1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 * 6 * Architecture independence: 7 * Copyright (c) 2005, Bull S.A. 8 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 9 */ 10 11 /* 12 * Extents support for EXT4 13 * 14 * TODO: 15 * - ext4*_error() should be used in some situations 16 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 17 * - smart tree reduction 18 */ 19 20 #include <linux/fs.h> 21 #include <linux/time.h> 22 #include <linux/jbd2.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/quotaops.h> 26 #include <linux/string.h> 27 #include <linux/slab.h> 28 #include <linux/uaccess.h> 29 #include <linux/fiemap.h> 30 #include <linux/backing-dev.h> 31 #include <linux/iomap.h> 32 #include "ext4_jbd2.h" 33 #include "ext4_extents.h" 34 #include "xattr.h" 35 36 #include <trace/events/ext4.h> 37 38 /* 39 * used by extent splitting. 40 */ 41 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 42 due to ENOSPC */ 43 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 44 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 45 46 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 47 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 48 49 static __le32 ext4_extent_block_csum(struct inode *inode, 50 struct ext4_extent_header *eh) 51 { 52 struct ext4_inode_info *ei = EXT4_I(inode); 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u32 csum; 55 56 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 57 EXT4_EXTENT_TAIL_OFFSET(eh)); 58 return cpu_to_le32(csum); 59 } 60 61 static int ext4_extent_block_csum_verify(struct inode *inode, 62 struct ext4_extent_header *eh) 63 { 64 struct ext4_extent_tail *et; 65 66 if (!ext4_has_metadata_csum(inode->i_sb)) 67 return 1; 68 69 et = find_ext4_extent_tail(eh); 70 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 71 return 0; 72 return 1; 73 } 74 75 static void ext4_extent_block_csum_set(struct inode *inode, 76 struct ext4_extent_header *eh) 77 { 78 struct ext4_extent_tail *et; 79 80 if (!ext4_has_metadata_csum(inode->i_sb)) 81 return; 82 83 et = find_ext4_extent_tail(eh); 84 et->et_checksum = ext4_extent_block_csum(inode, eh); 85 } 86 87 static int ext4_split_extent_at(handle_t *handle, 88 struct inode *inode, 89 struct ext4_ext_path **ppath, 90 ext4_lblk_t split, 91 int split_flag, 92 int flags); 93 94 static int ext4_ext_trunc_restart_fn(struct inode *inode, int *dropped) 95 { 96 /* 97 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 98 * moment, get_block can be called only for blocks inside i_size since 99 * page cache has been already dropped and writes are blocked by 100 * i_mutex. So we can safely drop the i_data_sem here. 101 */ 102 BUG_ON(EXT4_JOURNAL(inode) == NULL); 103 ext4_discard_preallocations(inode); 104 up_write(&EXT4_I(inode)->i_data_sem); 105 *dropped = 1; 106 return 0; 107 } 108 109 /* 110 * Make sure 'handle' has at least 'check_cred' credits. If not, restart 111 * transaction with 'restart_cred' credits. The function drops i_data_sem 112 * when restarting transaction and gets it after transaction is restarted. 113 * 114 * The function returns 0 on success, 1 if transaction had to be restarted, 115 * and < 0 in case of fatal error. 116 */ 117 int ext4_datasem_ensure_credits(handle_t *handle, struct inode *inode, 118 int check_cred, int restart_cred, 119 int revoke_cred) 120 { 121 int ret; 122 int dropped = 0; 123 124 ret = ext4_journal_ensure_credits_fn(handle, check_cred, restart_cred, 125 revoke_cred, ext4_ext_trunc_restart_fn(inode, &dropped)); 126 if (dropped) 127 down_write(&EXT4_I(inode)->i_data_sem); 128 return ret; 129 } 130 131 /* 132 * could return: 133 * - EROFS 134 * - ENOMEM 135 */ 136 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 137 struct ext4_ext_path *path) 138 { 139 if (path->p_bh) { 140 /* path points to block */ 141 BUFFER_TRACE(path->p_bh, "get_write_access"); 142 return ext4_journal_get_write_access(handle, path->p_bh); 143 } 144 /* path points to leaf/index in inode body */ 145 /* we use in-core data, no need to protect them */ 146 return 0; 147 } 148 149 /* 150 * could return: 151 * - EROFS 152 * - ENOMEM 153 * - EIO 154 */ 155 static int __ext4_ext_dirty(const char *where, unsigned int line, 156 handle_t *handle, struct inode *inode, 157 struct ext4_ext_path *path) 158 { 159 int err; 160 161 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 162 if (path->p_bh) { 163 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 164 /* path points to block */ 165 err = __ext4_handle_dirty_metadata(where, line, handle, 166 inode, path->p_bh); 167 } else { 168 /* path points to leaf/index in inode body */ 169 err = ext4_mark_inode_dirty(handle, inode); 170 } 171 return err; 172 } 173 174 #define ext4_ext_dirty(handle, inode, path) \ 175 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) 176 177 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 178 struct ext4_ext_path *path, 179 ext4_lblk_t block) 180 { 181 if (path) { 182 int depth = path->p_depth; 183 struct ext4_extent *ex; 184 185 /* 186 * Try to predict block placement assuming that we are 187 * filling in a file which will eventually be 188 * non-sparse --- i.e., in the case of libbfd writing 189 * an ELF object sections out-of-order but in a way 190 * the eventually results in a contiguous object or 191 * executable file, or some database extending a table 192 * space file. However, this is actually somewhat 193 * non-ideal if we are writing a sparse file such as 194 * qemu or KVM writing a raw image file that is going 195 * to stay fairly sparse, since it will end up 196 * fragmenting the file system's free space. Maybe we 197 * should have some hueristics or some way to allow 198 * userspace to pass a hint to file system, 199 * especially if the latter case turns out to be 200 * common. 201 */ 202 ex = path[depth].p_ext; 203 if (ex) { 204 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 205 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 206 207 if (block > ext_block) 208 return ext_pblk + (block - ext_block); 209 else 210 return ext_pblk - (ext_block - block); 211 } 212 213 /* it looks like index is empty; 214 * try to find starting block from index itself */ 215 if (path[depth].p_bh) 216 return path[depth].p_bh->b_blocknr; 217 } 218 219 /* OK. use inode's group */ 220 return ext4_inode_to_goal_block(inode); 221 } 222 223 /* 224 * Allocation for a meta data block 225 */ 226 static ext4_fsblk_t 227 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 228 struct ext4_ext_path *path, 229 struct ext4_extent *ex, int *err, unsigned int flags) 230 { 231 ext4_fsblk_t goal, newblock; 232 233 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 234 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 235 NULL, err); 236 return newblock; 237 } 238 239 static inline int ext4_ext_space_block(struct inode *inode, int check) 240 { 241 int size; 242 243 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 244 / sizeof(struct ext4_extent); 245 #ifdef AGGRESSIVE_TEST 246 if (!check && size > 6) 247 size = 6; 248 #endif 249 return size; 250 } 251 252 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 253 { 254 int size; 255 256 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 257 / sizeof(struct ext4_extent_idx); 258 #ifdef AGGRESSIVE_TEST 259 if (!check && size > 5) 260 size = 5; 261 #endif 262 return size; 263 } 264 265 static inline int ext4_ext_space_root(struct inode *inode, int check) 266 { 267 int size; 268 269 size = sizeof(EXT4_I(inode)->i_data); 270 size -= sizeof(struct ext4_extent_header); 271 size /= sizeof(struct ext4_extent); 272 #ifdef AGGRESSIVE_TEST 273 if (!check && size > 3) 274 size = 3; 275 #endif 276 return size; 277 } 278 279 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 280 { 281 int size; 282 283 size = sizeof(EXT4_I(inode)->i_data); 284 size -= sizeof(struct ext4_extent_header); 285 size /= sizeof(struct ext4_extent_idx); 286 #ifdef AGGRESSIVE_TEST 287 if (!check && size > 4) 288 size = 4; 289 #endif 290 return size; 291 } 292 293 static inline int 294 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 295 struct ext4_ext_path **ppath, ext4_lblk_t lblk, 296 int nofail) 297 { 298 struct ext4_ext_path *path = *ppath; 299 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 300 301 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ? 302 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 303 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO | 304 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0)); 305 } 306 307 static int 308 ext4_ext_max_entries(struct inode *inode, int depth) 309 { 310 int max; 311 312 if (depth == ext_depth(inode)) { 313 if (depth == 0) 314 max = ext4_ext_space_root(inode, 1); 315 else 316 max = ext4_ext_space_root_idx(inode, 1); 317 } else { 318 if (depth == 0) 319 max = ext4_ext_space_block(inode, 1); 320 else 321 max = ext4_ext_space_block_idx(inode, 1); 322 } 323 324 return max; 325 } 326 327 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 328 { 329 ext4_fsblk_t block = ext4_ext_pblock(ext); 330 int len = ext4_ext_get_actual_len(ext); 331 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 332 333 /* 334 * We allow neither: 335 * - zero length 336 * - overflow/wrap-around 337 */ 338 if (lblock + len <= lblock) 339 return 0; 340 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 341 } 342 343 static int ext4_valid_extent_idx(struct inode *inode, 344 struct ext4_extent_idx *ext_idx) 345 { 346 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 347 348 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 349 } 350 351 static int ext4_valid_extent_entries(struct inode *inode, 352 struct ext4_extent_header *eh, 353 ext4_fsblk_t *pblk, int depth) 354 { 355 unsigned short entries; 356 if (eh->eh_entries == 0) 357 return 1; 358 359 entries = le16_to_cpu(eh->eh_entries); 360 361 if (depth == 0) { 362 /* leaf entries */ 363 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 364 ext4_lblk_t lblock = 0; 365 ext4_lblk_t prev = 0; 366 int len = 0; 367 while (entries) { 368 if (!ext4_valid_extent(inode, ext)) 369 return 0; 370 371 /* Check for overlapping extents */ 372 lblock = le32_to_cpu(ext->ee_block); 373 len = ext4_ext_get_actual_len(ext); 374 if ((lblock <= prev) && prev) { 375 *pblk = ext4_ext_pblock(ext); 376 return 0; 377 } 378 ext++; 379 entries--; 380 prev = lblock + len - 1; 381 } 382 } else { 383 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 384 while (entries) { 385 if (!ext4_valid_extent_idx(inode, ext_idx)) 386 return 0; 387 ext_idx++; 388 entries--; 389 } 390 } 391 return 1; 392 } 393 394 static int __ext4_ext_check(const char *function, unsigned int line, 395 struct inode *inode, struct ext4_extent_header *eh, 396 int depth, ext4_fsblk_t pblk) 397 { 398 const char *error_msg; 399 int max = 0, err = -EFSCORRUPTED; 400 401 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 402 error_msg = "invalid magic"; 403 goto corrupted; 404 } 405 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 406 error_msg = "unexpected eh_depth"; 407 goto corrupted; 408 } 409 if (unlikely(eh->eh_max == 0)) { 410 error_msg = "invalid eh_max"; 411 goto corrupted; 412 } 413 max = ext4_ext_max_entries(inode, depth); 414 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 415 error_msg = "too large eh_max"; 416 goto corrupted; 417 } 418 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 419 error_msg = "invalid eh_entries"; 420 goto corrupted; 421 } 422 if (!ext4_valid_extent_entries(inode, eh, &pblk, depth)) { 423 error_msg = "invalid extent entries"; 424 goto corrupted; 425 } 426 if (unlikely(depth > 32)) { 427 error_msg = "too large eh_depth"; 428 goto corrupted; 429 } 430 /* Verify checksum on non-root extent tree nodes */ 431 if (ext_depth(inode) != depth && 432 !ext4_extent_block_csum_verify(inode, eh)) { 433 error_msg = "extent tree corrupted"; 434 err = -EFSBADCRC; 435 goto corrupted; 436 } 437 return 0; 438 439 corrupted: 440 ext4_error_inode_err(inode, function, line, 0, -err, 441 "pblk %llu bad header/extent: %s - magic %x, " 442 "entries %u, max %u(%u), depth %u(%u)", 443 (unsigned long long) pblk, error_msg, 444 le16_to_cpu(eh->eh_magic), 445 le16_to_cpu(eh->eh_entries), 446 le16_to_cpu(eh->eh_max), 447 max, le16_to_cpu(eh->eh_depth), depth); 448 return err; 449 } 450 451 #define ext4_ext_check(inode, eh, depth, pblk) \ 452 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 453 454 int ext4_ext_check_inode(struct inode *inode) 455 { 456 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 457 } 458 459 static void ext4_cache_extents(struct inode *inode, 460 struct ext4_extent_header *eh) 461 { 462 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 463 ext4_lblk_t prev = 0; 464 int i; 465 466 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 467 unsigned int status = EXTENT_STATUS_WRITTEN; 468 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 469 int len = ext4_ext_get_actual_len(ex); 470 471 if (prev && (prev != lblk)) 472 ext4_es_cache_extent(inode, prev, lblk - prev, ~0, 473 EXTENT_STATUS_HOLE); 474 475 if (ext4_ext_is_unwritten(ex)) 476 status = EXTENT_STATUS_UNWRITTEN; 477 ext4_es_cache_extent(inode, lblk, len, 478 ext4_ext_pblock(ex), status); 479 prev = lblk + len; 480 } 481 } 482 483 static struct buffer_head * 484 __read_extent_tree_block(const char *function, unsigned int line, 485 struct inode *inode, ext4_fsblk_t pblk, int depth, 486 int flags) 487 { 488 struct buffer_head *bh; 489 int err; 490 491 bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS); 492 if (unlikely(!bh)) 493 return ERR_PTR(-ENOMEM); 494 495 if (!bh_uptodate_or_lock(bh)) { 496 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 497 err = bh_submit_read(bh); 498 if (err < 0) 499 goto errout; 500 } 501 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 502 return bh; 503 if (!ext4_has_feature_journal(inode->i_sb) || 504 (inode->i_ino != 505 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) { 506 err = __ext4_ext_check(function, line, inode, 507 ext_block_hdr(bh), depth, pblk); 508 if (err) 509 goto errout; 510 } 511 set_buffer_verified(bh); 512 /* 513 * If this is a leaf block, cache all of its entries 514 */ 515 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 516 struct ext4_extent_header *eh = ext_block_hdr(bh); 517 ext4_cache_extents(inode, eh); 518 } 519 return bh; 520 errout: 521 put_bh(bh); 522 return ERR_PTR(err); 523 524 } 525 526 #define read_extent_tree_block(inode, pblk, depth, flags) \ 527 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 528 (depth), (flags)) 529 530 /* 531 * This function is called to cache a file's extent information in the 532 * extent status tree 533 */ 534 int ext4_ext_precache(struct inode *inode) 535 { 536 struct ext4_inode_info *ei = EXT4_I(inode); 537 struct ext4_ext_path *path = NULL; 538 struct buffer_head *bh; 539 int i = 0, depth, ret = 0; 540 541 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 542 return 0; /* not an extent-mapped inode */ 543 544 down_read(&ei->i_data_sem); 545 depth = ext_depth(inode); 546 547 /* Don't cache anything if there are no external extent blocks */ 548 if (!depth) { 549 up_read(&ei->i_data_sem); 550 return ret; 551 } 552 553 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 554 GFP_NOFS); 555 if (path == NULL) { 556 up_read(&ei->i_data_sem); 557 return -ENOMEM; 558 } 559 560 path[0].p_hdr = ext_inode_hdr(inode); 561 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 562 if (ret) 563 goto out; 564 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 565 while (i >= 0) { 566 /* 567 * If this is a leaf block or we've reached the end of 568 * the index block, go up 569 */ 570 if ((i == depth) || 571 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 572 brelse(path[i].p_bh); 573 path[i].p_bh = NULL; 574 i--; 575 continue; 576 } 577 bh = read_extent_tree_block(inode, 578 ext4_idx_pblock(path[i].p_idx++), 579 depth - i - 1, 580 EXT4_EX_FORCE_CACHE); 581 if (IS_ERR(bh)) { 582 ret = PTR_ERR(bh); 583 break; 584 } 585 i++; 586 path[i].p_bh = bh; 587 path[i].p_hdr = ext_block_hdr(bh); 588 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 589 } 590 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 591 out: 592 up_read(&ei->i_data_sem); 593 ext4_ext_drop_refs(path); 594 kfree(path); 595 return ret; 596 } 597 598 #ifdef EXT_DEBUG 599 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 600 { 601 int k, l = path->p_depth; 602 603 ext_debug("path:"); 604 for (k = 0; k <= l; k++, path++) { 605 if (path->p_idx) { 606 ext_debug(" %d->%llu", 607 le32_to_cpu(path->p_idx->ei_block), 608 ext4_idx_pblock(path->p_idx)); 609 } else if (path->p_ext) { 610 ext_debug(" %d:[%d]%d:%llu ", 611 le32_to_cpu(path->p_ext->ee_block), 612 ext4_ext_is_unwritten(path->p_ext), 613 ext4_ext_get_actual_len(path->p_ext), 614 ext4_ext_pblock(path->p_ext)); 615 } else 616 ext_debug(" []"); 617 } 618 ext_debug("\n"); 619 } 620 621 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 622 { 623 int depth = ext_depth(inode); 624 struct ext4_extent_header *eh; 625 struct ext4_extent *ex; 626 int i; 627 628 if (!path) 629 return; 630 631 eh = path[depth].p_hdr; 632 ex = EXT_FIRST_EXTENT(eh); 633 634 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 635 636 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 637 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 638 ext4_ext_is_unwritten(ex), 639 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 640 } 641 ext_debug("\n"); 642 } 643 644 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 645 ext4_fsblk_t newblock, int level) 646 { 647 int depth = ext_depth(inode); 648 struct ext4_extent *ex; 649 650 if (depth != level) { 651 struct ext4_extent_idx *idx; 652 idx = path[level].p_idx; 653 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 654 ext_debug("%d: move %d:%llu in new index %llu\n", level, 655 le32_to_cpu(idx->ei_block), 656 ext4_idx_pblock(idx), 657 newblock); 658 idx++; 659 } 660 661 return; 662 } 663 664 ex = path[depth].p_ext; 665 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 666 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 667 le32_to_cpu(ex->ee_block), 668 ext4_ext_pblock(ex), 669 ext4_ext_is_unwritten(ex), 670 ext4_ext_get_actual_len(ex), 671 newblock); 672 ex++; 673 } 674 } 675 676 #else 677 #define ext4_ext_show_path(inode, path) 678 #define ext4_ext_show_leaf(inode, path) 679 #define ext4_ext_show_move(inode, path, newblock, level) 680 #endif 681 682 void ext4_ext_drop_refs(struct ext4_ext_path *path) 683 { 684 int depth, i; 685 686 if (!path) 687 return; 688 depth = path->p_depth; 689 for (i = 0; i <= depth; i++, path++) { 690 if (path->p_bh) { 691 brelse(path->p_bh); 692 path->p_bh = NULL; 693 } 694 } 695 } 696 697 /* 698 * ext4_ext_binsearch_idx: 699 * binary search for the closest index of the given block 700 * the header must be checked before calling this 701 */ 702 static void 703 ext4_ext_binsearch_idx(struct inode *inode, 704 struct ext4_ext_path *path, ext4_lblk_t block) 705 { 706 struct ext4_extent_header *eh = path->p_hdr; 707 struct ext4_extent_idx *r, *l, *m; 708 709 710 ext_debug("binsearch for %u(idx): ", block); 711 712 l = EXT_FIRST_INDEX(eh) + 1; 713 r = EXT_LAST_INDEX(eh); 714 while (l <= r) { 715 m = l + (r - l) / 2; 716 if (block < le32_to_cpu(m->ei_block)) 717 r = m - 1; 718 else 719 l = m + 1; 720 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 721 m, le32_to_cpu(m->ei_block), 722 r, le32_to_cpu(r->ei_block)); 723 } 724 725 path->p_idx = l - 1; 726 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 727 ext4_idx_pblock(path->p_idx)); 728 729 #ifdef CHECK_BINSEARCH 730 { 731 struct ext4_extent_idx *chix, *ix; 732 int k; 733 734 chix = ix = EXT_FIRST_INDEX(eh); 735 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 736 if (k != 0 && le32_to_cpu(ix->ei_block) <= 737 le32_to_cpu(ix[-1].ei_block)) { 738 printk(KERN_DEBUG "k=%d, ix=0x%p, " 739 "first=0x%p\n", k, 740 ix, EXT_FIRST_INDEX(eh)); 741 printk(KERN_DEBUG "%u <= %u\n", 742 le32_to_cpu(ix->ei_block), 743 le32_to_cpu(ix[-1].ei_block)); 744 } 745 BUG_ON(k && le32_to_cpu(ix->ei_block) 746 <= le32_to_cpu(ix[-1].ei_block)); 747 if (block < le32_to_cpu(ix->ei_block)) 748 break; 749 chix = ix; 750 } 751 BUG_ON(chix != path->p_idx); 752 } 753 #endif 754 755 } 756 757 /* 758 * ext4_ext_binsearch: 759 * binary search for closest extent of the given block 760 * the header must be checked before calling this 761 */ 762 static void 763 ext4_ext_binsearch(struct inode *inode, 764 struct ext4_ext_path *path, ext4_lblk_t block) 765 { 766 struct ext4_extent_header *eh = path->p_hdr; 767 struct ext4_extent *r, *l, *m; 768 769 if (eh->eh_entries == 0) { 770 /* 771 * this leaf is empty: 772 * we get such a leaf in split/add case 773 */ 774 return; 775 } 776 777 ext_debug("binsearch for %u: ", block); 778 779 l = EXT_FIRST_EXTENT(eh) + 1; 780 r = EXT_LAST_EXTENT(eh); 781 782 while (l <= r) { 783 m = l + (r - l) / 2; 784 if (block < le32_to_cpu(m->ee_block)) 785 r = m - 1; 786 else 787 l = m + 1; 788 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 789 m, le32_to_cpu(m->ee_block), 790 r, le32_to_cpu(r->ee_block)); 791 } 792 793 path->p_ext = l - 1; 794 ext_debug(" -> %d:%llu:[%d]%d ", 795 le32_to_cpu(path->p_ext->ee_block), 796 ext4_ext_pblock(path->p_ext), 797 ext4_ext_is_unwritten(path->p_ext), 798 ext4_ext_get_actual_len(path->p_ext)); 799 800 #ifdef CHECK_BINSEARCH 801 { 802 struct ext4_extent *chex, *ex; 803 int k; 804 805 chex = ex = EXT_FIRST_EXTENT(eh); 806 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 807 BUG_ON(k && le32_to_cpu(ex->ee_block) 808 <= le32_to_cpu(ex[-1].ee_block)); 809 if (block < le32_to_cpu(ex->ee_block)) 810 break; 811 chex = ex; 812 } 813 BUG_ON(chex != path->p_ext); 814 } 815 #endif 816 817 } 818 819 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 820 { 821 struct ext4_extent_header *eh; 822 823 eh = ext_inode_hdr(inode); 824 eh->eh_depth = 0; 825 eh->eh_entries = 0; 826 eh->eh_magic = EXT4_EXT_MAGIC; 827 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 828 ext4_mark_inode_dirty(handle, inode); 829 return 0; 830 } 831 832 struct ext4_ext_path * 833 ext4_find_extent(struct inode *inode, ext4_lblk_t block, 834 struct ext4_ext_path **orig_path, int flags) 835 { 836 struct ext4_extent_header *eh; 837 struct buffer_head *bh; 838 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 839 short int depth, i, ppos = 0; 840 int ret; 841 842 eh = ext_inode_hdr(inode); 843 depth = ext_depth(inode); 844 if (depth < 0 || depth > EXT4_MAX_EXTENT_DEPTH) { 845 EXT4_ERROR_INODE(inode, "inode has invalid extent depth: %d", 846 depth); 847 ret = -EFSCORRUPTED; 848 goto err; 849 } 850 851 if (path) { 852 ext4_ext_drop_refs(path); 853 if (depth > path[0].p_maxdepth) { 854 kfree(path); 855 *orig_path = path = NULL; 856 } 857 } 858 if (!path) { 859 /* account possible depth increase */ 860 path = kcalloc(depth + 2, sizeof(struct ext4_ext_path), 861 GFP_NOFS); 862 if (unlikely(!path)) 863 return ERR_PTR(-ENOMEM); 864 path[0].p_maxdepth = depth + 1; 865 } 866 path[0].p_hdr = eh; 867 path[0].p_bh = NULL; 868 869 i = depth; 870 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) 871 ext4_cache_extents(inode, eh); 872 /* walk through the tree */ 873 while (i) { 874 ext_debug("depth %d: num %d, max %d\n", 875 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 876 877 ext4_ext_binsearch_idx(inode, path + ppos, block); 878 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 879 path[ppos].p_depth = i; 880 path[ppos].p_ext = NULL; 881 882 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 883 flags); 884 if (IS_ERR(bh)) { 885 ret = PTR_ERR(bh); 886 goto err; 887 } 888 889 eh = ext_block_hdr(bh); 890 ppos++; 891 path[ppos].p_bh = bh; 892 path[ppos].p_hdr = eh; 893 } 894 895 path[ppos].p_depth = i; 896 path[ppos].p_ext = NULL; 897 path[ppos].p_idx = NULL; 898 899 /* find extent */ 900 ext4_ext_binsearch(inode, path + ppos, block); 901 /* if not an empty leaf */ 902 if (path[ppos].p_ext) 903 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 904 905 ext4_ext_show_path(inode, path); 906 907 return path; 908 909 err: 910 ext4_ext_drop_refs(path); 911 kfree(path); 912 if (orig_path) 913 *orig_path = NULL; 914 return ERR_PTR(ret); 915 } 916 917 /* 918 * ext4_ext_insert_index: 919 * insert new index [@logical;@ptr] into the block at @curp; 920 * check where to insert: before @curp or after @curp 921 */ 922 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 923 struct ext4_ext_path *curp, 924 int logical, ext4_fsblk_t ptr) 925 { 926 struct ext4_extent_idx *ix; 927 int len, err; 928 929 err = ext4_ext_get_access(handle, inode, curp); 930 if (err) 931 return err; 932 933 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 934 EXT4_ERROR_INODE(inode, 935 "logical %d == ei_block %d!", 936 logical, le32_to_cpu(curp->p_idx->ei_block)); 937 return -EFSCORRUPTED; 938 } 939 940 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 941 >= le16_to_cpu(curp->p_hdr->eh_max))) { 942 EXT4_ERROR_INODE(inode, 943 "eh_entries %d >= eh_max %d!", 944 le16_to_cpu(curp->p_hdr->eh_entries), 945 le16_to_cpu(curp->p_hdr->eh_max)); 946 return -EFSCORRUPTED; 947 } 948 949 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 950 /* insert after */ 951 ext_debug("insert new index %d after: %llu\n", logical, ptr); 952 ix = curp->p_idx + 1; 953 } else { 954 /* insert before */ 955 ext_debug("insert new index %d before: %llu\n", logical, ptr); 956 ix = curp->p_idx; 957 } 958 959 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 960 BUG_ON(len < 0); 961 if (len > 0) { 962 ext_debug("insert new index %d: " 963 "move %d indices from 0x%p to 0x%p\n", 964 logical, len, ix, ix + 1); 965 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 966 } 967 968 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 969 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 970 return -EFSCORRUPTED; 971 } 972 973 ix->ei_block = cpu_to_le32(logical); 974 ext4_idx_store_pblock(ix, ptr); 975 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 976 977 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 978 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 979 return -EFSCORRUPTED; 980 } 981 982 err = ext4_ext_dirty(handle, inode, curp); 983 ext4_std_error(inode->i_sb, err); 984 985 return err; 986 } 987 988 /* 989 * ext4_ext_split: 990 * inserts new subtree into the path, using free index entry 991 * at depth @at: 992 * - allocates all needed blocks (new leaf and all intermediate index blocks) 993 * - makes decision where to split 994 * - moves remaining extents and index entries (right to the split point) 995 * into the newly allocated blocks 996 * - initializes subtree 997 */ 998 static int ext4_ext_split(handle_t *handle, struct inode *inode, 999 unsigned int flags, 1000 struct ext4_ext_path *path, 1001 struct ext4_extent *newext, int at) 1002 { 1003 struct buffer_head *bh = NULL; 1004 int depth = ext_depth(inode); 1005 struct ext4_extent_header *neh; 1006 struct ext4_extent_idx *fidx; 1007 int i = at, k, m, a; 1008 ext4_fsblk_t newblock, oldblock; 1009 __le32 border; 1010 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1011 int err = 0; 1012 size_t ext_size = 0; 1013 1014 /* make decision: where to split? */ 1015 /* FIXME: now decision is simplest: at current extent */ 1016 1017 /* if current leaf will be split, then we should use 1018 * border from split point */ 1019 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1020 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1021 return -EFSCORRUPTED; 1022 } 1023 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1024 border = path[depth].p_ext[1].ee_block; 1025 ext_debug("leaf will be split." 1026 " next leaf starts at %d\n", 1027 le32_to_cpu(border)); 1028 } else { 1029 border = newext->ee_block; 1030 ext_debug("leaf will be added." 1031 " next leaf starts at %d\n", 1032 le32_to_cpu(border)); 1033 } 1034 1035 /* 1036 * If error occurs, then we break processing 1037 * and mark filesystem read-only. index won't 1038 * be inserted and tree will be in consistent 1039 * state. Next mount will repair buffers too. 1040 */ 1041 1042 /* 1043 * Get array to track all allocated blocks. 1044 * We need this to handle errors and free blocks 1045 * upon them. 1046 */ 1047 ablocks = kcalloc(depth, sizeof(ext4_fsblk_t), GFP_NOFS); 1048 if (!ablocks) 1049 return -ENOMEM; 1050 1051 /* allocate all needed blocks */ 1052 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1053 for (a = 0; a < depth - at; a++) { 1054 newblock = ext4_ext_new_meta_block(handle, inode, path, 1055 newext, &err, flags); 1056 if (newblock == 0) 1057 goto cleanup; 1058 ablocks[a] = newblock; 1059 } 1060 1061 /* initialize new leaf */ 1062 newblock = ablocks[--a]; 1063 if (unlikely(newblock == 0)) { 1064 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1065 err = -EFSCORRUPTED; 1066 goto cleanup; 1067 } 1068 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1069 if (unlikely(!bh)) { 1070 err = -ENOMEM; 1071 goto cleanup; 1072 } 1073 lock_buffer(bh); 1074 1075 err = ext4_journal_get_create_access(handle, bh); 1076 if (err) 1077 goto cleanup; 1078 1079 neh = ext_block_hdr(bh); 1080 neh->eh_entries = 0; 1081 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1082 neh->eh_magic = EXT4_EXT_MAGIC; 1083 neh->eh_depth = 0; 1084 1085 /* move remainder of path[depth] to the new leaf */ 1086 if (unlikely(path[depth].p_hdr->eh_entries != 1087 path[depth].p_hdr->eh_max)) { 1088 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1089 path[depth].p_hdr->eh_entries, 1090 path[depth].p_hdr->eh_max); 1091 err = -EFSCORRUPTED; 1092 goto cleanup; 1093 } 1094 /* start copy from next extent */ 1095 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1096 ext4_ext_show_move(inode, path, newblock, depth); 1097 if (m) { 1098 struct ext4_extent *ex; 1099 ex = EXT_FIRST_EXTENT(neh); 1100 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1101 le16_add_cpu(&neh->eh_entries, m); 1102 } 1103 1104 /* zero out unused area in the extent block */ 1105 ext_size = sizeof(struct ext4_extent_header) + 1106 sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries); 1107 memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size); 1108 ext4_extent_block_csum_set(inode, neh); 1109 set_buffer_uptodate(bh); 1110 unlock_buffer(bh); 1111 1112 err = ext4_handle_dirty_metadata(handle, inode, bh); 1113 if (err) 1114 goto cleanup; 1115 brelse(bh); 1116 bh = NULL; 1117 1118 /* correct old leaf */ 1119 if (m) { 1120 err = ext4_ext_get_access(handle, inode, path + depth); 1121 if (err) 1122 goto cleanup; 1123 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1124 err = ext4_ext_dirty(handle, inode, path + depth); 1125 if (err) 1126 goto cleanup; 1127 1128 } 1129 1130 /* create intermediate indexes */ 1131 k = depth - at - 1; 1132 if (unlikely(k < 0)) { 1133 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1134 err = -EFSCORRUPTED; 1135 goto cleanup; 1136 } 1137 if (k) 1138 ext_debug("create %d intermediate indices\n", k); 1139 /* insert new index into current index block */ 1140 /* current depth stored in i var */ 1141 i = depth - 1; 1142 while (k--) { 1143 oldblock = newblock; 1144 newblock = ablocks[--a]; 1145 bh = sb_getblk(inode->i_sb, newblock); 1146 if (unlikely(!bh)) { 1147 err = -ENOMEM; 1148 goto cleanup; 1149 } 1150 lock_buffer(bh); 1151 1152 err = ext4_journal_get_create_access(handle, bh); 1153 if (err) 1154 goto cleanup; 1155 1156 neh = ext_block_hdr(bh); 1157 neh->eh_entries = cpu_to_le16(1); 1158 neh->eh_magic = EXT4_EXT_MAGIC; 1159 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1160 neh->eh_depth = cpu_to_le16(depth - i); 1161 fidx = EXT_FIRST_INDEX(neh); 1162 fidx->ei_block = border; 1163 ext4_idx_store_pblock(fidx, oldblock); 1164 1165 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1166 i, newblock, le32_to_cpu(border), oldblock); 1167 1168 /* move remainder of path[i] to the new index block */ 1169 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1170 EXT_LAST_INDEX(path[i].p_hdr))) { 1171 EXT4_ERROR_INODE(inode, 1172 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1173 le32_to_cpu(path[i].p_ext->ee_block)); 1174 err = -EFSCORRUPTED; 1175 goto cleanup; 1176 } 1177 /* start copy indexes */ 1178 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1179 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1180 EXT_MAX_INDEX(path[i].p_hdr)); 1181 ext4_ext_show_move(inode, path, newblock, i); 1182 if (m) { 1183 memmove(++fidx, path[i].p_idx, 1184 sizeof(struct ext4_extent_idx) * m); 1185 le16_add_cpu(&neh->eh_entries, m); 1186 } 1187 /* zero out unused area in the extent block */ 1188 ext_size = sizeof(struct ext4_extent_header) + 1189 (sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries)); 1190 memset(bh->b_data + ext_size, 0, 1191 inode->i_sb->s_blocksize - ext_size); 1192 ext4_extent_block_csum_set(inode, neh); 1193 set_buffer_uptodate(bh); 1194 unlock_buffer(bh); 1195 1196 err = ext4_handle_dirty_metadata(handle, inode, bh); 1197 if (err) 1198 goto cleanup; 1199 brelse(bh); 1200 bh = NULL; 1201 1202 /* correct old index */ 1203 if (m) { 1204 err = ext4_ext_get_access(handle, inode, path + i); 1205 if (err) 1206 goto cleanup; 1207 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1208 err = ext4_ext_dirty(handle, inode, path + i); 1209 if (err) 1210 goto cleanup; 1211 } 1212 1213 i--; 1214 } 1215 1216 /* insert new index */ 1217 err = ext4_ext_insert_index(handle, inode, path + at, 1218 le32_to_cpu(border), newblock); 1219 1220 cleanup: 1221 if (bh) { 1222 if (buffer_locked(bh)) 1223 unlock_buffer(bh); 1224 brelse(bh); 1225 } 1226 1227 if (err) { 1228 /* free all allocated blocks in error case */ 1229 for (i = 0; i < depth; i++) { 1230 if (!ablocks[i]) 1231 continue; 1232 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1233 EXT4_FREE_BLOCKS_METADATA); 1234 } 1235 } 1236 kfree(ablocks); 1237 1238 return err; 1239 } 1240 1241 /* 1242 * ext4_ext_grow_indepth: 1243 * implements tree growing procedure: 1244 * - allocates new block 1245 * - moves top-level data (index block or leaf) into the new block 1246 * - initializes new top-level, creating index that points to the 1247 * just created block 1248 */ 1249 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1250 unsigned int flags) 1251 { 1252 struct ext4_extent_header *neh; 1253 struct buffer_head *bh; 1254 ext4_fsblk_t newblock, goal = 0; 1255 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 1256 int err = 0; 1257 size_t ext_size = 0; 1258 1259 /* Try to prepend new index to old one */ 1260 if (ext_depth(inode)) 1261 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); 1262 if (goal > le32_to_cpu(es->s_first_data_block)) { 1263 flags |= EXT4_MB_HINT_TRY_GOAL; 1264 goal--; 1265 } else 1266 goal = ext4_inode_to_goal_block(inode); 1267 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 1268 NULL, &err); 1269 if (newblock == 0) 1270 return err; 1271 1272 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1273 if (unlikely(!bh)) 1274 return -ENOMEM; 1275 lock_buffer(bh); 1276 1277 err = ext4_journal_get_create_access(handle, bh); 1278 if (err) { 1279 unlock_buffer(bh); 1280 goto out; 1281 } 1282 1283 ext_size = sizeof(EXT4_I(inode)->i_data); 1284 /* move top-level index/leaf into new block */ 1285 memmove(bh->b_data, EXT4_I(inode)->i_data, ext_size); 1286 /* zero out unused area in the extent block */ 1287 memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size); 1288 1289 /* set size of new block */ 1290 neh = ext_block_hdr(bh); 1291 /* old root could have indexes or leaves 1292 * so calculate e_max right way */ 1293 if (ext_depth(inode)) 1294 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1295 else 1296 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1297 neh->eh_magic = EXT4_EXT_MAGIC; 1298 ext4_extent_block_csum_set(inode, neh); 1299 set_buffer_uptodate(bh); 1300 unlock_buffer(bh); 1301 1302 err = ext4_handle_dirty_metadata(handle, inode, bh); 1303 if (err) 1304 goto out; 1305 1306 /* Update top-level index: num,max,pointer */ 1307 neh = ext_inode_hdr(inode); 1308 neh->eh_entries = cpu_to_le16(1); 1309 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1310 if (neh->eh_depth == 0) { 1311 /* Root extent block becomes index block */ 1312 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1313 EXT_FIRST_INDEX(neh)->ei_block = 1314 EXT_FIRST_EXTENT(neh)->ee_block; 1315 } 1316 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1317 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1318 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1319 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1320 1321 le16_add_cpu(&neh->eh_depth, 1); 1322 ext4_mark_inode_dirty(handle, inode); 1323 out: 1324 brelse(bh); 1325 1326 return err; 1327 } 1328 1329 /* 1330 * ext4_ext_create_new_leaf: 1331 * finds empty index and adds new leaf. 1332 * if no free index is found, then it requests in-depth growing. 1333 */ 1334 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1335 unsigned int mb_flags, 1336 unsigned int gb_flags, 1337 struct ext4_ext_path **ppath, 1338 struct ext4_extent *newext) 1339 { 1340 struct ext4_ext_path *path = *ppath; 1341 struct ext4_ext_path *curp; 1342 int depth, i, err = 0; 1343 1344 repeat: 1345 i = depth = ext_depth(inode); 1346 1347 /* walk up to the tree and look for free index entry */ 1348 curp = path + depth; 1349 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1350 i--; 1351 curp--; 1352 } 1353 1354 /* we use already allocated block for index block, 1355 * so subsequent data blocks should be contiguous */ 1356 if (EXT_HAS_FREE_INDEX(curp)) { 1357 /* if we found index with free entry, then use that 1358 * entry: create all needed subtree and add new leaf */ 1359 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1360 if (err) 1361 goto out; 1362 1363 /* refill path */ 1364 path = ext4_find_extent(inode, 1365 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1366 ppath, gb_flags); 1367 if (IS_ERR(path)) 1368 err = PTR_ERR(path); 1369 } else { 1370 /* tree is full, time to grow in depth */ 1371 err = ext4_ext_grow_indepth(handle, inode, mb_flags); 1372 if (err) 1373 goto out; 1374 1375 /* refill path */ 1376 path = ext4_find_extent(inode, 1377 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1378 ppath, gb_flags); 1379 if (IS_ERR(path)) { 1380 err = PTR_ERR(path); 1381 goto out; 1382 } 1383 1384 /* 1385 * only first (depth 0 -> 1) produces free space; 1386 * in all other cases we have to split the grown tree 1387 */ 1388 depth = ext_depth(inode); 1389 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1390 /* now we need to split */ 1391 goto repeat; 1392 } 1393 } 1394 1395 out: 1396 return err; 1397 } 1398 1399 /* 1400 * search the closest allocated block to the left for *logical 1401 * and returns it at @logical + it's physical address at @phys 1402 * if *logical is the smallest allocated block, the function 1403 * returns 0 at @phys 1404 * return value contains 0 (success) or error code 1405 */ 1406 static int ext4_ext_search_left(struct inode *inode, 1407 struct ext4_ext_path *path, 1408 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1409 { 1410 struct ext4_extent_idx *ix; 1411 struct ext4_extent *ex; 1412 int depth, ee_len; 1413 1414 if (unlikely(path == NULL)) { 1415 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1416 return -EFSCORRUPTED; 1417 } 1418 depth = path->p_depth; 1419 *phys = 0; 1420 1421 if (depth == 0 && path->p_ext == NULL) 1422 return 0; 1423 1424 /* usually extent in the path covers blocks smaller 1425 * then *logical, but it can be that extent is the 1426 * first one in the file */ 1427 1428 ex = path[depth].p_ext; 1429 ee_len = ext4_ext_get_actual_len(ex); 1430 if (*logical < le32_to_cpu(ex->ee_block)) { 1431 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1432 EXT4_ERROR_INODE(inode, 1433 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1434 *logical, le32_to_cpu(ex->ee_block)); 1435 return -EFSCORRUPTED; 1436 } 1437 while (--depth >= 0) { 1438 ix = path[depth].p_idx; 1439 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1440 EXT4_ERROR_INODE(inode, 1441 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1442 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1443 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1444 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1445 depth); 1446 return -EFSCORRUPTED; 1447 } 1448 } 1449 return 0; 1450 } 1451 1452 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1453 EXT4_ERROR_INODE(inode, 1454 "logical %d < ee_block %d + ee_len %d!", 1455 *logical, le32_to_cpu(ex->ee_block), ee_len); 1456 return -EFSCORRUPTED; 1457 } 1458 1459 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1460 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1461 return 0; 1462 } 1463 1464 /* 1465 * search the closest allocated block to the right for *logical 1466 * and returns it at @logical + it's physical address at @phys 1467 * if *logical is the largest allocated block, the function 1468 * returns 0 at @phys 1469 * return value contains 0 (success) or error code 1470 */ 1471 static int ext4_ext_search_right(struct inode *inode, 1472 struct ext4_ext_path *path, 1473 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1474 struct ext4_extent **ret_ex) 1475 { 1476 struct buffer_head *bh = NULL; 1477 struct ext4_extent_header *eh; 1478 struct ext4_extent_idx *ix; 1479 struct ext4_extent *ex; 1480 ext4_fsblk_t block; 1481 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1482 int ee_len; 1483 1484 if (unlikely(path == NULL)) { 1485 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1486 return -EFSCORRUPTED; 1487 } 1488 depth = path->p_depth; 1489 *phys = 0; 1490 1491 if (depth == 0 && path->p_ext == NULL) 1492 return 0; 1493 1494 /* usually extent in the path covers blocks smaller 1495 * then *logical, but it can be that extent is the 1496 * first one in the file */ 1497 1498 ex = path[depth].p_ext; 1499 ee_len = ext4_ext_get_actual_len(ex); 1500 if (*logical < le32_to_cpu(ex->ee_block)) { 1501 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1502 EXT4_ERROR_INODE(inode, 1503 "first_extent(path[%d].p_hdr) != ex", 1504 depth); 1505 return -EFSCORRUPTED; 1506 } 1507 while (--depth >= 0) { 1508 ix = path[depth].p_idx; 1509 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1510 EXT4_ERROR_INODE(inode, 1511 "ix != EXT_FIRST_INDEX *logical %d!", 1512 *logical); 1513 return -EFSCORRUPTED; 1514 } 1515 } 1516 goto found_extent; 1517 } 1518 1519 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1520 EXT4_ERROR_INODE(inode, 1521 "logical %d < ee_block %d + ee_len %d!", 1522 *logical, le32_to_cpu(ex->ee_block), ee_len); 1523 return -EFSCORRUPTED; 1524 } 1525 1526 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1527 /* next allocated block in this leaf */ 1528 ex++; 1529 goto found_extent; 1530 } 1531 1532 /* go up and search for index to the right */ 1533 while (--depth >= 0) { 1534 ix = path[depth].p_idx; 1535 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1536 goto got_index; 1537 } 1538 1539 /* we've gone up to the root and found no index to the right */ 1540 return 0; 1541 1542 got_index: 1543 /* we've found index to the right, let's 1544 * follow it and find the closest allocated 1545 * block to the right */ 1546 ix++; 1547 block = ext4_idx_pblock(ix); 1548 while (++depth < path->p_depth) { 1549 /* subtract from p_depth to get proper eh_depth */ 1550 bh = read_extent_tree_block(inode, block, 1551 path->p_depth - depth, 0); 1552 if (IS_ERR(bh)) 1553 return PTR_ERR(bh); 1554 eh = ext_block_hdr(bh); 1555 ix = EXT_FIRST_INDEX(eh); 1556 block = ext4_idx_pblock(ix); 1557 put_bh(bh); 1558 } 1559 1560 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1561 if (IS_ERR(bh)) 1562 return PTR_ERR(bh); 1563 eh = ext_block_hdr(bh); 1564 ex = EXT_FIRST_EXTENT(eh); 1565 found_extent: 1566 *logical = le32_to_cpu(ex->ee_block); 1567 *phys = ext4_ext_pblock(ex); 1568 *ret_ex = ex; 1569 if (bh) 1570 put_bh(bh); 1571 return 0; 1572 } 1573 1574 /* 1575 * ext4_ext_next_allocated_block: 1576 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1577 * NOTE: it considers block number from index entry as 1578 * allocated block. Thus, index entries have to be consistent 1579 * with leaves. 1580 */ 1581 ext4_lblk_t 1582 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1583 { 1584 int depth; 1585 1586 BUG_ON(path == NULL); 1587 depth = path->p_depth; 1588 1589 if (depth == 0 && path->p_ext == NULL) 1590 return EXT_MAX_BLOCKS; 1591 1592 while (depth >= 0) { 1593 struct ext4_ext_path *p = &path[depth]; 1594 1595 if (depth == path->p_depth) { 1596 /* leaf */ 1597 if (p->p_ext && p->p_ext != EXT_LAST_EXTENT(p->p_hdr)) 1598 return le32_to_cpu(p->p_ext[1].ee_block); 1599 } else { 1600 /* index */ 1601 if (p->p_idx != EXT_LAST_INDEX(p->p_hdr)) 1602 return le32_to_cpu(p->p_idx[1].ei_block); 1603 } 1604 depth--; 1605 } 1606 1607 return EXT_MAX_BLOCKS; 1608 } 1609 1610 /* 1611 * ext4_ext_next_leaf_block: 1612 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1613 */ 1614 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1615 { 1616 int depth; 1617 1618 BUG_ON(path == NULL); 1619 depth = path->p_depth; 1620 1621 /* zero-tree has no leaf blocks at all */ 1622 if (depth == 0) 1623 return EXT_MAX_BLOCKS; 1624 1625 /* go to index block */ 1626 depth--; 1627 1628 while (depth >= 0) { 1629 if (path[depth].p_idx != 1630 EXT_LAST_INDEX(path[depth].p_hdr)) 1631 return (ext4_lblk_t) 1632 le32_to_cpu(path[depth].p_idx[1].ei_block); 1633 depth--; 1634 } 1635 1636 return EXT_MAX_BLOCKS; 1637 } 1638 1639 /* 1640 * ext4_ext_correct_indexes: 1641 * if leaf gets modified and modified extent is first in the leaf, 1642 * then we have to correct all indexes above. 1643 * TODO: do we need to correct tree in all cases? 1644 */ 1645 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1646 struct ext4_ext_path *path) 1647 { 1648 struct ext4_extent_header *eh; 1649 int depth = ext_depth(inode); 1650 struct ext4_extent *ex; 1651 __le32 border; 1652 int k, err = 0; 1653 1654 eh = path[depth].p_hdr; 1655 ex = path[depth].p_ext; 1656 1657 if (unlikely(ex == NULL || eh == NULL)) { 1658 EXT4_ERROR_INODE(inode, 1659 "ex %p == NULL or eh %p == NULL", ex, eh); 1660 return -EFSCORRUPTED; 1661 } 1662 1663 if (depth == 0) { 1664 /* there is no tree at all */ 1665 return 0; 1666 } 1667 1668 if (ex != EXT_FIRST_EXTENT(eh)) { 1669 /* we correct tree if first leaf got modified only */ 1670 return 0; 1671 } 1672 1673 /* 1674 * TODO: we need correction if border is smaller than current one 1675 */ 1676 k = depth - 1; 1677 border = path[depth].p_ext->ee_block; 1678 err = ext4_ext_get_access(handle, inode, path + k); 1679 if (err) 1680 return err; 1681 path[k].p_idx->ei_block = border; 1682 err = ext4_ext_dirty(handle, inode, path + k); 1683 if (err) 1684 return err; 1685 1686 while (k--) { 1687 /* change all left-side indexes */ 1688 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1689 break; 1690 err = ext4_ext_get_access(handle, inode, path + k); 1691 if (err) 1692 break; 1693 path[k].p_idx->ei_block = border; 1694 err = ext4_ext_dirty(handle, inode, path + k); 1695 if (err) 1696 break; 1697 } 1698 1699 return err; 1700 } 1701 1702 static int ext4_can_extents_be_merged(struct inode *inode, 1703 struct ext4_extent *ex1, 1704 struct ext4_extent *ex2) 1705 { 1706 unsigned short ext1_ee_len, ext2_ee_len; 1707 1708 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1709 return 0; 1710 1711 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1712 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1713 1714 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1715 le32_to_cpu(ex2->ee_block)) 1716 return 0; 1717 1718 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1719 return 0; 1720 1721 if (ext4_ext_is_unwritten(ex1) && 1722 ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN) 1723 return 0; 1724 #ifdef AGGRESSIVE_TEST 1725 if (ext1_ee_len >= 4) 1726 return 0; 1727 #endif 1728 1729 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1730 return 1; 1731 return 0; 1732 } 1733 1734 /* 1735 * This function tries to merge the "ex" extent to the next extent in the tree. 1736 * It always tries to merge towards right. If you want to merge towards 1737 * left, pass "ex - 1" as argument instead of "ex". 1738 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1739 * 1 if they got merged. 1740 */ 1741 static int ext4_ext_try_to_merge_right(struct inode *inode, 1742 struct ext4_ext_path *path, 1743 struct ext4_extent *ex) 1744 { 1745 struct ext4_extent_header *eh; 1746 unsigned int depth, len; 1747 int merge_done = 0, unwritten; 1748 1749 depth = ext_depth(inode); 1750 BUG_ON(path[depth].p_hdr == NULL); 1751 eh = path[depth].p_hdr; 1752 1753 while (ex < EXT_LAST_EXTENT(eh)) { 1754 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1755 break; 1756 /* merge with next extent! */ 1757 unwritten = ext4_ext_is_unwritten(ex); 1758 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1759 + ext4_ext_get_actual_len(ex + 1)); 1760 if (unwritten) 1761 ext4_ext_mark_unwritten(ex); 1762 1763 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1764 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1765 * sizeof(struct ext4_extent); 1766 memmove(ex + 1, ex + 2, len); 1767 } 1768 le16_add_cpu(&eh->eh_entries, -1); 1769 merge_done = 1; 1770 WARN_ON(eh->eh_entries == 0); 1771 if (!eh->eh_entries) 1772 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1773 } 1774 1775 return merge_done; 1776 } 1777 1778 /* 1779 * This function does a very simple check to see if we can collapse 1780 * an extent tree with a single extent tree leaf block into the inode. 1781 */ 1782 static void ext4_ext_try_to_merge_up(handle_t *handle, 1783 struct inode *inode, 1784 struct ext4_ext_path *path) 1785 { 1786 size_t s; 1787 unsigned max_root = ext4_ext_space_root(inode, 0); 1788 ext4_fsblk_t blk; 1789 1790 if ((path[0].p_depth != 1) || 1791 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1792 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1793 return; 1794 1795 /* 1796 * We need to modify the block allocation bitmap and the block 1797 * group descriptor to release the extent tree block. If we 1798 * can't get the journal credits, give up. 1799 */ 1800 if (ext4_journal_extend(handle, 2, 1801 ext4_free_metadata_revoke_credits(inode->i_sb, 1))) 1802 return; 1803 1804 /* 1805 * Copy the extent data up to the inode 1806 */ 1807 blk = ext4_idx_pblock(path[0].p_idx); 1808 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1809 sizeof(struct ext4_extent_idx); 1810 s += sizeof(struct ext4_extent_header); 1811 1812 path[1].p_maxdepth = path[0].p_maxdepth; 1813 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1814 path[0].p_depth = 0; 1815 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1816 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1817 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1818 1819 brelse(path[1].p_bh); 1820 ext4_free_blocks(handle, inode, NULL, blk, 1, 1821 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1822 } 1823 1824 /* 1825 * This function tries to merge the @ex extent to neighbours in the tree, then 1826 * tries to collapse the extent tree into the inode. 1827 */ 1828 static void ext4_ext_try_to_merge(handle_t *handle, 1829 struct inode *inode, 1830 struct ext4_ext_path *path, 1831 struct ext4_extent *ex) 1832 { 1833 struct ext4_extent_header *eh; 1834 unsigned int depth; 1835 int merge_done = 0; 1836 1837 depth = ext_depth(inode); 1838 BUG_ON(path[depth].p_hdr == NULL); 1839 eh = path[depth].p_hdr; 1840 1841 if (ex > EXT_FIRST_EXTENT(eh)) 1842 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1843 1844 if (!merge_done) 1845 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1846 1847 ext4_ext_try_to_merge_up(handle, inode, path); 1848 } 1849 1850 /* 1851 * check if a portion of the "newext" extent overlaps with an 1852 * existing extent. 1853 * 1854 * If there is an overlap discovered, it updates the length of the newext 1855 * such that there will be no overlap, and then returns 1. 1856 * If there is no overlap found, it returns 0. 1857 */ 1858 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1859 struct inode *inode, 1860 struct ext4_extent *newext, 1861 struct ext4_ext_path *path) 1862 { 1863 ext4_lblk_t b1, b2; 1864 unsigned int depth, len1; 1865 unsigned int ret = 0; 1866 1867 b1 = le32_to_cpu(newext->ee_block); 1868 len1 = ext4_ext_get_actual_len(newext); 1869 depth = ext_depth(inode); 1870 if (!path[depth].p_ext) 1871 goto out; 1872 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1873 1874 /* 1875 * get the next allocated block if the extent in the path 1876 * is before the requested block(s) 1877 */ 1878 if (b2 < b1) { 1879 b2 = ext4_ext_next_allocated_block(path); 1880 if (b2 == EXT_MAX_BLOCKS) 1881 goto out; 1882 b2 = EXT4_LBLK_CMASK(sbi, b2); 1883 } 1884 1885 /* check for wrap through zero on extent logical start block*/ 1886 if (b1 + len1 < b1) { 1887 len1 = EXT_MAX_BLOCKS - b1; 1888 newext->ee_len = cpu_to_le16(len1); 1889 ret = 1; 1890 } 1891 1892 /* check for overlap */ 1893 if (b1 + len1 > b2) { 1894 newext->ee_len = cpu_to_le16(b2 - b1); 1895 ret = 1; 1896 } 1897 out: 1898 return ret; 1899 } 1900 1901 /* 1902 * ext4_ext_insert_extent: 1903 * tries to merge requsted extent into the existing extent or 1904 * inserts requested extent as new one into the tree, 1905 * creating new leaf in the no-space case. 1906 */ 1907 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1908 struct ext4_ext_path **ppath, 1909 struct ext4_extent *newext, int gb_flags) 1910 { 1911 struct ext4_ext_path *path = *ppath; 1912 struct ext4_extent_header *eh; 1913 struct ext4_extent *ex, *fex; 1914 struct ext4_extent *nearex; /* nearest extent */ 1915 struct ext4_ext_path *npath = NULL; 1916 int depth, len, err; 1917 ext4_lblk_t next; 1918 int mb_flags = 0, unwritten; 1919 1920 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1921 mb_flags |= EXT4_MB_DELALLOC_RESERVED; 1922 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1923 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1924 return -EFSCORRUPTED; 1925 } 1926 depth = ext_depth(inode); 1927 ex = path[depth].p_ext; 1928 eh = path[depth].p_hdr; 1929 if (unlikely(path[depth].p_hdr == NULL)) { 1930 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1931 return -EFSCORRUPTED; 1932 } 1933 1934 /* try to insert block into found extent and return */ 1935 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1936 1937 /* 1938 * Try to see whether we should rather test the extent on 1939 * right from ex, or from the left of ex. This is because 1940 * ext4_find_extent() can return either extent on the 1941 * left, or on the right from the searched position. This 1942 * will make merging more effective. 1943 */ 1944 if (ex < EXT_LAST_EXTENT(eh) && 1945 (le32_to_cpu(ex->ee_block) + 1946 ext4_ext_get_actual_len(ex) < 1947 le32_to_cpu(newext->ee_block))) { 1948 ex += 1; 1949 goto prepend; 1950 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1951 (le32_to_cpu(newext->ee_block) + 1952 ext4_ext_get_actual_len(newext) < 1953 le32_to_cpu(ex->ee_block))) 1954 ex -= 1; 1955 1956 /* Try to append newex to the ex */ 1957 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1958 ext_debug("append [%d]%d block to %u:[%d]%d" 1959 "(from %llu)\n", 1960 ext4_ext_is_unwritten(newext), 1961 ext4_ext_get_actual_len(newext), 1962 le32_to_cpu(ex->ee_block), 1963 ext4_ext_is_unwritten(ex), 1964 ext4_ext_get_actual_len(ex), 1965 ext4_ext_pblock(ex)); 1966 err = ext4_ext_get_access(handle, inode, 1967 path + depth); 1968 if (err) 1969 return err; 1970 unwritten = ext4_ext_is_unwritten(ex); 1971 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1972 + ext4_ext_get_actual_len(newext)); 1973 if (unwritten) 1974 ext4_ext_mark_unwritten(ex); 1975 eh = path[depth].p_hdr; 1976 nearex = ex; 1977 goto merge; 1978 } 1979 1980 prepend: 1981 /* Try to prepend newex to the ex */ 1982 if (ext4_can_extents_be_merged(inode, newext, ex)) { 1983 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 1984 "(from %llu)\n", 1985 le32_to_cpu(newext->ee_block), 1986 ext4_ext_is_unwritten(newext), 1987 ext4_ext_get_actual_len(newext), 1988 le32_to_cpu(ex->ee_block), 1989 ext4_ext_is_unwritten(ex), 1990 ext4_ext_get_actual_len(ex), 1991 ext4_ext_pblock(ex)); 1992 err = ext4_ext_get_access(handle, inode, 1993 path + depth); 1994 if (err) 1995 return err; 1996 1997 unwritten = ext4_ext_is_unwritten(ex); 1998 ex->ee_block = newext->ee_block; 1999 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 2000 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2001 + ext4_ext_get_actual_len(newext)); 2002 if (unwritten) 2003 ext4_ext_mark_unwritten(ex); 2004 eh = path[depth].p_hdr; 2005 nearex = ex; 2006 goto merge; 2007 } 2008 } 2009 2010 depth = ext_depth(inode); 2011 eh = path[depth].p_hdr; 2012 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2013 goto has_space; 2014 2015 /* probably next leaf has space for us? */ 2016 fex = EXT_LAST_EXTENT(eh); 2017 next = EXT_MAX_BLOCKS; 2018 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2019 next = ext4_ext_next_leaf_block(path); 2020 if (next != EXT_MAX_BLOCKS) { 2021 ext_debug("next leaf block - %u\n", next); 2022 BUG_ON(npath != NULL); 2023 npath = ext4_find_extent(inode, next, NULL, 0); 2024 if (IS_ERR(npath)) 2025 return PTR_ERR(npath); 2026 BUG_ON(npath->p_depth != path->p_depth); 2027 eh = npath[depth].p_hdr; 2028 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2029 ext_debug("next leaf isn't full(%d)\n", 2030 le16_to_cpu(eh->eh_entries)); 2031 path = npath; 2032 goto has_space; 2033 } 2034 ext_debug("next leaf has no free space(%d,%d)\n", 2035 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2036 } 2037 2038 /* 2039 * There is no free space in the found leaf. 2040 * We're gonna add a new leaf in the tree. 2041 */ 2042 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2043 mb_flags |= EXT4_MB_USE_RESERVED; 2044 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2045 ppath, newext); 2046 if (err) 2047 goto cleanup; 2048 depth = ext_depth(inode); 2049 eh = path[depth].p_hdr; 2050 2051 has_space: 2052 nearex = path[depth].p_ext; 2053 2054 err = ext4_ext_get_access(handle, inode, path + depth); 2055 if (err) 2056 goto cleanup; 2057 2058 if (!nearex) { 2059 /* there is no extent in this leaf, create first one */ 2060 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2061 le32_to_cpu(newext->ee_block), 2062 ext4_ext_pblock(newext), 2063 ext4_ext_is_unwritten(newext), 2064 ext4_ext_get_actual_len(newext)); 2065 nearex = EXT_FIRST_EXTENT(eh); 2066 } else { 2067 if (le32_to_cpu(newext->ee_block) 2068 > le32_to_cpu(nearex->ee_block)) { 2069 /* Insert after */ 2070 ext_debug("insert %u:%llu:[%d]%d before: " 2071 "nearest %p\n", 2072 le32_to_cpu(newext->ee_block), 2073 ext4_ext_pblock(newext), 2074 ext4_ext_is_unwritten(newext), 2075 ext4_ext_get_actual_len(newext), 2076 nearex); 2077 nearex++; 2078 } else { 2079 /* Insert before */ 2080 BUG_ON(newext->ee_block == nearex->ee_block); 2081 ext_debug("insert %u:%llu:[%d]%d after: " 2082 "nearest %p\n", 2083 le32_to_cpu(newext->ee_block), 2084 ext4_ext_pblock(newext), 2085 ext4_ext_is_unwritten(newext), 2086 ext4_ext_get_actual_len(newext), 2087 nearex); 2088 } 2089 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2090 if (len > 0) { 2091 ext_debug("insert %u:%llu:[%d]%d: " 2092 "move %d extents from 0x%p to 0x%p\n", 2093 le32_to_cpu(newext->ee_block), 2094 ext4_ext_pblock(newext), 2095 ext4_ext_is_unwritten(newext), 2096 ext4_ext_get_actual_len(newext), 2097 len, nearex, nearex + 1); 2098 memmove(nearex + 1, nearex, 2099 len * sizeof(struct ext4_extent)); 2100 } 2101 } 2102 2103 le16_add_cpu(&eh->eh_entries, 1); 2104 path[depth].p_ext = nearex; 2105 nearex->ee_block = newext->ee_block; 2106 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2107 nearex->ee_len = newext->ee_len; 2108 2109 merge: 2110 /* try to merge extents */ 2111 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2112 ext4_ext_try_to_merge(handle, inode, path, nearex); 2113 2114 2115 /* time to correct all indexes above */ 2116 err = ext4_ext_correct_indexes(handle, inode, path); 2117 if (err) 2118 goto cleanup; 2119 2120 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2121 2122 cleanup: 2123 ext4_ext_drop_refs(npath); 2124 kfree(npath); 2125 return err; 2126 } 2127 2128 static int ext4_fill_es_cache_info(struct inode *inode, 2129 ext4_lblk_t block, ext4_lblk_t num, 2130 struct fiemap_extent_info *fieinfo) 2131 { 2132 ext4_lblk_t next, end = block + num - 1; 2133 struct extent_status es; 2134 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2135 unsigned int flags; 2136 int err; 2137 2138 while (block <= end) { 2139 next = 0; 2140 flags = 0; 2141 if (!ext4_es_lookup_extent(inode, block, &next, &es)) 2142 break; 2143 if (ext4_es_is_unwritten(&es)) 2144 flags |= FIEMAP_EXTENT_UNWRITTEN; 2145 if (ext4_es_is_delayed(&es)) 2146 flags |= (FIEMAP_EXTENT_DELALLOC | 2147 FIEMAP_EXTENT_UNKNOWN); 2148 if (ext4_es_is_hole(&es)) 2149 flags |= EXT4_FIEMAP_EXTENT_HOLE; 2150 if (next == 0) 2151 flags |= FIEMAP_EXTENT_LAST; 2152 if (flags & (FIEMAP_EXTENT_DELALLOC| 2153 EXT4_FIEMAP_EXTENT_HOLE)) 2154 es.es_pblk = 0; 2155 else 2156 es.es_pblk = ext4_es_pblock(&es); 2157 err = fiemap_fill_next_extent(fieinfo, 2158 (__u64)es.es_lblk << blksize_bits, 2159 (__u64)es.es_pblk << blksize_bits, 2160 (__u64)es.es_len << blksize_bits, 2161 flags); 2162 if (next == 0) 2163 break; 2164 block = next; 2165 if (err < 0) 2166 return err; 2167 if (err == 1) 2168 return 0; 2169 } 2170 return 0; 2171 } 2172 2173 2174 /* 2175 * ext4_ext_determine_hole - determine hole around given block 2176 * @inode: inode we lookup in 2177 * @path: path in extent tree to @lblk 2178 * @lblk: pointer to logical block around which we want to determine hole 2179 * 2180 * Determine hole length (and start if easily possible) around given logical 2181 * block. We don't try too hard to find the beginning of the hole but @path 2182 * actually points to extent before @lblk, we provide it. 2183 * 2184 * The function returns the length of a hole starting at @lblk. We update @lblk 2185 * to the beginning of the hole if we managed to find it. 2186 */ 2187 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode, 2188 struct ext4_ext_path *path, 2189 ext4_lblk_t *lblk) 2190 { 2191 int depth = ext_depth(inode); 2192 struct ext4_extent *ex; 2193 ext4_lblk_t len; 2194 2195 ex = path[depth].p_ext; 2196 if (ex == NULL) { 2197 /* there is no extent yet, so gap is [0;-] */ 2198 *lblk = 0; 2199 len = EXT_MAX_BLOCKS; 2200 } else if (*lblk < le32_to_cpu(ex->ee_block)) { 2201 len = le32_to_cpu(ex->ee_block) - *lblk; 2202 } else if (*lblk >= le32_to_cpu(ex->ee_block) 2203 + ext4_ext_get_actual_len(ex)) { 2204 ext4_lblk_t next; 2205 2206 *lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); 2207 next = ext4_ext_next_allocated_block(path); 2208 BUG_ON(next == *lblk); 2209 len = next - *lblk; 2210 } else { 2211 BUG(); 2212 } 2213 return len; 2214 } 2215 2216 /* 2217 * ext4_ext_put_gap_in_cache: 2218 * calculate boundaries of the gap that the requested block fits into 2219 * and cache this gap 2220 */ 2221 static void 2222 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start, 2223 ext4_lblk_t hole_len) 2224 { 2225 struct extent_status es; 2226 2227 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, hole_start, 2228 hole_start + hole_len - 1, &es); 2229 if (es.es_len) { 2230 /* There's delayed extent containing lblock? */ 2231 if (es.es_lblk <= hole_start) 2232 return; 2233 hole_len = min(es.es_lblk - hole_start, hole_len); 2234 } 2235 ext_debug(" -> %u:%u\n", hole_start, hole_len); 2236 ext4_es_insert_extent(inode, hole_start, hole_len, ~0, 2237 EXTENT_STATUS_HOLE); 2238 } 2239 2240 /* 2241 * ext4_ext_rm_idx: 2242 * removes index from the index block. 2243 */ 2244 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2245 struct ext4_ext_path *path, int depth) 2246 { 2247 int err; 2248 ext4_fsblk_t leaf; 2249 2250 /* free index block */ 2251 depth--; 2252 path = path + depth; 2253 leaf = ext4_idx_pblock(path->p_idx); 2254 if (unlikely(path->p_hdr->eh_entries == 0)) { 2255 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2256 return -EFSCORRUPTED; 2257 } 2258 err = ext4_ext_get_access(handle, inode, path); 2259 if (err) 2260 return err; 2261 2262 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2263 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2264 len *= sizeof(struct ext4_extent_idx); 2265 memmove(path->p_idx, path->p_idx + 1, len); 2266 } 2267 2268 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2269 err = ext4_ext_dirty(handle, inode, path); 2270 if (err) 2271 return err; 2272 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2273 trace_ext4_ext_rm_idx(inode, leaf); 2274 2275 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2276 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2277 2278 while (--depth >= 0) { 2279 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2280 break; 2281 path--; 2282 err = ext4_ext_get_access(handle, inode, path); 2283 if (err) 2284 break; 2285 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2286 err = ext4_ext_dirty(handle, inode, path); 2287 if (err) 2288 break; 2289 } 2290 return err; 2291 } 2292 2293 /* 2294 * ext4_ext_calc_credits_for_single_extent: 2295 * This routine returns max. credits that needed to insert an extent 2296 * to the extent tree. 2297 * When pass the actual path, the caller should calculate credits 2298 * under i_data_sem. 2299 */ 2300 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2301 struct ext4_ext_path *path) 2302 { 2303 if (path) { 2304 int depth = ext_depth(inode); 2305 int ret = 0; 2306 2307 /* probably there is space in leaf? */ 2308 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2309 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2310 2311 /* 2312 * There are some space in the leaf tree, no 2313 * need to account for leaf block credit 2314 * 2315 * bitmaps and block group descriptor blocks 2316 * and other metadata blocks still need to be 2317 * accounted. 2318 */ 2319 /* 1 bitmap, 1 block group descriptor */ 2320 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2321 return ret; 2322 } 2323 } 2324 2325 return ext4_chunk_trans_blocks(inode, nrblocks); 2326 } 2327 2328 /* 2329 * How many index/leaf blocks need to change/allocate to add @extents extents? 2330 * 2331 * If we add a single extent, then in the worse case, each tree level 2332 * index/leaf need to be changed in case of the tree split. 2333 * 2334 * If more extents are inserted, they could cause the whole tree split more 2335 * than once, but this is really rare. 2336 */ 2337 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2338 { 2339 int index; 2340 int depth; 2341 2342 /* If we are converting the inline data, only one is needed here. */ 2343 if (ext4_has_inline_data(inode)) 2344 return 1; 2345 2346 depth = ext_depth(inode); 2347 2348 if (extents <= 1) 2349 index = depth * 2; 2350 else 2351 index = depth * 3; 2352 2353 return index; 2354 } 2355 2356 static inline int get_default_free_blocks_flags(struct inode *inode) 2357 { 2358 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) || 2359 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE)) 2360 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2361 else if (ext4_should_journal_data(inode)) 2362 return EXT4_FREE_BLOCKS_FORGET; 2363 return 0; 2364 } 2365 2366 /* 2367 * ext4_rereserve_cluster - increment the reserved cluster count when 2368 * freeing a cluster with a pending reservation 2369 * 2370 * @inode - file containing the cluster 2371 * @lblk - logical block in cluster to be reserved 2372 * 2373 * Increments the reserved cluster count and adjusts quota in a bigalloc 2374 * file system when freeing a partial cluster containing at least one 2375 * delayed and unwritten block. A partial cluster meeting that 2376 * requirement will have a pending reservation. If so, the 2377 * RERESERVE_CLUSTER flag is used when calling ext4_free_blocks() to 2378 * defer reserved and allocated space accounting to a subsequent call 2379 * to this function. 2380 */ 2381 static void ext4_rereserve_cluster(struct inode *inode, ext4_lblk_t lblk) 2382 { 2383 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2384 struct ext4_inode_info *ei = EXT4_I(inode); 2385 2386 dquot_reclaim_block(inode, EXT4_C2B(sbi, 1)); 2387 2388 spin_lock(&ei->i_block_reservation_lock); 2389 ei->i_reserved_data_blocks++; 2390 percpu_counter_add(&sbi->s_dirtyclusters_counter, 1); 2391 spin_unlock(&ei->i_block_reservation_lock); 2392 2393 percpu_counter_add(&sbi->s_freeclusters_counter, 1); 2394 ext4_remove_pending(inode, lblk); 2395 } 2396 2397 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2398 struct ext4_extent *ex, 2399 struct partial_cluster *partial, 2400 ext4_lblk_t from, ext4_lblk_t to) 2401 { 2402 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2403 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2404 ext4_fsblk_t last_pblk, pblk; 2405 ext4_lblk_t num; 2406 int flags; 2407 2408 /* only extent tail removal is allowed */ 2409 if (from < le32_to_cpu(ex->ee_block) || 2410 to != le32_to_cpu(ex->ee_block) + ee_len - 1) { 2411 ext4_error(sbi->s_sb, 2412 "strange request: removal(2) %u-%u from %u:%u", 2413 from, to, le32_to_cpu(ex->ee_block), ee_len); 2414 return 0; 2415 } 2416 2417 #ifdef EXTENTS_STATS 2418 spin_lock(&sbi->s_ext_stats_lock); 2419 sbi->s_ext_blocks += ee_len; 2420 sbi->s_ext_extents++; 2421 if (ee_len < sbi->s_ext_min) 2422 sbi->s_ext_min = ee_len; 2423 if (ee_len > sbi->s_ext_max) 2424 sbi->s_ext_max = ee_len; 2425 if (ext_depth(inode) > sbi->s_depth_max) 2426 sbi->s_depth_max = ext_depth(inode); 2427 spin_unlock(&sbi->s_ext_stats_lock); 2428 #endif 2429 2430 trace_ext4_remove_blocks(inode, ex, from, to, partial); 2431 2432 /* 2433 * if we have a partial cluster, and it's different from the 2434 * cluster of the last block in the extent, we free it 2435 */ 2436 last_pblk = ext4_ext_pblock(ex) + ee_len - 1; 2437 2438 if (partial->state != initial && 2439 partial->pclu != EXT4_B2C(sbi, last_pblk)) { 2440 if (partial->state == tofree) { 2441 flags = get_default_free_blocks_flags(inode); 2442 if (ext4_is_pending(inode, partial->lblk)) 2443 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2444 ext4_free_blocks(handle, inode, NULL, 2445 EXT4_C2B(sbi, partial->pclu), 2446 sbi->s_cluster_ratio, flags); 2447 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2448 ext4_rereserve_cluster(inode, partial->lblk); 2449 } 2450 partial->state = initial; 2451 } 2452 2453 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2454 pblk = ext4_ext_pblock(ex) + ee_len - num; 2455 2456 /* 2457 * We free the partial cluster at the end of the extent (if any), 2458 * unless the cluster is used by another extent (partial_cluster 2459 * state is nofree). If a partial cluster exists here, it must be 2460 * shared with the last block in the extent. 2461 */ 2462 flags = get_default_free_blocks_flags(inode); 2463 2464 /* partial, left end cluster aligned, right end unaligned */ 2465 if ((EXT4_LBLK_COFF(sbi, to) != sbi->s_cluster_ratio - 1) && 2466 (EXT4_LBLK_CMASK(sbi, to) >= from) && 2467 (partial->state != nofree)) { 2468 if (ext4_is_pending(inode, to)) 2469 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2470 ext4_free_blocks(handle, inode, NULL, 2471 EXT4_PBLK_CMASK(sbi, last_pblk), 2472 sbi->s_cluster_ratio, flags); 2473 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2474 ext4_rereserve_cluster(inode, to); 2475 partial->state = initial; 2476 flags = get_default_free_blocks_flags(inode); 2477 } 2478 2479 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2480 2481 /* 2482 * For bigalloc file systems, we never free a partial cluster 2483 * at the beginning of the extent. Instead, we check to see if we 2484 * need to free it on a subsequent call to ext4_remove_blocks, 2485 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. 2486 */ 2487 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2488 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2489 2490 /* reset the partial cluster if we've freed past it */ 2491 if (partial->state != initial && partial->pclu != EXT4_B2C(sbi, pblk)) 2492 partial->state = initial; 2493 2494 /* 2495 * If we've freed the entire extent but the beginning is not left 2496 * cluster aligned and is not marked as ineligible for freeing we 2497 * record the partial cluster at the beginning of the extent. It 2498 * wasn't freed by the preceding ext4_free_blocks() call, and we 2499 * need to look farther to the left to determine if it's to be freed 2500 * (not shared with another extent). Else, reset the partial 2501 * cluster - we're either done freeing or the beginning of the 2502 * extent is left cluster aligned. 2503 */ 2504 if (EXT4_LBLK_COFF(sbi, from) && num == ee_len) { 2505 if (partial->state == initial) { 2506 partial->pclu = EXT4_B2C(sbi, pblk); 2507 partial->lblk = from; 2508 partial->state = tofree; 2509 } 2510 } else { 2511 partial->state = initial; 2512 } 2513 2514 return 0; 2515 } 2516 2517 /* 2518 * ext4_ext_rm_leaf() Removes the extents associated with the 2519 * blocks appearing between "start" and "end". Both "start" 2520 * and "end" must appear in the same extent or EIO is returned. 2521 * 2522 * @handle: The journal handle 2523 * @inode: The files inode 2524 * @path: The path to the leaf 2525 * @partial_cluster: The cluster which we'll have to free if all extents 2526 * has been released from it. However, if this value is 2527 * negative, it's a cluster just to the right of the 2528 * punched region and it must not be freed. 2529 * @start: The first block to remove 2530 * @end: The last block to remove 2531 */ 2532 static int 2533 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2534 struct ext4_ext_path *path, 2535 struct partial_cluster *partial, 2536 ext4_lblk_t start, ext4_lblk_t end) 2537 { 2538 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2539 int err = 0, correct_index = 0; 2540 int depth = ext_depth(inode), credits, revoke_credits; 2541 struct ext4_extent_header *eh; 2542 ext4_lblk_t a, b; 2543 unsigned num; 2544 ext4_lblk_t ex_ee_block; 2545 unsigned short ex_ee_len; 2546 unsigned unwritten = 0; 2547 struct ext4_extent *ex; 2548 ext4_fsblk_t pblk; 2549 2550 /* the header must be checked already in ext4_ext_remove_space() */ 2551 ext_debug("truncate since %u in leaf to %u\n", start, end); 2552 if (!path[depth].p_hdr) 2553 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2554 eh = path[depth].p_hdr; 2555 if (unlikely(path[depth].p_hdr == NULL)) { 2556 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2557 return -EFSCORRUPTED; 2558 } 2559 /* find where to start removing */ 2560 ex = path[depth].p_ext; 2561 if (!ex) 2562 ex = EXT_LAST_EXTENT(eh); 2563 2564 ex_ee_block = le32_to_cpu(ex->ee_block); 2565 ex_ee_len = ext4_ext_get_actual_len(ex); 2566 2567 trace_ext4_ext_rm_leaf(inode, start, ex, partial); 2568 2569 while (ex >= EXT_FIRST_EXTENT(eh) && 2570 ex_ee_block + ex_ee_len > start) { 2571 2572 if (ext4_ext_is_unwritten(ex)) 2573 unwritten = 1; 2574 else 2575 unwritten = 0; 2576 2577 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2578 unwritten, ex_ee_len); 2579 path[depth].p_ext = ex; 2580 2581 a = ex_ee_block > start ? ex_ee_block : start; 2582 b = ex_ee_block+ex_ee_len - 1 < end ? 2583 ex_ee_block+ex_ee_len - 1 : end; 2584 2585 ext_debug(" border %u:%u\n", a, b); 2586 2587 /* If this extent is beyond the end of the hole, skip it */ 2588 if (end < ex_ee_block) { 2589 /* 2590 * We're going to skip this extent and move to another, 2591 * so note that its first cluster is in use to avoid 2592 * freeing it when removing blocks. Eventually, the 2593 * right edge of the truncated/punched region will 2594 * be just to the left. 2595 */ 2596 if (sbi->s_cluster_ratio > 1) { 2597 pblk = ext4_ext_pblock(ex); 2598 partial->pclu = EXT4_B2C(sbi, pblk); 2599 partial->state = nofree; 2600 } 2601 ex--; 2602 ex_ee_block = le32_to_cpu(ex->ee_block); 2603 ex_ee_len = ext4_ext_get_actual_len(ex); 2604 continue; 2605 } else if (b != ex_ee_block + ex_ee_len - 1) { 2606 EXT4_ERROR_INODE(inode, 2607 "can not handle truncate %u:%u " 2608 "on extent %u:%u", 2609 start, end, ex_ee_block, 2610 ex_ee_block + ex_ee_len - 1); 2611 err = -EFSCORRUPTED; 2612 goto out; 2613 } else if (a != ex_ee_block) { 2614 /* remove tail of the extent */ 2615 num = a - ex_ee_block; 2616 } else { 2617 /* remove whole extent: excellent! */ 2618 num = 0; 2619 } 2620 /* 2621 * 3 for leaf, sb, and inode plus 2 (bmap and group 2622 * descriptor) for each block group; assume two block 2623 * groups plus ex_ee_len/blocks_per_block_group for 2624 * the worst case 2625 */ 2626 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2627 if (ex == EXT_FIRST_EXTENT(eh)) { 2628 correct_index = 1; 2629 credits += (ext_depth(inode)) + 1; 2630 } 2631 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2632 /* 2633 * We may end up freeing some index blocks and data from the 2634 * punched range. Note that partial clusters are accounted for 2635 * by ext4_free_data_revoke_credits(). 2636 */ 2637 revoke_credits = 2638 ext4_free_metadata_revoke_credits(inode->i_sb, 2639 ext_depth(inode)) + 2640 ext4_free_data_revoke_credits(inode, b - a + 1); 2641 2642 err = ext4_datasem_ensure_credits(handle, inode, credits, 2643 credits, revoke_credits); 2644 if (err) { 2645 if (err > 0) 2646 err = -EAGAIN; 2647 goto out; 2648 } 2649 2650 err = ext4_ext_get_access(handle, inode, path + depth); 2651 if (err) 2652 goto out; 2653 2654 err = ext4_remove_blocks(handle, inode, ex, partial, a, b); 2655 if (err) 2656 goto out; 2657 2658 if (num == 0) 2659 /* this extent is removed; mark slot entirely unused */ 2660 ext4_ext_store_pblock(ex, 0); 2661 2662 ex->ee_len = cpu_to_le16(num); 2663 /* 2664 * Do not mark unwritten if all the blocks in the 2665 * extent have been removed. 2666 */ 2667 if (unwritten && num) 2668 ext4_ext_mark_unwritten(ex); 2669 /* 2670 * If the extent was completely released, 2671 * we need to remove it from the leaf 2672 */ 2673 if (num == 0) { 2674 if (end != EXT_MAX_BLOCKS - 1) { 2675 /* 2676 * For hole punching, we need to scoot all the 2677 * extents up when an extent is removed so that 2678 * we dont have blank extents in the middle 2679 */ 2680 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2681 sizeof(struct ext4_extent)); 2682 2683 /* Now get rid of the one at the end */ 2684 memset(EXT_LAST_EXTENT(eh), 0, 2685 sizeof(struct ext4_extent)); 2686 } 2687 le16_add_cpu(&eh->eh_entries, -1); 2688 } 2689 2690 err = ext4_ext_dirty(handle, inode, path + depth); 2691 if (err) 2692 goto out; 2693 2694 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2695 ext4_ext_pblock(ex)); 2696 ex--; 2697 ex_ee_block = le32_to_cpu(ex->ee_block); 2698 ex_ee_len = ext4_ext_get_actual_len(ex); 2699 } 2700 2701 if (correct_index && eh->eh_entries) 2702 err = ext4_ext_correct_indexes(handle, inode, path); 2703 2704 /* 2705 * If there's a partial cluster and at least one extent remains in 2706 * the leaf, free the partial cluster if it isn't shared with the 2707 * current extent. If it is shared with the current extent 2708 * we reset the partial cluster because we've reached the start of the 2709 * truncated/punched region and we're done removing blocks. 2710 */ 2711 if (partial->state == tofree && ex >= EXT_FIRST_EXTENT(eh)) { 2712 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2713 if (partial->pclu != EXT4_B2C(sbi, pblk)) { 2714 int flags = get_default_free_blocks_flags(inode); 2715 2716 if (ext4_is_pending(inode, partial->lblk)) 2717 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2718 ext4_free_blocks(handle, inode, NULL, 2719 EXT4_C2B(sbi, partial->pclu), 2720 sbi->s_cluster_ratio, flags); 2721 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2722 ext4_rereserve_cluster(inode, partial->lblk); 2723 } 2724 partial->state = initial; 2725 } 2726 2727 /* if this leaf is free, then we should 2728 * remove it from index block above */ 2729 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2730 err = ext4_ext_rm_idx(handle, inode, path, depth); 2731 2732 out: 2733 return err; 2734 } 2735 2736 /* 2737 * ext4_ext_more_to_rm: 2738 * returns 1 if current index has to be freed (even partial) 2739 */ 2740 static int 2741 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2742 { 2743 BUG_ON(path->p_idx == NULL); 2744 2745 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2746 return 0; 2747 2748 /* 2749 * if truncate on deeper level happened, it wasn't partial, 2750 * so we have to consider current index for truncation 2751 */ 2752 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2753 return 0; 2754 return 1; 2755 } 2756 2757 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2758 ext4_lblk_t end) 2759 { 2760 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2761 int depth = ext_depth(inode); 2762 struct ext4_ext_path *path = NULL; 2763 struct partial_cluster partial; 2764 handle_t *handle; 2765 int i = 0, err = 0; 2766 2767 partial.pclu = 0; 2768 partial.lblk = 0; 2769 partial.state = initial; 2770 2771 ext_debug("truncate since %u to %u\n", start, end); 2772 2773 /* probably first extent we're gonna free will be last in block */ 2774 handle = ext4_journal_start_with_revoke(inode, EXT4_HT_TRUNCATE, 2775 depth + 1, 2776 ext4_free_metadata_revoke_credits(inode->i_sb, depth)); 2777 if (IS_ERR(handle)) 2778 return PTR_ERR(handle); 2779 2780 again: 2781 trace_ext4_ext_remove_space(inode, start, end, depth); 2782 2783 /* 2784 * Check if we are removing extents inside the extent tree. If that 2785 * is the case, we are going to punch a hole inside the extent tree 2786 * so we have to check whether we need to split the extent covering 2787 * the last block to remove so we can easily remove the part of it 2788 * in ext4_ext_rm_leaf(). 2789 */ 2790 if (end < EXT_MAX_BLOCKS - 1) { 2791 struct ext4_extent *ex; 2792 ext4_lblk_t ee_block, ex_end, lblk; 2793 ext4_fsblk_t pblk; 2794 2795 /* find extent for or closest extent to this block */ 2796 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2797 if (IS_ERR(path)) { 2798 ext4_journal_stop(handle); 2799 return PTR_ERR(path); 2800 } 2801 depth = ext_depth(inode); 2802 /* Leaf not may not exist only if inode has no blocks at all */ 2803 ex = path[depth].p_ext; 2804 if (!ex) { 2805 if (depth) { 2806 EXT4_ERROR_INODE(inode, 2807 "path[%d].p_hdr == NULL", 2808 depth); 2809 err = -EFSCORRUPTED; 2810 } 2811 goto out; 2812 } 2813 2814 ee_block = le32_to_cpu(ex->ee_block); 2815 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1; 2816 2817 /* 2818 * See if the last block is inside the extent, if so split 2819 * the extent at 'end' block so we can easily remove the 2820 * tail of the first part of the split extent in 2821 * ext4_ext_rm_leaf(). 2822 */ 2823 if (end >= ee_block && end < ex_end) { 2824 2825 /* 2826 * If we're going to split the extent, note that 2827 * the cluster containing the block after 'end' is 2828 * in use to avoid freeing it when removing blocks. 2829 */ 2830 if (sbi->s_cluster_ratio > 1) { 2831 pblk = ext4_ext_pblock(ex) + end - ee_block + 2; 2832 partial.pclu = EXT4_B2C(sbi, pblk); 2833 partial.state = nofree; 2834 } 2835 2836 /* 2837 * Split the extent in two so that 'end' is the last 2838 * block in the first new extent. Also we should not 2839 * fail removing space due to ENOSPC so try to use 2840 * reserved block if that happens. 2841 */ 2842 err = ext4_force_split_extent_at(handle, inode, &path, 2843 end + 1, 1); 2844 if (err < 0) 2845 goto out; 2846 2847 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end && 2848 partial.state == initial) { 2849 /* 2850 * If we're punching, there's an extent to the right. 2851 * If the partial cluster hasn't been set, set it to 2852 * that extent's first cluster and its state to nofree 2853 * so it won't be freed should it contain blocks to be 2854 * removed. If it's already set (tofree/nofree), we're 2855 * retrying and keep the original partial cluster info 2856 * so a cluster marked tofree as a result of earlier 2857 * extent removal is not lost. 2858 */ 2859 lblk = ex_end + 1; 2860 err = ext4_ext_search_right(inode, path, &lblk, &pblk, 2861 &ex); 2862 if (err) 2863 goto out; 2864 if (pblk) { 2865 partial.pclu = EXT4_B2C(sbi, pblk); 2866 partial.state = nofree; 2867 } 2868 } 2869 } 2870 /* 2871 * We start scanning from right side, freeing all the blocks 2872 * after i_size and walking into the tree depth-wise. 2873 */ 2874 depth = ext_depth(inode); 2875 if (path) { 2876 int k = i = depth; 2877 while (--k > 0) 2878 path[k].p_block = 2879 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2880 } else { 2881 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 2882 GFP_NOFS); 2883 if (path == NULL) { 2884 ext4_journal_stop(handle); 2885 return -ENOMEM; 2886 } 2887 path[0].p_maxdepth = path[0].p_depth = depth; 2888 path[0].p_hdr = ext_inode_hdr(inode); 2889 i = 0; 2890 2891 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2892 err = -EFSCORRUPTED; 2893 goto out; 2894 } 2895 } 2896 err = 0; 2897 2898 while (i >= 0 && err == 0) { 2899 if (i == depth) { 2900 /* this is leaf block */ 2901 err = ext4_ext_rm_leaf(handle, inode, path, 2902 &partial, start, end); 2903 /* root level has p_bh == NULL, brelse() eats this */ 2904 brelse(path[i].p_bh); 2905 path[i].p_bh = NULL; 2906 i--; 2907 continue; 2908 } 2909 2910 /* this is index block */ 2911 if (!path[i].p_hdr) { 2912 ext_debug("initialize header\n"); 2913 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2914 } 2915 2916 if (!path[i].p_idx) { 2917 /* this level hasn't been touched yet */ 2918 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2919 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2920 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2921 path[i].p_hdr, 2922 le16_to_cpu(path[i].p_hdr->eh_entries)); 2923 } else { 2924 /* we were already here, see at next index */ 2925 path[i].p_idx--; 2926 } 2927 2928 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2929 i, EXT_FIRST_INDEX(path[i].p_hdr), 2930 path[i].p_idx); 2931 if (ext4_ext_more_to_rm(path + i)) { 2932 struct buffer_head *bh; 2933 /* go to the next level */ 2934 ext_debug("move to level %d (block %llu)\n", 2935 i + 1, ext4_idx_pblock(path[i].p_idx)); 2936 memset(path + i + 1, 0, sizeof(*path)); 2937 bh = read_extent_tree_block(inode, 2938 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 2939 EXT4_EX_NOCACHE); 2940 if (IS_ERR(bh)) { 2941 /* should we reset i_size? */ 2942 err = PTR_ERR(bh); 2943 break; 2944 } 2945 /* Yield here to deal with large extent trees. 2946 * Should be a no-op if we did IO above. */ 2947 cond_resched(); 2948 if (WARN_ON(i + 1 > depth)) { 2949 err = -EFSCORRUPTED; 2950 break; 2951 } 2952 path[i + 1].p_bh = bh; 2953 2954 /* save actual number of indexes since this 2955 * number is changed at the next iteration */ 2956 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2957 i++; 2958 } else { 2959 /* we finished processing this index, go up */ 2960 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2961 /* index is empty, remove it; 2962 * handle must be already prepared by the 2963 * truncatei_leaf() */ 2964 err = ext4_ext_rm_idx(handle, inode, path, i); 2965 } 2966 /* root level has p_bh == NULL, brelse() eats this */ 2967 brelse(path[i].p_bh); 2968 path[i].p_bh = NULL; 2969 i--; 2970 ext_debug("return to level %d\n", i); 2971 } 2972 } 2973 2974 trace_ext4_ext_remove_space_done(inode, start, end, depth, &partial, 2975 path->p_hdr->eh_entries); 2976 2977 /* 2978 * if there's a partial cluster and we have removed the first extent 2979 * in the file, then we also free the partial cluster, if any 2980 */ 2981 if (partial.state == tofree && err == 0) { 2982 int flags = get_default_free_blocks_flags(inode); 2983 2984 if (ext4_is_pending(inode, partial.lblk)) 2985 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2986 ext4_free_blocks(handle, inode, NULL, 2987 EXT4_C2B(sbi, partial.pclu), 2988 sbi->s_cluster_ratio, flags); 2989 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2990 ext4_rereserve_cluster(inode, partial.lblk); 2991 partial.state = initial; 2992 } 2993 2994 /* TODO: flexible tree reduction should be here */ 2995 if (path->p_hdr->eh_entries == 0) { 2996 /* 2997 * truncate to zero freed all the tree, 2998 * so we need to correct eh_depth 2999 */ 3000 err = ext4_ext_get_access(handle, inode, path); 3001 if (err == 0) { 3002 ext_inode_hdr(inode)->eh_depth = 0; 3003 ext_inode_hdr(inode)->eh_max = 3004 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3005 err = ext4_ext_dirty(handle, inode, path); 3006 } 3007 } 3008 out: 3009 ext4_ext_drop_refs(path); 3010 kfree(path); 3011 path = NULL; 3012 if (err == -EAGAIN) 3013 goto again; 3014 ext4_journal_stop(handle); 3015 3016 return err; 3017 } 3018 3019 /* 3020 * called at mount time 3021 */ 3022 void ext4_ext_init(struct super_block *sb) 3023 { 3024 /* 3025 * possible initialization would be here 3026 */ 3027 3028 if (ext4_has_feature_extents(sb)) { 3029 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3030 printk(KERN_INFO "EXT4-fs: file extents enabled" 3031 #ifdef AGGRESSIVE_TEST 3032 ", aggressive tests" 3033 #endif 3034 #ifdef CHECK_BINSEARCH 3035 ", check binsearch" 3036 #endif 3037 #ifdef EXTENTS_STATS 3038 ", stats" 3039 #endif 3040 "\n"); 3041 #endif 3042 #ifdef EXTENTS_STATS 3043 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3044 EXT4_SB(sb)->s_ext_min = 1 << 30; 3045 EXT4_SB(sb)->s_ext_max = 0; 3046 #endif 3047 } 3048 } 3049 3050 /* 3051 * called at umount time 3052 */ 3053 void ext4_ext_release(struct super_block *sb) 3054 { 3055 if (!ext4_has_feature_extents(sb)) 3056 return; 3057 3058 #ifdef EXTENTS_STATS 3059 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3060 struct ext4_sb_info *sbi = EXT4_SB(sb); 3061 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3062 sbi->s_ext_blocks, sbi->s_ext_extents, 3063 sbi->s_ext_blocks / sbi->s_ext_extents); 3064 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3065 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3066 } 3067 #endif 3068 } 3069 3070 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3071 { 3072 ext4_lblk_t ee_block; 3073 ext4_fsblk_t ee_pblock; 3074 unsigned int ee_len; 3075 3076 ee_block = le32_to_cpu(ex->ee_block); 3077 ee_len = ext4_ext_get_actual_len(ex); 3078 ee_pblock = ext4_ext_pblock(ex); 3079 3080 if (ee_len == 0) 3081 return 0; 3082 3083 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3084 EXTENT_STATUS_WRITTEN); 3085 } 3086 3087 /* FIXME!! we need to try to merge to left or right after zero-out */ 3088 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3089 { 3090 ext4_fsblk_t ee_pblock; 3091 unsigned int ee_len; 3092 3093 ee_len = ext4_ext_get_actual_len(ex); 3094 ee_pblock = ext4_ext_pblock(ex); 3095 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock, 3096 ee_len); 3097 } 3098 3099 /* 3100 * ext4_split_extent_at() splits an extent at given block. 3101 * 3102 * @handle: the journal handle 3103 * @inode: the file inode 3104 * @path: the path to the extent 3105 * @split: the logical block where the extent is splitted. 3106 * @split_flags: indicates if the extent could be zeroout if split fails, and 3107 * the states(init or unwritten) of new extents. 3108 * @flags: flags used to insert new extent to extent tree. 3109 * 3110 * 3111 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3112 * of which are deterimined by split_flag. 3113 * 3114 * There are two cases: 3115 * a> the extent are splitted into two extent. 3116 * b> split is not needed, and just mark the extent. 3117 * 3118 * return 0 on success. 3119 */ 3120 static int ext4_split_extent_at(handle_t *handle, 3121 struct inode *inode, 3122 struct ext4_ext_path **ppath, 3123 ext4_lblk_t split, 3124 int split_flag, 3125 int flags) 3126 { 3127 struct ext4_ext_path *path = *ppath; 3128 ext4_fsblk_t newblock; 3129 ext4_lblk_t ee_block; 3130 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3131 struct ext4_extent *ex2 = NULL; 3132 unsigned int ee_len, depth; 3133 int err = 0; 3134 3135 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3136 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3137 3138 ext_debug("ext4_split_extents_at: inode %lu, logical" 3139 "block %llu\n", inode->i_ino, (unsigned long long)split); 3140 3141 ext4_ext_show_leaf(inode, path); 3142 3143 depth = ext_depth(inode); 3144 ex = path[depth].p_ext; 3145 ee_block = le32_to_cpu(ex->ee_block); 3146 ee_len = ext4_ext_get_actual_len(ex); 3147 newblock = split - ee_block + ext4_ext_pblock(ex); 3148 3149 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3150 BUG_ON(!ext4_ext_is_unwritten(ex) && 3151 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3152 EXT4_EXT_MARK_UNWRIT1 | 3153 EXT4_EXT_MARK_UNWRIT2)); 3154 3155 err = ext4_ext_get_access(handle, inode, path + depth); 3156 if (err) 3157 goto out; 3158 3159 if (split == ee_block) { 3160 /* 3161 * case b: block @split is the block that the extent begins with 3162 * then we just change the state of the extent, and splitting 3163 * is not needed. 3164 */ 3165 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3166 ext4_ext_mark_unwritten(ex); 3167 else 3168 ext4_ext_mark_initialized(ex); 3169 3170 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3171 ext4_ext_try_to_merge(handle, inode, path, ex); 3172 3173 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3174 goto out; 3175 } 3176 3177 /* case a */ 3178 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3179 ex->ee_len = cpu_to_le16(split - ee_block); 3180 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3181 ext4_ext_mark_unwritten(ex); 3182 3183 /* 3184 * path may lead to new leaf, not to original leaf any more 3185 * after ext4_ext_insert_extent() returns, 3186 */ 3187 err = ext4_ext_dirty(handle, inode, path + depth); 3188 if (err) 3189 goto fix_extent_len; 3190 3191 ex2 = &newex; 3192 ex2->ee_block = cpu_to_le32(split); 3193 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3194 ext4_ext_store_pblock(ex2, newblock); 3195 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3196 ext4_ext_mark_unwritten(ex2); 3197 3198 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags); 3199 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3200 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3201 if (split_flag & EXT4_EXT_DATA_VALID1) { 3202 err = ext4_ext_zeroout(inode, ex2); 3203 zero_ex.ee_block = ex2->ee_block; 3204 zero_ex.ee_len = cpu_to_le16( 3205 ext4_ext_get_actual_len(ex2)); 3206 ext4_ext_store_pblock(&zero_ex, 3207 ext4_ext_pblock(ex2)); 3208 } else { 3209 err = ext4_ext_zeroout(inode, ex); 3210 zero_ex.ee_block = ex->ee_block; 3211 zero_ex.ee_len = cpu_to_le16( 3212 ext4_ext_get_actual_len(ex)); 3213 ext4_ext_store_pblock(&zero_ex, 3214 ext4_ext_pblock(ex)); 3215 } 3216 } else { 3217 err = ext4_ext_zeroout(inode, &orig_ex); 3218 zero_ex.ee_block = orig_ex.ee_block; 3219 zero_ex.ee_len = cpu_to_le16( 3220 ext4_ext_get_actual_len(&orig_ex)); 3221 ext4_ext_store_pblock(&zero_ex, 3222 ext4_ext_pblock(&orig_ex)); 3223 } 3224 3225 if (err) 3226 goto fix_extent_len; 3227 /* update the extent length and mark as initialized */ 3228 ex->ee_len = cpu_to_le16(ee_len); 3229 ext4_ext_try_to_merge(handle, inode, path, ex); 3230 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3231 if (err) 3232 goto fix_extent_len; 3233 3234 /* update extent status tree */ 3235 err = ext4_zeroout_es(inode, &zero_ex); 3236 3237 goto out; 3238 } else if (err) 3239 goto fix_extent_len; 3240 3241 out: 3242 ext4_ext_show_leaf(inode, path); 3243 return err; 3244 3245 fix_extent_len: 3246 ex->ee_len = orig_ex.ee_len; 3247 ext4_ext_dirty(handle, inode, path + path->p_depth); 3248 return err; 3249 } 3250 3251 /* 3252 * ext4_split_extents() splits an extent and mark extent which is covered 3253 * by @map as split_flags indicates 3254 * 3255 * It may result in splitting the extent into multiple extents (up to three) 3256 * There are three possibilities: 3257 * a> There is no split required 3258 * b> Splits in two extents: Split is happening at either end of the extent 3259 * c> Splits in three extents: Somone is splitting in middle of the extent 3260 * 3261 */ 3262 static int ext4_split_extent(handle_t *handle, 3263 struct inode *inode, 3264 struct ext4_ext_path **ppath, 3265 struct ext4_map_blocks *map, 3266 int split_flag, 3267 int flags) 3268 { 3269 struct ext4_ext_path *path = *ppath; 3270 ext4_lblk_t ee_block; 3271 struct ext4_extent *ex; 3272 unsigned int ee_len, depth; 3273 int err = 0; 3274 int unwritten; 3275 int split_flag1, flags1; 3276 int allocated = map->m_len; 3277 3278 depth = ext_depth(inode); 3279 ex = path[depth].p_ext; 3280 ee_block = le32_to_cpu(ex->ee_block); 3281 ee_len = ext4_ext_get_actual_len(ex); 3282 unwritten = ext4_ext_is_unwritten(ex); 3283 3284 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3285 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3286 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3287 if (unwritten) 3288 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3289 EXT4_EXT_MARK_UNWRIT2; 3290 if (split_flag & EXT4_EXT_DATA_VALID2) 3291 split_flag1 |= EXT4_EXT_DATA_VALID1; 3292 err = ext4_split_extent_at(handle, inode, ppath, 3293 map->m_lblk + map->m_len, split_flag1, flags1); 3294 if (err) 3295 goto out; 3296 } else { 3297 allocated = ee_len - (map->m_lblk - ee_block); 3298 } 3299 /* 3300 * Update path is required because previous ext4_split_extent_at() may 3301 * result in split of original leaf or extent zeroout. 3302 */ 3303 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3304 if (IS_ERR(path)) 3305 return PTR_ERR(path); 3306 depth = ext_depth(inode); 3307 ex = path[depth].p_ext; 3308 if (!ex) { 3309 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3310 (unsigned long) map->m_lblk); 3311 return -EFSCORRUPTED; 3312 } 3313 unwritten = ext4_ext_is_unwritten(ex); 3314 split_flag1 = 0; 3315 3316 if (map->m_lblk >= ee_block) { 3317 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3318 if (unwritten) { 3319 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3320 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3321 EXT4_EXT_MARK_UNWRIT2); 3322 } 3323 err = ext4_split_extent_at(handle, inode, ppath, 3324 map->m_lblk, split_flag1, flags); 3325 if (err) 3326 goto out; 3327 } 3328 3329 ext4_ext_show_leaf(inode, path); 3330 out: 3331 return err ? err : allocated; 3332 } 3333 3334 /* 3335 * This function is called by ext4_ext_map_blocks() if someone tries to write 3336 * to an unwritten extent. It may result in splitting the unwritten 3337 * extent into multiple extents (up to three - one initialized and two 3338 * unwritten). 3339 * There are three possibilities: 3340 * a> There is no split required: Entire extent should be initialized 3341 * b> Splits in two extents: Write is happening at either end of the extent 3342 * c> Splits in three extents: Somone is writing in middle of the extent 3343 * 3344 * Pre-conditions: 3345 * - The extent pointed to by 'path' is unwritten. 3346 * - The extent pointed to by 'path' contains a superset 3347 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3348 * 3349 * Post-conditions on success: 3350 * - the returned value is the number of blocks beyond map->l_lblk 3351 * that are allocated and initialized. 3352 * It is guaranteed to be >= map->m_len. 3353 */ 3354 static int ext4_ext_convert_to_initialized(handle_t *handle, 3355 struct inode *inode, 3356 struct ext4_map_blocks *map, 3357 struct ext4_ext_path **ppath, 3358 int flags) 3359 { 3360 struct ext4_ext_path *path = *ppath; 3361 struct ext4_sb_info *sbi; 3362 struct ext4_extent_header *eh; 3363 struct ext4_map_blocks split_map; 3364 struct ext4_extent zero_ex1, zero_ex2; 3365 struct ext4_extent *ex, *abut_ex; 3366 ext4_lblk_t ee_block, eof_block; 3367 unsigned int ee_len, depth, map_len = map->m_len; 3368 int allocated = 0, max_zeroout = 0; 3369 int err = 0; 3370 int split_flag = EXT4_EXT_DATA_VALID2; 3371 3372 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3373 "block %llu, max_blocks %u\n", inode->i_ino, 3374 (unsigned long long)map->m_lblk, map_len); 3375 3376 sbi = EXT4_SB(inode->i_sb); 3377 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3378 inode->i_sb->s_blocksize_bits; 3379 if (eof_block < map->m_lblk + map_len) 3380 eof_block = map->m_lblk + map_len; 3381 3382 depth = ext_depth(inode); 3383 eh = path[depth].p_hdr; 3384 ex = path[depth].p_ext; 3385 ee_block = le32_to_cpu(ex->ee_block); 3386 ee_len = ext4_ext_get_actual_len(ex); 3387 zero_ex1.ee_len = 0; 3388 zero_ex2.ee_len = 0; 3389 3390 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3391 3392 /* Pre-conditions */ 3393 BUG_ON(!ext4_ext_is_unwritten(ex)); 3394 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3395 3396 /* 3397 * Attempt to transfer newly initialized blocks from the currently 3398 * unwritten extent to its neighbor. This is much cheaper 3399 * than an insertion followed by a merge as those involve costly 3400 * memmove() calls. Transferring to the left is the common case in 3401 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3402 * followed by append writes. 3403 * 3404 * Limitations of the current logic: 3405 * - L1: we do not deal with writes covering the whole extent. 3406 * This would require removing the extent if the transfer 3407 * is possible. 3408 * - L2: we only attempt to merge with an extent stored in the 3409 * same extent tree node. 3410 */ 3411 if ((map->m_lblk == ee_block) && 3412 /* See if we can merge left */ 3413 (map_len < ee_len) && /*L1*/ 3414 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3415 ext4_lblk_t prev_lblk; 3416 ext4_fsblk_t prev_pblk, ee_pblk; 3417 unsigned int prev_len; 3418 3419 abut_ex = ex - 1; 3420 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3421 prev_len = ext4_ext_get_actual_len(abut_ex); 3422 prev_pblk = ext4_ext_pblock(abut_ex); 3423 ee_pblk = ext4_ext_pblock(ex); 3424 3425 /* 3426 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3427 * upon those conditions: 3428 * - C1: abut_ex is initialized, 3429 * - C2: abut_ex is logically abutting ex, 3430 * - C3: abut_ex is physically abutting ex, 3431 * - C4: abut_ex can receive the additional blocks without 3432 * overflowing the (initialized) length limit. 3433 */ 3434 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3435 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3436 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3437 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3438 err = ext4_ext_get_access(handle, inode, path + depth); 3439 if (err) 3440 goto out; 3441 3442 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3443 map, ex, abut_ex); 3444 3445 /* Shift the start of ex by 'map_len' blocks */ 3446 ex->ee_block = cpu_to_le32(ee_block + map_len); 3447 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3448 ex->ee_len = cpu_to_le16(ee_len - map_len); 3449 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3450 3451 /* Extend abut_ex by 'map_len' blocks */ 3452 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3453 3454 /* Result: number of initialized blocks past m_lblk */ 3455 allocated = map_len; 3456 } 3457 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3458 (map_len < ee_len) && /*L1*/ 3459 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3460 /* See if we can merge right */ 3461 ext4_lblk_t next_lblk; 3462 ext4_fsblk_t next_pblk, ee_pblk; 3463 unsigned int next_len; 3464 3465 abut_ex = ex + 1; 3466 next_lblk = le32_to_cpu(abut_ex->ee_block); 3467 next_len = ext4_ext_get_actual_len(abut_ex); 3468 next_pblk = ext4_ext_pblock(abut_ex); 3469 ee_pblk = ext4_ext_pblock(ex); 3470 3471 /* 3472 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3473 * upon those conditions: 3474 * - C1: abut_ex is initialized, 3475 * - C2: abut_ex is logically abutting ex, 3476 * - C3: abut_ex is physically abutting ex, 3477 * - C4: abut_ex can receive the additional blocks without 3478 * overflowing the (initialized) length limit. 3479 */ 3480 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3481 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3482 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3483 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3484 err = ext4_ext_get_access(handle, inode, path + depth); 3485 if (err) 3486 goto out; 3487 3488 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3489 map, ex, abut_ex); 3490 3491 /* Shift the start of abut_ex by 'map_len' blocks */ 3492 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3493 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3494 ex->ee_len = cpu_to_le16(ee_len - map_len); 3495 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3496 3497 /* Extend abut_ex by 'map_len' blocks */ 3498 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3499 3500 /* Result: number of initialized blocks past m_lblk */ 3501 allocated = map_len; 3502 } 3503 } 3504 if (allocated) { 3505 /* Mark the block containing both extents as dirty */ 3506 ext4_ext_dirty(handle, inode, path + depth); 3507 3508 /* Update path to point to the right extent */ 3509 path[depth].p_ext = abut_ex; 3510 goto out; 3511 } else 3512 allocated = ee_len - (map->m_lblk - ee_block); 3513 3514 WARN_ON(map->m_lblk < ee_block); 3515 /* 3516 * It is safe to convert extent to initialized via explicit 3517 * zeroout only if extent is fully inside i_size or new_size. 3518 */ 3519 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3520 3521 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3522 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3523 (inode->i_sb->s_blocksize_bits - 10); 3524 3525 /* 3526 * five cases: 3527 * 1. split the extent into three extents. 3528 * 2. split the extent into two extents, zeroout the head of the first 3529 * extent. 3530 * 3. split the extent into two extents, zeroout the tail of the second 3531 * extent. 3532 * 4. split the extent into two extents with out zeroout. 3533 * 5. no splitting needed, just possibly zeroout the head and / or the 3534 * tail of the extent. 3535 */ 3536 split_map.m_lblk = map->m_lblk; 3537 split_map.m_len = map->m_len; 3538 3539 if (max_zeroout && (allocated > split_map.m_len)) { 3540 if (allocated <= max_zeroout) { 3541 /* case 3 or 5 */ 3542 zero_ex1.ee_block = 3543 cpu_to_le32(split_map.m_lblk + 3544 split_map.m_len); 3545 zero_ex1.ee_len = 3546 cpu_to_le16(allocated - split_map.m_len); 3547 ext4_ext_store_pblock(&zero_ex1, 3548 ext4_ext_pblock(ex) + split_map.m_lblk + 3549 split_map.m_len - ee_block); 3550 err = ext4_ext_zeroout(inode, &zero_ex1); 3551 if (err) 3552 goto out; 3553 split_map.m_len = allocated; 3554 } 3555 if (split_map.m_lblk - ee_block + split_map.m_len < 3556 max_zeroout) { 3557 /* case 2 or 5 */ 3558 if (split_map.m_lblk != ee_block) { 3559 zero_ex2.ee_block = ex->ee_block; 3560 zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk - 3561 ee_block); 3562 ext4_ext_store_pblock(&zero_ex2, 3563 ext4_ext_pblock(ex)); 3564 err = ext4_ext_zeroout(inode, &zero_ex2); 3565 if (err) 3566 goto out; 3567 } 3568 3569 split_map.m_len += split_map.m_lblk - ee_block; 3570 split_map.m_lblk = ee_block; 3571 allocated = map->m_len; 3572 } 3573 } 3574 3575 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag, 3576 flags); 3577 if (err > 0) 3578 err = 0; 3579 out: 3580 /* If we have gotten a failure, don't zero out status tree */ 3581 if (!err) { 3582 err = ext4_zeroout_es(inode, &zero_ex1); 3583 if (!err) 3584 err = ext4_zeroout_es(inode, &zero_ex2); 3585 } 3586 return err ? err : allocated; 3587 } 3588 3589 /* 3590 * This function is called by ext4_ext_map_blocks() from 3591 * ext4_get_blocks_dio_write() when DIO to write 3592 * to an unwritten extent. 3593 * 3594 * Writing to an unwritten extent may result in splitting the unwritten 3595 * extent into multiple initialized/unwritten extents (up to three) 3596 * There are three possibilities: 3597 * a> There is no split required: Entire extent should be unwritten 3598 * b> Splits in two extents: Write is happening at either end of the extent 3599 * c> Splits in three extents: Somone is writing in middle of the extent 3600 * 3601 * This works the same way in the case of initialized -> unwritten conversion. 3602 * 3603 * One of more index blocks maybe needed if the extent tree grow after 3604 * the unwritten extent split. To prevent ENOSPC occur at the IO 3605 * complete, we need to split the unwritten extent before DIO submit 3606 * the IO. The unwritten extent called at this time will be split 3607 * into three unwritten extent(at most). After IO complete, the part 3608 * being filled will be convert to initialized by the end_io callback function 3609 * via ext4_convert_unwritten_extents(). 3610 * 3611 * Returns the size of unwritten extent to be written on success. 3612 */ 3613 static int ext4_split_convert_extents(handle_t *handle, 3614 struct inode *inode, 3615 struct ext4_map_blocks *map, 3616 struct ext4_ext_path **ppath, 3617 int flags) 3618 { 3619 struct ext4_ext_path *path = *ppath; 3620 ext4_lblk_t eof_block; 3621 ext4_lblk_t ee_block; 3622 struct ext4_extent *ex; 3623 unsigned int ee_len; 3624 int split_flag = 0, depth; 3625 3626 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3627 __func__, inode->i_ino, 3628 (unsigned long long)map->m_lblk, map->m_len); 3629 3630 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3631 inode->i_sb->s_blocksize_bits; 3632 if (eof_block < map->m_lblk + map->m_len) 3633 eof_block = map->m_lblk + map->m_len; 3634 /* 3635 * It is safe to convert extent to initialized via explicit 3636 * zeroout only if extent is fully insde i_size or new_size. 3637 */ 3638 depth = ext_depth(inode); 3639 ex = path[depth].p_ext; 3640 ee_block = le32_to_cpu(ex->ee_block); 3641 ee_len = ext4_ext_get_actual_len(ex); 3642 3643 /* Convert to unwritten */ 3644 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3645 split_flag |= EXT4_EXT_DATA_VALID1; 3646 /* Convert to initialized */ 3647 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3648 split_flag |= ee_block + ee_len <= eof_block ? 3649 EXT4_EXT_MAY_ZEROOUT : 0; 3650 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3651 } 3652 flags |= EXT4_GET_BLOCKS_PRE_IO; 3653 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags); 3654 } 3655 3656 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3657 struct inode *inode, 3658 struct ext4_map_blocks *map, 3659 struct ext4_ext_path **ppath) 3660 { 3661 struct ext4_ext_path *path = *ppath; 3662 struct ext4_extent *ex; 3663 ext4_lblk_t ee_block; 3664 unsigned int ee_len; 3665 int depth; 3666 int err = 0; 3667 3668 depth = ext_depth(inode); 3669 ex = path[depth].p_ext; 3670 ee_block = le32_to_cpu(ex->ee_block); 3671 ee_len = ext4_ext_get_actual_len(ex); 3672 3673 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3674 "block %llu, max_blocks %u\n", inode->i_ino, 3675 (unsigned long long)ee_block, ee_len); 3676 3677 /* If extent is larger than requested it is a clear sign that we still 3678 * have some extent state machine issues left. So extent_split is still 3679 * required. 3680 * TODO: Once all related issues will be fixed this situation should be 3681 * illegal. 3682 */ 3683 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3684 #ifdef CONFIG_EXT4_DEBUG 3685 ext4_warning(inode->i_sb, "Inode (%ld) finished: extent logical block %llu," 3686 " len %u; IO logical block %llu, len %u", 3687 inode->i_ino, (unsigned long long)ee_block, ee_len, 3688 (unsigned long long)map->m_lblk, map->m_len); 3689 #endif 3690 err = ext4_split_convert_extents(handle, inode, map, ppath, 3691 EXT4_GET_BLOCKS_CONVERT); 3692 if (err < 0) 3693 return err; 3694 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3695 if (IS_ERR(path)) 3696 return PTR_ERR(path); 3697 depth = ext_depth(inode); 3698 ex = path[depth].p_ext; 3699 } 3700 3701 err = ext4_ext_get_access(handle, inode, path + depth); 3702 if (err) 3703 goto out; 3704 /* first mark the extent as initialized */ 3705 ext4_ext_mark_initialized(ex); 3706 3707 /* note: ext4_ext_correct_indexes() isn't needed here because 3708 * borders are not changed 3709 */ 3710 ext4_ext_try_to_merge(handle, inode, path, ex); 3711 3712 /* Mark modified extent as dirty */ 3713 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3714 out: 3715 ext4_ext_show_leaf(inode, path); 3716 return err; 3717 } 3718 3719 static int 3720 convert_initialized_extent(handle_t *handle, struct inode *inode, 3721 struct ext4_map_blocks *map, 3722 struct ext4_ext_path **ppath, 3723 unsigned int *allocated) 3724 { 3725 struct ext4_ext_path *path = *ppath; 3726 struct ext4_extent *ex; 3727 ext4_lblk_t ee_block; 3728 unsigned int ee_len; 3729 int depth; 3730 int err = 0; 3731 3732 /* 3733 * Make sure that the extent is no bigger than we support with 3734 * unwritten extent 3735 */ 3736 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3737 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3738 3739 depth = ext_depth(inode); 3740 ex = path[depth].p_ext; 3741 ee_block = le32_to_cpu(ex->ee_block); 3742 ee_len = ext4_ext_get_actual_len(ex); 3743 3744 ext_debug("%s: inode %lu, logical" 3745 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3746 (unsigned long long)ee_block, ee_len); 3747 3748 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3749 err = ext4_split_convert_extents(handle, inode, map, ppath, 3750 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3751 if (err < 0) 3752 return err; 3753 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3754 if (IS_ERR(path)) 3755 return PTR_ERR(path); 3756 depth = ext_depth(inode); 3757 ex = path[depth].p_ext; 3758 if (!ex) { 3759 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3760 (unsigned long) map->m_lblk); 3761 return -EFSCORRUPTED; 3762 } 3763 } 3764 3765 err = ext4_ext_get_access(handle, inode, path + depth); 3766 if (err) 3767 return err; 3768 /* first mark the extent as unwritten */ 3769 ext4_ext_mark_unwritten(ex); 3770 3771 /* note: ext4_ext_correct_indexes() isn't needed here because 3772 * borders are not changed 3773 */ 3774 ext4_ext_try_to_merge(handle, inode, path, ex); 3775 3776 /* Mark modified extent as dirty */ 3777 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3778 if (err) 3779 return err; 3780 ext4_ext_show_leaf(inode, path); 3781 3782 ext4_update_inode_fsync_trans(handle, inode, 1); 3783 3784 map->m_flags |= EXT4_MAP_UNWRITTEN; 3785 if (*allocated > map->m_len) 3786 *allocated = map->m_len; 3787 map->m_len = *allocated; 3788 return 0; 3789 } 3790 3791 static int 3792 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 3793 struct ext4_map_blocks *map, 3794 struct ext4_ext_path **ppath, int flags, 3795 unsigned int allocated, ext4_fsblk_t newblock) 3796 { 3797 #ifdef EXT_DEBUG 3798 struct ext4_ext_path *path = *ppath; 3799 #endif 3800 int ret = 0; 3801 int err = 0; 3802 3803 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 3804 "block %llu, max_blocks %u, flags %x, allocated %u\n", 3805 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 3806 flags, allocated); 3807 ext4_ext_show_leaf(inode, path); 3808 3809 /* 3810 * When writing into unwritten space, we should not fail to 3811 * allocate metadata blocks for the new extent block if needed. 3812 */ 3813 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 3814 3815 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 3816 allocated, newblock); 3817 3818 /* get_block() before submit the IO, split the extent */ 3819 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 3820 ret = ext4_split_convert_extents(handle, inode, map, ppath, 3821 flags | EXT4_GET_BLOCKS_CONVERT); 3822 if (ret <= 0) 3823 goto out; 3824 map->m_flags |= EXT4_MAP_UNWRITTEN; 3825 goto out; 3826 } 3827 /* IO end_io complete, convert the filled extent to written */ 3828 if (flags & EXT4_GET_BLOCKS_CONVERT) { 3829 if (flags & EXT4_GET_BLOCKS_ZERO) { 3830 if (allocated > map->m_len) 3831 allocated = map->m_len; 3832 err = ext4_issue_zeroout(inode, map->m_lblk, newblock, 3833 allocated); 3834 if (err < 0) 3835 goto out2; 3836 } 3837 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 3838 ppath); 3839 if (ret >= 0) 3840 ext4_update_inode_fsync_trans(handle, inode, 1); 3841 else 3842 err = ret; 3843 map->m_flags |= EXT4_MAP_MAPPED; 3844 map->m_pblk = newblock; 3845 if (allocated > map->m_len) 3846 allocated = map->m_len; 3847 map->m_len = allocated; 3848 goto out2; 3849 } 3850 /* buffered IO case */ 3851 /* 3852 * repeat fallocate creation request 3853 * we already have an unwritten extent 3854 */ 3855 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 3856 map->m_flags |= EXT4_MAP_UNWRITTEN; 3857 goto map_out; 3858 } 3859 3860 /* buffered READ or buffered write_begin() lookup */ 3861 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3862 /* 3863 * We have blocks reserved already. We 3864 * return allocated blocks so that delalloc 3865 * won't do block reservation for us. But 3866 * the buffer head will be unmapped so that 3867 * a read from the block returns 0s. 3868 */ 3869 map->m_flags |= EXT4_MAP_UNWRITTEN; 3870 goto out1; 3871 } 3872 3873 /* buffered write, writepage time, convert*/ 3874 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags); 3875 if (ret >= 0) 3876 ext4_update_inode_fsync_trans(handle, inode, 1); 3877 out: 3878 if (ret <= 0) { 3879 err = ret; 3880 goto out2; 3881 } else 3882 allocated = ret; 3883 map->m_flags |= EXT4_MAP_NEW; 3884 if (allocated > map->m_len) 3885 allocated = map->m_len; 3886 map->m_len = allocated; 3887 3888 map_out: 3889 map->m_flags |= EXT4_MAP_MAPPED; 3890 out1: 3891 if (allocated > map->m_len) 3892 allocated = map->m_len; 3893 ext4_ext_show_leaf(inode, path); 3894 map->m_pblk = newblock; 3895 map->m_len = allocated; 3896 out2: 3897 return err ? err : allocated; 3898 } 3899 3900 /* 3901 * get_implied_cluster_alloc - check to see if the requested 3902 * allocation (in the map structure) overlaps with a cluster already 3903 * allocated in an extent. 3904 * @sb The filesystem superblock structure 3905 * @map The requested lblk->pblk mapping 3906 * @ex The extent structure which might contain an implied 3907 * cluster allocation 3908 * 3909 * This function is called by ext4_ext_map_blocks() after we failed to 3910 * find blocks that were already in the inode's extent tree. Hence, 3911 * we know that the beginning of the requested region cannot overlap 3912 * the extent from the inode's extent tree. There are three cases we 3913 * want to catch. The first is this case: 3914 * 3915 * |--- cluster # N--| 3916 * |--- extent ---| |---- requested region ---| 3917 * |==========| 3918 * 3919 * The second case that we need to test for is this one: 3920 * 3921 * |--------- cluster # N ----------------| 3922 * |--- requested region --| |------- extent ----| 3923 * |=======================| 3924 * 3925 * The third case is when the requested region lies between two extents 3926 * within the same cluster: 3927 * |------------- cluster # N-------------| 3928 * |----- ex -----| |---- ex_right ----| 3929 * |------ requested region ------| 3930 * |================| 3931 * 3932 * In each of the above cases, we need to set the map->m_pblk and 3933 * map->m_len so it corresponds to the return the extent labelled as 3934 * "|====|" from cluster #N, since it is already in use for data in 3935 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 3936 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 3937 * as a new "allocated" block region. Otherwise, we will return 0 and 3938 * ext4_ext_map_blocks() will then allocate one or more new clusters 3939 * by calling ext4_mb_new_blocks(). 3940 */ 3941 static int get_implied_cluster_alloc(struct super_block *sb, 3942 struct ext4_map_blocks *map, 3943 struct ext4_extent *ex, 3944 struct ext4_ext_path *path) 3945 { 3946 struct ext4_sb_info *sbi = EXT4_SB(sb); 3947 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 3948 ext4_lblk_t ex_cluster_start, ex_cluster_end; 3949 ext4_lblk_t rr_cluster_start; 3950 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3951 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3952 unsigned short ee_len = ext4_ext_get_actual_len(ex); 3953 3954 /* The extent passed in that we are trying to match */ 3955 ex_cluster_start = EXT4_B2C(sbi, ee_block); 3956 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 3957 3958 /* The requested region passed into ext4_map_blocks() */ 3959 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 3960 3961 if ((rr_cluster_start == ex_cluster_end) || 3962 (rr_cluster_start == ex_cluster_start)) { 3963 if (rr_cluster_start == ex_cluster_end) 3964 ee_start += ee_len - 1; 3965 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 3966 map->m_len = min(map->m_len, 3967 (unsigned) sbi->s_cluster_ratio - c_offset); 3968 /* 3969 * Check for and handle this case: 3970 * 3971 * |--------- cluster # N-------------| 3972 * |------- extent ----| 3973 * |--- requested region ---| 3974 * |===========| 3975 */ 3976 3977 if (map->m_lblk < ee_block) 3978 map->m_len = min(map->m_len, ee_block - map->m_lblk); 3979 3980 /* 3981 * Check for the case where there is already another allocated 3982 * block to the right of 'ex' but before the end of the cluster. 3983 * 3984 * |------------- cluster # N-------------| 3985 * |----- ex -----| |---- ex_right ----| 3986 * |------ requested region ------| 3987 * |================| 3988 */ 3989 if (map->m_lblk > ee_block) { 3990 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 3991 map->m_len = min(map->m_len, next - map->m_lblk); 3992 } 3993 3994 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 3995 return 1; 3996 } 3997 3998 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 3999 return 0; 4000 } 4001 4002 4003 /* 4004 * Block allocation/map/preallocation routine for extents based files 4005 * 4006 * 4007 * Need to be called with 4008 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4009 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4010 * 4011 * return > 0, number of of blocks already mapped/allocated 4012 * if create == 0 and these are pre-allocated blocks 4013 * buffer head is unmapped 4014 * otherwise blocks are mapped 4015 * 4016 * return = 0, if plain look up failed (blocks have not been allocated) 4017 * buffer head is unmapped 4018 * 4019 * return < 0, error case. 4020 */ 4021 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4022 struct ext4_map_blocks *map, int flags) 4023 { 4024 struct ext4_ext_path *path = NULL; 4025 struct ext4_extent newex, *ex, *ex2; 4026 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4027 ext4_fsblk_t newblock = 0; 4028 int err = 0, depth, ret; 4029 unsigned int allocated = 0, offset = 0; 4030 unsigned int allocated_clusters = 0; 4031 struct ext4_allocation_request ar; 4032 ext4_lblk_t cluster_offset; 4033 4034 ext_debug("blocks %u/%u requested for inode %lu\n", 4035 map->m_lblk, map->m_len, inode->i_ino); 4036 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4037 4038 /* find extent for this block */ 4039 path = ext4_find_extent(inode, map->m_lblk, NULL, 0); 4040 if (IS_ERR(path)) { 4041 err = PTR_ERR(path); 4042 path = NULL; 4043 goto out2; 4044 } 4045 4046 depth = ext_depth(inode); 4047 4048 /* 4049 * consistent leaf must not be empty; 4050 * this situation is possible, though, _during_ tree modification; 4051 * this is why assert can't be put in ext4_find_extent() 4052 */ 4053 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4054 EXT4_ERROR_INODE(inode, "bad extent address " 4055 "lblock: %lu, depth: %d pblock %lld", 4056 (unsigned long) map->m_lblk, depth, 4057 path[depth].p_block); 4058 err = -EFSCORRUPTED; 4059 goto out2; 4060 } 4061 4062 ex = path[depth].p_ext; 4063 if (ex) { 4064 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4065 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4066 unsigned short ee_len; 4067 4068 4069 /* 4070 * unwritten extents are treated as holes, except that 4071 * we split out initialized portions during a write. 4072 */ 4073 ee_len = ext4_ext_get_actual_len(ex); 4074 4075 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4076 4077 /* if found extent covers block, simply return it */ 4078 if (in_range(map->m_lblk, ee_block, ee_len)) { 4079 newblock = map->m_lblk - ee_block + ee_start; 4080 /* number of remaining blocks in the extent */ 4081 allocated = ee_len - (map->m_lblk - ee_block); 4082 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4083 ee_block, ee_len, newblock); 4084 4085 /* 4086 * If the extent is initialized check whether the 4087 * caller wants to convert it to unwritten. 4088 */ 4089 if ((!ext4_ext_is_unwritten(ex)) && 4090 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4091 err = convert_initialized_extent(handle, 4092 inode, map, &path, &allocated); 4093 goto out2; 4094 } else if (!ext4_ext_is_unwritten(ex)) { 4095 goto out; 4096 } 4097 4098 ret = ext4_ext_handle_unwritten_extents( 4099 handle, inode, map, &path, flags, 4100 allocated, newblock); 4101 if (ret < 0) 4102 err = ret; 4103 else 4104 allocated = ret; 4105 goto out2; 4106 } 4107 } 4108 4109 /* 4110 * requested block isn't allocated yet; 4111 * we couldn't try to create block if create flag is zero 4112 */ 4113 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4114 ext4_lblk_t hole_start, hole_len; 4115 4116 hole_start = map->m_lblk; 4117 hole_len = ext4_ext_determine_hole(inode, path, &hole_start); 4118 /* 4119 * put just found gap into cache to speed up 4120 * subsequent requests 4121 */ 4122 ext4_ext_put_gap_in_cache(inode, hole_start, hole_len); 4123 4124 /* Update hole_len to reflect hole size after map->m_lblk */ 4125 if (hole_start != map->m_lblk) 4126 hole_len -= map->m_lblk - hole_start; 4127 map->m_pblk = 0; 4128 map->m_len = min_t(unsigned int, map->m_len, hole_len); 4129 4130 goto out2; 4131 } 4132 4133 /* 4134 * Okay, we need to do block allocation. 4135 */ 4136 newex.ee_block = cpu_to_le32(map->m_lblk); 4137 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4138 4139 /* 4140 * If we are doing bigalloc, check to see if the extent returned 4141 * by ext4_find_extent() implies a cluster we can use. 4142 */ 4143 if (cluster_offset && ex && 4144 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4145 ar.len = allocated = map->m_len; 4146 newblock = map->m_pblk; 4147 goto got_allocated_blocks; 4148 } 4149 4150 /* find neighbour allocated blocks */ 4151 ar.lleft = map->m_lblk; 4152 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4153 if (err) 4154 goto out2; 4155 ar.lright = map->m_lblk; 4156 ex2 = NULL; 4157 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4158 if (err) 4159 goto out2; 4160 4161 /* Check if the extent after searching to the right implies a 4162 * cluster we can use. */ 4163 if ((sbi->s_cluster_ratio > 1) && ex2 && 4164 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4165 ar.len = allocated = map->m_len; 4166 newblock = map->m_pblk; 4167 goto got_allocated_blocks; 4168 } 4169 4170 /* 4171 * See if request is beyond maximum number of blocks we can have in 4172 * a single extent. For an initialized extent this limit is 4173 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4174 * EXT_UNWRITTEN_MAX_LEN. 4175 */ 4176 if (map->m_len > EXT_INIT_MAX_LEN && 4177 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4178 map->m_len = EXT_INIT_MAX_LEN; 4179 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4180 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4181 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4182 4183 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4184 newex.ee_len = cpu_to_le16(map->m_len); 4185 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4186 if (err) 4187 allocated = ext4_ext_get_actual_len(&newex); 4188 else 4189 allocated = map->m_len; 4190 4191 /* allocate new block */ 4192 ar.inode = inode; 4193 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4194 ar.logical = map->m_lblk; 4195 /* 4196 * We calculate the offset from the beginning of the cluster 4197 * for the logical block number, since when we allocate a 4198 * physical cluster, the physical block should start at the 4199 * same offset from the beginning of the cluster. This is 4200 * needed so that future calls to get_implied_cluster_alloc() 4201 * work correctly. 4202 */ 4203 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4204 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4205 ar.goal -= offset; 4206 ar.logical -= offset; 4207 if (S_ISREG(inode->i_mode)) 4208 ar.flags = EXT4_MB_HINT_DATA; 4209 else 4210 /* disable in-core preallocation for non-regular files */ 4211 ar.flags = 0; 4212 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4213 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4214 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4215 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 4216 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 4217 ar.flags |= EXT4_MB_USE_RESERVED; 4218 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4219 if (!newblock) 4220 goto out2; 4221 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4222 ar.goal, newblock, allocated); 4223 allocated_clusters = ar.len; 4224 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4225 if (ar.len > allocated) 4226 ar.len = allocated; 4227 4228 got_allocated_blocks: 4229 /* try to insert new extent into found leaf and return */ 4230 ext4_ext_store_pblock(&newex, newblock + offset); 4231 newex.ee_len = cpu_to_le16(ar.len); 4232 /* Mark unwritten */ 4233 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4234 ext4_ext_mark_unwritten(&newex); 4235 map->m_flags |= EXT4_MAP_UNWRITTEN; 4236 } 4237 4238 err = ext4_ext_insert_extent(handle, inode, &path, &newex, flags); 4239 if (err) { 4240 if (allocated_clusters) { 4241 int fb_flags = 0; 4242 4243 /* 4244 * free data blocks we just allocated. 4245 * not a good idea to call discard here directly, 4246 * but otherwise we'd need to call it every free(). 4247 */ 4248 ext4_discard_preallocations(inode); 4249 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4250 fb_flags = EXT4_FREE_BLOCKS_NO_QUOT_UPDATE; 4251 ext4_free_blocks(handle, inode, NULL, newblock, 4252 EXT4_C2B(sbi, allocated_clusters), 4253 fb_flags); 4254 } 4255 goto out2; 4256 } 4257 4258 /* previous routine could use block we allocated */ 4259 newblock = ext4_ext_pblock(&newex); 4260 allocated = ext4_ext_get_actual_len(&newex); 4261 if (allocated > map->m_len) 4262 allocated = map->m_len; 4263 map->m_flags |= EXT4_MAP_NEW; 4264 4265 /* 4266 * Reduce the reserved cluster count to reflect successful deferred 4267 * allocation of delayed allocated clusters or direct allocation of 4268 * clusters discovered to be delayed allocated. Once allocated, a 4269 * cluster is not included in the reserved count. 4270 */ 4271 if (test_opt(inode->i_sb, DELALLOC) && allocated_clusters) { 4272 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4273 /* 4274 * When allocating delayed allocated clusters, simply 4275 * reduce the reserved cluster count and claim quota 4276 */ 4277 ext4_da_update_reserve_space(inode, allocated_clusters, 4278 1); 4279 } else { 4280 ext4_lblk_t lblk, len; 4281 unsigned int n; 4282 4283 /* 4284 * When allocating non-delayed allocated clusters 4285 * (from fallocate, filemap, DIO, or clusters 4286 * allocated when delalloc has been disabled by 4287 * ext4_nonda_switch), reduce the reserved cluster 4288 * count by the number of allocated clusters that 4289 * have previously been delayed allocated. Quota 4290 * has been claimed by ext4_mb_new_blocks() above, 4291 * so release the quota reservations made for any 4292 * previously delayed allocated clusters. 4293 */ 4294 lblk = EXT4_LBLK_CMASK(sbi, map->m_lblk); 4295 len = allocated_clusters << sbi->s_cluster_bits; 4296 n = ext4_es_delayed_clu(inode, lblk, len); 4297 if (n > 0) 4298 ext4_da_update_reserve_space(inode, (int) n, 0); 4299 } 4300 } 4301 4302 /* 4303 * Cache the extent and update transaction to commit on fdatasync only 4304 * when it is _not_ an unwritten extent. 4305 */ 4306 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4307 ext4_update_inode_fsync_trans(handle, inode, 1); 4308 else 4309 ext4_update_inode_fsync_trans(handle, inode, 0); 4310 out: 4311 if (allocated > map->m_len) 4312 allocated = map->m_len; 4313 ext4_ext_show_leaf(inode, path); 4314 map->m_flags |= EXT4_MAP_MAPPED; 4315 map->m_pblk = newblock; 4316 map->m_len = allocated; 4317 out2: 4318 ext4_ext_drop_refs(path); 4319 kfree(path); 4320 4321 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4322 err ? err : allocated); 4323 return err ? err : allocated; 4324 } 4325 4326 int ext4_ext_truncate(handle_t *handle, struct inode *inode) 4327 { 4328 struct super_block *sb = inode->i_sb; 4329 ext4_lblk_t last_block; 4330 int err = 0; 4331 4332 /* 4333 * TODO: optimization is possible here. 4334 * Probably we need not scan at all, 4335 * because page truncation is enough. 4336 */ 4337 4338 /* we have to know where to truncate from in crash case */ 4339 EXT4_I(inode)->i_disksize = inode->i_size; 4340 err = ext4_mark_inode_dirty(handle, inode); 4341 if (err) 4342 return err; 4343 4344 last_block = (inode->i_size + sb->s_blocksize - 1) 4345 >> EXT4_BLOCK_SIZE_BITS(sb); 4346 retry: 4347 err = ext4_es_remove_extent(inode, last_block, 4348 EXT_MAX_BLOCKS - last_block); 4349 if (err == -ENOMEM) { 4350 cond_resched(); 4351 congestion_wait(BLK_RW_ASYNC, HZ/50); 4352 goto retry; 4353 } 4354 if (err) 4355 return err; 4356 return ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4357 } 4358 4359 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4360 ext4_lblk_t len, loff_t new_size, 4361 int flags) 4362 { 4363 struct inode *inode = file_inode(file); 4364 handle_t *handle; 4365 int ret = 0; 4366 int ret2 = 0; 4367 int retries = 0; 4368 int depth = 0; 4369 struct ext4_map_blocks map; 4370 unsigned int credits; 4371 loff_t epos; 4372 4373 BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)); 4374 map.m_lblk = offset; 4375 map.m_len = len; 4376 /* 4377 * Don't normalize the request if it can fit in one extent so 4378 * that it doesn't get unnecessarily split into multiple 4379 * extents. 4380 */ 4381 if (len <= EXT_UNWRITTEN_MAX_LEN) 4382 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4383 4384 /* 4385 * credits to insert 1 extent into extent tree 4386 */ 4387 credits = ext4_chunk_trans_blocks(inode, len); 4388 depth = ext_depth(inode); 4389 4390 retry: 4391 while (ret >= 0 && len) { 4392 /* 4393 * Recalculate credits when extent tree depth changes. 4394 */ 4395 if (depth != ext_depth(inode)) { 4396 credits = ext4_chunk_trans_blocks(inode, len); 4397 depth = ext_depth(inode); 4398 } 4399 4400 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4401 credits); 4402 if (IS_ERR(handle)) { 4403 ret = PTR_ERR(handle); 4404 break; 4405 } 4406 ret = ext4_map_blocks(handle, inode, &map, flags); 4407 if (ret <= 0) { 4408 ext4_debug("inode #%lu: block %u: len %u: " 4409 "ext4_ext_map_blocks returned %d", 4410 inode->i_ino, map.m_lblk, 4411 map.m_len, ret); 4412 ext4_mark_inode_dirty(handle, inode); 4413 ret2 = ext4_journal_stop(handle); 4414 break; 4415 } 4416 map.m_lblk += ret; 4417 map.m_len = len = len - ret; 4418 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4419 inode->i_ctime = current_time(inode); 4420 if (new_size) { 4421 if (epos > new_size) 4422 epos = new_size; 4423 if (ext4_update_inode_size(inode, epos) & 0x1) 4424 inode->i_mtime = inode->i_ctime; 4425 } 4426 ext4_mark_inode_dirty(handle, inode); 4427 ext4_update_inode_fsync_trans(handle, inode, 1); 4428 ret2 = ext4_journal_stop(handle); 4429 if (ret2) 4430 break; 4431 } 4432 if (ret == -ENOSPC && 4433 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4434 ret = 0; 4435 goto retry; 4436 } 4437 4438 return ret > 0 ? ret2 : ret; 4439 } 4440 4441 static int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len); 4442 4443 static int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len); 4444 4445 static long ext4_zero_range(struct file *file, loff_t offset, 4446 loff_t len, int mode) 4447 { 4448 struct inode *inode = file_inode(file); 4449 handle_t *handle = NULL; 4450 unsigned int max_blocks; 4451 loff_t new_size = 0; 4452 int ret = 0; 4453 int flags; 4454 int credits; 4455 int partial_begin, partial_end; 4456 loff_t start, end; 4457 ext4_lblk_t lblk; 4458 unsigned int blkbits = inode->i_blkbits; 4459 4460 trace_ext4_zero_range(inode, offset, len, mode); 4461 4462 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4463 if (ext4_should_journal_data(inode)) { 4464 ret = ext4_force_commit(inode->i_sb); 4465 if (ret) 4466 return ret; 4467 } 4468 4469 /* 4470 * Round up offset. This is not fallocate, we neet to zero out 4471 * blocks, so convert interior block aligned part of the range to 4472 * unwritten and possibly manually zero out unaligned parts of the 4473 * range. 4474 */ 4475 start = round_up(offset, 1 << blkbits); 4476 end = round_down((offset + len), 1 << blkbits); 4477 4478 if (start < offset || end > offset + len) 4479 return -EINVAL; 4480 partial_begin = offset & ((1 << blkbits) - 1); 4481 partial_end = (offset + len) & ((1 << blkbits) - 1); 4482 4483 lblk = start >> blkbits; 4484 max_blocks = (end >> blkbits); 4485 if (max_blocks < lblk) 4486 max_blocks = 0; 4487 else 4488 max_blocks -= lblk; 4489 4490 inode_lock(inode); 4491 4492 /* 4493 * Indirect files do not support unwritten extnets 4494 */ 4495 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4496 ret = -EOPNOTSUPP; 4497 goto out_mutex; 4498 } 4499 4500 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4501 (offset + len > inode->i_size || 4502 offset + len > EXT4_I(inode)->i_disksize)) { 4503 new_size = offset + len; 4504 ret = inode_newsize_ok(inode, new_size); 4505 if (ret) 4506 goto out_mutex; 4507 } 4508 4509 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4510 if (mode & FALLOC_FL_KEEP_SIZE) 4511 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4512 4513 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4514 inode_dio_wait(inode); 4515 4516 /* Preallocate the range including the unaligned edges */ 4517 if (partial_begin || partial_end) { 4518 ret = ext4_alloc_file_blocks(file, 4519 round_down(offset, 1 << blkbits) >> blkbits, 4520 (round_up((offset + len), 1 << blkbits) - 4521 round_down(offset, 1 << blkbits)) >> blkbits, 4522 new_size, flags); 4523 if (ret) 4524 goto out_mutex; 4525 4526 } 4527 4528 /* Zero range excluding the unaligned edges */ 4529 if (max_blocks > 0) { 4530 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4531 EXT4_EX_NOCACHE); 4532 4533 /* 4534 * Prevent page faults from reinstantiating pages we have 4535 * released from page cache. 4536 */ 4537 down_write(&EXT4_I(inode)->i_mmap_sem); 4538 4539 ret = ext4_break_layouts(inode); 4540 if (ret) { 4541 up_write(&EXT4_I(inode)->i_mmap_sem); 4542 goto out_mutex; 4543 } 4544 4545 ret = ext4_update_disksize_before_punch(inode, offset, len); 4546 if (ret) { 4547 up_write(&EXT4_I(inode)->i_mmap_sem); 4548 goto out_mutex; 4549 } 4550 /* Now release the pages and zero block aligned part of pages */ 4551 truncate_pagecache_range(inode, start, end - 1); 4552 inode->i_mtime = inode->i_ctime = current_time(inode); 4553 4554 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4555 flags); 4556 up_write(&EXT4_I(inode)->i_mmap_sem); 4557 if (ret) 4558 goto out_mutex; 4559 } 4560 if (!partial_begin && !partial_end) 4561 goto out_mutex; 4562 4563 /* 4564 * In worst case we have to writeout two nonadjacent unwritten 4565 * blocks and update the inode 4566 */ 4567 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4568 if (ext4_should_journal_data(inode)) 4569 credits += 2; 4570 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4571 if (IS_ERR(handle)) { 4572 ret = PTR_ERR(handle); 4573 ext4_std_error(inode->i_sb, ret); 4574 goto out_mutex; 4575 } 4576 4577 inode->i_mtime = inode->i_ctime = current_time(inode); 4578 if (new_size) 4579 ext4_update_inode_size(inode, new_size); 4580 ext4_mark_inode_dirty(handle, inode); 4581 4582 /* Zero out partial block at the edges of the range */ 4583 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4584 if (ret >= 0) 4585 ext4_update_inode_fsync_trans(handle, inode, 1); 4586 4587 if (file->f_flags & O_SYNC) 4588 ext4_handle_sync(handle); 4589 4590 ext4_journal_stop(handle); 4591 out_mutex: 4592 inode_unlock(inode); 4593 return ret; 4594 } 4595 4596 /* 4597 * preallocate space for a file. This implements ext4's fallocate file 4598 * operation, which gets called from sys_fallocate system call. 4599 * For block-mapped files, posix_fallocate should fall back to the method 4600 * of writing zeroes to the required new blocks (the same behavior which is 4601 * expected for file systems which do not support fallocate() system call). 4602 */ 4603 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4604 { 4605 struct inode *inode = file_inode(file); 4606 loff_t new_size = 0; 4607 unsigned int max_blocks; 4608 int ret = 0; 4609 int flags; 4610 ext4_lblk_t lblk; 4611 unsigned int blkbits = inode->i_blkbits; 4612 4613 /* 4614 * Encrypted inodes can't handle collapse range or insert 4615 * range since we would need to re-encrypt blocks with a 4616 * different IV or XTS tweak (which are based on the logical 4617 * block number). 4618 */ 4619 if (IS_ENCRYPTED(inode) && 4620 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 4621 return -EOPNOTSUPP; 4622 4623 /* Return error if mode is not supported */ 4624 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4625 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 4626 FALLOC_FL_INSERT_RANGE)) 4627 return -EOPNOTSUPP; 4628 4629 if (mode & FALLOC_FL_PUNCH_HOLE) 4630 return ext4_punch_hole(inode, offset, len); 4631 4632 ret = ext4_convert_inline_data(inode); 4633 if (ret) 4634 return ret; 4635 4636 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4637 return ext4_collapse_range(inode, offset, len); 4638 4639 if (mode & FALLOC_FL_INSERT_RANGE) 4640 return ext4_insert_range(inode, offset, len); 4641 4642 if (mode & FALLOC_FL_ZERO_RANGE) 4643 return ext4_zero_range(file, offset, len, mode); 4644 4645 trace_ext4_fallocate_enter(inode, offset, len, mode); 4646 lblk = offset >> blkbits; 4647 4648 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 4649 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4650 if (mode & FALLOC_FL_KEEP_SIZE) 4651 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4652 4653 inode_lock(inode); 4654 4655 /* 4656 * We only support preallocation for extent-based files only 4657 */ 4658 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4659 ret = -EOPNOTSUPP; 4660 goto out; 4661 } 4662 4663 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4664 (offset + len > inode->i_size || 4665 offset + len > EXT4_I(inode)->i_disksize)) { 4666 new_size = offset + len; 4667 ret = inode_newsize_ok(inode, new_size); 4668 if (ret) 4669 goto out; 4670 } 4671 4672 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4673 inode_dio_wait(inode); 4674 4675 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags); 4676 if (ret) 4677 goto out; 4678 4679 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 4680 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 4681 EXT4_I(inode)->i_sync_tid); 4682 } 4683 out: 4684 inode_unlock(inode); 4685 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4686 return ret; 4687 } 4688 4689 /* 4690 * This function convert a range of blocks to written extents 4691 * The caller of this function will pass the start offset and the size. 4692 * all unwritten extents within this range will be converted to 4693 * written extents. 4694 * 4695 * This function is called from the direct IO end io call back 4696 * function, to convert the fallocated extents after IO is completed. 4697 * Returns 0 on success. 4698 */ 4699 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4700 loff_t offset, ssize_t len) 4701 { 4702 unsigned int max_blocks; 4703 int ret = 0; 4704 int ret2 = 0; 4705 struct ext4_map_blocks map; 4706 unsigned int blkbits = inode->i_blkbits; 4707 unsigned int credits = 0; 4708 4709 map.m_lblk = offset >> blkbits; 4710 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 4711 4712 if (!handle) { 4713 /* 4714 * credits to insert 1 extent into extent tree 4715 */ 4716 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4717 } 4718 while (ret >= 0 && ret < max_blocks) { 4719 map.m_lblk += ret; 4720 map.m_len = (max_blocks -= ret); 4721 if (credits) { 4722 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4723 credits); 4724 if (IS_ERR(handle)) { 4725 ret = PTR_ERR(handle); 4726 break; 4727 } 4728 } 4729 ret = ext4_map_blocks(handle, inode, &map, 4730 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4731 if (ret <= 0) 4732 ext4_warning(inode->i_sb, 4733 "inode #%lu: block %u: len %u: " 4734 "ext4_ext_map_blocks returned %d", 4735 inode->i_ino, map.m_lblk, 4736 map.m_len, ret); 4737 ext4_mark_inode_dirty(handle, inode); 4738 if (credits) 4739 ret2 = ext4_journal_stop(handle); 4740 if (ret <= 0 || ret2) 4741 break; 4742 } 4743 return ret > 0 ? ret2 : ret; 4744 } 4745 4746 int ext4_convert_unwritten_io_end_vec(handle_t *handle, ext4_io_end_t *io_end) 4747 { 4748 int ret, err = 0; 4749 struct ext4_io_end_vec *io_end_vec; 4750 4751 /* 4752 * This is somewhat ugly but the idea is clear: When transaction is 4753 * reserved, everything goes into it. Otherwise we rather start several 4754 * smaller transactions for conversion of each extent separately. 4755 */ 4756 if (handle) { 4757 handle = ext4_journal_start_reserved(handle, 4758 EXT4_HT_EXT_CONVERT); 4759 if (IS_ERR(handle)) 4760 return PTR_ERR(handle); 4761 } 4762 4763 list_for_each_entry(io_end_vec, &io_end->list_vec, list) { 4764 ret = ext4_convert_unwritten_extents(handle, io_end->inode, 4765 io_end_vec->offset, 4766 io_end_vec->size); 4767 if (ret) 4768 break; 4769 } 4770 4771 if (handle) 4772 err = ext4_journal_stop(handle); 4773 4774 return ret < 0 ? ret : err; 4775 } 4776 4777 static int ext4_iomap_xattr_fiemap(struct inode *inode, struct iomap *iomap) 4778 { 4779 __u64 physical = 0; 4780 __u64 length = 0; 4781 int blockbits = inode->i_sb->s_blocksize_bits; 4782 int error = 0; 4783 u16 iomap_type; 4784 4785 /* in-inode? */ 4786 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4787 struct ext4_iloc iloc; 4788 int offset; /* offset of xattr in inode */ 4789 4790 error = ext4_get_inode_loc(inode, &iloc); 4791 if (error) 4792 return error; 4793 physical = (__u64)iloc.bh->b_blocknr << blockbits; 4794 offset = EXT4_GOOD_OLD_INODE_SIZE + 4795 EXT4_I(inode)->i_extra_isize; 4796 physical += offset; 4797 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4798 brelse(iloc.bh); 4799 iomap_type = IOMAP_INLINE; 4800 } else if (EXT4_I(inode)->i_file_acl) { /* external block */ 4801 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 4802 length = inode->i_sb->s_blocksize; 4803 iomap_type = IOMAP_MAPPED; 4804 } else { 4805 /* no in-inode or external block for xattr, so return -ENOENT */ 4806 error = -ENOENT; 4807 goto out; 4808 } 4809 4810 iomap->addr = physical; 4811 iomap->offset = 0; 4812 iomap->length = length; 4813 iomap->type = iomap_type; 4814 iomap->flags = 0; 4815 out: 4816 return error; 4817 } 4818 4819 static int ext4_iomap_xattr_begin(struct inode *inode, loff_t offset, 4820 loff_t length, unsigned flags, 4821 struct iomap *iomap, struct iomap *srcmap) 4822 { 4823 int error; 4824 4825 error = ext4_iomap_xattr_fiemap(inode, iomap); 4826 if (error == 0 && (offset >= iomap->length)) 4827 error = -ENOENT; 4828 return error; 4829 } 4830 4831 static const struct iomap_ops ext4_iomap_xattr_ops = { 4832 .iomap_begin = ext4_iomap_xattr_begin, 4833 }; 4834 4835 static int _ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4836 __u64 start, __u64 len, bool from_es_cache) 4837 { 4838 ext4_lblk_t start_blk; 4839 u32 ext4_fiemap_flags = FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR; 4840 int error = 0; 4841 4842 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 4843 error = ext4_ext_precache(inode); 4844 if (error) 4845 return error; 4846 fieinfo->fi_flags &= ~FIEMAP_FLAG_CACHE; 4847 } 4848 4849 if (from_es_cache) 4850 ext4_fiemap_flags &= FIEMAP_FLAG_XATTR; 4851 4852 if (fiemap_check_flags(fieinfo, ext4_fiemap_flags)) 4853 return -EBADR; 4854 4855 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 4856 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR; 4857 error = iomap_fiemap(inode, fieinfo, start, len, 4858 &ext4_iomap_xattr_ops); 4859 } else if (!from_es_cache) { 4860 error = iomap_fiemap(inode, fieinfo, start, len, 4861 &ext4_iomap_report_ops); 4862 } else { 4863 ext4_lblk_t len_blks; 4864 __u64 last_blk; 4865 4866 start_blk = start >> inode->i_sb->s_blocksize_bits; 4867 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 4868 if (last_blk >= EXT_MAX_BLOCKS) 4869 last_blk = EXT_MAX_BLOCKS-1; 4870 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 4871 4872 /* 4873 * Walk the extent tree gathering extent information 4874 * and pushing extents back to the user. 4875 */ 4876 error = ext4_fill_es_cache_info(inode, start_blk, len_blks, 4877 fieinfo); 4878 } 4879 return error; 4880 } 4881 4882 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4883 __u64 start, __u64 len) 4884 { 4885 return _ext4_fiemap(inode, fieinfo, start, len, false); 4886 } 4887 4888 int ext4_get_es_cache(struct inode *inode, struct fiemap_extent_info *fieinfo, 4889 __u64 start, __u64 len) 4890 { 4891 if (ext4_has_inline_data(inode)) { 4892 int has_inline; 4893 4894 down_read(&EXT4_I(inode)->xattr_sem); 4895 has_inline = ext4_has_inline_data(inode); 4896 up_read(&EXT4_I(inode)->xattr_sem); 4897 if (has_inline) 4898 return 0; 4899 } 4900 4901 return _ext4_fiemap(inode, fieinfo, start, len, true); 4902 } 4903 4904 4905 /* 4906 * ext4_access_path: 4907 * Function to access the path buffer for marking it dirty. 4908 * It also checks if there are sufficient credits left in the journal handle 4909 * to update path. 4910 */ 4911 static int 4912 ext4_access_path(handle_t *handle, struct inode *inode, 4913 struct ext4_ext_path *path) 4914 { 4915 int credits, err; 4916 4917 if (!ext4_handle_valid(handle)) 4918 return 0; 4919 4920 /* 4921 * Check if need to extend journal credits 4922 * 3 for leaf, sb, and inode plus 2 (bmap and group 4923 * descriptor) for each block group; assume two block 4924 * groups 4925 */ 4926 credits = ext4_writepage_trans_blocks(inode); 4927 err = ext4_datasem_ensure_credits(handle, inode, 7, credits, 0); 4928 if (err < 0) 4929 return err; 4930 4931 err = ext4_ext_get_access(handle, inode, path); 4932 return err; 4933 } 4934 4935 /* 4936 * ext4_ext_shift_path_extents: 4937 * Shift the extents of a path structure lying between path[depth].p_ext 4938 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells 4939 * if it is right shift or left shift operation. 4940 */ 4941 static int 4942 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 4943 struct inode *inode, handle_t *handle, 4944 enum SHIFT_DIRECTION SHIFT) 4945 { 4946 int depth, err = 0; 4947 struct ext4_extent *ex_start, *ex_last; 4948 bool update = false; 4949 depth = path->p_depth; 4950 4951 while (depth >= 0) { 4952 if (depth == path->p_depth) { 4953 ex_start = path[depth].p_ext; 4954 if (!ex_start) 4955 return -EFSCORRUPTED; 4956 4957 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 4958 4959 err = ext4_access_path(handle, inode, path + depth); 4960 if (err) 4961 goto out; 4962 4963 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 4964 update = true; 4965 4966 while (ex_start <= ex_last) { 4967 if (SHIFT == SHIFT_LEFT) { 4968 le32_add_cpu(&ex_start->ee_block, 4969 -shift); 4970 /* Try to merge to the left. */ 4971 if ((ex_start > 4972 EXT_FIRST_EXTENT(path[depth].p_hdr)) 4973 && 4974 ext4_ext_try_to_merge_right(inode, 4975 path, ex_start - 1)) 4976 ex_last--; 4977 else 4978 ex_start++; 4979 } else { 4980 le32_add_cpu(&ex_last->ee_block, shift); 4981 ext4_ext_try_to_merge_right(inode, path, 4982 ex_last); 4983 ex_last--; 4984 } 4985 } 4986 err = ext4_ext_dirty(handle, inode, path + depth); 4987 if (err) 4988 goto out; 4989 4990 if (--depth < 0 || !update) 4991 break; 4992 } 4993 4994 /* Update index too */ 4995 err = ext4_access_path(handle, inode, path + depth); 4996 if (err) 4997 goto out; 4998 4999 if (SHIFT == SHIFT_LEFT) 5000 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5001 else 5002 le32_add_cpu(&path[depth].p_idx->ei_block, shift); 5003 err = ext4_ext_dirty(handle, inode, path + depth); 5004 if (err) 5005 goto out; 5006 5007 /* we are done if current index is not a starting index */ 5008 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5009 break; 5010 5011 depth--; 5012 } 5013 5014 out: 5015 return err; 5016 } 5017 5018 /* 5019 * ext4_ext_shift_extents: 5020 * All the extents which lies in the range from @start to the last allocated 5021 * block for the @inode are shifted either towards left or right (depending 5022 * upon @SHIFT) by @shift blocks. 5023 * On success, 0 is returned, error otherwise. 5024 */ 5025 static int 5026 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5027 ext4_lblk_t start, ext4_lblk_t shift, 5028 enum SHIFT_DIRECTION SHIFT) 5029 { 5030 struct ext4_ext_path *path; 5031 int ret = 0, depth; 5032 struct ext4_extent *extent; 5033 ext4_lblk_t stop, *iterator, ex_start, ex_end; 5034 5035 /* Let path point to the last extent */ 5036 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 5037 EXT4_EX_NOCACHE); 5038 if (IS_ERR(path)) 5039 return PTR_ERR(path); 5040 5041 depth = path->p_depth; 5042 extent = path[depth].p_ext; 5043 if (!extent) 5044 goto out; 5045 5046 stop = le32_to_cpu(extent->ee_block); 5047 5048 /* 5049 * For left shifts, make sure the hole on the left is big enough to 5050 * accommodate the shift. For right shifts, make sure the last extent 5051 * won't be shifted beyond EXT_MAX_BLOCKS. 5052 */ 5053 if (SHIFT == SHIFT_LEFT) { 5054 path = ext4_find_extent(inode, start - 1, &path, 5055 EXT4_EX_NOCACHE); 5056 if (IS_ERR(path)) 5057 return PTR_ERR(path); 5058 depth = path->p_depth; 5059 extent = path[depth].p_ext; 5060 if (extent) { 5061 ex_start = le32_to_cpu(extent->ee_block); 5062 ex_end = le32_to_cpu(extent->ee_block) + 5063 ext4_ext_get_actual_len(extent); 5064 } else { 5065 ex_start = 0; 5066 ex_end = 0; 5067 } 5068 5069 if ((start == ex_start && shift > ex_start) || 5070 (shift > start - ex_end)) { 5071 ret = -EINVAL; 5072 goto out; 5073 } 5074 } else { 5075 if (shift > EXT_MAX_BLOCKS - 5076 (stop + ext4_ext_get_actual_len(extent))) { 5077 ret = -EINVAL; 5078 goto out; 5079 } 5080 } 5081 5082 /* 5083 * In case of left shift, iterator points to start and it is increased 5084 * till we reach stop. In case of right shift, iterator points to stop 5085 * and it is decreased till we reach start. 5086 */ 5087 if (SHIFT == SHIFT_LEFT) 5088 iterator = &start; 5089 else 5090 iterator = &stop; 5091 5092 /* 5093 * Its safe to start updating extents. Start and stop are unsigned, so 5094 * in case of right shift if extent with 0 block is reached, iterator 5095 * becomes NULL to indicate the end of the loop. 5096 */ 5097 while (iterator && start <= stop) { 5098 path = ext4_find_extent(inode, *iterator, &path, 5099 EXT4_EX_NOCACHE); 5100 if (IS_ERR(path)) 5101 return PTR_ERR(path); 5102 depth = path->p_depth; 5103 extent = path[depth].p_ext; 5104 if (!extent) { 5105 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5106 (unsigned long) *iterator); 5107 return -EFSCORRUPTED; 5108 } 5109 if (SHIFT == SHIFT_LEFT && *iterator > 5110 le32_to_cpu(extent->ee_block)) { 5111 /* Hole, move to the next extent */ 5112 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5113 path[depth].p_ext++; 5114 } else { 5115 *iterator = ext4_ext_next_allocated_block(path); 5116 continue; 5117 } 5118 } 5119 5120 if (SHIFT == SHIFT_LEFT) { 5121 extent = EXT_LAST_EXTENT(path[depth].p_hdr); 5122 *iterator = le32_to_cpu(extent->ee_block) + 5123 ext4_ext_get_actual_len(extent); 5124 } else { 5125 extent = EXT_FIRST_EXTENT(path[depth].p_hdr); 5126 if (le32_to_cpu(extent->ee_block) > 0) 5127 *iterator = le32_to_cpu(extent->ee_block) - 1; 5128 else 5129 /* Beginning is reached, end of the loop */ 5130 iterator = NULL; 5131 /* Update path extent in case we need to stop */ 5132 while (le32_to_cpu(extent->ee_block) < start) 5133 extent++; 5134 path[depth].p_ext = extent; 5135 } 5136 ret = ext4_ext_shift_path_extents(path, shift, inode, 5137 handle, SHIFT); 5138 if (ret) 5139 break; 5140 } 5141 out: 5142 ext4_ext_drop_refs(path); 5143 kfree(path); 5144 return ret; 5145 } 5146 5147 /* 5148 * ext4_collapse_range: 5149 * This implements the fallocate's collapse range functionality for ext4 5150 * Returns: 0 and non-zero on error. 5151 */ 5152 static int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5153 { 5154 struct super_block *sb = inode->i_sb; 5155 ext4_lblk_t punch_start, punch_stop; 5156 handle_t *handle; 5157 unsigned int credits; 5158 loff_t new_size, ioffset; 5159 int ret; 5160 5161 /* 5162 * We need to test this early because xfstests assumes that a 5163 * collapse range of (0, 1) will return EOPNOTSUPP if the file 5164 * system does not support collapse range. 5165 */ 5166 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5167 return -EOPNOTSUPP; 5168 5169 /* Collapse range works only on fs cluster size aligned regions. */ 5170 if (!IS_ALIGNED(offset | len, EXT4_CLUSTER_SIZE(sb))) 5171 return -EINVAL; 5172 5173 trace_ext4_collapse_range(inode, offset, len); 5174 5175 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5176 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5177 5178 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5179 if (ext4_should_journal_data(inode)) { 5180 ret = ext4_force_commit(inode->i_sb); 5181 if (ret) 5182 return ret; 5183 } 5184 5185 inode_lock(inode); 5186 /* 5187 * There is no need to overlap collapse range with EOF, in which case 5188 * it is effectively a truncate operation 5189 */ 5190 if (offset + len >= inode->i_size) { 5191 ret = -EINVAL; 5192 goto out_mutex; 5193 } 5194 5195 /* Currently just for extent based files */ 5196 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5197 ret = -EOPNOTSUPP; 5198 goto out_mutex; 5199 } 5200 5201 /* Wait for existing dio to complete */ 5202 inode_dio_wait(inode); 5203 5204 /* 5205 * Prevent page faults from reinstantiating pages we have released from 5206 * page cache. 5207 */ 5208 down_write(&EXT4_I(inode)->i_mmap_sem); 5209 5210 ret = ext4_break_layouts(inode); 5211 if (ret) 5212 goto out_mmap; 5213 5214 /* 5215 * Need to round down offset to be aligned with page size boundary 5216 * for page size > block size. 5217 */ 5218 ioffset = round_down(offset, PAGE_SIZE); 5219 /* 5220 * Write tail of the last page before removed range since it will get 5221 * removed from the page cache below. 5222 */ 5223 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset); 5224 if (ret) 5225 goto out_mmap; 5226 /* 5227 * Write data that will be shifted to preserve them when discarding 5228 * page cache below. We are also protected from pages becoming dirty 5229 * by i_mmap_sem. 5230 */ 5231 ret = filemap_write_and_wait_range(inode->i_mapping, offset + len, 5232 LLONG_MAX); 5233 if (ret) 5234 goto out_mmap; 5235 truncate_pagecache(inode, ioffset); 5236 5237 credits = ext4_writepage_trans_blocks(inode); 5238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5239 if (IS_ERR(handle)) { 5240 ret = PTR_ERR(handle); 5241 goto out_mmap; 5242 } 5243 5244 down_write(&EXT4_I(inode)->i_data_sem); 5245 ext4_discard_preallocations(inode); 5246 5247 ret = ext4_es_remove_extent(inode, punch_start, 5248 EXT_MAX_BLOCKS - punch_start); 5249 if (ret) { 5250 up_write(&EXT4_I(inode)->i_data_sem); 5251 goto out_stop; 5252 } 5253 5254 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5255 if (ret) { 5256 up_write(&EXT4_I(inode)->i_data_sem); 5257 goto out_stop; 5258 } 5259 ext4_discard_preallocations(inode); 5260 5261 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5262 punch_stop - punch_start, SHIFT_LEFT); 5263 if (ret) { 5264 up_write(&EXT4_I(inode)->i_data_sem); 5265 goto out_stop; 5266 } 5267 5268 new_size = inode->i_size - len; 5269 i_size_write(inode, new_size); 5270 EXT4_I(inode)->i_disksize = new_size; 5271 5272 up_write(&EXT4_I(inode)->i_data_sem); 5273 if (IS_SYNC(inode)) 5274 ext4_handle_sync(handle); 5275 inode->i_mtime = inode->i_ctime = current_time(inode); 5276 ext4_mark_inode_dirty(handle, inode); 5277 ext4_update_inode_fsync_trans(handle, inode, 1); 5278 5279 out_stop: 5280 ext4_journal_stop(handle); 5281 out_mmap: 5282 up_write(&EXT4_I(inode)->i_mmap_sem); 5283 out_mutex: 5284 inode_unlock(inode); 5285 return ret; 5286 } 5287 5288 /* 5289 * ext4_insert_range: 5290 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate. 5291 * The data blocks starting from @offset to the EOF are shifted by @len 5292 * towards right to create a hole in the @inode. Inode size is increased 5293 * by len bytes. 5294 * Returns 0 on success, error otherwise. 5295 */ 5296 static int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len) 5297 { 5298 struct super_block *sb = inode->i_sb; 5299 handle_t *handle; 5300 struct ext4_ext_path *path; 5301 struct ext4_extent *extent; 5302 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0; 5303 unsigned int credits, ee_len; 5304 int ret = 0, depth, split_flag = 0; 5305 loff_t ioffset; 5306 5307 /* 5308 * We need to test this early because xfstests assumes that an 5309 * insert range of (0, 1) will return EOPNOTSUPP if the file 5310 * system does not support insert range. 5311 */ 5312 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5313 return -EOPNOTSUPP; 5314 5315 /* Insert range works only on fs cluster size aligned regions. */ 5316 if (!IS_ALIGNED(offset | len, EXT4_CLUSTER_SIZE(sb))) 5317 return -EINVAL; 5318 5319 trace_ext4_insert_range(inode, offset, len); 5320 5321 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5322 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb); 5323 5324 /* Call ext4_force_commit to flush all data in case of data=journal */ 5325 if (ext4_should_journal_data(inode)) { 5326 ret = ext4_force_commit(inode->i_sb); 5327 if (ret) 5328 return ret; 5329 } 5330 5331 inode_lock(inode); 5332 /* Currently just for extent based files */ 5333 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5334 ret = -EOPNOTSUPP; 5335 goto out_mutex; 5336 } 5337 5338 /* Check whether the maximum file size would be exceeded */ 5339 if (len > inode->i_sb->s_maxbytes - inode->i_size) { 5340 ret = -EFBIG; 5341 goto out_mutex; 5342 } 5343 5344 /* Offset must be less than i_size */ 5345 if (offset >= inode->i_size) { 5346 ret = -EINVAL; 5347 goto out_mutex; 5348 } 5349 5350 /* Wait for existing dio to complete */ 5351 inode_dio_wait(inode); 5352 5353 /* 5354 * Prevent page faults from reinstantiating pages we have released from 5355 * page cache. 5356 */ 5357 down_write(&EXT4_I(inode)->i_mmap_sem); 5358 5359 ret = ext4_break_layouts(inode); 5360 if (ret) 5361 goto out_mmap; 5362 5363 /* 5364 * Need to round down to align start offset to page size boundary 5365 * for page size > block size. 5366 */ 5367 ioffset = round_down(offset, PAGE_SIZE); 5368 /* Write out all dirty pages */ 5369 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5370 LLONG_MAX); 5371 if (ret) 5372 goto out_mmap; 5373 truncate_pagecache(inode, ioffset); 5374 5375 credits = ext4_writepage_trans_blocks(inode); 5376 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5377 if (IS_ERR(handle)) { 5378 ret = PTR_ERR(handle); 5379 goto out_mmap; 5380 } 5381 5382 /* Expand file to avoid data loss if there is error while shifting */ 5383 inode->i_size += len; 5384 EXT4_I(inode)->i_disksize += len; 5385 inode->i_mtime = inode->i_ctime = current_time(inode); 5386 ret = ext4_mark_inode_dirty(handle, inode); 5387 if (ret) 5388 goto out_stop; 5389 5390 down_write(&EXT4_I(inode)->i_data_sem); 5391 ext4_discard_preallocations(inode); 5392 5393 path = ext4_find_extent(inode, offset_lblk, NULL, 0); 5394 if (IS_ERR(path)) { 5395 up_write(&EXT4_I(inode)->i_data_sem); 5396 goto out_stop; 5397 } 5398 5399 depth = ext_depth(inode); 5400 extent = path[depth].p_ext; 5401 if (extent) { 5402 ee_start_lblk = le32_to_cpu(extent->ee_block); 5403 ee_len = ext4_ext_get_actual_len(extent); 5404 5405 /* 5406 * If offset_lblk is not the starting block of extent, split 5407 * the extent @offset_lblk 5408 */ 5409 if ((offset_lblk > ee_start_lblk) && 5410 (offset_lblk < (ee_start_lblk + ee_len))) { 5411 if (ext4_ext_is_unwritten(extent)) 5412 split_flag = EXT4_EXT_MARK_UNWRIT1 | 5413 EXT4_EXT_MARK_UNWRIT2; 5414 ret = ext4_split_extent_at(handle, inode, &path, 5415 offset_lblk, split_flag, 5416 EXT4_EX_NOCACHE | 5417 EXT4_GET_BLOCKS_PRE_IO | 5418 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5419 } 5420 5421 ext4_ext_drop_refs(path); 5422 kfree(path); 5423 if (ret < 0) { 5424 up_write(&EXT4_I(inode)->i_data_sem); 5425 goto out_stop; 5426 } 5427 } else { 5428 ext4_ext_drop_refs(path); 5429 kfree(path); 5430 } 5431 5432 ret = ext4_es_remove_extent(inode, offset_lblk, 5433 EXT_MAX_BLOCKS - offset_lblk); 5434 if (ret) { 5435 up_write(&EXT4_I(inode)->i_data_sem); 5436 goto out_stop; 5437 } 5438 5439 /* 5440 * if offset_lblk lies in a hole which is at start of file, use 5441 * ee_start_lblk to shift extents 5442 */ 5443 ret = ext4_ext_shift_extents(inode, handle, 5444 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk, 5445 len_lblk, SHIFT_RIGHT); 5446 5447 up_write(&EXT4_I(inode)->i_data_sem); 5448 if (IS_SYNC(inode)) 5449 ext4_handle_sync(handle); 5450 if (ret >= 0) 5451 ext4_update_inode_fsync_trans(handle, inode, 1); 5452 5453 out_stop: 5454 ext4_journal_stop(handle); 5455 out_mmap: 5456 up_write(&EXT4_I(inode)->i_mmap_sem); 5457 out_mutex: 5458 inode_unlock(inode); 5459 return ret; 5460 } 5461 5462 /** 5463 * ext4_swap_extents() - Swap extents between two inodes 5464 * @handle: handle for this transaction 5465 * @inode1: First inode 5466 * @inode2: Second inode 5467 * @lblk1: Start block for first inode 5468 * @lblk2: Start block for second inode 5469 * @count: Number of blocks to swap 5470 * @unwritten: Mark second inode's extents as unwritten after swap 5471 * @erp: Pointer to save error value 5472 * 5473 * This helper routine does exactly what is promise "swap extents". All other 5474 * stuff such as page-cache locking consistency, bh mapping consistency or 5475 * extent's data copying must be performed by caller. 5476 * Locking: 5477 * i_mutex is held for both inodes 5478 * i_data_sem is locked for write for both inodes 5479 * Assumptions: 5480 * All pages from requested range are locked for both inodes 5481 */ 5482 int 5483 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5484 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5485 ext4_lblk_t count, int unwritten, int *erp) 5486 { 5487 struct ext4_ext_path *path1 = NULL; 5488 struct ext4_ext_path *path2 = NULL; 5489 int replaced_count = 0; 5490 5491 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5492 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5493 BUG_ON(!inode_is_locked(inode1)); 5494 BUG_ON(!inode_is_locked(inode2)); 5495 5496 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5497 if (unlikely(*erp)) 5498 return 0; 5499 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5500 if (unlikely(*erp)) 5501 return 0; 5502 5503 while (count) { 5504 struct ext4_extent *ex1, *ex2, tmp_ex; 5505 ext4_lblk_t e1_blk, e2_blk; 5506 int e1_len, e2_len, len; 5507 int split = 0; 5508 5509 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5510 if (IS_ERR(path1)) { 5511 *erp = PTR_ERR(path1); 5512 path1 = NULL; 5513 finish: 5514 count = 0; 5515 goto repeat; 5516 } 5517 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5518 if (IS_ERR(path2)) { 5519 *erp = PTR_ERR(path2); 5520 path2 = NULL; 5521 goto finish; 5522 } 5523 ex1 = path1[path1->p_depth].p_ext; 5524 ex2 = path2[path2->p_depth].p_ext; 5525 /* Do we have somthing to swap ? */ 5526 if (unlikely(!ex2 || !ex1)) 5527 goto finish; 5528 5529 e1_blk = le32_to_cpu(ex1->ee_block); 5530 e2_blk = le32_to_cpu(ex2->ee_block); 5531 e1_len = ext4_ext_get_actual_len(ex1); 5532 e2_len = ext4_ext_get_actual_len(ex2); 5533 5534 /* Hole handling */ 5535 if (!in_range(lblk1, e1_blk, e1_len) || 5536 !in_range(lblk2, e2_blk, e2_len)) { 5537 ext4_lblk_t next1, next2; 5538 5539 /* if hole after extent, then go to next extent */ 5540 next1 = ext4_ext_next_allocated_block(path1); 5541 next2 = ext4_ext_next_allocated_block(path2); 5542 /* If hole before extent, then shift to that extent */ 5543 if (e1_blk > lblk1) 5544 next1 = e1_blk; 5545 if (e2_blk > lblk2) 5546 next2 = e2_blk; 5547 /* Do we have something to swap */ 5548 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5549 goto finish; 5550 /* Move to the rightest boundary */ 5551 len = next1 - lblk1; 5552 if (len < next2 - lblk2) 5553 len = next2 - lblk2; 5554 if (len > count) 5555 len = count; 5556 lblk1 += len; 5557 lblk2 += len; 5558 count -= len; 5559 goto repeat; 5560 } 5561 5562 /* Prepare left boundary */ 5563 if (e1_blk < lblk1) { 5564 split = 1; 5565 *erp = ext4_force_split_extent_at(handle, inode1, 5566 &path1, lblk1, 0); 5567 if (unlikely(*erp)) 5568 goto finish; 5569 } 5570 if (e2_blk < lblk2) { 5571 split = 1; 5572 *erp = ext4_force_split_extent_at(handle, inode2, 5573 &path2, lblk2, 0); 5574 if (unlikely(*erp)) 5575 goto finish; 5576 } 5577 /* ext4_split_extent_at() may result in leaf extent split, 5578 * path must to be revalidated. */ 5579 if (split) 5580 goto repeat; 5581 5582 /* Prepare right boundary */ 5583 len = count; 5584 if (len > e1_blk + e1_len - lblk1) 5585 len = e1_blk + e1_len - lblk1; 5586 if (len > e2_blk + e2_len - lblk2) 5587 len = e2_blk + e2_len - lblk2; 5588 5589 if (len != e1_len) { 5590 split = 1; 5591 *erp = ext4_force_split_extent_at(handle, inode1, 5592 &path1, lblk1 + len, 0); 5593 if (unlikely(*erp)) 5594 goto finish; 5595 } 5596 if (len != e2_len) { 5597 split = 1; 5598 *erp = ext4_force_split_extent_at(handle, inode2, 5599 &path2, lblk2 + len, 0); 5600 if (*erp) 5601 goto finish; 5602 } 5603 /* ext4_split_extent_at() may result in leaf extent split, 5604 * path must to be revalidated. */ 5605 if (split) 5606 goto repeat; 5607 5608 BUG_ON(e2_len != e1_len); 5609 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5610 if (unlikely(*erp)) 5611 goto finish; 5612 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5613 if (unlikely(*erp)) 5614 goto finish; 5615 5616 /* Both extents are fully inside boundaries. Swap it now */ 5617 tmp_ex = *ex1; 5618 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5619 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5620 ex1->ee_len = cpu_to_le16(e2_len); 5621 ex2->ee_len = cpu_to_le16(e1_len); 5622 if (unwritten) 5623 ext4_ext_mark_unwritten(ex2); 5624 if (ext4_ext_is_unwritten(&tmp_ex)) 5625 ext4_ext_mark_unwritten(ex1); 5626 5627 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5628 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5629 *erp = ext4_ext_dirty(handle, inode2, path2 + 5630 path2->p_depth); 5631 if (unlikely(*erp)) 5632 goto finish; 5633 *erp = ext4_ext_dirty(handle, inode1, path1 + 5634 path1->p_depth); 5635 /* 5636 * Looks scarry ah..? second inode already points to new blocks, 5637 * and it was successfully dirtied. But luckily error may happen 5638 * only due to journal error, so full transaction will be 5639 * aborted anyway. 5640 */ 5641 if (unlikely(*erp)) 5642 goto finish; 5643 lblk1 += len; 5644 lblk2 += len; 5645 replaced_count += len; 5646 count -= len; 5647 5648 repeat: 5649 ext4_ext_drop_refs(path1); 5650 kfree(path1); 5651 ext4_ext_drop_refs(path2); 5652 kfree(path2); 5653 path1 = path2 = NULL; 5654 } 5655 return replaced_count; 5656 } 5657 5658 /* 5659 * ext4_clu_mapped - determine whether any block in a logical cluster has 5660 * been mapped to a physical cluster 5661 * 5662 * @inode - file containing the logical cluster 5663 * @lclu - logical cluster of interest 5664 * 5665 * Returns 1 if any block in the logical cluster is mapped, signifying 5666 * that a physical cluster has been allocated for it. Otherwise, 5667 * returns 0. Can also return negative error codes. Derived from 5668 * ext4_ext_map_blocks(). 5669 */ 5670 int ext4_clu_mapped(struct inode *inode, ext4_lblk_t lclu) 5671 { 5672 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5673 struct ext4_ext_path *path; 5674 int depth, mapped = 0, err = 0; 5675 struct ext4_extent *extent; 5676 ext4_lblk_t first_lblk, first_lclu, last_lclu; 5677 5678 /* search for the extent closest to the first block in the cluster */ 5679 path = ext4_find_extent(inode, EXT4_C2B(sbi, lclu), NULL, 0); 5680 if (IS_ERR(path)) { 5681 err = PTR_ERR(path); 5682 path = NULL; 5683 goto out; 5684 } 5685 5686 depth = ext_depth(inode); 5687 5688 /* 5689 * A consistent leaf must not be empty. This situation is possible, 5690 * though, _during_ tree modification, and it's why an assert can't 5691 * be put in ext4_find_extent(). 5692 */ 5693 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 5694 EXT4_ERROR_INODE(inode, 5695 "bad extent address - lblock: %lu, depth: %d, pblock: %lld", 5696 (unsigned long) EXT4_C2B(sbi, lclu), 5697 depth, path[depth].p_block); 5698 err = -EFSCORRUPTED; 5699 goto out; 5700 } 5701 5702 extent = path[depth].p_ext; 5703 5704 /* can't be mapped if the extent tree is empty */ 5705 if (extent == NULL) 5706 goto out; 5707 5708 first_lblk = le32_to_cpu(extent->ee_block); 5709 first_lclu = EXT4_B2C(sbi, first_lblk); 5710 5711 /* 5712 * Three possible outcomes at this point - found extent spanning 5713 * the target cluster, to the left of the target cluster, or to the 5714 * right of the target cluster. The first two cases are handled here. 5715 * The last case indicates the target cluster is not mapped. 5716 */ 5717 if (lclu >= first_lclu) { 5718 last_lclu = EXT4_B2C(sbi, first_lblk + 5719 ext4_ext_get_actual_len(extent) - 1); 5720 if (lclu <= last_lclu) { 5721 mapped = 1; 5722 } else { 5723 first_lblk = ext4_ext_next_allocated_block(path); 5724 first_lclu = EXT4_B2C(sbi, first_lblk); 5725 if (lclu == first_lclu) 5726 mapped = 1; 5727 } 5728 } 5729 5730 out: 5731 ext4_ext_drop_refs(path); 5732 kfree(path); 5733 5734 return err ? err : mapped; 5735 } 5736