2667 		} else if (a != ex_ee_block) {
2668 			/* remove tail of the extent */
2669 			num = a - ex_ee_block;
2670 		} else {
2671 			/* remove whole extent: excellent! */
2672 			num = 0;
2673 		}
2674 		/*
2675 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2676 		 * descriptor) for each block group; assume two block
2677 		 * groups plus ex_ee_len/blocks_per_block_group for
2678 		 * the worst case
2679 		 */
2680 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2681 		if (ex == EXT_FIRST_EXTENT(eh)) {
2682 			correct_index = 1;
2683 			credits += (ext_depth(inode)) + 1;
2684 		}
2685 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2686 
2687 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2688 		if (err)
2689 			goto out;
2690 
2691 		err = ext4_ext_get_access(handle, inode, path + depth);
2692 		if (err)
2693 			goto out;
2694 
2695 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2696 					 a, b);
2697 		if (err)
2698 			goto out;
2699 
2700 		if (num == 0)
2701 			/* this extent is removed; mark slot entirely unused */
2702 			ext4_ext_store_pblock(ex, 0);
2703 
2704 		ex->ee_len = cpu_to_le16(num);
2705 		/*
2706 		 * Do not mark unwritten if all the blocks in the
2707 		 * extent have been removed.
2708 		 */
2709 		if (unwritten && num)
2710 			ext4_ext_mark_unwritten(ex);
2711 		/*
2712 		 * If the extent was completely released,
2713 		 * we need to remove it from the leaf
2714 		 */
2715 		if (num == 0) {
2716 			if (end != EXT_MAX_BLOCKS - 1) {
2717 				/*
2718 				 * For hole punching, we need to scoot all the
2719 				 * extents up when an extent is removed so that
2720 				 * we dont have blank extents in the middle
2721 				 */
2722 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2723 					sizeof(struct ext4_extent));
2724 
2725 				/* Now get rid of the one at the end */
2726 				memset(EXT_LAST_EXTENT(eh), 0,
2727 					sizeof(struct ext4_extent));
2728 			}
2729 			le16_add_cpu(&eh->eh_entries, -1);
2730 		} else if (*partial_cluster > 0)
2731 			*partial_cluster = 0;
2732 
2733 		err = ext4_ext_dirty(handle, inode, path + depth);
2734 		if (err)
2735 			goto out;
2736 
2737 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2738 				ext4_ext_pblock(ex));
2739 		ex--;
2740 		ex_ee_block = le32_to_cpu(ex->ee_block);
2741 		ex_ee_len = ext4_ext_get_actual_len(ex);
2742 	}
2743 
2744 	if (correct_index && eh->eh_entries)
2745 		err = ext4_ext_correct_indexes(handle, inode, path);
2746 
2747 	/*
2748 	 * If there's a partial cluster and at least one extent remains in
2749 	 * the leaf, free the partial cluster if it isn't shared with the
2750 	 * current extent.  If there's a partial cluster and no extents
2751 	 * remain in the leaf, it can't be freed here.  It can only be
2752 	 * freed when it's possible to determine if it's not shared with
2753 	 * any other extent - when the next leaf is processed or when space
2754 	 * removal is complete.
2755 	 */
2756 	if (*partial_cluster > 0 && eh->eh_entries &&
2757 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2758 	     *partial_cluster)) {
2759 		int flags = get_default_free_blocks_flags(inode);
2760 
2761 		ext4_free_blocks(handle, inode, NULL,
2762 				 EXT4_C2B(sbi, *partial_cluster),
2763 				 sbi->s_cluster_ratio, flags);
2764 		*partial_cluster = 0;
2765 	}
2766 
2767 	/* if this leaf is free, then we should
2768 	 * remove it from index block above */
2769 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2770 		err = ext4_ext_rm_idx(handle, inode, path, depth);
2771 
2772 out:
2773 	return err;
2774 }
2775 
2776 /*
2777  * ext4_ext_more_to_rm:
2778  * returns 1 if current index has to be freed (even partial)
2779  */
2780 static int
2781 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2782 {
2783 	BUG_ON(path->p_idx == NULL);
2784 
2785 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2786 		return 0;
2787 
2788 	/*
2789 	 * if truncate on deeper level happened, it wasn't partial,
2790 	 * so we have to consider current index for truncation
2791 	 */
2792 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2793 		return 0;
2794 	return 1;
2795 }
2796 
2797 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2798 			  ext4_lblk_t end)
2799 {
2800 	struct super_block *sb = inode->i_sb;
2801 	int depth = ext_depth(inode);
2802 	struct ext4_ext_path *path = NULL;
2803 	long long partial_cluster = 0;
2804 	handle_t *handle;
2805 	int i = 0, err = 0;
2806 
2807 	ext_debug("truncate since %u to %u\n", start, end);
2808 
2809 	/* probably first extent we're gonna free will be last in block */
2810 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2811 	if (IS_ERR(handle))
2812 		return PTR_ERR(handle);
2813 
2814 again:
2815 	trace_ext4_ext_remove_space(inode, start, end, depth);
2816 
2817 	/*
2818 	 * Check if we are removing extents inside the extent tree. If that
2819 	 * is the case, we are going to punch a hole inside the extent tree
2820 	 * so we have to check whether we need to split the extent covering
2821 	 * the last block to remove so we can easily remove the part of it
2822 	 * in ext4_ext_rm_leaf().
2823 	 */
2824 	if (end < EXT_MAX_BLOCKS - 1) {
2825 		struct ext4_extent *ex;
2826 		ext4_lblk_t ee_block;
2827 
2828 		/* find extent for this block */
2829 		path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2830 		if (IS_ERR(path)) {
2831 			ext4_journal_stop(handle);
2832 			return PTR_ERR(path);
2833 		}
2834 		depth = ext_depth(inode);
2835 		/* Leaf not may not exist only if inode has no blocks at all */
2836 		ex = path[depth].p_ext;
2837 		if (!ex) {
2838 			if (depth) {
2839 				EXT4_ERROR_INODE(inode,
2840 						 "path[%d].p_hdr == NULL",
2841 						 depth);
2842 				err = -EIO;
2843 			}
2844 			goto out;
2845 		}
2846 
2847 		ee_block = le32_to_cpu(ex->ee_block);
2848 
2849 		/*
2850 		 * See if the last block is inside the extent, if so split
2851 		 * the extent at 'end' block so we can easily remove the
2852 		 * tail of the first part of the split extent in
2853 		 * ext4_ext_rm_leaf().
2854 		 */
2855 		if (end >= ee_block &&
2856 		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2857 			int split_flag = 0;
2858 
2859 			if (ext4_ext_is_unwritten(ex))
2860 				split_flag = EXT4_EXT_MARK_UNWRIT1 |
2861 					     EXT4_EXT_MARK_UNWRIT2;
2862 
2863 			/*
2864 			 * Split the extent in two so that 'end' is the last
2865 			 * block in the first new extent. Also we should not
2866 			 * fail removing space due to ENOSPC so try to use
2867 			 * reserved block if that happens.
2868 			 */
2869 			err = ext4_split_extent_at(handle, inode, path,
2870 					end + 1, split_flag,
2871 					EXT4_EX_NOCACHE |
2872 					EXT4_GET_BLOCKS_PRE_IO |
2873 					EXT4_GET_BLOCKS_METADATA_NOFAIL);
2874 
2875 			if (err < 0)
2876 				goto out;
2877 		}
2878 	}
2879 	/*
2880 	 * We start scanning from right side, freeing all the blocks
2881 	 * after i_size and walking into the tree depth-wise.
2882 	 */
2883 	depth = ext_depth(inode);
2884 	if (path) {
2885 		int k = i = depth;
2886 		while (--k > 0)
2887 			path[k].p_block =
2888 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2889 	} else {
2890 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2891 			       GFP_NOFS);
2892 		if (path == NULL) {
2893 			ext4_journal_stop(handle);
2894 			return -ENOMEM;
2895 		}
2896 		path[0].p_depth = depth;
2897 		path[0].p_hdr = ext_inode_hdr(inode);
2898 		i = 0;
2899 
2900 		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2901 			err = -EIO;
2902 			goto out;
2903 		}
2904 	}
2905 	err = 0;
2906 
2907 	while (i >= 0 && err == 0) {
2908 		if (i == depth) {
2909 			/* this is leaf block */
2910 			err = ext4_ext_rm_leaf(handle, inode, path,
2911 					       &partial_cluster, start,
2912 					       end);
2913 			/* root level has p_bh == NULL, brelse() eats this */
2914 			brelse(path[i].p_bh);
2915 			path[i].p_bh = NULL;
2916 			i--;
2917 			continue;
2918 		}
2919 
2920 		/* this is index block */
2921 		if (!path[i].p_hdr) {
2922 			ext_debug("initialize header\n");
2923 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2924 		}
2925 
2926 		if (!path[i].p_idx) {
2927 			/* this level hasn't been touched yet */
2928 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2929 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2930 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2931 				  path[i].p_hdr,
2932 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2933 		} else {
2934 			/* we were already here, see at next index */
2935 			path[i].p_idx--;
2936 		}
2937 
2938 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2939 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2940 				path[i].p_idx);
2941 		if (ext4_ext_more_to_rm(path + i)) {
2942 			struct buffer_head *bh;
2943 			/* go to the next level */
2944 			ext_debug("move to level %d (block %llu)\n",
2945 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2946 			memset(path + i + 1, 0, sizeof(*path));
2947 			bh = read_extent_tree_block(inode,
2948 				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2949 				EXT4_EX_NOCACHE);
2950 			if (IS_ERR(bh)) {
2951 				/* should we reset i_size? */
2952 				err = PTR_ERR(bh);
2953 				break;
2954 			}
2955 			/* Yield here to deal with large extent trees.
2956 			 * Should be a no-op if we did IO above. */
2957 			cond_resched();
2958 			if (WARN_ON(i + 1 > depth)) {
2959 				err = -EIO;
2960 				break;
2961 			}
2962 			path[i + 1].p_bh = bh;
2963 
2964 			/* save actual number of indexes since this
2965 			 * number is changed at the next iteration */
2966 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2967 			i++;
2968 		} else {
2969 			/* we finished processing this index, go up */
2970 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2971 				/* index is empty, remove it;
2972 				 * handle must be already prepared by the
2973 				 * truncatei_leaf() */
2974 				err = ext4_ext_rm_idx(handle, inode, path, i);
2975 			}
2976 			/* root level has p_bh == NULL, brelse() eats this */
2977 			brelse(path[i].p_bh);
2978 			path[i].p_bh = NULL;
2979 			i--;
2980 			ext_debug("return to level %d\n", i);
2981 		}
2982 	}
2983 
2984 	trace_ext4_ext_remove_space_done(inode, start, end, depth,
2985 			partial_cluster, path->p_hdr->eh_entries);
2986 
2987 	/* If we still have something in the partial cluster and we have removed
2988 	 * even the first extent, then we should free the blocks in the partial
2989 	 * cluster as well. */
2990 	if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2991 		int flags = get_default_free_blocks_flags(inode);
2992 
2993 		ext4_free_blocks(handle, inode, NULL,
2994 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2995 				 EXT4_SB(sb)->s_cluster_ratio, flags);
2996 		partial_cluster = 0;
2997 	}
2998 
2999 	/* TODO: flexible tree reduction should be here */
3000 	if (path->p_hdr->eh_entries == 0) {
3001 		/*
3002 		 * truncate to zero freed all the tree,
3003 		 * so we need to correct eh_depth
3004 		 */
3005 		err = ext4_ext_get_access(handle, inode, path);
3006 		if (err == 0) {
3007 			ext_inode_hdr(inode)->eh_depth = 0;
3008 			ext_inode_hdr(inode)->eh_max =
3009 				cpu_to_le16(ext4_ext_space_root(inode, 0));
3010 			err = ext4_ext_dirty(handle, inode, path);
3011 		}
3012 	}
3013 out:
3014 	ext4_ext_drop_refs(path);
3015 	kfree(path);
3016 	if (err == -EAGAIN) {
3017 		path = NULL;
3018 		goto again;
3019 	}
3020 	ext4_journal_stop(handle);
3021 
3022 	return err;
3023 }
3024 
3025 /*
3026  * called at mount time
3027  */
3028 void ext4_ext_init(struct super_block *sb)
3029 {
3030 	/*
3031 	 * possible initialization would be here
3032 	 */
3033 
3034 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
3035 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3036 		printk(KERN_INFO "EXT4-fs: file extents enabled"
3037 #ifdef AGGRESSIVE_TEST
3038 		       ", aggressive tests"
3039 #endif
3040 #ifdef CHECK_BINSEARCH
3041 		       ", check binsearch"
3042 #endif
3043 #ifdef EXTENTS_STATS
3044 		       ", stats"
3045 #endif
3046 		       "\n");
3047 #endif
3048 #ifdef EXTENTS_STATS
3049 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3050 		EXT4_SB(sb)->s_ext_min = 1 << 30;
3051 		EXT4_SB(sb)->s_ext_max = 0;
3052 #endif
3053 	}
3054 }
3055 
3056 /*
3057  * called at umount time
3058  */
3059 void ext4_ext_release(struct super_block *sb)
3060 {
3061 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3062 		return;
3063 
3064 #ifdef EXTENTS_STATS
3065 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3066 		struct ext4_sb_info *sbi = EXT4_SB(sb);
3067 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3068 			sbi->s_ext_blocks, sbi->s_ext_extents,
3069 			sbi->s_ext_blocks / sbi->s_ext_extents);
3070 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3071 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3072 	}
3073 #endif
3074 }
3075 
3076 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3077 {
3078 	ext4_lblk_t  ee_block;
3079 	ext4_fsblk_t ee_pblock;
3080 	unsigned int ee_len;
3081 
3082 	ee_block  = le32_to_cpu(ex->ee_block);
3083 	ee_len    = ext4_ext_get_actual_len(ex);
3084 	ee_pblock = ext4_ext_pblock(ex);
3085 
3086 	if (ee_len == 0)
3087 		return 0;
3088 
3089 	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3090 				     EXTENT_STATUS_WRITTEN);
3091 }
3092 
3093 /* FIXME!! we need to try to merge to left or right after zero-out  */
3094 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3095 {
3096 	ext4_fsblk_t ee_pblock;
3097 	unsigned int ee_len;
3098 	int ret;
3099 
3100 	ee_len    = ext4_ext_get_actual_len(ex);
3101 	ee_pblock = ext4_ext_pblock(ex);
3102 
3103 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3104 	if (ret > 0)
3105 		ret = 0;
3106 
3107 	return ret;
3108 }
3109 
3110 /*
3111  * ext4_split_extent_at() splits an extent at given block.
3112  *
3113  * @handle: the journal handle
3114  * @inode: the file inode
3115  * @path: the path to the extent
3116  * @split: the logical block where the extent is splitted.
3117  * @split_flags: indicates if the extent could be zeroout if split fails, and
3118  *		 the states(init or unwritten) of new extents.
3119  * @flags: flags used to insert new extent to extent tree.
3120  *
3121  *
3122  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3123  * of which are deterimined by split_flag.
3124  *
3125  * There are two cases:
3126  *  a> the extent are splitted into two extent.
3127  *  b> split is not needed, and just mark the extent.
3128  *
3129  * return 0 on success.
3130  */
3131 static int ext4_split_extent_at(handle_t *handle,
3132 			     struct inode *inode,
3133 			     struct ext4_ext_path *path,
3134 			     ext4_lblk_t split,
3135 			     int split_flag,
3136 			     int flags)
3137 {
3138 	ext4_fsblk_t newblock;
3139 	ext4_lblk_t ee_block;
3140 	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3141 	struct ext4_extent *ex2 = NULL;
3142 	unsigned int ee_len, depth;
3143 	int err = 0;
3144 
3145 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3146 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3147 
3148 	ext_debug("ext4_split_extents_at: inode %lu, logical"
3149 		"block %llu\n", inode->i_ino, (unsigned long long)split);
3150 
3151 	ext4_ext_show_leaf(inode, path);
3152 
3153 	depth = ext_depth(inode);
3154 	ex = path[depth].p_ext;
3155 	ee_block = le32_to_cpu(ex->ee_block);
3156 	ee_len = ext4_ext_get_actual_len(ex);
3157 	newblock = split - ee_block + ext4_ext_pblock(ex);
3158 
3159 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3160 	BUG_ON(!ext4_ext_is_unwritten(ex) &&
3161 	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3162 			     EXT4_EXT_MARK_UNWRIT1 |
3163 			     EXT4_EXT_MARK_UNWRIT2));
3164 
3165 	err = ext4_ext_get_access(handle, inode, path + depth);
3166 	if (err)
3167 		goto out;
3168 
3169 	if (split == ee_block) {
3170 		/*
3171 		 * case b: block @split is the block that the extent begins with
3172 		 * then we just change the state of the extent, and splitting
3173 		 * is not needed.
3174 		 */
3175 		if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3176 			ext4_ext_mark_unwritten(ex);
3177 		else
3178 			ext4_ext_mark_initialized(ex);
3179 
3180 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3181 			ext4_ext_try_to_merge(handle, inode, path, ex);
3182 
3183 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3184 		goto out;
3185 	}
3186 
3187 	/* case a */
3188 	memcpy(&orig_ex, ex, sizeof(orig_ex));
3189 	ex->ee_len = cpu_to_le16(split - ee_block);
3190 	if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3191 		ext4_ext_mark_unwritten(ex);
3192 
3193 	/*
3194 	 * path may lead to new leaf, not to original leaf any more
3195 	 * after ext4_ext_insert_extent() returns,
3196 	 */
3197 	err = ext4_ext_dirty(handle, inode, path + depth);
3198 	if (err)
3199 		goto fix_extent_len;
3200 
3201 	ex2 = &newex;
3202 	ex2->ee_block = cpu_to_le32(split);
3203 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3204 	ext4_ext_store_pblock(ex2, newblock);
3205 	if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3206 		ext4_ext_mark_unwritten(ex2);
3207 
3208 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3209 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3210 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3211 			if (split_flag & EXT4_EXT_DATA_VALID1) {
3212 				err = ext4_ext_zeroout(inode, ex2);
3213 				zero_ex.ee_block = ex2->ee_block;
3214 				zero_ex.ee_len = cpu_to_le16(
3215 						ext4_ext_get_actual_len(ex2));
3216 				ext4_ext_store_pblock(&zero_ex,
3217 						      ext4_ext_pblock(ex2));
3218 			} else {
3219 				err = ext4_ext_zeroout(inode, ex);
3220 				zero_ex.ee_block = ex->ee_block;
3221 				zero_ex.ee_len = cpu_to_le16(
3222 						ext4_ext_get_actual_len(ex));
3223 				ext4_ext_store_pblock(&zero_ex,
3224 						      ext4_ext_pblock(ex));
3225 			}
3226 		} else {
3227 			err = ext4_ext_zeroout(inode, &orig_ex);
3228 			zero_ex.ee_block = orig_ex.ee_block;
3229 			zero_ex.ee_len = cpu_to_le16(
3230 						ext4_ext_get_actual_len(&orig_ex));
3231 			ext4_ext_store_pblock(&zero_ex,
3232 					      ext4_ext_pblock(&orig_ex));
3233 		}
3234 
3235 		if (err)
3236 			goto fix_extent_len;
3237 		/* update the extent length and mark as initialized */
3238 		ex->ee_len = cpu_to_le16(ee_len);
3239 		ext4_ext_try_to_merge(handle, inode, path, ex);
3240 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3241 		if (err)
3242 			goto fix_extent_len;
3243 
3244 		/* update extent status tree */
3245 		err = ext4_zeroout_es(inode, &zero_ex);
3246 
3247 		goto out;
3248 	} else if (err)
3249 		goto fix_extent_len;
3250 
3251 out:
3252 	ext4_ext_show_leaf(inode, path);
3253 	return err;
3254 
3255 fix_extent_len:
3256 	ex->ee_len = orig_ex.ee_len;
3257 	ext4_ext_dirty(handle, inode, path + path->p_depth);
3258 	return err;
3259 }
3260 
3261 /*
3262  * ext4_split_extents() splits an extent and mark extent which is covered
3263  * by @map as split_flags indicates
3264  *
3265  * It may result in splitting the extent into multiple extents (up to three)
3266  * There are three possibilities:
3267  *   a> There is no split required
3268  *   b> Splits in two extents: Split is happening at either end of the extent
3269  *   c> Splits in three extents: Somone is splitting in middle of the extent
3270  *
3271  */
3272 static int ext4_split_extent(handle_t *handle,
3273 			      struct inode *inode,
3274 			      struct ext4_ext_path *path,
3275 			      struct ext4_map_blocks *map,
3276 			      int split_flag,
3277 			      int flags)
3278 {
3279 	ext4_lblk_t ee_block;
3280 	struct ext4_extent *ex;
3281 	unsigned int ee_len, depth;
3282 	int err = 0;
3283 	int unwritten;
3284 	int split_flag1, flags1;
3285 	int allocated = map->m_len;
3286 
3287 	depth = ext_depth(inode);
3288 	ex = path[depth].p_ext;
3289 	ee_block = le32_to_cpu(ex->ee_block);
3290 	ee_len = ext4_ext_get_actual_len(ex);
3291 	unwritten = ext4_ext_is_unwritten(ex);
3292 
3293 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3294 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3295 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3296 		if (unwritten)
3297 			split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3298 				       EXT4_EXT_MARK_UNWRIT2;
3299 		if (split_flag & EXT4_EXT_DATA_VALID2)
3300 			split_flag1 |= EXT4_EXT_DATA_VALID1;
3301 		err = ext4_split_extent_at(handle, inode, path,
3302 				map->m_lblk + map->m_len, split_flag1, flags1);
3303 		if (err)
3304 			goto out;
3305 	} else {
3306 		allocated = ee_len - (map->m_lblk - ee_block);
3307 	}
3308 	/*
3309 	 * Update path is required because previous ext4_split_extent_at() may
3310 	 * result in split of original leaf or extent zeroout.
3311 	 */
3312 	ext4_ext_drop_refs(path);
3313 	path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3314 	if (IS_ERR(path))
3315 		return PTR_ERR(path);
3316 	depth = ext_depth(inode);
3317 	ex = path[depth].p_ext;
3318 	if (!ex) {
3319 		EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3320 				 (unsigned long) map->m_lblk);
3321 		return -EIO;
3322 	}
3323 	unwritten = ext4_ext_is_unwritten(ex);
3324 	split_flag1 = 0;
3325 
3326 	if (map->m_lblk >= ee_block) {
3327 		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3328 		if (unwritten) {
3329 			split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3330 			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3331 						     EXT4_EXT_MARK_UNWRIT2);
3332 		}
3333 		err = ext4_split_extent_at(handle, inode, path,
3334 				map->m_lblk, split_flag1, flags);
3335 		if (err)
3336 			goto out;
3337 	}
3338 
3339 	ext4_ext_show_leaf(inode, path);
3340 out:
3341 	return err ? err : allocated;
3342 }
3343 
3344 /*
3345  * This function is called by ext4_ext_map_blocks() if someone tries to write
3346  * to an unwritten extent. It may result in splitting the unwritten
3347  * extent into multiple extents (up to three - one initialized and two
3348  * unwritten).
3349  * There are three possibilities:
3350  *   a> There is no split required: Entire extent should be initialized
3351  *   b> Splits in two extents: Write is happening at either end of the extent
3352  *   c> Splits in three extents: Somone is writing in middle of the extent
3353  *
3354  * Pre-conditions:
3355  *  - The extent pointed to by 'path' is unwritten.
3356  *  - The extent pointed to by 'path' contains a superset
3357  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3358  *
3359  * Post-conditions on success:
3360  *  - the returned value is the number of blocks beyond map->l_lblk
3361  *    that are allocated and initialized.
3362  *    It is guaranteed to be >= map->m_len.
3363  */
3364 static int ext4_ext_convert_to_initialized(handle_t *handle,
3365 					   struct inode *inode,
3366 					   struct ext4_map_blocks *map,
3367 					   struct ext4_ext_path *path,
3368 					   int flags)
3369 {
3370 	struct ext4_sb_info *sbi;
3371 	struct ext4_extent_header *eh;
3372 	struct ext4_map_blocks split_map;
3373 	struct ext4_extent zero_ex;
3374 	struct ext4_extent *ex, *abut_ex;
3375 	ext4_lblk_t ee_block, eof_block;
3376 	unsigned int ee_len, depth, map_len = map->m_len;
3377 	int allocated = 0, max_zeroout = 0;
3378 	int err = 0;
3379 	int split_flag = 0;
3380 
3381 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3382 		"block %llu, max_blocks %u\n", inode->i_ino,
3383 		(unsigned long long)map->m_lblk, map_len);
3384 
3385 	sbi = EXT4_SB(inode->i_sb);
3386 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3387 		inode->i_sb->s_blocksize_bits;
3388 	if (eof_block < map->m_lblk + map_len)
3389 		eof_block = map->m_lblk + map_len;
3390 
3391 	depth = ext_depth(inode);
3392 	eh = path[depth].p_hdr;
3393 	ex = path[depth].p_ext;
3394 	ee_block = le32_to_cpu(ex->ee_block);
3395 	ee_len = ext4_ext_get_actual_len(ex);
3396 	zero_ex.ee_len = 0;
3397 
3398 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3399 
3400 	/* Pre-conditions */
3401 	BUG_ON(!ext4_ext_is_unwritten(ex));
3402 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3403 
3404 	/*
3405 	 * Attempt to transfer newly initialized blocks from the currently
3406 	 * unwritten extent to its neighbor. This is much cheaper
3407 	 * than an insertion followed by a merge as those involve costly
3408 	 * memmove() calls. Transferring to the left is the common case in
3409 	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3410 	 * followed by append writes.
3411 	 *
3412 	 * Limitations of the current logic:
3413 	 *  - L1: we do not deal with writes covering the whole extent.
3414 	 *    This would require removing the extent if the transfer
3415 	 *    is possible.
3416 	 *  - L2: we only attempt to merge with an extent stored in the
3417 	 *    same extent tree node.
3418 	 */
3419 	if ((map->m_lblk == ee_block) &&
3420 		/* See if we can merge left */
3421 		(map_len < ee_len) &&		/*L1*/
3422 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3423 		ext4_lblk_t prev_lblk;
3424 		ext4_fsblk_t prev_pblk, ee_pblk;
3425 		unsigned int prev_len;
3426 
3427 		abut_ex = ex - 1;
3428 		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3429 		prev_len = ext4_ext_get_actual_len(abut_ex);
3430 		prev_pblk = ext4_ext_pblock(abut_ex);
3431 		ee_pblk = ext4_ext_pblock(ex);
3432 
3433 		/*
3434 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3435 		 * upon those conditions:
3436 		 * - C1: abut_ex is initialized,
3437 		 * - C2: abut_ex is logically abutting ex,
3438 		 * - C3: abut_ex is physically abutting ex,
3439 		 * - C4: abut_ex can receive the additional blocks without
3440 		 *   overflowing the (initialized) length limit.
3441 		 */
3442 		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3443 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3444 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3445 			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3446 			err = ext4_ext_get_access(handle, inode, path + depth);
3447 			if (err)
3448 				goto out;
3449 
3450 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3451 				map, ex, abut_ex);
3452 
3453 			/* Shift the start of ex by 'map_len' blocks */
3454 			ex->ee_block = cpu_to_le32(ee_block + map_len);
3455 			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3456 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3457 			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3458 
3459 			/* Extend abut_ex by 'map_len' blocks */
3460 			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3461 
3462 			/* Result: number of initialized blocks past m_lblk */
3463 			allocated = map_len;
3464 		}
3465 	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3466 		   (map_len < ee_len) &&	/*L1*/
3467 		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3468 		/* See if we can merge right */
3469 		ext4_lblk_t next_lblk;
3470 		ext4_fsblk_t next_pblk, ee_pblk;
3471 		unsigned int next_len;
3472 
3473 		abut_ex = ex + 1;
3474 		next_lblk = le32_to_cpu(abut_ex->ee_block);
3475 		next_len = ext4_ext_get_actual_len(abut_ex);
3476 		next_pblk = ext4_ext_pblock(abut_ex);
3477 		ee_pblk = ext4_ext_pblock(ex);
3478 
3479 		/*
3480 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3481 		 * upon those conditions:
3482 		 * - C1: abut_ex is initialized,
3483 		 * - C2: abut_ex is logically abutting ex,
3484 		 * - C3: abut_ex is physically abutting ex,
3485 		 * - C4: abut_ex can receive the additional blocks without
3486 		 *   overflowing the (initialized) length limit.
3487 		 */
3488 		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3489 		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3490 		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3491 		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3492 			err = ext4_ext_get_access(handle, inode, path + depth);
3493 			if (err)
3494 				goto out;
3495 
3496 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3497 				map, ex, abut_ex);
3498 
3499 			/* Shift the start of abut_ex by 'map_len' blocks */
3500 			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3501 			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3502 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3503 			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3504 
3505 			/* Extend abut_ex by 'map_len' blocks */
3506 			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3507 
3508 			/* Result: number of initialized blocks past m_lblk */
3509 			allocated = map_len;
3510 		}
3511 	}
3512 	if (allocated) {
3513 		/* Mark the block containing both extents as dirty */
3514 		ext4_ext_dirty(handle, inode, path + depth);
3515 
3516 		/* Update path to point to the right extent */
3517 		path[depth].p_ext = abut_ex;
3518 		goto out;
3519 	} else
3520 		allocated = ee_len - (map->m_lblk - ee_block);
3521 
3522 	WARN_ON(map->m_lblk < ee_block);
3523 	/*
3524 	 * It is safe to convert extent to initialized via explicit
3525 	 * zeroout only if extent is fully inside i_size or new_size.
3526 	 */
3527 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3528 
3529 	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3530 		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3531 			(inode->i_sb->s_blocksize_bits - 10);
3532 
3533 	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3534 	if (max_zeroout && (ee_len <= max_zeroout)) {
3535 		err = ext4_ext_zeroout(inode, ex);
3536 		if (err)
3537 			goto out;
3538 		zero_ex.ee_block = ex->ee_block;
3539 		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3540 		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3541 
3542 		err = ext4_ext_get_access(handle, inode, path + depth);
3543 		if (err)
3544 			goto out;
3545 		ext4_ext_mark_initialized(ex);
3546 		ext4_ext_try_to_merge(handle, inode, path, ex);
3547 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3548 		goto out;
3549 	}
3550 
3551 	/*
3552 	 * four cases:
3553 	 * 1. split the extent into three extents.
3554 	 * 2. split the extent into two extents, zeroout the first half.
3555 	 * 3. split the extent into two extents, zeroout the second half.
3556 	 * 4. split the extent into two extents with out zeroout.
3557 	 */
3558 	split_map.m_lblk = map->m_lblk;
3559 	split_map.m_len = map->m_len;
3560 
3561 	if (max_zeroout && (allocated > map->m_len)) {
3562 		if (allocated <= max_zeroout) {
3563 			/* case 3 */
3564 			zero_ex.ee_block =
3565 					 cpu_to_le32(map->m_lblk);
3566 			zero_ex.ee_len = cpu_to_le16(allocated);
3567 			ext4_ext_store_pblock(&zero_ex,
3568 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3569 			err = ext4_ext_zeroout(inode, &zero_ex);
3570 			if (err)
3571 				goto out;
3572 			split_map.m_lblk = map->m_lblk;
3573 			split_map.m_len = allocated;
3574 		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3575 			/* case 2 */
3576 			if (map->m_lblk != ee_block) {
3577 				zero_ex.ee_block = ex->ee_block;
3578 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3579 							ee_block);
3580 				ext4_ext_store_pblock(&zero_ex,
3581 						      ext4_ext_pblock(ex));
3582 				err = ext4_ext_zeroout(inode, &zero_ex);
3583 				if (err)
3584 					goto out;
3585 			}
3586 
3587 			split_map.m_lblk = ee_block;
3588 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3589 			allocated = map->m_len;
3590 		}
3591 	}
3592 
3593 	allocated = ext4_split_extent(handle, inode, path,
3594 				      &split_map, split_flag, flags);
3595 	if (allocated < 0)
3596 		err = allocated;
3597 
3598 out:
3599 	/* If we have gotten a failure, don't zero out status tree */
3600 	if (!err)
3601 		err = ext4_zeroout_es(inode, &zero_ex);
3602 	return err ? err : allocated;
3603 }
3604 
3605 /*
3606  * This function is called by ext4_ext_map_blocks() from
3607  * ext4_get_blocks_dio_write() when DIO to write
3608  * to an unwritten extent.
3609  *
3610  * Writing to an unwritten extent may result in splitting the unwritten
3611  * extent into multiple initialized/unwritten extents (up to three)
3612  * There are three possibilities:
3613  *   a> There is no split required: Entire extent should be unwritten
3614  *   b> Splits in two extents: Write is happening at either end of the extent
3615  *   c> Splits in three extents: Somone is writing in middle of the extent
3616  *
3617  * This works the same way in the case of initialized -> unwritten conversion.
3618  *
3619  * One of more index blocks maybe needed if the extent tree grow after
3620  * the unwritten extent split. To prevent ENOSPC occur at the IO
3621  * complete, we need to split the unwritten extent before DIO submit
3622  * the IO. The unwritten extent called at this time will be split
3623  * into three unwritten extent(at most). After IO complete, the part
3624  * being filled will be convert to initialized by the end_io callback function
3625  * via ext4_convert_unwritten_extents().
3626  *
3627  * Returns the size of unwritten extent to be written on success.
3628  */
3629 static int ext4_split_convert_extents(handle_t *handle,
3630 					struct inode *inode,
3631 					struct ext4_map_blocks *map,
3632 					struct ext4_ext_path *path,
3633 					int flags)
3634 {
3635 	ext4_lblk_t eof_block;
3636 	ext4_lblk_t ee_block;
3637 	struct ext4_extent *ex;
3638 	unsigned int ee_len;
3639 	int split_flag = 0, depth;
3640 
3641 	ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3642 		  __func__, inode->i_ino,
3643 		  (unsigned long long)map->m_lblk, map->m_len);
3644 
3645 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3646 		inode->i_sb->s_blocksize_bits;
3647 	if (eof_block < map->m_lblk + map->m_len)
3648 		eof_block = map->m_lblk + map->m_len;
3649 	/*
3650 	 * It is safe to convert extent to initialized via explicit
3651 	 * zeroout only if extent is fully insde i_size or new_size.
3652 	 */
3653 	depth = ext_depth(inode);
3654 	ex = path[depth].p_ext;
3655 	ee_block = le32_to_cpu(ex->ee_block);
3656 	ee_len = ext4_ext_get_actual_len(ex);
3657 
3658 	/* Convert to unwritten */
3659 	if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3660 		split_flag |= EXT4_EXT_DATA_VALID1;
3661 	/* Convert to initialized */
3662 	} else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3663 		split_flag |= ee_block + ee_len <= eof_block ?
3664 			      EXT4_EXT_MAY_ZEROOUT : 0;
3665 		split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3666 	}
3667 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3668 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3669 }
3670 
3671 static int ext4_convert_initialized_extents(handle_t *handle,
3672 					    struct inode *inode,
3673 					    struct ext4_map_blocks *map,
3674 					    struct ext4_ext_path *path)
3675 {
3676 	struct ext4_extent *ex;
3677 	ext4_lblk_t ee_block;
3678 	unsigned int ee_len;
3679 	int depth;
3680 	int err = 0;
3681 
3682 	depth = ext_depth(inode);
3683 	ex = path[depth].p_ext;
3684 	ee_block = le32_to_cpu(ex->ee_block);
3685 	ee_len = ext4_ext_get_actual_len(ex);
3686 
3687 	ext_debug("%s: inode %lu, logical"
3688 		"block %llu, max_blocks %u\n", __func__, inode->i_ino,
3689 		  (unsigned long long)ee_block, ee_len);
3690 
3691 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3692 		err = ext4_split_convert_extents(handle, inode, map, path,
3693 				EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3694 		if (err < 0)
3695 			goto out;
3696 		ext4_ext_drop_refs(path);
3697 		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3698 		if (IS_ERR(path)) {
3699 			err = PTR_ERR(path);
3700 			goto out;
3701 		}
3702 		depth = ext_depth(inode);
3703 		ex = path[depth].p_ext;
3704 		if (!ex) {
3705 			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3706 					 (unsigned long) map->m_lblk);
3707 			err = -EIO;
3708 			goto out;
3709 		}
3710 	}
3711 
3712 	err = ext4_ext_get_access(handle, inode, path + depth);
3713 	if (err)
3714 		goto out;
3715 	/* first mark the extent as unwritten */
3716 	ext4_ext_mark_unwritten(ex);
3717 
3718 	/* note: ext4_ext_correct_indexes() isn't needed here because
3719 	 * borders are not changed
3720 	 */
3721 	ext4_ext_try_to_merge(handle, inode, path, ex);
3722 
3723 	/* Mark modified extent as dirty */
3724 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3725 out:
3726 	ext4_ext_show_leaf(inode, path);
3727 	return err;
3728 }
3729 
3730 
3731 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3732 						struct inode *inode,
3733 						struct ext4_map_blocks *map,
3734 						struct ext4_ext_path *path)
3735 {
3736 	struct ext4_extent *ex;
3737 	ext4_lblk_t ee_block;
3738 	unsigned int ee_len;
3739 	int depth;
3740 	int err = 0;
3741 
3742 	depth = ext_depth(inode);
3743 	ex = path[depth].p_ext;
3744 	ee_block = le32_to_cpu(ex->ee_block);
3745 	ee_len = ext4_ext_get_actual_len(ex);
3746 
3747 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3748 		"block %llu, max_blocks %u\n", inode->i_ino,
3749 		  (unsigned long long)ee_block, ee_len);
3750 
3751 	/* If extent is larger than requested it is a clear sign that we still
3752 	 * have some extent state machine issues left. So extent_split is still
3753 	 * required.
3754 	 * TODO: Once all related issues will be fixed this situation should be
3755 	 * illegal.
3756 	 */
3757 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3758 #ifdef EXT4_DEBUG
3759 		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3760 			     " len %u; IO logical block %llu, len %u\n",
3761 			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3762 			     (unsigned long long)map->m_lblk, map->m_len);
3763 #endif
3764 		err = ext4_split_convert_extents(handle, inode, map, path,
3765 						 EXT4_GET_BLOCKS_CONVERT);
3766 		if (err < 0)
3767 			goto out;
3768 		ext4_ext_drop_refs(path);
3769 		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3770 		if (IS_ERR(path)) {
3771 			err = PTR_ERR(path);
3772 			goto out;
3773 		}
3774 		depth = ext_depth(inode);
3775 		ex = path[depth].p_ext;
3776 	}
3777 
3778 	err = ext4_ext_get_access(handle, inode, path + depth);
3779 	if (err)
3780 		goto out;
3781 	/* first mark the extent as initialized */
3782 	ext4_ext_mark_initialized(ex);
3783 
3784 	/* note: ext4_ext_correct_indexes() isn't needed here because
3785 	 * borders are not changed
3786 	 */
3787 	ext4_ext_try_to_merge(handle, inode, path, ex);
3788 
3789 	/* Mark modified extent as dirty */
3790 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3791 out:
3792 	ext4_ext_show_leaf(inode, path);
3793 	return err;
3794 }
3795 
3796 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3797 			sector_t block, int count)
3798 {
3799 	int i;
3800 	for (i = 0; i < count; i++)
3801                 unmap_underlying_metadata(bdev, block + i);
3802 }
3803 
3804 /*
3805  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3806  */
3807 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3808 			      ext4_lblk_t lblk,
3809 			      struct ext4_ext_path *path,
3810 			      unsigned int len)
3811 {
3812 	int i, depth;
3813 	struct ext4_extent_header *eh;
3814 	struct ext4_extent *last_ex;
3815 
3816 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3817 		return 0;
3818 
3819 	depth = ext_depth(inode);
3820 	eh = path[depth].p_hdr;
3821 
3822 	/*
3823 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3824 	 * do not care for this case anymore. Simply remove the flag
3825 	 * if there are no extents.
3826 	 */
3827 	if (unlikely(!eh->eh_entries))
3828 		goto out;
3829 	last_ex = EXT_LAST_EXTENT(eh);
3830 	/*
3831 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3832 	 * last block in the last extent in the file.  We test this by
3833 	 * first checking to see if the caller to
3834 	 * ext4_ext_get_blocks() was interested in the last block (or
3835 	 * a block beyond the last block) in the current extent.  If
3836 	 * this turns out to be false, we can bail out from this
3837 	 * function immediately.
3838 	 */
3839 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3840 	    ext4_ext_get_actual_len(last_ex))
3841 		return 0;
3842 	/*
3843 	 * If the caller does appear to be planning to write at or
3844 	 * beyond the end of the current extent, we then test to see
3845 	 * if the current extent is the last extent in the file, by
3846 	 * checking to make sure it was reached via the rightmost node
3847 	 * at each level of the tree.
3848 	 */
3849 	for (i = depth-1; i >= 0; i--)
3850 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3851 			return 0;
3852 out:
3853 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3854 	return ext4_mark_inode_dirty(handle, inode);
3855 }
3856 
3857 /**
3858  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3859  *
3860  * Return 1 if there is a delalloc block in the range, otherwise 0.
3861  */
3862 int ext4_find_delalloc_range(struct inode *inode,
3863 			     ext4_lblk_t lblk_start,
3864 			     ext4_lblk_t lblk_end)
3865 {
3866 	struct extent_status es;
3867 
3868 	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3869 	if (es.es_len == 0)
3870 		return 0; /* there is no delay extent in this tree */
3871 	else if (es.es_lblk <= lblk_start &&
3872 		 lblk_start < es.es_lblk + es.es_len)
3873 		return 1;
3874 	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3875 		return 1;
3876 	else
3877 		return 0;
3878 }
3879 
3880 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3881 {
3882 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3883 	ext4_lblk_t lblk_start, lblk_end;
3884 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3885 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3886 
3887 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3888 }
3889 
3890 /**
3891  * Determines how many complete clusters (out of those specified by the 'map')
3892  * are under delalloc and were reserved quota for.
3893  * This function is called when we are writing out the blocks that were
3894  * originally written with their allocation delayed, but then the space was
3895  * allocated using fallocate() before the delayed allocation could be resolved.
3896  * The cases to look for are:
3897  * ('=' indicated delayed allocated blocks
3898  *  '-' indicates non-delayed allocated blocks)
3899  * (a) partial clusters towards beginning and/or end outside of allocated range
3900  *     are not delalloc'ed.
3901  *	Ex:
3902  *	|----c---=|====c====|====c====|===-c----|
3903  *	         |++++++ allocated ++++++|
3904  *	==> 4 complete clusters in above example
3905  *
3906  * (b) partial cluster (outside of allocated range) towards either end is
3907  *     marked for delayed allocation. In this case, we will exclude that
3908  *     cluster.
3909  *	Ex:
3910  *	|----====c========|========c========|
3911  *	     |++++++ allocated ++++++|
3912  *	==> 1 complete clusters in above example
3913  *
3914  *	Ex:
3915  *	|================c================|
3916  *            |++++++ allocated ++++++|
3917  *	==> 0 complete clusters in above example
3918  *
3919  * The ext4_da_update_reserve_space will be called only if we
3920  * determine here that there were some "entire" clusters that span
3921  * this 'allocated' range.
3922  * In the non-bigalloc case, this function will just end up returning num_blks
3923  * without ever calling ext4_find_delalloc_range.
3924  */
3925 static unsigned int
3926 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3927 			   unsigned int num_blks)
3928 {
3929 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3930 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3931 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3932 	unsigned int allocated_clusters = 0;
3933 
3934 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3935 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3936 
3937 	/* max possible clusters for this allocation */
3938 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3939 
3940 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3941 
3942 	/* Check towards left side */
3943 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3944 	if (c_offset) {
3945 		lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3946 		lblk_to = lblk_from + c_offset - 1;
3947 
3948 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3949 			allocated_clusters--;
3950 	}
3951 
3952 	/* Now check towards right. */
3953 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3954 	if (allocated_clusters && c_offset) {
3955 		lblk_from = lblk_start + num_blks;
3956 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3957 
3958 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3959 			allocated_clusters--;
3960 	}
3961 
3962 	return allocated_clusters;
3963 }
3964 
3965 static int
3966 ext4_ext_convert_initialized_extent(handle_t *handle, struct inode *inode,
3967 			struct ext4_map_blocks *map,
3968 			struct ext4_ext_path *path, int flags,
3969 			unsigned int allocated, ext4_fsblk_t newblock)
3970 {
3971 	int ret = 0;
3972 	int err = 0;
3973 
3974 	/*
3975 	 * Make sure that the extent is no bigger than we support with
3976 	 * unwritten extent
3977 	 */
3978 	if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3979 		map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3980 
3981 	ret = ext4_convert_initialized_extents(handle, inode, map,
3982 						path);
3983 	if (ret >= 0) {
3984 		ext4_update_inode_fsync_trans(handle, inode, 1);
3985 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
3986 					 path, map->m_len);
3987 	} else
3988 		err = ret;
3989 	map->m_flags |= EXT4_MAP_UNWRITTEN;
3990 	if (allocated > map->m_len)
3991 		allocated = map->m_len;
3992 	map->m_len = allocated;
3993 
3994 	return err ? err : allocated;
3995 }
3996 
3997 static int
3998 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
3999 			struct ext4_map_blocks *map,
4000 			struct ext4_ext_path *path, int flags,
4001 			unsigned int allocated, ext4_fsblk_t newblock)
4002 {
4003 	int ret = 0;
4004 	int err = 0;
4005 	ext4_io_end_t *io = ext4_inode_aio(inode);
4006 
4007 	ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4008 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
4009 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4010 		  flags, allocated);
4011 	ext4_ext_show_leaf(inode, path);
4012 
4013 	/*
4014 	 * When writing into unwritten space, we should not fail to
4015 	 * allocate metadata blocks for the new extent block if needed.
4016 	 */
4017 	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4018 
4019 	trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4020 						    allocated, newblock);
4021 
4022 	/* get_block() before submit the IO, split the extent */
4023 	if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4024 		ret = ext4_split_convert_extents(handle, inode, map,
4025 					 path, flags | EXT4_GET_BLOCKS_CONVERT);
4026 		if (ret <= 0)
4027 			goto out;
4028 		/*
4029 		 * Flag the inode(non aio case) or end_io struct (aio case)
4030 		 * that this IO needs to conversion to written when IO is
4031 		 * completed
4032 		 */
4033 		if (io)
4034 			ext4_set_io_unwritten_flag(inode, io);
4035 		else
4036 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4037 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4038 		goto out;
4039 	}
4040 	/* IO end_io complete, convert the filled extent to written */
4041 	if (flags & EXT4_GET_BLOCKS_CONVERT) {
4042 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4043 							path);
4044 		if (ret >= 0) {
4045 			ext4_update_inode_fsync_trans(handle, inode, 1);
4046 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
4047 						 path, map->m_len);
4048 		} else
4049 			err = ret;
4050 		map->m_flags |= EXT4_MAP_MAPPED;
4051 		map->m_pblk = newblock;
4052 		if (allocated > map->m_len)
4053 			allocated = map->m_len;
4054 		map->m_len = allocated;
4055 		goto out2;
4056 	}
4057 	/* buffered IO case */
4058 	/*
4059 	 * repeat fallocate creation request
4060 	 * we already have an unwritten extent
4061 	 */
4062 	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4063 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4064 		goto map_out;
4065 	}
4066 
4067 	/* buffered READ or buffered write_begin() lookup */
4068 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4069 		/*
4070 		 * We have blocks reserved already.  We
4071 		 * return allocated blocks so that delalloc
4072 		 * won't do block reservation for us.  But
4073 		 * the buffer head will be unmapped so that
4074 		 * a read from the block returns 0s.
4075 		 */
4076 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4077 		goto out1;
4078 	}
4079 
4080 	/* buffered write, writepage time, convert*/
4081 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
4082 	if (ret >= 0)
4083 		ext4_update_inode_fsync_trans(handle, inode, 1);
4084 out:
4085 	if (ret <= 0) {
4086 		err = ret;
4087 		goto out2;
4088 	} else
4089 		allocated = ret;
4090 	map->m_flags |= EXT4_MAP_NEW;
4091 	/*
4092 	 * if we allocated more blocks than requested
4093 	 * we need to make sure we unmap the extra block
4094 	 * allocated. The actual needed block will get
4095 	 * unmapped later when we find the buffer_head marked
4096 	 * new.
4097 	 */
4098 	if (allocated > map->m_len) {
4099 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
4100 					newblock + map->m_len,
4101 					allocated - map->m_len);
4102 		allocated = map->m_len;
4103 	}
4104 	map->m_len = allocated;
4105 
4106 	/*
4107 	 * If we have done fallocate with the offset that is already
4108 	 * delayed allocated, we would have block reservation
4109 	 * and quota reservation done in the delayed write path.
4110 	 * But fallocate would have already updated quota and block
4111 	 * count for this offset. So cancel these reservation
4112 	 */
4113 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4114 		unsigned int reserved_clusters;
4115 		reserved_clusters = get_reserved_cluster_alloc(inode,
4116 				map->m_lblk, map->m_len);
4117 		if (reserved_clusters)
4118 			ext4_da_update_reserve_space(inode,
4119 						     reserved_clusters,
4120 						     0);
4121 	}
4122 
4123 map_out:
4124 	map->m_flags |= EXT4_MAP_MAPPED;
4125 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4126 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4127 					 map->m_len);
4128 		if (err < 0)
4129 			goto out2;
4130 	}
4131 out1:
4132 	if (allocated > map->m_len)
4133 		allocated = map->m_len;
4134 	ext4_ext_show_leaf(inode, path);
4135 	map->m_pblk = newblock;
4136 	map->m_len = allocated;
4137 out2:
4138 	return err ? err : allocated;
4139 }
4140 
4141 /*
4142  * get_implied_cluster_alloc - check to see if the requested
4143  * allocation (in the map structure) overlaps with a cluster already
4144  * allocated in an extent.
4145  *	@sb	The filesystem superblock structure
4146  *	@map	The requested lblk->pblk mapping
4147  *	@ex	The extent structure which might contain an implied
4148  *			cluster allocation
4149  *
4150  * This function is called by ext4_ext_map_blocks() after we failed to
4151  * find blocks that were already in the inode's extent tree.  Hence,
4152  * we know that the beginning of the requested region cannot overlap
4153  * the extent from the inode's extent tree.  There are three cases we
4154  * want to catch.  The first is this case:
4155  *
4156  *		 |--- cluster # N--|
4157  *    |--- extent ---|	|---- requested region ---|
4158  *			|==========|
4159  *
4160  * The second case that we need to test for is this one:
4161  *
4162  *   |--------- cluster # N ----------------|
4163  *	   |--- requested region --|   |------- extent ----|
4164  *	   |=======================|
4165  *
4166  * The third case is when the requested region lies between two extents
4167  * within the same cluster:
4168  *          |------------- cluster # N-------------|
4169  * |----- ex -----|                  |---- ex_right ----|
4170  *                  |------ requested region ------|
4171  *                  |================|
4172  *
4173  * In each of the above cases, we need to set the map->m_pblk and
4174  * map->m_len so it corresponds to the return the extent labelled as
4175  * "|====|" from cluster #N, since it is already in use for data in
4176  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4177  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4178  * as a new "allocated" block region.  Otherwise, we will return 0 and
4179  * ext4_ext_map_blocks() will then allocate one or more new clusters
4180  * by calling ext4_mb_new_blocks().
4181  */
4182 static int get_implied_cluster_alloc(struct super_block *sb,
4183 				     struct ext4_map_blocks *map,
4184 				     struct ext4_extent *ex,
4185 				     struct ext4_ext_path *path)
4186 {
4187 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4188 	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4189 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4190 	ext4_lblk_t rr_cluster_start;
4191 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4192 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4193 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4194 
4195 	/* The extent passed in that we are trying to match */
4196 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4197 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4198 
4199 	/* The requested region passed into ext4_map_blocks() */
4200 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4201 
4202 	if ((rr_cluster_start == ex_cluster_end) ||
4203 	    (rr_cluster_start == ex_cluster_start)) {
4204 		if (rr_cluster_start == ex_cluster_end)
4205 			ee_start += ee_len - 1;
4206 		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4207 		map->m_len = min(map->m_len,
4208 				 (unsigned) sbi->s_cluster_ratio - c_offset);
4209 		/*
4210 		 * Check for and handle this case:
4211 		 *
4212 		 *   |--------- cluster # N-------------|
4213 		 *		       |------- extent ----|
4214 		 *	   |--- requested region ---|
4215 		 *	   |===========|
4216 		 */
4217 
4218 		if (map->m_lblk < ee_block)
4219 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4220 
4221 		/*
4222 		 * Check for the case where there is already another allocated
4223 		 * block to the right of 'ex' but before the end of the cluster.
4224 		 *
4225 		 *          |------------- cluster # N-------------|
4226 		 * |----- ex -----|                  |---- ex_right ----|
4227 		 *                  |------ requested region ------|
4228 		 *                  |================|
4229 		 */
4230 		if (map->m_lblk > ee_block) {
4231 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4232 			map->m_len = min(map->m_len, next - map->m_lblk);
4233 		}
4234 
4235 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4236 		return 1;
4237 	}
4238 
4239 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4240 	return 0;
4241 }
4242 
4243 
4244 /*
4245  * Block allocation/map/preallocation routine for extents based files
4246  *
4247  *
4248  * Need to be called with
4249  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4250  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4251  *
4252  * return > 0, number of of blocks already mapped/allocated
4253  *          if create == 0 and these are pre-allocated blocks
4254  *          	buffer head is unmapped
4255  *          otherwise blocks are mapped
4256  *
4257  * return = 0, if plain look up failed (blocks have not been allocated)
4258  *          buffer head is unmapped
4259  *
4260  * return < 0, error case.
4261  */
4262 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4263 			struct ext4_map_blocks *map, int flags)
4264 {
4265 	struct ext4_ext_path *path = NULL;
4266 	struct ext4_extent newex, *ex, *ex2;
4267 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4268 	ext4_fsblk_t newblock = 0;
4269 	int free_on_err = 0, err = 0, depth, ret;
4270 	unsigned int allocated = 0, offset = 0;
4271 	unsigned int allocated_clusters = 0;
4272 	struct ext4_allocation_request ar;
4273 	ext4_io_end_t *io = ext4_inode_aio(inode);
4274 	ext4_lblk_t cluster_offset;
4275 	int set_unwritten = 0;
4276 
4277 	ext_debug("blocks %u/%u requested for inode %lu\n",
4278 		  map->m_lblk, map->m_len, inode->i_ino);
4279 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4280 
4281 	/* find extent for this block */
4282 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4283 	if (IS_ERR(path)) {
4284 		err = PTR_ERR(path);
4285 		path = NULL;
4286 		goto out2;
4287 	}
4288 
4289 	depth = ext_depth(inode);
4290 
4291 	/*
4292 	 * consistent leaf must not be empty;
4293 	 * this situation is possible, though, _during_ tree modification;
4294 	 * this is why assert can't be put in ext4_ext_find_extent()
4295 	 */
4296 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4297 		EXT4_ERROR_INODE(inode, "bad extent address "
4298 				 "lblock: %lu, depth: %d pblock %lld",
4299 				 (unsigned long) map->m_lblk, depth,
4300 				 path[depth].p_block);
4301 		err = -EIO;
4302 		goto out2;
4303 	}
4304 
4305 	ex = path[depth].p_ext;
4306 	if (ex) {
4307 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4308 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4309 		unsigned short ee_len;
4310 
4311 
4312 		/*
4313 		 * unwritten extents are treated as holes, except that
4314 		 * we split out initialized portions during a write.
4315 		 */
4316 		ee_len = ext4_ext_get_actual_len(ex);
4317 
4318 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4319 
4320 		/* if found extent covers block, simply return it */
4321 		if (in_range(map->m_lblk, ee_block, ee_len)) {
4322 			newblock = map->m_lblk - ee_block + ee_start;
4323 			/* number of remaining blocks in the extent */
4324 			allocated = ee_len - (map->m_lblk - ee_block);
4325 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4326 				  ee_block, ee_len, newblock);
4327 
4328 			/*
4329 			 * If the extent is initialized check whether the
4330 			 * caller wants to convert it to unwritten.
4331 			 */
4332 			if ((!ext4_ext_is_unwritten(ex)) &&
4333 			    (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4334 				allocated = ext4_ext_convert_initialized_extent(
4335 						handle, inode, map, path, flags,
4336 						allocated, newblock);
4337 				goto out2;
4338 			} else if (!ext4_ext_is_unwritten(ex))
4339 				goto out;
4340 
4341 			ret = ext4_ext_handle_unwritten_extents(
4342 				handle, inode, map, path, flags,
4343 				allocated, newblock);
4344 			if (ret < 0)
4345 				err = ret;
4346 			else
4347 				allocated = ret;
4348 			goto out2;
4349 		}
4350 	}
4351 
4352 	if ((sbi->s_cluster_ratio > 1) &&
4353 	    ext4_find_delalloc_cluster(inode, map->m_lblk))
4354 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4355 
4356 	/*
4357 	 * requested block isn't allocated yet;
4358 	 * we couldn't try to create block if create flag is zero
4359 	 */
4360 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4361 		/*
4362 		 * put just found gap into cache to speed up
4363 		 * subsequent requests
4364 		 */
4365 		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4366 			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4367 		goto out2;
4368 	}
4369 
4370 	/*
4371 	 * Okay, we need to do block allocation.
4372 	 */
4373 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4374 	newex.ee_block = cpu_to_le32(map->m_lblk);
4375 	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4376 
4377 	/*
4378 	 * If we are doing bigalloc, check to see if the extent returned
4379 	 * by ext4_ext_find_extent() implies a cluster we can use.
4380 	 */
4381 	if (cluster_offset && ex &&
4382 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4383 		ar.len = allocated = map->m_len;
4384 		newblock = map->m_pblk;
4385 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4386 		goto got_allocated_blocks;
4387 	}
4388 
4389 	/* find neighbour allocated blocks */
4390 	ar.lleft = map->m_lblk;
4391 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4392 	if (err)
4393 		goto out2;
4394 	ar.lright = map->m_lblk;
4395 	ex2 = NULL;
4396 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4397 	if (err)
4398 		goto out2;
4399 
4400 	/* Check if the extent after searching to the right implies a
4401 	 * cluster we can use. */
4402 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4403 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4404 		ar.len = allocated = map->m_len;
4405 		newblock = map->m_pblk;
4406 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4407 		goto got_allocated_blocks;
4408 	}
4409 
4410 	/*
4411 	 * See if request is beyond maximum number of blocks we can have in
4412 	 * a single extent. For an initialized extent this limit is
4413 	 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4414 	 * EXT_UNWRITTEN_MAX_LEN.
4415 	 */
4416 	if (map->m_len > EXT_INIT_MAX_LEN &&
4417 	    !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4418 		map->m_len = EXT_INIT_MAX_LEN;
4419 	else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4420 		 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4421 		map->m_len = EXT_UNWRITTEN_MAX_LEN;
4422 
4423 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4424 	newex.ee_len = cpu_to_le16(map->m_len);
4425 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4426 	if (err)
4427 		allocated = ext4_ext_get_actual_len(&newex);
4428 	else
4429 		allocated = map->m_len;
4430 
4431 	/* allocate new block */
4432 	ar.inode = inode;
4433 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4434 	ar.logical = map->m_lblk;
4435 	/*
4436 	 * We calculate the offset from the beginning of the cluster
4437 	 * for the logical block number, since when we allocate a
4438 	 * physical cluster, the physical block should start at the
4439 	 * same offset from the beginning of the cluster.  This is
4440 	 * needed so that future calls to get_implied_cluster_alloc()
4441 	 * work correctly.
4442 	 */
4443 	offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4444 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4445 	ar.goal -= offset;
4446 	ar.logical -= offset;
4447 	if (S_ISREG(inode->i_mode))
4448 		ar.flags = EXT4_MB_HINT_DATA;
4449 	else
4450 		/* disable in-core preallocation for non-regular files */
4451 		ar.flags = 0;
4452 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4453 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4454 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4455 	if (!newblock)
4456 		goto out2;
4457 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4458 		  ar.goal, newblock, allocated);
4459 	free_on_err = 1;
4460 	allocated_clusters = ar.len;
4461 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4462 	if (ar.len > allocated)
4463 		ar.len = allocated;
4464 
4465 got_allocated_blocks:
4466 	/* try to insert new extent into found leaf and return */
4467 	ext4_ext_store_pblock(&newex, newblock + offset);
4468 	newex.ee_len = cpu_to_le16(ar.len);
4469 	/* Mark unwritten */
4470 	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4471 		ext4_ext_mark_unwritten(&newex);
4472 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4473 		/*
4474 		 * io_end structure was created for every IO write to an
4475 		 * unwritten extent. To avoid unnecessary conversion,
4476 		 * here we flag the IO that really needs the conversion.
4477 		 * For non asycn direct IO case, flag the inode state
4478 		 * that we need to perform conversion when IO is done.
4479 		 */
4480 		if (flags & EXT4_GET_BLOCKS_PRE_IO)
4481 			set_unwritten = 1;
4482 	}
4483 
4484 	err = 0;
4485 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4486 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4487 					 path, ar.len);
4488 	if (!err)
4489 		err = ext4_ext_insert_extent(handle, inode, path,
4490 					     &newex, flags);
4491 
4492 	if (!err && set_unwritten) {
4493 		if (io)
4494 			ext4_set_io_unwritten_flag(inode, io);
4495 		else
4496 			ext4_set_inode_state(inode,
4497 					     EXT4_STATE_DIO_UNWRITTEN);
4498 	}
4499 
4500 	if (err && free_on_err) {
4501 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4502 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4503 		/* free data blocks we just allocated */
4504 		/* not a good idea to call discard here directly,
4505 		 * but otherwise we'd need to call it every free() */
4506 		ext4_discard_preallocations(inode);
4507 		ext4_free_blocks(handle, inode, NULL, newblock,
4508 				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4509 		goto out2;
4510 	}
4511 
4512 	/* previous routine could use block we allocated */
4513 	newblock = ext4_ext_pblock(&newex);
4514 	allocated = ext4_ext_get_actual_len(&newex);
4515 	if (allocated > map->m_len)
4516 		allocated = map->m_len;
4517 	map->m_flags |= EXT4_MAP_NEW;
4518 
4519 	/*
4520 	 * Update reserved blocks/metadata blocks after successful
4521 	 * block allocation which had been deferred till now.
4522 	 */
4523 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4524 		unsigned int reserved_clusters;
4525 		/*
4526 		 * Check how many clusters we had reserved this allocated range
4527 		 */
4528 		reserved_clusters = get_reserved_cluster_alloc(inode,
4529 						map->m_lblk, allocated);
4530 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4531 			if (reserved_clusters) {
4532 				/*
4533 				 * We have clusters reserved for this range.
4534 				 * But since we are not doing actual allocation
4535 				 * and are simply using blocks from previously
4536 				 * allocated cluster, we should release the
4537 				 * reservation and not claim quota.
4538 				 */
4539 				ext4_da_update_reserve_space(inode,
4540 						reserved_clusters, 0);
4541 			}
4542 		} else {
4543 			BUG_ON(allocated_clusters < reserved_clusters);
4544 			if (reserved_clusters < allocated_clusters) {
4545 				struct ext4_inode_info *ei = EXT4_I(inode);
4546 				int reservation = allocated_clusters -
4547 						  reserved_clusters;
4548 				/*
4549 				 * It seems we claimed few clusters outside of
4550 				 * the range of this allocation. We should give
4551 				 * it back to the reservation pool. This can
4552 				 * happen in the following case:
4553 				 *
4554 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4555 				 *   cluster has 4 blocks. Thus, the clusters
4556 				 *   are [0-3],[4-7],[8-11]...
4557 				 * * First comes delayed allocation write for
4558 				 *   logical blocks 10 & 11. Since there were no
4559 				 *   previous delayed allocated blocks in the
4560 				 *   range [8-11], we would reserve 1 cluster
4561 				 *   for this write.
4562 				 * * Next comes write for logical blocks 3 to 8.
4563 				 *   In this case, we will reserve 2 clusters
4564 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4565 				 *   that range has a delayed allocated blocks.
4566 				 *   Thus total reserved clusters now becomes 3.
4567 				 * * Now, during the delayed allocation writeout
4568 				 *   time, we will first write blocks [3-8] and
4569 				 *   allocate 3 clusters for writing these
4570 				 *   blocks. Also, we would claim all these
4571 				 *   three clusters above.
4572 				 * * Now when we come here to writeout the
4573 				 *   blocks [10-11], we would expect to claim
4574 				 *   the reservation of 1 cluster we had made
4575 				 *   (and we would claim it since there are no
4576 				 *   more delayed allocated blocks in the range
4577 				 *   [8-11]. But our reserved cluster count had
4578 				 *   already gone to 0.
4579 				 *
4580 				 *   Thus, at the step 4 above when we determine
4581 				 *   that there are still some unwritten delayed
4582 				 *   allocated blocks outside of our current
4583 				 *   block range, we should increment the
4584 				 *   reserved clusters count so that when the
4585 				 *   remaining blocks finally gets written, we
4586 				 *   could claim them.
4587 				 */
4588 				dquot_reserve_block(inode,
4589 						EXT4_C2B(sbi, reservation));
4590 				spin_lock(&ei->i_block_reservation_lock);
4591 				ei->i_reserved_data_blocks += reservation;
4592 				spin_unlock(&ei->i_block_reservation_lock);
4593 			}
4594 			/*
4595 			 * We will claim quota for all newly allocated blocks.
4596 			 * We're updating the reserved space *after* the
4597 			 * correction above so we do not accidentally free
4598 			 * all the metadata reservation because we might
4599 			 * actually need it later on.
4600 			 */
4601 			ext4_da_update_reserve_space(inode, allocated_clusters,
4602 							1);
4603 		}
4604 	}
4605 
4606 	/*
4607 	 * Cache the extent and update transaction to commit on fdatasync only
4608 	 * when it is _not_ an unwritten extent.
4609 	 */
4610 	if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4611 		ext4_update_inode_fsync_trans(handle, inode, 1);
4612 	else
4613 		ext4_update_inode_fsync_trans(handle, inode, 0);
4614 out:
4615 	if (allocated > map->m_len)
4616 		allocated = map->m_len;
4617 	ext4_ext_show_leaf(inode, path);
4618 	map->m_flags |= EXT4_MAP_MAPPED;
4619 	map->m_pblk = newblock;
4620 	map->m_len = allocated;
4621 out2:
4622 	if (path) {
4623 		ext4_ext_drop_refs(path);
4624 		kfree(path);
4625 	}
4626 
4627 	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4628 				       err ? err : allocated);
4629 	ext4_es_lru_add(inode);
4630 	return err ? err : allocated;
4631 }
4632 
4633 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4634 {
4635 	struct super_block *sb = inode->i_sb;
4636 	ext4_lblk_t last_block;
4637 	int err = 0;
4638 
4639 	/*
4640 	 * TODO: optimization is possible here.
4641 	 * Probably we need not scan at all,
4642 	 * because page truncation is enough.
4643 	 */
4644 
4645 	/* we have to know where to truncate from in crash case */
4646 	EXT4_I(inode)->i_disksize = inode->i_size;
4647 	ext4_mark_inode_dirty(handle, inode);
4648 
4649 	last_block = (inode->i_size + sb->s_blocksize - 1)
4650 			>> EXT4_BLOCK_SIZE_BITS(sb);
4651 retry:
4652 	err = ext4_es_remove_extent(inode, last_block,
4653 				    EXT_MAX_BLOCKS - last_block);
4654 	if (err == -ENOMEM) {
4655 		cond_resched();
4656 		congestion_wait(BLK_RW_ASYNC, HZ/50);
4657 		goto retry;
4658 	}
4659 	if (err) {
4660 		ext4_std_error(inode->i_sb, err);
4661 		return;
4662 	}
4663 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4664 	ext4_std_error(inode->i_sb, err);
4665 }
4666 
4667 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4668 				  ext4_lblk_t len, int flags, int mode)
4669 {
4670 	struct inode *inode = file_inode(file);
4671 	handle_t *handle;
4672 	int ret = 0;
4673 	int ret2 = 0;
4674 	int retries = 0;
4675 	struct ext4_map_blocks map;
4676 	unsigned int credits;
4677 
4678 	map.m_lblk = offset;
4679 	/*
4680 	 * Don't normalize the request if it can fit in one extent so
4681 	 * that it doesn't get unnecessarily split into multiple
4682 	 * extents.
4683 	 */
4684 	if (len <= EXT_UNWRITTEN_MAX_LEN)
4685 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4686 
4687 	/*
4688 	 * credits to insert 1 extent into extent tree
4689 	 */
4690 	credits = ext4_chunk_trans_blocks(inode, len);
4691 
4692 retry:
4693 	while (ret >= 0 && ret < len) {
4694 		map.m_lblk = map.m_lblk + ret;
4695 		map.m_len = len = len - ret;
4696 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4697 					    credits);
4698 		if (IS_ERR(handle)) {
4699 			ret = PTR_ERR(handle);
4700 			break;
4701 		}
4702 		ret = ext4_map_blocks(handle, inode, &map, flags);
4703 		if (ret <= 0) {
4704 			ext4_debug("inode #%lu: block %u: len %u: "
4705 				   "ext4_ext_map_blocks returned %d",
4706 				   inode->i_ino, map.m_lblk,
4707 				   map.m_len, ret);
4708 			ext4_mark_inode_dirty(handle, inode);
4709 			ret2 = ext4_journal_stop(handle);
4710 			break;
4711 		}
4712 		ret2 = ext4_journal_stop(handle);
4713 		if (ret2)
4714 			break;
4715 	}
4716 	if (ret == -ENOSPC &&
4717 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4718 		ret = 0;
4719 		goto retry;
4720 	}
4721 
4722 	return ret > 0 ? ret2 : ret;
4723 }
4724 
4725 static long ext4_zero_range(struct file *file, loff_t offset,
4726 			    loff_t len, int mode)
4727 {
4728 	struct inode *inode = file_inode(file);
4729 	handle_t *handle = NULL;
4730 	unsigned int max_blocks;
4731 	loff_t new_size = 0;
4732 	int ret = 0;
4733 	int flags;
4734 	int partial;
4735 	loff_t start, end;
4736 	ext4_lblk_t lblk;
4737 	struct address_space *mapping = inode->i_mapping;
4738 	unsigned int blkbits = inode->i_blkbits;
4739 
4740 	trace_ext4_zero_range(inode, offset, len, mode);
4741 
4742 	if (!S_ISREG(inode->i_mode))
4743 		return -EINVAL;
4744 
4745 	/* Call ext4_force_commit to flush all data in case of data=journal. */
4746 	if (ext4_should_journal_data(inode)) {
4747 		ret = ext4_force_commit(inode->i_sb);
4748 		if (ret)
4749 			return ret;
4750 	}
4751 
4752 	/*
4753 	 * Write out all dirty pages to avoid race conditions
4754 	 * Then release them.
4755 	 */
4756 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4757 		ret = filemap_write_and_wait_range(mapping, offset,
4758 						   offset + len - 1);
4759 		if (ret)
4760 			return ret;
4761 	}
4762 
4763 	/*
4764 	 * Round up offset. This is not fallocate, we neet to zero out
4765 	 * blocks, so convert interior block aligned part of the range to
4766 	 * unwritten and possibly manually zero out unaligned parts of the
4767 	 * range.
4768 	 */
4769 	start = round_up(offset, 1 << blkbits);
4770 	end = round_down((offset + len), 1 << blkbits);
4771 
4772 	if (start < offset || end > offset + len)
4773 		return -EINVAL;
4774 	partial = (offset + len) & ((1 << blkbits) - 1);
4775 
4776 	lblk = start >> blkbits;
4777 	max_blocks = (end >> blkbits);
4778 	if (max_blocks < lblk)
4779 		max_blocks = 0;
4780 	else
4781 		max_blocks -= lblk;
4782 
4783 	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT |
4784 		EXT4_GET_BLOCKS_CONVERT_UNWRITTEN;
4785 	if (mode & FALLOC_FL_KEEP_SIZE)
4786 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4787 
4788 	mutex_lock(&inode->i_mutex);
4789 
4790 	/*
4791 	 * Indirect files do not support unwritten extnets
4792 	 */
4793 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4794 		ret = -EOPNOTSUPP;
4795 		goto out_mutex;
4796 	}
4797 
4798 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4799 	     offset + len > i_size_read(inode)) {
4800 		new_size = offset + len;
4801 		ret = inode_newsize_ok(inode, new_size);
4802 		if (ret)
4803 			goto out_mutex;
4804 		/*
4805 		 * If we have a partial block after EOF we have to allocate
4806 		 * the entire block.
4807 		 */
4808 		if (partial)
4809 			max_blocks += 1;
4810 	}
4811 
4812 	if (max_blocks > 0) {
4813 
4814 		/* Now release the pages and zero block aligned part of pages*/
4815 		truncate_pagecache_range(inode, start, end - 1);
4816 
4817 		/* Wait all existing dio workers, newcomers will block on i_mutex */
4818 		ext4_inode_block_unlocked_dio(inode);
4819 		inode_dio_wait(inode);
4820 
4821 		/*
4822 		 * Remove entire range from the extent status tree.
4823 		 */
4824 		ret = ext4_es_remove_extent(inode, lblk, max_blocks);
4825 		if (ret)
4826 			goto out_dio;
4827 
4828 		ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags,
4829 					     mode);
4830 		if (ret)
4831 			goto out_dio;
4832 	}
4833 
4834 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 4);
4835 	if (IS_ERR(handle)) {
4836 		ret = PTR_ERR(handle);
4837 		ext4_std_error(inode->i_sb, ret);
4838 		goto out_dio;
4839 	}
4840 
4841 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4842 
4843 	if (new_size) {
4844 		if (new_size > i_size_read(inode))
4845 			i_size_write(inode, new_size);
4846 		if (new_size > EXT4_I(inode)->i_disksize)
4847 			ext4_update_i_disksize(inode, new_size);
4848 	} else {
4849 		/*
4850 		* Mark that we allocate beyond EOF so the subsequent truncate
4851 		* can proceed even if the new size is the same as i_size.
4852 		*/
4853 		if ((offset + len) > i_size_read(inode))
4854 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4855 	}
4856 
4857 	ext4_mark_inode_dirty(handle, inode);
4858 
4859 	/* Zero out partial block at the edges of the range */
4860 	ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4861 
4862 	if (file->f_flags & O_SYNC)
4863 		ext4_handle_sync(handle);
4864 
4865 	ext4_journal_stop(handle);
4866 out_dio:
4867 	ext4_inode_resume_unlocked_dio(inode);
4868 out_mutex:
4869 	mutex_unlock(&inode->i_mutex);
4870 	return ret;
4871 }
4872 
4873 /*
4874  * preallocate space for a file. This implements ext4's fallocate file
4875  * operation, which gets called from sys_fallocate system call.
4876  * For block-mapped files, posix_fallocate should fall back to the method
4877  * of writing zeroes to the required new blocks (the same behavior which is
4878  * expected for file systems which do not support fallocate() system call).
4879  */
4880 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4881 {
4882 	struct inode *inode = file_inode(file);
4883 	handle_t *handle;
4884 	loff_t new_size = 0;
4885 	unsigned int max_blocks;
4886 	int ret = 0;
4887 	int flags;
4888 	ext4_lblk_t lblk;
4889 	struct timespec tv;
4890 	unsigned int blkbits = inode->i_blkbits;
4891 
4892 	/* Return error if mode is not supported */
4893 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4894 		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
4895 		return -EOPNOTSUPP;
4896 
4897 	if (mode & FALLOC_FL_PUNCH_HOLE)
4898 		return ext4_punch_hole(inode, offset, len);
4899 
4900 	ret = ext4_convert_inline_data(inode);
4901 	if (ret)
4902 		return ret;
4903 
4904 	/*
4905 	 * currently supporting (pre)allocate mode for extent-based
4906 	 * files _only_
4907 	 */
4908 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4909 		return -EOPNOTSUPP;
4910 
4911 	if (mode & FALLOC_FL_COLLAPSE_RANGE)
4912 		return ext4_collapse_range(inode, offset, len);
4913 
4914 	if (mode & FALLOC_FL_ZERO_RANGE)
4915 		return ext4_zero_range(file, offset, len, mode);
4916 
4917 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4918 	lblk = offset >> blkbits;
4919 	/*
4920 	 * We can't just convert len to max_blocks because
4921 	 * If blocksize = 4096 offset = 3072 and len = 2048
4922 	 */
4923 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4924 		- lblk;
4925 
4926 	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4927 	if (mode & FALLOC_FL_KEEP_SIZE)
4928 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4929 
4930 	mutex_lock(&inode->i_mutex);
4931 
4932 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4933 	     offset + len > i_size_read(inode)) {
4934 		new_size = offset + len;
4935 		ret = inode_newsize_ok(inode, new_size);
4936 		if (ret)
4937 			goto out;
4938 	}
4939 
4940 	ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags, mode);
4941 	if (ret)
4942 		goto out;
4943 
4944 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4945 	if (IS_ERR(handle))
4946 		goto out;
4947 
4948 	tv = inode->i_ctime = ext4_current_time(inode);
4949 
4950 	if (new_size) {
4951 		if (new_size > i_size_read(inode)) {
4952 			i_size_write(inode, new_size);
4953 			inode->i_mtime = tv;
4954 		}
4955 		if (new_size > EXT4_I(inode)->i_disksize)
4956 			ext4_update_i_disksize(inode, new_size);
4957 	} else {
4958 		/*
4959 		* Mark that we allocate beyond EOF so the subsequent truncate
4960 		* can proceed even if the new size is the same as i_size.
4961 		*/
4962 		if ((offset + len) > i_size_read(inode))
4963 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4964 	}
4965 	ext4_mark_inode_dirty(handle, inode);
4966 	if (file->f_flags & O_SYNC)
4967 		ext4_handle_sync(handle);
4968 
4969 	ext4_journal_stop(handle);
4970 out:
4971 	mutex_unlock(&inode->i_mutex);
4972 	trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4973 	return ret;
4974 }
4975 
4976 /*
4977  * This function convert a range of blocks to written extents
4978  * The caller of this function will pass the start offset and the size.
4979  * all unwritten extents within this range will be converted to
4980  * written extents.
4981  *
4982  * This function is called from the direct IO end io call back
4983  * function, to convert the fallocated extents after IO is completed.
4984  * Returns 0 on success.
4985  */
4986 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4987 				   loff_t offset, ssize_t len)
4988 {
4989 	unsigned int max_blocks;
4990 	int ret = 0;
4991 	int ret2 = 0;
4992 	struct ext4_map_blocks map;
4993 	unsigned int credits, blkbits = inode->i_blkbits;
4994 
4995 	map.m_lblk = offset >> blkbits;
4996 	/*
4997 	 * We can't just convert len to max_blocks because
4998 	 * If blocksize = 4096 offset = 3072 and len = 2048
4999 	 */
5000 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
5001 		      map.m_lblk);
5002 	/*
5003 	 * This is somewhat ugly but the idea is clear: When transaction is
5004 	 * reserved, everything goes into it. Otherwise we rather start several
5005 	 * smaller transactions for conversion of each extent separately.
5006 	 */
5007 	if (handle) {
5008 		handle = ext4_journal_start_reserved(handle,
5009 						     EXT4_HT_EXT_CONVERT);
5010 		if (IS_ERR(handle))
5011 			return PTR_ERR(handle);
5012 		credits = 0;
5013 	} else {
5014 		/*
5015 		 * credits to insert 1 extent into extent tree
5016 		 */
5017 		credits = ext4_chunk_trans_blocks(inode, max_blocks);
5018 	}
5019 	while (ret >= 0 && ret < max_blocks) {
5020 		map.m_lblk += ret;
5021 		map.m_len = (max_blocks -= ret);
5022 		if (credits) {
5023 			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5024 						    credits);
5025 			if (IS_ERR(handle)) {
5026 				ret = PTR_ERR(handle);
5027 				break;
5028 			}
5029 		}
5030 		ret = ext4_map_blocks(handle, inode, &map,
5031 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5032 		if (ret <= 0)
5033 			ext4_warning(inode->i_sb,
5034 				     "inode #%lu: block %u: len %u: "
5035 				     "ext4_ext_map_blocks returned %d",
5036 				     inode->i_ino, map.m_lblk,
5037 				     map.m_len, ret);
5038 		ext4_mark_inode_dirty(handle, inode);
5039 		if (credits)
5040 			ret2 = ext4_journal_stop(handle);
5041 		if (ret <= 0 || ret2)
5042 			break;
5043 	}
5044 	if (!credits)
5045 		ret2 = ext4_journal_stop(handle);
5046 	return ret > 0 ? ret2 : ret;
5047 }
5048 
5049 /*
5050  * If newes is not existing extent (newes->ec_pblk equals zero) find
5051  * delayed extent at start of newes and update newes accordingly and
5052  * return start of the next delayed extent.
5053  *
5054  * If newes is existing extent (newes->ec_pblk is not equal zero)
5055  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5056  * extent found. Leave newes unmodified.
5057  */
5058 static int ext4_find_delayed_extent(struct inode *inode,
5059 				    struct extent_status *newes)
5060 {
5061 	struct extent_status es;
5062 	ext4_lblk_t block, next_del;
5063 
5064 	if (newes->es_pblk == 0) {
5065 		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5066 				newes->es_lblk + newes->es_len - 1, &es);
5067 
5068 		/*
5069 		 * No extent in extent-tree contains block @newes->es_pblk,
5070 		 * then the block may stay in 1)a hole or 2)delayed-extent.
5071 		 */
5072 		if (es.es_len == 0)
5073 			/* A hole found. */
5074 			return 0;
5075 
5076 		if (es.es_lblk > newes->es_lblk) {
5077 			/* A hole found. */
5078 			newes->es_len = min(es.es_lblk - newes->es_lblk,
5079 					    newes->es_len);
5080 			return 0;
5081 		}
5082 
5083 		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5084 	}
5085 
5086 	block = newes->es_lblk + newes->es_len;
5087 	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5088 	if (es.es_len == 0)
5089 		next_del = EXT_MAX_BLOCKS;
5090 	else
5091 		next_del = es.es_lblk;
5092 
5093 	return next_del;
5094 }
5095 /* fiemap flags we can handle specified here */
5096 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5097 
5098 static int ext4_xattr_fiemap(struct inode *inode,
5099 				struct fiemap_extent_info *fieinfo)
5100 {
5101 	__u64 physical = 0;
5102 	__u64 length;
5103 	__u32 flags = FIEMAP_EXTENT_LAST;
5104 	int blockbits = inode->i_sb->s_blocksize_bits;
5105 	int error = 0;
5106 
5107 	/* in-inode? */
5108 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5109 		struct ext4_iloc iloc;
5110 		int offset;	/* offset of xattr in inode */
5111 
5112 		error = ext4_get_inode_loc(inode, &iloc);
5113 		if (error)
5114 			return error;
5115 		physical = (__u64)iloc.bh->b_blocknr << blockbits;
5116 		offset = EXT4_GOOD_OLD_INODE_SIZE +
5117 				EXT4_I(inode)->i_extra_isize;
5118 		physical += offset;
5119 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5120 		flags |= FIEMAP_EXTENT_DATA_INLINE;
5121 		brelse(iloc.bh);
5122 	} else { /* external block */
5123 		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5124 		length = inode->i_sb->s_blocksize;
5125 	}
5126 
5127 	if (physical)
5128 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
5129 						length, flags);
5130 	return (error < 0 ? error : 0);
5131 }
5132 
5133 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5134 		__u64 start, __u64 len)
5135 {
5136 	ext4_lblk_t start_blk;
5137 	int error = 0;
5138 
5139 	if (ext4_has_inline_data(inode)) {
5140 		int has_inline = 1;
5141 
5142 		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
5143 
5144 		if (has_inline)
5145 			return error;
5146 	}
5147 
5148 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5149 		error = ext4_ext_precache(inode);
5150 		if (error)
5151 			return error;
5152 	}
5153 
5154 	/* fallback to generic here if not in extents fmt */
5155 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5156 		return generic_block_fiemap(inode, fieinfo, start, len,
5157 			ext4_get_block);
5158 
5159 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5160 		return -EBADR;
5161 
5162 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5163 		error = ext4_xattr_fiemap(inode, fieinfo);
5164 	} else {
5165 		ext4_lblk_t len_blks;
5166 		__u64 last_blk;
5167 
5168 		start_blk = start >> inode->i_sb->s_blocksize_bits;
5169 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5170 		if (last_blk >= EXT_MAX_BLOCKS)
5171 			last_blk = EXT_MAX_BLOCKS-1;
5172 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5173 
5174 		/*
5175 		 * Walk the extent tree gathering extent information
5176 		 * and pushing extents back to the user.
5177 		 */
5178 		error = ext4_fill_fiemap_extents(inode, start_blk,
5179 						 len_blks, fieinfo);
5180 	}
5181 	ext4_es_lru_add(inode);
5182 	return error;
5183 }
5184 
5185 /*
5186  * ext4_access_path:
5187  * Function to access the path buffer for marking it dirty.
5188  * It also checks if there are sufficient credits left in the journal handle
5189  * to update path.
5190  */
5191 static int
5192 ext4_access_path(handle_t *handle, struct inode *inode,
5193 		struct ext4_ext_path *path)
5194 {
5195 	int credits, err;
5196 
5197 	if (!ext4_handle_valid(handle))
5198 		return 0;
5199 
5200 	/*
5201 	 * Check if need to extend journal credits
5202 	 * 3 for leaf, sb, and inode plus 2 (bmap and group
5203 	 * descriptor) for each block group; assume two block
5204 	 * groups
5205 	 */
5206 	if (handle->h_buffer_credits < 7) {
5207 		credits = ext4_writepage_trans_blocks(inode);
5208 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5209 		/* EAGAIN is success */
5210 		if (err && err != -EAGAIN)
5211 			return err;
5212 	}
5213 
5214 	err = ext4_ext_get_access(handle, inode, path);
5215 	return err;
5216 }
5217 
5218 /*
5219  * ext4_ext_shift_path_extents:
5220  * Shift the extents of a path structure lying between path[depth].p_ext
5221  * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift
5222  * from starting block for each extent.
5223  */
5224 static int
5225 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5226 			    struct inode *inode, handle_t *handle,
5227 			    ext4_lblk_t *start)
5228 {
5229 	int depth, err = 0;
5230 	struct ext4_extent *ex_start, *ex_last;
5231 	bool update = 0;
5232 	depth = path->p_depth;
5233 
5234 	while (depth >= 0) {
5235 		if (depth == path->p_depth) {
5236 			ex_start = path[depth].p_ext;
5237 			if (!ex_start)
5238 				return -EIO;
5239 
5240 			ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5241 			if (!ex_last)
5242 				return -EIO;
5243 
5244 			err = ext4_access_path(handle, inode, path + depth);
5245 			if (err)
5246 				goto out;
5247 
5248 			if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5249 				update = 1;
5250 
5251 			*start = le32_to_cpu(ex_last->ee_block) +
5252 				ext4_ext_get_actual_len(ex_last);
5253 
5254 			while (ex_start <= ex_last) {
5255 				le32_add_cpu(&ex_start->ee_block, -shift);
5256 				/* Try to merge to the left. */
5257 				if ((ex_start >
5258 				     EXT_FIRST_EXTENT(path[depth].p_hdr)) &&
5259 				    ext4_ext_try_to_merge_right(inode,
5260 							path, ex_start - 1))
5261 					ex_last--;
5262 				else
5263 					ex_start++;
5264 			}
5265 			err = ext4_ext_dirty(handle, inode, path + depth);
5266 			if (err)
5267 				goto out;
5268 
5269 			if (--depth < 0 || !update)
5270 				break;
5271 		}
5272 
5273 		/* Update index too */
5274 		err = ext4_access_path(handle, inode, path + depth);
5275 		if (err)
5276 			goto out;
5277 
5278 		le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5279 		err = ext4_ext_dirty(handle, inode, path + depth);
5280 		if (err)
5281 			goto out;
5282 
5283 		/* we are done if current index is not a starting index */
5284 		if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5285 			break;
5286 
5287 		depth--;
5288 	}
5289 
5290 out:
5291 	return err;
5292 }
5293 
5294 /*
5295  * ext4_ext_shift_extents:
5296  * All the extents which lies in the range from start to the last allocated
5297  * block for the file are shifted downwards by shift blocks.
5298  * On success, 0 is returned, error otherwise.
5299  */
5300 static int
5301 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5302 		       ext4_lblk_t start, ext4_lblk_t shift)
5303 {
5304 	struct ext4_ext_path *path;
5305 	int ret = 0, depth;
5306 	struct ext4_extent *extent;
5307 	ext4_lblk_t stop_block, current_block;
5308 	ext4_lblk_t ex_start, ex_end;
5309 
5310 	/* Let path point to the last extent */
5311 	path = ext4_ext_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
5312 	if (IS_ERR(path))
5313 		return PTR_ERR(path);
5314 
5315 	depth = path->p_depth;
5316 	extent = path[depth].p_ext;
5317 	if (!extent) {
5318 		ext4_ext_drop_refs(path);
5319 		kfree(path);
5320 		return ret;
5321 	}
5322 
5323 	stop_block = le32_to_cpu(extent->ee_block) +
5324 			ext4_ext_get_actual_len(extent);
5325 	ext4_ext_drop_refs(path);
5326 	kfree(path);
5327 
5328 	/* Nothing to shift, if hole is at the end of file */
5329 	if (start >= stop_block)
5330 		return ret;
5331 
5332 	/*
5333 	 * Don't start shifting extents until we make sure the hole is big
5334 	 * enough to accomodate the shift.
5335 	 */
5336 	path = ext4_ext_find_extent(inode, start - 1, NULL, 0);
5337 	if (IS_ERR(path))
5338 		return PTR_ERR(path);
5339 	depth = path->p_depth;
5340 	extent =  path[depth].p_ext;
5341 	if (extent) {
5342 		ex_start = le32_to_cpu(extent->ee_block);
5343 		ex_end = le32_to_cpu(extent->ee_block) +
5344 			ext4_ext_get_actual_len(extent);
5345 	} else {
5346 		ex_start = 0;
5347 		ex_end = 0;
5348 	}
5349 	ext4_ext_drop_refs(path);
5350 	kfree(path);
5351 
5352 	if ((start == ex_start && shift > ex_start) ||
5353 	    (shift > start - ex_end))
5354 		return -EINVAL;
5355 
5356 	/* Its safe to start updating extents */
5357 	while (start < stop_block) {
5358 		path = ext4_ext_find_extent(inode, start, NULL, 0);
5359 		if (IS_ERR(path))
5360 			return PTR_ERR(path);
5361 		depth = path->p_depth;
5362 		extent = path[depth].p_ext;
5363 		if (!extent) {
5364 			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5365 					 (unsigned long) start);
5366 			return -EIO;
5367 		}
5368 
5369 		current_block = le32_to_cpu(extent->ee_block);
5370 		if (start > current_block) {
5371 			/* Hole, move to the next extent */
5372 			ret = mext_next_extent(inode, path, &extent);
5373 			if (ret != 0) {
5374 				ext4_ext_drop_refs(path);
5375 				kfree(path);
5376 				if (ret == 1)
5377 					ret = 0;
5378 				break;
5379 			}
5380 		}
5381 		ret = ext4_ext_shift_path_extents(path, shift, inode,
5382 				handle, &start);
5383 		ext4_ext_drop_refs(path);
5384 		kfree(path);
5385 		if (ret)
5386 			break;
5387 	}
5388 
5389 	return ret;
5390 }
5391 
5392 /*
5393  * ext4_collapse_range:
5394  * This implements the fallocate's collapse range functionality for ext4
5395  * Returns: 0 and non-zero on error.
5396  */
5397 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5398 {
5399 	struct super_block *sb = inode->i_sb;
5400 	ext4_lblk_t punch_start, punch_stop;
5401 	handle_t *handle;
5402 	unsigned int credits;
5403 	loff_t new_size, ioffset;
5404 	int ret;
5405 
5406 	/* Collapse range works only on fs block size aligned offsets. */
5407 	if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5408 	    len & (EXT4_CLUSTER_SIZE(sb) - 1))
5409 		return -EINVAL;
5410 
5411 	if (!S_ISREG(inode->i_mode))
5412 		return -EINVAL;
5413 
5414 	trace_ext4_collapse_range(inode, offset, len);
5415 
5416 	punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5417 	punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5418 
5419 	/* Call ext4_force_commit to flush all data in case of data=journal. */
5420 	if (ext4_should_journal_data(inode)) {
5421 		ret = ext4_force_commit(inode->i_sb);
5422 		if (ret)
5423 			return ret;
5424 	}
5425 
5426 	/*
5427 	 * Need to round down offset to be aligned with page size boundary
5428 	 * for page size > block size.
5429 	 */
5430 	ioffset = round_down(offset, PAGE_SIZE);
5431 
5432 	/* Write out all dirty pages */
5433 	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5434 					   LLONG_MAX);
5435 	if (ret)
5436 		return ret;
5437 
5438 	/* Take mutex lock */
5439 	mutex_lock(&inode->i_mutex);
5440 
5441 	/*
5442 	 * There is no need to overlap collapse range with EOF, in which case
5443 	 * it is effectively a truncate operation
5444 	 */
5445 	if (offset + len >= i_size_read(inode)) {
5446 		ret = -EINVAL;
5447 		goto out_mutex;
5448 	}
5449 
5450 	/* Currently just for extent based files */
5451 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5452 		ret = -EOPNOTSUPP;
5453 		goto out_mutex;
5454 	}
5455 
5456 	truncate_pagecache(inode, ioffset);
5457 
5458 	/* Wait for existing dio to complete */
5459 	ext4_inode_block_unlocked_dio(inode);
5460 	inode_dio_wait(inode);
5461 
5462 	credits = ext4_writepage_trans_blocks(inode);
5463 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5464 	if (IS_ERR(handle)) {
5465 		ret = PTR_ERR(handle);
5466 		goto out_dio;
5467 	}
5468 
5469 	down_write(&EXT4_I(inode)->i_data_sem);
5470 	ext4_discard_preallocations(inode);
5471 
5472 	ret = ext4_es_remove_extent(inode, punch_start,
5473 				    EXT_MAX_BLOCKS - punch_start);
5474 	if (ret) {
5475 		up_write(&EXT4_I(inode)->i_data_sem);
5476 		goto out_stop;
5477 	}
5478 
5479 	ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5480 	if (ret) {
5481 		up_write(&EXT4_I(inode)->i_data_sem);
5482 		goto out_stop;
5483 	}
5484 	ext4_discard_preallocations(inode);
5485 
5486 	ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5487 				     punch_stop - punch_start);
5488 	if (ret) {
5489 		up_write(&EXT4_I(inode)->i_data_sem);
5490 		goto out_stop;
5491 	}
5492 
5493 	new_size = i_size_read(inode) - len;
5494 	i_size_write(inode, new_size);
5495 	EXT4_I(inode)->i_disksize = new_size;
5496 
5497 	up_write(&EXT4_I(inode)->i_data_sem);
5498 	if (IS_SYNC(inode))
5499 		ext4_handle_sync(handle);
5500 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5501 	ext4_mark_inode_dirty(handle, inode);
5502 
5503 out_stop:
5504 	ext4_journal_stop(handle);
5505 out_dio:
5506 	ext4_inode_resume_unlocked_dio(inode);
5507 out_mutex:
5508 	mutex_unlock(&inode->i_mutex);
5509 	return ret;
5510 }
5511