1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public Licens 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <asm/uaccess.h> 41 #include <linux/fiemap.h> 42 #include "ext4_jbd2.h" 43 #include "ext4_extents.h" 44 #include "xattr.h" 45 46 #include <trace/events/ext4.h> 47 48 /* 49 * used by extent splitting. 50 */ 51 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 52 due to ENOSPC */ 53 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 54 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 55 56 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 57 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 58 59 static __le32 ext4_extent_block_csum(struct inode *inode, 60 struct ext4_extent_header *eh) 61 { 62 struct ext4_inode_info *ei = EXT4_I(inode); 63 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 64 __u32 csum; 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 67 EXT4_EXTENT_TAIL_OFFSET(eh)); 68 return cpu_to_le32(csum); 69 } 70 71 static int ext4_extent_block_csum_verify(struct inode *inode, 72 struct ext4_extent_header *eh) 73 { 74 struct ext4_extent_tail *et; 75 76 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 77 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 78 return 1; 79 80 et = find_ext4_extent_tail(eh); 81 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 82 return 0; 83 return 1; 84 } 85 86 static void ext4_extent_block_csum_set(struct inode *inode, 87 struct ext4_extent_header *eh) 88 { 89 struct ext4_extent_tail *et; 90 91 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 92 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 93 return; 94 95 et = find_ext4_extent_tail(eh); 96 et->et_checksum = ext4_extent_block_csum(inode, eh); 97 } 98 99 static int ext4_split_extent(handle_t *handle, 100 struct inode *inode, 101 struct ext4_ext_path *path, 102 struct ext4_map_blocks *map, 103 int split_flag, 104 int flags); 105 106 static int ext4_split_extent_at(handle_t *handle, 107 struct inode *inode, 108 struct ext4_ext_path *path, 109 ext4_lblk_t split, 110 int split_flag, 111 int flags); 112 113 static int ext4_find_delayed_extent(struct inode *inode, 114 struct extent_status *newes); 115 116 static int ext4_ext_truncate_extend_restart(handle_t *handle, 117 struct inode *inode, 118 int needed) 119 { 120 int err; 121 122 if (!ext4_handle_valid(handle)) 123 return 0; 124 if (handle->h_buffer_credits > needed) 125 return 0; 126 err = ext4_journal_extend(handle, needed); 127 if (err <= 0) 128 return err; 129 err = ext4_truncate_restart_trans(handle, inode, needed); 130 if (err == 0) 131 err = -EAGAIN; 132 133 return err; 134 } 135 136 /* 137 * could return: 138 * - EROFS 139 * - ENOMEM 140 */ 141 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 142 struct ext4_ext_path *path) 143 { 144 if (path->p_bh) { 145 /* path points to block */ 146 BUFFER_TRACE(path->p_bh, "get_write_access"); 147 return ext4_journal_get_write_access(handle, path->p_bh); 148 } 149 /* path points to leaf/index in inode body */ 150 /* we use in-core data, no need to protect them */ 151 return 0; 152 } 153 154 /* 155 * could return: 156 * - EROFS 157 * - ENOMEM 158 * - EIO 159 */ 160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 161 struct inode *inode, struct ext4_ext_path *path) 162 { 163 int err; 164 if (path->p_bh) { 165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 166 /* path points to block */ 167 err = __ext4_handle_dirty_metadata(where, line, handle, 168 inode, path->p_bh); 169 } else { 170 /* path points to leaf/index in inode body */ 171 err = ext4_mark_inode_dirty(handle, inode); 172 } 173 return err; 174 } 175 176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 177 struct ext4_ext_path *path, 178 ext4_lblk_t block) 179 { 180 if (path) { 181 int depth = path->p_depth; 182 struct ext4_extent *ex; 183 184 /* 185 * Try to predict block placement assuming that we are 186 * filling in a file which will eventually be 187 * non-sparse --- i.e., in the case of libbfd writing 188 * an ELF object sections out-of-order but in a way 189 * the eventually results in a contiguous object or 190 * executable file, or some database extending a table 191 * space file. However, this is actually somewhat 192 * non-ideal if we are writing a sparse file such as 193 * qemu or KVM writing a raw image file that is going 194 * to stay fairly sparse, since it will end up 195 * fragmenting the file system's free space. Maybe we 196 * should have some hueristics or some way to allow 197 * userspace to pass a hint to file system, 198 * especially if the latter case turns out to be 199 * common. 200 */ 201 ex = path[depth].p_ext; 202 if (ex) { 203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 205 206 if (block > ext_block) 207 return ext_pblk + (block - ext_block); 208 else 209 return ext_pblk - (ext_block - block); 210 } 211 212 /* it looks like index is empty; 213 * try to find starting block from index itself */ 214 if (path[depth].p_bh) 215 return path[depth].p_bh->b_blocknr; 216 } 217 218 /* OK. use inode's group */ 219 return ext4_inode_to_goal_block(inode); 220 } 221 222 /* 223 * Allocation for a meta data block 224 */ 225 static ext4_fsblk_t 226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 227 struct ext4_ext_path *path, 228 struct ext4_extent *ex, int *err, unsigned int flags) 229 { 230 ext4_fsblk_t goal, newblock; 231 232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 234 NULL, err); 235 return newblock; 236 } 237 238 static inline int ext4_ext_space_block(struct inode *inode, int check) 239 { 240 int size; 241 242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 243 / sizeof(struct ext4_extent); 244 #ifdef AGGRESSIVE_TEST 245 if (!check && size > 6) 246 size = 6; 247 #endif 248 return size; 249 } 250 251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 252 { 253 int size; 254 255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 256 / sizeof(struct ext4_extent_idx); 257 #ifdef AGGRESSIVE_TEST 258 if (!check && size > 5) 259 size = 5; 260 #endif 261 return size; 262 } 263 264 static inline int ext4_ext_space_root(struct inode *inode, int check) 265 { 266 int size; 267 268 size = sizeof(EXT4_I(inode)->i_data); 269 size -= sizeof(struct ext4_extent_header); 270 size /= sizeof(struct ext4_extent); 271 #ifdef AGGRESSIVE_TEST 272 if (!check && size > 3) 273 size = 3; 274 #endif 275 return size; 276 } 277 278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 279 { 280 int size; 281 282 size = sizeof(EXT4_I(inode)->i_data); 283 size -= sizeof(struct ext4_extent_header); 284 size /= sizeof(struct ext4_extent_idx); 285 #ifdef AGGRESSIVE_TEST 286 if (!check && size > 4) 287 size = 4; 288 #endif 289 return size; 290 } 291 292 /* 293 * Calculate the number of metadata blocks needed 294 * to allocate @blocks 295 * Worse case is one block per extent 296 */ 297 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 298 { 299 struct ext4_inode_info *ei = EXT4_I(inode); 300 int idxs; 301 302 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 303 / sizeof(struct ext4_extent_idx)); 304 305 /* 306 * If the new delayed allocation block is contiguous with the 307 * previous da block, it can share index blocks with the 308 * previous block, so we only need to allocate a new index 309 * block every idxs leaf blocks. At ldxs**2 blocks, we need 310 * an additional index block, and at ldxs**3 blocks, yet 311 * another index blocks. 312 */ 313 if (ei->i_da_metadata_calc_len && 314 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 315 int num = 0; 316 317 if ((ei->i_da_metadata_calc_len % idxs) == 0) 318 num++; 319 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 320 num++; 321 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 322 num++; 323 ei->i_da_metadata_calc_len = 0; 324 } else 325 ei->i_da_metadata_calc_len++; 326 ei->i_da_metadata_calc_last_lblock++; 327 return num; 328 } 329 330 /* 331 * In the worst case we need a new set of index blocks at 332 * every level of the inode's extent tree. 333 */ 334 ei->i_da_metadata_calc_len = 1; 335 ei->i_da_metadata_calc_last_lblock = lblock; 336 return ext_depth(inode) + 1; 337 } 338 339 static int 340 ext4_ext_max_entries(struct inode *inode, int depth) 341 { 342 int max; 343 344 if (depth == ext_depth(inode)) { 345 if (depth == 0) 346 max = ext4_ext_space_root(inode, 1); 347 else 348 max = ext4_ext_space_root_idx(inode, 1); 349 } else { 350 if (depth == 0) 351 max = ext4_ext_space_block(inode, 1); 352 else 353 max = ext4_ext_space_block_idx(inode, 1); 354 } 355 356 return max; 357 } 358 359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 360 { 361 ext4_fsblk_t block = ext4_ext_pblock(ext); 362 int len = ext4_ext_get_actual_len(ext); 363 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 364 ext4_lblk_t last = lblock + len - 1; 365 366 if (lblock > last) 367 return 0; 368 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 369 } 370 371 static int ext4_valid_extent_idx(struct inode *inode, 372 struct ext4_extent_idx *ext_idx) 373 { 374 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 375 376 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 377 } 378 379 static int ext4_valid_extent_entries(struct inode *inode, 380 struct ext4_extent_header *eh, 381 int depth) 382 { 383 unsigned short entries; 384 if (eh->eh_entries == 0) 385 return 1; 386 387 entries = le16_to_cpu(eh->eh_entries); 388 389 if (depth == 0) { 390 /* leaf entries */ 391 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 392 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 393 ext4_fsblk_t pblock = 0; 394 ext4_lblk_t lblock = 0; 395 ext4_lblk_t prev = 0; 396 int len = 0; 397 while (entries) { 398 if (!ext4_valid_extent(inode, ext)) 399 return 0; 400 401 /* Check for overlapping extents */ 402 lblock = le32_to_cpu(ext->ee_block); 403 len = ext4_ext_get_actual_len(ext); 404 if ((lblock <= prev) && prev) { 405 pblock = ext4_ext_pblock(ext); 406 es->s_last_error_block = cpu_to_le64(pblock); 407 return 0; 408 } 409 ext++; 410 entries--; 411 prev = lblock + len - 1; 412 } 413 } else { 414 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 415 while (entries) { 416 if (!ext4_valid_extent_idx(inode, ext_idx)) 417 return 0; 418 ext_idx++; 419 entries--; 420 } 421 } 422 return 1; 423 } 424 425 static int __ext4_ext_check(const char *function, unsigned int line, 426 struct inode *inode, struct ext4_extent_header *eh, 427 int depth, ext4_fsblk_t pblk) 428 { 429 const char *error_msg; 430 int max = 0; 431 432 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 433 error_msg = "invalid magic"; 434 goto corrupted; 435 } 436 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 437 error_msg = "unexpected eh_depth"; 438 goto corrupted; 439 } 440 if (unlikely(eh->eh_max == 0)) { 441 error_msg = "invalid eh_max"; 442 goto corrupted; 443 } 444 max = ext4_ext_max_entries(inode, depth); 445 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 446 error_msg = "too large eh_max"; 447 goto corrupted; 448 } 449 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 450 error_msg = "invalid eh_entries"; 451 goto corrupted; 452 } 453 if (!ext4_valid_extent_entries(inode, eh, depth)) { 454 error_msg = "invalid extent entries"; 455 goto corrupted; 456 } 457 /* Verify checksum on non-root extent tree nodes */ 458 if (ext_depth(inode) != depth && 459 !ext4_extent_block_csum_verify(inode, eh)) { 460 error_msg = "extent tree corrupted"; 461 goto corrupted; 462 } 463 return 0; 464 465 corrupted: 466 ext4_error_inode(inode, function, line, 0, 467 "pblk %llu bad header/extent: %s - magic %x, " 468 "entries %u, max %u(%u), depth %u(%u)", 469 (unsigned long long) pblk, error_msg, 470 le16_to_cpu(eh->eh_magic), 471 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 472 max, le16_to_cpu(eh->eh_depth), depth); 473 return -EIO; 474 } 475 476 #define ext4_ext_check(inode, eh, depth, pblk) \ 477 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 478 479 int ext4_ext_check_inode(struct inode *inode) 480 { 481 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 482 } 483 484 static struct buffer_head * 485 __read_extent_tree_block(const char *function, unsigned int line, 486 struct inode *inode, ext4_fsblk_t pblk, int depth, 487 int flags) 488 { 489 struct buffer_head *bh; 490 int err; 491 492 bh = sb_getblk(inode->i_sb, pblk); 493 if (unlikely(!bh)) 494 return ERR_PTR(-ENOMEM); 495 496 if (!bh_uptodate_or_lock(bh)) { 497 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 498 err = bh_submit_read(bh); 499 if (err < 0) 500 goto errout; 501 } 502 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 503 return bh; 504 err = __ext4_ext_check(function, line, inode, 505 ext_block_hdr(bh), depth, pblk); 506 if (err) 507 goto errout; 508 set_buffer_verified(bh); 509 /* 510 * If this is a leaf block, cache all of its entries 511 */ 512 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 513 struct ext4_extent_header *eh = ext_block_hdr(bh); 514 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 515 ext4_lblk_t prev = 0; 516 int i; 517 518 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 519 unsigned int status = EXTENT_STATUS_WRITTEN; 520 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 521 int len = ext4_ext_get_actual_len(ex); 522 523 if (prev && (prev != lblk)) 524 ext4_es_cache_extent(inode, prev, 525 lblk - prev, ~0, 526 EXTENT_STATUS_HOLE); 527 528 if (ext4_ext_is_unwritten(ex)) 529 status = EXTENT_STATUS_UNWRITTEN; 530 ext4_es_cache_extent(inode, lblk, len, 531 ext4_ext_pblock(ex), status); 532 prev = lblk + len; 533 } 534 } 535 return bh; 536 errout: 537 put_bh(bh); 538 return ERR_PTR(err); 539 540 } 541 542 #define read_extent_tree_block(inode, pblk, depth, flags) \ 543 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 544 (depth), (flags)) 545 546 /* 547 * This function is called to cache a file's extent information in the 548 * extent status tree 549 */ 550 int ext4_ext_precache(struct inode *inode) 551 { 552 struct ext4_inode_info *ei = EXT4_I(inode); 553 struct ext4_ext_path *path = NULL; 554 struct buffer_head *bh; 555 int i = 0, depth, ret = 0; 556 557 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 558 return 0; /* not an extent-mapped inode */ 559 560 down_read(&ei->i_data_sem); 561 depth = ext_depth(inode); 562 563 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 564 GFP_NOFS); 565 if (path == NULL) { 566 up_read(&ei->i_data_sem); 567 return -ENOMEM; 568 } 569 570 /* Don't cache anything if there are no external extent blocks */ 571 if (depth == 0) 572 goto out; 573 path[0].p_hdr = ext_inode_hdr(inode); 574 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 575 if (ret) 576 goto out; 577 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 578 while (i >= 0) { 579 /* 580 * If this is a leaf block or we've reached the end of 581 * the index block, go up 582 */ 583 if ((i == depth) || 584 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 585 brelse(path[i].p_bh); 586 path[i].p_bh = NULL; 587 i--; 588 continue; 589 } 590 bh = read_extent_tree_block(inode, 591 ext4_idx_pblock(path[i].p_idx++), 592 depth - i - 1, 593 EXT4_EX_FORCE_CACHE); 594 if (IS_ERR(bh)) { 595 ret = PTR_ERR(bh); 596 break; 597 } 598 i++; 599 path[i].p_bh = bh; 600 path[i].p_hdr = ext_block_hdr(bh); 601 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 602 } 603 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 604 out: 605 up_read(&ei->i_data_sem); 606 ext4_ext_drop_refs(path); 607 kfree(path); 608 return ret; 609 } 610 611 #ifdef EXT_DEBUG 612 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 613 { 614 int k, l = path->p_depth; 615 616 ext_debug("path:"); 617 for (k = 0; k <= l; k++, path++) { 618 if (path->p_idx) { 619 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 620 ext4_idx_pblock(path->p_idx)); 621 } else if (path->p_ext) { 622 ext_debug(" %d:[%d]%d:%llu ", 623 le32_to_cpu(path->p_ext->ee_block), 624 ext4_ext_is_unwritten(path->p_ext), 625 ext4_ext_get_actual_len(path->p_ext), 626 ext4_ext_pblock(path->p_ext)); 627 } else 628 ext_debug(" []"); 629 } 630 ext_debug("\n"); 631 } 632 633 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 634 { 635 int depth = ext_depth(inode); 636 struct ext4_extent_header *eh; 637 struct ext4_extent *ex; 638 int i; 639 640 if (!path) 641 return; 642 643 eh = path[depth].p_hdr; 644 ex = EXT_FIRST_EXTENT(eh); 645 646 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 647 648 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 649 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 650 ext4_ext_is_unwritten(ex), 651 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 652 } 653 ext_debug("\n"); 654 } 655 656 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 657 ext4_fsblk_t newblock, int level) 658 { 659 int depth = ext_depth(inode); 660 struct ext4_extent *ex; 661 662 if (depth != level) { 663 struct ext4_extent_idx *idx; 664 idx = path[level].p_idx; 665 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 666 ext_debug("%d: move %d:%llu in new index %llu\n", level, 667 le32_to_cpu(idx->ei_block), 668 ext4_idx_pblock(idx), 669 newblock); 670 idx++; 671 } 672 673 return; 674 } 675 676 ex = path[depth].p_ext; 677 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 678 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 679 le32_to_cpu(ex->ee_block), 680 ext4_ext_pblock(ex), 681 ext4_ext_is_unwritten(ex), 682 ext4_ext_get_actual_len(ex), 683 newblock); 684 ex++; 685 } 686 } 687 688 #else 689 #define ext4_ext_show_path(inode, path) 690 #define ext4_ext_show_leaf(inode, path) 691 #define ext4_ext_show_move(inode, path, newblock, level) 692 #endif 693 694 void ext4_ext_drop_refs(struct ext4_ext_path *path) 695 { 696 int depth = path->p_depth; 697 int i; 698 699 for (i = 0; i <= depth; i++, path++) 700 if (path->p_bh) { 701 brelse(path->p_bh); 702 path->p_bh = NULL; 703 } 704 } 705 706 /* 707 * ext4_ext_binsearch_idx: 708 * binary search for the closest index of the given block 709 * the header must be checked before calling this 710 */ 711 static void 712 ext4_ext_binsearch_idx(struct inode *inode, 713 struct ext4_ext_path *path, ext4_lblk_t block) 714 { 715 struct ext4_extent_header *eh = path->p_hdr; 716 struct ext4_extent_idx *r, *l, *m; 717 718 719 ext_debug("binsearch for %u(idx): ", block); 720 721 l = EXT_FIRST_INDEX(eh) + 1; 722 r = EXT_LAST_INDEX(eh); 723 while (l <= r) { 724 m = l + (r - l) / 2; 725 if (block < le32_to_cpu(m->ei_block)) 726 r = m - 1; 727 else 728 l = m + 1; 729 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 730 m, le32_to_cpu(m->ei_block), 731 r, le32_to_cpu(r->ei_block)); 732 } 733 734 path->p_idx = l - 1; 735 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 736 ext4_idx_pblock(path->p_idx)); 737 738 #ifdef CHECK_BINSEARCH 739 { 740 struct ext4_extent_idx *chix, *ix; 741 int k; 742 743 chix = ix = EXT_FIRST_INDEX(eh); 744 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 745 if (k != 0 && 746 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 747 printk(KERN_DEBUG "k=%d, ix=0x%p, " 748 "first=0x%p\n", k, 749 ix, EXT_FIRST_INDEX(eh)); 750 printk(KERN_DEBUG "%u <= %u\n", 751 le32_to_cpu(ix->ei_block), 752 le32_to_cpu(ix[-1].ei_block)); 753 } 754 BUG_ON(k && le32_to_cpu(ix->ei_block) 755 <= le32_to_cpu(ix[-1].ei_block)); 756 if (block < le32_to_cpu(ix->ei_block)) 757 break; 758 chix = ix; 759 } 760 BUG_ON(chix != path->p_idx); 761 } 762 #endif 763 764 } 765 766 /* 767 * ext4_ext_binsearch: 768 * binary search for closest extent of the given block 769 * the header must be checked before calling this 770 */ 771 static void 772 ext4_ext_binsearch(struct inode *inode, 773 struct ext4_ext_path *path, ext4_lblk_t block) 774 { 775 struct ext4_extent_header *eh = path->p_hdr; 776 struct ext4_extent *r, *l, *m; 777 778 if (eh->eh_entries == 0) { 779 /* 780 * this leaf is empty: 781 * we get such a leaf in split/add case 782 */ 783 return; 784 } 785 786 ext_debug("binsearch for %u: ", block); 787 788 l = EXT_FIRST_EXTENT(eh) + 1; 789 r = EXT_LAST_EXTENT(eh); 790 791 while (l <= r) { 792 m = l + (r - l) / 2; 793 if (block < le32_to_cpu(m->ee_block)) 794 r = m - 1; 795 else 796 l = m + 1; 797 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 798 m, le32_to_cpu(m->ee_block), 799 r, le32_to_cpu(r->ee_block)); 800 } 801 802 path->p_ext = l - 1; 803 ext_debug(" -> %d:%llu:[%d]%d ", 804 le32_to_cpu(path->p_ext->ee_block), 805 ext4_ext_pblock(path->p_ext), 806 ext4_ext_is_unwritten(path->p_ext), 807 ext4_ext_get_actual_len(path->p_ext)); 808 809 #ifdef CHECK_BINSEARCH 810 { 811 struct ext4_extent *chex, *ex; 812 int k; 813 814 chex = ex = EXT_FIRST_EXTENT(eh); 815 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 816 BUG_ON(k && le32_to_cpu(ex->ee_block) 817 <= le32_to_cpu(ex[-1].ee_block)); 818 if (block < le32_to_cpu(ex->ee_block)) 819 break; 820 chex = ex; 821 } 822 BUG_ON(chex != path->p_ext); 823 } 824 #endif 825 826 } 827 828 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 829 { 830 struct ext4_extent_header *eh; 831 832 eh = ext_inode_hdr(inode); 833 eh->eh_depth = 0; 834 eh->eh_entries = 0; 835 eh->eh_magic = EXT4_EXT_MAGIC; 836 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 837 ext4_mark_inode_dirty(handle, inode); 838 return 0; 839 } 840 841 struct ext4_ext_path * 842 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, 843 struct ext4_ext_path *path, int flags) 844 { 845 struct ext4_extent_header *eh; 846 struct buffer_head *bh; 847 short int depth, i, ppos = 0, alloc = 0; 848 int ret; 849 850 eh = ext_inode_hdr(inode); 851 depth = ext_depth(inode); 852 853 /* account possible depth increase */ 854 if (!path) { 855 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 856 GFP_NOFS); 857 if (!path) 858 return ERR_PTR(-ENOMEM); 859 alloc = 1; 860 } 861 path[0].p_hdr = eh; 862 path[0].p_bh = NULL; 863 864 i = depth; 865 /* walk through the tree */ 866 while (i) { 867 ext_debug("depth %d: num %d, max %d\n", 868 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 869 870 ext4_ext_binsearch_idx(inode, path + ppos, block); 871 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 872 path[ppos].p_depth = i; 873 path[ppos].p_ext = NULL; 874 875 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 876 flags); 877 if (IS_ERR(bh)) { 878 ret = PTR_ERR(bh); 879 goto err; 880 } 881 882 eh = ext_block_hdr(bh); 883 ppos++; 884 if (unlikely(ppos > depth)) { 885 put_bh(bh); 886 EXT4_ERROR_INODE(inode, 887 "ppos %d > depth %d", ppos, depth); 888 ret = -EIO; 889 goto err; 890 } 891 path[ppos].p_bh = bh; 892 path[ppos].p_hdr = eh; 893 } 894 895 path[ppos].p_depth = i; 896 path[ppos].p_ext = NULL; 897 path[ppos].p_idx = NULL; 898 899 /* find extent */ 900 ext4_ext_binsearch(inode, path + ppos, block); 901 /* if not an empty leaf */ 902 if (path[ppos].p_ext) 903 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 904 905 ext4_ext_show_path(inode, path); 906 907 return path; 908 909 err: 910 ext4_ext_drop_refs(path); 911 if (alloc) 912 kfree(path); 913 return ERR_PTR(ret); 914 } 915 916 /* 917 * ext4_ext_insert_index: 918 * insert new index [@logical;@ptr] into the block at @curp; 919 * check where to insert: before @curp or after @curp 920 */ 921 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 922 struct ext4_ext_path *curp, 923 int logical, ext4_fsblk_t ptr) 924 { 925 struct ext4_extent_idx *ix; 926 int len, err; 927 928 err = ext4_ext_get_access(handle, inode, curp); 929 if (err) 930 return err; 931 932 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 933 EXT4_ERROR_INODE(inode, 934 "logical %d == ei_block %d!", 935 logical, le32_to_cpu(curp->p_idx->ei_block)); 936 return -EIO; 937 } 938 939 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 940 >= le16_to_cpu(curp->p_hdr->eh_max))) { 941 EXT4_ERROR_INODE(inode, 942 "eh_entries %d >= eh_max %d!", 943 le16_to_cpu(curp->p_hdr->eh_entries), 944 le16_to_cpu(curp->p_hdr->eh_max)); 945 return -EIO; 946 } 947 948 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 949 /* insert after */ 950 ext_debug("insert new index %d after: %llu\n", logical, ptr); 951 ix = curp->p_idx + 1; 952 } else { 953 /* insert before */ 954 ext_debug("insert new index %d before: %llu\n", logical, ptr); 955 ix = curp->p_idx; 956 } 957 958 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 959 BUG_ON(len < 0); 960 if (len > 0) { 961 ext_debug("insert new index %d: " 962 "move %d indices from 0x%p to 0x%p\n", 963 logical, len, ix, ix + 1); 964 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 965 } 966 967 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 968 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 969 return -EIO; 970 } 971 972 ix->ei_block = cpu_to_le32(logical); 973 ext4_idx_store_pblock(ix, ptr); 974 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 975 976 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 977 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 978 return -EIO; 979 } 980 981 err = ext4_ext_dirty(handle, inode, curp); 982 ext4_std_error(inode->i_sb, err); 983 984 return err; 985 } 986 987 /* 988 * ext4_ext_split: 989 * inserts new subtree into the path, using free index entry 990 * at depth @at: 991 * - allocates all needed blocks (new leaf and all intermediate index blocks) 992 * - makes decision where to split 993 * - moves remaining extents and index entries (right to the split point) 994 * into the newly allocated blocks 995 * - initializes subtree 996 */ 997 static int ext4_ext_split(handle_t *handle, struct inode *inode, 998 unsigned int flags, 999 struct ext4_ext_path *path, 1000 struct ext4_extent *newext, int at) 1001 { 1002 struct buffer_head *bh = NULL; 1003 int depth = ext_depth(inode); 1004 struct ext4_extent_header *neh; 1005 struct ext4_extent_idx *fidx; 1006 int i = at, k, m, a; 1007 ext4_fsblk_t newblock, oldblock; 1008 __le32 border; 1009 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1010 int err = 0; 1011 1012 /* make decision: where to split? */ 1013 /* FIXME: now decision is simplest: at current extent */ 1014 1015 /* if current leaf will be split, then we should use 1016 * border from split point */ 1017 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1018 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1019 return -EIO; 1020 } 1021 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1022 border = path[depth].p_ext[1].ee_block; 1023 ext_debug("leaf will be split." 1024 " next leaf starts at %d\n", 1025 le32_to_cpu(border)); 1026 } else { 1027 border = newext->ee_block; 1028 ext_debug("leaf will be added." 1029 " next leaf starts at %d\n", 1030 le32_to_cpu(border)); 1031 } 1032 1033 /* 1034 * If error occurs, then we break processing 1035 * and mark filesystem read-only. index won't 1036 * be inserted and tree will be in consistent 1037 * state. Next mount will repair buffers too. 1038 */ 1039 1040 /* 1041 * Get array to track all allocated blocks. 1042 * We need this to handle errors and free blocks 1043 * upon them. 1044 */ 1045 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 1046 if (!ablocks) 1047 return -ENOMEM; 1048 1049 /* allocate all needed blocks */ 1050 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1051 for (a = 0; a < depth - at; a++) { 1052 newblock = ext4_ext_new_meta_block(handle, inode, path, 1053 newext, &err, flags); 1054 if (newblock == 0) 1055 goto cleanup; 1056 ablocks[a] = newblock; 1057 } 1058 1059 /* initialize new leaf */ 1060 newblock = ablocks[--a]; 1061 if (unlikely(newblock == 0)) { 1062 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1063 err = -EIO; 1064 goto cleanup; 1065 } 1066 bh = sb_getblk(inode->i_sb, newblock); 1067 if (unlikely(!bh)) { 1068 err = -ENOMEM; 1069 goto cleanup; 1070 } 1071 lock_buffer(bh); 1072 1073 err = ext4_journal_get_create_access(handle, bh); 1074 if (err) 1075 goto cleanup; 1076 1077 neh = ext_block_hdr(bh); 1078 neh->eh_entries = 0; 1079 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1080 neh->eh_magic = EXT4_EXT_MAGIC; 1081 neh->eh_depth = 0; 1082 1083 /* move remainder of path[depth] to the new leaf */ 1084 if (unlikely(path[depth].p_hdr->eh_entries != 1085 path[depth].p_hdr->eh_max)) { 1086 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1087 path[depth].p_hdr->eh_entries, 1088 path[depth].p_hdr->eh_max); 1089 err = -EIO; 1090 goto cleanup; 1091 } 1092 /* start copy from next extent */ 1093 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1094 ext4_ext_show_move(inode, path, newblock, depth); 1095 if (m) { 1096 struct ext4_extent *ex; 1097 ex = EXT_FIRST_EXTENT(neh); 1098 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1099 le16_add_cpu(&neh->eh_entries, m); 1100 } 1101 1102 ext4_extent_block_csum_set(inode, neh); 1103 set_buffer_uptodate(bh); 1104 unlock_buffer(bh); 1105 1106 err = ext4_handle_dirty_metadata(handle, inode, bh); 1107 if (err) 1108 goto cleanup; 1109 brelse(bh); 1110 bh = NULL; 1111 1112 /* correct old leaf */ 1113 if (m) { 1114 err = ext4_ext_get_access(handle, inode, path + depth); 1115 if (err) 1116 goto cleanup; 1117 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1118 err = ext4_ext_dirty(handle, inode, path + depth); 1119 if (err) 1120 goto cleanup; 1121 1122 } 1123 1124 /* create intermediate indexes */ 1125 k = depth - at - 1; 1126 if (unlikely(k < 0)) { 1127 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1128 err = -EIO; 1129 goto cleanup; 1130 } 1131 if (k) 1132 ext_debug("create %d intermediate indices\n", k); 1133 /* insert new index into current index block */ 1134 /* current depth stored in i var */ 1135 i = depth - 1; 1136 while (k--) { 1137 oldblock = newblock; 1138 newblock = ablocks[--a]; 1139 bh = sb_getblk(inode->i_sb, newblock); 1140 if (unlikely(!bh)) { 1141 err = -ENOMEM; 1142 goto cleanup; 1143 } 1144 lock_buffer(bh); 1145 1146 err = ext4_journal_get_create_access(handle, bh); 1147 if (err) 1148 goto cleanup; 1149 1150 neh = ext_block_hdr(bh); 1151 neh->eh_entries = cpu_to_le16(1); 1152 neh->eh_magic = EXT4_EXT_MAGIC; 1153 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1154 neh->eh_depth = cpu_to_le16(depth - i); 1155 fidx = EXT_FIRST_INDEX(neh); 1156 fidx->ei_block = border; 1157 ext4_idx_store_pblock(fidx, oldblock); 1158 1159 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1160 i, newblock, le32_to_cpu(border), oldblock); 1161 1162 /* move remainder of path[i] to the new index block */ 1163 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1164 EXT_LAST_INDEX(path[i].p_hdr))) { 1165 EXT4_ERROR_INODE(inode, 1166 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1167 le32_to_cpu(path[i].p_ext->ee_block)); 1168 err = -EIO; 1169 goto cleanup; 1170 } 1171 /* start copy indexes */ 1172 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1173 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1174 EXT_MAX_INDEX(path[i].p_hdr)); 1175 ext4_ext_show_move(inode, path, newblock, i); 1176 if (m) { 1177 memmove(++fidx, path[i].p_idx, 1178 sizeof(struct ext4_extent_idx) * m); 1179 le16_add_cpu(&neh->eh_entries, m); 1180 } 1181 ext4_extent_block_csum_set(inode, neh); 1182 set_buffer_uptodate(bh); 1183 unlock_buffer(bh); 1184 1185 err = ext4_handle_dirty_metadata(handle, inode, bh); 1186 if (err) 1187 goto cleanup; 1188 brelse(bh); 1189 bh = NULL; 1190 1191 /* correct old index */ 1192 if (m) { 1193 err = ext4_ext_get_access(handle, inode, path + i); 1194 if (err) 1195 goto cleanup; 1196 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1197 err = ext4_ext_dirty(handle, inode, path + i); 1198 if (err) 1199 goto cleanup; 1200 } 1201 1202 i--; 1203 } 1204 1205 /* insert new index */ 1206 err = ext4_ext_insert_index(handle, inode, path + at, 1207 le32_to_cpu(border), newblock); 1208 1209 cleanup: 1210 if (bh) { 1211 if (buffer_locked(bh)) 1212 unlock_buffer(bh); 1213 brelse(bh); 1214 } 1215 1216 if (err) { 1217 /* free all allocated blocks in error case */ 1218 for (i = 0; i < depth; i++) { 1219 if (!ablocks[i]) 1220 continue; 1221 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1222 EXT4_FREE_BLOCKS_METADATA); 1223 } 1224 } 1225 kfree(ablocks); 1226 1227 return err; 1228 } 1229 1230 /* 1231 * ext4_ext_grow_indepth: 1232 * implements tree growing procedure: 1233 * - allocates new block 1234 * - moves top-level data (index block or leaf) into the new block 1235 * - initializes new top-level, creating index that points to the 1236 * just created block 1237 */ 1238 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1239 unsigned int flags, 1240 struct ext4_extent *newext) 1241 { 1242 struct ext4_extent_header *neh; 1243 struct buffer_head *bh; 1244 ext4_fsblk_t newblock; 1245 int err = 0; 1246 1247 newblock = ext4_ext_new_meta_block(handle, inode, NULL, 1248 newext, &err, flags); 1249 if (newblock == 0) 1250 return err; 1251 1252 bh = sb_getblk(inode->i_sb, newblock); 1253 if (unlikely(!bh)) 1254 return -ENOMEM; 1255 lock_buffer(bh); 1256 1257 err = ext4_journal_get_create_access(handle, bh); 1258 if (err) { 1259 unlock_buffer(bh); 1260 goto out; 1261 } 1262 1263 /* move top-level index/leaf into new block */ 1264 memmove(bh->b_data, EXT4_I(inode)->i_data, 1265 sizeof(EXT4_I(inode)->i_data)); 1266 1267 /* set size of new block */ 1268 neh = ext_block_hdr(bh); 1269 /* old root could have indexes or leaves 1270 * so calculate e_max right way */ 1271 if (ext_depth(inode)) 1272 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1273 else 1274 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1275 neh->eh_magic = EXT4_EXT_MAGIC; 1276 ext4_extent_block_csum_set(inode, neh); 1277 set_buffer_uptodate(bh); 1278 unlock_buffer(bh); 1279 1280 err = ext4_handle_dirty_metadata(handle, inode, bh); 1281 if (err) 1282 goto out; 1283 1284 /* Update top-level index: num,max,pointer */ 1285 neh = ext_inode_hdr(inode); 1286 neh->eh_entries = cpu_to_le16(1); 1287 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1288 if (neh->eh_depth == 0) { 1289 /* Root extent block becomes index block */ 1290 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1291 EXT_FIRST_INDEX(neh)->ei_block = 1292 EXT_FIRST_EXTENT(neh)->ee_block; 1293 } 1294 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1295 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1296 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1297 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1298 1299 le16_add_cpu(&neh->eh_depth, 1); 1300 ext4_mark_inode_dirty(handle, inode); 1301 out: 1302 brelse(bh); 1303 1304 return err; 1305 } 1306 1307 /* 1308 * ext4_ext_create_new_leaf: 1309 * finds empty index and adds new leaf. 1310 * if no free index is found, then it requests in-depth growing. 1311 */ 1312 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1313 unsigned int mb_flags, 1314 unsigned int gb_flags, 1315 struct ext4_ext_path *path, 1316 struct ext4_extent *newext) 1317 { 1318 struct ext4_ext_path *curp; 1319 int depth, i, err = 0; 1320 1321 repeat: 1322 i = depth = ext_depth(inode); 1323 1324 /* walk up to the tree and look for free index entry */ 1325 curp = path + depth; 1326 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1327 i--; 1328 curp--; 1329 } 1330 1331 /* we use already allocated block for index block, 1332 * so subsequent data blocks should be contiguous */ 1333 if (EXT_HAS_FREE_INDEX(curp)) { 1334 /* if we found index with free entry, then use that 1335 * entry: create all needed subtree and add new leaf */ 1336 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1337 if (err) 1338 goto out; 1339 1340 /* refill path */ 1341 ext4_ext_drop_refs(path); 1342 path = ext4_ext_find_extent(inode, 1343 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1344 path, gb_flags); 1345 if (IS_ERR(path)) 1346 err = PTR_ERR(path); 1347 } else { 1348 /* tree is full, time to grow in depth */ 1349 err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext); 1350 if (err) 1351 goto out; 1352 1353 /* refill path */ 1354 ext4_ext_drop_refs(path); 1355 path = ext4_ext_find_extent(inode, 1356 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1357 path, gb_flags); 1358 if (IS_ERR(path)) { 1359 err = PTR_ERR(path); 1360 goto out; 1361 } 1362 1363 /* 1364 * only first (depth 0 -> 1) produces free space; 1365 * in all other cases we have to split the grown tree 1366 */ 1367 depth = ext_depth(inode); 1368 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1369 /* now we need to split */ 1370 goto repeat; 1371 } 1372 } 1373 1374 out: 1375 return err; 1376 } 1377 1378 /* 1379 * search the closest allocated block to the left for *logical 1380 * and returns it at @logical + it's physical address at @phys 1381 * if *logical is the smallest allocated block, the function 1382 * returns 0 at @phys 1383 * return value contains 0 (success) or error code 1384 */ 1385 static int ext4_ext_search_left(struct inode *inode, 1386 struct ext4_ext_path *path, 1387 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1388 { 1389 struct ext4_extent_idx *ix; 1390 struct ext4_extent *ex; 1391 int depth, ee_len; 1392 1393 if (unlikely(path == NULL)) { 1394 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1395 return -EIO; 1396 } 1397 depth = path->p_depth; 1398 *phys = 0; 1399 1400 if (depth == 0 && path->p_ext == NULL) 1401 return 0; 1402 1403 /* usually extent in the path covers blocks smaller 1404 * then *logical, but it can be that extent is the 1405 * first one in the file */ 1406 1407 ex = path[depth].p_ext; 1408 ee_len = ext4_ext_get_actual_len(ex); 1409 if (*logical < le32_to_cpu(ex->ee_block)) { 1410 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1411 EXT4_ERROR_INODE(inode, 1412 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1413 *logical, le32_to_cpu(ex->ee_block)); 1414 return -EIO; 1415 } 1416 while (--depth >= 0) { 1417 ix = path[depth].p_idx; 1418 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1419 EXT4_ERROR_INODE(inode, 1420 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1421 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1422 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1423 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1424 depth); 1425 return -EIO; 1426 } 1427 } 1428 return 0; 1429 } 1430 1431 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1432 EXT4_ERROR_INODE(inode, 1433 "logical %d < ee_block %d + ee_len %d!", 1434 *logical, le32_to_cpu(ex->ee_block), ee_len); 1435 return -EIO; 1436 } 1437 1438 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1439 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1440 return 0; 1441 } 1442 1443 /* 1444 * search the closest allocated block to the right for *logical 1445 * and returns it at @logical + it's physical address at @phys 1446 * if *logical is the largest allocated block, the function 1447 * returns 0 at @phys 1448 * return value contains 0 (success) or error code 1449 */ 1450 static int ext4_ext_search_right(struct inode *inode, 1451 struct ext4_ext_path *path, 1452 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1453 struct ext4_extent **ret_ex) 1454 { 1455 struct buffer_head *bh = NULL; 1456 struct ext4_extent_header *eh; 1457 struct ext4_extent_idx *ix; 1458 struct ext4_extent *ex; 1459 ext4_fsblk_t block; 1460 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1461 int ee_len; 1462 1463 if (unlikely(path == NULL)) { 1464 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1465 return -EIO; 1466 } 1467 depth = path->p_depth; 1468 *phys = 0; 1469 1470 if (depth == 0 && path->p_ext == NULL) 1471 return 0; 1472 1473 /* usually extent in the path covers blocks smaller 1474 * then *logical, but it can be that extent is the 1475 * first one in the file */ 1476 1477 ex = path[depth].p_ext; 1478 ee_len = ext4_ext_get_actual_len(ex); 1479 if (*logical < le32_to_cpu(ex->ee_block)) { 1480 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1481 EXT4_ERROR_INODE(inode, 1482 "first_extent(path[%d].p_hdr) != ex", 1483 depth); 1484 return -EIO; 1485 } 1486 while (--depth >= 0) { 1487 ix = path[depth].p_idx; 1488 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1489 EXT4_ERROR_INODE(inode, 1490 "ix != EXT_FIRST_INDEX *logical %d!", 1491 *logical); 1492 return -EIO; 1493 } 1494 } 1495 goto found_extent; 1496 } 1497 1498 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1499 EXT4_ERROR_INODE(inode, 1500 "logical %d < ee_block %d + ee_len %d!", 1501 *logical, le32_to_cpu(ex->ee_block), ee_len); 1502 return -EIO; 1503 } 1504 1505 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1506 /* next allocated block in this leaf */ 1507 ex++; 1508 goto found_extent; 1509 } 1510 1511 /* go up and search for index to the right */ 1512 while (--depth >= 0) { 1513 ix = path[depth].p_idx; 1514 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1515 goto got_index; 1516 } 1517 1518 /* we've gone up to the root and found no index to the right */ 1519 return 0; 1520 1521 got_index: 1522 /* we've found index to the right, let's 1523 * follow it and find the closest allocated 1524 * block to the right */ 1525 ix++; 1526 block = ext4_idx_pblock(ix); 1527 while (++depth < path->p_depth) { 1528 /* subtract from p_depth to get proper eh_depth */ 1529 bh = read_extent_tree_block(inode, block, 1530 path->p_depth - depth, 0); 1531 if (IS_ERR(bh)) 1532 return PTR_ERR(bh); 1533 eh = ext_block_hdr(bh); 1534 ix = EXT_FIRST_INDEX(eh); 1535 block = ext4_idx_pblock(ix); 1536 put_bh(bh); 1537 } 1538 1539 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1540 if (IS_ERR(bh)) 1541 return PTR_ERR(bh); 1542 eh = ext_block_hdr(bh); 1543 ex = EXT_FIRST_EXTENT(eh); 1544 found_extent: 1545 *logical = le32_to_cpu(ex->ee_block); 1546 *phys = ext4_ext_pblock(ex); 1547 *ret_ex = ex; 1548 if (bh) 1549 put_bh(bh); 1550 return 0; 1551 } 1552 1553 /* 1554 * ext4_ext_next_allocated_block: 1555 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1556 * NOTE: it considers block number from index entry as 1557 * allocated block. Thus, index entries have to be consistent 1558 * with leaves. 1559 */ 1560 static ext4_lblk_t 1561 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1562 { 1563 int depth; 1564 1565 BUG_ON(path == NULL); 1566 depth = path->p_depth; 1567 1568 if (depth == 0 && path->p_ext == NULL) 1569 return EXT_MAX_BLOCKS; 1570 1571 while (depth >= 0) { 1572 if (depth == path->p_depth) { 1573 /* leaf */ 1574 if (path[depth].p_ext && 1575 path[depth].p_ext != 1576 EXT_LAST_EXTENT(path[depth].p_hdr)) 1577 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1578 } else { 1579 /* index */ 1580 if (path[depth].p_idx != 1581 EXT_LAST_INDEX(path[depth].p_hdr)) 1582 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1583 } 1584 depth--; 1585 } 1586 1587 return EXT_MAX_BLOCKS; 1588 } 1589 1590 /* 1591 * ext4_ext_next_leaf_block: 1592 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1593 */ 1594 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1595 { 1596 int depth; 1597 1598 BUG_ON(path == NULL); 1599 depth = path->p_depth; 1600 1601 /* zero-tree has no leaf blocks at all */ 1602 if (depth == 0) 1603 return EXT_MAX_BLOCKS; 1604 1605 /* go to index block */ 1606 depth--; 1607 1608 while (depth >= 0) { 1609 if (path[depth].p_idx != 1610 EXT_LAST_INDEX(path[depth].p_hdr)) 1611 return (ext4_lblk_t) 1612 le32_to_cpu(path[depth].p_idx[1].ei_block); 1613 depth--; 1614 } 1615 1616 return EXT_MAX_BLOCKS; 1617 } 1618 1619 /* 1620 * ext4_ext_correct_indexes: 1621 * if leaf gets modified and modified extent is first in the leaf, 1622 * then we have to correct all indexes above. 1623 * TODO: do we need to correct tree in all cases? 1624 */ 1625 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1626 struct ext4_ext_path *path) 1627 { 1628 struct ext4_extent_header *eh; 1629 int depth = ext_depth(inode); 1630 struct ext4_extent *ex; 1631 __le32 border; 1632 int k, err = 0; 1633 1634 eh = path[depth].p_hdr; 1635 ex = path[depth].p_ext; 1636 1637 if (unlikely(ex == NULL || eh == NULL)) { 1638 EXT4_ERROR_INODE(inode, 1639 "ex %p == NULL or eh %p == NULL", ex, eh); 1640 return -EIO; 1641 } 1642 1643 if (depth == 0) { 1644 /* there is no tree at all */ 1645 return 0; 1646 } 1647 1648 if (ex != EXT_FIRST_EXTENT(eh)) { 1649 /* we correct tree if first leaf got modified only */ 1650 return 0; 1651 } 1652 1653 /* 1654 * TODO: we need correction if border is smaller than current one 1655 */ 1656 k = depth - 1; 1657 border = path[depth].p_ext->ee_block; 1658 err = ext4_ext_get_access(handle, inode, path + k); 1659 if (err) 1660 return err; 1661 path[k].p_idx->ei_block = border; 1662 err = ext4_ext_dirty(handle, inode, path + k); 1663 if (err) 1664 return err; 1665 1666 while (k--) { 1667 /* change all left-side indexes */ 1668 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1669 break; 1670 err = ext4_ext_get_access(handle, inode, path + k); 1671 if (err) 1672 break; 1673 path[k].p_idx->ei_block = border; 1674 err = ext4_ext_dirty(handle, inode, path + k); 1675 if (err) 1676 break; 1677 } 1678 1679 return err; 1680 } 1681 1682 int 1683 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1684 struct ext4_extent *ex2) 1685 { 1686 unsigned short ext1_ee_len, ext2_ee_len; 1687 1688 /* 1689 * Make sure that both extents are initialized. We don't merge 1690 * unwritten extents so that we can be sure that end_io code has 1691 * the extent that was written properly split out and conversion to 1692 * initialized is trivial. 1693 */ 1694 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1695 return 0; 1696 1697 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1698 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1699 1700 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1701 le32_to_cpu(ex2->ee_block)) 1702 return 0; 1703 1704 /* 1705 * To allow future support for preallocated extents to be added 1706 * as an RO_COMPAT feature, refuse to merge to extents if 1707 * this can result in the top bit of ee_len being set. 1708 */ 1709 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1710 return 0; 1711 if (ext4_ext_is_unwritten(ex1) && 1712 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) || 1713 atomic_read(&EXT4_I(inode)->i_unwritten) || 1714 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN))) 1715 return 0; 1716 #ifdef AGGRESSIVE_TEST 1717 if (ext1_ee_len >= 4) 1718 return 0; 1719 #endif 1720 1721 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1722 return 1; 1723 return 0; 1724 } 1725 1726 /* 1727 * This function tries to merge the "ex" extent to the next extent in the tree. 1728 * It always tries to merge towards right. If you want to merge towards 1729 * left, pass "ex - 1" as argument instead of "ex". 1730 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1731 * 1 if they got merged. 1732 */ 1733 static int ext4_ext_try_to_merge_right(struct inode *inode, 1734 struct ext4_ext_path *path, 1735 struct ext4_extent *ex) 1736 { 1737 struct ext4_extent_header *eh; 1738 unsigned int depth, len; 1739 int merge_done = 0, unwritten; 1740 1741 depth = ext_depth(inode); 1742 BUG_ON(path[depth].p_hdr == NULL); 1743 eh = path[depth].p_hdr; 1744 1745 while (ex < EXT_LAST_EXTENT(eh)) { 1746 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1747 break; 1748 /* merge with next extent! */ 1749 unwritten = ext4_ext_is_unwritten(ex); 1750 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1751 + ext4_ext_get_actual_len(ex + 1)); 1752 if (unwritten) 1753 ext4_ext_mark_unwritten(ex); 1754 1755 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1756 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1757 * sizeof(struct ext4_extent); 1758 memmove(ex + 1, ex + 2, len); 1759 } 1760 le16_add_cpu(&eh->eh_entries, -1); 1761 merge_done = 1; 1762 WARN_ON(eh->eh_entries == 0); 1763 if (!eh->eh_entries) 1764 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1765 } 1766 1767 return merge_done; 1768 } 1769 1770 /* 1771 * This function does a very simple check to see if we can collapse 1772 * an extent tree with a single extent tree leaf block into the inode. 1773 */ 1774 static void ext4_ext_try_to_merge_up(handle_t *handle, 1775 struct inode *inode, 1776 struct ext4_ext_path *path) 1777 { 1778 size_t s; 1779 unsigned max_root = ext4_ext_space_root(inode, 0); 1780 ext4_fsblk_t blk; 1781 1782 if ((path[0].p_depth != 1) || 1783 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1784 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1785 return; 1786 1787 /* 1788 * We need to modify the block allocation bitmap and the block 1789 * group descriptor to release the extent tree block. If we 1790 * can't get the journal credits, give up. 1791 */ 1792 if (ext4_journal_extend(handle, 2)) 1793 return; 1794 1795 /* 1796 * Copy the extent data up to the inode 1797 */ 1798 blk = ext4_idx_pblock(path[0].p_idx); 1799 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1800 sizeof(struct ext4_extent_idx); 1801 s += sizeof(struct ext4_extent_header); 1802 1803 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1804 path[0].p_depth = 0; 1805 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1806 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1807 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1808 1809 brelse(path[1].p_bh); 1810 ext4_free_blocks(handle, inode, NULL, blk, 1, 1811 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET | 1812 EXT4_FREE_BLOCKS_RESERVE); 1813 } 1814 1815 /* 1816 * This function tries to merge the @ex extent to neighbours in the tree. 1817 * return 1 if merge left else 0. 1818 */ 1819 static void ext4_ext_try_to_merge(handle_t *handle, 1820 struct inode *inode, 1821 struct ext4_ext_path *path, 1822 struct ext4_extent *ex) { 1823 struct ext4_extent_header *eh; 1824 unsigned int depth; 1825 int merge_done = 0; 1826 1827 depth = ext_depth(inode); 1828 BUG_ON(path[depth].p_hdr == NULL); 1829 eh = path[depth].p_hdr; 1830 1831 if (ex > EXT_FIRST_EXTENT(eh)) 1832 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1833 1834 if (!merge_done) 1835 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1836 1837 ext4_ext_try_to_merge_up(handle, inode, path); 1838 } 1839 1840 /* 1841 * check if a portion of the "newext" extent overlaps with an 1842 * existing extent. 1843 * 1844 * If there is an overlap discovered, it updates the length of the newext 1845 * such that there will be no overlap, and then returns 1. 1846 * If there is no overlap found, it returns 0. 1847 */ 1848 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1849 struct inode *inode, 1850 struct ext4_extent *newext, 1851 struct ext4_ext_path *path) 1852 { 1853 ext4_lblk_t b1, b2; 1854 unsigned int depth, len1; 1855 unsigned int ret = 0; 1856 1857 b1 = le32_to_cpu(newext->ee_block); 1858 len1 = ext4_ext_get_actual_len(newext); 1859 depth = ext_depth(inode); 1860 if (!path[depth].p_ext) 1861 goto out; 1862 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1863 1864 /* 1865 * get the next allocated block if the extent in the path 1866 * is before the requested block(s) 1867 */ 1868 if (b2 < b1) { 1869 b2 = ext4_ext_next_allocated_block(path); 1870 if (b2 == EXT_MAX_BLOCKS) 1871 goto out; 1872 b2 = EXT4_LBLK_CMASK(sbi, b2); 1873 } 1874 1875 /* check for wrap through zero on extent logical start block*/ 1876 if (b1 + len1 < b1) { 1877 len1 = EXT_MAX_BLOCKS - b1; 1878 newext->ee_len = cpu_to_le16(len1); 1879 ret = 1; 1880 } 1881 1882 /* check for overlap */ 1883 if (b1 + len1 > b2) { 1884 newext->ee_len = cpu_to_le16(b2 - b1); 1885 ret = 1; 1886 } 1887 out: 1888 return ret; 1889 } 1890 1891 /* 1892 * ext4_ext_insert_extent: 1893 * tries to merge requsted extent into the existing extent or 1894 * inserts requested extent as new one into the tree, 1895 * creating new leaf in the no-space case. 1896 */ 1897 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1898 struct ext4_ext_path *path, 1899 struct ext4_extent *newext, int gb_flags) 1900 { 1901 struct ext4_extent_header *eh; 1902 struct ext4_extent *ex, *fex; 1903 struct ext4_extent *nearex; /* nearest extent */ 1904 struct ext4_ext_path *npath = NULL; 1905 int depth, len, err; 1906 ext4_lblk_t next; 1907 int mb_flags = 0, unwritten; 1908 1909 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1910 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1911 return -EIO; 1912 } 1913 depth = ext_depth(inode); 1914 ex = path[depth].p_ext; 1915 eh = path[depth].p_hdr; 1916 if (unlikely(path[depth].p_hdr == NULL)) { 1917 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1918 return -EIO; 1919 } 1920 1921 /* try to insert block into found extent and return */ 1922 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1923 1924 /* 1925 * Try to see whether we should rather test the extent on 1926 * right from ex, or from the left of ex. This is because 1927 * ext4_ext_find_extent() can return either extent on the 1928 * left, or on the right from the searched position. This 1929 * will make merging more effective. 1930 */ 1931 if (ex < EXT_LAST_EXTENT(eh) && 1932 (le32_to_cpu(ex->ee_block) + 1933 ext4_ext_get_actual_len(ex) < 1934 le32_to_cpu(newext->ee_block))) { 1935 ex += 1; 1936 goto prepend; 1937 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1938 (le32_to_cpu(newext->ee_block) + 1939 ext4_ext_get_actual_len(newext) < 1940 le32_to_cpu(ex->ee_block))) 1941 ex -= 1; 1942 1943 /* Try to append newex to the ex */ 1944 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1945 ext_debug("append [%d]%d block to %u:[%d]%d" 1946 "(from %llu)\n", 1947 ext4_ext_is_unwritten(newext), 1948 ext4_ext_get_actual_len(newext), 1949 le32_to_cpu(ex->ee_block), 1950 ext4_ext_is_unwritten(ex), 1951 ext4_ext_get_actual_len(ex), 1952 ext4_ext_pblock(ex)); 1953 err = ext4_ext_get_access(handle, inode, 1954 path + depth); 1955 if (err) 1956 return err; 1957 unwritten = ext4_ext_is_unwritten(ex); 1958 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1959 + ext4_ext_get_actual_len(newext)); 1960 if (unwritten) 1961 ext4_ext_mark_unwritten(ex); 1962 eh = path[depth].p_hdr; 1963 nearex = ex; 1964 goto merge; 1965 } 1966 1967 prepend: 1968 /* Try to prepend newex to the ex */ 1969 if (ext4_can_extents_be_merged(inode, newext, ex)) { 1970 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 1971 "(from %llu)\n", 1972 le32_to_cpu(newext->ee_block), 1973 ext4_ext_is_unwritten(newext), 1974 ext4_ext_get_actual_len(newext), 1975 le32_to_cpu(ex->ee_block), 1976 ext4_ext_is_unwritten(ex), 1977 ext4_ext_get_actual_len(ex), 1978 ext4_ext_pblock(ex)); 1979 err = ext4_ext_get_access(handle, inode, 1980 path + depth); 1981 if (err) 1982 return err; 1983 1984 unwritten = ext4_ext_is_unwritten(ex); 1985 ex->ee_block = newext->ee_block; 1986 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 1987 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1988 + ext4_ext_get_actual_len(newext)); 1989 if (unwritten) 1990 ext4_ext_mark_unwritten(ex); 1991 eh = path[depth].p_hdr; 1992 nearex = ex; 1993 goto merge; 1994 } 1995 } 1996 1997 depth = ext_depth(inode); 1998 eh = path[depth].p_hdr; 1999 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2000 goto has_space; 2001 2002 /* probably next leaf has space for us? */ 2003 fex = EXT_LAST_EXTENT(eh); 2004 next = EXT_MAX_BLOCKS; 2005 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2006 next = ext4_ext_next_leaf_block(path); 2007 if (next != EXT_MAX_BLOCKS) { 2008 ext_debug("next leaf block - %u\n", next); 2009 BUG_ON(npath != NULL); 2010 npath = ext4_ext_find_extent(inode, next, NULL, 0); 2011 if (IS_ERR(npath)) 2012 return PTR_ERR(npath); 2013 BUG_ON(npath->p_depth != path->p_depth); 2014 eh = npath[depth].p_hdr; 2015 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2016 ext_debug("next leaf isn't full(%d)\n", 2017 le16_to_cpu(eh->eh_entries)); 2018 path = npath; 2019 goto has_space; 2020 } 2021 ext_debug("next leaf has no free space(%d,%d)\n", 2022 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2023 } 2024 2025 /* 2026 * There is no free space in the found leaf. 2027 * We're gonna add a new leaf in the tree. 2028 */ 2029 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2030 mb_flags = EXT4_MB_USE_RESERVED; 2031 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2032 path, newext); 2033 if (err) 2034 goto cleanup; 2035 depth = ext_depth(inode); 2036 eh = path[depth].p_hdr; 2037 2038 has_space: 2039 nearex = path[depth].p_ext; 2040 2041 err = ext4_ext_get_access(handle, inode, path + depth); 2042 if (err) 2043 goto cleanup; 2044 2045 if (!nearex) { 2046 /* there is no extent in this leaf, create first one */ 2047 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2048 le32_to_cpu(newext->ee_block), 2049 ext4_ext_pblock(newext), 2050 ext4_ext_is_unwritten(newext), 2051 ext4_ext_get_actual_len(newext)); 2052 nearex = EXT_FIRST_EXTENT(eh); 2053 } else { 2054 if (le32_to_cpu(newext->ee_block) 2055 > le32_to_cpu(nearex->ee_block)) { 2056 /* Insert after */ 2057 ext_debug("insert %u:%llu:[%d]%d before: " 2058 "nearest %p\n", 2059 le32_to_cpu(newext->ee_block), 2060 ext4_ext_pblock(newext), 2061 ext4_ext_is_unwritten(newext), 2062 ext4_ext_get_actual_len(newext), 2063 nearex); 2064 nearex++; 2065 } else { 2066 /* Insert before */ 2067 BUG_ON(newext->ee_block == nearex->ee_block); 2068 ext_debug("insert %u:%llu:[%d]%d after: " 2069 "nearest %p\n", 2070 le32_to_cpu(newext->ee_block), 2071 ext4_ext_pblock(newext), 2072 ext4_ext_is_unwritten(newext), 2073 ext4_ext_get_actual_len(newext), 2074 nearex); 2075 } 2076 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2077 if (len > 0) { 2078 ext_debug("insert %u:%llu:[%d]%d: " 2079 "move %d extents from 0x%p to 0x%p\n", 2080 le32_to_cpu(newext->ee_block), 2081 ext4_ext_pblock(newext), 2082 ext4_ext_is_unwritten(newext), 2083 ext4_ext_get_actual_len(newext), 2084 len, nearex, nearex + 1); 2085 memmove(nearex + 1, nearex, 2086 len * sizeof(struct ext4_extent)); 2087 } 2088 } 2089 2090 le16_add_cpu(&eh->eh_entries, 1); 2091 path[depth].p_ext = nearex; 2092 nearex->ee_block = newext->ee_block; 2093 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2094 nearex->ee_len = newext->ee_len; 2095 2096 merge: 2097 /* try to merge extents */ 2098 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2099 ext4_ext_try_to_merge(handle, inode, path, nearex); 2100 2101 2102 /* time to correct all indexes above */ 2103 err = ext4_ext_correct_indexes(handle, inode, path); 2104 if (err) 2105 goto cleanup; 2106 2107 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2108 2109 cleanup: 2110 if (npath) { 2111 ext4_ext_drop_refs(npath); 2112 kfree(npath); 2113 } 2114 return err; 2115 } 2116 2117 static int ext4_fill_fiemap_extents(struct inode *inode, 2118 ext4_lblk_t block, ext4_lblk_t num, 2119 struct fiemap_extent_info *fieinfo) 2120 { 2121 struct ext4_ext_path *path = NULL; 2122 struct ext4_extent *ex; 2123 struct extent_status es; 2124 ext4_lblk_t next, next_del, start = 0, end = 0; 2125 ext4_lblk_t last = block + num; 2126 int exists, depth = 0, err = 0; 2127 unsigned int flags = 0; 2128 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2129 2130 while (block < last && block != EXT_MAX_BLOCKS) { 2131 num = last - block; 2132 /* find extent for this block */ 2133 down_read(&EXT4_I(inode)->i_data_sem); 2134 2135 if (path && ext_depth(inode) != depth) { 2136 /* depth was changed. we have to realloc path */ 2137 kfree(path); 2138 path = NULL; 2139 } 2140 2141 path = ext4_ext_find_extent(inode, block, path, 0); 2142 if (IS_ERR(path)) { 2143 up_read(&EXT4_I(inode)->i_data_sem); 2144 err = PTR_ERR(path); 2145 path = NULL; 2146 break; 2147 } 2148 2149 depth = ext_depth(inode); 2150 if (unlikely(path[depth].p_hdr == NULL)) { 2151 up_read(&EXT4_I(inode)->i_data_sem); 2152 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2153 err = -EIO; 2154 break; 2155 } 2156 ex = path[depth].p_ext; 2157 next = ext4_ext_next_allocated_block(path); 2158 ext4_ext_drop_refs(path); 2159 2160 flags = 0; 2161 exists = 0; 2162 if (!ex) { 2163 /* there is no extent yet, so try to allocate 2164 * all requested space */ 2165 start = block; 2166 end = block + num; 2167 } else if (le32_to_cpu(ex->ee_block) > block) { 2168 /* need to allocate space before found extent */ 2169 start = block; 2170 end = le32_to_cpu(ex->ee_block); 2171 if (block + num < end) 2172 end = block + num; 2173 } else if (block >= le32_to_cpu(ex->ee_block) 2174 + ext4_ext_get_actual_len(ex)) { 2175 /* need to allocate space after found extent */ 2176 start = block; 2177 end = block + num; 2178 if (end >= next) 2179 end = next; 2180 } else if (block >= le32_to_cpu(ex->ee_block)) { 2181 /* 2182 * some part of requested space is covered 2183 * by found extent 2184 */ 2185 start = block; 2186 end = le32_to_cpu(ex->ee_block) 2187 + ext4_ext_get_actual_len(ex); 2188 if (block + num < end) 2189 end = block + num; 2190 exists = 1; 2191 } else { 2192 BUG(); 2193 } 2194 BUG_ON(end <= start); 2195 2196 if (!exists) { 2197 es.es_lblk = start; 2198 es.es_len = end - start; 2199 es.es_pblk = 0; 2200 } else { 2201 es.es_lblk = le32_to_cpu(ex->ee_block); 2202 es.es_len = ext4_ext_get_actual_len(ex); 2203 es.es_pblk = ext4_ext_pblock(ex); 2204 if (ext4_ext_is_unwritten(ex)) 2205 flags |= FIEMAP_EXTENT_UNWRITTEN; 2206 } 2207 2208 /* 2209 * Find delayed extent and update es accordingly. We call 2210 * it even in !exists case to find out whether es is the 2211 * last existing extent or not. 2212 */ 2213 next_del = ext4_find_delayed_extent(inode, &es); 2214 if (!exists && next_del) { 2215 exists = 1; 2216 flags |= (FIEMAP_EXTENT_DELALLOC | 2217 FIEMAP_EXTENT_UNKNOWN); 2218 } 2219 up_read(&EXT4_I(inode)->i_data_sem); 2220 2221 if (unlikely(es.es_len == 0)) { 2222 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2223 err = -EIO; 2224 break; 2225 } 2226 2227 /* 2228 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2229 * we need to check next == EXT_MAX_BLOCKS because it is 2230 * possible that an extent is with unwritten and delayed 2231 * status due to when an extent is delayed allocated and 2232 * is allocated by fallocate status tree will track both of 2233 * them in a extent. 2234 * 2235 * So we could return a unwritten and delayed extent, and 2236 * its block is equal to 'next'. 2237 */ 2238 if (next == next_del && next == EXT_MAX_BLOCKS) { 2239 flags |= FIEMAP_EXTENT_LAST; 2240 if (unlikely(next_del != EXT_MAX_BLOCKS || 2241 next != EXT_MAX_BLOCKS)) { 2242 EXT4_ERROR_INODE(inode, 2243 "next extent == %u, next " 2244 "delalloc extent = %u", 2245 next, next_del); 2246 err = -EIO; 2247 break; 2248 } 2249 } 2250 2251 if (exists) { 2252 err = fiemap_fill_next_extent(fieinfo, 2253 (__u64)es.es_lblk << blksize_bits, 2254 (__u64)es.es_pblk << blksize_bits, 2255 (__u64)es.es_len << blksize_bits, 2256 flags); 2257 if (err < 0) 2258 break; 2259 if (err == 1) { 2260 err = 0; 2261 break; 2262 } 2263 } 2264 2265 block = es.es_lblk + es.es_len; 2266 } 2267 2268 if (path) { 2269 ext4_ext_drop_refs(path); 2270 kfree(path); 2271 } 2272 2273 return err; 2274 } 2275 2276 /* 2277 * ext4_ext_put_gap_in_cache: 2278 * calculate boundaries of the gap that the requested block fits into 2279 * and cache this gap 2280 */ 2281 static void 2282 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, 2283 ext4_lblk_t block) 2284 { 2285 int depth = ext_depth(inode); 2286 unsigned long len = 0; 2287 ext4_lblk_t lblock = 0; 2288 struct ext4_extent *ex; 2289 2290 ex = path[depth].p_ext; 2291 if (ex == NULL) { 2292 /* 2293 * there is no extent yet, so gap is [0;-] and we 2294 * don't cache it 2295 */ 2296 ext_debug("cache gap(whole file):"); 2297 } else if (block < le32_to_cpu(ex->ee_block)) { 2298 lblock = block; 2299 len = le32_to_cpu(ex->ee_block) - block; 2300 ext_debug("cache gap(before): %u [%u:%u]", 2301 block, 2302 le32_to_cpu(ex->ee_block), 2303 ext4_ext_get_actual_len(ex)); 2304 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2305 ext4_es_insert_extent(inode, lblock, len, ~0, 2306 EXTENT_STATUS_HOLE); 2307 } else if (block >= le32_to_cpu(ex->ee_block) 2308 + ext4_ext_get_actual_len(ex)) { 2309 ext4_lblk_t next; 2310 lblock = le32_to_cpu(ex->ee_block) 2311 + ext4_ext_get_actual_len(ex); 2312 2313 next = ext4_ext_next_allocated_block(path); 2314 ext_debug("cache gap(after): [%u:%u] %u", 2315 le32_to_cpu(ex->ee_block), 2316 ext4_ext_get_actual_len(ex), 2317 block); 2318 BUG_ON(next == lblock); 2319 len = next - lblock; 2320 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) 2321 ext4_es_insert_extent(inode, lblock, len, ~0, 2322 EXTENT_STATUS_HOLE); 2323 } else { 2324 BUG(); 2325 } 2326 2327 ext_debug(" -> %u:%lu\n", lblock, len); 2328 } 2329 2330 /* 2331 * ext4_ext_rm_idx: 2332 * removes index from the index block. 2333 */ 2334 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2335 struct ext4_ext_path *path, int depth) 2336 { 2337 int err; 2338 ext4_fsblk_t leaf; 2339 2340 /* free index block */ 2341 depth--; 2342 path = path + depth; 2343 leaf = ext4_idx_pblock(path->p_idx); 2344 if (unlikely(path->p_hdr->eh_entries == 0)) { 2345 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2346 return -EIO; 2347 } 2348 err = ext4_ext_get_access(handle, inode, path); 2349 if (err) 2350 return err; 2351 2352 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2353 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2354 len *= sizeof(struct ext4_extent_idx); 2355 memmove(path->p_idx, path->p_idx + 1, len); 2356 } 2357 2358 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2359 err = ext4_ext_dirty(handle, inode, path); 2360 if (err) 2361 return err; 2362 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2363 trace_ext4_ext_rm_idx(inode, leaf); 2364 2365 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2366 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2367 2368 while (--depth >= 0) { 2369 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2370 break; 2371 path--; 2372 err = ext4_ext_get_access(handle, inode, path); 2373 if (err) 2374 break; 2375 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2376 err = ext4_ext_dirty(handle, inode, path); 2377 if (err) 2378 break; 2379 } 2380 return err; 2381 } 2382 2383 /* 2384 * ext4_ext_calc_credits_for_single_extent: 2385 * This routine returns max. credits that needed to insert an extent 2386 * to the extent tree. 2387 * When pass the actual path, the caller should calculate credits 2388 * under i_data_sem. 2389 */ 2390 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2391 struct ext4_ext_path *path) 2392 { 2393 if (path) { 2394 int depth = ext_depth(inode); 2395 int ret = 0; 2396 2397 /* probably there is space in leaf? */ 2398 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2399 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2400 2401 /* 2402 * There are some space in the leaf tree, no 2403 * need to account for leaf block credit 2404 * 2405 * bitmaps and block group descriptor blocks 2406 * and other metadata blocks still need to be 2407 * accounted. 2408 */ 2409 /* 1 bitmap, 1 block group descriptor */ 2410 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2411 return ret; 2412 } 2413 } 2414 2415 return ext4_chunk_trans_blocks(inode, nrblocks); 2416 } 2417 2418 /* 2419 * How many index/leaf blocks need to change/allocate to add @extents extents? 2420 * 2421 * If we add a single extent, then in the worse case, each tree level 2422 * index/leaf need to be changed in case of the tree split. 2423 * 2424 * If more extents are inserted, they could cause the whole tree split more 2425 * than once, but this is really rare. 2426 */ 2427 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2428 { 2429 int index; 2430 int depth; 2431 2432 /* If we are converting the inline data, only one is needed here. */ 2433 if (ext4_has_inline_data(inode)) 2434 return 1; 2435 2436 depth = ext_depth(inode); 2437 2438 if (extents <= 1) 2439 index = depth * 2; 2440 else 2441 index = depth * 3; 2442 2443 return index; 2444 } 2445 2446 static inline int get_default_free_blocks_flags(struct inode *inode) 2447 { 2448 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2449 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2450 else if (ext4_should_journal_data(inode)) 2451 return EXT4_FREE_BLOCKS_FORGET; 2452 return 0; 2453 } 2454 2455 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2456 struct ext4_extent *ex, 2457 long long *partial_cluster, 2458 ext4_lblk_t from, ext4_lblk_t to) 2459 { 2460 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2461 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2462 ext4_fsblk_t pblk; 2463 int flags = get_default_free_blocks_flags(inode); 2464 2465 /* 2466 * For bigalloc file systems, we never free a partial cluster 2467 * at the beginning of the extent. Instead, we make a note 2468 * that we tried freeing the cluster, and check to see if we 2469 * need to free it on a subsequent call to ext4_remove_blocks, 2470 * or at the end of the ext4_truncate() operation. 2471 */ 2472 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2473 2474 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2475 /* 2476 * If we have a partial cluster, and it's different from the 2477 * cluster of the last block, we need to explicitly free the 2478 * partial cluster here. 2479 */ 2480 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2481 if ((*partial_cluster > 0) && 2482 (EXT4_B2C(sbi, pblk) != *partial_cluster)) { 2483 ext4_free_blocks(handle, inode, NULL, 2484 EXT4_C2B(sbi, *partial_cluster), 2485 sbi->s_cluster_ratio, flags); 2486 *partial_cluster = 0; 2487 } 2488 2489 #ifdef EXTENTS_STATS 2490 { 2491 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2492 spin_lock(&sbi->s_ext_stats_lock); 2493 sbi->s_ext_blocks += ee_len; 2494 sbi->s_ext_extents++; 2495 if (ee_len < sbi->s_ext_min) 2496 sbi->s_ext_min = ee_len; 2497 if (ee_len > sbi->s_ext_max) 2498 sbi->s_ext_max = ee_len; 2499 if (ext_depth(inode) > sbi->s_depth_max) 2500 sbi->s_depth_max = ext_depth(inode); 2501 spin_unlock(&sbi->s_ext_stats_lock); 2502 } 2503 #endif 2504 if (from >= le32_to_cpu(ex->ee_block) 2505 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2506 /* tail removal */ 2507 ext4_lblk_t num; 2508 unsigned int unaligned; 2509 2510 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2511 pblk = ext4_ext_pblock(ex) + ee_len - num; 2512 /* 2513 * Usually we want to free partial cluster at the end of the 2514 * extent, except for the situation when the cluster is still 2515 * used by any other extent (partial_cluster is negative). 2516 */ 2517 if (*partial_cluster < 0 && 2518 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1)) 2519 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2520 2521 ext_debug("free last %u blocks starting %llu partial %lld\n", 2522 num, pblk, *partial_cluster); 2523 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2524 /* 2525 * If the block range to be freed didn't start at the 2526 * beginning of a cluster, and we removed the entire 2527 * extent and the cluster is not used by any other extent, 2528 * save the partial cluster here, since we might need to 2529 * delete if we determine that the truncate operation has 2530 * removed all of the blocks in the cluster. 2531 * 2532 * On the other hand, if we did not manage to free the whole 2533 * extent, we have to mark the cluster as used (store negative 2534 * cluster number in partial_cluster). 2535 */ 2536 unaligned = EXT4_PBLK_COFF(sbi, pblk); 2537 if (unaligned && (ee_len == num) && 2538 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk)))) 2539 *partial_cluster = EXT4_B2C(sbi, pblk); 2540 else if (unaligned) 2541 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk)); 2542 else if (*partial_cluster > 0) 2543 *partial_cluster = 0; 2544 } else 2545 ext4_error(sbi->s_sb, "strange request: removal(2) " 2546 "%u-%u from %u:%u\n", 2547 from, to, le32_to_cpu(ex->ee_block), ee_len); 2548 return 0; 2549 } 2550 2551 2552 /* 2553 * ext4_ext_rm_leaf() Removes the extents associated with the 2554 * blocks appearing between "start" and "end", and splits the extents 2555 * if "start" and "end" appear in the same extent 2556 * 2557 * @handle: The journal handle 2558 * @inode: The files inode 2559 * @path: The path to the leaf 2560 * @partial_cluster: The cluster which we'll have to free if all extents 2561 * has been released from it. It gets negative in case 2562 * that the cluster is still used. 2563 * @start: The first block to remove 2564 * @end: The last block to remove 2565 */ 2566 static int 2567 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2568 struct ext4_ext_path *path, 2569 long long *partial_cluster, 2570 ext4_lblk_t start, ext4_lblk_t end) 2571 { 2572 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2573 int err = 0, correct_index = 0; 2574 int depth = ext_depth(inode), credits; 2575 struct ext4_extent_header *eh; 2576 ext4_lblk_t a, b; 2577 unsigned num; 2578 ext4_lblk_t ex_ee_block; 2579 unsigned short ex_ee_len; 2580 unsigned unwritten = 0; 2581 struct ext4_extent *ex; 2582 ext4_fsblk_t pblk; 2583 2584 /* the header must be checked already in ext4_ext_remove_space() */ 2585 ext_debug("truncate since %u in leaf to %u\n", start, end); 2586 if (!path[depth].p_hdr) 2587 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2588 eh = path[depth].p_hdr; 2589 if (unlikely(path[depth].p_hdr == NULL)) { 2590 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2591 return -EIO; 2592 } 2593 /* find where to start removing */ 2594 ex = path[depth].p_ext; 2595 if (!ex) 2596 ex = EXT_LAST_EXTENT(eh); 2597 2598 ex_ee_block = le32_to_cpu(ex->ee_block); 2599 ex_ee_len = ext4_ext_get_actual_len(ex); 2600 2601 /* 2602 * If we're starting with an extent other than the last one in the 2603 * node, we need to see if it shares a cluster with the extent to 2604 * the right (towards the end of the file). If its leftmost cluster 2605 * is this extent's rightmost cluster and it is not cluster aligned, 2606 * we'll mark it as a partial that is not to be deallocated. 2607 */ 2608 2609 if (ex != EXT_LAST_EXTENT(eh)) { 2610 ext4_fsblk_t current_pblk, right_pblk; 2611 long long current_cluster, right_cluster; 2612 2613 current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2614 current_cluster = (long long)EXT4_B2C(sbi, current_pblk); 2615 right_pblk = ext4_ext_pblock(ex + 1); 2616 right_cluster = (long long)EXT4_B2C(sbi, right_pblk); 2617 if (current_cluster == right_cluster && 2618 EXT4_PBLK_COFF(sbi, right_pblk)) 2619 *partial_cluster = -right_cluster; 2620 } 2621 2622 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2623 2624 while (ex >= EXT_FIRST_EXTENT(eh) && 2625 ex_ee_block + ex_ee_len > start) { 2626 2627 if (ext4_ext_is_unwritten(ex)) 2628 unwritten = 1; 2629 else 2630 unwritten = 0; 2631 2632 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2633 unwritten, ex_ee_len); 2634 path[depth].p_ext = ex; 2635 2636 a = ex_ee_block > start ? ex_ee_block : start; 2637 b = ex_ee_block+ex_ee_len - 1 < end ? 2638 ex_ee_block+ex_ee_len - 1 : end; 2639 2640 ext_debug(" border %u:%u\n", a, b); 2641 2642 /* If this extent is beyond the end of the hole, skip it */ 2643 if (end < ex_ee_block) { 2644 /* 2645 * We're going to skip this extent and move to another, 2646 * so if this extent is not cluster aligned we have 2647 * to mark the current cluster as used to avoid 2648 * accidentally freeing it later on 2649 */ 2650 pblk = ext4_ext_pblock(ex); 2651 if (EXT4_PBLK_COFF(sbi, pblk)) 2652 *partial_cluster = 2653 -((long long)EXT4_B2C(sbi, pblk)); 2654 ex--; 2655 ex_ee_block = le32_to_cpu(ex->ee_block); 2656 ex_ee_len = ext4_ext_get_actual_len(ex); 2657 continue; 2658 } else if (b != ex_ee_block + ex_ee_len - 1) { 2659 EXT4_ERROR_INODE(inode, 2660 "can not handle truncate %u:%u " 2661 "on extent %u:%u", 2662 start, end, ex_ee_block, 2663 ex_ee_block + ex_ee_len - 1); 2664 err = -EIO; 2665 goto out; 2666 } else if (a != ex_ee_block) { 2667 /* remove tail of the extent */ 2668 num = a - ex_ee_block; 2669 } else { 2670 /* remove whole extent: excellent! */ 2671 num = 0; 2672 } 2673 /* 2674 * 3 for leaf, sb, and inode plus 2 (bmap and group 2675 * descriptor) for each block group; assume two block 2676 * groups plus ex_ee_len/blocks_per_block_group for 2677 * the worst case 2678 */ 2679 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2680 if (ex == EXT_FIRST_EXTENT(eh)) { 2681 correct_index = 1; 2682 credits += (ext_depth(inode)) + 1; 2683 } 2684 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2685 2686 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2687 if (err) 2688 goto out; 2689 2690 err = ext4_ext_get_access(handle, inode, path + depth); 2691 if (err) 2692 goto out; 2693 2694 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2695 a, b); 2696 if (err) 2697 goto out; 2698 2699 if (num == 0) 2700 /* this extent is removed; mark slot entirely unused */ 2701 ext4_ext_store_pblock(ex, 0); 2702 2703 ex->ee_len = cpu_to_le16(num); 2704 /* 2705 * Do not mark unwritten if all the blocks in the 2706 * extent have been removed. 2707 */ 2708 if (unwritten && num) 2709 ext4_ext_mark_unwritten(ex); 2710 /* 2711 * If the extent was completely released, 2712 * we need to remove it from the leaf 2713 */ 2714 if (num == 0) { 2715 if (end != EXT_MAX_BLOCKS - 1) { 2716 /* 2717 * For hole punching, we need to scoot all the 2718 * extents up when an extent is removed so that 2719 * we dont have blank extents in the middle 2720 */ 2721 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2722 sizeof(struct ext4_extent)); 2723 2724 /* Now get rid of the one at the end */ 2725 memset(EXT_LAST_EXTENT(eh), 0, 2726 sizeof(struct ext4_extent)); 2727 } 2728 le16_add_cpu(&eh->eh_entries, -1); 2729 } else if (*partial_cluster > 0) 2730 *partial_cluster = 0; 2731 2732 err = ext4_ext_dirty(handle, inode, path + depth); 2733 if (err) 2734 goto out; 2735 2736 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2737 ext4_ext_pblock(ex)); 2738 ex--; 2739 ex_ee_block = le32_to_cpu(ex->ee_block); 2740 ex_ee_len = ext4_ext_get_actual_len(ex); 2741 } 2742 2743 if (correct_index && eh->eh_entries) 2744 err = ext4_ext_correct_indexes(handle, inode, path); 2745 2746 /* 2747 * If there's a partial cluster and at least one extent remains in 2748 * the leaf, free the partial cluster if it isn't shared with the 2749 * current extent. If there's a partial cluster and no extents 2750 * remain in the leaf, it can't be freed here. It can only be 2751 * freed when it's possible to determine if it's not shared with 2752 * any other extent - when the next leaf is processed or when space 2753 * removal is complete. 2754 */ 2755 if (*partial_cluster > 0 && eh->eh_entries && 2756 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != 2757 *partial_cluster)) { 2758 int flags = get_default_free_blocks_flags(inode); 2759 2760 ext4_free_blocks(handle, inode, NULL, 2761 EXT4_C2B(sbi, *partial_cluster), 2762 sbi->s_cluster_ratio, flags); 2763 *partial_cluster = 0; 2764 } 2765 2766 /* if this leaf is free, then we should 2767 * remove it from index block above */ 2768 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2769 err = ext4_ext_rm_idx(handle, inode, path, depth); 2770 2771 out: 2772 return err; 2773 } 2774 2775 /* 2776 * ext4_ext_more_to_rm: 2777 * returns 1 if current index has to be freed (even partial) 2778 */ 2779 static int 2780 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2781 { 2782 BUG_ON(path->p_idx == NULL); 2783 2784 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2785 return 0; 2786 2787 /* 2788 * if truncate on deeper level happened, it wasn't partial, 2789 * so we have to consider current index for truncation 2790 */ 2791 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2792 return 0; 2793 return 1; 2794 } 2795 2796 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2797 ext4_lblk_t end) 2798 { 2799 struct super_block *sb = inode->i_sb; 2800 int depth = ext_depth(inode); 2801 struct ext4_ext_path *path = NULL; 2802 long long partial_cluster = 0; 2803 handle_t *handle; 2804 int i = 0, err = 0; 2805 2806 ext_debug("truncate since %u to %u\n", start, end); 2807 2808 /* probably first extent we're gonna free will be last in block */ 2809 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2810 if (IS_ERR(handle)) 2811 return PTR_ERR(handle); 2812 2813 again: 2814 trace_ext4_ext_remove_space(inode, start, end, depth); 2815 2816 /* 2817 * Check if we are removing extents inside the extent tree. If that 2818 * is the case, we are going to punch a hole inside the extent tree 2819 * so we have to check whether we need to split the extent covering 2820 * the last block to remove so we can easily remove the part of it 2821 * in ext4_ext_rm_leaf(). 2822 */ 2823 if (end < EXT_MAX_BLOCKS - 1) { 2824 struct ext4_extent *ex; 2825 ext4_lblk_t ee_block; 2826 2827 /* find extent for this block */ 2828 path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2829 if (IS_ERR(path)) { 2830 ext4_journal_stop(handle); 2831 return PTR_ERR(path); 2832 } 2833 depth = ext_depth(inode); 2834 /* Leaf not may not exist only if inode has no blocks at all */ 2835 ex = path[depth].p_ext; 2836 if (!ex) { 2837 if (depth) { 2838 EXT4_ERROR_INODE(inode, 2839 "path[%d].p_hdr == NULL", 2840 depth); 2841 err = -EIO; 2842 } 2843 goto out; 2844 } 2845 2846 ee_block = le32_to_cpu(ex->ee_block); 2847 2848 /* 2849 * See if the last block is inside the extent, if so split 2850 * the extent at 'end' block so we can easily remove the 2851 * tail of the first part of the split extent in 2852 * ext4_ext_rm_leaf(). 2853 */ 2854 if (end >= ee_block && 2855 end < ee_block + ext4_ext_get_actual_len(ex) - 1) { 2856 int split_flag = 0; 2857 2858 if (ext4_ext_is_unwritten(ex)) 2859 split_flag = EXT4_EXT_MARK_UNWRIT1 | 2860 EXT4_EXT_MARK_UNWRIT2; 2861 2862 /* 2863 * Split the extent in two so that 'end' is the last 2864 * block in the first new extent. Also we should not 2865 * fail removing space due to ENOSPC so try to use 2866 * reserved block if that happens. 2867 */ 2868 err = ext4_split_extent_at(handle, inode, path, 2869 end + 1, split_flag, 2870 EXT4_EX_NOCACHE | 2871 EXT4_GET_BLOCKS_PRE_IO | 2872 EXT4_GET_BLOCKS_METADATA_NOFAIL); 2873 2874 if (err < 0) 2875 goto out; 2876 } 2877 } 2878 /* 2879 * We start scanning from right side, freeing all the blocks 2880 * after i_size and walking into the tree depth-wise. 2881 */ 2882 depth = ext_depth(inode); 2883 if (path) { 2884 int k = i = depth; 2885 while (--k > 0) 2886 path[k].p_block = 2887 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2888 } else { 2889 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2890 GFP_NOFS); 2891 if (path == NULL) { 2892 ext4_journal_stop(handle); 2893 return -ENOMEM; 2894 } 2895 path[0].p_depth = depth; 2896 path[0].p_hdr = ext_inode_hdr(inode); 2897 i = 0; 2898 2899 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2900 err = -EIO; 2901 goto out; 2902 } 2903 } 2904 err = 0; 2905 2906 while (i >= 0 && err == 0) { 2907 if (i == depth) { 2908 /* this is leaf block */ 2909 err = ext4_ext_rm_leaf(handle, inode, path, 2910 &partial_cluster, start, 2911 end); 2912 /* root level has p_bh == NULL, brelse() eats this */ 2913 brelse(path[i].p_bh); 2914 path[i].p_bh = NULL; 2915 i--; 2916 continue; 2917 } 2918 2919 /* this is index block */ 2920 if (!path[i].p_hdr) { 2921 ext_debug("initialize header\n"); 2922 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2923 } 2924 2925 if (!path[i].p_idx) { 2926 /* this level hasn't been touched yet */ 2927 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2928 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2929 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2930 path[i].p_hdr, 2931 le16_to_cpu(path[i].p_hdr->eh_entries)); 2932 } else { 2933 /* we were already here, see at next index */ 2934 path[i].p_idx--; 2935 } 2936 2937 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2938 i, EXT_FIRST_INDEX(path[i].p_hdr), 2939 path[i].p_idx); 2940 if (ext4_ext_more_to_rm(path + i)) { 2941 struct buffer_head *bh; 2942 /* go to the next level */ 2943 ext_debug("move to level %d (block %llu)\n", 2944 i + 1, ext4_idx_pblock(path[i].p_idx)); 2945 memset(path + i + 1, 0, sizeof(*path)); 2946 bh = read_extent_tree_block(inode, 2947 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 2948 EXT4_EX_NOCACHE); 2949 if (IS_ERR(bh)) { 2950 /* should we reset i_size? */ 2951 err = PTR_ERR(bh); 2952 break; 2953 } 2954 /* Yield here to deal with large extent trees. 2955 * Should be a no-op if we did IO above. */ 2956 cond_resched(); 2957 if (WARN_ON(i + 1 > depth)) { 2958 err = -EIO; 2959 break; 2960 } 2961 path[i + 1].p_bh = bh; 2962 2963 /* save actual number of indexes since this 2964 * number is changed at the next iteration */ 2965 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2966 i++; 2967 } else { 2968 /* we finished processing this index, go up */ 2969 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2970 /* index is empty, remove it; 2971 * handle must be already prepared by the 2972 * truncatei_leaf() */ 2973 err = ext4_ext_rm_idx(handle, inode, path, i); 2974 } 2975 /* root level has p_bh == NULL, brelse() eats this */ 2976 brelse(path[i].p_bh); 2977 path[i].p_bh = NULL; 2978 i--; 2979 ext_debug("return to level %d\n", i); 2980 } 2981 } 2982 2983 trace_ext4_ext_remove_space_done(inode, start, end, depth, 2984 partial_cluster, path->p_hdr->eh_entries); 2985 2986 /* If we still have something in the partial cluster and we have removed 2987 * even the first extent, then we should free the blocks in the partial 2988 * cluster as well. */ 2989 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) { 2990 int flags = get_default_free_blocks_flags(inode); 2991 2992 ext4_free_blocks(handle, inode, NULL, 2993 EXT4_C2B(EXT4_SB(sb), partial_cluster), 2994 EXT4_SB(sb)->s_cluster_ratio, flags); 2995 partial_cluster = 0; 2996 } 2997 2998 /* TODO: flexible tree reduction should be here */ 2999 if (path->p_hdr->eh_entries == 0) { 3000 /* 3001 * truncate to zero freed all the tree, 3002 * so we need to correct eh_depth 3003 */ 3004 err = ext4_ext_get_access(handle, inode, path); 3005 if (err == 0) { 3006 ext_inode_hdr(inode)->eh_depth = 0; 3007 ext_inode_hdr(inode)->eh_max = 3008 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3009 err = ext4_ext_dirty(handle, inode, path); 3010 } 3011 } 3012 out: 3013 ext4_ext_drop_refs(path); 3014 kfree(path); 3015 if (err == -EAGAIN) { 3016 path = NULL; 3017 goto again; 3018 } 3019 ext4_journal_stop(handle); 3020 3021 return err; 3022 } 3023 3024 /* 3025 * called at mount time 3026 */ 3027 void ext4_ext_init(struct super_block *sb) 3028 { 3029 /* 3030 * possible initialization would be here 3031 */ 3032 3033 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 3034 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3035 printk(KERN_INFO "EXT4-fs: file extents enabled" 3036 #ifdef AGGRESSIVE_TEST 3037 ", aggressive tests" 3038 #endif 3039 #ifdef CHECK_BINSEARCH 3040 ", check binsearch" 3041 #endif 3042 #ifdef EXTENTS_STATS 3043 ", stats" 3044 #endif 3045 "\n"); 3046 #endif 3047 #ifdef EXTENTS_STATS 3048 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3049 EXT4_SB(sb)->s_ext_min = 1 << 30; 3050 EXT4_SB(sb)->s_ext_max = 0; 3051 #endif 3052 } 3053 } 3054 3055 /* 3056 * called at umount time 3057 */ 3058 void ext4_ext_release(struct super_block *sb) 3059 { 3060 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3061 return; 3062 3063 #ifdef EXTENTS_STATS 3064 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3065 struct ext4_sb_info *sbi = EXT4_SB(sb); 3066 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3067 sbi->s_ext_blocks, sbi->s_ext_extents, 3068 sbi->s_ext_blocks / sbi->s_ext_extents); 3069 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3070 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3071 } 3072 #endif 3073 } 3074 3075 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3076 { 3077 ext4_lblk_t ee_block; 3078 ext4_fsblk_t ee_pblock; 3079 unsigned int ee_len; 3080 3081 ee_block = le32_to_cpu(ex->ee_block); 3082 ee_len = ext4_ext_get_actual_len(ex); 3083 ee_pblock = ext4_ext_pblock(ex); 3084 3085 if (ee_len == 0) 3086 return 0; 3087 3088 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3089 EXTENT_STATUS_WRITTEN); 3090 } 3091 3092 /* FIXME!! we need to try to merge to left or right after zero-out */ 3093 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3094 { 3095 ext4_fsblk_t ee_pblock; 3096 unsigned int ee_len; 3097 int ret; 3098 3099 ee_len = ext4_ext_get_actual_len(ex); 3100 ee_pblock = ext4_ext_pblock(ex); 3101 3102 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); 3103 if (ret > 0) 3104 ret = 0; 3105 3106 return ret; 3107 } 3108 3109 /* 3110 * ext4_split_extent_at() splits an extent at given block. 3111 * 3112 * @handle: the journal handle 3113 * @inode: the file inode 3114 * @path: the path to the extent 3115 * @split: the logical block where the extent is splitted. 3116 * @split_flags: indicates if the extent could be zeroout if split fails, and 3117 * the states(init or unwritten) of new extents. 3118 * @flags: flags used to insert new extent to extent tree. 3119 * 3120 * 3121 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3122 * of which are deterimined by split_flag. 3123 * 3124 * There are two cases: 3125 * a> the extent are splitted into two extent. 3126 * b> split is not needed, and just mark the extent. 3127 * 3128 * return 0 on success. 3129 */ 3130 static int ext4_split_extent_at(handle_t *handle, 3131 struct inode *inode, 3132 struct ext4_ext_path *path, 3133 ext4_lblk_t split, 3134 int split_flag, 3135 int flags) 3136 { 3137 ext4_fsblk_t newblock; 3138 ext4_lblk_t ee_block; 3139 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3140 struct ext4_extent *ex2 = NULL; 3141 unsigned int ee_len, depth; 3142 int err = 0; 3143 3144 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3145 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3146 3147 ext_debug("ext4_split_extents_at: inode %lu, logical" 3148 "block %llu\n", inode->i_ino, (unsigned long long)split); 3149 3150 ext4_ext_show_leaf(inode, path); 3151 3152 depth = ext_depth(inode); 3153 ex = path[depth].p_ext; 3154 ee_block = le32_to_cpu(ex->ee_block); 3155 ee_len = ext4_ext_get_actual_len(ex); 3156 newblock = split - ee_block + ext4_ext_pblock(ex); 3157 3158 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3159 BUG_ON(!ext4_ext_is_unwritten(ex) && 3160 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3161 EXT4_EXT_MARK_UNWRIT1 | 3162 EXT4_EXT_MARK_UNWRIT2)); 3163 3164 err = ext4_ext_get_access(handle, inode, path + depth); 3165 if (err) 3166 goto out; 3167 3168 if (split == ee_block) { 3169 /* 3170 * case b: block @split is the block that the extent begins with 3171 * then we just change the state of the extent, and splitting 3172 * is not needed. 3173 */ 3174 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3175 ext4_ext_mark_unwritten(ex); 3176 else 3177 ext4_ext_mark_initialized(ex); 3178 3179 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3180 ext4_ext_try_to_merge(handle, inode, path, ex); 3181 3182 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3183 goto out; 3184 } 3185 3186 /* case a */ 3187 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3188 ex->ee_len = cpu_to_le16(split - ee_block); 3189 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3190 ext4_ext_mark_unwritten(ex); 3191 3192 /* 3193 * path may lead to new leaf, not to original leaf any more 3194 * after ext4_ext_insert_extent() returns, 3195 */ 3196 err = ext4_ext_dirty(handle, inode, path + depth); 3197 if (err) 3198 goto fix_extent_len; 3199 3200 ex2 = &newex; 3201 ex2->ee_block = cpu_to_le32(split); 3202 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3203 ext4_ext_store_pblock(ex2, newblock); 3204 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3205 ext4_ext_mark_unwritten(ex2); 3206 3207 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); 3208 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3209 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3210 if (split_flag & EXT4_EXT_DATA_VALID1) { 3211 err = ext4_ext_zeroout(inode, ex2); 3212 zero_ex.ee_block = ex2->ee_block; 3213 zero_ex.ee_len = cpu_to_le16( 3214 ext4_ext_get_actual_len(ex2)); 3215 ext4_ext_store_pblock(&zero_ex, 3216 ext4_ext_pblock(ex2)); 3217 } else { 3218 err = ext4_ext_zeroout(inode, ex); 3219 zero_ex.ee_block = ex->ee_block; 3220 zero_ex.ee_len = cpu_to_le16( 3221 ext4_ext_get_actual_len(ex)); 3222 ext4_ext_store_pblock(&zero_ex, 3223 ext4_ext_pblock(ex)); 3224 } 3225 } else { 3226 err = ext4_ext_zeroout(inode, &orig_ex); 3227 zero_ex.ee_block = orig_ex.ee_block; 3228 zero_ex.ee_len = cpu_to_le16( 3229 ext4_ext_get_actual_len(&orig_ex)); 3230 ext4_ext_store_pblock(&zero_ex, 3231 ext4_ext_pblock(&orig_ex)); 3232 } 3233 3234 if (err) 3235 goto fix_extent_len; 3236 /* update the extent length and mark as initialized */ 3237 ex->ee_len = cpu_to_le16(ee_len); 3238 ext4_ext_try_to_merge(handle, inode, path, ex); 3239 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3240 if (err) 3241 goto fix_extent_len; 3242 3243 /* update extent status tree */ 3244 err = ext4_zeroout_es(inode, &zero_ex); 3245 3246 goto out; 3247 } else if (err) 3248 goto fix_extent_len; 3249 3250 out: 3251 ext4_ext_show_leaf(inode, path); 3252 return err; 3253 3254 fix_extent_len: 3255 ex->ee_len = orig_ex.ee_len; 3256 ext4_ext_dirty(handle, inode, path + depth); 3257 return err; 3258 } 3259 3260 /* 3261 * ext4_split_extents() splits an extent and mark extent which is covered 3262 * by @map as split_flags indicates 3263 * 3264 * It may result in splitting the extent into multiple extents (up to three) 3265 * There are three possibilities: 3266 * a> There is no split required 3267 * b> Splits in two extents: Split is happening at either end of the extent 3268 * c> Splits in three extents: Somone is splitting in middle of the extent 3269 * 3270 */ 3271 static int ext4_split_extent(handle_t *handle, 3272 struct inode *inode, 3273 struct ext4_ext_path *path, 3274 struct ext4_map_blocks *map, 3275 int split_flag, 3276 int flags) 3277 { 3278 ext4_lblk_t ee_block; 3279 struct ext4_extent *ex; 3280 unsigned int ee_len, depth; 3281 int err = 0; 3282 int unwritten; 3283 int split_flag1, flags1; 3284 int allocated = map->m_len; 3285 3286 depth = ext_depth(inode); 3287 ex = path[depth].p_ext; 3288 ee_block = le32_to_cpu(ex->ee_block); 3289 ee_len = ext4_ext_get_actual_len(ex); 3290 unwritten = ext4_ext_is_unwritten(ex); 3291 3292 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3293 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3294 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3295 if (unwritten) 3296 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3297 EXT4_EXT_MARK_UNWRIT2; 3298 if (split_flag & EXT4_EXT_DATA_VALID2) 3299 split_flag1 |= EXT4_EXT_DATA_VALID1; 3300 err = ext4_split_extent_at(handle, inode, path, 3301 map->m_lblk + map->m_len, split_flag1, flags1); 3302 if (err) 3303 goto out; 3304 } else { 3305 allocated = ee_len - (map->m_lblk - ee_block); 3306 } 3307 /* 3308 * Update path is required because previous ext4_split_extent_at() may 3309 * result in split of original leaf or extent zeroout. 3310 */ 3311 ext4_ext_drop_refs(path); 3312 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0); 3313 if (IS_ERR(path)) 3314 return PTR_ERR(path); 3315 depth = ext_depth(inode); 3316 ex = path[depth].p_ext; 3317 if (!ex) { 3318 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3319 (unsigned long) map->m_lblk); 3320 return -EIO; 3321 } 3322 unwritten = ext4_ext_is_unwritten(ex); 3323 split_flag1 = 0; 3324 3325 if (map->m_lblk >= ee_block) { 3326 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3327 if (unwritten) { 3328 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3329 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3330 EXT4_EXT_MARK_UNWRIT2); 3331 } 3332 err = ext4_split_extent_at(handle, inode, path, 3333 map->m_lblk, split_flag1, flags); 3334 if (err) 3335 goto out; 3336 } 3337 3338 ext4_ext_show_leaf(inode, path); 3339 out: 3340 return err ? err : allocated; 3341 } 3342 3343 /* 3344 * This function is called by ext4_ext_map_blocks() if someone tries to write 3345 * to an unwritten extent. It may result in splitting the unwritten 3346 * extent into multiple extents (up to three - one initialized and two 3347 * unwritten). 3348 * There are three possibilities: 3349 * a> There is no split required: Entire extent should be initialized 3350 * b> Splits in two extents: Write is happening at either end of the extent 3351 * c> Splits in three extents: Somone is writing in middle of the extent 3352 * 3353 * Pre-conditions: 3354 * - The extent pointed to by 'path' is unwritten. 3355 * - The extent pointed to by 'path' contains a superset 3356 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3357 * 3358 * Post-conditions on success: 3359 * - the returned value is the number of blocks beyond map->l_lblk 3360 * that are allocated and initialized. 3361 * It is guaranteed to be >= map->m_len. 3362 */ 3363 static int ext4_ext_convert_to_initialized(handle_t *handle, 3364 struct inode *inode, 3365 struct ext4_map_blocks *map, 3366 struct ext4_ext_path *path, 3367 int flags) 3368 { 3369 struct ext4_sb_info *sbi; 3370 struct ext4_extent_header *eh; 3371 struct ext4_map_blocks split_map; 3372 struct ext4_extent zero_ex; 3373 struct ext4_extent *ex, *abut_ex; 3374 ext4_lblk_t ee_block, eof_block; 3375 unsigned int ee_len, depth, map_len = map->m_len; 3376 int allocated = 0, max_zeroout = 0; 3377 int err = 0; 3378 int split_flag = 0; 3379 3380 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3381 "block %llu, max_blocks %u\n", inode->i_ino, 3382 (unsigned long long)map->m_lblk, map_len); 3383 3384 sbi = EXT4_SB(inode->i_sb); 3385 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3386 inode->i_sb->s_blocksize_bits; 3387 if (eof_block < map->m_lblk + map_len) 3388 eof_block = map->m_lblk + map_len; 3389 3390 depth = ext_depth(inode); 3391 eh = path[depth].p_hdr; 3392 ex = path[depth].p_ext; 3393 ee_block = le32_to_cpu(ex->ee_block); 3394 ee_len = ext4_ext_get_actual_len(ex); 3395 zero_ex.ee_len = 0; 3396 3397 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3398 3399 /* Pre-conditions */ 3400 BUG_ON(!ext4_ext_is_unwritten(ex)); 3401 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3402 3403 /* 3404 * Attempt to transfer newly initialized blocks from the currently 3405 * unwritten extent to its neighbor. This is much cheaper 3406 * than an insertion followed by a merge as those involve costly 3407 * memmove() calls. Transferring to the left is the common case in 3408 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3409 * followed by append writes. 3410 * 3411 * Limitations of the current logic: 3412 * - L1: we do not deal with writes covering the whole extent. 3413 * This would require removing the extent if the transfer 3414 * is possible. 3415 * - L2: we only attempt to merge with an extent stored in the 3416 * same extent tree node. 3417 */ 3418 if ((map->m_lblk == ee_block) && 3419 /* See if we can merge left */ 3420 (map_len < ee_len) && /*L1*/ 3421 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3422 ext4_lblk_t prev_lblk; 3423 ext4_fsblk_t prev_pblk, ee_pblk; 3424 unsigned int prev_len; 3425 3426 abut_ex = ex - 1; 3427 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3428 prev_len = ext4_ext_get_actual_len(abut_ex); 3429 prev_pblk = ext4_ext_pblock(abut_ex); 3430 ee_pblk = ext4_ext_pblock(ex); 3431 3432 /* 3433 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3434 * upon those conditions: 3435 * - C1: abut_ex is initialized, 3436 * - C2: abut_ex is logically abutting ex, 3437 * - C3: abut_ex is physically abutting ex, 3438 * - C4: abut_ex can receive the additional blocks without 3439 * overflowing the (initialized) length limit. 3440 */ 3441 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3442 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3443 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3444 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3445 err = ext4_ext_get_access(handle, inode, path + depth); 3446 if (err) 3447 goto out; 3448 3449 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3450 map, ex, abut_ex); 3451 3452 /* Shift the start of ex by 'map_len' blocks */ 3453 ex->ee_block = cpu_to_le32(ee_block + map_len); 3454 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3455 ex->ee_len = cpu_to_le16(ee_len - map_len); 3456 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3457 3458 /* Extend abut_ex by 'map_len' blocks */ 3459 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3460 3461 /* Result: number of initialized blocks past m_lblk */ 3462 allocated = map_len; 3463 } 3464 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3465 (map_len < ee_len) && /*L1*/ 3466 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3467 /* See if we can merge right */ 3468 ext4_lblk_t next_lblk; 3469 ext4_fsblk_t next_pblk, ee_pblk; 3470 unsigned int next_len; 3471 3472 abut_ex = ex + 1; 3473 next_lblk = le32_to_cpu(abut_ex->ee_block); 3474 next_len = ext4_ext_get_actual_len(abut_ex); 3475 next_pblk = ext4_ext_pblock(abut_ex); 3476 ee_pblk = ext4_ext_pblock(ex); 3477 3478 /* 3479 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3480 * upon those conditions: 3481 * - C1: abut_ex is initialized, 3482 * - C2: abut_ex is logically abutting ex, 3483 * - C3: abut_ex is physically abutting ex, 3484 * - C4: abut_ex can receive the additional blocks without 3485 * overflowing the (initialized) length limit. 3486 */ 3487 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3488 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3489 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3490 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3491 err = ext4_ext_get_access(handle, inode, path + depth); 3492 if (err) 3493 goto out; 3494 3495 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3496 map, ex, abut_ex); 3497 3498 /* Shift the start of abut_ex by 'map_len' blocks */ 3499 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3500 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3501 ex->ee_len = cpu_to_le16(ee_len - map_len); 3502 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3503 3504 /* Extend abut_ex by 'map_len' blocks */ 3505 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3506 3507 /* Result: number of initialized blocks past m_lblk */ 3508 allocated = map_len; 3509 } 3510 } 3511 if (allocated) { 3512 /* Mark the block containing both extents as dirty */ 3513 ext4_ext_dirty(handle, inode, path + depth); 3514 3515 /* Update path to point to the right extent */ 3516 path[depth].p_ext = abut_ex; 3517 goto out; 3518 } else 3519 allocated = ee_len - (map->m_lblk - ee_block); 3520 3521 WARN_ON(map->m_lblk < ee_block); 3522 /* 3523 * It is safe to convert extent to initialized via explicit 3524 * zeroout only if extent is fully inside i_size or new_size. 3525 */ 3526 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3527 3528 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3529 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3530 (inode->i_sb->s_blocksize_bits - 10); 3531 3532 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3533 if (max_zeroout && (ee_len <= max_zeroout)) { 3534 err = ext4_ext_zeroout(inode, ex); 3535 if (err) 3536 goto out; 3537 zero_ex.ee_block = ex->ee_block; 3538 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)); 3539 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex)); 3540 3541 err = ext4_ext_get_access(handle, inode, path + depth); 3542 if (err) 3543 goto out; 3544 ext4_ext_mark_initialized(ex); 3545 ext4_ext_try_to_merge(handle, inode, path, ex); 3546 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3547 goto out; 3548 } 3549 3550 /* 3551 * four cases: 3552 * 1. split the extent into three extents. 3553 * 2. split the extent into two extents, zeroout the first half. 3554 * 3. split the extent into two extents, zeroout the second half. 3555 * 4. split the extent into two extents with out zeroout. 3556 */ 3557 split_map.m_lblk = map->m_lblk; 3558 split_map.m_len = map->m_len; 3559 3560 if (max_zeroout && (allocated > map->m_len)) { 3561 if (allocated <= max_zeroout) { 3562 /* case 3 */ 3563 zero_ex.ee_block = 3564 cpu_to_le32(map->m_lblk); 3565 zero_ex.ee_len = cpu_to_le16(allocated); 3566 ext4_ext_store_pblock(&zero_ex, 3567 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3568 err = ext4_ext_zeroout(inode, &zero_ex); 3569 if (err) 3570 goto out; 3571 split_map.m_lblk = map->m_lblk; 3572 split_map.m_len = allocated; 3573 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3574 /* case 2 */ 3575 if (map->m_lblk != ee_block) { 3576 zero_ex.ee_block = ex->ee_block; 3577 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3578 ee_block); 3579 ext4_ext_store_pblock(&zero_ex, 3580 ext4_ext_pblock(ex)); 3581 err = ext4_ext_zeroout(inode, &zero_ex); 3582 if (err) 3583 goto out; 3584 } 3585 3586 split_map.m_lblk = ee_block; 3587 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3588 allocated = map->m_len; 3589 } 3590 } 3591 3592 allocated = ext4_split_extent(handle, inode, path, 3593 &split_map, split_flag, flags); 3594 if (allocated < 0) 3595 err = allocated; 3596 3597 out: 3598 /* If we have gotten a failure, don't zero out status tree */ 3599 if (!err) 3600 err = ext4_zeroout_es(inode, &zero_ex); 3601 return err ? err : allocated; 3602 } 3603 3604 /* 3605 * This function is called by ext4_ext_map_blocks() from 3606 * ext4_get_blocks_dio_write() when DIO to write 3607 * to an unwritten extent. 3608 * 3609 * Writing to an unwritten extent may result in splitting the unwritten 3610 * extent into multiple initialized/unwritten extents (up to three) 3611 * There are three possibilities: 3612 * a> There is no split required: Entire extent should be unwritten 3613 * b> Splits in two extents: Write is happening at either end of the extent 3614 * c> Splits in three extents: Somone is writing in middle of the extent 3615 * 3616 * This works the same way in the case of initialized -> unwritten conversion. 3617 * 3618 * One of more index blocks maybe needed if the extent tree grow after 3619 * the unwritten extent split. To prevent ENOSPC occur at the IO 3620 * complete, we need to split the unwritten extent before DIO submit 3621 * the IO. The unwritten extent called at this time will be split 3622 * into three unwritten extent(at most). After IO complete, the part 3623 * being filled will be convert to initialized by the end_io callback function 3624 * via ext4_convert_unwritten_extents(). 3625 * 3626 * Returns the size of unwritten extent to be written on success. 3627 */ 3628 static int ext4_split_convert_extents(handle_t *handle, 3629 struct inode *inode, 3630 struct ext4_map_blocks *map, 3631 struct ext4_ext_path *path, 3632 int flags) 3633 { 3634 ext4_lblk_t eof_block; 3635 ext4_lblk_t ee_block; 3636 struct ext4_extent *ex; 3637 unsigned int ee_len; 3638 int split_flag = 0, depth; 3639 3640 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3641 __func__, inode->i_ino, 3642 (unsigned long long)map->m_lblk, map->m_len); 3643 3644 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3645 inode->i_sb->s_blocksize_bits; 3646 if (eof_block < map->m_lblk + map->m_len) 3647 eof_block = map->m_lblk + map->m_len; 3648 /* 3649 * It is safe to convert extent to initialized via explicit 3650 * zeroout only if extent is fully insde i_size or new_size. 3651 */ 3652 depth = ext_depth(inode); 3653 ex = path[depth].p_ext; 3654 ee_block = le32_to_cpu(ex->ee_block); 3655 ee_len = ext4_ext_get_actual_len(ex); 3656 3657 /* Convert to unwritten */ 3658 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3659 split_flag |= EXT4_EXT_DATA_VALID1; 3660 /* Convert to initialized */ 3661 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3662 split_flag |= ee_block + ee_len <= eof_block ? 3663 EXT4_EXT_MAY_ZEROOUT : 0; 3664 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3665 } 3666 flags |= EXT4_GET_BLOCKS_PRE_IO; 3667 return ext4_split_extent(handle, inode, path, map, split_flag, flags); 3668 } 3669 3670 static int ext4_convert_initialized_extents(handle_t *handle, 3671 struct inode *inode, 3672 struct ext4_map_blocks *map, 3673 struct ext4_ext_path *path) 3674 { 3675 struct ext4_extent *ex; 3676 ext4_lblk_t ee_block; 3677 unsigned int ee_len; 3678 int depth; 3679 int err = 0; 3680 3681 depth = ext_depth(inode); 3682 ex = path[depth].p_ext; 3683 ee_block = le32_to_cpu(ex->ee_block); 3684 ee_len = ext4_ext_get_actual_len(ex); 3685 3686 ext_debug("%s: inode %lu, logical" 3687 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3688 (unsigned long long)ee_block, ee_len); 3689 3690 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3691 err = ext4_split_convert_extents(handle, inode, map, path, 3692 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3693 if (err < 0) 3694 goto out; 3695 ext4_ext_drop_refs(path); 3696 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0); 3697 if (IS_ERR(path)) { 3698 err = PTR_ERR(path); 3699 goto out; 3700 } 3701 depth = ext_depth(inode); 3702 ex = path[depth].p_ext; 3703 if (!ex) { 3704 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3705 (unsigned long) map->m_lblk); 3706 err = -EIO; 3707 goto out; 3708 } 3709 } 3710 3711 err = ext4_ext_get_access(handle, inode, path + depth); 3712 if (err) 3713 goto out; 3714 /* first mark the extent as unwritten */ 3715 ext4_ext_mark_unwritten(ex); 3716 3717 /* note: ext4_ext_correct_indexes() isn't needed here because 3718 * borders are not changed 3719 */ 3720 ext4_ext_try_to_merge(handle, inode, path, ex); 3721 3722 /* Mark modified extent as dirty */ 3723 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3724 out: 3725 ext4_ext_show_leaf(inode, path); 3726 return err; 3727 } 3728 3729 3730 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3731 struct inode *inode, 3732 struct ext4_map_blocks *map, 3733 struct ext4_ext_path *path) 3734 { 3735 struct ext4_extent *ex; 3736 ext4_lblk_t ee_block; 3737 unsigned int ee_len; 3738 int depth; 3739 int err = 0; 3740 3741 depth = ext_depth(inode); 3742 ex = path[depth].p_ext; 3743 ee_block = le32_to_cpu(ex->ee_block); 3744 ee_len = ext4_ext_get_actual_len(ex); 3745 3746 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3747 "block %llu, max_blocks %u\n", inode->i_ino, 3748 (unsigned long long)ee_block, ee_len); 3749 3750 /* If extent is larger than requested it is a clear sign that we still 3751 * have some extent state machine issues left. So extent_split is still 3752 * required. 3753 * TODO: Once all related issues will be fixed this situation should be 3754 * illegal. 3755 */ 3756 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3757 #ifdef EXT4_DEBUG 3758 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3759 " len %u; IO logical block %llu, len %u\n", 3760 inode->i_ino, (unsigned long long)ee_block, ee_len, 3761 (unsigned long long)map->m_lblk, map->m_len); 3762 #endif 3763 err = ext4_split_convert_extents(handle, inode, map, path, 3764 EXT4_GET_BLOCKS_CONVERT); 3765 if (err < 0) 3766 goto out; 3767 ext4_ext_drop_refs(path); 3768 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0); 3769 if (IS_ERR(path)) { 3770 err = PTR_ERR(path); 3771 goto out; 3772 } 3773 depth = ext_depth(inode); 3774 ex = path[depth].p_ext; 3775 } 3776 3777 err = ext4_ext_get_access(handle, inode, path + depth); 3778 if (err) 3779 goto out; 3780 /* first mark the extent as initialized */ 3781 ext4_ext_mark_initialized(ex); 3782 3783 /* note: ext4_ext_correct_indexes() isn't needed here because 3784 * borders are not changed 3785 */ 3786 ext4_ext_try_to_merge(handle, inode, path, ex); 3787 3788 /* Mark modified extent as dirty */ 3789 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3790 out: 3791 ext4_ext_show_leaf(inode, path); 3792 return err; 3793 } 3794 3795 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3796 sector_t block, int count) 3797 { 3798 int i; 3799 for (i = 0; i < count; i++) 3800 unmap_underlying_metadata(bdev, block + i); 3801 } 3802 3803 /* 3804 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3805 */ 3806 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3807 ext4_lblk_t lblk, 3808 struct ext4_ext_path *path, 3809 unsigned int len) 3810 { 3811 int i, depth; 3812 struct ext4_extent_header *eh; 3813 struct ext4_extent *last_ex; 3814 3815 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3816 return 0; 3817 3818 depth = ext_depth(inode); 3819 eh = path[depth].p_hdr; 3820 3821 /* 3822 * We're going to remove EOFBLOCKS_FL entirely in future so we 3823 * do not care for this case anymore. Simply remove the flag 3824 * if there are no extents. 3825 */ 3826 if (unlikely(!eh->eh_entries)) 3827 goto out; 3828 last_ex = EXT_LAST_EXTENT(eh); 3829 /* 3830 * We should clear the EOFBLOCKS_FL flag if we are writing the 3831 * last block in the last extent in the file. We test this by 3832 * first checking to see if the caller to 3833 * ext4_ext_get_blocks() was interested in the last block (or 3834 * a block beyond the last block) in the current extent. If 3835 * this turns out to be false, we can bail out from this 3836 * function immediately. 3837 */ 3838 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3839 ext4_ext_get_actual_len(last_ex)) 3840 return 0; 3841 /* 3842 * If the caller does appear to be planning to write at or 3843 * beyond the end of the current extent, we then test to see 3844 * if the current extent is the last extent in the file, by 3845 * checking to make sure it was reached via the rightmost node 3846 * at each level of the tree. 3847 */ 3848 for (i = depth-1; i >= 0; i--) 3849 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3850 return 0; 3851 out: 3852 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3853 return ext4_mark_inode_dirty(handle, inode); 3854 } 3855 3856 /** 3857 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3858 * 3859 * Return 1 if there is a delalloc block in the range, otherwise 0. 3860 */ 3861 int ext4_find_delalloc_range(struct inode *inode, 3862 ext4_lblk_t lblk_start, 3863 ext4_lblk_t lblk_end) 3864 { 3865 struct extent_status es; 3866 3867 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es); 3868 if (es.es_len == 0) 3869 return 0; /* there is no delay extent in this tree */ 3870 else if (es.es_lblk <= lblk_start && 3871 lblk_start < es.es_lblk + es.es_len) 3872 return 1; 3873 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3874 return 1; 3875 else 3876 return 0; 3877 } 3878 3879 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3880 { 3881 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3882 ext4_lblk_t lblk_start, lblk_end; 3883 lblk_start = EXT4_LBLK_CMASK(sbi, lblk); 3884 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3885 3886 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3887 } 3888 3889 /** 3890 * Determines how many complete clusters (out of those specified by the 'map') 3891 * are under delalloc and were reserved quota for. 3892 * This function is called when we are writing out the blocks that were 3893 * originally written with their allocation delayed, but then the space was 3894 * allocated using fallocate() before the delayed allocation could be resolved. 3895 * The cases to look for are: 3896 * ('=' indicated delayed allocated blocks 3897 * '-' indicates non-delayed allocated blocks) 3898 * (a) partial clusters towards beginning and/or end outside of allocated range 3899 * are not delalloc'ed. 3900 * Ex: 3901 * |----c---=|====c====|====c====|===-c----| 3902 * |++++++ allocated ++++++| 3903 * ==> 4 complete clusters in above example 3904 * 3905 * (b) partial cluster (outside of allocated range) towards either end is 3906 * marked for delayed allocation. In this case, we will exclude that 3907 * cluster. 3908 * Ex: 3909 * |----====c========|========c========| 3910 * |++++++ allocated ++++++| 3911 * ==> 1 complete clusters in above example 3912 * 3913 * Ex: 3914 * |================c================| 3915 * |++++++ allocated ++++++| 3916 * ==> 0 complete clusters in above example 3917 * 3918 * The ext4_da_update_reserve_space will be called only if we 3919 * determine here that there were some "entire" clusters that span 3920 * this 'allocated' range. 3921 * In the non-bigalloc case, this function will just end up returning num_blks 3922 * without ever calling ext4_find_delalloc_range. 3923 */ 3924 static unsigned int 3925 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3926 unsigned int num_blks) 3927 { 3928 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3929 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3930 ext4_lblk_t lblk_from, lblk_to, c_offset; 3931 unsigned int allocated_clusters = 0; 3932 3933 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3934 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3935 3936 /* max possible clusters for this allocation */ 3937 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3938 3939 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3940 3941 /* Check towards left side */ 3942 c_offset = EXT4_LBLK_COFF(sbi, lblk_start); 3943 if (c_offset) { 3944 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start); 3945 lblk_to = lblk_from + c_offset - 1; 3946 3947 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3948 allocated_clusters--; 3949 } 3950 3951 /* Now check towards right. */ 3952 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks); 3953 if (allocated_clusters && c_offset) { 3954 lblk_from = lblk_start + num_blks; 3955 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3956 3957 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3958 allocated_clusters--; 3959 } 3960 3961 return allocated_clusters; 3962 } 3963 3964 static int 3965 ext4_ext_convert_initialized_extent(handle_t *handle, struct inode *inode, 3966 struct ext4_map_blocks *map, 3967 struct ext4_ext_path *path, int flags, 3968 unsigned int allocated, ext4_fsblk_t newblock) 3969 { 3970 int ret = 0; 3971 int err = 0; 3972 3973 /* 3974 * Make sure that the extent is no bigger than we support with 3975 * unwritten extent 3976 */ 3977 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3978 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3979 3980 ret = ext4_convert_initialized_extents(handle, inode, map, 3981 path); 3982 if (ret >= 0) { 3983 ext4_update_inode_fsync_trans(handle, inode, 1); 3984 err = check_eofblocks_fl(handle, inode, map->m_lblk, 3985 path, map->m_len); 3986 } else 3987 err = ret; 3988 map->m_flags |= EXT4_MAP_UNWRITTEN; 3989 if (allocated > map->m_len) 3990 allocated = map->m_len; 3991 map->m_len = allocated; 3992 3993 return err ? err : allocated; 3994 } 3995 3996 static int 3997 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 3998 struct ext4_map_blocks *map, 3999 struct ext4_ext_path *path, int flags, 4000 unsigned int allocated, ext4_fsblk_t newblock) 4001 { 4002 int ret = 0; 4003 int err = 0; 4004 ext4_io_end_t *io = ext4_inode_aio(inode); 4005 4006 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 4007 "block %llu, max_blocks %u, flags %x, allocated %u\n", 4008 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 4009 flags, allocated); 4010 ext4_ext_show_leaf(inode, path); 4011 4012 /* 4013 * When writing into unwritten space, we should not fail to 4014 * allocate metadata blocks for the new extent block if needed. 4015 */ 4016 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 4017 4018 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 4019 allocated, newblock); 4020 4021 /* get_block() before submit the IO, split the extent */ 4022 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 4023 ret = ext4_split_convert_extents(handle, inode, map, 4024 path, flags | EXT4_GET_BLOCKS_CONVERT); 4025 if (ret <= 0) 4026 goto out; 4027 /* 4028 * Flag the inode(non aio case) or end_io struct (aio case) 4029 * that this IO needs to conversion to written when IO is 4030 * completed 4031 */ 4032 if (io) 4033 ext4_set_io_unwritten_flag(inode, io); 4034 else 4035 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 4036 map->m_flags |= EXT4_MAP_UNWRITTEN; 4037 goto out; 4038 } 4039 /* IO end_io complete, convert the filled extent to written */ 4040 if (flags & EXT4_GET_BLOCKS_CONVERT) { 4041 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 4042 path); 4043 if (ret >= 0) { 4044 ext4_update_inode_fsync_trans(handle, inode, 1); 4045 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4046 path, map->m_len); 4047 } else 4048 err = ret; 4049 map->m_flags |= EXT4_MAP_MAPPED; 4050 map->m_pblk = newblock; 4051 if (allocated > map->m_len) 4052 allocated = map->m_len; 4053 map->m_len = allocated; 4054 goto out2; 4055 } 4056 /* buffered IO case */ 4057 /* 4058 * repeat fallocate creation request 4059 * we already have an unwritten extent 4060 */ 4061 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4062 map->m_flags |= EXT4_MAP_UNWRITTEN; 4063 goto map_out; 4064 } 4065 4066 /* buffered READ or buffered write_begin() lookup */ 4067 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4068 /* 4069 * We have blocks reserved already. We 4070 * return allocated blocks so that delalloc 4071 * won't do block reservation for us. But 4072 * the buffer head will be unmapped so that 4073 * a read from the block returns 0s. 4074 */ 4075 map->m_flags |= EXT4_MAP_UNWRITTEN; 4076 goto out1; 4077 } 4078 4079 /* buffered write, writepage time, convert*/ 4080 ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags); 4081 if (ret >= 0) 4082 ext4_update_inode_fsync_trans(handle, inode, 1); 4083 out: 4084 if (ret <= 0) { 4085 err = ret; 4086 goto out2; 4087 } else 4088 allocated = ret; 4089 map->m_flags |= EXT4_MAP_NEW; 4090 /* 4091 * if we allocated more blocks than requested 4092 * we need to make sure we unmap the extra block 4093 * allocated. The actual needed block will get 4094 * unmapped later when we find the buffer_head marked 4095 * new. 4096 */ 4097 if (allocated > map->m_len) { 4098 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 4099 newblock + map->m_len, 4100 allocated - map->m_len); 4101 allocated = map->m_len; 4102 } 4103 map->m_len = allocated; 4104 4105 /* 4106 * If we have done fallocate with the offset that is already 4107 * delayed allocated, we would have block reservation 4108 * and quota reservation done in the delayed write path. 4109 * But fallocate would have already updated quota and block 4110 * count for this offset. So cancel these reservation 4111 */ 4112 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4113 unsigned int reserved_clusters; 4114 reserved_clusters = get_reserved_cluster_alloc(inode, 4115 map->m_lblk, map->m_len); 4116 if (reserved_clusters) 4117 ext4_da_update_reserve_space(inode, 4118 reserved_clusters, 4119 0); 4120 } 4121 4122 map_out: 4123 map->m_flags |= EXT4_MAP_MAPPED; 4124 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 4125 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 4126 map->m_len); 4127 if (err < 0) 4128 goto out2; 4129 } 4130 out1: 4131 if (allocated > map->m_len) 4132 allocated = map->m_len; 4133 ext4_ext_show_leaf(inode, path); 4134 map->m_pblk = newblock; 4135 map->m_len = allocated; 4136 out2: 4137 return err ? err : allocated; 4138 } 4139 4140 /* 4141 * get_implied_cluster_alloc - check to see if the requested 4142 * allocation (in the map structure) overlaps with a cluster already 4143 * allocated in an extent. 4144 * @sb The filesystem superblock structure 4145 * @map The requested lblk->pblk mapping 4146 * @ex The extent structure which might contain an implied 4147 * cluster allocation 4148 * 4149 * This function is called by ext4_ext_map_blocks() after we failed to 4150 * find blocks that were already in the inode's extent tree. Hence, 4151 * we know that the beginning of the requested region cannot overlap 4152 * the extent from the inode's extent tree. There are three cases we 4153 * want to catch. The first is this case: 4154 * 4155 * |--- cluster # N--| 4156 * |--- extent ---| |---- requested region ---| 4157 * |==========| 4158 * 4159 * The second case that we need to test for is this one: 4160 * 4161 * |--------- cluster # N ----------------| 4162 * |--- requested region --| |------- extent ----| 4163 * |=======================| 4164 * 4165 * The third case is when the requested region lies between two extents 4166 * within the same cluster: 4167 * |------------- cluster # N-------------| 4168 * |----- ex -----| |---- ex_right ----| 4169 * |------ requested region ------| 4170 * |================| 4171 * 4172 * In each of the above cases, we need to set the map->m_pblk and 4173 * map->m_len so it corresponds to the return the extent labelled as 4174 * "|====|" from cluster #N, since it is already in use for data in 4175 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 4176 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 4177 * as a new "allocated" block region. Otherwise, we will return 0 and 4178 * ext4_ext_map_blocks() will then allocate one or more new clusters 4179 * by calling ext4_mb_new_blocks(). 4180 */ 4181 static int get_implied_cluster_alloc(struct super_block *sb, 4182 struct ext4_map_blocks *map, 4183 struct ext4_extent *ex, 4184 struct ext4_ext_path *path) 4185 { 4186 struct ext4_sb_info *sbi = EXT4_SB(sb); 4187 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4188 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4189 ext4_lblk_t rr_cluster_start; 4190 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4191 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4192 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4193 4194 /* The extent passed in that we are trying to match */ 4195 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4196 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4197 4198 /* The requested region passed into ext4_map_blocks() */ 4199 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4200 4201 if ((rr_cluster_start == ex_cluster_end) || 4202 (rr_cluster_start == ex_cluster_start)) { 4203 if (rr_cluster_start == ex_cluster_end) 4204 ee_start += ee_len - 1; 4205 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 4206 map->m_len = min(map->m_len, 4207 (unsigned) sbi->s_cluster_ratio - c_offset); 4208 /* 4209 * Check for and handle this case: 4210 * 4211 * |--------- cluster # N-------------| 4212 * |------- extent ----| 4213 * |--- requested region ---| 4214 * |===========| 4215 */ 4216 4217 if (map->m_lblk < ee_block) 4218 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4219 4220 /* 4221 * Check for the case where there is already another allocated 4222 * block to the right of 'ex' but before the end of the cluster. 4223 * 4224 * |------------- cluster # N-------------| 4225 * |----- ex -----| |---- ex_right ----| 4226 * |------ requested region ------| 4227 * |================| 4228 */ 4229 if (map->m_lblk > ee_block) { 4230 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4231 map->m_len = min(map->m_len, next - map->m_lblk); 4232 } 4233 4234 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4235 return 1; 4236 } 4237 4238 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4239 return 0; 4240 } 4241 4242 4243 /* 4244 * Block allocation/map/preallocation routine for extents based files 4245 * 4246 * 4247 * Need to be called with 4248 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4249 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4250 * 4251 * return > 0, number of of blocks already mapped/allocated 4252 * if create == 0 and these are pre-allocated blocks 4253 * buffer head is unmapped 4254 * otherwise blocks are mapped 4255 * 4256 * return = 0, if plain look up failed (blocks have not been allocated) 4257 * buffer head is unmapped 4258 * 4259 * return < 0, error case. 4260 */ 4261 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4262 struct ext4_map_blocks *map, int flags) 4263 { 4264 struct ext4_ext_path *path = NULL; 4265 struct ext4_extent newex, *ex, *ex2; 4266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4267 ext4_fsblk_t newblock = 0; 4268 int free_on_err = 0, err = 0, depth, ret; 4269 unsigned int allocated = 0, offset = 0; 4270 unsigned int allocated_clusters = 0; 4271 struct ext4_allocation_request ar; 4272 ext4_io_end_t *io = ext4_inode_aio(inode); 4273 ext4_lblk_t cluster_offset; 4274 int set_unwritten = 0; 4275 4276 ext_debug("blocks %u/%u requested for inode %lu\n", 4277 map->m_lblk, map->m_len, inode->i_ino); 4278 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4279 4280 /* find extent for this block */ 4281 path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0); 4282 if (IS_ERR(path)) { 4283 err = PTR_ERR(path); 4284 path = NULL; 4285 goto out2; 4286 } 4287 4288 depth = ext_depth(inode); 4289 4290 /* 4291 * consistent leaf must not be empty; 4292 * this situation is possible, though, _during_ tree modification; 4293 * this is why assert can't be put in ext4_ext_find_extent() 4294 */ 4295 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4296 EXT4_ERROR_INODE(inode, "bad extent address " 4297 "lblock: %lu, depth: %d pblock %lld", 4298 (unsigned long) map->m_lblk, depth, 4299 path[depth].p_block); 4300 err = -EIO; 4301 goto out2; 4302 } 4303 4304 ex = path[depth].p_ext; 4305 if (ex) { 4306 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4307 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4308 unsigned short ee_len; 4309 4310 4311 /* 4312 * unwritten extents are treated as holes, except that 4313 * we split out initialized portions during a write. 4314 */ 4315 ee_len = ext4_ext_get_actual_len(ex); 4316 4317 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4318 4319 /* if found extent covers block, simply return it */ 4320 if (in_range(map->m_lblk, ee_block, ee_len)) { 4321 newblock = map->m_lblk - ee_block + ee_start; 4322 /* number of remaining blocks in the extent */ 4323 allocated = ee_len - (map->m_lblk - ee_block); 4324 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4325 ee_block, ee_len, newblock); 4326 4327 /* 4328 * If the extent is initialized check whether the 4329 * caller wants to convert it to unwritten. 4330 */ 4331 if ((!ext4_ext_is_unwritten(ex)) && 4332 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4333 allocated = ext4_ext_convert_initialized_extent( 4334 handle, inode, map, path, flags, 4335 allocated, newblock); 4336 goto out2; 4337 } else if (!ext4_ext_is_unwritten(ex)) 4338 goto out; 4339 4340 ret = ext4_ext_handle_unwritten_extents( 4341 handle, inode, map, path, flags, 4342 allocated, newblock); 4343 if (ret < 0) 4344 err = ret; 4345 else 4346 allocated = ret; 4347 goto out2; 4348 } 4349 } 4350 4351 if ((sbi->s_cluster_ratio > 1) && 4352 ext4_find_delalloc_cluster(inode, map->m_lblk)) 4353 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4354 4355 /* 4356 * requested block isn't allocated yet; 4357 * we couldn't try to create block if create flag is zero 4358 */ 4359 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4360 /* 4361 * put just found gap into cache to speed up 4362 * subsequent requests 4363 */ 4364 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0) 4365 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); 4366 goto out2; 4367 } 4368 4369 /* 4370 * Okay, we need to do block allocation. 4371 */ 4372 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 4373 newex.ee_block = cpu_to_le32(map->m_lblk); 4374 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4375 4376 /* 4377 * If we are doing bigalloc, check to see if the extent returned 4378 * by ext4_ext_find_extent() implies a cluster we can use. 4379 */ 4380 if (cluster_offset && ex && 4381 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4382 ar.len = allocated = map->m_len; 4383 newblock = map->m_pblk; 4384 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4385 goto got_allocated_blocks; 4386 } 4387 4388 /* find neighbour allocated blocks */ 4389 ar.lleft = map->m_lblk; 4390 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4391 if (err) 4392 goto out2; 4393 ar.lright = map->m_lblk; 4394 ex2 = NULL; 4395 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4396 if (err) 4397 goto out2; 4398 4399 /* Check if the extent after searching to the right implies a 4400 * cluster we can use. */ 4401 if ((sbi->s_cluster_ratio > 1) && ex2 && 4402 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4403 ar.len = allocated = map->m_len; 4404 newblock = map->m_pblk; 4405 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 4406 goto got_allocated_blocks; 4407 } 4408 4409 /* 4410 * See if request is beyond maximum number of blocks we can have in 4411 * a single extent. For an initialized extent this limit is 4412 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4413 * EXT_UNWRITTEN_MAX_LEN. 4414 */ 4415 if (map->m_len > EXT_INIT_MAX_LEN && 4416 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4417 map->m_len = EXT_INIT_MAX_LEN; 4418 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4419 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4420 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4421 4422 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4423 newex.ee_len = cpu_to_le16(map->m_len); 4424 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4425 if (err) 4426 allocated = ext4_ext_get_actual_len(&newex); 4427 else 4428 allocated = map->m_len; 4429 4430 /* allocate new block */ 4431 ar.inode = inode; 4432 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4433 ar.logical = map->m_lblk; 4434 /* 4435 * We calculate the offset from the beginning of the cluster 4436 * for the logical block number, since when we allocate a 4437 * physical cluster, the physical block should start at the 4438 * same offset from the beginning of the cluster. This is 4439 * needed so that future calls to get_implied_cluster_alloc() 4440 * work correctly. 4441 */ 4442 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4443 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4444 ar.goal -= offset; 4445 ar.logical -= offset; 4446 if (S_ISREG(inode->i_mode)) 4447 ar.flags = EXT4_MB_HINT_DATA; 4448 else 4449 /* disable in-core preallocation for non-regular files */ 4450 ar.flags = 0; 4451 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4452 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4453 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4454 if (!newblock) 4455 goto out2; 4456 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4457 ar.goal, newblock, allocated); 4458 free_on_err = 1; 4459 allocated_clusters = ar.len; 4460 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4461 if (ar.len > allocated) 4462 ar.len = allocated; 4463 4464 got_allocated_blocks: 4465 /* try to insert new extent into found leaf and return */ 4466 ext4_ext_store_pblock(&newex, newblock + offset); 4467 newex.ee_len = cpu_to_le16(ar.len); 4468 /* Mark unwritten */ 4469 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){ 4470 ext4_ext_mark_unwritten(&newex); 4471 map->m_flags |= EXT4_MAP_UNWRITTEN; 4472 /* 4473 * io_end structure was created for every IO write to an 4474 * unwritten extent. To avoid unnecessary conversion, 4475 * here we flag the IO that really needs the conversion. 4476 * For non asycn direct IO case, flag the inode state 4477 * that we need to perform conversion when IO is done. 4478 */ 4479 if (flags & EXT4_GET_BLOCKS_PRE_IO) 4480 set_unwritten = 1; 4481 } 4482 4483 err = 0; 4484 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4485 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4486 path, ar.len); 4487 if (!err) 4488 err = ext4_ext_insert_extent(handle, inode, path, 4489 &newex, flags); 4490 4491 if (!err && set_unwritten) { 4492 if (io) 4493 ext4_set_io_unwritten_flag(inode, io); 4494 else 4495 ext4_set_inode_state(inode, 4496 EXT4_STATE_DIO_UNWRITTEN); 4497 } 4498 4499 if (err && free_on_err) { 4500 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4501 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4502 /* free data blocks we just allocated */ 4503 /* not a good idea to call discard here directly, 4504 * but otherwise we'd need to call it every free() */ 4505 ext4_discard_preallocations(inode); 4506 ext4_free_blocks(handle, inode, NULL, newblock, 4507 EXT4_C2B(sbi, allocated_clusters), fb_flags); 4508 goto out2; 4509 } 4510 4511 /* previous routine could use block we allocated */ 4512 newblock = ext4_ext_pblock(&newex); 4513 allocated = ext4_ext_get_actual_len(&newex); 4514 if (allocated > map->m_len) 4515 allocated = map->m_len; 4516 map->m_flags |= EXT4_MAP_NEW; 4517 4518 /* 4519 * Update reserved blocks/metadata blocks after successful 4520 * block allocation which had been deferred till now. 4521 */ 4522 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4523 unsigned int reserved_clusters; 4524 /* 4525 * Check how many clusters we had reserved this allocated range 4526 */ 4527 reserved_clusters = get_reserved_cluster_alloc(inode, 4528 map->m_lblk, allocated); 4529 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { 4530 if (reserved_clusters) { 4531 /* 4532 * We have clusters reserved for this range. 4533 * But since we are not doing actual allocation 4534 * and are simply using blocks from previously 4535 * allocated cluster, we should release the 4536 * reservation and not claim quota. 4537 */ 4538 ext4_da_update_reserve_space(inode, 4539 reserved_clusters, 0); 4540 } 4541 } else { 4542 BUG_ON(allocated_clusters < reserved_clusters); 4543 if (reserved_clusters < allocated_clusters) { 4544 struct ext4_inode_info *ei = EXT4_I(inode); 4545 int reservation = allocated_clusters - 4546 reserved_clusters; 4547 /* 4548 * It seems we claimed few clusters outside of 4549 * the range of this allocation. We should give 4550 * it back to the reservation pool. This can 4551 * happen in the following case: 4552 * 4553 * * Suppose s_cluster_ratio is 4 (i.e., each 4554 * cluster has 4 blocks. Thus, the clusters 4555 * are [0-3],[4-7],[8-11]... 4556 * * First comes delayed allocation write for 4557 * logical blocks 10 & 11. Since there were no 4558 * previous delayed allocated blocks in the 4559 * range [8-11], we would reserve 1 cluster 4560 * for this write. 4561 * * Next comes write for logical blocks 3 to 8. 4562 * In this case, we will reserve 2 clusters 4563 * (for [0-3] and [4-7]; and not for [8-11] as 4564 * that range has a delayed allocated blocks. 4565 * Thus total reserved clusters now becomes 3. 4566 * * Now, during the delayed allocation writeout 4567 * time, we will first write blocks [3-8] and 4568 * allocate 3 clusters for writing these 4569 * blocks. Also, we would claim all these 4570 * three clusters above. 4571 * * Now when we come here to writeout the 4572 * blocks [10-11], we would expect to claim 4573 * the reservation of 1 cluster we had made 4574 * (and we would claim it since there are no 4575 * more delayed allocated blocks in the range 4576 * [8-11]. But our reserved cluster count had 4577 * already gone to 0. 4578 * 4579 * Thus, at the step 4 above when we determine 4580 * that there are still some unwritten delayed 4581 * allocated blocks outside of our current 4582 * block range, we should increment the 4583 * reserved clusters count so that when the 4584 * remaining blocks finally gets written, we 4585 * could claim them. 4586 */ 4587 dquot_reserve_block(inode, 4588 EXT4_C2B(sbi, reservation)); 4589 spin_lock(&ei->i_block_reservation_lock); 4590 ei->i_reserved_data_blocks += reservation; 4591 spin_unlock(&ei->i_block_reservation_lock); 4592 } 4593 /* 4594 * We will claim quota for all newly allocated blocks. 4595 * We're updating the reserved space *after* the 4596 * correction above so we do not accidentally free 4597 * all the metadata reservation because we might 4598 * actually need it later on. 4599 */ 4600 ext4_da_update_reserve_space(inode, allocated_clusters, 4601 1); 4602 } 4603 } 4604 4605 /* 4606 * Cache the extent and update transaction to commit on fdatasync only 4607 * when it is _not_ an unwritten extent. 4608 */ 4609 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4610 ext4_update_inode_fsync_trans(handle, inode, 1); 4611 else 4612 ext4_update_inode_fsync_trans(handle, inode, 0); 4613 out: 4614 if (allocated > map->m_len) 4615 allocated = map->m_len; 4616 ext4_ext_show_leaf(inode, path); 4617 map->m_flags |= EXT4_MAP_MAPPED; 4618 map->m_pblk = newblock; 4619 map->m_len = allocated; 4620 out2: 4621 if (path) { 4622 ext4_ext_drop_refs(path); 4623 kfree(path); 4624 } 4625 4626 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4627 err ? err : allocated); 4628 ext4_es_lru_add(inode); 4629 return err ? err : allocated; 4630 } 4631 4632 void ext4_ext_truncate(handle_t *handle, struct inode *inode) 4633 { 4634 struct super_block *sb = inode->i_sb; 4635 ext4_lblk_t last_block; 4636 int err = 0; 4637 4638 /* 4639 * TODO: optimization is possible here. 4640 * Probably we need not scan at all, 4641 * because page truncation is enough. 4642 */ 4643 4644 /* we have to know where to truncate from in crash case */ 4645 EXT4_I(inode)->i_disksize = inode->i_size; 4646 ext4_mark_inode_dirty(handle, inode); 4647 4648 last_block = (inode->i_size + sb->s_blocksize - 1) 4649 >> EXT4_BLOCK_SIZE_BITS(sb); 4650 retry: 4651 err = ext4_es_remove_extent(inode, last_block, 4652 EXT_MAX_BLOCKS - last_block); 4653 if (err == -ENOMEM) { 4654 cond_resched(); 4655 congestion_wait(BLK_RW_ASYNC, HZ/50); 4656 goto retry; 4657 } 4658 if (err) { 4659 ext4_std_error(inode->i_sb, err); 4660 return; 4661 } 4662 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4663 ext4_std_error(inode->i_sb, err); 4664 } 4665 4666 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4667 ext4_lblk_t len, int flags, int mode) 4668 { 4669 struct inode *inode = file_inode(file); 4670 handle_t *handle; 4671 int ret = 0; 4672 int ret2 = 0; 4673 int retries = 0; 4674 struct ext4_map_blocks map; 4675 unsigned int credits; 4676 4677 map.m_lblk = offset; 4678 /* 4679 * Don't normalize the request if it can fit in one extent so 4680 * that it doesn't get unnecessarily split into multiple 4681 * extents. 4682 */ 4683 if (len <= EXT_UNWRITTEN_MAX_LEN) 4684 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4685 4686 /* 4687 * credits to insert 1 extent into extent tree 4688 */ 4689 credits = ext4_chunk_trans_blocks(inode, len); 4690 4691 retry: 4692 while (ret >= 0 && ret < len) { 4693 map.m_lblk = map.m_lblk + ret; 4694 map.m_len = len = len - ret; 4695 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4696 credits); 4697 if (IS_ERR(handle)) { 4698 ret = PTR_ERR(handle); 4699 break; 4700 } 4701 ret = ext4_map_blocks(handle, inode, &map, flags); 4702 if (ret <= 0) { 4703 ext4_debug("inode #%lu: block %u: len %u: " 4704 "ext4_ext_map_blocks returned %d", 4705 inode->i_ino, map.m_lblk, 4706 map.m_len, ret); 4707 ext4_mark_inode_dirty(handle, inode); 4708 ret2 = ext4_journal_stop(handle); 4709 break; 4710 } 4711 ret2 = ext4_journal_stop(handle); 4712 if (ret2) 4713 break; 4714 } 4715 if (ret == -ENOSPC && 4716 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4717 ret = 0; 4718 goto retry; 4719 } 4720 4721 return ret > 0 ? ret2 : ret; 4722 } 4723 4724 static long ext4_zero_range(struct file *file, loff_t offset, 4725 loff_t len, int mode) 4726 { 4727 struct inode *inode = file_inode(file); 4728 handle_t *handle = NULL; 4729 unsigned int max_blocks; 4730 loff_t new_size = 0; 4731 int ret = 0; 4732 int flags; 4733 int partial; 4734 loff_t start, end; 4735 ext4_lblk_t lblk; 4736 struct address_space *mapping = inode->i_mapping; 4737 unsigned int blkbits = inode->i_blkbits; 4738 4739 trace_ext4_zero_range(inode, offset, len, mode); 4740 4741 if (!S_ISREG(inode->i_mode)) 4742 return -EINVAL; 4743 4744 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4745 if (ext4_should_journal_data(inode)) { 4746 ret = ext4_force_commit(inode->i_sb); 4747 if (ret) 4748 return ret; 4749 } 4750 4751 /* 4752 * Write out all dirty pages to avoid race conditions 4753 * Then release them. 4754 */ 4755 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4756 ret = filemap_write_and_wait_range(mapping, offset, 4757 offset + len - 1); 4758 if (ret) 4759 return ret; 4760 } 4761 4762 /* 4763 * Round up offset. This is not fallocate, we neet to zero out 4764 * blocks, so convert interior block aligned part of the range to 4765 * unwritten and possibly manually zero out unaligned parts of the 4766 * range. 4767 */ 4768 start = round_up(offset, 1 << blkbits); 4769 end = round_down((offset + len), 1 << blkbits); 4770 4771 if (start < offset || end > offset + len) 4772 return -EINVAL; 4773 partial = (offset + len) & ((1 << blkbits) - 1); 4774 4775 lblk = start >> blkbits; 4776 max_blocks = (end >> blkbits); 4777 if (max_blocks < lblk) 4778 max_blocks = 0; 4779 else 4780 max_blocks -= lblk; 4781 4782 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT | 4783 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN; 4784 if (mode & FALLOC_FL_KEEP_SIZE) 4785 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4786 4787 mutex_lock(&inode->i_mutex); 4788 4789 /* 4790 * Indirect files do not support unwritten extnets 4791 */ 4792 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4793 ret = -EOPNOTSUPP; 4794 goto out_mutex; 4795 } 4796 4797 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4798 offset + len > i_size_read(inode)) { 4799 new_size = offset + len; 4800 ret = inode_newsize_ok(inode, new_size); 4801 if (ret) 4802 goto out_mutex; 4803 /* 4804 * If we have a partial block after EOF we have to allocate 4805 * the entire block. 4806 */ 4807 if (partial) 4808 max_blocks += 1; 4809 } 4810 4811 if (max_blocks > 0) { 4812 4813 /* Now release the pages and zero block aligned part of pages*/ 4814 truncate_pagecache_range(inode, start, end - 1); 4815 4816 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4817 ext4_inode_block_unlocked_dio(inode); 4818 inode_dio_wait(inode); 4819 4820 /* 4821 * Remove entire range from the extent status tree. 4822 */ 4823 ret = ext4_es_remove_extent(inode, lblk, max_blocks); 4824 if (ret) 4825 goto out_dio; 4826 4827 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags, 4828 mode); 4829 if (ret) 4830 goto out_dio; 4831 } 4832 4833 handle = ext4_journal_start(inode, EXT4_HT_MISC, 4); 4834 if (IS_ERR(handle)) { 4835 ret = PTR_ERR(handle); 4836 ext4_std_error(inode->i_sb, ret); 4837 goto out_dio; 4838 } 4839 4840 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4841 4842 if (new_size) { 4843 if (new_size > i_size_read(inode)) 4844 i_size_write(inode, new_size); 4845 if (new_size > EXT4_I(inode)->i_disksize) 4846 ext4_update_i_disksize(inode, new_size); 4847 } else { 4848 /* 4849 * Mark that we allocate beyond EOF so the subsequent truncate 4850 * can proceed even if the new size is the same as i_size. 4851 */ 4852 if ((offset + len) > i_size_read(inode)) 4853 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4854 } 4855 4856 ext4_mark_inode_dirty(handle, inode); 4857 4858 /* Zero out partial block at the edges of the range */ 4859 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4860 4861 if (file->f_flags & O_SYNC) 4862 ext4_handle_sync(handle); 4863 4864 ext4_journal_stop(handle); 4865 out_dio: 4866 ext4_inode_resume_unlocked_dio(inode); 4867 out_mutex: 4868 mutex_unlock(&inode->i_mutex); 4869 return ret; 4870 } 4871 4872 /* 4873 * preallocate space for a file. This implements ext4's fallocate file 4874 * operation, which gets called from sys_fallocate system call. 4875 * For block-mapped files, posix_fallocate should fall back to the method 4876 * of writing zeroes to the required new blocks (the same behavior which is 4877 * expected for file systems which do not support fallocate() system call). 4878 */ 4879 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4880 { 4881 struct inode *inode = file_inode(file); 4882 handle_t *handle; 4883 loff_t new_size = 0; 4884 unsigned int max_blocks; 4885 int ret = 0; 4886 int flags; 4887 ext4_lblk_t lblk; 4888 struct timespec tv; 4889 unsigned int blkbits = inode->i_blkbits; 4890 4891 /* Return error if mode is not supported */ 4892 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4893 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE)) 4894 return -EOPNOTSUPP; 4895 4896 if (mode & FALLOC_FL_PUNCH_HOLE) 4897 return ext4_punch_hole(inode, offset, len); 4898 4899 ret = ext4_convert_inline_data(inode); 4900 if (ret) 4901 return ret; 4902 4903 /* 4904 * currently supporting (pre)allocate mode for extent-based 4905 * files _only_ 4906 */ 4907 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4908 return -EOPNOTSUPP; 4909 4910 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4911 return ext4_collapse_range(inode, offset, len); 4912 4913 if (mode & FALLOC_FL_ZERO_RANGE) 4914 return ext4_zero_range(file, offset, len, mode); 4915 4916 trace_ext4_fallocate_enter(inode, offset, len, mode); 4917 lblk = offset >> blkbits; 4918 /* 4919 * We can't just convert len to max_blocks because 4920 * If blocksize = 4096 offset = 3072 and len = 2048 4921 */ 4922 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4923 - lblk; 4924 4925 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4926 if (mode & FALLOC_FL_KEEP_SIZE) 4927 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4928 4929 mutex_lock(&inode->i_mutex); 4930 4931 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4932 offset + len > i_size_read(inode)) { 4933 new_size = offset + len; 4934 ret = inode_newsize_ok(inode, new_size); 4935 if (ret) 4936 goto out; 4937 } 4938 4939 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags, mode); 4940 if (ret) 4941 goto out; 4942 4943 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4944 if (IS_ERR(handle)) 4945 goto out; 4946 4947 tv = inode->i_ctime = ext4_current_time(inode); 4948 4949 if (new_size) { 4950 if (new_size > i_size_read(inode)) { 4951 i_size_write(inode, new_size); 4952 inode->i_mtime = tv; 4953 } 4954 if (new_size > EXT4_I(inode)->i_disksize) 4955 ext4_update_i_disksize(inode, new_size); 4956 } else { 4957 /* 4958 * Mark that we allocate beyond EOF so the subsequent truncate 4959 * can proceed even if the new size is the same as i_size. 4960 */ 4961 if ((offset + len) > i_size_read(inode)) 4962 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4963 } 4964 ext4_mark_inode_dirty(handle, inode); 4965 if (file->f_flags & O_SYNC) 4966 ext4_handle_sync(handle); 4967 4968 ext4_journal_stop(handle); 4969 out: 4970 mutex_unlock(&inode->i_mutex); 4971 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4972 return ret; 4973 } 4974 4975 /* 4976 * This function convert a range of blocks to written extents 4977 * The caller of this function will pass the start offset and the size. 4978 * all unwritten extents within this range will be converted to 4979 * written extents. 4980 * 4981 * This function is called from the direct IO end io call back 4982 * function, to convert the fallocated extents after IO is completed. 4983 * Returns 0 on success. 4984 */ 4985 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4986 loff_t offset, ssize_t len) 4987 { 4988 unsigned int max_blocks; 4989 int ret = 0; 4990 int ret2 = 0; 4991 struct ext4_map_blocks map; 4992 unsigned int credits, blkbits = inode->i_blkbits; 4993 4994 map.m_lblk = offset >> blkbits; 4995 /* 4996 * We can't just convert len to max_blocks because 4997 * If blocksize = 4096 offset = 3072 and len = 2048 4998 */ 4999 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 5000 map.m_lblk); 5001 /* 5002 * This is somewhat ugly but the idea is clear: When transaction is 5003 * reserved, everything goes into it. Otherwise we rather start several 5004 * smaller transactions for conversion of each extent separately. 5005 */ 5006 if (handle) { 5007 handle = ext4_journal_start_reserved(handle, 5008 EXT4_HT_EXT_CONVERT); 5009 if (IS_ERR(handle)) 5010 return PTR_ERR(handle); 5011 credits = 0; 5012 } else { 5013 /* 5014 * credits to insert 1 extent into extent tree 5015 */ 5016 credits = ext4_chunk_trans_blocks(inode, max_blocks); 5017 } 5018 while (ret >= 0 && ret < max_blocks) { 5019 map.m_lblk += ret; 5020 map.m_len = (max_blocks -= ret); 5021 if (credits) { 5022 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 5023 credits); 5024 if (IS_ERR(handle)) { 5025 ret = PTR_ERR(handle); 5026 break; 5027 } 5028 } 5029 ret = ext4_map_blocks(handle, inode, &map, 5030 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 5031 if (ret <= 0) 5032 ext4_warning(inode->i_sb, 5033 "inode #%lu: block %u: len %u: " 5034 "ext4_ext_map_blocks returned %d", 5035 inode->i_ino, map.m_lblk, 5036 map.m_len, ret); 5037 ext4_mark_inode_dirty(handle, inode); 5038 if (credits) 5039 ret2 = ext4_journal_stop(handle); 5040 if (ret <= 0 || ret2) 5041 break; 5042 } 5043 if (!credits) 5044 ret2 = ext4_journal_stop(handle); 5045 return ret > 0 ? ret2 : ret; 5046 } 5047 5048 /* 5049 * If newes is not existing extent (newes->ec_pblk equals zero) find 5050 * delayed extent at start of newes and update newes accordingly and 5051 * return start of the next delayed extent. 5052 * 5053 * If newes is existing extent (newes->ec_pblk is not equal zero) 5054 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 5055 * extent found. Leave newes unmodified. 5056 */ 5057 static int ext4_find_delayed_extent(struct inode *inode, 5058 struct extent_status *newes) 5059 { 5060 struct extent_status es; 5061 ext4_lblk_t block, next_del; 5062 5063 if (newes->es_pblk == 0) { 5064 ext4_es_find_delayed_extent_range(inode, newes->es_lblk, 5065 newes->es_lblk + newes->es_len - 1, &es); 5066 5067 /* 5068 * No extent in extent-tree contains block @newes->es_pblk, 5069 * then the block may stay in 1)a hole or 2)delayed-extent. 5070 */ 5071 if (es.es_len == 0) 5072 /* A hole found. */ 5073 return 0; 5074 5075 if (es.es_lblk > newes->es_lblk) { 5076 /* A hole found. */ 5077 newes->es_len = min(es.es_lblk - newes->es_lblk, 5078 newes->es_len); 5079 return 0; 5080 } 5081 5082 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 5083 } 5084 5085 block = newes->es_lblk + newes->es_len; 5086 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es); 5087 if (es.es_len == 0) 5088 next_del = EXT_MAX_BLOCKS; 5089 else 5090 next_del = es.es_lblk; 5091 5092 return next_del; 5093 } 5094 /* fiemap flags we can handle specified here */ 5095 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 5096 5097 static int ext4_xattr_fiemap(struct inode *inode, 5098 struct fiemap_extent_info *fieinfo) 5099 { 5100 __u64 physical = 0; 5101 __u64 length; 5102 __u32 flags = FIEMAP_EXTENT_LAST; 5103 int blockbits = inode->i_sb->s_blocksize_bits; 5104 int error = 0; 5105 5106 /* in-inode? */ 5107 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 5108 struct ext4_iloc iloc; 5109 int offset; /* offset of xattr in inode */ 5110 5111 error = ext4_get_inode_loc(inode, &iloc); 5112 if (error) 5113 return error; 5114 physical = (__u64)iloc.bh->b_blocknr << blockbits; 5115 offset = EXT4_GOOD_OLD_INODE_SIZE + 5116 EXT4_I(inode)->i_extra_isize; 5117 physical += offset; 5118 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 5119 flags |= FIEMAP_EXTENT_DATA_INLINE; 5120 brelse(iloc.bh); 5121 } else { /* external block */ 5122 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 5123 length = inode->i_sb->s_blocksize; 5124 } 5125 5126 if (physical) 5127 error = fiemap_fill_next_extent(fieinfo, 0, physical, 5128 length, flags); 5129 return (error < 0 ? error : 0); 5130 } 5131 5132 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5133 __u64 start, __u64 len) 5134 { 5135 ext4_lblk_t start_blk; 5136 int error = 0; 5137 5138 if (ext4_has_inline_data(inode)) { 5139 int has_inline = 1; 5140 5141 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline); 5142 5143 if (has_inline) 5144 return error; 5145 } 5146 5147 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 5148 error = ext4_ext_precache(inode); 5149 if (error) 5150 return error; 5151 } 5152 5153 /* fallback to generic here if not in extents fmt */ 5154 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5155 return generic_block_fiemap(inode, fieinfo, start, len, 5156 ext4_get_block); 5157 5158 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 5159 return -EBADR; 5160 5161 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 5162 error = ext4_xattr_fiemap(inode, fieinfo); 5163 } else { 5164 ext4_lblk_t len_blks; 5165 __u64 last_blk; 5166 5167 start_blk = start >> inode->i_sb->s_blocksize_bits; 5168 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5169 if (last_blk >= EXT_MAX_BLOCKS) 5170 last_blk = EXT_MAX_BLOCKS-1; 5171 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5172 5173 /* 5174 * Walk the extent tree gathering extent information 5175 * and pushing extents back to the user. 5176 */ 5177 error = ext4_fill_fiemap_extents(inode, start_blk, 5178 len_blks, fieinfo); 5179 } 5180 ext4_es_lru_add(inode); 5181 return error; 5182 } 5183 5184 /* 5185 * ext4_access_path: 5186 * Function to access the path buffer for marking it dirty. 5187 * It also checks if there are sufficient credits left in the journal handle 5188 * to update path. 5189 */ 5190 static int 5191 ext4_access_path(handle_t *handle, struct inode *inode, 5192 struct ext4_ext_path *path) 5193 { 5194 int credits, err; 5195 5196 if (!ext4_handle_valid(handle)) 5197 return 0; 5198 5199 /* 5200 * Check if need to extend journal credits 5201 * 3 for leaf, sb, and inode plus 2 (bmap and group 5202 * descriptor) for each block group; assume two block 5203 * groups 5204 */ 5205 if (handle->h_buffer_credits < 7) { 5206 credits = ext4_writepage_trans_blocks(inode); 5207 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 5208 /* EAGAIN is success */ 5209 if (err && err != -EAGAIN) 5210 return err; 5211 } 5212 5213 err = ext4_ext_get_access(handle, inode, path); 5214 return err; 5215 } 5216 5217 /* 5218 * ext4_ext_shift_path_extents: 5219 * Shift the extents of a path structure lying between path[depth].p_ext 5220 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift 5221 * from starting block for each extent. 5222 */ 5223 static int 5224 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5225 struct inode *inode, handle_t *handle, 5226 ext4_lblk_t *start) 5227 { 5228 int depth, err = 0; 5229 struct ext4_extent *ex_start, *ex_last; 5230 bool update = 0; 5231 depth = path->p_depth; 5232 5233 while (depth >= 0) { 5234 if (depth == path->p_depth) { 5235 ex_start = path[depth].p_ext; 5236 if (!ex_start) 5237 return -EIO; 5238 5239 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5240 if (!ex_last) 5241 return -EIO; 5242 5243 err = ext4_access_path(handle, inode, path + depth); 5244 if (err) 5245 goto out; 5246 5247 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 5248 update = 1; 5249 5250 *start = le32_to_cpu(ex_last->ee_block) + 5251 ext4_ext_get_actual_len(ex_last); 5252 5253 while (ex_start <= ex_last) { 5254 le32_add_cpu(&ex_start->ee_block, -shift); 5255 /* Try to merge to the left. */ 5256 if ((ex_start > 5257 EXT_FIRST_EXTENT(path[depth].p_hdr)) && 5258 ext4_ext_try_to_merge_right(inode, 5259 path, ex_start - 1)) 5260 ex_last--; 5261 else 5262 ex_start++; 5263 } 5264 err = ext4_ext_dirty(handle, inode, path + depth); 5265 if (err) 5266 goto out; 5267 5268 if (--depth < 0 || !update) 5269 break; 5270 } 5271 5272 /* Update index too */ 5273 err = ext4_access_path(handle, inode, path + depth); 5274 if (err) 5275 goto out; 5276 5277 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5278 err = ext4_ext_dirty(handle, inode, path + depth); 5279 if (err) 5280 goto out; 5281 5282 /* we are done if current index is not a starting index */ 5283 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5284 break; 5285 5286 depth--; 5287 } 5288 5289 out: 5290 return err; 5291 } 5292 5293 /* 5294 * ext4_ext_shift_extents: 5295 * All the extents which lies in the range from start to the last allocated 5296 * block for the file are shifted downwards by shift blocks. 5297 * On success, 0 is returned, error otherwise. 5298 */ 5299 static int 5300 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5301 ext4_lblk_t start, ext4_lblk_t shift) 5302 { 5303 struct ext4_ext_path *path; 5304 int ret = 0, depth; 5305 struct ext4_extent *extent; 5306 ext4_lblk_t stop_block, current_block; 5307 ext4_lblk_t ex_start, ex_end; 5308 5309 /* Let path point to the last extent */ 5310 path = ext4_ext_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0); 5311 if (IS_ERR(path)) 5312 return PTR_ERR(path); 5313 5314 depth = path->p_depth; 5315 extent = path[depth].p_ext; 5316 if (!extent) { 5317 ext4_ext_drop_refs(path); 5318 kfree(path); 5319 return ret; 5320 } 5321 5322 stop_block = le32_to_cpu(extent->ee_block) + 5323 ext4_ext_get_actual_len(extent); 5324 ext4_ext_drop_refs(path); 5325 kfree(path); 5326 5327 /* Nothing to shift, if hole is at the end of file */ 5328 if (start >= stop_block) 5329 return ret; 5330 5331 /* 5332 * Don't start shifting extents until we make sure the hole is big 5333 * enough to accomodate the shift. 5334 */ 5335 path = ext4_ext_find_extent(inode, start - 1, NULL, 0); 5336 if (IS_ERR(path)) 5337 return PTR_ERR(path); 5338 depth = path->p_depth; 5339 extent = path[depth].p_ext; 5340 if (extent) { 5341 ex_start = le32_to_cpu(extent->ee_block); 5342 ex_end = le32_to_cpu(extent->ee_block) + 5343 ext4_ext_get_actual_len(extent); 5344 } else { 5345 ex_start = 0; 5346 ex_end = 0; 5347 } 5348 ext4_ext_drop_refs(path); 5349 kfree(path); 5350 5351 if ((start == ex_start && shift > ex_start) || 5352 (shift > start - ex_end)) 5353 return -EINVAL; 5354 5355 /* Its safe to start updating extents */ 5356 while (start < stop_block) { 5357 path = ext4_ext_find_extent(inode, start, NULL, 0); 5358 if (IS_ERR(path)) 5359 return PTR_ERR(path); 5360 depth = path->p_depth; 5361 extent = path[depth].p_ext; 5362 if (!extent) { 5363 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5364 (unsigned long) start); 5365 return -EIO; 5366 } 5367 5368 current_block = le32_to_cpu(extent->ee_block); 5369 if (start > current_block) { 5370 /* Hole, move to the next extent */ 5371 ret = mext_next_extent(inode, path, &extent); 5372 if (ret != 0) { 5373 ext4_ext_drop_refs(path); 5374 kfree(path); 5375 if (ret == 1) 5376 ret = 0; 5377 break; 5378 } 5379 } 5380 ret = ext4_ext_shift_path_extents(path, shift, inode, 5381 handle, &start); 5382 ext4_ext_drop_refs(path); 5383 kfree(path); 5384 if (ret) 5385 break; 5386 } 5387 5388 return ret; 5389 } 5390 5391 /* 5392 * ext4_collapse_range: 5393 * This implements the fallocate's collapse range functionality for ext4 5394 * Returns: 0 and non-zero on error. 5395 */ 5396 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5397 { 5398 struct super_block *sb = inode->i_sb; 5399 ext4_lblk_t punch_start, punch_stop; 5400 handle_t *handle; 5401 unsigned int credits; 5402 loff_t new_size, ioffset; 5403 int ret; 5404 5405 /* Collapse range works only on fs block size aligned offsets. */ 5406 if (offset & (EXT4_BLOCK_SIZE(sb) - 1) || 5407 len & (EXT4_BLOCK_SIZE(sb) - 1)) 5408 return -EINVAL; 5409 5410 if (!S_ISREG(inode->i_mode)) 5411 return -EINVAL; 5412 5413 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) 5414 return -EOPNOTSUPP; 5415 5416 trace_ext4_collapse_range(inode, offset, len); 5417 5418 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5419 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5420 5421 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5422 if (ext4_should_journal_data(inode)) { 5423 ret = ext4_force_commit(inode->i_sb); 5424 if (ret) 5425 return ret; 5426 } 5427 5428 /* 5429 * Need to round down offset to be aligned with page size boundary 5430 * for page size > block size. 5431 */ 5432 ioffset = round_down(offset, PAGE_SIZE); 5433 5434 /* Write out all dirty pages */ 5435 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5436 LLONG_MAX); 5437 if (ret) 5438 return ret; 5439 5440 /* Take mutex lock */ 5441 mutex_lock(&inode->i_mutex); 5442 5443 /* 5444 * There is no need to overlap collapse range with EOF, in which case 5445 * it is effectively a truncate operation 5446 */ 5447 if (offset + len >= i_size_read(inode)) { 5448 ret = -EINVAL; 5449 goto out_mutex; 5450 } 5451 5452 /* Currently just for extent based files */ 5453 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5454 ret = -EOPNOTSUPP; 5455 goto out_mutex; 5456 } 5457 5458 truncate_pagecache(inode, ioffset); 5459 5460 /* Wait for existing dio to complete */ 5461 ext4_inode_block_unlocked_dio(inode); 5462 inode_dio_wait(inode); 5463 5464 credits = ext4_writepage_trans_blocks(inode); 5465 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5466 if (IS_ERR(handle)) { 5467 ret = PTR_ERR(handle); 5468 goto out_dio; 5469 } 5470 5471 down_write(&EXT4_I(inode)->i_data_sem); 5472 ext4_discard_preallocations(inode); 5473 5474 ret = ext4_es_remove_extent(inode, punch_start, 5475 EXT_MAX_BLOCKS - punch_start); 5476 if (ret) { 5477 up_write(&EXT4_I(inode)->i_data_sem); 5478 goto out_stop; 5479 } 5480 5481 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5482 if (ret) { 5483 up_write(&EXT4_I(inode)->i_data_sem); 5484 goto out_stop; 5485 } 5486 ext4_discard_preallocations(inode); 5487 5488 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5489 punch_stop - punch_start); 5490 if (ret) { 5491 up_write(&EXT4_I(inode)->i_data_sem); 5492 goto out_stop; 5493 } 5494 5495 new_size = i_size_read(inode) - len; 5496 i_size_write(inode, new_size); 5497 EXT4_I(inode)->i_disksize = new_size; 5498 5499 up_write(&EXT4_I(inode)->i_data_sem); 5500 if (IS_SYNC(inode)) 5501 ext4_handle_sync(handle); 5502 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 5503 ext4_mark_inode_dirty(handle, inode); 5504 5505 out_stop: 5506 ext4_journal_stop(handle); 5507 out_dio: 5508 ext4_inode_resume_unlocked_dio(inode); 5509 out_mutex: 5510 mutex_unlock(&inode->i_mutex); 5511 return ret; 5512 } 5513