xref: /openbmc/linux/fs/ext4/extents.c (revision 23c2b932)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <asm/uaccess.h>
41 #include <linux/fiemap.h>
42 #include <linux/backing-dev.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46 
47 #include <trace/events/ext4.h>
48 
49 /*
50  * used by extent splitting.
51  */
52 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
53 					due to ENOSPC */
54 #define EXT4_EXT_MARK_UNWRIT1	0x2  /* mark first half unwritten */
55 #define EXT4_EXT_MARK_UNWRIT2	0x4  /* mark second half unwritten */
56 
57 #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
59 
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 				     struct ext4_extent_header *eh)
62 {
63 	struct ext4_inode_info *ei = EXT4_I(inode);
64 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 	__u32 csum;
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 			   EXT4_EXTENT_TAIL_OFFSET(eh));
69 	return cpu_to_le32(csum);
70 }
71 
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 					 struct ext4_extent_header *eh)
74 {
75 	struct ext4_extent_tail *et;
76 
77 	if (!ext4_has_metadata_csum(inode->i_sb))
78 		return 1;
79 
80 	et = find_ext4_extent_tail(eh);
81 	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
82 		return 0;
83 	return 1;
84 }
85 
86 static void ext4_extent_block_csum_set(struct inode *inode,
87 				       struct ext4_extent_header *eh)
88 {
89 	struct ext4_extent_tail *et;
90 
91 	if (!ext4_has_metadata_csum(inode->i_sb))
92 		return;
93 
94 	et = find_ext4_extent_tail(eh);
95 	et->et_checksum = ext4_extent_block_csum(inode, eh);
96 }
97 
98 static int ext4_split_extent(handle_t *handle,
99 				struct inode *inode,
100 				struct ext4_ext_path **ppath,
101 				struct ext4_map_blocks *map,
102 				int split_flag,
103 				int flags);
104 
105 static int ext4_split_extent_at(handle_t *handle,
106 			     struct inode *inode,
107 			     struct ext4_ext_path **ppath,
108 			     ext4_lblk_t split,
109 			     int split_flag,
110 			     int flags);
111 
112 static int ext4_find_delayed_extent(struct inode *inode,
113 				    struct extent_status *newes);
114 
115 static int ext4_ext_truncate_extend_restart(handle_t *handle,
116 					    struct inode *inode,
117 					    int needed)
118 {
119 	int err;
120 
121 	if (!ext4_handle_valid(handle))
122 		return 0;
123 	if (handle->h_buffer_credits >= needed)
124 		return 0;
125 	/*
126 	 * If we need to extend the journal get a few extra blocks
127 	 * while we're at it for efficiency's sake.
128 	 */
129 	needed += 3;
130 	err = ext4_journal_extend(handle, needed - handle->h_buffer_credits);
131 	if (err <= 0)
132 		return err;
133 	err = ext4_truncate_restart_trans(handle, inode, needed);
134 	if (err == 0)
135 		err = -EAGAIN;
136 
137 	return err;
138 }
139 
140 /*
141  * could return:
142  *  - EROFS
143  *  - ENOMEM
144  */
145 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
146 				struct ext4_ext_path *path)
147 {
148 	if (path->p_bh) {
149 		/* path points to block */
150 		BUFFER_TRACE(path->p_bh, "get_write_access");
151 		return ext4_journal_get_write_access(handle, path->p_bh);
152 	}
153 	/* path points to leaf/index in inode body */
154 	/* we use in-core data, no need to protect them */
155 	return 0;
156 }
157 
158 /*
159  * could return:
160  *  - EROFS
161  *  - ENOMEM
162  *  - EIO
163  */
164 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
165 		     struct inode *inode, struct ext4_ext_path *path)
166 {
167 	int err;
168 
169 	WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
170 	if (path->p_bh) {
171 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
172 		/* path points to block */
173 		err = __ext4_handle_dirty_metadata(where, line, handle,
174 						   inode, path->p_bh);
175 	} else {
176 		/* path points to leaf/index in inode body */
177 		err = ext4_mark_inode_dirty(handle, inode);
178 	}
179 	return err;
180 }
181 
182 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
183 			      struct ext4_ext_path *path,
184 			      ext4_lblk_t block)
185 {
186 	if (path) {
187 		int depth = path->p_depth;
188 		struct ext4_extent *ex;
189 
190 		/*
191 		 * Try to predict block placement assuming that we are
192 		 * filling in a file which will eventually be
193 		 * non-sparse --- i.e., in the case of libbfd writing
194 		 * an ELF object sections out-of-order but in a way
195 		 * the eventually results in a contiguous object or
196 		 * executable file, or some database extending a table
197 		 * space file.  However, this is actually somewhat
198 		 * non-ideal if we are writing a sparse file such as
199 		 * qemu or KVM writing a raw image file that is going
200 		 * to stay fairly sparse, since it will end up
201 		 * fragmenting the file system's free space.  Maybe we
202 		 * should have some hueristics or some way to allow
203 		 * userspace to pass a hint to file system,
204 		 * especially if the latter case turns out to be
205 		 * common.
206 		 */
207 		ex = path[depth].p_ext;
208 		if (ex) {
209 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
210 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
211 
212 			if (block > ext_block)
213 				return ext_pblk + (block - ext_block);
214 			else
215 				return ext_pblk - (ext_block - block);
216 		}
217 
218 		/* it looks like index is empty;
219 		 * try to find starting block from index itself */
220 		if (path[depth].p_bh)
221 			return path[depth].p_bh->b_blocknr;
222 	}
223 
224 	/* OK. use inode's group */
225 	return ext4_inode_to_goal_block(inode);
226 }
227 
228 /*
229  * Allocation for a meta data block
230  */
231 static ext4_fsblk_t
232 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
233 			struct ext4_ext_path *path,
234 			struct ext4_extent *ex, int *err, unsigned int flags)
235 {
236 	ext4_fsblk_t goal, newblock;
237 
238 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
239 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
240 					NULL, err);
241 	return newblock;
242 }
243 
244 static inline int ext4_ext_space_block(struct inode *inode, int check)
245 {
246 	int size;
247 
248 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
249 			/ sizeof(struct ext4_extent);
250 #ifdef AGGRESSIVE_TEST
251 	if (!check && size > 6)
252 		size = 6;
253 #endif
254 	return size;
255 }
256 
257 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
258 {
259 	int size;
260 
261 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
262 			/ sizeof(struct ext4_extent_idx);
263 #ifdef AGGRESSIVE_TEST
264 	if (!check && size > 5)
265 		size = 5;
266 #endif
267 	return size;
268 }
269 
270 static inline int ext4_ext_space_root(struct inode *inode, int check)
271 {
272 	int size;
273 
274 	size = sizeof(EXT4_I(inode)->i_data);
275 	size -= sizeof(struct ext4_extent_header);
276 	size /= sizeof(struct ext4_extent);
277 #ifdef AGGRESSIVE_TEST
278 	if (!check && size > 3)
279 		size = 3;
280 #endif
281 	return size;
282 }
283 
284 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
285 {
286 	int size;
287 
288 	size = sizeof(EXT4_I(inode)->i_data);
289 	size -= sizeof(struct ext4_extent_header);
290 	size /= sizeof(struct ext4_extent_idx);
291 #ifdef AGGRESSIVE_TEST
292 	if (!check && size > 4)
293 		size = 4;
294 #endif
295 	return size;
296 }
297 
298 static inline int
299 ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
300 			   struct ext4_ext_path **ppath, ext4_lblk_t lblk,
301 			   int nofail)
302 {
303 	struct ext4_ext_path *path = *ppath;
304 	int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
305 
306 	return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
307 			EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
308 			EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
309 			(nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
310 }
311 
312 /*
313  * Calculate the number of metadata blocks needed
314  * to allocate @blocks
315  * Worse case is one block per extent
316  */
317 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
318 {
319 	struct ext4_inode_info *ei = EXT4_I(inode);
320 	int idxs;
321 
322 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
323 		/ sizeof(struct ext4_extent_idx));
324 
325 	/*
326 	 * If the new delayed allocation block is contiguous with the
327 	 * previous da block, it can share index blocks with the
328 	 * previous block, so we only need to allocate a new index
329 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
330 	 * an additional index block, and at ldxs**3 blocks, yet
331 	 * another index blocks.
332 	 */
333 	if (ei->i_da_metadata_calc_len &&
334 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
335 		int num = 0;
336 
337 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
338 			num++;
339 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
340 			num++;
341 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
342 			num++;
343 			ei->i_da_metadata_calc_len = 0;
344 		} else
345 			ei->i_da_metadata_calc_len++;
346 		ei->i_da_metadata_calc_last_lblock++;
347 		return num;
348 	}
349 
350 	/*
351 	 * In the worst case we need a new set of index blocks at
352 	 * every level of the inode's extent tree.
353 	 */
354 	ei->i_da_metadata_calc_len = 1;
355 	ei->i_da_metadata_calc_last_lblock = lblock;
356 	return ext_depth(inode) + 1;
357 }
358 
359 static int
360 ext4_ext_max_entries(struct inode *inode, int depth)
361 {
362 	int max;
363 
364 	if (depth == ext_depth(inode)) {
365 		if (depth == 0)
366 			max = ext4_ext_space_root(inode, 1);
367 		else
368 			max = ext4_ext_space_root_idx(inode, 1);
369 	} else {
370 		if (depth == 0)
371 			max = ext4_ext_space_block(inode, 1);
372 		else
373 			max = ext4_ext_space_block_idx(inode, 1);
374 	}
375 
376 	return max;
377 }
378 
379 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
380 {
381 	ext4_fsblk_t block = ext4_ext_pblock(ext);
382 	int len = ext4_ext_get_actual_len(ext);
383 	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
384 	ext4_lblk_t last = lblock + len - 1;
385 
386 	if (len == 0 || lblock > last)
387 		return 0;
388 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
389 }
390 
391 static int ext4_valid_extent_idx(struct inode *inode,
392 				struct ext4_extent_idx *ext_idx)
393 {
394 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
395 
396 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
397 }
398 
399 static int ext4_valid_extent_entries(struct inode *inode,
400 				struct ext4_extent_header *eh,
401 				int depth)
402 {
403 	unsigned short entries;
404 	if (eh->eh_entries == 0)
405 		return 1;
406 
407 	entries = le16_to_cpu(eh->eh_entries);
408 
409 	if (depth == 0) {
410 		/* leaf entries */
411 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
412 		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
413 		ext4_fsblk_t pblock = 0;
414 		ext4_lblk_t lblock = 0;
415 		ext4_lblk_t prev = 0;
416 		int len = 0;
417 		while (entries) {
418 			if (!ext4_valid_extent(inode, ext))
419 				return 0;
420 
421 			/* Check for overlapping extents */
422 			lblock = le32_to_cpu(ext->ee_block);
423 			len = ext4_ext_get_actual_len(ext);
424 			if ((lblock <= prev) && prev) {
425 				pblock = ext4_ext_pblock(ext);
426 				es->s_last_error_block = cpu_to_le64(pblock);
427 				return 0;
428 			}
429 			ext++;
430 			entries--;
431 			prev = lblock + len - 1;
432 		}
433 	} else {
434 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
435 		while (entries) {
436 			if (!ext4_valid_extent_idx(inode, ext_idx))
437 				return 0;
438 			ext_idx++;
439 			entries--;
440 		}
441 	}
442 	return 1;
443 }
444 
445 static int __ext4_ext_check(const char *function, unsigned int line,
446 			    struct inode *inode, struct ext4_extent_header *eh,
447 			    int depth, ext4_fsblk_t pblk)
448 {
449 	const char *error_msg;
450 	int max = 0, err = -EFSCORRUPTED;
451 
452 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
453 		error_msg = "invalid magic";
454 		goto corrupted;
455 	}
456 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
457 		error_msg = "unexpected eh_depth";
458 		goto corrupted;
459 	}
460 	if (unlikely(eh->eh_max == 0)) {
461 		error_msg = "invalid eh_max";
462 		goto corrupted;
463 	}
464 	max = ext4_ext_max_entries(inode, depth);
465 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
466 		error_msg = "too large eh_max";
467 		goto corrupted;
468 	}
469 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
470 		error_msg = "invalid eh_entries";
471 		goto corrupted;
472 	}
473 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
474 		error_msg = "invalid extent entries";
475 		goto corrupted;
476 	}
477 	/* Verify checksum on non-root extent tree nodes */
478 	if (ext_depth(inode) != depth &&
479 	    !ext4_extent_block_csum_verify(inode, eh)) {
480 		error_msg = "extent tree corrupted";
481 		err = -EFSBADCRC;
482 		goto corrupted;
483 	}
484 	return 0;
485 
486 corrupted:
487 	ext4_error_inode(inode, function, line, 0,
488 			 "pblk %llu bad header/extent: %s - magic %x, "
489 			 "entries %u, max %u(%u), depth %u(%u)",
490 			 (unsigned long long) pblk, error_msg,
491 			 le16_to_cpu(eh->eh_magic),
492 			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
493 			 max, le16_to_cpu(eh->eh_depth), depth);
494 	return err;
495 }
496 
497 #define ext4_ext_check(inode, eh, depth, pblk)			\
498 	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
499 
500 int ext4_ext_check_inode(struct inode *inode)
501 {
502 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
503 }
504 
505 static struct buffer_head *
506 __read_extent_tree_block(const char *function, unsigned int line,
507 			 struct inode *inode, ext4_fsblk_t pblk, int depth,
508 			 int flags)
509 {
510 	struct buffer_head		*bh;
511 	int				err;
512 
513 	bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS);
514 	if (unlikely(!bh))
515 		return ERR_PTR(-ENOMEM);
516 
517 	if (!bh_uptodate_or_lock(bh)) {
518 		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
519 		err = bh_submit_read(bh);
520 		if (err < 0)
521 			goto errout;
522 	}
523 	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
524 		return bh;
525 	err = __ext4_ext_check(function, line, inode,
526 			       ext_block_hdr(bh), depth, pblk);
527 	if (err)
528 		goto errout;
529 	set_buffer_verified(bh);
530 	/*
531 	 * If this is a leaf block, cache all of its entries
532 	 */
533 	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
534 		struct ext4_extent_header *eh = ext_block_hdr(bh);
535 		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
536 		ext4_lblk_t prev = 0;
537 		int i;
538 
539 		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
540 			unsigned int status = EXTENT_STATUS_WRITTEN;
541 			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
542 			int len = ext4_ext_get_actual_len(ex);
543 
544 			if (prev && (prev != lblk))
545 				ext4_es_cache_extent(inode, prev,
546 						     lblk - prev, ~0,
547 						     EXTENT_STATUS_HOLE);
548 
549 			if (ext4_ext_is_unwritten(ex))
550 				status = EXTENT_STATUS_UNWRITTEN;
551 			ext4_es_cache_extent(inode, lblk, len,
552 					     ext4_ext_pblock(ex), status);
553 			prev = lblk + len;
554 		}
555 	}
556 	return bh;
557 errout:
558 	put_bh(bh);
559 	return ERR_PTR(err);
560 
561 }
562 
563 #define read_extent_tree_block(inode, pblk, depth, flags)		\
564 	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
565 				 (depth), (flags))
566 
567 /*
568  * This function is called to cache a file's extent information in the
569  * extent status tree
570  */
571 int ext4_ext_precache(struct inode *inode)
572 {
573 	struct ext4_inode_info *ei = EXT4_I(inode);
574 	struct ext4_ext_path *path = NULL;
575 	struct buffer_head *bh;
576 	int i = 0, depth, ret = 0;
577 
578 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
579 		return 0;	/* not an extent-mapped inode */
580 
581 	down_read(&ei->i_data_sem);
582 	depth = ext_depth(inode);
583 
584 	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
585 		       GFP_NOFS);
586 	if (path == NULL) {
587 		up_read(&ei->i_data_sem);
588 		return -ENOMEM;
589 	}
590 
591 	/* Don't cache anything if there are no external extent blocks */
592 	if (depth == 0)
593 		goto out;
594 	path[0].p_hdr = ext_inode_hdr(inode);
595 	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
596 	if (ret)
597 		goto out;
598 	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
599 	while (i >= 0) {
600 		/*
601 		 * If this is a leaf block or we've reached the end of
602 		 * the index block, go up
603 		 */
604 		if ((i == depth) ||
605 		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
606 			brelse(path[i].p_bh);
607 			path[i].p_bh = NULL;
608 			i--;
609 			continue;
610 		}
611 		bh = read_extent_tree_block(inode,
612 					    ext4_idx_pblock(path[i].p_idx++),
613 					    depth - i - 1,
614 					    EXT4_EX_FORCE_CACHE);
615 		if (IS_ERR(bh)) {
616 			ret = PTR_ERR(bh);
617 			break;
618 		}
619 		i++;
620 		path[i].p_bh = bh;
621 		path[i].p_hdr = ext_block_hdr(bh);
622 		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
623 	}
624 	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
625 out:
626 	up_read(&ei->i_data_sem);
627 	ext4_ext_drop_refs(path);
628 	kfree(path);
629 	return ret;
630 }
631 
632 #ifdef EXT_DEBUG
633 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
634 {
635 	int k, l = path->p_depth;
636 
637 	ext_debug("path:");
638 	for (k = 0; k <= l; k++, path++) {
639 		if (path->p_idx) {
640 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
641 			    ext4_idx_pblock(path->p_idx));
642 		} else if (path->p_ext) {
643 			ext_debug("  %d:[%d]%d:%llu ",
644 				  le32_to_cpu(path->p_ext->ee_block),
645 				  ext4_ext_is_unwritten(path->p_ext),
646 				  ext4_ext_get_actual_len(path->p_ext),
647 				  ext4_ext_pblock(path->p_ext));
648 		} else
649 			ext_debug("  []");
650 	}
651 	ext_debug("\n");
652 }
653 
654 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
655 {
656 	int depth = ext_depth(inode);
657 	struct ext4_extent_header *eh;
658 	struct ext4_extent *ex;
659 	int i;
660 
661 	if (!path)
662 		return;
663 
664 	eh = path[depth].p_hdr;
665 	ex = EXT_FIRST_EXTENT(eh);
666 
667 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
668 
669 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
670 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
671 			  ext4_ext_is_unwritten(ex),
672 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
673 	}
674 	ext_debug("\n");
675 }
676 
677 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
678 			ext4_fsblk_t newblock, int level)
679 {
680 	int depth = ext_depth(inode);
681 	struct ext4_extent *ex;
682 
683 	if (depth != level) {
684 		struct ext4_extent_idx *idx;
685 		idx = path[level].p_idx;
686 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
687 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
688 					le32_to_cpu(idx->ei_block),
689 					ext4_idx_pblock(idx),
690 					newblock);
691 			idx++;
692 		}
693 
694 		return;
695 	}
696 
697 	ex = path[depth].p_ext;
698 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
699 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
700 				le32_to_cpu(ex->ee_block),
701 				ext4_ext_pblock(ex),
702 				ext4_ext_is_unwritten(ex),
703 				ext4_ext_get_actual_len(ex),
704 				newblock);
705 		ex++;
706 	}
707 }
708 
709 #else
710 #define ext4_ext_show_path(inode, path)
711 #define ext4_ext_show_leaf(inode, path)
712 #define ext4_ext_show_move(inode, path, newblock, level)
713 #endif
714 
715 void ext4_ext_drop_refs(struct ext4_ext_path *path)
716 {
717 	int depth, i;
718 
719 	if (!path)
720 		return;
721 	depth = path->p_depth;
722 	for (i = 0; i <= depth; i++, path++)
723 		if (path->p_bh) {
724 			brelse(path->p_bh);
725 			path->p_bh = NULL;
726 		}
727 }
728 
729 /*
730  * ext4_ext_binsearch_idx:
731  * binary search for the closest index of the given block
732  * the header must be checked before calling this
733  */
734 static void
735 ext4_ext_binsearch_idx(struct inode *inode,
736 			struct ext4_ext_path *path, ext4_lblk_t block)
737 {
738 	struct ext4_extent_header *eh = path->p_hdr;
739 	struct ext4_extent_idx *r, *l, *m;
740 
741 
742 	ext_debug("binsearch for %u(idx):  ", block);
743 
744 	l = EXT_FIRST_INDEX(eh) + 1;
745 	r = EXT_LAST_INDEX(eh);
746 	while (l <= r) {
747 		m = l + (r - l) / 2;
748 		if (block < le32_to_cpu(m->ei_block))
749 			r = m - 1;
750 		else
751 			l = m + 1;
752 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
753 				m, le32_to_cpu(m->ei_block),
754 				r, le32_to_cpu(r->ei_block));
755 	}
756 
757 	path->p_idx = l - 1;
758 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
759 		  ext4_idx_pblock(path->p_idx));
760 
761 #ifdef CHECK_BINSEARCH
762 	{
763 		struct ext4_extent_idx *chix, *ix;
764 		int k;
765 
766 		chix = ix = EXT_FIRST_INDEX(eh);
767 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
768 		  if (k != 0 &&
769 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
770 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
771 				       "first=0x%p\n", k,
772 				       ix, EXT_FIRST_INDEX(eh));
773 				printk(KERN_DEBUG "%u <= %u\n",
774 				       le32_to_cpu(ix->ei_block),
775 				       le32_to_cpu(ix[-1].ei_block));
776 			}
777 			BUG_ON(k && le32_to_cpu(ix->ei_block)
778 					   <= le32_to_cpu(ix[-1].ei_block));
779 			if (block < le32_to_cpu(ix->ei_block))
780 				break;
781 			chix = ix;
782 		}
783 		BUG_ON(chix != path->p_idx);
784 	}
785 #endif
786 
787 }
788 
789 /*
790  * ext4_ext_binsearch:
791  * binary search for closest extent of the given block
792  * the header must be checked before calling this
793  */
794 static void
795 ext4_ext_binsearch(struct inode *inode,
796 		struct ext4_ext_path *path, ext4_lblk_t block)
797 {
798 	struct ext4_extent_header *eh = path->p_hdr;
799 	struct ext4_extent *r, *l, *m;
800 
801 	if (eh->eh_entries == 0) {
802 		/*
803 		 * this leaf is empty:
804 		 * we get such a leaf in split/add case
805 		 */
806 		return;
807 	}
808 
809 	ext_debug("binsearch for %u:  ", block);
810 
811 	l = EXT_FIRST_EXTENT(eh) + 1;
812 	r = EXT_LAST_EXTENT(eh);
813 
814 	while (l <= r) {
815 		m = l + (r - l) / 2;
816 		if (block < le32_to_cpu(m->ee_block))
817 			r = m - 1;
818 		else
819 			l = m + 1;
820 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
821 				m, le32_to_cpu(m->ee_block),
822 				r, le32_to_cpu(r->ee_block));
823 	}
824 
825 	path->p_ext = l - 1;
826 	ext_debug("  -> %d:%llu:[%d]%d ",
827 			le32_to_cpu(path->p_ext->ee_block),
828 			ext4_ext_pblock(path->p_ext),
829 			ext4_ext_is_unwritten(path->p_ext),
830 			ext4_ext_get_actual_len(path->p_ext));
831 
832 #ifdef CHECK_BINSEARCH
833 	{
834 		struct ext4_extent *chex, *ex;
835 		int k;
836 
837 		chex = ex = EXT_FIRST_EXTENT(eh);
838 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
839 			BUG_ON(k && le32_to_cpu(ex->ee_block)
840 					  <= le32_to_cpu(ex[-1].ee_block));
841 			if (block < le32_to_cpu(ex->ee_block))
842 				break;
843 			chex = ex;
844 		}
845 		BUG_ON(chex != path->p_ext);
846 	}
847 #endif
848 
849 }
850 
851 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
852 {
853 	struct ext4_extent_header *eh;
854 
855 	eh = ext_inode_hdr(inode);
856 	eh->eh_depth = 0;
857 	eh->eh_entries = 0;
858 	eh->eh_magic = EXT4_EXT_MAGIC;
859 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
860 	ext4_mark_inode_dirty(handle, inode);
861 	return 0;
862 }
863 
864 struct ext4_ext_path *
865 ext4_find_extent(struct inode *inode, ext4_lblk_t block,
866 		 struct ext4_ext_path **orig_path, int flags)
867 {
868 	struct ext4_extent_header *eh;
869 	struct buffer_head *bh;
870 	struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
871 	short int depth, i, ppos = 0;
872 	int ret;
873 
874 	eh = ext_inode_hdr(inode);
875 	depth = ext_depth(inode);
876 
877 	if (path) {
878 		ext4_ext_drop_refs(path);
879 		if (depth > path[0].p_maxdepth) {
880 			kfree(path);
881 			*orig_path = path = NULL;
882 		}
883 	}
884 	if (!path) {
885 		/* account possible depth increase */
886 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
887 				GFP_NOFS);
888 		if (unlikely(!path))
889 			return ERR_PTR(-ENOMEM);
890 		path[0].p_maxdepth = depth + 1;
891 	}
892 	path[0].p_hdr = eh;
893 	path[0].p_bh = NULL;
894 
895 	i = depth;
896 	/* walk through the tree */
897 	while (i) {
898 		ext_debug("depth %d: num %d, max %d\n",
899 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
900 
901 		ext4_ext_binsearch_idx(inode, path + ppos, block);
902 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
903 		path[ppos].p_depth = i;
904 		path[ppos].p_ext = NULL;
905 
906 		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
907 					    flags);
908 		if (IS_ERR(bh)) {
909 			ret = PTR_ERR(bh);
910 			goto err;
911 		}
912 
913 		eh = ext_block_hdr(bh);
914 		ppos++;
915 		path[ppos].p_bh = bh;
916 		path[ppos].p_hdr = eh;
917 	}
918 
919 	path[ppos].p_depth = i;
920 	path[ppos].p_ext = NULL;
921 	path[ppos].p_idx = NULL;
922 
923 	/* find extent */
924 	ext4_ext_binsearch(inode, path + ppos, block);
925 	/* if not an empty leaf */
926 	if (path[ppos].p_ext)
927 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
928 
929 	ext4_ext_show_path(inode, path);
930 
931 	return path;
932 
933 err:
934 	ext4_ext_drop_refs(path);
935 	kfree(path);
936 	if (orig_path)
937 		*orig_path = NULL;
938 	return ERR_PTR(ret);
939 }
940 
941 /*
942  * ext4_ext_insert_index:
943  * insert new index [@logical;@ptr] into the block at @curp;
944  * check where to insert: before @curp or after @curp
945  */
946 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
947 				 struct ext4_ext_path *curp,
948 				 int logical, ext4_fsblk_t ptr)
949 {
950 	struct ext4_extent_idx *ix;
951 	int len, err;
952 
953 	err = ext4_ext_get_access(handle, inode, curp);
954 	if (err)
955 		return err;
956 
957 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
958 		EXT4_ERROR_INODE(inode,
959 				 "logical %d == ei_block %d!",
960 				 logical, le32_to_cpu(curp->p_idx->ei_block));
961 		return -EFSCORRUPTED;
962 	}
963 
964 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
965 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
966 		EXT4_ERROR_INODE(inode,
967 				 "eh_entries %d >= eh_max %d!",
968 				 le16_to_cpu(curp->p_hdr->eh_entries),
969 				 le16_to_cpu(curp->p_hdr->eh_max));
970 		return -EFSCORRUPTED;
971 	}
972 
973 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
974 		/* insert after */
975 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
976 		ix = curp->p_idx + 1;
977 	} else {
978 		/* insert before */
979 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
980 		ix = curp->p_idx;
981 	}
982 
983 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
984 	BUG_ON(len < 0);
985 	if (len > 0) {
986 		ext_debug("insert new index %d: "
987 				"move %d indices from 0x%p to 0x%p\n",
988 				logical, len, ix, ix + 1);
989 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
990 	}
991 
992 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
993 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
994 		return -EFSCORRUPTED;
995 	}
996 
997 	ix->ei_block = cpu_to_le32(logical);
998 	ext4_idx_store_pblock(ix, ptr);
999 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
1000 
1001 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
1002 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
1003 		return -EFSCORRUPTED;
1004 	}
1005 
1006 	err = ext4_ext_dirty(handle, inode, curp);
1007 	ext4_std_error(inode->i_sb, err);
1008 
1009 	return err;
1010 }
1011 
1012 /*
1013  * ext4_ext_split:
1014  * inserts new subtree into the path, using free index entry
1015  * at depth @at:
1016  * - allocates all needed blocks (new leaf and all intermediate index blocks)
1017  * - makes decision where to split
1018  * - moves remaining extents and index entries (right to the split point)
1019  *   into the newly allocated blocks
1020  * - initializes subtree
1021  */
1022 static int ext4_ext_split(handle_t *handle, struct inode *inode,
1023 			  unsigned int flags,
1024 			  struct ext4_ext_path *path,
1025 			  struct ext4_extent *newext, int at)
1026 {
1027 	struct buffer_head *bh = NULL;
1028 	int depth = ext_depth(inode);
1029 	struct ext4_extent_header *neh;
1030 	struct ext4_extent_idx *fidx;
1031 	int i = at, k, m, a;
1032 	ext4_fsblk_t newblock, oldblock;
1033 	__le32 border;
1034 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1035 	int err = 0;
1036 
1037 	/* make decision: where to split? */
1038 	/* FIXME: now decision is simplest: at current extent */
1039 
1040 	/* if current leaf will be split, then we should use
1041 	 * border from split point */
1042 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1043 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1044 		return -EFSCORRUPTED;
1045 	}
1046 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1047 		border = path[depth].p_ext[1].ee_block;
1048 		ext_debug("leaf will be split."
1049 				" next leaf starts at %d\n",
1050 				  le32_to_cpu(border));
1051 	} else {
1052 		border = newext->ee_block;
1053 		ext_debug("leaf will be added."
1054 				" next leaf starts at %d\n",
1055 				le32_to_cpu(border));
1056 	}
1057 
1058 	/*
1059 	 * If error occurs, then we break processing
1060 	 * and mark filesystem read-only. index won't
1061 	 * be inserted and tree will be in consistent
1062 	 * state. Next mount will repair buffers too.
1063 	 */
1064 
1065 	/*
1066 	 * Get array to track all allocated blocks.
1067 	 * We need this to handle errors and free blocks
1068 	 * upon them.
1069 	 */
1070 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1071 	if (!ablocks)
1072 		return -ENOMEM;
1073 
1074 	/* allocate all needed blocks */
1075 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1076 	for (a = 0; a < depth - at; a++) {
1077 		newblock = ext4_ext_new_meta_block(handle, inode, path,
1078 						   newext, &err, flags);
1079 		if (newblock == 0)
1080 			goto cleanup;
1081 		ablocks[a] = newblock;
1082 	}
1083 
1084 	/* initialize new leaf */
1085 	newblock = ablocks[--a];
1086 	if (unlikely(newblock == 0)) {
1087 		EXT4_ERROR_INODE(inode, "newblock == 0!");
1088 		err = -EFSCORRUPTED;
1089 		goto cleanup;
1090 	}
1091 	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1092 	if (unlikely(!bh)) {
1093 		err = -ENOMEM;
1094 		goto cleanup;
1095 	}
1096 	lock_buffer(bh);
1097 
1098 	err = ext4_journal_get_create_access(handle, bh);
1099 	if (err)
1100 		goto cleanup;
1101 
1102 	neh = ext_block_hdr(bh);
1103 	neh->eh_entries = 0;
1104 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1105 	neh->eh_magic = EXT4_EXT_MAGIC;
1106 	neh->eh_depth = 0;
1107 
1108 	/* move remainder of path[depth] to the new leaf */
1109 	if (unlikely(path[depth].p_hdr->eh_entries !=
1110 		     path[depth].p_hdr->eh_max)) {
1111 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1112 				 path[depth].p_hdr->eh_entries,
1113 				 path[depth].p_hdr->eh_max);
1114 		err = -EFSCORRUPTED;
1115 		goto cleanup;
1116 	}
1117 	/* start copy from next extent */
1118 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1119 	ext4_ext_show_move(inode, path, newblock, depth);
1120 	if (m) {
1121 		struct ext4_extent *ex;
1122 		ex = EXT_FIRST_EXTENT(neh);
1123 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1124 		le16_add_cpu(&neh->eh_entries, m);
1125 	}
1126 
1127 	ext4_extent_block_csum_set(inode, neh);
1128 	set_buffer_uptodate(bh);
1129 	unlock_buffer(bh);
1130 
1131 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1132 	if (err)
1133 		goto cleanup;
1134 	brelse(bh);
1135 	bh = NULL;
1136 
1137 	/* correct old leaf */
1138 	if (m) {
1139 		err = ext4_ext_get_access(handle, inode, path + depth);
1140 		if (err)
1141 			goto cleanup;
1142 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1143 		err = ext4_ext_dirty(handle, inode, path + depth);
1144 		if (err)
1145 			goto cleanup;
1146 
1147 	}
1148 
1149 	/* create intermediate indexes */
1150 	k = depth - at - 1;
1151 	if (unlikely(k < 0)) {
1152 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1153 		err = -EFSCORRUPTED;
1154 		goto cleanup;
1155 	}
1156 	if (k)
1157 		ext_debug("create %d intermediate indices\n", k);
1158 	/* insert new index into current index block */
1159 	/* current depth stored in i var */
1160 	i = depth - 1;
1161 	while (k--) {
1162 		oldblock = newblock;
1163 		newblock = ablocks[--a];
1164 		bh = sb_getblk(inode->i_sb, newblock);
1165 		if (unlikely(!bh)) {
1166 			err = -ENOMEM;
1167 			goto cleanup;
1168 		}
1169 		lock_buffer(bh);
1170 
1171 		err = ext4_journal_get_create_access(handle, bh);
1172 		if (err)
1173 			goto cleanup;
1174 
1175 		neh = ext_block_hdr(bh);
1176 		neh->eh_entries = cpu_to_le16(1);
1177 		neh->eh_magic = EXT4_EXT_MAGIC;
1178 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1179 		neh->eh_depth = cpu_to_le16(depth - i);
1180 		fidx = EXT_FIRST_INDEX(neh);
1181 		fidx->ei_block = border;
1182 		ext4_idx_store_pblock(fidx, oldblock);
1183 
1184 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1185 				i, newblock, le32_to_cpu(border), oldblock);
1186 
1187 		/* move remainder of path[i] to the new index block */
1188 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1189 					EXT_LAST_INDEX(path[i].p_hdr))) {
1190 			EXT4_ERROR_INODE(inode,
1191 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1192 					 le32_to_cpu(path[i].p_ext->ee_block));
1193 			err = -EFSCORRUPTED;
1194 			goto cleanup;
1195 		}
1196 		/* start copy indexes */
1197 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1198 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1199 				EXT_MAX_INDEX(path[i].p_hdr));
1200 		ext4_ext_show_move(inode, path, newblock, i);
1201 		if (m) {
1202 			memmove(++fidx, path[i].p_idx,
1203 				sizeof(struct ext4_extent_idx) * m);
1204 			le16_add_cpu(&neh->eh_entries, m);
1205 		}
1206 		ext4_extent_block_csum_set(inode, neh);
1207 		set_buffer_uptodate(bh);
1208 		unlock_buffer(bh);
1209 
1210 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1211 		if (err)
1212 			goto cleanup;
1213 		brelse(bh);
1214 		bh = NULL;
1215 
1216 		/* correct old index */
1217 		if (m) {
1218 			err = ext4_ext_get_access(handle, inode, path + i);
1219 			if (err)
1220 				goto cleanup;
1221 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1222 			err = ext4_ext_dirty(handle, inode, path + i);
1223 			if (err)
1224 				goto cleanup;
1225 		}
1226 
1227 		i--;
1228 	}
1229 
1230 	/* insert new index */
1231 	err = ext4_ext_insert_index(handle, inode, path + at,
1232 				    le32_to_cpu(border), newblock);
1233 
1234 cleanup:
1235 	if (bh) {
1236 		if (buffer_locked(bh))
1237 			unlock_buffer(bh);
1238 		brelse(bh);
1239 	}
1240 
1241 	if (err) {
1242 		/* free all allocated blocks in error case */
1243 		for (i = 0; i < depth; i++) {
1244 			if (!ablocks[i])
1245 				continue;
1246 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1247 					 EXT4_FREE_BLOCKS_METADATA);
1248 		}
1249 	}
1250 	kfree(ablocks);
1251 
1252 	return err;
1253 }
1254 
1255 /*
1256  * ext4_ext_grow_indepth:
1257  * implements tree growing procedure:
1258  * - allocates new block
1259  * - moves top-level data (index block or leaf) into the new block
1260  * - initializes new top-level, creating index that points to the
1261  *   just created block
1262  */
1263 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1264 				 unsigned int flags)
1265 {
1266 	struct ext4_extent_header *neh;
1267 	struct buffer_head *bh;
1268 	ext4_fsblk_t newblock, goal = 0;
1269 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
1270 	int err = 0;
1271 
1272 	/* Try to prepend new index to old one */
1273 	if (ext_depth(inode))
1274 		goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
1275 	if (goal > le32_to_cpu(es->s_first_data_block)) {
1276 		flags |= EXT4_MB_HINT_TRY_GOAL;
1277 		goal--;
1278 	} else
1279 		goal = ext4_inode_to_goal_block(inode);
1280 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
1281 					NULL, &err);
1282 	if (newblock == 0)
1283 		return err;
1284 
1285 	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1286 	if (unlikely(!bh))
1287 		return -ENOMEM;
1288 	lock_buffer(bh);
1289 
1290 	err = ext4_journal_get_create_access(handle, bh);
1291 	if (err) {
1292 		unlock_buffer(bh);
1293 		goto out;
1294 	}
1295 
1296 	/* move top-level index/leaf into new block */
1297 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1298 		sizeof(EXT4_I(inode)->i_data));
1299 
1300 	/* set size of new block */
1301 	neh = ext_block_hdr(bh);
1302 	/* old root could have indexes or leaves
1303 	 * so calculate e_max right way */
1304 	if (ext_depth(inode))
1305 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1306 	else
1307 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1308 	neh->eh_magic = EXT4_EXT_MAGIC;
1309 	ext4_extent_block_csum_set(inode, neh);
1310 	set_buffer_uptodate(bh);
1311 	unlock_buffer(bh);
1312 
1313 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1314 	if (err)
1315 		goto out;
1316 
1317 	/* Update top-level index: num,max,pointer */
1318 	neh = ext_inode_hdr(inode);
1319 	neh->eh_entries = cpu_to_le16(1);
1320 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1321 	if (neh->eh_depth == 0) {
1322 		/* Root extent block becomes index block */
1323 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1324 		EXT_FIRST_INDEX(neh)->ei_block =
1325 			EXT_FIRST_EXTENT(neh)->ee_block;
1326 	}
1327 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1328 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1329 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1330 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1331 
1332 	le16_add_cpu(&neh->eh_depth, 1);
1333 	ext4_mark_inode_dirty(handle, inode);
1334 out:
1335 	brelse(bh);
1336 
1337 	return err;
1338 }
1339 
1340 /*
1341  * ext4_ext_create_new_leaf:
1342  * finds empty index and adds new leaf.
1343  * if no free index is found, then it requests in-depth growing.
1344  */
1345 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1346 				    unsigned int mb_flags,
1347 				    unsigned int gb_flags,
1348 				    struct ext4_ext_path **ppath,
1349 				    struct ext4_extent *newext)
1350 {
1351 	struct ext4_ext_path *path = *ppath;
1352 	struct ext4_ext_path *curp;
1353 	int depth, i, err = 0;
1354 
1355 repeat:
1356 	i = depth = ext_depth(inode);
1357 
1358 	/* walk up to the tree and look for free index entry */
1359 	curp = path + depth;
1360 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1361 		i--;
1362 		curp--;
1363 	}
1364 
1365 	/* we use already allocated block for index block,
1366 	 * so subsequent data blocks should be contiguous */
1367 	if (EXT_HAS_FREE_INDEX(curp)) {
1368 		/* if we found index with free entry, then use that
1369 		 * entry: create all needed subtree and add new leaf */
1370 		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1371 		if (err)
1372 			goto out;
1373 
1374 		/* refill path */
1375 		path = ext4_find_extent(inode,
1376 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1377 				    ppath, gb_flags);
1378 		if (IS_ERR(path))
1379 			err = PTR_ERR(path);
1380 	} else {
1381 		/* tree is full, time to grow in depth */
1382 		err = ext4_ext_grow_indepth(handle, inode, mb_flags);
1383 		if (err)
1384 			goto out;
1385 
1386 		/* refill path */
1387 		path = ext4_find_extent(inode,
1388 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1389 				    ppath, gb_flags);
1390 		if (IS_ERR(path)) {
1391 			err = PTR_ERR(path);
1392 			goto out;
1393 		}
1394 
1395 		/*
1396 		 * only first (depth 0 -> 1) produces free space;
1397 		 * in all other cases we have to split the grown tree
1398 		 */
1399 		depth = ext_depth(inode);
1400 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1401 			/* now we need to split */
1402 			goto repeat;
1403 		}
1404 	}
1405 
1406 out:
1407 	return err;
1408 }
1409 
1410 /*
1411  * search the closest allocated block to the left for *logical
1412  * and returns it at @logical + it's physical address at @phys
1413  * if *logical is the smallest allocated block, the function
1414  * returns 0 at @phys
1415  * return value contains 0 (success) or error code
1416  */
1417 static int ext4_ext_search_left(struct inode *inode,
1418 				struct ext4_ext_path *path,
1419 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1420 {
1421 	struct ext4_extent_idx *ix;
1422 	struct ext4_extent *ex;
1423 	int depth, ee_len;
1424 
1425 	if (unlikely(path == NULL)) {
1426 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1427 		return -EFSCORRUPTED;
1428 	}
1429 	depth = path->p_depth;
1430 	*phys = 0;
1431 
1432 	if (depth == 0 && path->p_ext == NULL)
1433 		return 0;
1434 
1435 	/* usually extent in the path covers blocks smaller
1436 	 * then *logical, but it can be that extent is the
1437 	 * first one in the file */
1438 
1439 	ex = path[depth].p_ext;
1440 	ee_len = ext4_ext_get_actual_len(ex);
1441 	if (*logical < le32_to_cpu(ex->ee_block)) {
1442 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1443 			EXT4_ERROR_INODE(inode,
1444 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1445 					 *logical, le32_to_cpu(ex->ee_block));
1446 			return -EFSCORRUPTED;
1447 		}
1448 		while (--depth >= 0) {
1449 			ix = path[depth].p_idx;
1450 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1451 				EXT4_ERROR_INODE(inode,
1452 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1453 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1454 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1455 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1456 				  depth);
1457 				return -EFSCORRUPTED;
1458 			}
1459 		}
1460 		return 0;
1461 	}
1462 
1463 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1464 		EXT4_ERROR_INODE(inode,
1465 				 "logical %d < ee_block %d + ee_len %d!",
1466 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1467 		return -EFSCORRUPTED;
1468 	}
1469 
1470 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1471 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1472 	return 0;
1473 }
1474 
1475 /*
1476  * search the closest allocated block to the right for *logical
1477  * and returns it at @logical + it's physical address at @phys
1478  * if *logical is the largest allocated block, the function
1479  * returns 0 at @phys
1480  * return value contains 0 (success) or error code
1481  */
1482 static int ext4_ext_search_right(struct inode *inode,
1483 				 struct ext4_ext_path *path,
1484 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1485 				 struct ext4_extent **ret_ex)
1486 {
1487 	struct buffer_head *bh = NULL;
1488 	struct ext4_extent_header *eh;
1489 	struct ext4_extent_idx *ix;
1490 	struct ext4_extent *ex;
1491 	ext4_fsblk_t block;
1492 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1493 	int ee_len;
1494 
1495 	if (unlikely(path == NULL)) {
1496 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1497 		return -EFSCORRUPTED;
1498 	}
1499 	depth = path->p_depth;
1500 	*phys = 0;
1501 
1502 	if (depth == 0 && path->p_ext == NULL)
1503 		return 0;
1504 
1505 	/* usually extent in the path covers blocks smaller
1506 	 * then *logical, but it can be that extent is the
1507 	 * first one in the file */
1508 
1509 	ex = path[depth].p_ext;
1510 	ee_len = ext4_ext_get_actual_len(ex);
1511 	if (*logical < le32_to_cpu(ex->ee_block)) {
1512 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1513 			EXT4_ERROR_INODE(inode,
1514 					 "first_extent(path[%d].p_hdr) != ex",
1515 					 depth);
1516 			return -EFSCORRUPTED;
1517 		}
1518 		while (--depth >= 0) {
1519 			ix = path[depth].p_idx;
1520 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1521 				EXT4_ERROR_INODE(inode,
1522 						 "ix != EXT_FIRST_INDEX *logical %d!",
1523 						 *logical);
1524 				return -EFSCORRUPTED;
1525 			}
1526 		}
1527 		goto found_extent;
1528 	}
1529 
1530 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1531 		EXT4_ERROR_INODE(inode,
1532 				 "logical %d < ee_block %d + ee_len %d!",
1533 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1534 		return -EFSCORRUPTED;
1535 	}
1536 
1537 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1538 		/* next allocated block in this leaf */
1539 		ex++;
1540 		goto found_extent;
1541 	}
1542 
1543 	/* go up and search for index to the right */
1544 	while (--depth >= 0) {
1545 		ix = path[depth].p_idx;
1546 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1547 			goto got_index;
1548 	}
1549 
1550 	/* we've gone up to the root and found no index to the right */
1551 	return 0;
1552 
1553 got_index:
1554 	/* we've found index to the right, let's
1555 	 * follow it and find the closest allocated
1556 	 * block to the right */
1557 	ix++;
1558 	block = ext4_idx_pblock(ix);
1559 	while (++depth < path->p_depth) {
1560 		/* subtract from p_depth to get proper eh_depth */
1561 		bh = read_extent_tree_block(inode, block,
1562 					    path->p_depth - depth, 0);
1563 		if (IS_ERR(bh))
1564 			return PTR_ERR(bh);
1565 		eh = ext_block_hdr(bh);
1566 		ix = EXT_FIRST_INDEX(eh);
1567 		block = ext4_idx_pblock(ix);
1568 		put_bh(bh);
1569 	}
1570 
1571 	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1572 	if (IS_ERR(bh))
1573 		return PTR_ERR(bh);
1574 	eh = ext_block_hdr(bh);
1575 	ex = EXT_FIRST_EXTENT(eh);
1576 found_extent:
1577 	*logical = le32_to_cpu(ex->ee_block);
1578 	*phys = ext4_ext_pblock(ex);
1579 	*ret_ex = ex;
1580 	if (bh)
1581 		put_bh(bh);
1582 	return 0;
1583 }
1584 
1585 /*
1586  * ext4_ext_next_allocated_block:
1587  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1588  * NOTE: it considers block number from index entry as
1589  * allocated block. Thus, index entries have to be consistent
1590  * with leaves.
1591  */
1592 ext4_lblk_t
1593 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1594 {
1595 	int depth;
1596 
1597 	BUG_ON(path == NULL);
1598 	depth = path->p_depth;
1599 
1600 	if (depth == 0 && path->p_ext == NULL)
1601 		return EXT_MAX_BLOCKS;
1602 
1603 	while (depth >= 0) {
1604 		if (depth == path->p_depth) {
1605 			/* leaf */
1606 			if (path[depth].p_ext &&
1607 				path[depth].p_ext !=
1608 					EXT_LAST_EXTENT(path[depth].p_hdr))
1609 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1610 		} else {
1611 			/* index */
1612 			if (path[depth].p_idx !=
1613 					EXT_LAST_INDEX(path[depth].p_hdr))
1614 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1615 		}
1616 		depth--;
1617 	}
1618 
1619 	return EXT_MAX_BLOCKS;
1620 }
1621 
1622 /*
1623  * ext4_ext_next_leaf_block:
1624  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1625  */
1626 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1627 {
1628 	int depth;
1629 
1630 	BUG_ON(path == NULL);
1631 	depth = path->p_depth;
1632 
1633 	/* zero-tree has no leaf blocks at all */
1634 	if (depth == 0)
1635 		return EXT_MAX_BLOCKS;
1636 
1637 	/* go to index block */
1638 	depth--;
1639 
1640 	while (depth >= 0) {
1641 		if (path[depth].p_idx !=
1642 				EXT_LAST_INDEX(path[depth].p_hdr))
1643 			return (ext4_lblk_t)
1644 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1645 		depth--;
1646 	}
1647 
1648 	return EXT_MAX_BLOCKS;
1649 }
1650 
1651 /*
1652  * ext4_ext_correct_indexes:
1653  * if leaf gets modified and modified extent is first in the leaf,
1654  * then we have to correct all indexes above.
1655  * TODO: do we need to correct tree in all cases?
1656  */
1657 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1658 				struct ext4_ext_path *path)
1659 {
1660 	struct ext4_extent_header *eh;
1661 	int depth = ext_depth(inode);
1662 	struct ext4_extent *ex;
1663 	__le32 border;
1664 	int k, err = 0;
1665 
1666 	eh = path[depth].p_hdr;
1667 	ex = path[depth].p_ext;
1668 
1669 	if (unlikely(ex == NULL || eh == NULL)) {
1670 		EXT4_ERROR_INODE(inode,
1671 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1672 		return -EFSCORRUPTED;
1673 	}
1674 
1675 	if (depth == 0) {
1676 		/* there is no tree at all */
1677 		return 0;
1678 	}
1679 
1680 	if (ex != EXT_FIRST_EXTENT(eh)) {
1681 		/* we correct tree if first leaf got modified only */
1682 		return 0;
1683 	}
1684 
1685 	/*
1686 	 * TODO: we need correction if border is smaller than current one
1687 	 */
1688 	k = depth - 1;
1689 	border = path[depth].p_ext->ee_block;
1690 	err = ext4_ext_get_access(handle, inode, path + k);
1691 	if (err)
1692 		return err;
1693 	path[k].p_idx->ei_block = border;
1694 	err = ext4_ext_dirty(handle, inode, path + k);
1695 	if (err)
1696 		return err;
1697 
1698 	while (k--) {
1699 		/* change all left-side indexes */
1700 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1701 			break;
1702 		err = ext4_ext_get_access(handle, inode, path + k);
1703 		if (err)
1704 			break;
1705 		path[k].p_idx->ei_block = border;
1706 		err = ext4_ext_dirty(handle, inode, path + k);
1707 		if (err)
1708 			break;
1709 	}
1710 
1711 	return err;
1712 }
1713 
1714 int
1715 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1716 				struct ext4_extent *ex2)
1717 {
1718 	unsigned short ext1_ee_len, ext2_ee_len;
1719 
1720 	if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1721 		return 0;
1722 
1723 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1724 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1725 
1726 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1727 			le32_to_cpu(ex2->ee_block))
1728 		return 0;
1729 
1730 	/*
1731 	 * To allow future support for preallocated extents to be added
1732 	 * as an RO_COMPAT feature, refuse to merge to extents if
1733 	 * this can result in the top bit of ee_len being set.
1734 	 */
1735 	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1736 		return 0;
1737 	/*
1738 	 * The check for IO to unwritten extent is somewhat racy as we
1739 	 * increment i_unwritten / set EXT4_STATE_DIO_UNWRITTEN only after
1740 	 * dropping i_data_sem. But reserved blocks should save us in that
1741 	 * case.
1742 	 */
1743 	if (ext4_ext_is_unwritten(ex1) &&
1744 	    (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1745 	     atomic_read(&EXT4_I(inode)->i_unwritten) ||
1746 	     (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1747 		return 0;
1748 #ifdef AGGRESSIVE_TEST
1749 	if (ext1_ee_len >= 4)
1750 		return 0;
1751 #endif
1752 
1753 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1754 		return 1;
1755 	return 0;
1756 }
1757 
1758 /*
1759  * This function tries to merge the "ex" extent to the next extent in the tree.
1760  * It always tries to merge towards right. If you want to merge towards
1761  * left, pass "ex - 1" as argument instead of "ex".
1762  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1763  * 1 if they got merged.
1764  */
1765 static int ext4_ext_try_to_merge_right(struct inode *inode,
1766 				 struct ext4_ext_path *path,
1767 				 struct ext4_extent *ex)
1768 {
1769 	struct ext4_extent_header *eh;
1770 	unsigned int depth, len;
1771 	int merge_done = 0, unwritten;
1772 
1773 	depth = ext_depth(inode);
1774 	BUG_ON(path[depth].p_hdr == NULL);
1775 	eh = path[depth].p_hdr;
1776 
1777 	while (ex < EXT_LAST_EXTENT(eh)) {
1778 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1779 			break;
1780 		/* merge with next extent! */
1781 		unwritten = ext4_ext_is_unwritten(ex);
1782 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1783 				+ ext4_ext_get_actual_len(ex + 1));
1784 		if (unwritten)
1785 			ext4_ext_mark_unwritten(ex);
1786 
1787 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1788 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1789 				* sizeof(struct ext4_extent);
1790 			memmove(ex + 1, ex + 2, len);
1791 		}
1792 		le16_add_cpu(&eh->eh_entries, -1);
1793 		merge_done = 1;
1794 		WARN_ON(eh->eh_entries == 0);
1795 		if (!eh->eh_entries)
1796 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1797 	}
1798 
1799 	return merge_done;
1800 }
1801 
1802 /*
1803  * This function does a very simple check to see if we can collapse
1804  * an extent tree with a single extent tree leaf block into the inode.
1805  */
1806 static void ext4_ext_try_to_merge_up(handle_t *handle,
1807 				     struct inode *inode,
1808 				     struct ext4_ext_path *path)
1809 {
1810 	size_t s;
1811 	unsigned max_root = ext4_ext_space_root(inode, 0);
1812 	ext4_fsblk_t blk;
1813 
1814 	if ((path[0].p_depth != 1) ||
1815 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1816 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1817 		return;
1818 
1819 	/*
1820 	 * We need to modify the block allocation bitmap and the block
1821 	 * group descriptor to release the extent tree block.  If we
1822 	 * can't get the journal credits, give up.
1823 	 */
1824 	if (ext4_journal_extend(handle, 2))
1825 		return;
1826 
1827 	/*
1828 	 * Copy the extent data up to the inode
1829 	 */
1830 	blk = ext4_idx_pblock(path[0].p_idx);
1831 	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1832 		sizeof(struct ext4_extent_idx);
1833 	s += sizeof(struct ext4_extent_header);
1834 
1835 	path[1].p_maxdepth = path[0].p_maxdepth;
1836 	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1837 	path[0].p_depth = 0;
1838 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1839 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1840 	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1841 
1842 	brelse(path[1].p_bh);
1843 	ext4_free_blocks(handle, inode, NULL, blk, 1,
1844 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1845 }
1846 
1847 /*
1848  * This function tries to merge the @ex extent to neighbours in the tree.
1849  * return 1 if merge left else 0.
1850  */
1851 static void ext4_ext_try_to_merge(handle_t *handle,
1852 				  struct inode *inode,
1853 				  struct ext4_ext_path *path,
1854 				  struct ext4_extent *ex) {
1855 	struct ext4_extent_header *eh;
1856 	unsigned int depth;
1857 	int merge_done = 0;
1858 
1859 	depth = ext_depth(inode);
1860 	BUG_ON(path[depth].p_hdr == NULL);
1861 	eh = path[depth].p_hdr;
1862 
1863 	if (ex > EXT_FIRST_EXTENT(eh))
1864 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1865 
1866 	if (!merge_done)
1867 		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1868 
1869 	ext4_ext_try_to_merge_up(handle, inode, path);
1870 }
1871 
1872 /*
1873  * check if a portion of the "newext" extent overlaps with an
1874  * existing extent.
1875  *
1876  * If there is an overlap discovered, it updates the length of the newext
1877  * such that there will be no overlap, and then returns 1.
1878  * If there is no overlap found, it returns 0.
1879  */
1880 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1881 					   struct inode *inode,
1882 					   struct ext4_extent *newext,
1883 					   struct ext4_ext_path *path)
1884 {
1885 	ext4_lblk_t b1, b2;
1886 	unsigned int depth, len1;
1887 	unsigned int ret = 0;
1888 
1889 	b1 = le32_to_cpu(newext->ee_block);
1890 	len1 = ext4_ext_get_actual_len(newext);
1891 	depth = ext_depth(inode);
1892 	if (!path[depth].p_ext)
1893 		goto out;
1894 	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1895 
1896 	/*
1897 	 * get the next allocated block if the extent in the path
1898 	 * is before the requested block(s)
1899 	 */
1900 	if (b2 < b1) {
1901 		b2 = ext4_ext_next_allocated_block(path);
1902 		if (b2 == EXT_MAX_BLOCKS)
1903 			goto out;
1904 		b2 = EXT4_LBLK_CMASK(sbi, b2);
1905 	}
1906 
1907 	/* check for wrap through zero on extent logical start block*/
1908 	if (b1 + len1 < b1) {
1909 		len1 = EXT_MAX_BLOCKS - b1;
1910 		newext->ee_len = cpu_to_le16(len1);
1911 		ret = 1;
1912 	}
1913 
1914 	/* check for overlap */
1915 	if (b1 + len1 > b2) {
1916 		newext->ee_len = cpu_to_le16(b2 - b1);
1917 		ret = 1;
1918 	}
1919 out:
1920 	return ret;
1921 }
1922 
1923 /*
1924  * ext4_ext_insert_extent:
1925  * tries to merge requsted extent into the existing extent or
1926  * inserts requested extent as new one into the tree,
1927  * creating new leaf in the no-space case.
1928  */
1929 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1930 				struct ext4_ext_path **ppath,
1931 				struct ext4_extent *newext, int gb_flags)
1932 {
1933 	struct ext4_ext_path *path = *ppath;
1934 	struct ext4_extent_header *eh;
1935 	struct ext4_extent *ex, *fex;
1936 	struct ext4_extent *nearex; /* nearest extent */
1937 	struct ext4_ext_path *npath = NULL;
1938 	int depth, len, err;
1939 	ext4_lblk_t next;
1940 	int mb_flags = 0, unwritten;
1941 
1942 	if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1943 		mb_flags |= EXT4_MB_DELALLOC_RESERVED;
1944 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1945 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1946 		return -EFSCORRUPTED;
1947 	}
1948 	depth = ext_depth(inode);
1949 	ex = path[depth].p_ext;
1950 	eh = path[depth].p_hdr;
1951 	if (unlikely(path[depth].p_hdr == NULL)) {
1952 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1953 		return -EFSCORRUPTED;
1954 	}
1955 
1956 	/* try to insert block into found extent and return */
1957 	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1958 
1959 		/*
1960 		 * Try to see whether we should rather test the extent on
1961 		 * right from ex, or from the left of ex. This is because
1962 		 * ext4_find_extent() can return either extent on the
1963 		 * left, or on the right from the searched position. This
1964 		 * will make merging more effective.
1965 		 */
1966 		if (ex < EXT_LAST_EXTENT(eh) &&
1967 		    (le32_to_cpu(ex->ee_block) +
1968 		    ext4_ext_get_actual_len(ex) <
1969 		    le32_to_cpu(newext->ee_block))) {
1970 			ex += 1;
1971 			goto prepend;
1972 		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1973 			   (le32_to_cpu(newext->ee_block) +
1974 			   ext4_ext_get_actual_len(newext) <
1975 			   le32_to_cpu(ex->ee_block)))
1976 			ex -= 1;
1977 
1978 		/* Try to append newex to the ex */
1979 		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1980 			ext_debug("append [%d]%d block to %u:[%d]%d"
1981 				  "(from %llu)\n",
1982 				  ext4_ext_is_unwritten(newext),
1983 				  ext4_ext_get_actual_len(newext),
1984 				  le32_to_cpu(ex->ee_block),
1985 				  ext4_ext_is_unwritten(ex),
1986 				  ext4_ext_get_actual_len(ex),
1987 				  ext4_ext_pblock(ex));
1988 			err = ext4_ext_get_access(handle, inode,
1989 						  path + depth);
1990 			if (err)
1991 				return err;
1992 			unwritten = ext4_ext_is_unwritten(ex);
1993 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1994 					+ ext4_ext_get_actual_len(newext));
1995 			if (unwritten)
1996 				ext4_ext_mark_unwritten(ex);
1997 			eh = path[depth].p_hdr;
1998 			nearex = ex;
1999 			goto merge;
2000 		}
2001 
2002 prepend:
2003 		/* Try to prepend newex to the ex */
2004 		if (ext4_can_extents_be_merged(inode, newext, ex)) {
2005 			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
2006 				  "(from %llu)\n",
2007 				  le32_to_cpu(newext->ee_block),
2008 				  ext4_ext_is_unwritten(newext),
2009 				  ext4_ext_get_actual_len(newext),
2010 				  le32_to_cpu(ex->ee_block),
2011 				  ext4_ext_is_unwritten(ex),
2012 				  ext4_ext_get_actual_len(ex),
2013 				  ext4_ext_pblock(ex));
2014 			err = ext4_ext_get_access(handle, inode,
2015 						  path + depth);
2016 			if (err)
2017 				return err;
2018 
2019 			unwritten = ext4_ext_is_unwritten(ex);
2020 			ex->ee_block = newext->ee_block;
2021 			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2022 			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2023 					+ ext4_ext_get_actual_len(newext));
2024 			if (unwritten)
2025 				ext4_ext_mark_unwritten(ex);
2026 			eh = path[depth].p_hdr;
2027 			nearex = ex;
2028 			goto merge;
2029 		}
2030 	}
2031 
2032 	depth = ext_depth(inode);
2033 	eh = path[depth].p_hdr;
2034 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2035 		goto has_space;
2036 
2037 	/* probably next leaf has space for us? */
2038 	fex = EXT_LAST_EXTENT(eh);
2039 	next = EXT_MAX_BLOCKS;
2040 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2041 		next = ext4_ext_next_leaf_block(path);
2042 	if (next != EXT_MAX_BLOCKS) {
2043 		ext_debug("next leaf block - %u\n", next);
2044 		BUG_ON(npath != NULL);
2045 		npath = ext4_find_extent(inode, next, NULL, 0);
2046 		if (IS_ERR(npath))
2047 			return PTR_ERR(npath);
2048 		BUG_ON(npath->p_depth != path->p_depth);
2049 		eh = npath[depth].p_hdr;
2050 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2051 			ext_debug("next leaf isn't full(%d)\n",
2052 				  le16_to_cpu(eh->eh_entries));
2053 			path = npath;
2054 			goto has_space;
2055 		}
2056 		ext_debug("next leaf has no free space(%d,%d)\n",
2057 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2058 	}
2059 
2060 	/*
2061 	 * There is no free space in the found leaf.
2062 	 * We're gonna add a new leaf in the tree.
2063 	 */
2064 	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2065 		mb_flags |= EXT4_MB_USE_RESERVED;
2066 	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2067 				       ppath, newext);
2068 	if (err)
2069 		goto cleanup;
2070 	depth = ext_depth(inode);
2071 	eh = path[depth].p_hdr;
2072 
2073 has_space:
2074 	nearex = path[depth].p_ext;
2075 
2076 	err = ext4_ext_get_access(handle, inode, path + depth);
2077 	if (err)
2078 		goto cleanup;
2079 
2080 	if (!nearex) {
2081 		/* there is no extent in this leaf, create first one */
2082 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2083 				le32_to_cpu(newext->ee_block),
2084 				ext4_ext_pblock(newext),
2085 				ext4_ext_is_unwritten(newext),
2086 				ext4_ext_get_actual_len(newext));
2087 		nearex = EXT_FIRST_EXTENT(eh);
2088 	} else {
2089 		if (le32_to_cpu(newext->ee_block)
2090 			   > le32_to_cpu(nearex->ee_block)) {
2091 			/* Insert after */
2092 			ext_debug("insert %u:%llu:[%d]%d before: "
2093 					"nearest %p\n",
2094 					le32_to_cpu(newext->ee_block),
2095 					ext4_ext_pblock(newext),
2096 					ext4_ext_is_unwritten(newext),
2097 					ext4_ext_get_actual_len(newext),
2098 					nearex);
2099 			nearex++;
2100 		} else {
2101 			/* Insert before */
2102 			BUG_ON(newext->ee_block == nearex->ee_block);
2103 			ext_debug("insert %u:%llu:[%d]%d after: "
2104 					"nearest %p\n",
2105 					le32_to_cpu(newext->ee_block),
2106 					ext4_ext_pblock(newext),
2107 					ext4_ext_is_unwritten(newext),
2108 					ext4_ext_get_actual_len(newext),
2109 					nearex);
2110 		}
2111 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2112 		if (len > 0) {
2113 			ext_debug("insert %u:%llu:[%d]%d: "
2114 					"move %d extents from 0x%p to 0x%p\n",
2115 					le32_to_cpu(newext->ee_block),
2116 					ext4_ext_pblock(newext),
2117 					ext4_ext_is_unwritten(newext),
2118 					ext4_ext_get_actual_len(newext),
2119 					len, nearex, nearex + 1);
2120 			memmove(nearex + 1, nearex,
2121 				len * sizeof(struct ext4_extent));
2122 		}
2123 	}
2124 
2125 	le16_add_cpu(&eh->eh_entries, 1);
2126 	path[depth].p_ext = nearex;
2127 	nearex->ee_block = newext->ee_block;
2128 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2129 	nearex->ee_len = newext->ee_len;
2130 
2131 merge:
2132 	/* try to merge extents */
2133 	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2134 		ext4_ext_try_to_merge(handle, inode, path, nearex);
2135 
2136 
2137 	/* time to correct all indexes above */
2138 	err = ext4_ext_correct_indexes(handle, inode, path);
2139 	if (err)
2140 		goto cleanup;
2141 
2142 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2143 
2144 cleanup:
2145 	ext4_ext_drop_refs(npath);
2146 	kfree(npath);
2147 	return err;
2148 }
2149 
2150 static int ext4_fill_fiemap_extents(struct inode *inode,
2151 				    ext4_lblk_t block, ext4_lblk_t num,
2152 				    struct fiemap_extent_info *fieinfo)
2153 {
2154 	struct ext4_ext_path *path = NULL;
2155 	struct ext4_extent *ex;
2156 	struct extent_status es;
2157 	ext4_lblk_t next, next_del, start = 0, end = 0;
2158 	ext4_lblk_t last = block + num;
2159 	int exists, depth = 0, err = 0;
2160 	unsigned int flags = 0;
2161 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2162 
2163 	while (block < last && block != EXT_MAX_BLOCKS) {
2164 		num = last - block;
2165 		/* find extent for this block */
2166 		down_read(&EXT4_I(inode)->i_data_sem);
2167 
2168 		path = ext4_find_extent(inode, block, &path, 0);
2169 		if (IS_ERR(path)) {
2170 			up_read(&EXT4_I(inode)->i_data_sem);
2171 			err = PTR_ERR(path);
2172 			path = NULL;
2173 			break;
2174 		}
2175 
2176 		depth = ext_depth(inode);
2177 		if (unlikely(path[depth].p_hdr == NULL)) {
2178 			up_read(&EXT4_I(inode)->i_data_sem);
2179 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2180 			err = -EFSCORRUPTED;
2181 			break;
2182 		}
2183 		ex = path[depth].p_ext;
2184 		next = ext4_ext_next_allocated_block(path);
2185 
2186 		flags = 0;
2187 		exists = 0;
2188 		if (!ex) {
2189 			/* there is no extent yet, so try to allocate
2190 			 * all requested space */
2191 			start = block;
2192 			end = block + num;
2193 		} else if (le32_to_cpu(ex->ee_block) > block) {
2194 			/* need to allocate space before found extent */
2195 			start = block;
2196 			end = le32_to_cpu(ex->ee_block);
2197 			if (block + num < end)
2198 				end = block + num;
2199 		} else if (block >= le32_to_cpu(ex->ee_block)
2200 					+ ext4_ext_get_actual_len(ex)) {
2201 			/* need to allocate space after found extent */
2202 			start = block;
2203 			end = block + num;
2204 			if (end >= next)
2205 				end = next;
2206 		} else if (block >= le32_to_cpu(ex->ee_block)) {
2207 			/*
2208 			 * some part of requested space is covered
2209 			 * by found extent
2210 			 */
2211 			start = block;
2212 			end = le32_to_cpu(ex->ee_block)
2213 				+ ext4_ext_get_actual_len(ex);
2214 			if (block + num < end)
2215 				end = block + num;
2216 			exists = 1;
2217 		} else {
2218 			BUG();
2219 		}
2220 		BUG_ON(end <= start);
2221 
2222 		if (!exists) {
2223 			es.es_lblk = start;
2224 			es.es_len = end - start;
2225 			es.es_pblk = 0;
2226 		} else {
2227 			es.es_lblk = le32_to_cpu(ex->ee_block);
2228 			es.es_len = ext4_ext_get_actual_len(ex);
2229 			es.es_pblk = ext4_ext_pblock(ex);
2230 			if (ext4_ext_is_unwritten(ex))
2231 				flags |= FIEMAP_EXTENT_UNWRITTEN;
2232 		}
2233 
2234 		/*
2235 		 * Find delayed extent and update es accordingly. We call
2236 		 * it even in !exists case to find out whether es is the
2237 		 * last existing extent or not.
2238 		 */
2239 		next_del = ext4_find_delayed_extent(inode, &es);
2240 		if (!exists && next_del) {
2241 			exists = 1;
2242 			flags |= (FIEMAP_EXTENT_DELALLOC |
2243 				  FIEMAP_EXTENT_UNKNOWN);
2244 		}
2245 		up_read(&EXT4_I(inode)->i_data_sem);
2246 
2247 		if (unlikely(es.es_len == 0)) {
2248 			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2249 			err = -EFSCORRUPTED;
2250 			break;
2251 		}
2252 
2253 		/*
2254 		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2255 		 * we need to check next == EXT_MAX_BLOCKS because it is
2256 		 * possible that an extent is with unwritten and delayed
2257 		 * status due to when an extent is delayed allocated and
2258 		 * is allocated by fallocate status tree will track both of
2259 		 * them in a extent.
2260 		 *
2261 		 * So we could return a unwritten and delayed extent, and
2262 		 * its block is equal to 'next'.
2263 		 */
2264 		if (next == next_del && next == EXT_MAX_BLOCKS) {
2265 			flags |= FIEMAP_EXTENT_LAST;
2266 			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2267 				     next != EXT_MAX_BLOCKS)) {
2268 				EXT4_ERROR_INODE(inode,
2269 						 "next extent == %u, next "
2270 						 "delalloc extent = %u",
2271 						 next, next_del);
2272 				err = -EFSCORRUPTED;
2273 				break;
2274 			}
2275 		}
2276 
2277 		if (exists) {
2278 			err = fiemap_fill_next_extent(fieinfo,
2279 				(__u64)es.es_lblk << blksize_bits,
2280 				(__u64)es.es_pblk << blksize_bits,
2281 				(__u64)es.es_len << blksize_bits,
2282 				flags);
2283 			if (err < 0)
2284 				break;
2285 			if (err == 1) {
2286 				err = 0;
2287 				break;
2288 			}
2289 		}
2290 
2291 		block = es.es_lblk + es.es_len;
2292 	}
2293 
2294 	ext4_ext_drop_refs(path);
2295 	kfree(path);
2296 	return err;
2297 }
2298 
2299 /*
2300  * ext4_ext_determine_hole - determine hole around given block
2301  * @inode:	inode we lookup in
2302  * @path:	path in extent tree to @lblk
2303  * @lblk:	pointer to logical block around which we want to determine hole
2304  *
2305  * Determine hole length (and start if easily possible) around given logical
2306  * block. We don't try too hard to find the beginning of the hole but @path
2307  * actually points to extent before @lblk, we provide it.
2308  *
2309  * The function returns the length of a hole starting at @lblk. We update @lblk
2310  * to the beginning of the hole if we managed to find it.
2311  */
2312 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode,
2313 					   struct ext4_ext_path *path,
2314 					   ext4_lblk_t *lblk)
2315 {
2316 	int depth = ext_depth(inode);
2317 	struct ext4_extent *ex;
2318 	ext4_lblk_t len;
2319 
2320 	ex = path[depth].p_ext;
2321 	if (ex == NULL) {
2322 		/* there is no extent yet, so gap is [0;-] */
2323 		*lblk = 0;
2324 		len = EXT_MAX_BLOCKS;
2325 	} else if (*lblk < le32_to_cpu(ex->ee_block)) {
2326 		len = le32_to_cpu(ex->ee_block) - *lblk;
2327 	} else if (*lblk >= le32_to_cpu(ex->ee_block)
2328 			+ ext4_ext_get_actual_len(ex)) {
2329 		ext4_lblk_t next;
2330 
2331 		*lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex);
2332 		next = ext4_ext_next_allocated_block(path);
2333 		BUG_ON(next == *lblk);
2334 		len = next - *lblk;
2335 	} else {
2336 		BUG();
2337 	}
2338 	return len;
2339 }
2340 
2341 /*
2342  * ext4_ext_put_gap_in_cache:
2343  * calculate boundaries of the gap that the requested block fits into
2344  * and cache this gap
2345  */
2346 static void
2347 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start,
2348 			  ext4_lblk_t hole_len)
2349 {
2350 	struct extent_status es;
2351 
2352 	ext4_es_find_delayed_extent_range(inode, hole_start,
2353 					  hole_start + hole_len - 1, &es);
2354 	if (es.es_len) {
2355 		/* There's delayed extent containing lblock? */
2356 		if (es.es_lblk <= hole_start)
2357 			return;
2358 		hole_len = min(es.es_lblk - hole_start, hole_len);
2359 	}
2360 	ext_debug(" -> %u:%u\n", hole_start, hole_len);
2361 	ext4_es_insert_extent(inode, hole_start, hole_len, ~0,
2362 			      EXTENT_STATUS_HOLE);
2363 }
2364 
2365 /*
2366  * ext4_ext_rm_idx:
2367  * removes index from the index block.
2368  */
2369 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2370 			struct ext4_ext_path *path, int depth)
2371 {
2372 	int err;
2373 	ext4_fsblk_t leaf;
2374 
2375 	/* free index block */
2376 	depth--;
2377 	path = path + depth;
2378 	leaf = ext4_idx_pblock(path->p_idx);
2379 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2380 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2381 		return -EFSCORRUPTED;
2382 	}
2383 	err = ext4_ext_get_access(handle, inode, path);
2384 	if (err)
2385 		return err;
2386 
2387 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2388 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2389 		len *= sizeof(struct ext4_extent_idx);
2390 		memmove(path->p_idx, path->p_idx + 1, len);
2391 	}
2392 
2393 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2394 	err = ext4_ext_dirty(handle, inode, path);
2395 	if (err)
2396 		return err;
2397 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2398 	trace_ext4_ext_rm_idx(inode, leaf);
2399 
2400 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2401 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2402 
2403 	while (--depth >= 0) {
2404 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2405 			break;
2406 		path--;
2407 		err = ext4_ext_get_access(handle, inode, path);
2408 		if (err)
2409 			break;
2410 		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2411 		err = ext4_ext_dirty(handle, inode, path);
2412 		if (err)
2413 			break;
2414 	}
2415 	return err;
2416 }
2417 
2418 /*
2419  * ext4_ext_calc_credits_for_single_extent:
2420  * This routine returns max. credits that needed to insert an extent
2421  * to the extent tree.
2422  * When pass the actual path, the caller should calculate credits
2423  * under i_data_sem.
2424  */
2425 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2426 						struct ext4_ext_path *path)
2427 {
2428 	if (path) {
2429 		int depth = ext_depth(inode);
2430 		int ret = 0;
2431 
2432 		/* probably there is space in leaf? */
2433 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2434 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2435 
2436 			/*
2437 			 *  There are some space in the leaf tree, no
2438 			 *  need to account for leaf block credit
2439 			 *
2440 			 *  bitmaps and block group descriptor blocks
2441 			 *  and other metadata blocks still need to be
2442 			 *  accounted.
2443 			 */
2444 			/* 1 bitmap, 1 block group descriptor */
2445 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2446 			return ret;
2447 		}
2448 	}
2449 
2450 	return ext4_chunk_trans_blocks(inode, nrblocks);
2451 }
2452 
2453 /*
2454  * How many index/leaf blocks need to change/allocate to add @extents extents?
2455  *
2456  * If we add a single extent, then in the worse case, each tree level
2457  * index/leaf need to be changed in case of the tree split.
2458  *
2459  * If more extents are inserted, they could cause the whole tree split more
2460  * than once, but this is really rare.
2461  */
2462 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2463 {
2464 	int index;
2465 	int depth;
2466 
2467 	/* If we are converting the inline data, only one is needed here. */
2468 	if (ext4_has_inline_data(inode))
2469 		return 1;
2470 
2471 	depth = ext_depth(inode);
2472 
2473 	if (extents <= 1)
2474 		index = depth * 2;
2475 	else
2476 		index = depth * 3;
2477 
2478 	return index;
2479 }
2480 
2481 static inline int get_default_free_blocks_flags(struct inode *inode)
2482 {
2483 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2484 		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2485 	else if (ext4_should_journal_data(inode))
2486 		return EXT4_FREE_BLOCKS_FORGET;
2487 	return 0;
2488 }
2489 
2490 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2491 			      struct ext4_extent *ex,
2492 			      long long *partial_cluster,
2493 			      ext4_lblk_t from, ext4_lblk_t to)
2494 {
2495 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2496 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
2497 	ext4_fsblk_t pblk;
2498 	int flags = get_default_free_blocks_flags(inode);
2499 
2500 	/*
2501 	 * For bigalloc file systems, we never free a partial cluster
2502 	 * at the beginning of the extent.  Instead, we make a note
2503 	 * that we tried freeing the cluster, and check to see if we
2504 	 * need to free it on a subsequent call to ext4_remove_blocks,
2505 	 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space.
2506 	 */
2507 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2508 
2509 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2510 	/*
2511 	 * If we have a partial cluster, and it's different from the
2512 	 * cluster of the last block, we need to explicitly free the
2513 	 * partial cluster here.
2514 	 */
2515 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2516 	if (*partial_cluster > 0 &&
2517 	    *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2518 		ext4_free_blocks(handle, inode, NULL,
2519 				 EXT4_C2B(sbi, *partial_cluster),
2520 				 sbi->s_cluster_ratio, flags);
2521 		*partial_cluster = 0;
2522 	}
2523 
2524 #ifdef EXTENTS_STATS
2525 	{
2526 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2527 		spin_lock(&sbi->s_ext_stats_lock);
2528 		sbi->s_ext_blocks += ee_len;
2529 		sbi->s_ext_extents++;
2530 		if (ee_len < sbi->s_ext_min)
2531 			sbi->s_ext_min = ee_len;
2532 		if (ee_len > sbi->s_ext_max)
2533 			sbi->s_ext_max = ee_len;
2534 		if (ext_depth(inode) > sbi->s_depth_max)
2535 			sbi->s_depth_max = ext_depth(inode);
2536 		spin_unlock(&sbi->s_ext_stats_lock);
2537 	}
2538 #endif
2539 	if (from >= le32_to_cpu(ex->ee_block)
2540 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2541 		/* tail removal */
2542 		ext4_lblk_t num;
2543 		long long first_cluster;
2544 
2545 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2546 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2547 		/*
2548 		 * Usually we want to free partial cluster at the end of the
2549 		 * extent, except for the situation when the cluster is still
2550 		 * used by any other extent (partial_cluster is negative).
2551 		 */
2552 		if (*partial_cluster < 0 &&
2553 		    *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1))
2554 			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2555 
2556 		ext_debug("free last %u blocks starting %llu partial %lld\n",
2557 			  num, pblk, *partial_cluster);
2558 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2559 		/*
2560 		 * If the block range to be freed didn't start at the
2561 		 * beginning of a cluster, and we removed the entire
2562 		 * extent and the cluster is not used by any other extent,
2563 		 * save the partial cluster here, since we might need to
2564 		 * delete if we determine that the truncate or punch hole
2565 		 * operation has removed all of the blocks in the cluster.
2566 		 * If that cluster is used by another extent, preserve its
2567 		 * negative value so it isn't freed later on.
2568 		 *
2569 		 * If the whole extent wasn't freed, we've reached the
2570 		 * start of the truncated/punched region and have finished
2571 		 * removing blocks.  If there's a partial cluster here it's
2572 		 * shared with the remainder of the extent and is no longer
2573 		 * a candidate for removal.
2574 		 */
2575 		if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) {
2576 			first_cluster = (long long) EXT4_B2C(sbi, pblk);
2577 			if (first_cluster != -*partial_cluster)
2578 				*partial_cluster = first_cluster;
2579 		} else {
2580 			*partial_cluster = 0;
2581 		}
2582 	} else
2583 		ext4_error(sbi->s_sb, "strange request: removal(2) "
2584 			   "%u-%u from %u:%u",
2585 			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2586 	return 0;
2587 }
2588 
2589 
2590 /*
2591  * ext4_ext_rm_leaf() Removes the extents associated with the
2592  * blocks appearing between "start" and "end".  Both "start"
2593  * and "end" must appear in the same extent or EIO is returned.
2594  *
2595  * @handle: The journal handle
2596  * @inode:  The files inode
2597  * @path:   The path to the leaf
2598  * @partial_cluster: The cluster which we'll have to free if all extents
2599  *                   has been released from it.  However, if this value is
2600  *                   negative, it's a cluster just to the right of the
2601  *                   punched region and it must not be freed.
2602  * @start:  The first block to remove
2603  * @end:   The last block to remove
2604  */
2605 static int
2606 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2607 		 struct ext4_ext_path *path,
2608 		 long long *partial_cluster,
2609 		 ext4_lblk_t start, ext4_lblk_t end)
2610 {
2611 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2612 	int err = 0, correct_index = 0;
2613 	int depth = ext_depth(inode), credits;
2614 	struct ext4_extent_header *eh;
2615 	ext4_lblk_t a, b;
2616 	unsigned num;
2617 	ext4_lblk_t ex_ee_block;
2618 	unsigned short ex_ee_len;
2619 	unsigned unwritten = 0;
2620 	struct ext4_extent *ex;
2621 	ext4_fsblk_t pblk;
2622 
2623 	/* the header must be checked already in ext4_ext_remove_space() */
2624 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2625 	if (!path[depth].p_hdr)
2626 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2627 	eh = path[depth].p_hdr;
2628 	if (unlikely(path[depth].p_hdr == NULL)) {
2629 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2630 		return -EFSCORRUPTED;
2631 	}
2632 	/* find where to start removing */
2633 	ex = path[depth].p_ext;
2634 	if (!ex)
2635 		ex = EXT_LAST_EXTENT(eh);
2636 
2637 	ex_ee_block = le32_to_cpu(ex->ee_block);
2638 	ex_ee_len = ext4_ext_get_actual_len(ex);
2639 
2640 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2641 
2642 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2643 			ex_ee_block + ex_ee_len > start) {
2644 
2645 		if (ext4_ext_is_unwritten(ex))
2646 			unwritten = 1;
2647 		else
2648 			unwritten = 0;
2649 
2650 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2651 			  unwritten, ex_ee_len);
2652 		path[depth].p_ext = ex;
2653 
2654 		a = ex_ee_block > start ? ex_ee_block : start;
2655 		b = ex_ee_block+ex_ee_len - 1 < end ?
2656 			ex_ee_block+ex_ee_len - 1 : end;
2657 
2658 		ext_debug("  border %u:%u\n", a, b);
2659 
2660 		/* If this extent is beyond the end of the hole, skip it */
2661 		if (end < ex_ee_block) {
2662 			/*
2663 			 * We're going to skip this extent and move to another,
2664 			 * so note that its first cluster is in use to avoid
2665 			 * freeing it when removing blocks.  Eventually, the
2666 			 * right edge of the truncated/punched region will
2667 			 * be just to the left.
2668 			 */
2669 			if (sbi->s_cluster_ratio > 1) {
2670 				pblk = ext4_ext_pblock(ex);
2671 				*partial_cluster =
2672 					-(long long) EXT4_B2C(sbi, pblk);
2673 			}
2674 			ex--;
2675 			ex_ee_block = le32_to_cpu(ex->ee_block);
2676 			ex_ee_len = ext4_ext_get_actual_len(ex);
2677 			continue;
2678 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2679 			EXT4_ERROR_INODE(inode,
2680 					 "can not handle truncate %u:%u "
2681 					 "on extent %u:%u",
2682 					 start, end, ex_ee_block,
2683 					 ex_ee_block + ex_ee_len - 1);
2684 			err = -EFSCORRUPTED;
2685 			goto out;
2686 		} else if (a != ex_ee_block) {
2687 			/* remove tail of the extent */
2688 			num = a - ex_ee_block;
2689 		} else {
2690 			/* remove whole extent: excellent! */
2691 			num = 0;
2692 		}
2693 		/*
2694 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2695 		 * descriptor) for each block group; assume two block
2696 		 * groups plus ex_ee_len/blocks_per_block_group for
2697 		 * the worst case
2698 		 */
2699 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2700 		if (ex == EXT_FIRST_EXTENT(eh)) {
2701 			correct_index = 1;
2702 			credits += (ext_depth(inode)) + 1;
2703 		}
2704 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2705 
2706 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2707 		if (err)
2708 			goto out;
2709 
2710 		err = ext4_ext_get_access(handle, inode, path + depth);
2711 		if (err)
2712 			goto out;
2713 
2714 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2715 					 a, b);
2716 		if (err)
2717 			goto out;
2718 
2719 		if (num == 0)
2720 			/* this extent is removed; mark slot entirely unused */
2721 			ext4_ext_store_pblock(ex, 0);
2722 
2723 		ex->ee_len = cpu_to_le16(num);
2724 		/*
2725 		 * Do not mark unwritten if all the blocks in the
2726 		 * extent have been removed.
2727 		 */
2728 		if (unwritten && num)
2729 			ext4_ext_mark_unwritten(ex);
2730 		/*
2731 		 * If the extent was completely released,
2732 		 * we need to remove it from the leaf
2733 		 */
2734 		if (num == 0) {
2735 			if (end != EXT_MAX_BLOCKS - 1) {
2736 				/*
2737 				 * For hole punching, we need to scoot all the
2738 				 * extents up when an extent is removed so that
2739 				 * we dont have blank extents in the middle
2740 				 */
2741 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2742 					sizeof(struct ext4_extent));
2743 
2744 				/* Now get rid of the one at the end */
2745 				memset(EXT_LAST_EXTENT(eh), 0,
2746 					sizeof(struct ext4_extent));
2747 			}
2748 			le16_add_cpu(&eh->eh_entries, -1);
2749 		}
2750 
2751 		err = ext4_ext_dirty(handle, inode, path + depth);
2752 		if (err)
2753 			goto out;
2754 
2755 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2756 				ext4_ext_pblock(ex));
2757 		ex--;
2758 		ex_ee_block = le32_to_cpu(ex->ee_block);
2759 		ex_ee_len = ext4_ext_get_actual_len(ex);
2760 	}
2761 
2762 	if (correct_index && eh->eh_entries)
2763 		err = ext4_ext_correct_indexes(handle, inode, path);
2764 
2765 	/*
2766 	 * If there's a partial cluster and at least one extent remains in
2767 	 * the leaf, free the partial cluster if it isn't shared with the
2768 	 * current extent.  If it is shared with the current extent
2769 	 * we zero partial_cluster because we've reached the start of the
2770 	 * truncated/punched region and we're done removing blocks.
2771 	 */
2772 	if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) {
2773 		pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2774 		if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2775 			ext4_free_blocks(handle, inode, NULL,
2776 					 EXT4_C2B(sbi, *partial_cluster),
2777 					 sbi->s_cluster_ratio,
2778 					 get_default_free_blocks_flags(inode));
2779 		}
2780 		*partial_cluster = 0;
2781 	}
2782 
2783 	/* if this leaf is free, then we should
2784 	 * remove it from index block above */
2785 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2786 		err = ext4_ext_rm_idx(handle, inode, path, depth);
2787 
2788 out:
2789 	return err;
2790 }
2791 
2792 /*
2793  * ext4_ext_more_to_rm:
2794  * returns 1 if current index has to be freed (even partial)
2795  */
2796 static int
2797 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2798 {
2799 	BUG_ON(path->p_idx == NULL);
2800 
2801 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2802 		return 0;
2803 
2804 	/*
2805 	 * if truncate on deeper level happened, it wasn't partial,
2806 	 * so we have to consider current index for truncation
2807 	 */
2808 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2809 		return 0;
2810 	return 1;
2811 }
2812 
2813 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2814 			  ext4_lblk_t end)
2815 {
2816 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2817 	int depth = ext_depth(inode);
2818 	struct ext4_ext_path *path = NULL;
2819 	long long partial_cluster = 0;
2820 	handle_t *handle;
2821 	int i = 0, err = 0;
2822 
2823 	ext_debug("truncate since %u to %u\n", start, end);
2824 
2825 	/* probably first extent we're gonna free will be last in block */
2826 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2827 	if (IS_ERR(handle))
2828 		return PTR_ERR(handle);
2829 
2830 again:
2831 	trace_ext4_ext_remove_space(inode, start, end, depth);
2832 
2833 	/*
2834 	 * Check if we are removing extents inside the extent tree. If that
2835 	 * is the case, we are going to punch a hole inside the extent tree
2836 	 * so we have to check whether we need to split the extent covering
2837 	 * the last block to remove so we can easily remove the part of it
2838 	 * in ext4_ext_rm_leaf().
2839 	 */
2840 	if (end < EXT_MAX_BLOCKS - 1) {
2841 		struct ext4_extent *ex;
2842 		ext4_lblk_t ee_block, ex_end, lblk;
2843 		ext4_fsblk_t pblk;
2844 
2845 		/* find extent for or closest extent to this block */
2846 		path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2847 		if (IS_ERR(path)) {
2848 			ext4_journal_stop(handle);
2849 			return PTR_ERR(path);
2850 		}
2851 		depth = ext_depth(inode);
2852 		/* Leaf not may not exist only if inode has no blocks at all */
2853 		ex = path[depth].p_ext;
2854 		if (!ex) {
2855 			if (depth) {
2856 				EXT4_ERROR_INODE(inode,
2857 						 "path[%d].p_hdr == NULL",
2858 						 depth);
2859 				err = -EFSCORRUPTED;
2860 			}
2861 			goto out;
2862 		}
2863 
2864 		ee_block = le32_to_cpu(ex->ee_block);
2865 		ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1;
2866 
2867 		/*
2868 		 * See if the last block is inside the extent, if so split
2869 		 * the extent at 'end' block so we can easily remove the
2870 		 * tail of the first part of the split extent in
2871 		 * ext4_ext_rm_leaf().
2872 		 */
2873 		if (end >= ee_block && end < ex_end) {
2874 
2875 			/*
2876 			 * If we're going to split the extent, note that
2877 			 * the cluster containing the block after 'end' is
2878 			 * in use to avoid freeing it when removing blocks.
2879 			 */
2880 			if (sbi->s_cluster_ratio > 1) {
2881 				pblk = ext4_ext_pblock(ex) + end - ee_block + 2;
2882 				partial_cluster =
2883 					-(long long) EXT4_B2C(sbi, pblk);
2884 			}
2885 
2886 			/*
2887 			 * Split the extent in two so that 'end' is the last
2888 			 * block in the first new extent. Also we should not
2889 			 * fail removing space due to ENOSPC so try to use
2890 			 * reserved block if that happens.
2891 			 */
2892 			err = ext4_force_split_extent_at(handle, inode, &path,
2893 							 end + 1, 1);
2894 			if (err < 0)
2895 				goto out;
2896 
2897 		} else if (sbi->s_cluster_ratio > 1 && end >= ex_end) {
2898 			/*
2899 			 * If there's an extent to the right its first cluster
2900 			 * contains the immediate right boundary of the
2901 			 * truncated/punched region.  Set partial_cluster to
2902 			 * its negative value so it won't be freed if shared
2903 			 * with the current extent.  The end < ee_block case
2904 			 * is handled in ext4_ext_rm_leaf().
2905 			 */
2906 			lblk = ex_end + 1;
2907 			err = ext4_ext_search_right(inode, path, &lblk, &pblk,
2908 						    &ex);
2909 			if (err)
2910 				goto out;
2911 			if (pblk)
2912 				partial_cluster =
2913 					-(long long) EXT4_B2C(sbi, pblk);
2914 		}
2915 	}
2916 	/*
2917 	 * We start scanning from right side, freeing all the blocks
2918 	 * after i_size and walking into the tree depth-wise.
2919 	 */
2920 	depth = ext_depth(inode);
2921 	if (path) {
2922 		int k = i = depth;
2923 		while (--k > 0)
2924 			path[k].p_block =
2925 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2926 	} else {
2927 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2928 			       GFP_NOFS);
2929 		if (path == NULL) {
2930 			ext4_journal_stop(handle);
2931 			return -ENOMEM;
2932 		}
2933 		path[0].p_maxdepth = path[0].p_depth = depth;
2934 		path[0].p_hdr = ext_inode_hdr(inode);
2935 		i = 0;
2936 
2937 		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2938 			err = -EFSCORRUPTED;
2939 			goto out;
2940 		}
2941 	}
2942 	err = 0;
2943 
2944 	while (i >= 0 && err == 0) {
2945 		if (i == depth) {
2946 			/* this is leaf block */
2947 			err = ext4_ext_rm_leaf(handle, inode, path,
2948 					       &partial_cluster, start,
2949 					       end);
2950 			/* root level has p_bh == NULL, brelse() eats this */
2951 			brelse(path[i].p_bh);
2952 			path[i].p_bh = NULL;
2953 			i--;
2954 			continue;
2955 		}
2956 
2957 		/* this is index block */
2958 		if (!path[i].p_hdr) {
2959 			ext_debug("initialize header\n");
2960 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2961 		}
2962 
2963 		if (!path[i].p_idx) {
2964 			/* this level hasn't been touched yet */
2965 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2966 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2967 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2968 				  path[i].p_hdr,
2969 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2970 		} else {
2971 			/* we were already here, see at next index */
2972 			path[i].p_idx--;
2973 		}
2974 
2975 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2976 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2977 				path[i].p_idx);
2978 		if (ext4_ext_more_to_rm(path + i)) {
2979 			struct buffer_head *bh;
2980 			/* go to the next level */
2981 			ext_debug("move to level %d (block %llu)\n",
2982 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2983 			memset(path + i + 1, 0, sizeof(*path));
2984 			bh = read_extent_tree_block(inode,
2985 				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2986 				EXT4_EX_NOCACHE);
2987 			if (IS_ERR(bh)) {
2988 				/* should we reset i_size? */
2989 				err = PTR_ERR(bh);
2990 				break;
2991 			}
2992 			/* Yield here to deal with large extent trees.
2993 			 * Should be a no-op if we did IO above. */
2994 			cond_resched();
2995 			if (WARN_ON(i + 1 > depth)) {
2996 				err = -EFSCORRUPTED;
2997 				break;
2998 			}
2999 			path[i + 1].p_bh = bh;
3000 
3001 			/* save actual number of indexes since this
3002 			 * number is changed at the next iteration */
3003 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
3004 			i++;
3005 		} else {
3006 			/* we finished processing this index, go up */
3007 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
3008 				/* index is empty, remove it;
3009 				 * handle must be already prepared by the
3010 				 * truncatei_leaf() */
3011 				err = ext4_ext_rm_idx(handle, inode, path, i);
3012 			}
3013 			/* root level has p_bh == NULL, brelse() eats this */
3014 			brelse(path[i].p_bh);
3015 			path[i].p_bh = NULL;
3016 			i--;
3017 			ext_debug("return to level %d\n", i);
3018 		}
3019 	}
3020 
3021 	trace_ext4_ext_remove_space_done(inode, start, end, depth,
3022 			partial_cluster, path->p_hdr->eh_entries);
3023 
3024 	/*
3025 	 * If we still have something in the partial cluster and we have removed
3026 	 * even the first extent, then we should free the blocks in the partial
3027 	 * cluster as well.  (This code will only run when there are no leaves
3028 	 * to the immediate left of the truncated/punched region.)
3029 	 */
3030 	if (partial_cluster > 0 && err == 0) {
3031 		/* don't zero partial_cluster since it's not used afterwards */
3032 		ext4_free_blocks(handle, inode, NULL,
3033 				 EXT4_C2B(sbi, partial_cluster),
3034 				 sbi->s_cluster_ratio,
3035 				 get_default_free_blocks_flags(inode));
3036 	}
3037 
3038 	/* TODO: flexible tree reduction should be here */
3039 	if (path->p_hdr->eh_entries == 0) {
3040 		/*
3041 		 * truncate to zero freed all the tree,
3042 		 * so we need to correct eh_depth
3043 		 */
3044 		err = ext4_ext_get_access(handle, inode, path);
3045 		if (err == 0) {
3046 			ext_inode_hdr(inode)->eh_depth = 0;
3047 			ext_inode_hdr(inode)->eh_max =
3048 				cpu_to_le16(ext4_ext_space_root(inode, 0));
3049 			err = ext4_ext_dirty(handle, inode, path);
3050 		}
3051 	}
3052 out:
3053 	ext4_ext_drop_refs(path);
3054 	kfree(path);
3055 	path = NULL;
3056 	if (err == -EAGAIN)
3057 		goto again;
3058 	ext4_journal_stop(handle);
3059 
3060 	return err;
3061 }
3062 
3063 /*
3064  * called at mount time
3065  */
3066 void ext4_ext_init(struct super_block *sb)
3067 {
3068 	/*
3069 	 * possible initialization would be here
3070 	 */
3071 
3072 	if (ext4_has_feature_extents(sb)) {
3073 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3074 		printk(KERN_INFO "EXT4-fs: file extents enabled"
3075 #ifdef AGGRESSIVE_TEST
3076 		       ", aggressive tests"
3077 #endif
3078 #ifdef CHECK_BINSEARCH
3079 		       ", check binsearch"
3080 #endif
3081 #ifdef EXTENTS_STATS
3082 		       ", stats"
3083 #endif
3084 		       "\n");
3085 #endif
3086 #ifdef EXTENTS_STATS
3087 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3088 		EXT4_SB(sb)->s_ext_min = 1 << 30;
3089 		EXT4_SB(sb)->s_ext_max = 0;
3090 #endif
3091 	}
3092 }
3093 
3094 /*
3095  * called at umount time
3096  */
3097 void ext4_ext_release(struct super_block *sb)
3098 {
3099 	if (!ext4_has_feature_extents(sb))
3100 		return;
3101 
3102 #ifdef EXTENTS_STATS
3103 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3104 		struct ext4_sb_info *sbi = EXT4_SB(sb);
3105 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3106 			sbi->s_ext_blocks, sbi->s_ext_extents,
3107 			sbi->s_ext_blocks / sbi->s_ext_extents);
3108 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3109 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3110 	}
3111 #endif
3112 }
3113 
3114 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3115 {
3116 	ext4_lblk_t  ee_block;
3117 	ext4_fsblk_t ee_pblock;
3118 	unsigned int ee_len;
3119 
3120 	ee_block  = le32_to_cpu(ex->ee_block);
3121 	ee_len    = ext4_ext_get_actual_len(ex);
3122 	ee_pblock = ext4_ext_pblock(ex);
3123 
3124 	if (ee_len == 0)
3125 		return 0;
3126 
3127 	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3128 				     EXTENT_STATUS_WRITTEN);
3129 }
3130 
3131 /* FIXME!! we need to try to merge to left or right after zero-out  */
3132 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3133 {
3134 	ext4_fsblk_t ee_pblock;
3135 	unsigned int ee_len;
3136 
3137 	ee_len    = ext4_ext_get_actual_len(ex);
3138 	ee_pblock = ext4_ext_pblock(ex);
3139 	return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock,
3140 				  ee_len);
3141 }
3142 
3143 /*
3144  * ext4_split_extent_at() splits an extent at given block.
3145  *
3146  * @handle: the journal handle
3147  * @inode: the file inode
3148  * @path: the path to the extent
3149  * @split: the logical block where the extent is splitted.
3150  * @split_flags: indicates if the extent could be zeroout if split fails, and
3151  *		 the states(init or unwritten) of new extents.
3152  * @flags: flags used to insert new extent to extent tree.
3153  *
3154  *
3155  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3156  * of which are deterimined by split_flag.
3157  *
3158  * There are two cases:
3159  *  a> the extent are splitted into two extent.
3160  *  b> split is not needed, and just mark the extent.
3161  *
3162  * return 0 on success.
3163  */
3164 static int ext4_split_extent_at(handle_t *handle,
3165 			     struct inode *inode,
3166 			     struct ext4_ext_path **ppath,
3167 			     ext4_lblk_t split,
3168 			     int split_flag,
3169 			     int flags)
3170 {
3171 	struct ext4_ext_path *path = *ppath;
3172 	ext4_fsblk_t newblock;
3173 	ext4_lblk_t ee_block;
3174 	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3175 	struct ext4_extent *ex2 = NULL;
3176 	unsigned int ee_len, depth;
3177 	int err = 0;
3178 
3179 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3180 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3181 
3182 	ext_debug("ext4_split_extents_at: inode %lu, logical"
3183 		"block %llu\n", inode->i_ino, (unsigned long long)split);
3184 
3185 	ext4_ext_show_leaf(inode, path);
3186 
3187 	depth = ext_depth(inode);
3188 	ex = path[depth].p_ext;
3189 	ee_block = le32_to_cpu(ex->ee_block);
3190 	ee_len = ext4_ext_get_actual_len(ex);
3191 	newblock = split - ee_block + ext4_ext_pblock(ex);
3192 
3193 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3194 	BUG_ON(!ext4_ext_is_unwritten(ex) &&
3195 	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3196 			     EXT4_EXT_MARK_UNWRIT1 |
3197 			     EXT4_EXT_MARK_UNWRIT2));
3198 
3199 	err = ext4_ext_get_access(handle, inode, path + depth);
3200 	if (err)
3201 		goto out;
3202 
3203 	if (split == ee_block) {
3204 		/*
3205 		 * case b: block @split is the block that the extent begins with
3206 		 * then we just change the state of the extent, and splitting
3207 		 * is not needed.
3208 		 */
3209 		if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3210 			ext4_ext_mark_unwritten(ex);
3211 		else
3212 			ext4_ext_mark_initialized(ex);
3213 
3214 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3215 			ext4_ext_try_to_merge(handle, inode, path, ex);
3216 
3217 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3218 		goto out;
3219 	}
3220 
3221 	/* case a */
3222 	memcpy(&orig_ex, ex, sizeof(orig_ex));
3223 	ex->ee_len = cpu_to_le16(split - ee_block);
3224 	if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3225 		ext4_ext_mark_unwritten(ex);
3226 
3227 	/*
3228 	 * path may lead to new leaf, not to original leaf any more
3229 	 * after ext4_ext_insert_extent() returns,
3230 	 */
3231 	err = ext4_ext_dirty(handle, inode, path + depth);
3232 	if (err)
3233 		goto fix_extent_len;
3234 
3235 	ex2 = &newex;
3236 	ex2->ee_block = cpu_to_le32(split);
3237 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3238 	ext4_ext_store_pblock(ex2, newblock);
3239 	if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3240 		ext4_ext_mark_unwritten(ex2);
3241 
3242 	err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3243 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3244 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3245 			if (split_flag & EXT4_EXT_DATA_VALID1) {
3246 				err = ext4_ext_zeroout(inode, ex2);
3247 				zero_ex.ee_block = ex2->ee_block;
3248 				zero_ex.ee_len = cpu_to_le16(
3249 						ext4_ext_get_actual_len(ex2));
3250 				ext4_ext_store_pblock(&zero_ex,
3251 						      ext4_ext_pblock(ex2));
3252 			} else {
3253 				err = ext4_ext_zeroout(inode, ex);
3254 				zero_ex.ee_block = ex->ee_block;
3255 				zero_ex.ee_len = cpu_to_le16(
3256 						ext4_ext_get_actual_len(ex));
3257 				ext4_ext_store_pblock(&zero_ex,
3258 						      ext4_ext_pblock(ex));
3259 			}
3260 		} else {
3261 			err = ext4_ext_zeroout(inode, &orig_ex);
3262 			zero_ex.ee_block = orig_ex.ee_block;
3263 			zero_ex.ee_len = cpu_to_le16(
3264 						ext4_ext_get_actual_len(&orig_ex));
3265 			ext4_ext_store_pblock(&zero_ex,
3266 					      ext4_ext_pblock(&orig_ex));
3267 		}
3268 
3269 		if (err)
3270 			goto fix_extent_len;
3271 		/* update the extent length and mark as initialized */
3272 		ex->ee_len = cpu_to_le16(ee_len);
3273 		ext4_ext_try_to_merge(handle, inode, path, ex);
3274 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3275 		if (err)
3276 			goto fix_extent_len;
3277 
3278 		/* update extent status tree */
3279 		err = ext4_zeroout_es(inode, &zero_ex);
3280 
3281 		goto out;
3282 	} else if (err)
3283 		goto fix_extent_len;
3284 
3285 out:
3286 	ext4_ext_show_leaf(inode, path);
3287 	return err;
3288 
3289 fix_extent_len:
3290 	ex->ee_len = orig_ex.ee_len;
3291 	ext4_ext_dirty(handle, inode, path + path->p_depth);
3292 	return err;
3293 }
3294 
3295 /*
3296  * ext4_split_extents() splits an extent and mark extent which is covered
3297  * by @map as split_flags indicates
3298  *
3299  * It may result in splitting the extent into multiple extents (up to three)
3300  * There are three possibilities:
3301  *   a> There is no split required
3302  *   b> Splits in two extents: Split is happening at either end of the extent
3303  *   c> Splits in three extents: Somone is splitting in middle of the extent
3304  *
3305  */
3306 static int ext4_split_extent(handle_t *handle,
3307 			      struct inode *inode,
3308 			      struct ext4_ext_path **ppath,
3309 			      struct ext4_map_blocks *map,
3310 			      int split_flag,
3311 			      int flags)
3312 {
3313 	struct ext4_ext_path *path = *ppath;
3314 	ext4_lblk_t ee_block;
3315 	struct ext4_extent *ex;
3316 	unsigned int ee_len, depth;
3317 	int err = 0;
3318 	int unwritten;
3319 	int split_flag1, flags1;
3320 	int allocated = map->m_len;
3321 
3322 	depth = ext_depth(inode);
3323 	ex = path[depth].p_ext;
3324 	ee_block = le32_to_cpu(ex->ee_block);
3325 	ee_len = ext4_ext_get_actual_len(ex);
3326 	unwritten = ext4_ext_is_unwritten(ex);
3327 
3328 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3329 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3330 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3331 		if (unwritten)
3332 			split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3333 				       EXT4_EXT_MARK_UNWRIT2;
3334 		if (split_flag & EXT4_EXT_DATA_VALID2)
3335 			split_flag1 |= EXT4_EXT_DATA_VALID1;
3336 		err = ext4_split_extent_at(handle, inode, ppath,
3337 				map->m_lblk + map->m_len, split_flag1, flags1);
3338 		if (err)
3339 			goto out;
3340 	} else {
3341 		allocated = ee_len - (map->m_lblk - ee_block);
3342 	}
3343 	/*
3344 	 * Update path is required because previous ext4_split_extent_at() may
3345 	 * result in split of original leaf or extent zeroout.
3346 	 */
3347 	path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3348 	if (IS_ERR(path))
3349 		return PTR_ERR(path);
3350 	depth = ext_depth(inode);
3351 	ex = path[depth].p_ext;
3352 	if (!ex) {
3353 		EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3354 				 (unsigned long) map->m_lblk);
3355 		return -EFSCORRUPTED;
3356 	}
3357 	unwritten = ext4_ext_is_unwritten(ex);
3358 	split_flag1 = 0;
3359 
3360 	if (map->m_lblk >= ee_block) {
3361 		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3362 		if (unwritten) {
3363 			split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3364 			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3365 						     EXT4_EXT_MARK_UNWRIT2);
3366 		}
3367 		err = ext4_split_extent_at(handle, inode, ppath,
3368 				map->m_lblk, split_flag1, flags);
3369 		if (err)
3370 			goto out;
3371 	}
3372 
3373 	ext4_ext_show_leaf(inode, path);
3374 out:
3375 	return err ? err : allocated;
3376 }
3377 
3378 /*
3379  * This function is called by ext4_ext_map_blocks() if someone tries to write
3380  * to an unwritten extent. It may result in splitting the unwritten
3381  * extent into multiple extents (up to three - one initialized and two
3382  * unwritten).
3383  * There are three possibilities:
3384  *   a> There is no split required: Entire extent should be initialized
3385  *   b> Splits in two extents: Write is happening at either end of the extent
3386  *   c> Splits in three extents: Somone is writing in middle of the extent
3387  *
3388  * Pre-conditions:
3389  *  - The extent pointed to by 'path' is unwritten.
3390  *  - The extent pointed to by 'path' contains a superset
3391  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3392  *
3393  * Post-conditions on success:
3394  *  - the returned value is the number of blocks beyond map->l_lblk
3395  *    that are allocated and initialized.
3396  *    It is guaranteed to be >= map->m_len.
3397  */
3398 static int ext4_ext_convert_to_initialized(handle_t *handle,
3399 					   struct inode *inode,
3400 					   struct ext4_map_blocks *map,
3401 					   struct ext4_ext_path **ppath,
3402 					   int flags)
3403 {
3404 	struct ext4_ext_path *path = *ppath;
3405 	struct ext4_sb_info *sbi;
3406 	struct ext4_extent_header *eh;
3407 	struct ext4_map_blocks split_map;
3408 	struct ext4_extent zero_ex;
3409 	struct ext4_extent *ex, *abut_ex;
3410 	ext4_lblk_t ee_block, eof_block;
3411 	unsigned int ee_len, depth, map_len = map->m_len;
3412 	int allocated = 0, max_zeroout = 0;
3413 	int err = 0;
3414 	int split_flag = 0;
3415 
3416 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3417 		"block %llu, max_blocks %u\n", inode->i_ino,
3418 		(unsigned long long)map->m_lblk, map_len);
3419 
3420 	sbi = EXT4_SB(inode->i_sb);
3421 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3422 		inode->i_sb->s_blocksize_bits;
3423 	if (eof_block < map->m_lblk + map_len)
3424 		eof_block = map->m_lblk + map_len;
3425 
3426 	depth = ext_depth(inode);
3427 	eh = path[depth].p_hdr;
3428 	ex = path[depth].p_ext;
3429 	ee_block = le32_to_cpu(ex->ee_block);
3430 	ee_len = ext4_ext_get_actual_len(ex);
3431 	zero_ex.ee_len = 0;
3432 
3433 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3434 
3435 	/* Pre-conditions */
3436 	BUG_ON(!ext4_ext_is_unwritten(ex));
3437 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3438 
3439 	/*
3440 	 * Attempt to transfer newly initialized blocks from the currently
3441 	 * unwritten extent to its neighbor. This is much cheaper
3442 	 * than an insertion followed by a merge as those involve costly
3443 	 * memmove() calls. Transferring to the left is the common case in
3444 	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3445 	 * followed by append writes.
3446 	 *
3447 	 * Limitations of the current logic:
3448 	 *  - L1: we do not deal with writes covering the whole extent.
3449 	 *    This would require removing the extent if the transfer
3450 	 *    is possible.
3451 	 *  - L2: we only attempt to merge with an extent stored in the
3452 	 *    same extent tree node.
3453 	 */
3454 	if ((map->m_lblk == ee_block) &&
3455 		/* See if we can merge left */
3456 		(map_len < ee_len) &&		/*L1*/
3457 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3458 		ext4_lblk_t prev_lblk;
3459 		ext4_fsblk_t prev_pblk, ee_pblk;
3460 		unsigned int prev_len;
3461 
3462 		abut_ex = ex - 1;
3463 		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3464 		prev_len = ext4_ext_get_actual_len(abut_ex);
3465 		prev_pblk = ext4_ext_pblock(abut_ex);
3466 		ee_pblk = ext4_ext_pblock(ex);
3467 
3468 		/*
3469 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3470 		 * upon those conditions:
3471 		 * - C1: abut_ex is initialized,
3472 		 * - C2: abut_ex is logically abutting ex,
3473 		 * - C3: abut_ex is physically abutting ex,
3474 		 * - C4: abut_ex can receive the additional blocks without
3475 		 *   overflowing the (initialized) length limit.
3476 		 */
3477 		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3478 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3479 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3480 			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3481 			err = ext4_ext_get_access(handle, inode, path + depth);
3482 			if (err)
3483 				goto out;
3484 
3485 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3486 				map, ex, abut_ex);
3487 
3488 			/* Shift the start of ex by 'map_len' blocks */
3489 			ex->ee_block = cpu_to_le32(ee_block + map_len);
3490 			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3491 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3492 			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3493 
3494 			/* Extend abut_ex by 'map_len' blocks */
3495 			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3496 
3497 			/* Result: number of initialized blocks past m_lblk */
3498 			allocated = map_len;
3499 		}
3500 	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3501 		   (map_len < ee_len) &&	/*L1*/
3502 		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3503 		/* See if we can merge right */
3504 		ext4_lblk_t next_lblk;
3505 		ext4_fsblk_t next_pblk, ee_pblk;
3506 		unsigned int next_len;
3507 
3508 		abut_ex = ex + 1;
3509 		next_lblk = le32_to_cpu(abut_ex->ee_block);
3510 		next_len = ext4_ext_get_actual_len(abut_ex);
3511 		next_pblk = ext4_ext_pblock(abut_ex);
3512 		ee_pblk = ext4_ext_pblock(ex);
3513 
3514 		/*
3515 		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3516 		 * upon those conditions:
3517 		 * - C1: abut_ex is initialized,
3518 		 * - C2: abut_ex is logically abutting ex,
3519 		 * - C3: abut_ex is physically abutting ex,
3520 		 * - C4: abut_ex can receive the additional blocks without
3521 		 *   overflowing the (initialized) length limit.
3522 		 */
3523 		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3524 		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3525 		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3526 		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3527 			err = ext4_ext_get_access(handle, inode, path + depth);
3528 			if (err)
3529 				goto out;
3530 
3531 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3532 				map, ex, abut_ex);
3533 
3534 			/* Shift the start of abut_ex by 'map_len' blocks */
3535 			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3536 			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3537 			ex->ee_len = cpu_to_le16(ee_len - map_len);
3538 			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3539 
3540 			/* Extend abut_ex by 'map_len' blocks */
3541 			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3542 
3543 			/* Result: number of initialized blocks past m_lblk */
3544 			allocated = map_len;
3545 		}
3546 	}
3547 	if (allocated) {
3548 		/* Mark the block containing both extents as dirty */
3549 		ext4_ext_dirty(handle, inode, path + depth);
3550 
3551 		/* Update path to point to the right extent */
3552 		path[depth].p_ext = abut_ex;
3553 		goto out;
3554 	} else
3555 		allocated = ee_len - (map->m_lblk - ee_block);
3556 
3557 	WARN_ON(map->m_lblk < ee_block);
3558 	/*
3559 	 * It is safe to convert extent to initialized via explicit
3560 	 * zeroout only if extent is fully inside i_size or new_size.
3561 	 */
3562 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3563 
3564 	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3565 		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3566 			(inode->i_sb->s_blocksize_bits - 10);
3567 
3568 	if (ext4_encrypted_inode(inode))
3569 		max_zeroout = 0;
3570 
3571 	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3572 	if (max_zeroout && (ee_len <= max_zeroout)) {
3573 		err = ext4_ext_zeroout(inode, ex);
3574 		if (err)
3575 			goto out;
3576 		zero_ex.ee_block = ex->ee_block;
3577 		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3578 		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3579 
3580 		err = ext4_ext_get_access(handle, inode, path + depth);
3581 		if (err)
3582 			goto out;
3583 		ext4_ext_mark_initialized(ex);
3584 		ext4_ext_try_to_merge(handle, inode, path, ex);
3585 		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3586 		goto out;
3587 	}
3588 
3589 	/*
3590 	 * four cases:
3591 	 * 1. split the extent into three extents.
3592 	 * 2. split the extent into two extents, zeroout the first half.
3593 	 * 3. split the extent into two extents, zeroout the second half.
3594 	 * 4. split the extent into two extents with out zeroout.
3595 	 */
3596 	split_map.m_lblk = map->m_lblk;
3597 	split_map.m_len = map->m_len;
3598 
3599 	if (max_zeroout && (allocated > map->m_len)) {
3600 		if (allocated <= max_zeroout) {
3601 			/* case 3 */
3602 			zero_ex.ee_block =
3603 					 cpu_to_le32(map->m_lblk);
3604 			zero_ex.ee_len = cpu_to_le16(allocated);
3605 			ext4_ext_store_pblock(&zero_ex,
3606 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3607 			err = ext4_ext_zeroout(inode, &zero_ex);
3608 			if (err)
3609 				goto out;
3610 			split_map.m_lblk = map->m_lblk;
3611 			split_map.m_len = allocated;
3612 		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3613 			/* case 2 */
3614 			if (map->m_lblk != ee_block) {
3615 				zero_ex.ee_block = ex->ee_block;
3616 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3617 							ee_block);
3618 				ext4_ext_store_pblock(&zero_ex,
3619 						      ext4_ext_pblock(ex));
3620 				err = ext4_ext_zeroout(inode, &zero_ex);
3621 				if (err)
3622 					goto out;
3623 			}
3624 
3625 			split_map.m_lblk = ee_block;
3626 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3627 			allocated = map->m_len;
3628 		}
3629 	}
3630 
3631 	err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
3632 				flags);
3633 	if (err > 0)
3634 		err = 0;
3635 out:
3636 	/* If we have gotten a failure, don't zero out status tree */
3637 	if (!err)
3638 		err = ext4_zeroout_es(inode, &zero_ex);
3639 	return err ? err : allocated;
3640 }
3641 
3642 /*
3643  * This function is called by ext4_ext_map_blocks() from
3644  * ext4_get_blocks_dio_write() when DIO to write
3645  * to an unwritten extent.
3646  *
3647  * Writing to an unwritten extent may result in splitting the unwritten
3648  * extent into multiple initialized/unwritten extents (up to three)
3649  * There are three possibilities:
3650  *   a> There is no split required: Entire extent should be unwritten
3651  *   b> Splits in two extents: Write is happening at either end of the extent
3652  *   c> Splits in three extents: Somone is writing in middle of the extent
3653  *
3654  * This works the same way in the case of initialized -> unwritten conversion.
3655  *
3656  * One of more index blocks maybe needed if the extent tree grow after
3657  * the unwritten extent split. To prevent ENOSPC occur at the IO
3658  * complete, we need to split the unwritten extent before DIO submit
3659  * the IO. The unwritten extent called at this time will be split
3660  * into three unwritten extent(at most). After IO complete, the part
3661  * being filled will be convert to initialized by the end_io callback function
3662  * via ext4_convert_unwritten_extents().
3663  *
3664  * Returns the size of unwritten extent to be written on success.
3665  */
3666 static int ext4_split_convert_extents(handle_t *handle,
3667 					struct inode *inode,
3668 					struct ext4_map_blocks *map,
3669 					struct ext4_ext_path **ppath,
3670 					int flags)
3671 {
3672 	struct ext4_ext_path *path = *ppath;
3673 	ext4_lblk_t eof_block;
3674 	ext4_lblk_t ee_block;
3675 	struct ext4_extent *ex;
3676 	unsigned int ee_len;
3677 	int split_flag = 0, depth;
3678 
3679 	ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3680 		  __func__, inode->i_ino,
3681 		  (unsigned long long)map->m_lblk, map->m_len);
3682 
3683 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3684 		inode->i_sb->s_blocksize_bits;
3685 	if (eof_block < map->m_lblk + map->m_len)
3686 		eof_block = map->m_lblk + map->m_len;
3687 	/*
3688 	 * It is safe to convert extent to initialized via explicit
3689 	 * zeroout only if extent is fully insde i_size or new_size.
3690 	 */
3691 	depth = ext_depth(inode);
3692 	ex = path[depth].p_ext;
3693 	ee_block = le32_to_cpu(ex->ee_block);
3694 	ee_len = ext4_ext_get_actual_len(ex);
3695 
3696 	/* Convert to unwritten */
3697 	if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3698 		split_flag |= EXT4_EXT_DATA_VALID1;
3699 	/* Convert to initialized */
3700 	} else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3701 		split_flag |= ee_block + ee_len <= eof_block ?
3702 			      EXT4_EXT_MAY_ZEROOUT : 0;
3703 		split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3704 	}
3705 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3706 	return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3707 }
3708 
3709 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3710 						struct inode *inode,
3711 						struct ext4_map_blocks *map,
3712 						struct ext4_ext_path **ppath)
3713 {
3714 	struct ext4_ext_path *path = *ppath;
3715 	struct ext4_extent *ex;
3716 	ext4_lblk_t ee_block;
3717 	unsigned int ee_len;
3718 	int depth;
3719 	int err = 0;
3720 
3721 	depth = ext_depth(inode);
3722 	ex = path[depth].p_ext;
3723 	ee_block = le32_to_cpu(ex->ee_block);
3724 	ee_len = ext4_ext_get_actual_len(ex);
3725 
3726 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3727 		"block %llu, max_blocks %u\n", inode->i_ino,
3728 		  (unsigned long long)ee_block, ee_len);
3729 
3730 	/* If extent is larger than requested it is a clear sign that we still
3731 	 * have some extent state machine issues left. So extent_split is still
3732 	 * required.
3733 	 * TODO: Once all related issues will be fixed this situation should be
3734 	 * illegal.
3735 	 */
3736 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3737 #ifdef EXT4_DEBUG
3738 		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3739 			     " len %u; IO logical block %llu, len %u",
3740 			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3741 			     (unsigned long long)map->m_lblk, map->m_len);
3742 #endif
3743 		err = ext4_split_convert_extents(handle, inode, map, ppath,
3744 						 EXT4_GET_BLOCKS_CONVERT);
3745 		if (err < 0)
3746 			return err;
3747 		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3748 		if (IS_ERR(path))
3749 			return PTR_ERR(path);
3750 		depth = ext_depth(inode);
3751 		ex = path[depth].p_ext;
3752 	}
3753 
3754 	err = ext4_ext_get_access(handle, inode, path + depth);
3755 	if (err)
3756 		goto out;
3757 	/* first mark the extent as initialized */
3758 	ext4_ext_mark_initialized(ex);
3759 
3760 	/* note: ext4_ext_correct_indexes() isn't needed here because
3761 	 * borders are not changed
3762 	 */
3763 	ext4_ext_try_to_merge(handle, inode, path, ex);
3764 
3765 	/* Mark modified extent as dirty */
3766 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3767 out:
3768 	ext4_ext_show_leaf(inode, path);
3769 	return err;
3770 }
3771 
3772 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3773 			sector_t block, int count)
3774 {
3775 	int i;
3776 	for (i = 0; i < count; i++)
3777                 unmap_underlying_metadata(bdev, block + i);
3778 }
3779 
3780 /*
3781  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3782  */
3783 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3784 			      ext4_lblk_t lblk,
3785 			      struct ext4_ext_path *path,
3786 			      unsigned int len)
3787 {
3788 	int i, depth;
3789 	struct ext4_extent_header *eh;
3790 	struct ext4_extent *last_ex;
3791 
3792 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3793 		return 0;
3794 
3795 	depth = ext_depth(inode);
3796 	eh = path[depth].p_hdr;
3797 
3798 	/*
3799 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3800 	 * do not care for this case anymore. Simply remove the flag
3801 	 * if there are no extents.
3802 	 */
3803 	if (unlikely(!eh->eh_entries))
3804 		goto out;
3805 	last_ex = EXT_LAST_EXTENT(eh);
3806 	/*
3807 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3808 	 * last block in the last extent in the file.  We test this by
3809 	 * first checking to see if the caller to
3810 	 * ext4_ext_get_blocks() was interested in the last block (or
3811 	 * a block beyond the last block) in the current extent.  If
3812 	 * this turns out to be false, we can bail out from this
3813 	 * function immediately.
3814 	 */
3815 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3816 	    ext4_ext_get_actual_len(last_ex))
3817 		return 0;
3818 	/*
3819 	 * If the caller does appear to be planning to write at or
3820 	 * beyond the end of the current extent, we then test to see
3821 	 * if the current extent is the last extent in the file, by
3822 	 * checking to make sure it was reached via the rightmost node
3823 	 * at each level of the tree.
3824 	 */
3825 	for (i = depth-1; i >= 0; i--)
3826 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3827 			return 0;
3828 out:
3829 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3830 	return ext4_mark_inode_dirty(handle, inode);
3831 }
3832 
3833 /**
3834  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3835  *
3836  * Return 1 if there is a delalloc block in the range, otherwise 0.
3837  */
3838 int ext4_find_delalloc_range(struct inode *inode,
3839 			     ext4_lblk_t lblk_start,
3840 			     ext4_lblk_t lblk_end)
3841 {
3842 	struct extent_status es;
3843 
3844 	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3845 	if (es.es_len == 0)
3846 		return 0; /* there is no delay extent in this tree */
3847 	else if (es.es_lblk <= lblk_start &&
3848 		 lblk_start < es.es_lblk + es.es_len)
3849 		return 1;
3850 	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3851 		return 1;
3852 	else
3853 		return 0;
3854 }
3855 
3856 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3857 {
3858 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3859 	ext4_lblk_t lblk_start, lblk_end;
3860 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3861 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3862 
3863 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3864 }
3865 
3866 /**
3867  * Determines how many complete clusters (out of those specified by the 'map')
3868  * are under delalloc and were reserved quota for.
3869  * This function is called when we are writing out the blocks that were
3870  * originally written with their allocation delayed, but then the space was
3871  * allocated using fallocate() before the delayed allocation could be resolved.
3872  * The cases to look for are:
3873  * ('=' indicated delayed allocated blocks
3874  *  '-' indicates non-delayed allocated blocks)
3875  * (a) partial clusters towards beginning and/or end outside of allocated range
3876  *     are not delalloc'ed.
3877  *	Ex:
3878  *	|----c---=|====c====|====c====|===-c----|
3879  *	         |++++++ allocated ++++++|
3880  *	==> 4 complete clusters in above example
3881  *
3882  * (b) partial cluster (outside of allocated range) towards either end is
3883  *     marked for delayed allocation. In this case, we will exclude that
3884  *     cluster.
3885  *	Ex:
3886  *	|----====c========|========c========|
3887  *	     |++++++ allocated ++++++|
3888  *	==> 1 complete clusters in above example
3889  *
3890  *	Ex:
3891  *	|================c================|
3892  *            |++++++ allocated ++++++|
3893  *	==> 0 complete clusters in above example
3894  *
3895  * The ext4_da_update_reserve_space will be called only if we
3896  * determine here that there were some "entire" clusters that span
3897  * this 'allocated' range.
3898  * In the non-bigalloc case, this function will just end up returning num_blks
3899  * without ever calling ext4_find_delalloc_range.
3900  */
3901 static unsigned int
3902 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3903 			   unsigned int num_blks)
3904 {
3905 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3906 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3907 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3908 	unsigned int allocated_clusters = 0;
3909 
3910 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3911 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3912 
3913 	/* max possible clusters for this allocation */
3914 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3915 
3916 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3917 
3918 	/* Check towards left side */
3919 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3920 	if (c_offset) {
3921 		lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3922 		lblk_to = lblk_from + c_offset - 1;
3923 
3924 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3925 			allocated_clusters--;
3926 	}
3927 
3928 	/* Now check towards right. */
3929 	c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3930 	if (allocated_clusters && c_offset) {
3931 		lblk_from = lblk_start + num_blks;
3932 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3933 
3934 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3935 			allocated_clusters--;
3936 	}
3937 
3938 	return allocated_clusters;
3939 }
3940 
3941 static int
3942 convert_initialized_extent(handle_t *handle, struct inode *inode,
3943 			   struct ext4_map_blocks *map,
3944 			   struct ext4_ext_path **ppath,
3945 			   unsigned int allocated)
3946 {
3947 	struct ext4_ext_path *path = *ppath;
3948 	struct ext4_extent *ex;
3949 	ext4_lblk_t ee_block;
3950 	unsigned int ee_len;
3951 	int depth;
3952 	int err = 0;
3953 
3954 	/*
3955 	 * Make sure that the extent is no bigger than we support with
3956 	 * unwritten extent
3957 	 */
3958 	if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3959 		map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3960 
3961 	depth = ext_depth(inode);
3962 	ex = path[depth].p_ext;
3963 	ee_block = le32_to_cpu(ex->ee_block);
3964 	ee_len = ext4_ext_get_actual_len(ex);
3965 
3966 	ext_debug("%s: inode %lu, logical"
3967 		"block %llu, max_blocks %u\n", __func__, inode->i_ino,
3968 		  (unsigned long long)ee_block, ee_len);
3969 
3970 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3971 		err = ext4_split_convert_extents(handle, inode, map, ppath,
3972 				EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3973 		if (err < 0)
3974 			return err;
3975 		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3976 		if (IS_ERR(path))
3977 			return PTR_ERR(path);
3978 		depth = ext_depth(inode);
3979 		ex = path[depth].p_ext;
3980 		if (!ex) {
3981 			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3982 					 (unsigned long) map->m_lblk);
3983 			return -EFSCORRUPTED;
3984 		}
3985 	}
3986 
3987 	err = ext4_ext_get_access(handle, inode, path + depth);
3988 	if (err)
3989 		return err;
3990 	/* first mark the extent as unwritten */
3991 	ext4_ext_mark_unwritten(ex);
3992 
3993 	/* note: ext4_ext_correct_indexes() isn't needed here because
3994 	 * borders are not changed
3995 	 */
3996 	ext4_ext_try_to_merge(handle, inode, path, ex);
3997 
3998 	/* Mark modified extent as dirty */
3999 	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
4000 	if (err)
4001 		return err;
4002 	ext4_ext_show_leaf(inode, path);
4003 
4004 	ext4_update_inode_fsync_trans(handle, inode, 1);
4005 	err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
4006 	if (err)
4007 		return err;
4008 	map->m_flags |= EXT4_MAP_UNWRITTEN;
4009 	if (allocated > map->m_len)
4010 		allocated = map->m_len;
4011 	map->m_len = allocated;
4012 	return allocated;
4013 }
4014 
4015 static int
4016 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
4017 			struct ext4_map_blocks *map,
4018 			struct ext4_ext_path **ppath, int flags,
4019 			unsigned int allocated, ext4_fsblk_t newblock)
4020 {
4021 	struct ext4_ext_path *path = *ppath;
4022 	int ret = 0;
4023 	int err = 0;
4024 
4025 	ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4026 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
4027 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4028 		  flags, allocated);
4029 	ext4_ext_show_leaf(inode, path);
4030 
4031 	/*
4032 	 * When writing into unwritten space, we should not fail to
4033 	 * allocate metadata blocks for the new extent block if needed.
4034 	 */
4035 	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4036 
4037 	trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4038 						    allocated, newblock);
4039 
4040 	/* get_block() before submit the IO, split the extent */
4041 	if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4042 		ret = ext4_split_convert_extents(handle, inode, map, ppath,
4043 					 flags | EXT4_GET_BLOCKS_CONVERT);
4044 		if (ret <= 0)
4045 			goto out;
4046 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4047 		goto out;
4048 	}
4049 	/* IO end_io complete, convert the filled extent to written */
4050 	if (flags & EXT4_GET_BLOCKS_CONVERT) {
4051 		if (flags & EXT4_GET_BLOCKS_ZERO) {
4052 			if (allocated > map->m_len)
4053 				allocated = map->m_len;
4054 			err = ext4_issue_zeroout(inode, map->m_lblk, newblock,
4055 						 allocated);
4056 			if (err < 0)
4057 				goto out2;
4058 		}
4059 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4060 							   ppath);
4061 		if (ret >= 0) {
4062 			ext4_update_inode_fsync_trans(handle, inode, 1);
4063 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
4064 						 path, map->m_len);
4065 		} else
4066 			err = ret;
4067 		map->m_flags |= EXT4_MAP_MAPPED;
4068 		map->m_pblk = newblock;
4069 		if (allocated > map->m_len)
4070 			allocated = map->m_len;
4071 		map->m_len = allocated;
4072 		goto out2;
4073 	}
4074 	/* buffered IO case */
4075 	/*
4076 	 * repeat fallocate creation request
4077 	 * we already have an unwritten extent
4078 	 */
4079 	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4080 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4081 		goto map_out;
4082 	}
4083 
4084 	/* buffered READ or buffered write_begin() lookup */
4085 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4086 		/*
4087 		 * We have blocks reserved already.  We
4088 		 * return allocated blocks so that delalloc
4089 		 * won't do block reservation for us.  But
4090 		 * the buffer head will be unmapped so that
4091 		 * a read from the block returns 0s.
4092 		 */
4093 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4094 		goto out1;
4095 	}
4096 
4097 	/* buffered write, writepage time, convert*/
4098 	ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
4099 	if (ret >= 0)
4100 		ext4_update_inode_fsync_trans(handle, inode, 1);
4101 out:
4102 	if (ret <= 0) {
4103 		err = ret;
4104 		goto out2;
4105 	} else
4106 		allocated = ret;
4107 	map->m_flags |= EXT4_MAP_NEW;
4108 	/*
4109 	 * if we allocated more blocks than requested
4110 	 * we need to make sure we unmap the extra block
4111 	 * allocated. The actual needed block will get
4112 	 * unmapped later when we find the buffer_head marked
4113 	 * new.
4114 	 */
4115 	if (allocated > map->m_len) {
4116 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
4117 					newblock + map->m_len,
4118 					allocated - map->m_len);
4119 		allocated = map->m_len;
4120 	}
4121 	map->m_len = allocated;
4122 
4123 	/*
4124 	 * If we have done fallocate with the offset that is already
4125 	 * delayed allocated, we would have block reservation
4126 	 * and quota reservation done in the delayed write path.
4127 	 * But fallocate would have already updated quota and block
4128 	 * count for this offset. So cancel these reservation
4129 	 */
4130 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4131 		unsigned int reserved_clusters;
4132 		reserved_clusters = get_reserved_cluster_alloc(inode,
4133 				map->m_lblk, map->m_len);
4134 		if (reserved_clusters)
4135 			ext4_da_update_reserve_space(inode,
4136 						     reserved_clusters,
4137 						     0);
4138 	}
4139 
4140 map_out:
4141 	map->m_flags |= EXT4_MAP_MAPPED;
4142 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4143 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4144 					 map->m_len);
4145 		if (err < 0)
4146 			goto out2;
4147 	}
4148 out1:
4149 	if (allocated > map->m_len)
4150 		allocated = map->m_len;
4151 	ext4_ext_show_leaf(inode, path);
4152 	map->m_pblk = newblock;
4153 	map->m_len = allocated;
4154 out2:
4155 	return err ? err : allocated;
4156 }
4157 
4158 /*
4159  * get_implied_cluster_alloc - check to see if the requested
4160  * allocation (in the map structure) overlaps with a cluster already
4161  * allocated in an extent.
4162  *	@sb	The filesystem superblock structure
4163  *	@map	The requested lblk->pblk mapping
4164  *	@ex	The extent structure which might contain an implied
4165  *			cluster allocation
4166  *
4167  * This function is called by ext4_ext_map_blocks() after we failed to
4168  * find blocks that were already in the inode's extent tree.  Hence,
4169  * we know that the beginning of the requested region cannot overlap
4170  * the extent from the inode's extent tree.  There are three cases we
4171  * want to catch.  The first is this case:
4172  *
4173  *		 |--- cluster # N--|
4174  *    |--- extent ---|	|---- requested region ---|
4175  *			|==========|
4176  *
4177  * The second case that we need to test for is this one:
4178  *
4179  *   |--------- cluster # N ----------------|
4180  *	   |--- requested region --|   |------- extent ----|
4181  *	   |=======================|
4182  *
4183  * The third case is when the requested region lies between two extents
4184  * within the same cluster:
4185  *          |------------- cluster # N-------------|
4186  * |----- ex -----|                  |---- ex_right ----|
4187  *                  |------ requested region ------|
4188  *                  |================|
4189  *
4190  * In each of the above cases, we need to set the map->m_pblk and
4191  * map->m_len so it corresponds to the return the extent labelled as
4192  * "|====|" from cluster #N, since it is already in use for data in
4193  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4194  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4195  * as a new "allocated" block region.  Otherwise, we will return 0 and
4196  * ext4_ext_map_blocks() will then allocate one or more new clusters
4197  * by calling ext4_mb_new_blocks().
4198  */
4199 static int get_implied_cluster_alloc(struct super_block *sb,
4200 				     struct ext4_map_blocks *map,
4201 				     struct ext4_extent *ex,
4202 				     struct ext4_ext_path *path)
4203 {
4204 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4205 	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4206 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4207 	ext4_lblk_t rr_cluster_start;
4208 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4209 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4210 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4211 
4212 	/* The extent passed in that we are trying to match */
4213 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4214 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4215 
4216 	/* The requested region passed into ext4_map_blocks() */
4217 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4218 
4219 	if ((rr_cluster_start == ex_cluster_end) ||
4220 	    (rr_cluster_start == ex_cluster_start)) {
4221 		if (rr_cluster_start == ex_cluster_end)
4222 			ee_start += ee_len - 1;
4223 		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4224 		map->m_len = min(map->m_len,
4225 				 (unsigned) sbi->s_cluster_ratio - c_offset);
4226 		/*
4227 		 * Check for and handle this case:
4228 		 *
4229 		 *   |--------- cluster # N-------------|
4230 		 *		       |------- extent ----|
4231 		 *	   |--- requested region ---|
4232 		 *	   |===========|
4233 		 */
4234 
4235 		if (map->m_lblk < ee_block)
4236 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4237 
4238 		/*
4239 		 * Check for the case where there is already another allocated
4240 		 * block to the right of 'ex' but before the end of the cluster.
4241 		 *
4242 		 *          |------------- cluster # N-------------|
4243 		 * |----- ex -----|                  |---- ex_right ----|
4244 		 *                  |------ requested region ------|
4245 		 *                  |================|
4246 		 */
4247 		if (map->m_lblk > ee_block) {
4248 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4249 			map->m_len = min(map->m_len, next - map->m_lblk);
4250 		}
4251 
4252 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4253 		return 1;
4254 	}
4255 
4256 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4257 	return 0;
4258 }
4259 
4260 
4261 /*
4262  * Block allocation/map/preallocation routine for extents based files
4263  *
4264  *
4265  * Need to be called with
4266  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4267  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4268  *
4269  * return > 0, number of of blocks already mapped/allocated
4270  *          if create == 0 and these are pre-allocated blocks
4271  *          	buffer head is unmapped
4272  *          otherwise blocks are mapped
4273  *
4274  * return = 0, if plain look up failed (blocks have not been allocated)
4275  *          buffer head is unmapped
4276  *
4277  * return < 0, error case.
4278  */
4279 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4280 			struct ext4_map_blocks *map, int flags)
4281 {
4282 	struct ext4_ext_path *path = NULL;
4283 	struct ext4_extent newex, *ex, *ex2;
4284 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4285 	ext4_fsblk_t newblock = 0;
4286 	int free_on_err = 0, err = 0, depth, ret;
4287 	unsigned int allocated = 0, offset = 0;
4288 	unsigned int allocated_clusters = 0;
4289 	struct ext4_allocation_request ar;
4290 	ext4_lblk_t cluster_offset;
4291 	bool map_from_cluster = false;
4292 
4293 	ext_debug("blocks %u/%u requested for inode %lu\n",
4294 		  map->m_lblk, map->m_len, inode->i_ino);
4295 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4296 
4297 	/* find extent for this block */
4298 	path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
4299 	if (IS_ERR(path)) {
4300 		err = PTR_ERR(path);
4301 		path = NULL;
4302 		goto out2;
4303 	}
4304 
4305 	depth = ext_depth(inode);
4306 
4307 	/*
4308 	 * consistent leaf must not be empty;
4309 	 * this situation is possible, though, _during_ tree modification;
4310 	 * this is why assert can't be put in ext4_find_extent()
4311 	 */
4312 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4313 		EXT4_ERROR_INODE(inode, "bad extent address "
4314 				 "lblock: %lu, depth: %d pblock %lld",
4315 				 (unsigned long) map->m_lblk, depth,
4316 				 path[depth].p_block);
4317 		err = -EFSCORRUPTED;
4318 		goto out2;
4319 	}
4320 
4321 	ex = path[depth].p_ext;
4322 	if (ex) {
4323 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4324 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4325 		unsigned short ee_len;
4326 
4327 
4328 		/*
4329 		 * unwritten extents are treated as holes, except that
4330 		 * we split out initialized portions during a write.
4331 		 */
4332 		ee_len = ext4_ext_get_actual_len(ex);
4333 
4334 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4335 
4336 		/* if found extent covers block, simply return it */
4337 		if (in_range(map->m_lblk, ee_block, ee_len)) {
4338 			newblock = map->m_lblk - ee_block + ee_start;
4339 			/* number of remaining blocks in the extent */
4340 			allocated = ee_len - (map->m_lblk - ee_block);
4341 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4342 				  ee_block, ee_len, newblock);
4343 
4344 			/*
4345 			 * If the extent is initialized check whether the
4346 			 * caller wants to convert it to unwritten.
4347 			 */
4348 			if ((!ext4_ext_is_unwritten(ex)) &&
4349 			    (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4350 				allocated = convert_initialized_extent(
4351 						handle, inode, map, &path,
4352 						allocated);
4353 				goto out2;
4354 			} else if (!ext4_ext_is_unwritten(ex))
4355 				goto out;
4356 
4357 			ret = ext4_ext_handle_unwritten_extents(
4358 				handle, inode, map, &path, flags,
4359 				allocated, newblock);
4360 			if (ret < 0)
4361 				err = ret;
4362 			else
4363 				allocated = ret;
4364 			goto out2;
4365 		}
4366 	}
4367 
4368 	/*
4369 	 * requested block isn't allocated yet;
4370 	 * we couldn't try to create block if create flag is zero
4371 	 */
4372 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4373 		ext4_lblk_t hole_start, hole_len;
4374 
4375 		hole_start = map->m_lblk;
4376 		hole_len = ext4_ext_determine_hole(inode, path, &hole_start);
4377 		/*
4378 		 * put just found gap into cache to speed up
4379 		 * subsequent requests
4380 		 */
4381 		ext4_ext_put_gap_in_cache(inode, hole_start, hole_len);
4382 
4383 		/* Update hole_len to reflect hole size after map->m_lblk */
4384 		if (hole_start != map->m_lblk)
4385 			hole_len -= map->m_lblk - hole_start;
4386 		map->m_pblk = 0;
4387 		map->m_len = min_t(unsigned int, map->m_len, hole_len);
4388 
4389 		goto out2;
4390 	}
4391 
4392 	/*
4393 	 * Okay, we need to do block allocation.
4394 	 */
4395 	newex.ee_block = cpu_to_le32(map->m_lblk);
4396 	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4397 
4398 	/*
4399 	 * If we are doing bigalloc, check to see if the extent returned
4400 	 * by ext4_find_extent() implies a cluster we can use.
4401 	 */
4402 	if (cluster_offset && ex &&
4403 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4404 		ar.len = allocated = map->m_len;
4405 		newblock = map->m_pblk;
4406 		map_from_cluster = true;
4407 		goto got_allocated_blocks;
4408 	}
4409 
4410 	/* find neighbour allocated blocks */
4411 	ar.lleft = map->m_lblk;
4412 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4413 	if (err)
4414 		goto out2;
4415 	ar.lright = map->m_lblk;
4416 	ex2 = NULL;
4417 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4418 	if (err)
4419 		goto out2;
4420 
4421 	/* Check if the extent after searching to the right implies a
4422 	 * cluster we can use. */
4423 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4424 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4425 		ar.len = allocated = map->m_len;
4426 		newblock = map->m_pblk;
4427 		map_from_cluster = true;
4428 		goto got_allocated_blocks;
4429 	}
4430 
4431 	/*
4432 	 * See if request is beyond maximum number of blocks we can have in
4433 	 * a single extent. For an initialized extent this limit is
4434 	 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4435 	 * EXT_UNWRITTEN_MAX_LEN.
4436 	 */
4437 	if (map->m_len > EXT_INIT_MAX_LEN &&
4438 	    !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4439 		map->m_len = EXT_INIT_MAX_LEN;
4440 	else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4441 		 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4442 		map->m_len = EXT_UNWRITTEN_MAX_LEN;
4443 
4444 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4445 	newex.ee_len = cpu_to_le16(map->m_len);
4446 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4447 	if (err)
4448 		allocated = ext4_ext_get_actual_len(&newex);
4449 	else
4450 		allocated = map->m_len;
4451 
4452 	/* allocate new block */
4453 	ar.inode = inode;
4454 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4455 	ar.logical = map->m_lblk;
4456 	/*
4457 	 * We calculate the offset from the beginning of the cluster
4458 	 * for the logical block number, since when we allocate a
4459 	 * physical cluster, the physical block should start at the
4460 	 * same offset from the beginning of the cluster.  This is
4461 	 * needed so that future calls to get_implied_cluster_alloc()
4462 	 * work correctly.
4463 	 */
4464 	offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4465 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4466 	ar.goal -= offset;
4467 	ar.logical -= offset;
4468 	if (S_ISREG(inode->i_mode))
4469 		ar.flags = EXT4_MB_HINT_DATA;
4470 	else
4471 		/* disable in-core preallocation for non-regular files */
4472 		ar.flags = 0;
4473 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4474 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4475 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4476 		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
4477 	if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
4478 		ar.flags |= EXT4_MB_USE_RESERVED;
4479 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4480 	if (!newblock)
4481 		goto out2;
4482 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4483 		  ar.goal, newblock, allocated);
4484 	free_on_err = 1;
4485 	allocated_clusters = ar.len;
4486 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4487 	if (ar.len > allocated)
4488 		ar.len = allocated;
4489 
4490 got_allocated_blocks:
4491 	/* try to insert new extent into found leaf and return */
4492 	ext4_ext_store_pblock(&newex, newblock + offset);
4493 	newex.ee_len = cpu_to_le16(ar.len);
4494 	/* Mark unwritten */
4495 	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4496 		ext4_ext_mark_unwritten(&newex);
4497 		map->m_flags |= EXT4_MAP_UNWRITTEN;
4498 	}
4499 
4500 	err = 0;
4501 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4502 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4503 					 path, ar.len);
4504 	if (!err)
4505 		err = ext4_ext_insert_extent(handle, inode, &path,
4506 					     &newex, flags);
4507 
4508 	if (err && free_on_err) {
4509 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4510 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4511 		/* free data blocks we just allocated */
4512 		/* not a good idea to call discard here directly,
4513 		 * but otherwise we'd need to call it every free() */
4514 		ext4_discard_preallocations(inode);
4515 		ext4_free_blocks(handle, inode, NULL, newblock,
4516 				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4517 		goto out2;
4518 	}
4519 
4520 	/* previous routine could use block we allocated */
4521 	newblock = ext4_ext_pblock(&newex);
4522 	allocated = ext4_ext_get_actual_len(&newex);
4523 	if (allocated > map->m_len)
4524 		allocated = map->m_len;
4525 	map->m_flags |= EXT4_MAP_NEW;
4526 
4527 	/*
4528 	 * Update reserved blocks/metadata blocks after successful
4529 	 * block allocation which had been deferred till now.
4530 	 */
4531 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4532 		unsigned int reserved_clusters;
4533 		/*
4534 		 * Check how many clusters we had reserved this allocated range
4535 		 */
4536 		reserved_clusters = get_reserved_cluster_alloc(inode,
4537 						map->m_lblk, allocated);
4538 		if (!map_from_cluster) {
4539 			BUG_ON(allocated_clusters < reserved_clusters);
4540 			if (reserved_clusters < allocated_clusters) {
4541 				struct ext4_inode_info *ei = EXT4_I(inode);
4542 				int reservation = allocated_clusters -
4543 						  reserved_clusters;
4544 				/*
4545 				 * It seems we claimed few clusters outside of
4546 				 * the range of this allocation. We should give
4547 				 * it back to the reservation pool. This can
4548 				 * happen in the following case:
4549 				 *
4550 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4551 				 *   cluster has 4 blocks. Thus, the clusters
4552 				 *   are [0-3],[4-7],[8-11]...
4553 				 * * First comes delayed allocation write for
4554 				 *   logical blocks 10 & 11. Since there were no
4555 				 *   previous delayed allocated blocks in the
4556 				 *   range [8-11], we would reserve 1 cluster
4557 				 *   for this write.
4558 				 * * Next comes write for logical blocks 3 to 8.
4559 				 *   In this case, we will reserve 2 clusters
4560 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4561 				 *   that range has a delayed allocated blocks.
4562 				 *   Thus total reserved clusters now becomes 3.
4563 				 * * Now, during the delayed allocation writeout
4564 				 *   time, we will first write blocks [3-8] and
4565 				 *   allocate 3 clusters for writing these
4566 				 *   blocks. Also, we would claim all these
4567 				 *   three clusters above.
4568 				 * * Now when we come here to writeout the
4569 				 *   blocks [10-11], we would expect to claim
4570 				 *   the reservation of 1 cluster we had made
4571 				 *   (and we would claim it since there are no
4572 				 *   more delayed allocated blocks in the range
4573 				 *   [8-11]. But our reserved cluster count had
4574 				 *   already gone to 0.
4575 				 *
4576 				 *   Thus, at the step 4 above when we determine
4577 				 *   that there are still some unwritten delayed
4578 				 *   allocated blocks outside of our current
4579 				 *   block range, we should increment the
4580 				 *   reserved clusters count so that when the
4581 				 *   remaining blocks finally gets written, we
4582 				 *   could claim them.
4583 				 */
4584 				dquot_reserve_block(inode,
4585 						EXT4_C2B(sbi, reservation));
4586 				spin_lock(&ei->i_block_reservation_lock);
4587 				ei->i_reserved_data_blocks += reservation;
4588 				spin_unlock(&ei->i_block_reservation_lock);
4589 			}
4590 			/*
4591 			 * We will claim quota for all newly allocated blocks.
4592 			 * We're updating the reserved space *after* the
4593 			 * correction above so we do not accidentally free
4594 			 * all the metadata reservation because we might
4595 			 * actually need it later on.
4596 			 */
4597 			ext4_da_update_reserve_space(inode, allocated_clusters,
4598 							1);
4599 		}
4600 	}
4601 
4602 	/*
4603 	 * Cache the extent and update transaction to commit on fdatasync only
4604 	 * when it is _not_ an unwritten extent.
4605 	 */
4606 	if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4607 		ext4_update_inode_fsync_trans(handle, inode, 1);
4608 	else
4609 		ext4_update_inode_fsync_trans(handle, inode, 0);
4610 out:
4611 	if (allocated > map->m_len)
4612 		allocated = map->m_len;
4613 	ext4_ext_show_leaf(inode, path);
4614 	map->m_flags |= EXT4_MAP_MAPPED;
4615 	map->m_pblk = newblock;
4616 	map->m_len = allocated;
4617 out2:
4618 	ext4_ext_drop_refs(path);
4619 	kfree(path);
4620 
4621 	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4622 				       err ? err : allocated);
4623 	return err ? err : allocated;
4624 }
4625 
4626 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4627 {
4628 	struct super_block *sb = inode->i_sb;
4629 	ext4_lblk_t last_block;
4630 	int err = 0;
4631 
4632 	/*
4633 	 * TODO: optimization is possible here.
4634 	 * Probably we need not scan at all,
4635 	 * because page truncation is enough.
4636 	 */
4637 
4638 	/* we have to know where to truncate from in crash case */
4639 	EXT4_I(inode)->i_disksize = inode->i_size;
4640 	ext4_mark_inode_dirty(handle, inode);
4641 
4642 	last_block = (inode->i_size + sb->s_blocksize - 1)
4643 			>> EXT4_BLOCK_SIZE_BITS(sb);
4644 retry:
4645 	err = ext4_es_remove_extent(inode, last_block,
4646 				    EXT_MAX_BLOCKS - last_block);
4647 	if (err == -ENOMEM) {
4648 		cond_resched();
4649 		congestion_wait(BLK_RW_ASYNC, HZ/50);
4650 		goto retry;
4651 	}
4652 	if (err) {
4653 		ext4_std_error(inode->i_sb, err);
4654 		return;
4655 	}
4656 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4657 	ext4_std_error(inode->i_sb, err);
4658 }
4659 
4660 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4661 				  ext4_lblk_t len, loff_t new_size,
4662 				  int flags, int mode)
4663 {
4664 	struct inode *inode = file_inode(file);
4665 	handle_t *handle;
4666 	int ret = 0;
4667 	int ret2 = 0;
4668 	int retries = 0;
4669 	int depth = 0;
4670 	struct ext4_map_blocks map;
4671 	unsigned int credits;
4672 	loff_t epos;
4673 
4674 	map.m_lblk = offset;
4675 	map.m_len = len;
4676 	/*
4677 	 * Don't normalize the request if it can fit in one extent so
4678 	 * that it doesn't get unnecessarily split into multiple
4679 	 * extents.
4680 	 */
4681 	if (len <= EXT_UNWRITTEN_MAX_LEN)
4682 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4683 
4684 	/*
4685 	 * credits to insert 1 extent into extent tree
4686 	 */
4687 	credits = ext4_chunk_trans_blocks(inode, len);
4688 	/*
4689 	 * We can only call ext_depth() on extent based inodes
4690 	 */
4691 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4692 		depth = ext_depth(inode);
4693 	else
4694 		depth = -1;
4695 
4696 retry:
4697 	while (ret >= 0 && len) {
4698 		/*
4699 		 * Recalculate credits when extent tree depth changes.
4700 		 */
4701 		if (depth >= 0 && depth != ext_depth(inode)) {
4702 			credits = ext4_chunk_trans_blocks(inode, len);
4703 			depth = ext_depth(inode);
4704 		}
4705 
4706 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4707 					    credits);
4708 		if (IS_ERR(handle)) {
4709 			ret = PTR_ERR(handle);
4710 			break;
4711 		}
4712 		ret = ext4_map_blocks(handle, inode, &map, flags);
4713 		if (ret <= 0) {
4714 			ext4_debug("inode #%lu: block %u: len %u: "
4715 				   "ext4_ext_map_blocks returned %d",
4716 				   inode->i_ino, map.m_lblk,
4717 				   map.m_len, ret);
4718 			ext4_mark_inode_dirty(handle, inode);
4719 			ret2 = ext4_journal_stop(handle);
4720 			break;
4721 		}
4722 		map.m_lblk += ret;
4723 		map.m_len = len = len - ret;
4724 		epos = (loff_t)map.m_lblk << inode->i_blkbits;
4725 		inode->i_ctime = ext4_current_time(inode);
4726 		if (new_size) {
4727 			if (epos > new_size)
4728 				epos = new_size;
4729 			if (ext4_update_inode_size(inode, epos) & 0x1)
4730 				inode->i_mtime = inode->i_ctime;
4731 		} else {
4732 			if (epos > inode->i_size)
4733 				ext4_set_inode_flag(inode,
4734 						    EXT4_INODE_EOFBLOCKS);
4735 		}
4736 		ext4_mark_inode_dirty(handle, inode);
4737 		ret2 = ext4_journal_stop(handle);
4738 		if (ret2)
4739 			break;
4740 	}
4741 	if (ret == -ENOSPC &&
4742 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4743 		ret = 0;
4744 		goto retry;
4745 	}
4746 
4747 	return ret > 0 ? ret2 : ret;
4748 }
4749 
4750 static long ext4_zero_range(struct file *file, loff_t offset,
4751 			    loff_t len, int mode)
4752 {
4753 	struct inode *inode = file_inode(file);
4754 	handle_t *handle = NULL;
4755 	unsigned int max_blocks;
4756 	loff_t new_size = 0;
4757 	int ret = 0;
4758 	int flags;
4759 	int credits;
4760 	int partial_begin, partial_end;
4761 	loff_t start, end;
4762 	ext4_lblk_t lblk;
4763 	unsigned int blkbits = inode->i_blkbits;
4764 
4765 	trace_ext4_zero_range(inode, offset, len, mode);
4766 
4767 	if (!S_ISREG(inode->i_mode))
4768 		return -EINVAL;
4769 
4770 	/* Call ext4_force_commit to flush all data in case of data=journal. */
4771 	if (ext4_should_journal_data(inode)) {
4772 		ret = ext4_force_commit(inode->i_sb);
4773 		if (ret)
4774 			return ret;
4775 	}
4776 
4777 	/*
4778 	 * Round up offset. This is not fallocate, we neet to zero out
4779 	 * blocks, so convert interior block aligned part of the range to
4780 	 * unwritten and possibly manually zero out unaligned parts of the
4781 	 * range.
4782 	 */
4783 	start = round_up(offset, 1 << blkbits);
4784 	end = round_down((offset + len), 1 << blkbits);
4785 
4786 	if (start < offset || end > offset + len)
4787 		return -EINVAL;
4788 	partial_begin = offset & ((1 << blkbits) - 1);
4789 	partial_end = (offset + len) & ((1 << blkbits) - 1);
4790 
4791 	lblk = start >> blkbits;
4792 	max_blocks = (end >> blkbits);
4793 	if (max_blocks < lblk)
4794 		max_blocks = 0;
4795 	else
4796 		max_blocks -= lblk;
4797 
4798 	inode_lock(inode);
4799 
4800 	/*
4801 	 * Indirect files do not support unwritten extnets
4802 	 */
4803 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4804 		ret = -EOPNOTSUPP;
4805 		goto out_mutex;
4806 	}
4807 
4808 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4809 	     offset + len > i_size_read(inode)) {
4810 		new_size = offset + len;
4811 		ret = inode_newsize_ok(inode, new_size);
4812 		if (ret)
4813 			goto out_mutex;
4814 	}
4815 
4816 	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4817 	if (mode & FALLOC_FL_KEEP_SIZE)
4818 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4819 
4820 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4821 	ext4_inode_block_unlocked_dio(inode);
4822 	inode_dio_wait(inode);
4823 
4824 	/* Preallocate the range including the unaligned edges */
4825 	if (partial_begin || partial_end) {
4826 		ret = ext4_alloc_file_blocks(file,
4827 				round_down(offset, 1 << blkbits) >> blkbits,
4828 				(round_up((offset + len), 1 << blkbits) -
4829 				 round_down(offset, 1 << blkbits)) >> blkbits,
4830 				new_size, flags, mode);
4831 		if (ret)
4832 			goto out_dio;
4833 
4834 	}
4835 
4836 	/* Zero range excluding the unaligned edges */
4837 	if (max_blocks > 0) {
4838 		flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4839 			  EXT4_EX_NOCACHE);
4840 
4841 		/*
4842 		 * Prevent page faults from reinstantiating pages we have
4843 		 * released from page cache.
4844 		 */
4845 		down_write(&EXT4_I(inode)->i_mmap_sem);
4846 		ret = ext4_update_disksize_before_punch(inode, offset, len);
4847 		if (ret) {
4848 			up_write(&EXT4_I(inode)->i_mmap_sem);
4849 			goto out_dio;
4850 		}
4851 		/* Now release the pages and zero block aligned part of pages */
4852 		truncate_pagecache_range(inode, start, end - 1);
4853 		inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4854 
4855 		ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4856 					     flags, mode);
4857 		up_write(&EXT4_I(inode)->i_mmap_sem);
4858 		if (ret)
4859 			goto out_dio;
4860 	}
4861 	if (!partial_begin && !partial_end)
4862 		goto out_dio;
4863 
4864 	/*
4865 	 * In worst case we have to writeout two nonadjacent unwritten
4866 	 * blocks and update the inode
4867 	 */
4868 	credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4869 	if (ext4_should_journal_data(inode))
4870 		credits += 2;
4871 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4872 	if (IS_ERR(handle)) {
4873 		ret = PTR_ERR(handle);
4874 		ext4_std_error(inode->i_sb, ret);
4875 		goto out_dio;
4876 	}
4877 
4878 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4879 	if (new_size) {
4880 		ext4_update_inode_size(inode, new_size);
4881 	} else {
4882 		/*
4883 		* Mark that we allocate beyond EOF so the subsequent truncate
4884 		* can proceed even if the new size is the same as i_size.
4885 		*/
4886 		if ((offset + len) > i_size_read(inode))
4887 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4888 	}
4889 	ext4_mark_inode_dirty(handle, inode);
4890 
4891 	/* Zero out partial block at the edges of the range */
4892 	ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4893 
4894 	if (file->f_flags & O_SYNC)
4895 		ext4_handle_sync(handle);
4896 
4897 	ext4_journal_stop(handle);
4898 out_dio:
4899 	ext4_inode_resume_unlocked_dio(inode);
4900 out_mutex:
4901 	inode_unlock(inode);
4902 	return ret;
4903 }
4904 
4905 /*
4906  * preallocate space for a file. This implements ext4's fallocate file
4907  * operation, which gets called from sys_fallocate system call.
4908  * For block-mapped files, posix_fallocate should fall back to the method
4909  * of writing zeroes to the required new blocks (the same behavior which is
4910  * expected for file systems which do not support fallocate() system call).
4911  */
4912 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4913 {
4914 	struct inode *inode = file_inode(file);
4915 	loff_t new_size = 0;
4916 	unsigned int max_blocks;
4917 	int ret = 0;
4918 	int flags;
4919 	ext4_lblk_t lblk;
4920 	unsigned int blkbits = inode->i_blkbits;
4921 
4922 	/*
4923 	 * Encrypted inodes can't handle collapse range or insert
4924 	 * range since we would need to re-encrypt blocks with a
4925 	 * different IV or XTS tweak (which are based on the logical
4926 	 * block number).
4927 	 *
4928 	 * XXX It's not clear why zero range isn't working, but we'll
4929 	 * leave it disabled for encrypted inodes for now.  This is a
4930 	 * bug we should fix....
4931 	 */
4932 	if (ext4_encrypted_inode(inode) &&
4933 	    (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE |
4934 		     FALLOC_FL_ZERO_RANGE)))
4935 		return -EOPNOTSUPP;
4936 
4937 	/* Return error if mode is not supported */
4938 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4939 		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
4940 		     FALLOC_FL_INSERT_RANGE))
4941 		return -EOPNOTSUPP;
4942 
4943 	if (mode & FALLOC_FL_PUNCH_HOLE)
4944 		return ext4_punch_hole(inode, offset, len);
4945 
4946 	ret = ext4_convert_inline_data(inode);
4947 	if (ret)
4948 		return ret;
4949 
4950 	if (mode & FALLOC_FL_COLLAPSE_RANGE)
4951 		return ext4_collapse_range(inode, offset, len);
4952 
4953 	if (mode & FALLOC_FL_INSERT_RANGE)
4954 		return ext4_insert_range(inode, offset, len);
4955 
4956 	if (mode & FALLOC_FL_ZERO_RANGE)
4957 		return ext4_zero_range(file, offset, len, mode);
4958 
4959 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4960 	lblk = offset >> blkbits;
4961 	/*
4962 	 * We can't just convert len to max_blocks because
4963 	 * If blocksize = 4096 offset = 3072 and len = 2048
4964 	 */
4965 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4966 		- lblk;
4967 
4968 	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4969 	if (mode & FALLOC_FL_KEEP_SIZE)
4970 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4971 
4972 	inode_lock(inode);
4973 
4974 	/*
4975 	 * We only support preallocation for extent-based files only
4976 	 */
4977 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4978 		ret = -EOPNOTSUPP;
4979 		goto out;
4980 	}
4981 
4982 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4983 	     offset + len > i_size_read(inode)) {
4984 		new_size = offset + len;
4985 		ret = inode_newsize_ok(inode, new_size);
4986 		if (ret)
4987 			goto out;
4988 	}
4989 
4990 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4991 	ext4_inode_block_unlocked_dio(inode);
4992 	inode_dio_wait(inode);
4993 
4994 	ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4995 				     flags, mode);
4996 	ext4_inode_resume_unlocked_dio(inode);
4997 	if (ret)
4998 		goto out;
4999 
5000 	if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
5001 		ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5002 						EXT4_I(inode)->i_sync_tid);
5003 	}
5004 out:
5005 	inode_unlock(inode);
5006 	trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
5007 	return ret;
5008 }
5009 
5010 /*
5011  * This function convert a range of blocks to written extents
5012  * The caller of this function will pass the start offset and the size.
5013  * all unwritten extents within this range will be converted to
5014  * written extents.
5015  *
5016  * This function is called from the direct IO end io call back
5017  * function, to convert the fallocated extents after IO is completed.
5018  * Returns 0 on success.
5019  */
5020 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
5021 				   loff_t offset, ssize_t len)
5022 {
5023 	unsigned int max_blocks;
5024 	int ret = 0;
5025 	int ret2 = 0;
5026 	struct ext4_map_blocks map;
5027 	unsigned int credits, blkbits = inode->i_blkbits;
5028 
5029 	map.m_lblk = offset >> blkbits;
5030 	/*
5031 	 * We can't just convert len to max_blocks because
5032 	 * If blocksize = 4096 offset = 3072 and len = 2048
5033 	 */
5034 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
5035 		      map.m_lblk);
5036 	/*
5037 	 * This is somewhat ugly but the idea is clear: When transaction is
5038 	 * reserved, everything goes into it. Otherwise we rather start several
5039 	 * smaller transactions for conversion of each extent separately.
5040 	 */
5041 	if (handle) {
5042 		handle = ext4_journal_start_reserved(handle,
5043 						     EXT4_HT_EXT_CONVERT);
5044 		if (IS_ERR(handle))
5045 			return PTR_ERR(handle);
5046 		credits = 0;
5047 	} else {
5048 		/*
5049 		 * credits to insert 1 extent into extent tree
5050 		 */
5051 		credits = ext4_chunk_trans_blocks(inode, max_blocks);
5052 	}
5053 	while (ret >= 0 && ret < max_blocks) {
5054 		map.m_lblk += ret;
5055 		map.m_len = (max_blocks -= ret);
5056 		if (credits) {
5057 			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5058 						    credits);
5059 			if (IS_ERR(handle)) {
5060 				ret = PTR_ERR(handle);
5061 				break;
5062 			}
5063 		}
5064 		ret = ext4_map_blocks(handle, inode, &map,
5065 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5066 		if (ret <= 0)
5067 			ext4_warning(inode->i_sb,
5068 				     "inode #%lu: block %u: len %u: "
5069 				     "ext4_ext_map_blocks returned %d",
5070 				     inode->i_ino, map.m_lblk,
5071 				     map.m_len, ret);
5072 		ext4_mark_inode_dirty(handle, inode);
5073 		if (credits)
5074 			ret2 = ext4_journal_stop(handle);
5075 		if (ret <= 0 || ret2)
5076 			break;
5077 	}
5078 	if (!credits)
5079 		ret2 = ext4_journal_stop(handle);
5080 	return ret > 0 ? ret2 : ret;
5081 }
5082 
5083 /*
5084  * If newes is not existing extent (newes->ec_pblk equals zero) find
5085  * delayed extent at start of newes and update newes accordingly and
5086  * return start of the next delayed extent.
5087  *
5088  * If newes is existing extent (newes->ec_pblk is not equal zero)
5089  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5090  * extent found. Leave newes unmodified.
5091  */
5092 static int ext4_find_delayed_extent(struct inode *inode,
5093 				    struct extent_status *newes)
5094 {
5095 	struct extent_status es;
5096 	ext4_lblk_t block, next_del;
5097 
5098 	if (newes->es_pblk == 0) {
5099 		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5100 				newes->es_lblk + newes->es_len - 1, &es);
5101 
5102 		/*
5103 		 * No extent in extent-tree contains block @newes->es_pblk,
5104 		 * then the block may stay in 1)a hole or 2)delayed-extent.
5105 		 */
5106 		if (es.es_len == 0)
5107 			/* A hole found. */
5108 			return 0;
5109 
5110 		if (es.es_lblk > newes->es_lblk) {
5111 			/* A hole found. */
5112 			newes->es_len = min(es.es_lblk - newes->es_lblk,
5113 					    newes->es_len);
5114 			return 0;
5115 		}
5116 
5117 		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5118 	}
5119 
5120 	block = newes->es_lblk + newes->es_len;
5121 	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5122 	if (es.es_len == 0)
5123 		next_del = EXT_MAX_BLOCKS;
5124 	else
5125 		next_del = es.es_lblk;
5126 
5127 	return next_del;
5128 }
5129 /* fiemap flags we can handle specified here */
5130 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5131 
5132 static int ext4_xattr_fiemap(struct inode *inode,
5133 				struct fiemap_extent_info *fieinfo)
5134 {
5135 	__u64 physical = 0;
5136 	__u64 length;
5137 	__u32 flags = FIEMAP_EXTENT_LAST;
5138 	int blockbits = inode->i_sb->s_blocksize_bits;
5139 	int error = 0;
5140 
5141 	/* in-inode? */
5142 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5143 		struct ext4_iloc iloc;
5144 		int offset;	/* offset of xattr in inode */
5145 
5146 		error = ext4_get_inode_loc(inode, &iloc);
5147 		if (error)
5148 			return error;
5149 		physical = (__u64)iloc.bh->b_blocknr << blockbits;
5150 		offset = EXT4_GOOD_OLD_INODE_SIZE +
5151 				EXT4_I(inode)->i_extra_isize;
5152 		physical += offset;
5153 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5154 		flags |= FIEMAP_EXTENT_DATA_INLINE;
5155 		brelse(iloc.bh);
5156 	} else { /* external block */
5157 		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5158 		length = inode->i_sb->s_blocksize;
5159 	}
5160 
5161 	if (physical)
5162 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
5163 						length, flags);
5164 	return (error < 0 ? error : 0);
5165 }
5166 
5167 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5168 		__u64 start, __u64 len)
5169 {
5170 	ext4_lblk_t start_blk;
5171 	int error = 0;
5172 
5173 	if (ext4_has_inline_data(inode)) {
5174 		int has_inline = 1;
5175 
5176 		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline,
5177 						start, len);
5178 
5179 		if (has_inline)
5180 			return error;
5181 	}
5182 
5183 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5184 		error = ext4_ext_precache(inode);
5185 		if (error)
5186 			return error;
5187 	}
5188 
5189 	/* fallback to generic here if not in extents fmt */
5190 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5191 		return generic_block_fiemap(inode, fieinfo, start, len,
5192 			ext4_get_block);
5193 
5194 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5195 		return -EBADR;
5196 
5197 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5198 		error = ext4_xattr_fiemap(inode, fieinfo);
5199 	} else {
5200 		ext4_lblk_t len_blks;
5201 		__u64 last_blk;
5202 
5203 		start_blk = start >> inode->i_sb->s_blocksize_bits;
5204 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5205 		if (last_blk >= EXT_MAX_BLOCKS)
5206 			last_blk = EXT_MAX_BLOCKS-1;
5207 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5208 
5209 		/*
5210 		 * Walk the extent tree gathering extent information
5211 		 * and pushing extents back to the user.
5212 		 */
5213 		error = ext4_fill_fiemap_extents(inode, start_blk,
5214 						 len_blks, fieinfo);
5215 	}
5216 	return error;
5217 }
5218 
5219 /*
5220  * ext4_access_path:
5221  * Function to access the path buffer for marking it dirty.
5222  * It also checks if there are sufficient credits left in the journal handle
5223  * to update path.
5224  */
5225 static int
5226 ext4_access_path(handle_t *handle, struct inode *inode,
5227 		struct ext4_ext_path *path)
5228 {
5229 	int credits, err;
5230 
5231 	if (!ext4_handle_valid(handle))
5232 		return 0;
5233 
5234 	/*
5235 	 * Check if need to extend journal credits
5236 	 * 3 for leaf, sb, and inode plus 2 (bmap and group
5237 	 * descriptor) for each block group; assume two block
5238 	 * groups
5239 	 */
5240 	if (handle->h_buffer_credits < 7) {
5241 		credits = ext4_writepage_trans_blocks(inode);
5242 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5243 		/* EAGAIN is success */
5244 		if (err && err != -EAGAIN)
5245 			return err;
5246 	}
5247 
5248 	err = ext4_ext_get_access(handle, inode, path);
5249 	return err;
5250 }
5251 
5252 /*
5253  * ext4_ext_shift_path_extents:
5254  * Shift the extents of a path structure lying between path[depth].p_ext
5255  * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells
5256  * if it is right shift or left shift operation.
5257  */
5258 static int
5259 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5260 			    struct inode *inode, handle_t *handle,
5261 			    enum SHIFT_DIRECTION SHIFT)
5262 {
5263 	int depth, err = 0;
5264 	struct ext4_extent *ex_start, *ex_last;
5265 	bool update = 0;
5266 	depth = path->p_depth;
5267 
5268 	while (depth >= 0) {
5269 		if (depth == path->p_depth) {
5270 			ex_start = path[depth].p_ext;
5271 			if (!ex_start)
5272 				return -EFSCORRUPTED;
5273 
5274 			ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5275 
5276 			err = ext4_access_path(handle, inode, path + depth);
5277 			if (err)
5278 				goto out;
5279 
5280 			if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5281 				update = 1;
5282 
5283 			while (ex_start <= ex_last) {
5284 				if (SHIFT == SHIFT_LEFT) {
5285 					le32_add_cpu(&ex_start->ee_block,
5286 						-shift);
5287 					/* Try to merge to the left. */
5288 					if ((ex_start >
5289 					    EXT_FIRST_EXTENT(path[depth].p_hdr))
5290 					    &&
5291 					    ext4_ext_try_to_merge_right(inode,
5292 					    path, ex_start - 1))
5293 						ex_last--;
5294 					else
5295 						ex_start++;
5296 				} else {
5297 					le32_add_cpu(&ex_last->ee_block, shift);
5298 					ext4_ext_try_to_merge_right(inode, path,
5299 						ex_last);
5300 					ex_last--;
5301 				}
5302 			}
5303 			err = ext4_ext_dirty(handle, inode, path + depth);
5304 			if (err)
5305 				goto out;
5306 
5307 			if (--depth < 0 || !update)
5308 				break;
5309 		}
5310 
5311 		/* Update index too */
5312 		err = ext4_access_path(handle, inode, path + depth);
5313 		if (err)
5314 			goto out;
5315 
5316 		if (SHIFT == SHIFT_LEFT)
5317 			le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5318 		else
5319 			le32_add_cpu(&path[depth].p_idx->ei_block, shift);
5320 		err = ext4_ext_dirty(handle, inode, path + depth);
5321 		if (err)
5322 			goto out;
5323 
5324 		/* we are done if current index is not a starting index */
5325 		if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5326 			break;
5327 
5328 		depth--;
5329 	}
5330 
5331 out:
5332 	return err;
5333 }
5334 
5335 /*
5336  * ext4_ext_shift_extents:
5337  * All the extents which lies in the range from @start to the last allocated
5338  * block for the @inode are shifted either towards left or right (depending
5339  * upon @SHIFT) by @shift blocks.
5340  * On success, 0 is returned, error otherwise.
5341  */
5342 static int
5343 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5344 		       ext4_lblk_t start, ext4_lblk_t shift,
5345 		       enum SHIFT_DIRECTION SHIFT)
5346 {
5347 	struct ext4_ext_path *path;
5348 	int ret = 0, depth;
5349 	struct ext4_extent *extent;
5350 	ext4_lblk_t stop, *iterator, ex_start, ex_end;
5351 
5352 	/* Let path point to the last extent */
5353 	path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
5354 	if (IS_ERR(path))
5355 		return PTR_ERR(path);
5356 
5357 	depth = path->p_depth;
5358 	extent = path[depth].p_ext;
5359 	if (!extent)
5360 		goto out;
5361 
5362 	stop = le32_to_cpu(extent->ee_block) +
5363 			ext4_ext_get_actual_len(extent);
5364 
5365        /*
5366 	 * In case of left shift, Don't start shifting extents until we make
5367 	 * sure the hole is big enough to accommodate the shift.
5368 	*/
5369 	if (SHIFT == SHIFT_LEFT) {
5370 		path = ext4_find_extent(inode, start - 1, &path, 0);
5371 		if (IS_ERR(path))
5372 			return PTR_ERR(path);
5373 		depth = path->p_depth;
5374 		extent =  path[depth].p_ext;
5375 		if (extent) {
5376 			ex_start = le32_to_cpu(extent->ee_block);
5377 			ex_end = le32_to_cpu(extent->ee_block) +
5378 				ext4_ext_get_actual_len(extent);
5379 		} else {
5380 			ex_start = 0;
5381 			ex_end = 0;
5382 		}
5383 
5384 		if ((start == ex_start && shift > ex_start) ||
5385 		    (shift > start - ex_end)) {
5386 			ext4_ext_drop_refs(path);
5387 			kfree(path);
5388 			return -EINVAL;
5389 		}
5390 	}
5391 
5392 	/*
5393 	 * In case of left shift, iterator points to start and it is increased
5394 	 * till we reach stop. In case of right shift, iterator points to stop
5395 	 * and it is decreased till we reach start.
5396 	 */
5397 	if (SHIFT == SHIFT_LEFT)
5398 		iterator = &start;
5399 	else
5400 		iterator = &stop;
5401 
5402 	/* Its safe to start updating extents */
5403 	while (start < stop) {
5404 		path = ext4_find_extent(inode, *iterator, &path, 0);
5405 		if (IS_ERR(path))
5406 			return PTR_ERR(path);
5407 		depth = path->p_depth;
5408 		extent = path[depth].p_ext;
5409 		if (!extent) {
5410 			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5411 					 (unsigned long) *iterator);
5412 			return -EFSCORRUPTED;
5413 		}
5414 		if (SHIFT == SHIFT_LEFT && *iterator >
5415 		    le32_to_cpu(extent->ee_block)) {
5416 			/* Hole, move to the next extent */
5417 			if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5418 				path[depth].p_ext++;
5419 			} else {
5420 				*iterator = ext4_ext_next_allocated_block(path);
5421 				continue;
5422 			}
5423 		}
5424 
5425 		if (SHIFT == SHIFT_LEFT) {
5426 			extent = EXT_LAST_EXTENT(path[depth].p_hdr);
5427 			*iterator = le32_to_cpu(extent->ee_block) +
5428 					ext4_ext_get_actual_len(extent);
5429 		} else {
5430 			extent = EXT_FIRST_EXTENT(path[depth].p_hdr);
5431 			*iterator =  le32_to_cpu(extent->ee_block) > 0 ?
5432 				le32_to_cpu(extent->ee_block) - 1 : 0;
5433 			/* Update path extent in case we need to stop */
5434 			while (le32_to_cpu(extent->ee_block) < start)
5435 				extent++;
5436 			path[depth].p_ext = extent;
5437 		}
5438 		ret = ext4_ext_shift_path_extents(path, shift, inode,
5439 				handle, SHIFT);
5440 		if (ret)
5441 			break;
5442 	}
5443 out:
5444 	ext4_ext_drop_refs(path);
5445 	kfree(path);
5446 	return ret;
5447 }
5448 
5449 /*
5450  * ext4_collapse_range:
5451  * This implements the fallocate's collapse range functionality for ext4
5452  * Returns: 0 and non-zero on error.
5453  */
5454 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5455 {
5456 	struct super_block *sb = inode->i_sb;
5457 	ext4_lblk_t punch_start, punch_stop;
5458 	handle_t *handle;
5459 	unsigned int credits;
5460 	loff_t new_size, ioffset;
5461 	int ret;
5462 
5463 	/*
5464 	 * We need to test this early because xfstests assumes that a
5465 	 * collapse range of (0, 1) will return EOPNOTSUPP if the file
5466 	 * system does not support collapse range.
5467 	 */
5468 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5469 		return -EOPNOTSUPP;
5470 
5471 	/* Collapse range works only on fs block size aligned offsets. */
5472 	if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5473 	    len & (EXT4_CLUSTER_SIZE(sb) - 1))
5474 		return -EINVAL;
5475 
5476 	if (!S_ISREG(inode->i_mode))
5477 		return -EINVAL;
5478 
5479 	trace_ext4_collapse_range(inode, offset, len);
5480 
5481 	punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5482 	punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5483 
5484 	/* Call ext4_force_commit to flush all data in case of data=journal. */
5485 	if (ext4_should_journal_data(inode)) {
5486 		ret = ext4_force_commit(inode->i_sb);
5487 		if (ret)
5488 			return ret;
5489 	}
5490 
5491 	inode_lock(inode);
5492 	/*
5493 	 * There is no need to overlap collapse range with EOF, in which case
5494 	 * it is effectively a truncate operation
5495 	 */
5496 	if (offset + len >= i_size_read(inode)) {
5497 		ret = -EINVAL;
5498 		goto out_mutex;
5499 	}
5500 
5501 	/* Currently just for extent based files */
5502 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5503 		ret = -EOPNOTSUPP;
5504 		goto out_mutex;
5505 	}
5506 
5507 	/* Wait for existing dio to complete */
5508 	ext4_inode_block_unlocked_dio(inode);
5509 	inode_dio_wait(inode);
5510 
5511 	/*
5512 	 * Prevent page faults from reinstantiating pages we have released from
5513 	 * page cache.
5514 	 */
5515 	down_write(&EXT4_I(inode)->i_mmap_sem);
5516 	/*
5517 	 * Need to round down offset to be aligned with page size boundary
5518 	 * for page size > block size.
5519 	 */
5520 	ioffset = round_down(offset, PAGE_SIZE);
5521 	/*
5522 	 * Write tail of the last page before removed range since it will get
5523 	 * removed from the page cache below.
5524 	 */
5525 	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset);
5526 	if (ret)
5527 		goto out_mmap;
5528 	/*
5529 	 * Write data that will be shifted to preserve them when discarding
5530 	 * page cache below. We are also protected from pages becoming dirty
5531 	 * by i_mmap_sem.
5532 	 */
5533 	ret = filemap_write_and_wait_range(inode->i_mapping, offset + len,
5534 					   LLONG_MAX);
5535 	if (ret)
5536 		goto out_mmap;
5537 	truncate_pagecache(inode, ioffset);
5538 
5539 	credits = ext4_writepage_trans_blocks(inode);
5540 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5541 	if (IS_ERR(handle)) {
5542 		ret = PTR_ERR(handle);
5543 		goto out_mmap;
5544 	}
5545 
5546 	down_write(&EXT4_I(inode)->i_data_sem);
5547 	ext4_discard_preallocations(inode);
5548 
5549 	ret = ext4_es_remove_extent(inode, punch_start,
5550 				    EXT_MAX_BLOCKS - punch_start);
5551 	if (ret) {
5552 		up_write(&EXT4_I(inode)->i_data_sem);
5553 		goto out_stop;
5554 	}
5555 
5556 	ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5557 	if (ret) {
5558 		up_write(&EXT4_I(inode)->i_data_sem);
5559 		goto out_stop;
5560 	}
5561 	ext4_discard_preallocations(inode);
5562 
5563 	ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5564 				     punch_stop - punch_start, SHIFT_LEFT);
5565 	if (ret) {
5566 		up_write(&EXT4_I(inode)->i_data_sem);
5567 		goto out_stop;
5568 	}
5569 
5570 	new_size = i_size_read(inode) - len;
5571 	i_size_write(inode, new_size);
5572 	EXT4_I(inode)->i_disksize = new_size;
5573 
5574 	up_write(&EXT4_I(inode)->i_data_sem);
5575 	if (IS_SYNC(inode))
5576 		ext4_handle_sync(handle);
5577 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5578 	ext4_mark_inode_dirty(handle, inode);
5579 
5580 out_stop:
5581 	ext4_journal_stop(handle);
5582 out_mmap:
5583 	up_write(&EXT4_I(inode)->i_mmap_sem);
5584 	ext4_inode_resume_unlocked_dio(inode);
5585 out_mutex:
5586 	inode_unlock(inode);
5587 	return ret;
5588 }
5589 
5590 /*
5591  * ext4_insert_range:
5592  * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate.
5593  * The data blocks starting from @offset to the EOF are shifted by @len
5594  * towards right to create a hole in the @inode. Inode size is increased
5595  * by len bytes.
5596  * Returns 0 on success, error otherwise.
5597  */
5598 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len)
5599 {
5600 	struct super_block *sb = inode->i_sb;
5601 	handle_t *handle;
5602 	struct ext4_ext_path *path;
5603 	struct ext4_extent *extent;
5604 	ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0;
5605 	unsigned int credits, ee_len;
5606 	int ret = 0, depth, split_flag = 0;
5607 	loff_t ioffset;
5608 
5609 	/*
5610 	 * We need to test this early because xfstests assumes that an
5611 	 * insert range of (0, 1) will return EOPNOTSUPP if the file
5612 	 * system does not support insert range.
5613 	 */
5614 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5615 		return -EOPNOTSUPP;
5616 
5617 	/* Insert range works only on fs block size aligned offsets. */
5618 	if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5619 			len & (EXT4_CLUSTER_SIZE(sb) - 1))
5620 		return -EINVAL;
5621 
5622 	if (!S_ISREG(inode->i_mode))
5623 		return -EOPNOTSUPP;
5624 
5625 	trace_ext4_insert_range(inode, offset, len);
5626 
5627 	offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5628 	len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb);
5629 
5630 	/* Call ext4_force_commit to flush all data in case of data=journal */
5631 	if (ext4_should_journal_data(inode)) {
5632 		ret = ext4_force_commit(inode->i_sb);
5633 		if (ret)
5634 			return ret;
5635 	}
5636 
5637 	inode_lock(inode);
5638 	/* Currently just for extent based files */
5639 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5640 		ret = -EOPNOTSUPP;
5641 		goto out_mutex;
5642 	}
5643 
5644 	/* Check for wrap through zero */
5645 	if (inode->i_size + len > inode->i_sb->s_maxbytes) {
5646 		ret = -EFBIG;
5647 		goto out_mutex;
5648 	}
5649 
5650 	/* Offset should be less than i_size */
5651 	if (offset >= i_size_read(inode)) {
5652 		ret = -EINVAL;
5653 		goto out_mutex;
5654 	}
5655 
5656 	/* Wait for existing dio to complete */
5657 	ext4_inode_block_unlocked_dio(inode);
5658 	inode_dio_wait(inode);
5659 
5660 	/*
5661 	 * Prevent page faults from reinstantiating pages we have released from
5662 	 * page cache.
5663 	 */
5664 	down_write(&EXT4_I(inode)->i_mmap_sem);
5665 	/*
5666 	 * Need to round down to align start offset to page size boundary
5667 	 * for page size > block size.
5668 	 */
5669 	ioffset = round_down(offset, PAGE_SIZE);
5670 	/* Write out all dirty pages */
5671 	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5672 			LLONG_MAX);
5673 	if (ret)
5674 		goto out_mmap;
5675 	truncate_pagecache(inode, ioffset);
5676 
5677 	credits = ext4_writepage_trans_blocks(inode);
5678 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5679 	if (IS_ERR(handle)) {
5680 		ret = PTR_ERR(handle);
5681 		goto out_mmap;
5682 	}
5683 
5684 	/* Expand file to avoid data loss if there is error while shifting */
5685 	inode->i_size += len;
5686 	EXT4_I(inode)->i_disksize += len;
5687 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5688 	ret = ext4_mark_inode_dirty(handle, inode);
5689 	if (ret)
5690 		goto out_stop;
5691 
5692 	down_write(&EXT4_I(inode)->i_data_sem);
5693 	ext4_discard_preallocations(inode);
5694 
5695 	path = ext4_find_extent(inode, offset_lblk, NULL, 0);
5696 	if (IS_ERR(path)) {
5697 		up_write(&EXT4_I(inode)->i_data_sem);
5698 		goto out_stop;
5699 	}
5700 
5701 	depth = ext_depth(inode);
5702 	extent = path[depth].p_ext;
5703 	if (extent) {
5704 		ee_start_lblk = le32_to_cpu(extent->ee_block);
5705 		ee_len = ext4_ext_get_actual_len(extent);
5706 
5707 		/*
5708 		 * If offset_lblk is not the starting block of extent, split
5709 		 * the extent @offset_lblk
5710 		 */
5711 		if ((offset_lblk > ee_start_lblk) &&
5712 				(offset_lblk < (ee_start_lblk + ee_len))) {
5713 			if (ext4_ext_is_unwritten(extent))
5714 				split_flag = EXT4_EXT_MARK_UNWRIT1 |
5715 					EXT4_EXT_MARK_UNWRIT2;
5716 			ret = ext4_split_extent_at(handle, inode, &path,
5717 					offset_lblk, split_flag,
5718 					EXT4_EX_NOCACHE |
5719 					EXT4_GET_BLOCKS_PRE_IO |
5720 					EXT4_GET_BLOCKS_METADATA_NOFAIL);
5721 		}
5722 
5723 		ext4_ext_drop_refs(path);
5724 		kfree(path);
5725 		if (ret < 0) {
5726 			up_write(&EXT4_I(inode)->i_data_sem);
5727 			goto out_stop;
5728 		}
5729 	}
5730 
5731 	ret = ext4_es_remove_extent(inode, offset_lblk,
5732 			EXT_MAX_BLOCKS - offset_lblk);
5733 	if (ret) {
5734 		up_write(&EXT4_I(inode)->i_data_sem);
5735 		goto out_stop;
5736 	}
5737 
5738 	/*
5739 	 * if offset_lblk lies in a hole which is at start of file, use
5740 	 * ee_start_lblk to shift extents
5741 	 */
5742 	ret = ext4_ext_shift_extents(inode, handle,
5743 		ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk,
5744 		len_lblk, SHIFT_RIGHT);
5745 
5746 	up_write(&EXT4_I(inode)->i_data_sem);
5747 	if (IS_SYNC(inode))
5748 		ext4_handle_sync(handle);
5749 
5750 out_stop:
5751 	ext4_journal_stop(handle);
5752 out_mmap:
5753 	up_write(&EXT4_I(inode)->i_mmap_sem);
5754 	ext4_inode_resume_unlocked_dio(inode);
5755 out_mutex:
5756 	inode_unlock(inode);
5757 	return ret;
5758 }
5759 
5760 /**
5761  * ext4_swap_extents - Swap extents between two inodes
5762  *
5763  * @inode1:	First inode
5764  * @inode2:	Second inode
5765  * @lblk1:	Start block for first inode
5766  * @lblk2:	Start block for second inode
5767  * @count:	Number of blocks to swap
5768  * @mark_unwritten: Mark second inode's extents as unwritten after swap
5769  * @erp:	Pointer to save error value
5770  *
5771  * This helper routine does exactly what is promise "swap extents". All other
5772  * stuff such as page-cache locking consistency, bh mapping consistency or
5773  * extent's data copying must be performed by caller.
5774  * Locking:
5775  * 		i_mutex is held for both inodes
5776  * 		i_data_sem is locked for write for both inodes
5777  * Assumptions:
5778  *		All pages from requested range are locked for both inodes
5779  */
5780 int
5781 ext4_swap_extents(handle_t *handle, struct inode *inode1,
5782 		     struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5783 		  ext4_lblk_t count, int unwritten, int *erp)
5784 {
5785 	struct ext4_ext_path *path1 = NULL;
5786 	struct ext4_ext_path *path2 = NULL;
5787 	int replaced_count = 0;
5788 
5789 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5790 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5791 	BUG_ON(!inode_is_locked(inode1));
5792 	BUG_ON(!inode_is_locked(inode2));
5793 
5794 	*erp = ext4_es_remove_extent(inode1, lblk1, count);
5795 	if (unlikely(*erp))
5796 		return 0;
5797 	*erp = ext4_es_remove_extent(inode2, lblk2, count);
5798 	if (unlikely(*erp))
5799 		return 0;
5800 
5801 	while (count) {
5802 		struct ext4_extent *ex1, *ex2, tmp_ex;
5803 		ext4_lblk_t e1_blk, e2_blk;
5804 		int e1_len, e2_len, len;
5805 		int split = 0;
5806 
5807 		path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5808 		if (IS_ERR(path1)) {
5809 			*erp = PTR_ERR(path1);
5810 			path1 = NULL;
5811 		finish:
5812 			count = 0;
5813 			goto repeat;
5814 		}
5815 		path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5816 		if (IS_ERR(path2)) {
5817 			*erp = PTR_ERR(path2);
5818 			path2 = NULL;
5819 			goto finish;
5820 		}
5821 		ex1 = path1[path1->p_depth].p_ext;
5822 		ex2 = path2[path2->p_depth].p_ext;
5823 		/* Do we have somthing to swap ? */
5824 		if (unlikely(!ex2 || !ex1))
5825 			goto finish;
5826 
5827 		e1_blk = le32_to_cpu(ex1->ee_block);
5828 		e2_blk = le32_to_cpu(ex2->ee_block);
5829 		e1_len = ext4_ext_get_actual_len(ex1);
5830 		e2_len = ext4_ext_get_actual_len(ex2);
5831 
5832 		/* Hole handling */
5833 		if (!in_range(lblk1, e1_blk, e1_len) ||
5834 		    !in_range(lblk2, e2_blk, e2_len)) {
5835 			ext4_lblk_t next1, next2;
5836 
5837 			/* if hole after extent, then go to next extent */
5838 			next1 = ext4_ext_next_allocated_block(path1);
5839 			next2 = ext4_ext_next_allocated_block(path2);
5840 			/* If hole before extent, then shift to that extent */
5841 			if (e1_blk > lblk1)
5842 				next1 = e1_blk;
5843 			if (e2_blk > lblk2)
5844 				next2 = e1_blk;
5845 			/* Do we have something to swap */
5846 			if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5847 				goto finish;
5848 			/* Move to the rightest boundary */
5849 			len = next1 - lblk1;
5850 			if (len < next2 - lblk2)
5851 				len = next2 - lblk2;
5852 			if (len > count)
5853 				len = count;
5854 			lblk1 += len;
5855 			lblk2 += len;
5856 			count -= len;
5857 			goto repeat;
5858 		}
5859 
5860 		/* Prepare left boundary */
5861 		if (e1_blk < lblk1) {
5862 			split = 1;
5863 			*erp = ext4_force_split_extent_at(handle, inode1,
5864 						&path1, lblk1, 0);
5865 			if (unlikely(*erp))
5866 				goto finish;
5867 		}
5868 		if (e2_blk < lblk2) {
5869 			split = 1;
5870 			*erp = ext4_force_split_extent_at(handle, inode2,
5871 						&path2,  lblk2, 0);
5872 			if (unlikely(*erp))
5873 				goto finish;
5874 		}
5875 		/* ext4_split_extent_at() may result in leaf extent split,
5876 		 * path must to be revalidated. */
5877 		if (split)
5878 			goto repeat;
5879 
5880 		/* Prepare right boundary */
5881 		len = count;
5882 		if (len > e1_blk + e1_len - lblk1)
5883 			len = e1_blk + e1_len - lblk1;
5884 		if (len > e2_blk + e2_len - lblk2)
5885 			len = e2_blk + e2_len - lblk2;
5886 
5887 		if (len != e1_len) {
5888 			split = 1;
5889 			*erp = ext4_force_split_extent_at(handle, inode1,
5890 						&path1, lblk1 + len, 0);
5891 			if (unlikely(*erp))
5892 				goto finish;
5893 		}
5894 		if (len != e2_len) {
5895 			split = 1;
5896 			*erp = ext4_force_split_extent_at(handle, inode2,
5897 						&path2, lblk2 + len, 0);
5898 			if (*erp)
5899 				goto finish;
5900 		}
5901 		/* ext4_split_extent_at() may result in leaf extent split,
5902 		 * path must to be revalidated. */
5903 		if (split)
5904 			goto repeat;
5905 
5906 		BUG_ON(e2_len != e1_len);
5907 		*erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5908 		if (unlikely(*erp))
5909 			goto finish;
5910 		*erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5911 		if (unlikely(*erp))
5912 			goto finish;
5913 
5914 		/* Both extents are fully inside boundaries. Swap it now */
5915 		tmp_ex = *ex1;
5916 		ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5917 		ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5918 		ex1->ee_len = cpu_to_le16(e2_len);
5919 		ex2->ee_len = cpu_to_le16(e1_len);
5920 		if (unwritten)
5921 			ext4_ext_mark_unwritten(ex2);
5922 		if (ext4_ext_is_unwritten(&tmp_ex))
5923 			ext4_ext_mark_unwritten(ex1);
5924 
5925 		ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5926 		ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5927 		*erp = ext4_ext_dirty(handle, inode2, path2 +
5928 				      path2->p_depth);
5929 		if (unlikely(*erp))
5930 			goto finish;
5931 		*erp = ext4_ext_dirty(handle, inode1, path1 +
5932 				      path1->p_depth);
5933 		/*
5934 		 * Looks scarry ah..? second inode already points to new blocks,
5935 		 * and it was successfully dirtied. But luckily error may happen
5936 		 * only due to journal error, so full transaction will be
5937 		 * aborted anyway.
5938 		 */
5939 		if (unlikely(*erp))
5940 			goto finish;
5941 		lblk1 += len;
5942 		lblk2 += len;
5943 		replaced_count += len;
5944 		count -= len;
5945 
5946 	repeat:
5947 		ext4_ext_drop_refs(path1);
5948 		kfree(path1);
5949 		ext4_ext_drop_refs(path2);
5950 		kfree(path2);
5951 		path1 = path2 = NULL;
5952 	}
5953 	return replaced_count;
5954 }
5955