1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * Architecture independence: 6 * Copyright (c) 2005, Bull S.A. 7 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 21 */ 22 23 /* 24 * Extents support for EXT4 25 * 26 * TODO: 27 * - ext4*_error() should be used in some situations 28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 29 * - smart tree reduction 30 */ 31 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/jbd2.h> 35 #include <linux/highuid.h> 36 #include <linux/pagemap.h> 37 #include <linux/quotaops.h> 38 #include <linux/string.h> 39 #include <linux/slab.h> 40 #include <asm/uaccess.h> 41 #include <linux/fiemap.h> 42 #include <linux/backing-dev.h> 43 #include "ext4_jbd2.h" 44 #include "ext4_extents.h" 45 #include "xattr.h" 46 47 #include <trace/events/ext4.h> 48 49 /* 50 * used by extent splitting. 51 */ 52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 53 due to ENOSPC */ 54 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 55 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 56 57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 59 60 static __le32 ext4_extent_block_csum(struct inode *inode, 61 struct ext4_extent_header *eh) 62 { 63 struct ext4_inode_info *ei = EXT4_I(inode); 64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 65 __u32 csum; 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 68 EXT4_EXTENT_TAIL_OFFSET(eh)); 69 return cpu_to_le32(csum); 70 } 71 72 static int ext4_extent_block_csum_verify(struct inode *inode, 73 struct ext4_extent_header *eh) 74 { 75 struct ext4_extent_tail *et; 76 77 if (!ext4_has_metadata_csum(inode->i_sb)) 78 return 1; 79 80 et = find_ext4_extent_tail(eh); 81 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 82 return 0; 83 return 1; 84 } 85 86 static void ext4_extent_block_csum_set(struct inode *inode, 87 struct ext4_extent_header *eh) 88 { 89 struct ext4_extent_tail *et; 90 91 if (!ext4_has_metadata_csum(inode->i_sb)) 92 return; 93 94 et = find_ext4_extent_tail(eh); 95 et->et_checksum = ext4_extent_block_csum(inode, eh); 96 } 97 98 static int ext4_split_extent(handle_t *handle, 99 struct inode *inode, 100 struct ext4_ext_path **ppath, 101 struct ext4_map_blocks *map, 102 int split_flag, 103 int flags); 104 105 static int ext4_split_extent_at(handle_t *handle, 106 struct inode *inode, 107 struct ext4_ext_path **ppath, 108 ext4_lblk_t split, 109 int split_flag, 110 int flags); 111 112 static int ext4_find_delayed_extent(struct inode *inode, 113 struct extent_status *newes); 114 115 static int ext4_ext_truncate_extend_restart(handle_t *handle, 116 struct inode *inode, 117 int needed) 118 { 119 int err; 120 121 if (!ext4_handle_valid(handle)) 122 return 0; 123 if (handle->h_buffer_credits >= needed) 124 return 0; 125 /* 126 * If we need to extend the journal get a few extra blocks 127 * while we're at it for efficiency's sake. 128 */ 129 needed += 3; 130 err = ext4_journal_extend(handle, needed - handle->h_buffer_credits); 131 if (err <= 0) 132 return err; 133 err = ext4_truncate_restart_trans(handle, inode, needed); 134 if (err == 0) 135 err = -EAGAIN; 136 137 return err; 138 } 139 140 /* 141 * could return: 142 * - EROFS 143 * - ENOMEM 144 */ 145 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 146 struct ext4_ext_path *path) 147 { 148 if (path->p_bh) { 149 /* path points to block */ 150 BUFFER_TRACE(path->p_bh, "get_write_access"); 151 return ext4_journal_get_write_access(handle, path->p_bh); 152 } 153 /* path points to leaf/index in inode body */ 154 /* we use in-core data, no need to protect them */ 155 return 0; 156 } 157 158 /* 159 * could return: 160 * - EROFS 161 * - ENOMEM 162 * - EIO 163 */ 164 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 165 struct inode *inode, struct ext4_ext_path *path) 166 { 167 int err; 168 169 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 170 if (path->p_bh) { 171 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 172 /* path points to block */ 173 err = __ext4_handle_dirty_metadata(where, line, handle, 174 inode, path->p_bh); 175 } else { 176 /* path points to leaf/index in inode body */ 177 err = ext4_mark_inode_dirty(handle, inode); 178 } 179 return err; 180 } 181 182 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 183 struct ext4_ext_path *path, 184 ext4_lblk_t block) 185 { 186 if (path) { 187 int depth = path->p_depth; 188 struct ext4_extent *ex; 189 190 /* 191 * Try to predict block placement assuming that we are 192 * filling in a file which will eventually be 193 * non-sparse --- i.e., in the case of libbfd writing 194 * an ELF object sections out-of-order but in a way 195 * the eventually results in a contiguous object or 196 * executable file, or some database extending a table 197 * space file. However, this is actually somewhat 198 * non-ideal if we are writing a sparse file such as 199 * qemu or KVM writing a raw image file that is going 200 * to stay fairly sparse, since it will end up 201 * fragmenting the file system's free space. Maybe we 202 * should have some hueristics or some way to allow 203 * userspace to pass a hint to file system, 204 * especially if the latter case turns out to be 205 * common. 206 */ 207 ex = path[depth].p_ext; 208 if (ex) { 209 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 210 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 211 212 if (block > ext_block) 213 return ext_pblk + (block - ext_block); 214 else 215 return ext_pblk - (ext_block - block); 216 } 217 218 /* it looks like index is empty; 219 * try to find starting block from index itself */ 220 if (path[depth].p_bh) 221 return path[depth].p_bh->b_blocknr; 222 } 223 224 /* OK. use inode's group */ 225 return ext4_inode_to_goal_block(inode); 226 } 227 228 /* 229 * Allocation for a meta data block 230 */ 231 static ext4_fsblk_t 232 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 233 struct ext4_ext_path *path, 234 struct ext4_extent *ex, int *err, unsigned int flags) 235 { 236 ext4_fsblk_t goal, newblock; 237 238 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 239 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 240 NULL, err); 241 return newblock; 242 } 243 244 static inline int ext4_ext_space_block(struct inode *inode, int check) 245 { 246 int size; 247 248 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 249 / sizeof(struct ext4_extent); 250 #ifdef AGGRESSIVE_TEST 251 if (!check && size > 6) 252 size = 6; 253 #endif 254 return size; 255 } 256 257 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 258 { 259 int size; 260 261 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 262 / sizeof(struct ext4_extent_idx); 263 #ifdef AGGRESSIVE_TEST 264 if (!check && size > 5) 265 size = 5; 266 #endif 267 return size; 268 } 269 270 static inline int ext4_ext_space_root(struct inode *inode, int check) 271 { 272 int size; 273 274 size = sizeof(EXT4_I(inode)->i_data); 275 size -= sizeof(struct ext4_extent_header); 276 size /= sizeof(struct ext4_extent); 277 #ifdef AGGRESSIVE_TEST 278 if (!check && size > 3) 279 size = 3; 280 #endif 281 return size; 282 } 283 284 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 285 { 286 int size; 287 288 size = sizeof(EXT4_I(inode)->i_data); 289 size -= sizeof(struct ext4_extent_header); 290 size /= sizeof(struct ext4_extent_idx); 291 #ifdef AGGRESSIVE_TEST 292 if (!check && size > 4) 293 size = 4; 294 #endif 295 return size; 296 } 297 298 static inline int 299 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 300 struct ext4_ext_path **ppath, ext4_lblk_t lblk, 301 int nofail) 302 { 303 struct ext4_ext_path *path = *ppath; 304 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 305 306 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ? 307 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 308 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO | 309 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0)); 310 } 311 312 /* 313 * Calculate the number of metadata blocks needed 314 * to allocate @blocks 315 * Worse case is one block per extent 316 */ 317 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 318 { 319 struct ext4_inode_info *ei = EXT4_I(inode); 320 int idxs; 321 322 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 323 / sizeof(struct ext4_extent_idx)); 324 325 /* 326 * If the new delayed allocation block is contiguous with the 327 * previous da block, it can share index blocks with the 328 * previous block, so we only need to allocate a new index 329 * block every idxs leaf blocks. At ldxs**2 blocks, we need 330 * an additional index block, and at ldxs**3 blocks, yet 331 * another index blocks. 332 */ 333 if (ei->i_da_metadata_calc_len && 334 ei->i_da_metadata_calc_last_lblock+1 == lblock) { 335 int num = 0; 336 337 if ((ei->i_da_metadata_calc_len % idxs) == 0) 338 num++; 339 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) 340 num++; 341 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { 342 num++; 343 ei->i_da_metadata_calc_len = 0; 344 } else 345 ei->i_da_metadata_calc_len++; 346 ei->i_da_metadata_calc_last_lblock++; 347 return num; 348 } 349 350 /* 351 * In the worst case we need a new set of index blocks at 352 * every level of the inode's extent tree. 353 */ 354 ei->i_da_metadata_calc_len = 1; 355 ei->i_da_metadata_calc_last_lblock = lblock; 356 return ext_depth(inode) + 1; 357 } 358 359 static int 360 ext4_ext_max_entries(struct inode *inode, int depth) 361 { 362 int max; 363 364 if (depth == ext_depth(inode)) { 365 if (depth == 0) 366 max = ext4_ext_space_root(inode, 1); 367 else 368 max = ext4_ext_space_root_idx(inode, 1); 369 } else { 370 if (depth == 0) 371 max = ext4_ext_space_block(inode, 1); 372 else 373 max = ext4_ext_space_block_idx(inode, 1); 374 } 375 376 return max; 377 } 378 379 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 380 { 381 ext4_fsblk_t block = ext4_ext_pblock(ext); 382 int len = ext4_ext_get_actual_len(ext); 383 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 384 ext4_lblk_t last = lblock + len - 1; 385 386 if (len == 0 || lblock > last) 387 return 0; 388 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); 389 } 390 391 static int ext4_valid_extent_idx(struct inode *inode, 392 struct ext4_extent_idx *ext_idx) 393 { 394 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 395 396 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); 397 } 398 399 static int ext4_valid_extent_entries(struct inode *inode, 400 struct ext4_extent_header *eh, 401 int depth) 402 { 403 unsigned short entries; 404 if (eh->eh_entries == 0) 405 return 1; 406 407 entries = le16_to_cpu(eh->eh_entries); 408 409 if (depth == 0) { 410 /* leaf entries */ 411 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 412 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 413 ext4_fsblk_t pblock = 0; 414 ext4_lblk_t lblock = 0; 415 ext4_lblk_t prev = 0; 416 int len = 0; 417 while (entries) { 418 if (!ext4_valid_extent(inode, ext)) 419 return 0; 420 421 /* Check for overlapping extents */ 422 lblock = le32_to_cpu(ext->ee_block); 423 len = ext4_ext_get_actual_len(ext); 424 if ((lblock <= prev) && prev) { 425 pblock = ext4_ext_pblock(ext); 426 es->s_last_error_block = cpu_to_le64(pblock); 427 return 0; 428 } 429 ext++; 430 entries--; 431 prev = lblock + len - 1; 432 } 433 } else { 434 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 435 while (entries) { 436 if (!ext4_valid_extent_idx(inode, ext_idx)) 437 return 0; 438 ext_idx++; 439 entries--; 440 } 441 } 442 return 1; 443 } 444 445 static int __ext4_ext_check(const char *function, unsigned int line, 446 struct inode *inode, struct ext4_extent_header *eh, 447 int depth, ext4_fsblk_t pblk) 448 { 449 const char *error_msg; 450 int max = 0, err = -EFSCORRUPTED; 451 452 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 453 error_msg = "invalid magic"; 454 goto corrupted; 455 } 456 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 457 error_msg = "unexpected eh_depth"; 458 goto corrupted; 459 } 460 if (unlikely(eh->eh_max == 0)) { 461 error_msg = "invalid eh_max"; 462 goto corrupted; 463 } 464 max = ext4_ext_max_entries(inode, depth); 465 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 466 error_msg = "too large eh_max"; 467 goto corrupted; 468 } 469 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 470 error_msg = "invalid eh_entries"; 471 goto corrupted; 472 } 473 if (!ext4_valid_extent_entries(inode, eh, depth)) { 474 error_msg = "invalid extent entries"; 475 goto corrupted; 476 } 477 /* Verify checksum on non-root extent tree nodes */ 478 if (ext_depth(inode) != depth && 479 !ext4_extent_block_csum_verify(inode, eh)) { 480 error_msg = "extent tree corrupted"; 481 err = -EFSBADCRC; 482 goto corrupted; 483 } 484 return 0; 485 486 corrupted: 487 ext4_error_inode(inode, function, line, 0, 488 "pblk %llu bad header/extent: %s - magic %x, " 489 "entries %u, max %u(%u), depth %u(%u)", 490 (unsigned long long) pblk, error_msg, 491 le16_to_cpu(eh->eh_magic), 492 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), 493 max, le16_to_cpu(eh->eh_depth), depth); 494 return err; 495 } 496 497 #define ext4_ext_check(inode, eh, depth, pblk) \ 498 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 499 500 int ext4_ext_check_inode(struct inode *inode) 501 { 502 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 503 } 504 505 static struct buffer_head * 506 __read_extent_tree_block(const char *function, unsigned int line, 507 struct inode *inode, ext4_fsblk_t pblk, int depth, 508 int flags) 509 { 510 struct buffer_head *bh; 511 int err; 512 513 bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS); 514 if (unlikely(!bh)) 515 return ERR_PTR(-ENOMEM); 516 517 if (!bh_uptodate_or_lock(bh)) { 518 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 519 err = bh_submit_read(bh); 520 if (err < 0) 521 goto errout; 522 } 523 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 524 return bh; 525 err = __ext4_ext_check(function, line, inode, 526 ext_block_hdr(bh), depth, pblk); 527 if (err) 528 goto errout; 529 set_buffer_verified(bh); 530 /* 531 * If this is a leaf block, cache all of its entries 532 */ 533 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 534 struct ext4_extent_header *eh = ext_block_hdr(bh); 535 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 536 ext4_lblk_t prev = 0; 537 int i; 538 539 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 540 unsigned int status = EXTENT_STATUS_WRITTEN; 541 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 542 int len = ext4_ext_get_actual_len(ex); 543 544 if (prev && (prev != lblk)) 545 ext4_es_cache_extent(inode, prev, 546 lblk - prev, ~0, 547 EXTENT_STATUS_HOLE); 548 549 if (ext4_ext_is_unwritten(ex)) 550 status = EXTENT_STATUS_UNWRITTEN; 551 ext4_es_cache_extent(inode, lblk, len, 552 ext4_ext_pblock(ex), status); 553 prev = lblk + len; 554 } 555 } 556 return bh; 557 errout: 558 put_bh(bh); 559 return ERR_PTR(err); 560 561 } 562 563 #define read_extent_tree_block(inode, pblk, depth, flags) \ 564 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 565 (depth), (flags)) 566 567 /* 568 * This function is called to cache a file's extent information in the 569 * extent status tree 570 */ 571 int ext4_ext_precache(struct inode *inode) 572 { 573 struct ext4_inode_info *ei = EXT4_I(inode); 574 struct ext4_ext_path *path = NULL; 575 struct buffer_head *bh; 576 int i = 0, depth, ret = 0; 577 578 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 579 return 0; /* not an extent-mapped inode */ 580 581 down_read(&ei->i_data_sem); 582 depth = ext_depth(inode); 583 584 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 585 GFP_NOFS); 586 if (path == NULL) { 587 up_read(&ei->i_data_sem); 588 return -ENOMEM; 589 } 590 591 /* Don't cache anything if there are no external extent blocks */ 592 if (depth == 0) 593 goto out; 594 path[0].p_hdr = ext_inode_hdr(inode); 595 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 596 if (ret) 597 goto out; 598 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 599 while (i >= 0) { 600 /* 601 * If this is a leaf block or we've reached the end of 602 * the index block, go up 603 */ 604 if ((i == depth) || 605 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 606 brelse(path[i].p_bh); 607 path[i].p_bh = NULL; 608 i--; 609 continue; 610 } 611 bh = read_extent_tree_block(inode, 612 ext4_idx_pblock(path[i].p_idx++), 613 depth - i - 1, 614 EXT4_EX_FORCE_CACHE); 615 if (IS_ERR(bh)) { 616 ret = PTR_ERR(bh); 617 break; 618 } 619 i++; 620 path[i].p_bh = bh; 621 path[i].p_hdr = ext_block_hdr(bh); 622 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 623 } 624 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 625 out: 626 up_read(&ei->i_data_sem); 627 ext4_ext_drop_refs(path); 628 kfree(path); 629 return ret; 630 } 631 632 #ifdef EXT_DEBUG 633 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 634 { 635 int k, l = path->p_depth; 636 637 ext_debug("path:"); 638 for (k = 0; k <= l; k++, path++) { 639 if (path->p_idx) { 640 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block), 641 ext4_idx_pblock(path->p_idx)); 642 } else if (path->p_ext) { 643 ext_debug(" %d:[%d]%d:%llu ", 644 le32_to_cpu(path->p_ext->ee_block), 645 ext4_ext_is_unwritten(path->p_ext), 646 ext4_ext_get_actual_len(path->p_ext), 647 ext4_ext_pblock(path->p_ext)); 648 } else 649 ext_debug(" []"); 650 } 651 ext_debug("\n"); 652 } 653 654 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 655 { 656 int depth = ext_depth(inode); 657 struct ext4_extent_header *eh; 658 struct ext4_extent *ex; 659 int i; 660 661 if (!path) 662 return; 663 664 eh = path[depth].p_hdr; 665 ex = EXT_FIRST_EXTENT(eh); 666 667 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); 668 669 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 670 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 671 ext4_ext_is_unwritten(ex), 672 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 673 } 674 ext_debug("\n"); 675 } 676 677 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 678 ext4_fsblk_t newblock, int level) 679 { 680 int depth = ext_depth(inode); 681 struct ext4_extent *ex; 682 683 if (depth != level) { 684 struct ext4_extent_idx *idx; 685 idx = path[level].p_idx; 686 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 687 ext_debug("%d: move %d:%llu in new index %llu\n", level, 688 le32_to_cpu(idx->ei_block), 689 ext4_idx_pblock(idx), 690 newblock); 691 idx++; 692 } 693 694 return; 695 } 696 697 ex = path[depth].p_ext; 698 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 699 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", 700 le32_to_cpu(ex->ee_block), 701 ext4_ext_pblock(ex), 702 ext4_ext_is_unwritten(ex), 703 ext4_ext_get_actual_len(ex), 704 newblock); 705 ex++; 706 } 707 } 708 709 #else 710 #define ext4_ext_show_path(inode, path) 711 #define ext4_ext_show_leaf(inode, path) 712 #define ext4_ext_show_move(inode, path, newblock, level) 713 #endif 714 715 void ext4_ext_drop_refs(struct ext4_ext_path *path) 716 { 717 int depth, i; 718 719 if (!path) 720 return; 721 depth = path->p_depth; 722 for (i = 0; i <= depth; i++, path++) 723 if (path->p_bh) { 724 brelse(path->p_bh); 725 path->p_bh = NULL; 726 } 727 } 728 729 /* 730 * ext4_ext_binsearch_idx: 731 * binary search for the closest index of the given block 732 * the header must be checked before calling this 733 */ 734 static void 735 ext4_ext_binsearch_idx(struct inode *inode, 736 struct ext4_ext_path *path, ext4_lblk_t block) 737 { 738 struct ext4_extent_header *eh = path->p_hdr; 739 struct ext4_extent_idx *r, *l, *m; 740 741 742 ext_debug("binsearch for %u(idx): ", block); 743 744 l = EXT_FIRST_INDEX(eh) + 1; 745 r = EXT_LAST_INDEX(eh); 746 while (l <= r) { 747 m = l + (r - l) / 2; 748 if (block < le32_to_cpu(m->ei_block)) 749 r = m - 1; 750 else 751 l = m + 1; 752 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), 753 m, le32_to_cpu(m->ei_block), 754 r, le32_to_cpu(r->ei_block)); 755 } 756 757 path->p_idx = l - 1; 758 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 759 ext4_idx_pblock(path->p_idx)); 760 761 #ifdef CHECK_BINSEARCH 762 { 763 struct ext4_extent_idx *chix, *ix; 764 int k; 765 766 chix = ix = EXT_FIRST_INDEX(eh); 767 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 768 if (k != 0 && 769 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { 770 printk(KERN_DEBUG "k=%d, ix=0x%p, " 771 "first=0x%p\n", k, 772 ix, EXT_FIRST_INDEX(eh)); 773 printk(KERN_DEBUG "%u <= %u\n", 774 le32_to_cpu(ix->ei_block), 775 le32_to_cpu(ix[-1].ei_block)); 776 } 777 BUG_ON(k && le32_to_cpu(ix->ei_block) 778 <= le32_to_cpu(ix[-1].ei_block)); 779 if (block < le32_to_cpu(ix->ei_block)) 780 break; 781 chix = ix; 782 } 783 BUG_ON(chix != path->p_idx); 784 } 785 #endif 786 787 } 788 789 /* 790 * ext4_ext_binsearch: 791 * binary search for closest extent of the given block 792 * the header must be checked before calling this 793 */ 794 static void 795 ext4_ext_binsearch(struct inode *inode, 796 struct ext4_ext_path *path, ext4_lblk_t block) 797 { 798 struct ext4_extent_header *eh = path->p_hdr; 799 struct ext4_extent *r, *l, *m; 800 801 if (eh->eh_entries == 0) { 802 /* 803 * this leaf is empty: 804 * we get such a leaf in split/add case 805 */ 806 return; 807 } 808 809 ext_debug("binsearch for %u: ", block); 810 811 l = EXT_FIRST_EXTENT(eh) + 1; 812 r = EXT_LAST_EXTENT(eh); 813 814 while (l <= r) { 815 m = l + (r - l) / 2; 816 if (block < le32_to_cpu(m->ee_block)) 817 r = m - 1; 818 else 819 l = m + 1; 820 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), 821 m, le32_to_cpu(m->ee_block), 822 r, le32_to_cpu(r->ee_block)); 823 } 824 825 path->p_ext = l - 1; 826 ext_debug(" -> %d:%llu:[%d]%d ", 827 le32_to_cpu(path->p_ext->ee_block), 828 ext4_ext_pblock(path->p_ext), 829 ext4_ext_is_unwritten(path->p_ext), 830 ext4_ext_get_actual_len(path->p_ext)); 831 832 #ifdef CHECK_BINSEARCH 833 { 834 struct ext4_extent *chex, *ex; 835 int k; 836 837 chex = ex = EXT_FIRST_EXTENT(eh); 838 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 839 BUG_ON(k && le32_to_cpu(ex->ee_block) 840 <= le32_to_cpu(ex[-1].ee_block)); 841 if (block < le32_to_cpu(ex->ee_block)) 842 break; 843 chex = ex; 844 } 845 BUG_ON(chex != path->p_ext); 846 } 847 #endif 848 849 } 850 851 int ext4_ext_tree_init(handle_t *handle, struct inode *inode) 852 { 853 struct ext4_extent_header *eh; 854 855 eh = ext_inode_hdr(inode); 856 eh->eh_depth = 0; 857 eh->eh_entries = 0; 858 eh->eh_magic = EXT4_EXT_MAGIC; 859 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 860 ext4_mark_inode_dirty(handle, inode); 861 return 0; 862 } 863 864 struct ext4_ext_path * 865 ext4_find_extent(struct inode *inode, ext4_lblk_t block, 866 struct ext4_ext_path **orig_path, int flags) 867 { 868 struct ext4_extent_header *eh; 869 struct buffer_head *bh; 870 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 871 short int depth, i, ppos = 0; 872 int ret; 873 874 eh = ext_inode_hdr(inode); 875 depth = ext_depth(inode); 876 877 if (path) { 878 ext4_ext_drop_refs(path); 879 if (depth > path[0].p_maxdepth) { 880 kfree(path); 881 *orig_path = path = NULL; 882 } 883 } 884 if (!path) { 885 /* account possible depth increase */ 886 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), 887 GFP_NOFS); 888 if (unlikely(!path)) 889 return ERR_PTR(-ENOMEM); 890 path[0].p_maxdepth = depth + 1; 891 } 892 path[0].p_hdr = eh; 893 path[0].p_bh = NULL; 894 895 i = depth; 896 /* walk through the tree */ 897 while (i) { 898 ext_debug("depth %d: num %d, max %d\n", 899 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 900 901 ext4_ext_binsearch_idx(inode, path + ppos, block); 902 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 903 path[ppos].p_depth = i; 904 path[ppos].p_ext = NULL; 905 906 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 907 flags); 908 if (IS_ERR(bh)) { 909 ret = PTR_ERR(bh); 910 goto err; 911 } 912 913 eh = ext_block_hdr(bh); 914 ppos++; 915 path[ppos].p_bh = bh; 916 path[ppos].p_hdr = eh; 917 } 918 919 path[ppos].p_depth = i; 920 path[ppos].p_ext = NULL; 921 path[ppos].p_idx = NULL; 922 923 /* find extent */ 924 ext4_ext_binsearch(inode, path + ppos, block); 925 /* if not an empty leaf */ 926 if (path[ppos].p_ext) 927 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 928 929 ext4_ext_show_path(inode, path); 930 931 return path; 932 933 err: 934 ext4_ext_drop_refs(path); 935 kfree(path); 936 if (orig_path) 937 *orig_path = NULL; 938 return ERR_PTR(ret); 939 } 940 941 /* 942 * ext4_ext_insert_index: 943 * insert new index [@logical;@ptr] into the block at @curp; 944 * check where to insert: before @curp or after @curp 945 */ 946 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 947 struct ext4_ext_path *curp, 948 int logical, ext4_fsblk_t ptr) 949 { 950 struct ext4_extent_idx *ix; 951 int len, err; 952 953 err = ext4_ext_get_access(handle, inode, curp); 954 if (err) 955 return err; 956 957 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 958 EXT4_ERROR_INODE(inode, 959 "logical %d == ei_block %d!", 960 logical, le32_to_cpu(curp->p_idx->ei_block)); 961 return -EFSCORRUPTED; 962 } 963 964 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 965 >= le16_to_cpu(curp->p_hdr->eh_max))) { 966 EXT4_ERROR_INODE(inode, 967 "eh_entries %d >= eh_max %d!", 968 le16_to_cpu(curp->p_hdr->eh_entries), 969 le16_to_cpu(curp->p_hdr->eh_max)); 970 return -EFSCORRUPTED; 971 } 972 973 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 974 /* insert after */ 975 ext_debug("insert new index %d after: %llu\n", logical, ptr); 976 ix = curp->p_idx + 1; 977 } else { 978 /* insert before */ 979 ext_debug("insert new index %d before: %llu\n", logical, ptr); 980 ix = curp->p_idx; 981 } 982 983 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 984 BUG_ON(len < 0); 985 if (len > 0) { 986 ext_debug("insert new index %d: " 987 "move %d indices from 0x%p to 0x%p\n", 988 logical, len, ix, ix + 1); 989 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 990 } 991 992 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 993 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 994 return -EFSCORRUPTED; 995 } 996 997 ix->ei_block = cpu_to_le32(logical); 998 ext4_idx_store_pblock(ix, ptr); 999 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 1000 1001 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 1002 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 1003 return -EFSCORRUPTED; 1004 } 1005 1006 err = ext4_ext_dirty(handle, inode, curp); 1007 ext4_std_error(inode->i_sb, err); 1008 1009 return err; 1010 } 1011 1012 /* 1013 * ext4_ext_split: 1014 * inserts new subtree into the path, using free index entry 1015 * at depth @at: 1016 * - allocates all needed blocks (new leaf and all intermediate index blocks) 1017 * - makes decision where to split 1018 * - moves remaining extents and index entries (right to the split point) 1019 * into the newly allocated blocks 1020 * - initializes subtree 1021 */ 1022 static int ext4_ext_split(handle_t *handle, struct inode *inode, 1023 unsigned int flags, 1024 struct ext4_ext_path *path, 1025 struct ext4_extent *newext, int at) 1026 { 1027 struct buffer_head *bh = NULL; 1028 int depth = ext_depth(inode); 1029 struct ext4_extent_header *neh; 1030 struct ext4_extent_idx *fidx; 1031 int i = at, k, m, a; 1032 ext4_fsblk_t newblock, oldblock; 1033 __le32 border; 1034 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1035 int err = 0; 1036 1037 /* make decision: where to split? */ 1038 /* FIXME: now decision is simplest: at current extent */ 1039 1040 /* if current leaf will be split, then we should use 1041 * border from split point */ 1042 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1043 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1044 return -EFSCORRUPTED; 1045 } 1046 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1047 border = path[depth].p_ext[1].ee_block; 1048 ext_debug("leaf will be split." 1049 " next leaf starts at %d\n", 1050 le32_to_cpu(border)); 1051 } else { 1052 border = newext->ee_block; 1053 ext_debug("leaf will be added." 1054 " next leaf starts at %d\n", 1055 le32_to_cpu(border)); 1056 } 1057 1058 /* 1059 * If error occurs, then we break processing 1060 * and mark filesystem read-only. index won't 1061 * be inserted and tree will be in consistent 1062 * state. Next mount will repair buffers too. 1063 */ 1064 1065 /* 1066 * Get array to track all allocated blocks. 1067 * We need this to handle errors and free blocks 1068 * upon them. 1069 */ 1070 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); 1071 if (!ablocks) 1072 return -ENOMEM; 1073 1074 /* allocate all needed blocks */ 1075 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); 1076 for (a = 0; a < depth - at; a++) { 1077 newblock = ext4_ext_new_meta_block(handle, inode, path, 1078 newext, &err, flags); 1079 if (newblock == 0) 1080 goto cleanup; 1081 ablocks[a] = newblock; 1082 } 1083 1084 /* initialize new leaf */ 1085 newblock = ablocks[--a]; 1086 if (unlikely(newblock == 0)) { 1087 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1088 err = -EFSCORRUPTED; 1089 goto cleanup; 1090 } 1091 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1092 if (unlikely(!bh)) { 1093 err = -ENOMEM; 1094 goto cleanup; 1095 } 1096 lock_buffer(bh); 1097 1098 err = ext4_journal_get_create_access(handle, bh); 1099 if (err) 1100 goto cleanup; 1101 1102 neh = ext_block_hdr(bh); 1103 neh->eh_entries = 0; 1104 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1105 neh->eh_magic = EXT4_EXT_MAGIC; 1106 neh->eh_depth = 0; 1107 1108 /* move remainder of path[depth] to the new leaf */ 1109 if (unlikely(path[depth].p_hdr->eh_entries != 1110 path[depth].p_hdr->eh_max)) { 1111 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1112 path[depth].p_hdr->eh_entries, 1113 path[depth].p_hdr->eh_max); 1114 err = -EFSCORRUPTED; 1115 goto cleanup; 1116 } 1117 /* start copy from next extent */ 1118 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1119 ext4_ext_show_move(inode, path, newblock, depth); 1120 if (m) { 1121 struct ext4_extent *ex; 1122 ex = EXT_FIRST_EXTENT(neh); 1123 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1124 le16_add_cpu(&neh->eh_entries, m); 1125 } 1126 1127 ext4_extent_block_csum_set(inode, neh); 1128 set_buffer_uptodate(bh); 1129 unlock_buffer(bh); 1130 1131 err = ext4_handle_dirty_metadata(handle, inode, bh); 1132 if (err) 1133 goto cleanup; 1134 brelse(bh); 1135 bh = NULL; 1136 1137 /* correct old leaf */ 1138 if (m) { 1139 err = ext4_ext_get_access(handle, inode, path + depth); 1140 if (err) 1141 goto cleanup; 1142 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1143 err = ext4_ext_dirty(handle, inode, path + depth); 1144 if (err) 1145 goto cleanup; 1146 1147 } 1148 1149 /* create intermediate indexes */ 1150 k = depth - at - 1; 1151 if (unlikely(k < 0)) { 1152 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1153 err = -EFSCORRUPTED; 1154 goto cleanup; 1155 } 1156 if (k) 1157 ext_debug("create %d intermediate indices\n", k); 1158 /* insert new index into current index block */ 1159 /* current depth stored in i var */ 1160 i = depth - 1; 1161 while (k--) { 1162 oldblock = newblock; 1163 newblock = ablocks[--a]; 1164 bh = sb_getblk(inode->i_sb, newblock); 1165 if (unlikely(!bh)) { 1166 err = -ENOMEM; 1167 goto cleanup; 1168 } 1169 lock_buffer(bh); 1170 1171 err = ext4_journal_get_create_access(handle, bh); 1172 if (err) 1173 goto cleanup; 1174 1175 neh = ext_block_hdr(bh); 1176 neh->eh_entries = cpu_to_le16(1); 1177 neh->eh_magic = EXT4_EXT_MAGIC; 1178 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1179 neh->eh_depth = cpu_to_le16(depth - i); 1180 fidx = EXT_FIRST_INDEX(neh); 1181 fidx->ei_block = border; 1182 ext4_idx_store_pblock(fidx, oldblock); 1183 1184 ext_debug("int.index at %d (block %llu): %u -> %llu\n", 1185 i, newblock, le32_to_cpu(border), oldblock); 1186 1187 /* move remainder of path[i] to the new index block */ 1188 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1189 EXT_LAST_INDEX(path[i].p_hdr))) { 1190 EXT4_ERROR_INODE(inode, 1191 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1192 le32_to_cpu(path[i].p_ext->ee_block)); 1193 err = -EFSCORRUPTED; 1194 goto cleanup; 1195 } 1196 /* start copy indexes */ 1197 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1198 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, 1199 EXT_MAX_INDEX(path[i].p_hdr)); 1200 ext4_ext_show_move(inode, path, newblock, i); 1201 if (m) { 1202 memmove(++fidx, path[i].p_idx, 1203 sizeof(struct ext4_extent_idx) * m); 1204 le16_add_cpu(&neh->eh_entries, m); 1205 } 1206 ext4_extent_block_csum_set(inode, neh); 1207 set_buffer_uptodate(bh); 1208 unlock_buffer(bh); 1209 1210 err = ext4_handle_dirty_metadata(handle, inode, bh); 1211 if (err) 1212 goto cleanup; 1213 brelse(bh); 1214 bh = NULL; 1215 1216 /* correct old index */ 1217 if (m) { 1218 err = ext4_ext_get_access(handle, inode, path + i); 1219 if (err) 1220 goto cleanup; 1221 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1222 err = ext4_ext_dirty(handle, inode, path + i); 1223 if (err) 1224 goto cleanup; 1225 } 1226 1227 i--; 1228 } 1229 1230 /* insert new index */ 1231 err = ext4_ext_insert_index(handle, inode, path + at, 1232 le32_to_cpu(border), newblock); 1233 1234 cleanup: 1235 if (bh) { 1236 if (buffer_locked(bh)) 1237 unlock_buffer(bh); 1238 brelse(bh); 1239 } 1240 1241 if (err) { 1242 /* free all allocated blocks in error case */ 1243 for (i = 0; i < depth; i++) { 1244 if (!ablocks[i]) 1245 continue; 1246 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1247 EXT4_FREE_BLOCKS_METADATA); 1248 } 1249 } 1250 kfree(ablocks); 1251 1252 return err; 1253 } 1254 1255 /* 1256 * ext4_ext_grow_indepth: 1257 * implements tree growing procedure: 1258 * - allocates new block 1259 * - moves top-level data (index block or leaf) into the new block 1260 * - initializes new top-level, creating index that points to the 1261 * just created block 1262 */ 1263 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1264 unsigned int flags) 1265 { 1266 struct ext4_extent_header *neh; 1267 struct buffer_head *bh; 1268 ext4_fsblk_t newblock, goal = 0; 1269 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 1270 int err = 0; 1271 1272 /* Try to prepend new index to old one */ 1273 if (ext_depth(inode)) 1274 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); 1275 if (goal > le32_to_cpu(es->s_first_data_block)) { 1276 flags |= EXT4_MB_HINT_TRY_GOAL; 1277 goal--; 1278 } else 1279 goal = ext4_inode_to_goal_block(inode); 1280 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 1281 NULL, &err); 1282 if (newblock == 0) 1283 return err; 1284 1285 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1286 if (unlikely(!bh)) 1287 return -ENOMEM; 1288 lock_buffer(bh); 1289 1290 err = ext4_journal_get_create_access(handle, bh); 1291 if (err) { 1292 unlock_buffer(bh); 1293 goto out; 1294 } 1295 1296 /* move top-level index/leaf into new block */ 1297 memmove(bh->b_data, EXT4_I(inode)->i_data, 1298 sizeof(EXT4_I(inode)->i_data)); 1299 1300 /* set size of new block */ 1301 neh = ext_block_hdr(bh); 1302 /* old root could have indexes or leaves 1303 * so calculate e_max right way */ 1304 if (ext_depth(inode)) 1305 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1306 else 1307 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1308 neh->eh_magic = EXT4_EXT_MAGIC; 1309 ext4_extent_block_csum_set(inode, neh); 1310 set_buffer_uptodate(bh); 1311 unlock_buffer(bh); 1312 1313 err = ext4_handle_dirty_metadata(handle, inode, bh); 1314 if (err) 1315 goto out; 1316 1317 /* Update top-level index: num,max,pointer */ 1318 neh = ext_inode_hdr(inode); 1319 neh->eh_entries = cpu_to_le16(1); 1320 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1321 if (neh->eh_depth == 0) { 1322 /* Root extent block becomes index block */ 1323 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1324 EXT_FIRST_INDEX(neh)->ei_block = 1325 EXT_FIRST_EXTENT(neh)->ee_block; 1326 } 1327 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", 1328 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1329 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1330 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1331 1332 le16_add_cpu(&neh->eh_depth, 1); 1333 ext4_mark_inode_dirty(handle, inode); 1334 out: 1335 brelse(bh); 1336 1337 return err; 1338 } 1339 1340 /* 1341 * ext4_ext_create_new_leaf: 1342 * finds empty index and adds new leaf. 1343 * if no free index is found, then it requests in-depth growing. 1344 */ 1345 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1346 unsigned int mb_flags, 1347 unsigned int gb_flags, 1348 struct ext4_ext_path **ppath, 1349 struct ext4_extent *newext) 1350 { 1351 struct ext4_ext_path *path = *ppath; 1352 struct ext4_ext_path *curp; 1353 int depth, i, err = 0; 1354 1355 repeat: 1356 i = depth = ext_depth(inode); 1357 1358 /* walk up to the tree and look for free index entry */ 1359 curp = path + depth; 1360 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1361 i--; 1362 curp--; 1363 } 1364 1365 /* we use already allocated block for index block, 1366 * so subsequent data blocks should be contiguous */ 1367 if (EXT_HAS_FREE_INDEX(curp)) { 1368 /* if we found index with free entry, then use that 1369 * entry: create all needed subtree and add new leaf */ 1370 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1371 if (err) 1372 goto out; 1373 1374 /* refill path */ 1375 path = ext4_find_extent(inode, 1376 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1377 ppath, gb_flags); 1378 if (IS_ERR(path)) 1379 err = PTR_ERR(path); 1380 } else { 1381 /* tree is full, time to grow in depth */ 1382 err = ext4_ext_grow_indepth(handle, inode, mb_flags); 1383 if (err) 1384 goto out; 1385 1386 /* refill path */ 1387 path = ext4_find_extent(inode, 1388 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1389 ppath, gb_flags); 1390 if (IS_ERR(path)) { 1391 err = PTR_ERR(path); 1392 goto out; 1393 } 1394 1395 /* 1396 * only first (depth 0 -> 1) produces free space; 1397 * in all other cases we have to split the grown tree 1398 */ 1399 depth = ext_depth(inode); 1400 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1401 /* now we need to split */ 1402 goto repeat; 1403 } 1404 } 1405 1406 out: 1407 return err; 1408 } 1409 1410 /* 1411 * search the closest allocated block to the left for *logical 1412 * and returns it at @logical + it's physical address at @phys 1413 * if *logical is the smallest allocated block, the function 1414 * returns 0 at @phys 1415 * return value contains 0 (success) or error code 1416 */ 1417 static int ext4_ext_search_left(struct inode *inode, 1418 struct ext4_ext_path *path, 1419 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1420 { 1421 struct ext4_extent_idx *ix; 1422 struct ext4_extent *ex; 1423 int depth, ee_len; 1424 1425 if (unlikely(path == NULL)) { 1426 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1427 return -EFSCORRUPTED; 1428 } 1429 depth = path->p_depth; 1430 *phys = 0; 1431 1432 if (depth == 0 && path->p_ext == NULL) 1433 return 0; 1434 1435 /* usually extent in the path covers blocks smaller 1436 * then *logical, but it can be that extent is the 1437 * first one in the file */ 1438 1439 ex = path[depth].p_ext; 1440 ee_len = ext4_ext_get_actual_len(ex); 1441 if (*logical < le32_to_cpu(ex->ee_block)) { 1442 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1443 EXT4_ERROR_INODE(inode, 1444 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1445 *logical, le32_to_cpu(ex->ee_block)); 1446 return -EFSCORRUPTED; 1447 } 1448 while (--depth >= 0) { 1449 ix = path[depth].p_idx; 1450 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1451 EXT4_ERROR_INODE(inode, 1452 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1453 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1454 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1455 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1456 depth); 1457 return -EFSCORRUPTED; 1458 } 1459 } 1460 return 0; 1461 } 1462 1463 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1464 EXT4_ERROR_INODE(inode, 1465 "logical %d < ee_block %d + ee_len %d!", 1466 *logical, le32_to_cpu(ex->ee_block), ee_len); 1467 return -EFSCORRUPTED; 1468 } 1469 1470 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1471 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1472 return 0; 1473 } 1474 1475 /* 1476 * search the closest allocated block to the right for *logical 1477 * and returns it at @logical + it's physical address at @phys 1478 * if *logical is the largest allocated block, the function 1479 * returns 0 at @phys 1480 * return value contains 0 (success) or error code 1481 */ 1482 static int ext4_ext_search_right(struct inode *inode, 1483 struct ext4_ext_path *path, 1484 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1485 struct ext4_extent **ret_ex) 1486 { 1487 struct buffer_head *bh = NULL; 1488 struct ext4_extent_header *eh; 1489 struct ext4_extent_idx *ix; 1490 struct ext4_extent *ex; 1491 ext4_fsblk_t block; 1492 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1493 int ee_len; 1494 1495 if (unlikely(path == NULL)) { 1496 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1497 return -EFSCORRUPTED; 1498 } 1499 depth = path->p_depth; 1500 *phys = 0; 1501 1502 if (depth == 0 && path->p_ext == NULL) 1503 return 0; 1504 1505 /* usually extent in the path covers blocks smaller 1506 * then *logical, but it can be that extent is the 1507 * first one in the file */ 1508 1509 ex = path[depth].p_ext; 1510 ee_len = ext4_ext_get_actual_len(ex); 1511 if (*logical < le32_to_cpu(ex->ee_block)) { 1512 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1513 EXT4_ERROR_INODE(inode, 1514 "first_extent(path[%d].p_hdr) != ex", 1515 depth); 1516 return -EFSCORRUPTED; 1517 } 1518 while (--depth >= 0) { 1519 ix = path[depth].p_idx; 1520 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1521 EXT4_ERROR_INODE(inode, 1522 "ix != EXT_FIRST_INDEX *logical %d!", 1523 *logical); 1524 return -EFSCORRUPTED; 1525 } 1526 } 1527 goto found_extent; 1528 } 1529 1530 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1531 EXT4_ERROR_INODE(inode, 1532 "logical %d < ee_block %d + ee_len %d!", 1533 *logical, le32_to_cpu(ex->ee_block), ee_len); 1534 return -EFSCORRUPTED; 1535 } 1536 1537 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1538 /* next allocated block in this leaf */ 1539 ex++; 1540 goto found_extent; 1541 } 1542 1543 /* go up and search for index to the right */ 1544 while (--depth >= 0) { 1545 ix = path[depth].p_idx; 1546 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1547 goto got_index; 1548 } 1549 1550 /* we've gone up to the root and found no index to the right */ 1551 return 0; 1552 1553 got_index: 1554 /* we've found index to the right, let's 1555 * follow it and find the closest allocated 1556 * block to the right */ 1557 ix++; 1558 block = ext4_idx_pblock(ix); 1559 while (++depth < path->p_depth) { 1560 /* subtract from p_depth to get proper eh_depth */ 1561 bh = read_extent_tree_block(inode, block, 1562 path->p_depth - depth, 0); 1563 if (IS_ERR(bh)) 1564 return PTR_ERR(bh); 1565 eh = ext_block_hdr(bh); 1566 ix = EXT_FIRST_INDEX(eh); 1567 block = ext4_idx_pblock(ix); 1568 put_bh(bh); 1569 } 1570 1571 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1572 if (IS_ERR(bh)) 1573 return PTR_ERR(bh); 1574 eh = ext_block_hdr(bh); 1575 ex = EXT_FIRST_EXTENT(eh); 1576 found_extent: 1577 *logical = le32_to_cpu(ex->ee_block); 1578 *phys = ext4_ext_pblock(ex); 1579 *ret_ex = ex; 1580 if (bh) 1581 put_bh(bh); 1582 return 0; 1583 } 1584 1585 /* 1586 * ext4_ext_next_allocated_block: 1587 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1588 * NOTE: it considers block number from index entry as 1589 * allocated block. Thus, index entries have to be consistent 1590 * with leaves. 1591 */ 1592 ext4_lblk_t 1593 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1594 { 1595 int depth; 1596 1597 BUG_ON(path == NULL); 1598 depth = path->p_depth; 1599 1600 if (depth == 0 && path->p_ext == NULL) 1601 return EXT_MAX_BLOCKS; 1602 1603 while (depth >= 0) { 1604 if (depth == path->p_depth) { 1605 /* leaf */ 1606 if (path[depth].p_ext && 1607 path[depth].p_ext != 1608 EXT_LAST_EXTENT(path[depth].p_hdr)) 1609 return le32_to_cpu(path[depth].p_ext[1].ee_block); 1610 } else { 1611 /* index */ 1612 if (path[depth].p_idx != 1613 EXT_LAST_INDEX(path[depth].p_hdr)) 1614 return le32_to_cpu(path[depth].p_idx[1].ei_block); 1615 } 1616 depth--; 1617 } 1618 1619 return EXT_MAX_BLOCKS; 1620 } 1621 1622 /* 1623 * ext4_ext_next_leaf_block: 1624 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1625 */ 1626 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1627 { 1628 int depth; 1629 1630 BUG_ON(path == NULL); 1631 depth = path->p_depth; 1632 1633 /* zero-tree has no leaf blocks at all */ 1634 if (depth == 0) 1635 return EXT_MAX_BLOCKS; 1636 1637 /* go to index block */ 1638 depth--; 1639 1640 while (depth >= 0) { 1641 if (path[depth].p_idx != 1642 EXT_LAST_INDEX(path[depth].p_hdr)) 1643 return (ext4_lblk_t) 1644 le32_to_cpu(path[depth].p_idx[1].ei_block); 1645 depth--; 1646 } 1647 1648 return EXT_MAX_BLOCKS; 1649 } 1650 1651 /* 1652 * ext4_ext_correct_indexes: 1653 * if leaf gets modified and modified extent is first in the leaf, 1654 * then we have to correct all indexes above. 1655 * TODO: do we need to correct tree in all cases? 1656 */ 1657 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1658 struct ext4_ext_path *path) 1659 { 1660 struct ext4_extent_header *eh; 1661 int depth = ext_depth(inode); 1662 struct ext4_extent *ex; 1663 __le32 border; 1664 int k, err = 0; 1665 1666 eh = path[depth].p_hdr; 1667 ex = path[depth].p_ext; 1668 1669 if (unlikely(ex == NULL || eh == NULL)) { 1670 EXT4_ERROR_INODE(inode, 1671 "ex %p == NULL or eh %p == NULL", ex, eh); 1672 return -EFSCORRUPTED; 1673 } 1674 1675 if (depth == 0) { 1676 /* there is no tree at all */ 1677 return 0; 1678 } 1679 1680 if (ex != EXT_FIRST_EXTENT(eh)) { 1681 /* we correct tree if first leaf got modified only */ 1682 return 0; 1683 } 1684 1685 /* 1686 * TODO: we need correction if border is smaller than current one 1687 */ 1688 k = depth - 1; 1689 border = path[depth].p_ext->ee_block; 1690 err = ext4_ext_get_access(handle, inode, path + k); 1691 if (err) 1692 return err; 1693 path[k].p_idx->ei_block = border; 1694 err = ext4_ext_dirty(handle, inode, path + k); 1695 if (err) 1696 return err; 1697 1698 while (k--) { 1699 /* change all left-side indexes */ 1700 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1701 break; 1702 err = ext4_ext_get_access(handle, inode, path + k); 1703 if (err) 1704 break; 1705 path[k].p_idx->ei_block = border; 1706 err = ext4_ext_dirty(handle, inode, path + k); 1707 if (err) 1708 break; 1709 } 1710 1711 return err; 1712 } 1713 1714 int 1715 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, 1716 struct ext4_extent *ex2) 1717 { 1718 unsigned short ext1_ee_len, ext2_ee_len; 1719 1720 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1721 return 0; 1722 1723 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1724 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1725 1726 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1727 le32_to_cpu(ex2->ee_block)) 1728 return 0; 1729 1730 /* 1731 * To allow future support for preallocated extents to be added 1732 * as an RO_COMPAT feature, refuse to merge to extents if 1733 * this can result in the top bit of ee_len being set. 1734 */ 1735 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1736 return 0; 1737 /* 1738 * The check for IO to unwritten extent is somewhat racy as we 1739 * increment i_unwritten / set EXT4_STATE_DIO_UNWRITTEN only after 1740 * dropping i_data_sem. But reserved blocks should save us in that 1741 * case. 1742 */ 1743 if (ext4_ext_is_unwritten(ex1) && 1744 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) || 1745 atomic_read(&EXT4_I(inode)->i_unwritten) || 1746 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN))) 1747 return 0; 1748 #ifdef AGGRESSIVE_TEST 1749 if (ext1_ee_len >= 4) 1750 return 0; 1751 #endif 1752 1753 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1754 return 1; 1755 return 0; 1756 } 1757 1758 /* 1759 * This function tries to merge the "ex" extent to the next extent in the tree. 1760 * It always tries to merge towards right. If you want to merge towards 1761 * left, pass "ex - 1" as argument instead of "ex". 1762 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1763 * 1 if they got merged. 1764 */ 1765 static int ext4_ext_try_to_merge_right(struct inode *inode, 1766 struct ext4_ext_path *path, 1767 struct ext4_extent *ex) 1768 { 1769 struct ext4_extent_header *eh; 1770 unsigned int depth, len; 1771 int merge_done = 0, unwritten; 1772 1773 depth = ext_depth(inode); 1774 BUG_ON(path[depth].p_hdr == NULL); 1775 eh = path[depth].p_hdr; 1776 1777 while (ex < EXT_LAST_EXTENT(eh)) { 1778 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1779 break; 1780 /* merge with next extent! */ 1781 unwritten = ext4_ext_is_unwritten(ex); 1782 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1783 + ext4_ext_get_actual_len(ex + 1)); 1784 if (unwritten) 1785 ext4_ext_mark_unwritten(ex); 1786 1787 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1788 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1789 * sizeof(struct ext4_extent); 1790 memmove(ex + 1, ex + 2, len); 1791 } 1792 le16_add_cpu(&eh->eh_entries, -1); 1793 merge_done = 1; 1794 WARN_ON(eh->eh_entries == 0); 1795 if (!eh->eh_entries) 1796 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1797 } 1798 1799 return merge_done; 1800 } 1801 1802 /* 1803 * This function does a very simple check to see if we can collapse 1804 * an extent tree with a single extent tree leaf block into the inode. 1805 */ 1806 static void ext4_ext_try_to_merge_up(handle_t *handle, 1807 struct inode *inode, 1808 struct ext4_ext_path *path) 1809 { 1810 size_t s; 1811 unsigned max_root = ext4_ext_space_root(inode, 0); 1812 ext4_fsblk_t blk; 1813 1814 if ((path[0].p_depth != 1) || 1815 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1816 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1817 return; 1818 1819 /* 1820 * We need to modify the block allocation bitmap and the block 1821 * group descriptor to release the extent tree block. If we 1822 * can't get the journal credits, give up. 1823 */ 1824 if (ext4_journal_extend(handle, 2)) 1825 return; 1826 1827 /* 1828 * Copy the extent data up to the inode 1829 */ 1830 blk = ext4_idx_pblock(path[0].p_idx); 1831 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1832 sizeof(struct ext4_extent_idx); 1833 s += sizeof(struct ext4_extent_header); 1834 1835 path[1].p_maxdepth = path[0].p_maxdepth; 1836 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1837 path[0].p_depth = 0; 1838 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1839 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1840 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1841 1842 brelse(path[1].p_bh); 1843 ext4_free_blocks(handle, inode, NULL, blk, 1, 1844 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1845 } 1846 1847 /* 1848 * This function tries to merge the @ex extent to neighbours in the tree. 1849 * return 1 if merge left else 0. 1850 */ 1851 static void ext4_ext_try_to_merge(handle_t *handle, 1852 struct inode *inode, 1853 struct ext4_ext_path *path, 1854 struct ext4_extent *ex) { 1855 struct ext4_extent_header *eh; 1856 unsigned int depth; 1857 int merge_done = 0; 1858 1859 depth = ext_depth(inode); 1860 BUG_ON(path[depth].p_hdr == NULL); 1861 eh = path[depth].p_hdr; 1862 1863 if (ex > EXT_FIRST_EXTENT(eh)) 1864 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1865 1866 if (!merge_done) 1867 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1868 1869 ext4_ext_try_to_merge_up(handle, inode, path); 1870 } 1871 1872 /* 1873 * check if a portion of the "newext" extent overlaps with an 1874 * existing extent. 1875 * 1876 * If there is an overlap discovered, it updates the length of the newext 1877 * such that there will be no overlap, and then returns 1. 1878 * If there is no overlap found, it returns 0. 1879 */ 1880 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1881 struct inode *inode, 1882 struct ext4_extent *newext, 1883 struct ext4_ext_path *path) 1884 { 1885 ext4_lblk_t b1, b2; 1886 unsigned int depth, len1; 1887 unsigned int ret = 0; 1888 1889 b1 = le32_to_cpu(newext->ee_block); 1890 len1 = ext4_ext_get_actual_len(newext); 1891 depth = ext_depth(inode); 1892 if (!path[depth].p_ext) 1893 goto out; 1894 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1895 1896 /* 1897 * get the next allocated block if the extent in the path 1898 * is before the requested block(s) 1899 */ 1900 if (b2 < b1) { 1901 b2 = ext4_ext_next_allocated_block(path); 1902 if (b2 == EXT_MAX_BLOCKS) 1903 goto out; 1904 b2 = EXT4_LBLK_CMASK(sbi, b2); 1905 } 1906 1907 /* check for wrap through zero on extent logical start block*/ 1908 if (b1 + len1 < b1) { 1909 len1 = EXT_MAX_BLOCKS - b1; 1910 newext->ee_len = cpu_to_le16(len1); 1911 ret = 1; 1912 } 1913 1914 /* check for overlap */ 1915 if (b1 + len1 > b2) { 1916 newext->ee_len = cpu_to_le16(b2 - b1); 1917 ret = 1; 1918 } 1919 out: 1920 return ret; 1921 } 1922 1923 /* 1924 * ext4_ext_insert_extent: 1925 * tries to merge requsted extent into the existing extent or 1926 * inserts requested extent as new one into the tree, 1927 * creating new leaf in the no-space case. 1928 */ 1929 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1930 struct ext4_ext_path **ppath, 1931 struct ext4_extent *newext, int gb_flags) 1932 { 1933 struct ext4_ext_path *path = *ppath; 1934 struct ext4_extent_header *eh; 1935 struct ext4_extent *ex, *fex; 1936 struct ext4_extent *nearex; /* nearest extent */ 1937 struct ext4_ext_path *npath = NULL; 1938 int depth, len, err; 1939 ext4_lblk_t next; 1940 int mb_flags = 0, unwritten; 1941 1942 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1943 mb_flags |= EXT4_MB_DELALLOC_RESERVED; 1944 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1945 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1946 return -EFSCORRUPTED; 1947 } 1948 depth = ext_depth(inode); 1949 ex = path[depth].p_ext; 1950 eh = path[depth].p_hdr; 1951 if (unlikely(path[depth].p_hdr == NULL)) { 1952 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1953 return -EFSCORRUPTED; 1954 } 1955 1956 /* try to insert block into found extent and return */ 1957 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1958 1959 /* 1960 * Try to see whether we should rather test the extent on 1961 * right from ex, or from the left of ex. This is because 1962 * ext4_find_extent() can return either extent on the 1963 * left, or on the right from the searched position. This 1964 * will make merging more effective. 1965 */ 1966 if (ex < EXT_LAST_EXTENT(eh) && 1967 (le32_to_cpu(ex->ee_block) + 1968 ext4_ext_get_actual_len(ex) < 1969 le32_to_cpu(newext->ee_block))) { 1970 ex += 1; 1971 goto prepend; 1972 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1973 (le32_to_cpu(newext->ee_block) + 1974 ext4_ext_get_actual_len(newext) < 1975 le32_to_cpu(ex->ee_block))) 1976 ex -= 1; 1977 1978 /* Try to append newex to the ex */ 1979 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1980 ext_debug("append [%d]%d block to %u:[%d]%d" 1981 "(from %llu)\n", 1982 ext4_ext_is_unwritten(newext), 1983 ext4_ext_get_actual_len(newext), 1984 le32_to_cpu(ex->ee_block), 1985 ext4_ext_is_unwritten(ex), 1986 ext4_ext_get_actual_len(ex), 1987 ext4_ext_pblock(ex)); 1988 err = ext4_ext_get_access(handle, inode, 1989 path + depth); 1990 if (err) 1991 return err; 1992 unwritten = ext4_ext_is_unwritten(ex); 1993 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1994 + ext4_ext_get_actual_len(newext)); 1995 if (unwritten) 1996 ext4_ext_mark_unwritten(ex); 1997 eh = path[depth].p_hdr; 1998 nearex = ex; 1999 goto merge; 2000 } 2001 2002 prepend: 2003 /* Try to prepend newex to the ex */ 2004 if (ext4_can_extents_be_merged(inode, newext, ex)) { 2005 ext_debug("prepend %u[%d]%d block to %u:[%d]%d" 2006 "(from %llu)\n", 2007 le32_to_cpu(newext->ee_block), 2008 ext4_ext_is_unwritten(newext), 2009 ext4_ext_get_actual_len(newext), 2010 le32_to_cpu(ex->ee_block), 2011 ext4_ext_is_unwritten(ex), 2012 ext4_ext_get_actual_len(ex), 2013 ext4_ext_pblock(ex)); 2014 err = ext4_ext_get_access(handle, inode, 2015 path + depth); 2016 if (err) 2017 return err; 2018 2019 unwritten = ext4_ext_is_unwritten(ex); 2020 ex->ee_block = newext->ee_block; 2021 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 2022 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2023 + ext4_ext_get_actual_len(newext)); 2024 if (unwritten) 2025 ext4_ext_mark_unwritten(ex); 2026 eh = path[depth].p_hdr; 2027 nearex = ex; 2028 goto merge; 2029 } 2030 } 2031 2032 depth = ext_depth(inode); 2033 eh = path[depth].p_hdr; 2034 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2035 goto has_space; 2036 2037 /* probably next leaf has space for us? */ 2038 fex = EXT_LAST_EXTENT(eh); 2039 next = EXT_MAX_BLOCKS; 2040 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2041 next = ext4_ext_next_leaf_block(path); 2042 if (next != EXT_MAX_BLOCKS) { 2043 ext_debug("next leaf block - %u\n", next); 2044 BUG_ON(npath != NULL); 2045 npath = ext4_find_extent(inode, next, NULL, 0); 2046 if (IS_ERR(npath)) 2047 return PTR_ERR(npath); 2048 BUG_ON(npath->p_depth != path->p_depth); 2049 eh = npath[depth].p_hdr; 2050 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2051 ext_debug("next leaf isn't full(%d)\n", 2052 le16_to_cpu(eh->eh_entries)); 2053 path = npath; 2054 goto has_space; 2055 } 2056 ext_debug("next leaf has no free space(%d,%d)\n", 2057 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2058 } 2059 2060 /* 2061 * There is no free space in the found leaf. 2062 * We're gonna add a new leaf in the tree. 2063 */ 2064 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2065 mb_flags |= EXT4_MB_USE_RESERVED; 2066 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2067 ppath, newext); 2068 if (err) 2069 goto cleanup; 2070 depth = ext_depth(inode); 2071 eh = path[depth].p_hdr; 2072 2073 has_space: 2074 nearex = path[depth].p_ext; 2075 2076 err = ext4_ext_get_access(handle, inode, path + depth); 2077 if (err) 2078 goto cleanup; 2079 2080 if (!nearex) { 2081 /* there is no extent in this leaf, create first one */ 2082 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", 2083 le32_to_cpu(newext->ee_block), 2084 ext4_ext_pblock(newext), 2085 ext4_ext_is_unwritten(newext), 2086 ext4_ext_get_actual_len(newext)); 2087 nearex = EXT_FIRST_EXTENT(eh); 2088 } else { 2089 if (le32_to_cpu(newext->ee_block) 2090 > le32_to_cpu(nearex->ee_block)) { 2091 /* Insert after */ 2092 ext_debug("insert %u:%llu:[%d]%d before: " 2093 "nearest %p\n", 2094 le32_to_cpu(newext->ee_block), 2095 ext4_ext_pblock(newext), 2096 ext4_ext_is_unwritten(newext), 2097 ext4_ext_get_actual_len(newext), 2098 nearex); 2099 nearex++; 2100 } else { 2101 /* Insert before */ 2102 BUG_ON(newext->ee_block == nearex->ee_block); 2103 ext_debug("insert %u:%llu:[%d]%d after: " 2104 "nearest %p\n", 2105 le32_to_cpu(newext->ee_block), 2106 ext4_ext_pblock(newext), 2107 ext4_ext_is_unwritten(newext), 2108 ext4_ext_get_actual_len(newext), 2109 nearex); 2110 } 2111 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2112 if (len > 0) { 2113 ext_debug("insert %u:%llu:[%d]%d: " 2114 "move %d extents from 0x%p to 0x%p\n", 2115 le32_to_cpu(newext->ee_block), 2116 ext4_ext_pblock(newext), 2117 ext4_ext_is_unwritten(newext), 2118 ext4_ext_get_actual_len(newext), 2119 len, nearex, nearex + 1); 2120 memmove(nearex + 1, nearex, 2121 len * sizeof(struct ext4_extent)); 2122 } 2123 } 2124 2125 le16_add_cpu(&eh->eh_entries, 1); 2126 path[depth].p_ext = nearex; 2127 nearex->ee_block = newext->ee_block; 2128 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2129 nearex->ee_len = newext->ee_len; 2130 2131 merge: 2132 /* try to merge extents */ 2133 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2134 ext4_ext_try_to_merge(handle, inode, path, nearex); 2135 2136 2137 /* time to correct all indexes above */ 2138 err = ext4_ext_correct_indexes(handle, inode, path); 2139 if (err) 2140 goto cleanup; 2141 2142 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2143 2144 cleanup: 2145 ext4_ext_drop_refs(npath); 2146 kfree(npath); 2147 return err; 2148 } 2149 2150 static int ext4_fill_fiemap_extents(struct inode *inode, 2151 ext4_lblk_t block, ext4_lblk_t num, 2152 struct fiemap_extent_info *fieinfo) 2153 { 2154 struct ext4_ext_path *path = NULL; 2155 struct ext4_extent *ex; 2156 struct extent_status es; 2157 ext4_lblk_t next, next_del, start = 0, end = 0; 2158 ext4_lblk_t last = block + num; 2159 int exists, depth = 0, err = 0; 2160 unsigned int flags = 0; 2161 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2162 2163 while (block < last && block != EXT_MAX_BLOCKS) { 2164 num = last - block; 2165 /* find extent for this block */ 2166 down_read(&EXT4_I(inode)->i_data_sem); 2167 2168 path = ext4_find_extent(inode, block, &path, 0); 2169 if (IS_ERR(path)) { 2170 up_read(&EXT4_I(inode)->i_data_sem); 2171 err = PTR_ERR(path); 2172 path = NULL; 2173 break; 2174 } 2175 2176 depth = ext_depth(inode); 2177 if (unlikely(path[depth].p_hdr == NULL)) { 2178 up_read(&EXT4_I(inode)->i_data_sem); 2179 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2180 err = -EFSCORRUPTED; 2181 break; 2182 } 2183 ex = path[depth].p_ext; 2184 next = ext4_ext_next_allocated_block(path); 2185 2186 flags = 0; 2187 exists = 0; 2188 if (!ex) { 2189 /* there is no extent yet, so try to allocate 2190 * all requested space */ 2191 start = block; 2192 end = block + num; 2193 } else if (le32_to_cpu(ex->ee_block) > block) { 2194 /* need to allocate space before found extent */ 2195 start = block; 2196 end = le32_to_cpu(ex->ee_block); 2197 if (block + num < end) 2198 end = block + num; 2199 } else if (block >= le32_to_cpu(ex->ee_block) 2200 + ext4_ext_get_actual_len(ex)) { 2201 /* need to allocate space after found extent */ 2202 start = block; 2203 end = block + num; 2204 if (end >= next) 2205 end = next; 2206 } else if (block >= le32_to_cpu(ex->ee_block)) { 2207 /* 2208 * some part of requested space is covered 2209 * by found extent 2210 */ 2211 start = block; 2212 end = le32_to_cpu(ex->ee_block) 2213 + ext4_ext_get_actual_len(ex); 2214 if (block + num < end) 2215 end = block + num; 2216 exists = 1; 2217 } else { 2218 BUG(); 2219 } 2220 BUG_ON(end <= start); 2221 2222 if (!exists) { 2223 es.es_lblk = start; 2224 es.es_len = end - start; 2225 es.es_pblk = 0; 2226 } else { 2227 es.es_lblk = le32_to_cpu(ex->ee_block); 2228 es.es_len = ext4_ext_get_actual_len(ex); 2229 es.es_pblk = ext4_ext_pblock(ex); 2230 if (ext4_ext_is_unwritten(ex)) 2231 flags |= FIEMAP_EXTENT_UNWRITTEN; 2232 } 2233 2234 /* 2235 * Find delayed extent and update es accordingly. We call 2236 * it even in !exists case to find out whether es is the 2237 * last existing extent or not. 2238 */ 2239 next_del = ext4_find_delayed_extent(inode, &es); 2240 if (!exists && next_del) { 2241 exists = 1; 2242 flags |= (FIEMAP_EXTENT_DELALLOC | 2243 FIEMAP_EXTENT_UNKNOWN); 2244 } 2245 up_read(&EXT4_I(inode)->i_data_sem); 2246 2247 if (unlikely(es.es_len == 0)) { 2248 EXT4_ERROR_INODE(inode, "es.es_len == 0"); 2249 err = -EFSCORRUPTED; 2250 break; 2251 } 2252 2253 /* 2254 * This is possible iff next == next_del == EXT_MAX_BLOCKS. 2255 * we need to check next == EXT_MAX_BLOCKS because it is 2256 * possible that an extent is with unwritten and delayed 2257 * status due to when an extent is delayed allocated and 2258 * is allocated by fallocate status tree will track both of 2259 * them in a extent. 2260 * 2261 * So we could return a unwritten and delayed extent, and 2262 * its block is equal to 'next'. 2263 */ 2264 if (next == next_del && next == EXT_MAX_BLOCKS) { 2265 flags |= FIEMAP_EXTENT_LAST; 2266 if (unlikely(next_del != EXT_MAX_BLOCKS || 2267 next != EXT_MAX_BLOCKS)) { 2268 EXT4_ERROR_INODE(inode, 2269 "next extent == %u, next " 2270 "delalloc extent = %u", 2271 next, next_del); 2272 err = -EFSCORRUPTED; 2273 break; 2274 } 2275 } 2276 2277 if (exists) { 2278 err = fiemap_fill_next_extent(fieinfo, 2279 (__u64)es.es_lblk << blksize_bits, 2280 (__u64)es.es_pblk << blksize_bits, 2281 (__u64)es.es_len << blksize_bits, 2282 flags); 2283 if (err < 0) 2284 break; 2285 if (err == 1) { 2286 err = 0; 2287 break; 2288 } 2289 } 2290 2291 block = es.es_lblk + es.es_len; 2292 } 2293 2294 ext4_ext_drop_refs(path); 2295 kfree(path); 2296 return err; 2297 } 2298 2299 /* 2300 * ext4_ext_determine_hole - determine hole around given block 2301 * @inode: inode we lookup in 2302 * @path: path in extent tree to @lblk 2303 * @lblk: pointer to logical block around which we want to determine hole 2304 * 2305 * Determine hole length (and start if easily possible) around given logical 2306 * block. We don't try too hard to find the beginning of the hole but @path 2307 * actually points to extent before @lblk, we provide it. 2308 * 2309 * The function returns the length of a hole starting at @lblk. We update @lblk 2310 * to the beginning of the hole if we managed to find it. 2311 */ 2312 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode, 2313 struct ext4_ext_path *path, 2314 ext4_lblk_t *lblk) 2315 { 2316 int depth = ext_depth(inode); 2317 struct ext4_extent *ex; 2318 ext4_lblk_t len; 2319 2320 ex = path[depth].p_ext; 2321 if (ex == NULL) { 2322 /* there is no extent yet, so gap is [0;-] */ 2323 *lblk = 0; 2324 len = EXT_MAX_BLOCKS; 2325 } else if (*lblk < le32_to_cpu(ex->ee_block)) { 2326 len = le32_to_cpu(ex->ee_block) - *lblk; 2327 } else if (*lblk >= le32_to_cpu(ex->ee_block) 2328 + ext4_ext_get_actual_len(ex)) { 2329 ext4_lblk_t next; 2330 2331 *lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); 2332 next = ext4_ext_next_allocated_block(path); 2333 BUG_ON(next == *lblk); 2334 len = next - *lblk; 2335 } else { 2336 BUG(); 2337 } 2338 return len; 2339 } 2340 2341 /* 2342 * ext4_ext_put_gap_in_cache: 2343 * calculate boundaries of the gap that the requested block fits into 2344 * and cache this gap 2345 */ 2346 static void 2347 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start, 2348 ext4_lblk_t hole_len) 2349 { 2350 struct extent_status es; 2351 2352 ext4_es_find_delayed_extent_range(inode, hole_start, 2353 hole_start + hole_len - 1, &es); 2354 if (es.es_len) { 2355 /* There's delayed extent containing lblock? */ 2356 if (es.es_lblk <= hole_start) 2357 return; 2358 hole_len = min(es.es_lblk - hole_start, hole_len); 2359 } 2360 ext_debug(" -> %u:%u\n", hole_start, hole_len); 2361 ext4_es_insert_extent(inode, hole_start, hole_len, ~0, 2362 EXTENT_STATUS_HOLE); 2363 } 2364 2365 /* 2366 * ext4_ext_rm_idx: 2367 * removes index from the index block. 2368 */ 2369 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2370 struct ext4_ext_path *path, int depth) 2371 { 2372 int err; 2373 ext4_fsblk_t leaf; 2374 2375 /* free index block */ 2376 depth--; 2377 path = path + depth; 2378 leaf = ext4_idx_pblock(path->p_idx); 2379 if (unlikely(path->p_hdr->eh_entries == 0)) { 2380 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2381 return -EFSCORRUPTED; 2382 } 2383 err = ext4_ext_get_access(handle, inode, path); 2384 if (err) 2385 return err; 2386 2387 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2388 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2389 len *= sizeof(struct ext4_extent_idx); 2390 memmove(path->p_idx, path->p_idx + 1, len); 2391 } 2392 2393 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2394 err = ext4_ext_dirty(handle, inode, path); 2395 if (err) 2396 return err; 2397 ext_debug("index is empty, remove it, free block %llu\n", leaf); 2398 trace_ext4_ext_rm_idx(inode, leaf); 2399 2400 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2401 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2402 2403 while (--depth >= 0) { 2404 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2405 break; 2406 path--; 2407 err = ext4_ext_get_access(handle, inode, path); 2408 if (err) 2409 break; 2410 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2411 err = ext4_ext_dirty(handle, inode, path); 2412 if (err) 2413 break; 2414 } 2415 return err; 2416 } 2417 2418 /* 2419 * ext4_ext_calc_credits_for_single_extent: 2420 * This routine returns max. credits that needed to insert an extent 2421 * to the extent tree. 2422 * When pass the actual path, the caller should calculate credits 2423 * under i_data_sem. 2424 */ 2425 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2426 struct ext4_ext_path *path) 2427 { 2428 if (path) { 2429 int depth = ext_depth(inode); 2430 int ret = 0; 2431 2432 /* probably there is space in leaf? */ 2433 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2434 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2435 2436 /* 2437 * There are some space in the leaf tree, no 2438 * need to account for leaf block credit 2439 * 2440 * bitmaps and block group descriptor blocks 2441 * and other metadata blocks still need to be 2442 * accounted. 2443 */ 2444 /* 1 bitmap, 1 block group descriptor */ 2445 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2446 return ret; 2447 } 2448 } 2449 2450 return ext4_chunk_trans_blocks(inode, nrblocks); 2451 } 2452 2453 /* 2454 * How many index/leaf blocks need to change/allocate to add @extents extents? 2455 * 2456 * If we add a single extent, then in the worse case, each tree level 2457 * index/leaf need to be changed in case of the tree split. 2458 * 2459 * If more extents are inserted, they could cause the whole tree split more 2460 * than once, but this is really rare. 2461 */ 2462 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2463 { 2464 int index; 2465 int depth; 2466 2467 /* If we are converting the inline data, only one is needed here. */ 2468 if (ext4_has_inline_data(inode)) 2469 return 1; 2470 2471 depth = ext_depth(inode); 2472 2473 if (extents <= 1) 2474 index = depth * 2; 2475 else 2476 index = depth * 3; 2477 2478 return index; 2479 } 2480 2481 static inline int get_default_free_blocks_flags(struct inode *inode) 2482 { 2483 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 2484 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2485 else if (ext4_should_journal_data(inode)) 2486 return EXT4_FREE_BLOCKS_FORGET; 2487 return 0; 2488 } 2489 2490 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2491 struct ext4_extent *ex, 2492 long long *partial_cluster, 2493 ext4_lblk_t from, ext4_lblk_t to) 2494 { 2495 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2496 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2497 ext4_fsblk_t pblk; 2498 int flags = get_default_free_blocks_flags(inode); 2499 2500 /* 2501 * For bigalloc file systems, we never free a partial cluster 2502 * at the beginning of the extent. Instead, we make a note 2503 * that we tried freeing the cluster, and check to see if we 2504 * need to free it on a subsequent call to ext4_remove_blocks, 2505 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. 2506 */ 2507 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2508 2509 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); 2510 /* 2511 * If we have a partial cluster, and it's different from the 2512 * cluster of the last block, we need to explicitly free the 2513 * partial cluster here. 2514 */ 2515 pblk = ext4_ext_pblock(ex) + ee_len - 1; 2516 if (*partial_cluster > 0 && 2517 *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { 2518 ext4_free_blocks(handle, inode, NULL, 2519 EXT4_C2B(sbi, *partial_cluster), 2520 sbi->s_cluster_ratio, flags); 2521 *partial_cluster = 0; 2522 } 2523 2524 #ifdef EXTENTS_STATS 2525 { 2526 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2527 spin_lock(&sbi->s_ext_stats_lock); 2528 sbi->s_ext_blocks += ee_len; 2529 sbi->s_ext_extents++; 2530 if (ee_len < sbi->s_ext_min) 2531 sbi->s_ext_min = ee_len; 2532 if (ee_len > sbi->s_ext_max) 2533 sbi->s_ext_max = ee_len; 2534 if (ext_depth(inode) > sbi->s_depth_max) 2535 sbi->s_depth_max = ext_depth(inode); 2536 spin_unlock(&sbi->s_ext_stats_lock); 2537 } 2538 #endif 2539 if (from >= le32_to_cpu(ex->ee_block) 2540 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { 2541 /* tail removal */ 2542 ext4_lblk_t num; 2543 long long first_cluster; 2544 2545 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2546 pblk = ext4_ext_pblock(ex) + ee_len - num; 2547 /* 2548 * Usually we want to free partial cluster at the end of the 2549 * extent, except for the situation when the cluster is still 2550 * used by any other extent (partial_cluster is negative). 2551 */ 2552 if (*partial_cluster < 0 && 2553 *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1)) 2554 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2555 2556 ext_debug("free last %u blocks starting %llu partial %lld\n", 2557 num, pblk, *partial_cluster); 2558 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2559 /* 2560 * If the block range to be freed didn't start at the 2561 * beginning of a cluster, and we removed the entire 2562 * extent and the cluster is not used by any other extent, 2563 * save the partial cluster here, since we might need to 2564 * delete if we determine that the truncate or punch hole 2565 * operation has removed all of the blocks in the cluster. 2566 * If that cluster is used by another extent, preserve its 2567 * negative value so it isn't freed later on. 2568 * 2569 * If the whole extent wasn't freed, we've reached the 2570 * start of the truncated/punched region and have finished 2571 * removing blocks. If there's a partial cluster here it's 2572 * shared with the remainder of the extent and is no longer 2573 * a candidate for removal. 2574 */ 2575 if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) { 2576 first_cluster = (long long) EXT4_B2C(sbi, pblk); 2577 if (first_cluster != -*partial_cluster) 2578 *partial_cluster = first_cluster; 2579 } else { 2580 *partial_cluster = 0; 2581 } 2582 } else 2583 ext4_error(sbi->s_sb, "strange request: removal(2) " 2584 "%u-%u from %u:%u", 2585 from, to, le32_to_cpu(ex->ee_block), ee_len); 2586 return 0; 2587 } 2588 2589 2590 /* 2591 * ext4_ext_rm_leaf() Removes the extents associated with the 2592 * blocks appearing between "start" and "end". Both "start" 2593 * and "end" must appear in the same extent or EIO is returned. 2594 * 2595 * @handle: The journal handle 2596 * @inode: The files inode 2597 * @path: The path to the leaf 2598 * @partial_cluster: The cluster which we'll have to free if all extents 2599 * has been released from it. However, if this value is 2600 * negative, it's a cluster just to the right of the 2601 * punched region and it must not be freed. 2602 * @start: The first block to remove 2603 * @end: The last block to remove 2604 */ 2605 static int 2606 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2607 struct ext4_ext_path *path, 2608 long long *partial_cluster, 2609 ext4_lblk_t start, ext4_lblk_t end) 2610 { 2611 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2612 int err = 0, correct_index = 0; 2613 int depth = ext_depth(inode), credits; 2614 struct ext4_extent_header *eh; 2615 ext4_lblk_t a, b; 2616 unsigned num; 2617 ext4_lblk_t ex_ee_block; 2618 unsigned short ex_ee_len; 2619 unsigned unwritten = 0; 2620 struct ext4_extent *ex; 2621 ext4_fsblk_t pblk; 2622 2623 /* the header must be checked already in ext4_ext_remove_space() */ 2624 ext_debug("truncate since %u in leaf to %u\n", start, end); 2625 if (!path[depth].p_hdr) 2626 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2627 eh = path[depth].p_hdr; 2628 if (unlikely(path[depth].p_hdr == NULL)) { 2629 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2630 return -EFSCORRUPTED; 2631 } 2632 /* find where to start removing */ 2633 ex = path[depth].p_ext; 2634 if (!ex) 2635 ex = EXT_LAST_EXTENT(eh); 2636 2637 ex_ee_block = le32_to_cpu(ex->ee_block); 2638 ex_ee_len = ext4_ext_get_actual_len(ex); 2639 2640 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); 2641 2642 while (ex >= EXT_FIRST_EXTENT(eh) && 2643 ex_ee_block + ex_ee_len > start) { 2644 2645 if (ext4_ext_is_unwritten(ex)) 2646 unwritten = 1; 2647 else 2648 unwritten = 0; 2649 2650 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, 2651 unwritten, ex_ee_len); 2652 path[depth].p_ext = ex; 2653 2654 a = ex_ee_block > start ? ex_ee_block : start; 2655 b = ex_ee_block+ex_ee_len - 1 < end ? 2656 ex_ee_block+ex_ee_len - 1 : end; 2657 2658 ext_debug(" border %u:%u\n", a, b); 2659 2660 /* If this extent is beyond the end of the hole, skip it */ 2661 if (end < ex_ee_block) { 2662 /* 2663 * We're going to skip this extent and move to another, 2664 * so note that its first cluster is in use to avoid 2665 * freeing it when removing blocks. Eventually, the 2666 * right edge of the truncated/punched region will 2667 * be just to the left. 2668 */ 2669 if (sbi->s_cluster_ratio > 1) { 2670 pblk = ext4_ext_pblock(ex); 2671 *partial_cluster = 2672 -(long long) EXT4_B2C(sbi, pblk); 2673 } 2674 ex--; 2675 ex_ee_block = le32_to_cpu(ex->ee_block); 2676 ex_ee_len = ext4_ext_get_actual_len(ex); 2677 continue; 2678 } else if (b != ex_ee_block + ex_ee_len - 1) { 2679 EXT4_ERROR_INODE(inode, 2680 "can not handle truncate %u:%u " 2681 "on extent %u:%u", 2682 start, end, ex_ee_block, 2683 ex_ee_block + ex_ee_len - 1); 2684 err = -EFSCORRUPTED; 2685 goto out; 2686 } else if (a != ex_ee_block) { 2687 /* remove tail of the extent */ 2688 num = a - ex_ee_block; 2689 } else { 2690 /* remove whole extent: excellent! */ 2691 num = 0; 2692 } 2693 /* 2694 * 3 for leaf, sb, and inode plus 2 (bmap and group 2695 * descriptor) for each block group; assume two block 2696 * groups plus ex_ee_len/blocks_per_block_group for 2697 * the worst case 2698 */ 2699 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2700 if (ex == EXT_FIRST_EXTENT(eh)) { 2701 correct_index = 1; 2702 credits += (ext_depth(inode)) + 1; 2703 } 2704 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2705 2706 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 2707 if (err) 2708 goto out; 2709 2710 err = ext4_ext_get_access(handle, inode, path + depth); 2711 if (err) 2712 goto out; 2713 2714 err = ext4_remove_blocks(handle, inode, ex, partial_cluster, 2715 a, b); 2716 if (err) 2717 goto out; 2718 2719 if (num == 0) 2720 /* this extent is removed; mark slot entirely unused */ 2721 ext4_ext_store_pblock(ex, 0); 2722 2723 ex->ee_len = cpu_to_le16(num); 2724 /* 2725 * Do not mark unwritten if all the blocks in the 2726 * extent have been removed. 2727 */ 2728 if (unwritten && num) 2729 ext4_ext_mark_unwritten(ex); 2730 /* 2731 * If the extent was completely released, 2732 * we need to remove it from the leaf 2733 */ 2734 if (num == 0) { 2735 if (end != EXT_MAX_BLOCKS - 1) { 2736 /* 2737 * For hole punching, we need to scoot all the 2738 * extents up when an extent is removed so that 2739 * we dont have blank extents in the middle 2740 */ 2741 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2742 sizeof(struct ext4_extent)); 2743 2744 /* Now get rid of the one at the end */ 2745 memset(EXT_LAST_EXTENT(eh), 0, 2746 sizeof(struct ext4_extent)); 2747 } 2748 le16_add_cpu(&eh->eh_entries, -1); 2749 } 2750 2751 err = ext4_ext_dirty(handle, inode, path + depth); 2752 if (err) 2753 goto out; 2754 2755 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, 2756 ext4_ext_pblock(ex)); 2757 ex--; 2758 ex_ee_block = le32_to_cpu(ex->ee_block); 2759 ex_ee_len = ext4_ext_get_actual_len(ex); 2760 } 2761 2762 if (correct_index && eh->eh_entries) 2763 err = ext4_ext_correct_indexes(handle, inode, path); 2764 2765 /* 2766 * If there's a partial cluster and at least one extent remains in 2767 * the leaf, free the partial cluster if it isn't shared with the 2768 * current extent. If it is shared with the current extent 2769 * we zero partial_cluster because we've reached the start of the 2770 * truncated/punched region and we're done removing blocks. 2771 */ 2772 if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) { 2773 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2774 if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { 2775 ext4_free_blocks(handle, inode, NULL, 2776 EXT4_C2B(sbi, *partial_cluster), 2777 sbi->s_cluster_ratio, 2778 get_default_free_blocks_flags(inode)); 2779 } 2780 *partial_cluster = 0; 2781 } 2782 2783 /* if this leaf is free, then we should 2784 * remove it from index block above */ 2785 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2786 err = ext4_ext_rm_idx(handle, inode, path, depth); 2787 2788 out: 2789 return err; 2790 } 2791 2792 /* 2793 * ext4_ext_more_to_rm: 2794 * returns 1 if current index has to be freed (even partial) 2795 */ 2796 static int 2797 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2798 { 2799 BUG_ON(path->p_idx == NULL); 2800 2801 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2802 return 0; 2803 2804 /* 2805 * if truncate on deeper level happened, it wasn't partial, 2806 * so we have to consider current index for truncation 2807 */ 2808 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2809 return 0; 2810 return 1; 2811 } 2812 2813 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2814 ext4_lblk_t end) 2815 { 2816 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2817 int depth = ext_depth(inode); 2818 struct ext4_ext_path *path = NULL; 2819 long long partial_cluster = 0; 2820 handle_t *handle; 2821 int i = 0, err = 0; 2822 2823 ext_debug("truncate since %u to %u\n", start, end); 2824 2825 /* probably first extent we're gonna free will be last in block */ 2826 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); 2827 if (IS_ERR(handle)) 2828 return PTR_ERR(handle); 2829 2830 again: 2831 trace_ext4_ext_remove_space(inode, start, end, depth); 2832 2833 /* 2834 * Check if we are removing extents inside the extent tree. If that 2835 * is the case, we are going to punch a hole inside the extent tree 2836 * so we have to check whether we need to split the extent covering 2837 * the last block to remove so we can easily remove the part of it 2838 * in ext4_ext_rm_leaf(). 2839 */ 2840 if (end < EXT_MAX_BLOCKS - 1) { 2841 struct ext4_extent *ex; 2842 ext4_lblk_t ee_block, ex_end, lblk; 2843 ext4_fsblk_t pblk; 2844 2845 /* find extent for or closest extent to this block */ 2846 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE); 2847 if (IS_ERR(path)) { 2848 ext4_journal_stop(handle); 2849 return PTR_ERR(path); 2850 } 2851 depth = ext_depth(inode); 2852 /* Leaf not may not exist only if inode has no blocks at all */ 2853 ex = path[depth].p_ext; 2854 if (!ex) { 2855 if (depth) { 2856 EXT4_ERROR_INODE(inode, 2857 "path[%d].p_hdr == NULL", 2858 depth); 2859 err = -EFSCORRUPTED; 2860 } 2861 goto out; 2862 } 2863 2864 ee_block = le32_to_cpu(ex->ee_block); 2865 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1; 2866 2867 /* 2868 * See if the last block is inside the extent, if so split 2869 * the extent at 'end' block so we can easily remove the 2870 * tail of the first part of the split extent in 2871 * ext4_ext_rm_leaf(). 2872 */ 2873 if (end >= ee_block && end < ex_end) { 2874 2875 /* 2876 * If we're going to split the extent, note that 2877 * the cluster containing the block after 'end' is 2878 * in use to avoid freeing it when removing blocks. 2879 */ 2880 if (sbi->s_cluster_ratio > 1) { 2881 pblk = ext4_ext_pblock(ex) + end - ee_block + 2; 2882 partial_cluster = 2883 -(long long) EXT4_B2C(sbi, pblk); 2884 } 2885 2886 /* 2887 * Split the extent in two so that 'end' is the last 2888 * block in the first new extent. Also we should not 2889 * fail removing space due to ENOSPC so try to use 2890 * reserved block if that happens. 2891 */ 2892 err = ext4_force_split_extent_at(handle, inode, &path, 2893 end + 1, 1); 2894 if (err < 0) 2895 goto out; 2896 2897 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end) { 2898 /* 2899 * If there's an extent to the right its first cluster 2900 * contains the immediate right boundary of the 2901 * truncated/punched region. Set partial_cluster to 2902 * its negative value so it won't be freed if shared 2903 * with the current extent. The end < ee_block case 2904 * is handled in ext4_ext_rm_leaf(). 2905 */ 2906 lblk = ex_end + 1; 2907 err = ext4_ext_search_right(inode, path, &lblk, &pblk, 2908 &ex); 2909 if (err) 2910 goto out; 2911 if (pblk) 2912 partial_cluster = 2913 -(long long) EXT4_B2C(sbi, pblk); 2914 } 2915 } 2916 /* 2917 * We start scanning from right side, freeing all the blocks 2918 * after i_size and walking into the tree depth-wise. 2919 */ 2920 depth = ext_depth(inode); 2921 if (path) { 2922 int k = i = depth; 2923 while (--k > 0) 2924 path[k].p_block = 2925 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2926 } else { 2927 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), 2928 GFP_NOFS); 2929 if (path == NULL) { 2930 ext4_journal_stop(handle); 2931 return -ENOMEM; 2932 } 2933 path[0].p_maxdepth = path[0].p_depth = depth; 2934 path[0].p_hdr = ext_inode_hdr(inode); 2935 i = 0; 2936 2937 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2938 err = -EFSCORRUPTED; 2939 goto out; 2940 } 2941 } 2942 err = 0; 2943 2944 while (i >= 0 && err == 0) { 2945 if (i == depth) { 2946 /* this is leaf block */ 2947 err = ext4_ext_rm_leaf(handle, inode, path, 2948 &partial_cluster, start, 2949 end); 2950 /* root level has p_bh == NULL, brelse() eats this */ 2951 brelse(path[i].p_bh); 2952 path[i].p_bh = NULL; 2953 i--; 2954 continue; 2955 } 2956 2957 /* this is index block */ 2958 if (!path[i].p_hdr) { 2959 ext_debug("initialize header\n"); 2960 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2961 } 2962 2963 if (!path[i].p_idx) { 2964 /* this level hasn't been touched yet */ 2965 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2966 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2967 ext_debug("init index ptr: hdr 0x%p, num %d\n", 2968 path[i].p_hdr, 2969 le16_to_cpu(path[i].p_hdr->eh_entries)); 2970 } else { 2971 /* we were already here, see at next index */ 2972 path[i].p_idx--; 2973 } 2974 2975 ext_debug("level %d - index, first 0x%p, cur 0x%p\n", 2976 i, EXT_FIRST_INDEX(path[i].p_hdr), 2977 path[i].p_idx); 2978 if (ext4_ext_more_to_rm(path + i)) { 2979 struct buffer_head *bh; 2980 /* go to the next level */ 2981 ext_debug("move to level %d (block %llu)\n", 2982 i + 1, ext4_idx_pblock(path[i].p_idx)); 2983 memset(path + i + 1, 0, sizeof(*path)); 2984 bh = read_extent_tree_block(inode, 2985 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 2986 EXT4_EX_NOCACHE); 2987 if (IS_ERR(bh)) { 2988 /* should we reset i_size? */ 2989 err = PTR_ERR(bh); 2990 break; 2991 } 2992 /* Yield here to deal with large extent trees. 2993 * Should be a no-op if we did IO above. */ 2994 cond_resched(); 2995 if (WARN_ON(i + 1 > depth)) { 2996 err = -EFSCORRUPTED; 2997 break; 2998 } 2999 path[i + 1].p_bh = bh; 3000 3001 /* save actual number of indexes since this 3002 * number is changed at the next iteration */ 3003 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 3004 i++; 3005 } else { 3006 /* we finished processing this index, go up */ 3007 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 3008 /* index is empty, remove it; 3009 * handle must be already prepared by the 3010 * truncatei_leaf() */ 3011 err = ext4_ext_rm_idx(handle, inode, path, i); 3012 } 3013 /* root level has p_bh == NULL, brelse() eats this */ 3014 brelse(path[i].p_bh); 3015 path[i].p_bh = NULL; 3016 i--; 3017 ext_debug("return to level %d\n", i); 3018 } 3019 } 3020 3021 trace_ext4_ext_remove_space_done(inode, start, end, depth, 3022 partial_cluster, path->p_hdr->eh_entries); 3023 3024 /* 3025 * If we still have something in the partial cluster and we have removed 3026 * even the first extent, then we should free the blocks in the partial 3027 * cluster as well. (This code will only run when there are no leaves 3028 * to the immediate left of the truncated/punched region.) 3029 */ 3030 if (partial_cluster > 0 && err == 0) { 3031 /* don't zero partial_cluster since it's not used afterwards */ 3032 ext4_free_blocks(handle, inode, NULL, 3033 EXT4_C2B(sbi, partial_cluster), 3034 sbi->s_cluster_ratio, 3035 get_default_free_blocks_flags(inode)); 3036 } 3037 3038 /* TODO: flexible tree reduction should be here */ 3039 if (path->p_hdr->eh_entries == 0) { 3040 /* 3041 * truncate to zero freed all the tree, 3042 * so we need to correct eh_depth 3043 */ 3044 err = ext4_ext_get_access(handle, inode, path); 3045 if (err == 0) { 3046 ext_inode_hdr(inode)->eh_depth = 0; 3047 ext_inode_hdr(inode)->eh_max = 3048 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3049 err = ext4_ext_dirty(handle, inode, path); 3050 } 3051 } 3052 out: 3053 ext4_ext_drop_refs(path); 3054 kfree(path); 3055 path = NULL; 3056 if (err == -EAGAIN) 3057 goto again; 3058 ext4_journal_stop(handle); 3059 3060 return err; 3061 } 3062 3063 /* 3064 * called at mount time 3065 */ 3066 void ext4_ext_init(struct super_block *sb) 3067 { 3068 /* 3069 * possible initialization would be here 3070 */ 3071 3072 if (ext4_has_feature_extents(sb)) { 3073 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3074 printk(KERN_INFO "EXT4-fs: file extents enabled" 3075 #ifdef AGGRESSIVE_TEST 3076 ", aggressive tests" 3077 #endif 3078 #ifdef CHECK_BINSEARCH 3079 ", check binsearch" 3080 #endif 3081 #ifdef EXTENTS_STATS 3082 ", stats" 3083 #endif 3084 "\n"); 3085 #endif 3086 #ifdef EXTENTS_STATS 3087 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3088 EXT4_SB(sb)->s_ext_min = 1 << 30; 3089 EXT4_SB(sb)->s_ext_max = 0; 3090 #endif 3091 } 3092 } 3093 3094 /* 3095 * called at umount time 3096 */ 3097 void ext4_ext_release(struct super_block *sb) 3098 { 3099 if (!ext4_has_feature_extents(sb)) 3100 return; 3101 3102 #ifdef EXTENTS_STATS 3103 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3104 struct ext4_sb_info *sbi = EXT4_SB(sb); 3105 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3106 sbi->s_ext_blocks, sbi->s_ext_extents, 3107 sbi->s_ext_blocks / sbi->s_ext_extents); 3108 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3109 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3110 } 3111 #endif 3112 } 3113 3114 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3115 { 3116 ext4_lblk_t ee_block; 3117 ext4_fsblk_t ee_pblock; 3118 unsigned int ee_len; 3119 3120 ee_block = le32_to_cpu(ex->ee_block); 3121 ee_len = ext4_ext_get_actual_len(ex); 3122 ee_pblock = ext4_ext_pblock(ex); 3123 3124 if (ee_len == 0) 3125 return 0; 3126 3127 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3128 EXTENT_STATUS_WRITTEN); 3129 } 3130 3131 /* FIXME!! we need to try to merge to left or right after zero-out */ 3132 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3133 { 3134 ext4_fsblk_t ee_pblock; 3135 unsigned int ee_len; 3136 3137 ee_len = ext4_ext_get_actual_len(ex); 3138 ee_pblock = ext4_ext_pblock(ex); 3139 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock, 3140 ee_len); 3141 } 3142 3143 /* 3144 * ext4_split_extent_at() splits an extent at given block. 3145 * 3146 * @handle: the journal handle 3147 * @inode: the file inode 3148 * @path: the path to the extent 3149 * @split: the logical block where the extent is splitted. 3150 * @split_flags: indicates if the extent could be zeroout if split fails, and 3151 * the states(init or unwritten) of new extents. 3152 * @flags: flags used to insert new extent to extent tree. 3153 * 3154 * 3155 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3156 * of which are deterimined by split_flag. 3157 * 3158 * There are two cases: 3159 * a> the extent are splitted into two extent. 3160 * b> split is not needed, and just mark the extent. 3161 * 3162 * return 0 on success. 3163 */ 3164 static int ext4_split_extent_at(handle_t *handle, 3165 struct inode *inode, 3166 struct ext4_ext_path **ppath, 3167 ext4_lblk_t split, 3168 int split_flag, 3169 int flags) 3170 { 3171 struct ext4_ext_path *path = *ppath; 3172 ext4_fsblk_t newblock; 3173 ext4_lblk_t ee_block; 3174 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3175 struct ext4_extent *ex2 = NULL; 3176 unsigned int ee_len, depth; 3177 int err = 0; 3178 3179 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3180 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3181 3182 ext_debug("ext4_split_extents_at: inode %lu, logical" 3183 "block %llu\n", inode->i_ino, (unsigned long long)split); 3184 3185 ext4_ext_show_leaf(inode, path); 3186 3187 depth = ext_depth(inode); 3188 ex = path[depth].p_ext; 3189 ee_block = le32_to_cpu(ex->ee_block); 3190 ee_len = ext4_ext_get_actual_len(ex); 3191 newblock = split - ee_block + ext4_ext_pblock(ex); 3192 3193 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3194 BUG_ON(!ext4_ext_is_unwritten(ex) && 3195 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3196 EXT4_EXT_MARK_UNWRIT1 | 3197 EXT4_EXT_MARK_UNWRIT2)); 3198 3199 err = ext4_ext_get_access(handle, inode, path + depth); 3200 if (err) 3201 goto out; 3202 3203 if (split == ee_block) { 3204 /* 3205 * case b: block @split is the block that the extent begins with 3206 * then we just change the state of the extent, and splitting 3207 * is not needed. 3208 */ 3209 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3210 ext4_ext_mark_unwritten(ex); 3211 else 3212 ext4_ext_mark_initialized(ex); 3213 3214 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3215 ext4_ext_try_to_merge(handle, inode, path, ex); 3216 3217 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3218 goto out; 3219 } 3220 3221 /* case a */ 3222 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3223 ex->ee_len = cpu_to_le16(split - ee_block); 3224 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3225 ext4_ext_mark_unwritten(ex); 3226 3227 /* 3228 * path may lead to new leaf, not to original leaf any more 3229 * after ext4_ext_insert_extent() returns, 3230 */ 3231 err = ext4_ext_dirty(handle, inode, path + depth); 3232 if (err) 3233 goto fix_extent_len; 3234 3235 ex2 = &newex; 3236 ex2->ee_block = cpu_to_le32(split); 3237 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3238 ext4_ext_store_pblock(ex2, newblock); 3239 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3240 ext4_ext_mark_unwritten(ex2); 3241 3242 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags); 3243 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3244 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3245 if (split_flag & EXT4_EXT_DATA_VALID1) { 3246 err = ext4_ext_zeroout(inode, ex2); 3247 zero_ex.ee_block = ex2->ee_block; 3248 zero_ex.ee_len = cpu_to_le16( 3249 ext4_ext_get_actual_len(ex2)); 3250 ext4_ext_store_pblock(&zero_ex, 3251 ext4_ext_pblock(ex2)); 3252 } else { 3253 err = ext4_ext_zeroout(inode, ex); 3254 zero_ex.ee_block = ex->ee_block; 3255 zero_ex.ee_len = cpu_to_le16( 3256 ext4_ext_get_actual_len(ex)); 3257 ext4_ext_store_pblock(&zero_ex, 3258 ext4_ext_pblock(ex)); 3259 } 3260 } else { 3261 err = ext4_ext_zeroout(inode, &orig_ex); 3262 zero_ex.ee_block = orig_ex.ee_block; 3263 zero_ex.ee_len = cpu_to_le16( 3264 ext4_ext_get_actual_len(&orig_ex)); 3265 ext4_ext_store_pblock(&zero_ex, 3266 ext4_ext_pblock(&orig_ex)); 3267 } 3268 3269 if (err) 3270 goto fix_extent_len; 3271 /* update the extent length and mark as initialized */ 3272 ex->ee_len = cpu_to_le16(ee_len); 3273 ext4_ext_try_to_merge(handle, inode, path, ex); 3274 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3275 if (err) 3276 goto fix_extent_len; 3277 3278 /* update extent status tree */ 3279 err = ext4_zeroout_es(inode, &zero_ex); 3280 3281 goto out; 3282 } else if (err) 3283 goto fix_extent_len; 3284 3285 out: 3286 ext4_ext_show_leaf(inode, path); 3287 return err; 3288 3289 fix_extent_len: 3290 ex->ee_len = orig_ex.ee_len; 3291 ext4_ext_dirty(handle, inode, path + path->p_depth); 3292 return err; 3293 } 3294 3295 /* 3296 * ext4_split_extents() splits an extent and mark extent which is covered 3297 * by @map as split_flags indicates 3298 * 3299 * It may result in splitting the extent into multiple extents (up to three) 3300 * There are three possibilities: 3301 * a> There is no split required 3302 * b> Splits in two extents: Split is happening at either end of the extent 3303 * c> Splits in three extents: Somone is splitting in middle of the extent 3304 * 3305 */ 3306 static int ext4_split_extent(handle_t *handle, 3307 struct inode *inode, 3308 struct ext4_ext_path **ppath, 3309 struct ext4_map_blocks *map, 3310 int split_flag, 3311 int flags) 3312 { 3313 struct ext4_ext_path *path = *ppath; 3314 ext4_lblk_t ee_block; 3315 struct ext4_extent *ex; 3316 unsigned int ee_len, depth; 3317 int err = 0; 3318 int unwritten; 3319 int split_flag1, flags1; 3320 int allocated = map->m_len; 3321 3322 depth = ext_depth(inode); 3323 ex = path[depth].p_ext; 3324 ee_block = le32_to_cpu(ex->ee_block); 3325 ee_len = ext4_ext_get_actual_len(ex); 3326 unwritten = ext4_ext_is_unwritten(ex); 3327 3328 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3329 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3330 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3331 if (unwritten) 3332 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3333 EXT4_EXT_MARK_UNWRIT2; 3334 if (split_flag & EXT4_EXT_DATA_VALID2) 3335 split_flag1 |= EXT4_EXT_DATA_VALID1; 3336 err = ext4_split_extent_at(handle, inode, ppath, 3337 map->m_lblk + map->m_len, split_flag1, flags1); 3338 if (err) 3339 goto out; 3340 } else { 3341 allocated = ee_len - (map->m_lblk - ee_block); 3342 } 3343 /* 3344 * Update path is required because previous ext4_split_extent_at() may 3345 * result in split of original leaf or extent zeroout. 3346 */ 3347 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3348 if (IS_ERR(path)) 3349 return PTR_ERR(path); 3350 depth = ext_depth(inode); 3351 ex = path[depth].p_ext; 3352 if (!ex) { 3353 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3354 (unsigned long) map->m_lblk); 3355 return -EFSCORRUPTED; 3356 } 3357 unwritten = ext4_ext_is_unwritten(ex); 3358 split_flag1 = 0; 3359 3360 if (map->m_lblk >= ee_block) { 3361 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3362 if (unwritten) { 3363 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3364 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3365 EXT4_EXT_MARK_UNWRIT2); 3366 } 3367 err = ext4_split_extent_at(handle, inode, ppath, 3368 map->m_lblk, split_flag1, flags); 3369 if (err) 3370 goto out; 3371 } 3372 3373 ext4_ext_show_leaf(inode, path); 3374 out: 3375 return err ? err : allocated; 3376 } 3377 3378 /* 3379 * This function is called by ext4_ext_map_blocks() if someone tries to write 3380 * to an unwritten extent. It may result in splitting the unwritten 3381 * extent into multiple extents (up to three - one initialized and two 3382 * unwritten). 3383 * There are three possibilities: 3384 * a> There is no split required: Entire extent should be initialized 3385 * b> Splits in two extents: Write is happening at either end of the extent 3386 * c> Splits in three extents: Somone is writing in middle of the extent 3387 * 3388 * Pre-conditions: 3389 * - The extent pointed to by 'path' is unwritten. 3390 * - The extent pointed to by 'path' contains a superset 3391 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3392 * 3393 * Post-conditions on success: 3394 * - the returned value is the number of blocks beyond map->l_lblk 3395 * that are allocated and initialized. 3396 * It is guaranteed to be >= map->m_len. 3397 */ 3398 static int ext4_ext_convert_to_initialized(handle_t *handle, 3399 struct inode *inode, 3400 struct ext4_map_blocks *map, 3401 struct ext4_ext_path **ppath, 3402 int flags) 3403 { 3404 struct ext4_ext_path *path = *ppath; 3405 struct ext4_sb_info *sbi; 3406 struct ext4_extent_header *eh; 3407 struct ext4_map_blocks split_map; 3408 struct ext4_extent zero_ex; 3409 struct ext4_extent *ex, *abut_ex; 3410 ext4_lblk_t ee_block, eof_block; 3411 unsigned int ee_len, depth, map_len = map->m_len; 3412 int allocated = 0, max_zeroout = 0; 3413 int err = 0; 3414 int split_flag = 0; 3415 3416 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" 3417 "block %llu, max_blocks %u\n", inode->i_ino, 3418 (unsigned long long)map->m_lblk, map_len); 3419 3420 sbi = EXT4_SB(inode->i_sb); 3421 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3422 inode->i_sb->s_blocksize_bits; 3423 if (eof_block < map->m_lblk + map_len) 3424 eof_block = map->m_lblk + map_len; 3425 3426 depth = ext_depth(inode); 3427 eh = path[depth].p_hdr; 3428 ex = path[depth].p_ext; 3429 ee_block = le32_to_cpu(ex->ee_block); 3430 ee_len = ext4_ext_get_actual_len(ex); 3431 zero_ex.ee_len = 0; 3432 3433 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3434 3435 /* Pre-conditions */ 3436 BUG_ON(!ext4_ext_is_unwritten(ex)); 3437 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3438 3439 /* 3440 * Attempt to transfer newly initialized blocks from the currently 3441 * unwritten extent to its neighbor. This is much cheaper 3442 * than an insertion followed by a merge as those involve costly 3443 * memmove() calls. Transferring to the left is the common case in 3444 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3445 * followed by append writes. 3446 * 3447 * Limitations of the current logic: 3448 * - L1: we do not deal with writes covering the whole extent. 3449 * This would require removing the extent if the transfer 3450 * is possible. 3451 * - L2: we only attempt to merge with an extent stored in the 3452 * same extent tree node. 3453 */ 3454 if ((map->m_lblk == ee_block) && 3455 /* See if we can merge left */ 3456 (map_len < ee_len) && /*L1*/ 3457 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3458 ext4_lblk_t prev_lblk; 3459 ext4_fsblk_t prev_pblk, ee_pblk; 3460 unsigned int prev_len; 3461 3462 abut_ex = ex - 1; 3463 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3464 prev_len = ext4_ext_get_actual_len(abut_ex); 3465 prev_pblk = ext4_ext_pblock(abut_ex); 3466 ee_pblk = ext4_ext_pblock(ex); 3467 3468 /* 3469 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3470 * upon those conditions: 3471 * - C1: abut_ex is initialized, 3472 * - C2: abut_ex is logically abutting ex, 3473 * - C3: abut_ex is physically abutting ex, 3474 * - C4: abut_ex can receive the additional blocks without 3475 * overflowing the (initialized) length limit. 3476 */ 3477 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3478 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3479 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3480 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3481 err = ext4_ext_get_access(handle, inode, path + depth); 3482 if (err) 3483 goto out; 3484 3485 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3486 map, ex, abut_ex); 3487 3488 /* Shift the start of ex by 'map_len' blocks */ 3489 ex->ee_block = cpu_to_le32(ee_block + map_len); 3490 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3491 ex->ee_len = cpu_to_le16(ee_len - map_len); 3492 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3493 3494 /* Extend abut_ex by 'map_len' blocks */ 3495 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3496 3497 /* Result: number of initialized blocks past m_lblk */ 3498 allocated = map_len; 3499 } 3500 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3501 (map_len < ee_len) && /*L1*/ 3502 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3503 /* See if we can merge right */ 3504 ext4_lblk_t next_lblk; 3505 ext4_fsblk_t next_pblk, ee_pblk; 3506 unsigned int next_len; 3507 3508 abut_ex = ex + 1; 3509 next_lblk = le32_to_cpu(abut_ex->ee_block); 3510 next_len = ext4_ext_get_actual_len(abut_ex); 3511 next_pblk = ext4_ext_pblock(abut_ex); 3512 ee_pblk = ext4_ext_pblock(ex); 3513 3514 /* 3515 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3516 * upon those conditions: 3517 * - C1: abut_ex is initialized, 3518 * - C2: abut_ex is logically abutting ex, 3519 * - C3: abut_ex is physically abutting ex, 3520 * - C4: abut_ex can receive the additional blocks without 3521 * overflowing the (initialized) length limit. 3522 */ 3523 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3524 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3525 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3526 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3527 err = ext4_ext_get_access(handle, inode, path + depth); 3528 if (err) 3529 goto out; 3530 3531 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3532 map, ex, abut_ex); 3533 3534 /* Shift the start of abut_ex by 'map_len' blocks */ 3535 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3536 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3537 ex->ee_len = cpu_to_le16(ee_len - map_len); 3538 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3539 3540 /* Extend abut_ex by 'map_len' blocks */ 3541 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3542 3543 /* Result: number of initialized blocks past m_lblk */ 3544 allocated = map_len; 3545 } 3546 } 3547 if (allocated) { 3548 /* Mark the block containing both extents as dirty */ 3549 ext4_ext_dirty(handle, inode, path + depth); 3550 3551 /* Update path to point to the right extent */ 3552 path[depth].p_ext = abut_ex; 3553 goto out; 3554 } else 3555 allocated = ee_len - (map->m_lblk - ee_block); 3556 3557 WARN_ON(map->m_lblk < ee_block); 3558 /* 3559 * It is safe to convert extent to initialized via explicit 3560 * zeroout only if extent is fully inside i_size or new_size. 3561 */ 3562 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3563 3564 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3565 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3566 (inode->i_sb->s_blocksize_bits - 10); 3567 3568 if (ext4_encrypted_inode(inode)) 3569 max_zeroout = 0; 3570 3571 /* If extent is less than s_max_zeroout_kb, zeroout directly */ 3572 if (max_zeroout && (ee_len <= max_zeroout)) { 3573 err = ext4_ext_zeroout(inode, ex); 3574 if (err) 3575 goto out; 3576 zero_ex.ee_block = ex->ee_block; 3577 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)); 3578 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex)); 3579 3580 err = ext4_ext_get_access(handle, inode, path + depth); 3581 if (err) 3582 goto out; 3583 ext4_ext_mark_initialized(ex); 3584 ext4_ext_try_to_merge(handle, inode, path, ex); 3585 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3586 goto out; 3587 } 3588 3589 /* 3590 * four cases: 3591 * 1. split the extent into three extents. 3592 * 2. split the extent into two extents, zeroout the first half. 3593 * 3. split the extent into two extents, zeroout the second half. 3594 * 4. split the extent into two extents with out zeroout. 3595 */ 3596 split_map.m_lblk = map->m_lblk; 3597 split_map.m_len = map->m_len; 3598 3599 if (max_zeroout && (allocated > map->m_len)) { 3600 if (allocated <= max_zeroout) { 3601 /* case 3 */ 3602 zero_ex.ee_block = 3603 cpu_to_le32(map->m_lblk); 3604 zero_ex.ee_len = cpu_to_le16(allocated); 3605 ext4_ext_store_pblock(&zero_ex, 3606 ext4_ext_pblock(ex) + map->m_lblk - ee_block); 3607 err = ext4_ext_zeroout(inode, &zero_ex); 3608 if (err) 3609 goto out; 3610 split_map.m_lblk = map->m_lblk; 3611 split_map.m_len = allocated; 3612 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { 3613 /* case 2 */ 3614 if (map->m_lblk != ee_block) { 3615 zero_ex.ee_block = ex->ee_block; 3616 zero_ex.ee_len = cpu_to_le16(map->m_lblk - 3617 ee_block); 3618 ext4_ext_store_pblock(&zero_ex, 3619 ext4_ext_pblock(ex)); 3620 err = ext4_ext_zeroout(inode, &zero_ex); 3621 if (err) 3622 goto out; 3623 } 3624 3625 split_map.m_lblk = ee_block; 3626 split_map.m_len = map->m_lblk - ee_block + map->m_len; 3627 allocated = map->m_len; 3628 } 3629 } 3630 3631 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag, 3632 flags); 3633 if (err > 0) 3634 err = 0; 3635 out: 3636 /* If we have gotten a failure, don't zero out status tree */ 3637 if (!err) 3638 err = ext4_zeroout_es(inode, &zero_ex); 3639 return err ? err : allocated; 3640 } 3641 3642 /* 3643 * This function is called by ext4_ext_map_blocks() from 3644 * ext4_get_blocks_dio_write() when DIO to write 3645 * to an unwritten extent. 3646 * 3647 * Writing to an unwritten extent may result in splitting the unwritten 3648 * extent into multiple initialized/unwritten extents (up to three) 3649 * There are three possibilities: 3650 * a> There is no split required: Entire extent should be unwritten 3651 * b> Splits in two extents: Write is happening at either end of the extent 3652 * c> Splits in three extents: Somone is writing in middle of the extent 3653 * 3654 * This works the same way in the case of initialized -> unwritten conversion. 3655 * 3656 * One of more index blocks maybe needed if the extent tree grow after 3657 * the unwritten extent split. To prevent ENOSPC occur at the IO 3658 * complete, we need to split the unwritten extent before DIO submit 3659 * the IO. The unwritten extent called at this time will be split 3660 * into three unwritten extent(at most). After IO complete, the part 3661 * being filled will be convert to initialized by the end_io callback function 3662 * via ext4_convert_unwritten_extents(). 3663 * 3664 * Returns the size of unwritten extent to be written on success. 3665 */ 3666 static int ext4_split_convert_extents(handle_t *handle, 3667 struct inode *inode, 3668 struct ext4_map_blocks *map, 3669 struct ext4_ext_path **ppath, 3670 int flags) 3671 { 3672 struct ext4_ext_path *path = *ppath; 3673 ext4_lblk_t eof_block; 3674 ext4_lblk_t ee_block; 3675 struct ext4_extent *ex; 3676 unsigned int ee_len; 3677 int split_flag = 0, depth; 3678 3679 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n", 3680 __func__, inode->i_ino, 3681 (unsigned long long)map->m_lblk, map->m_len); 3682 3683 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> 3684 inode->i_sb->s_blocksize_bits; 3685 if (eof_block < map->m_lblk + map->m_len) 3686 eof_block = map->m_lblk + map->m_len; 3687 /* 3688 * It is safe to convert extent to initialized via explicit 3689 * zeroout only if extent is fully insde i_size or new_size. 3690 */ 3691 depth = ext_depth(inode); 3692 ex = path[depth].p_ext; 3693 ee_block = le32_to_cpu(ex->ee_block); 3694 ee_len = ext4_ext_get_actual_len(ex); 3695 3696 /* Convert to unwritten */ 3697 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3698 split_flag |= EXT4_EXT_DATA_VALID1; 3699 /* Convert to initialized */ 3700 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3701 split_flag |= ee_block + ee_len <= eof_block ? 3702 EXT4_EXT_MAY_ZEROOUT : 0; 3703 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3704 } 3705 flags |= EXT4_GET_BLOCKS_PRE_IO; 3706 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags); 3707 } 3708 3709 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3710 struct inode *inode, 3711 struct ext4_map_blocks *map, 3712 struct ext4_ext_path **ppath) 3713 { 3714 struct ext4_ext_path *path = *ppath; 3715 struct ext4_extent *ex; 3716 ext4_lblk_t ee_block; 3717 unsigned int ee_len; 3718 int depth; 3719 int err = 0; 3720 3721 depth = ext_depth(inode); 3722 ex = path[depth].p_ext; 3723 ee_block = le32_to_cpu(ex->ee_block); 3724 ee_len = ext4_ext_get_actual_len(ex); 3725 3726 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" 3727 "block %llu, max_blocks %u\n", inode->i_ino, 3728 (unsigned long long)ee_block, ee_len); 3729 3730 /* If extent is larger than requested it is a clear sign that we still 3731 * have some extent state machine issues left. So extent_split is still 3732 * required. 3733 * TODO: Once all related issues will be fixed this situation should be 3734 * illegal. 3735 */ 3736 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3737 #ifdef EXT4_DEBUG 3738 ext4_warning("Inode (%ld) finished: extent logical block %llu," 3739 " len %u; IO logical block %llu, len %u", 3740 inode->i_ino, (unsigned long long)ee_block, ee_len, 3741 (unsigned long long)map->m_lblk, map->m_len); 3742 #endif 3743 err = ext4_split_convert_extents(handle, inode, map, ppath, 3744 EXT4_GET_BLOCKS_CONVERT); 3745 if (err < 0) 3746 return err; 3747 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3748 if (IS_ERR(path)) 3749 return PTR_ERR(path); 3750 depth = ext_depth(inode); 3751 ex = path[depth].p_ext; 3752 } 3753 3754 err = ext4_ext_get_access(handle, inode, path + depth); 3755 if (err) 3756 goto out; 3757 /* first mark the extent as initialized */ 3758 ext4_ext_mark_initialized(ex); 3759 3760 /* note: ext4_ext_correct_indexes() isn't needed here because 3761 * borders are not changed 3762 */ 3763 ext4_ext_try_to_merge(handle, inode, path, ex); 3764 3765 /* Mark modified extent as dirty */ 3766 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3767 out: 3768 ext4_ext_show_leaf(inode, path); 3769 return err; 3770 } 3771 3772 static void unmap_underlying_metadata_blocks(struct block_device *bdev, 3773 sector_t block, int count) 3774 { 3775 int i; 3776 for (i = 0; i < count; i++) 3777 unmap_underlying_metadata(bdev, block + i); 3778 } 3779 3780 /* 3781 * Handle EOFBLOCKS_FL flag, clearing it if necessary 3782 */ 3783 static int check_eofblocks_fl(handle_t *handle, struct inode *inode, 3784 ext4_lblk_t lblk, 3785 struct ext4_ext_path *path, 3786 unsigned int len) 3787 { 3788 int i, depth; 3789 struct ext4_extent_header *eh; 3790 struct ext4_extent *last_ex; 3791 3792 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3793 return 0; 3794 3795 depth = ext_depth(inode); 3796 eh = path[depth].p_hdr; 3797 3798 /* 3799 * We're going to remove EOFBLOCKS_FL entirely in future so we 3800 * do not care for this case anymore. Simply remove the flag 3801 * if there are no extents. 3802 */ 3803 if (unlikely(!eh->eh_entries)) 3804 goto out; 3805 last_ex = EXT_LAST_EXTENT(eh); 3806 /* 3807 * We should clear the EOFBLOCKS_FL flag if we are writing the 3808 * last block in the last extent in the file. We test this by 3809 * first checking to see if the caller to 3810 * ext4_ext_get_blocks() was interested in the last block (or 3811 * a block beyond the last block) in the current extent. If 3812 * this turns out to be false, we can bail out from this 3813 * function immediately. 3814 */ 3815 if (lblk + len < le32_to_cpu(last_ex->ee_block) + 3816 ext4_ext_get_actual_len(last_ex)) 3817 return 0; 3818 /* 3819 * If the caller does appear to be planning to write at or 3820 * beyond the end of the current extent, we then test to see 3821 * if the current extent is the last extent in the file, by 3822 * checking to make sure it was reached via the rightmost node 3823 * at each level of the tree. 3824 */ 3825 for (i = depth-1; i >= 0; i--) 3826 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) 3827 return 0; 3828 out: 3829 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3830 return ext4_mark_inode_dirty(handle, inode); 3831 } 3832 3833 /** 3834 * ext4_find_delalloc_range: find delayed allocated block in the given range. 3835 * 3836 * Return 1 if there is a delalloc block in the range, otherwise 0. 3837 */ 3838 int ext4_find_delalloc_range(struct inode *inode, 3839 ext4_lblk_t lblk_start, 3840 ext4_lblk_t lblk_end) 3841 { 3842 struct extent_status es; 3843 3844 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es); 3845 if (es.es_len == 0) 3846 return 0; /* there is no delay extent in this tree */ 3847 else if (es.es_lblk <= lblk_start && 3848 lblk_start < es.es_lblk + es.es_len) 3849 return 1; 3850 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) 3851 return 1; 3852 else 3853 return 0; 3854 } 3855 3856 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) 3857 { 3858 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3859 ext4_lblk_t lblk_start, lblk_end; 3860 lblk_start = EXT4_LBLK_CMASK(sbi, lblk); 3861 lblk_end = lblk_start + sbi->s_cluster_ratio - 1; 3862 3863 return ext4_find_delalloc_range(inode, lblk_start, lblk_end); 3864 } 3865 3866 /** 3867 * Determines how many complete clusters (out of those specified by the 'map') 3868 * are under delalloc and were reserved quota for. 3869 * This function is called when we are writing out the blocks that were 3870 * originally written with their allocation delayed, but then the space was 3871 * allocated using fallocate() before the delayed allocation could be resolved. 3872 * The cases to look for are: 3873 * ('=' indicated delayed allocated blocks 3874 * '-' indicates non-delayed allocated blocks) 3875 * (a) partial clusters towards beginning and/or end outside of allocated range 3876 * are not delalloc'ed. 3877 * Ex: 3878 * |----c---=|====c====|====c====|===-c----| 3879 * |++++++ allocated ++++++| 3880 * ==> 4 complete clusters in above example 3881 * 3882 * (b) partial cluster (outside of allocated range) towards either end is 3883 * marked for delayed allocation. In this case, we will exclude that 3884 * cluster. 3885 * Ex: 3886 * |----====c========|========c========| 3887 * |++++++ allocated ++++++| 3888 * ==> 1 complete clusters in above example 3889 * 3890 * Ex: 3891 * |================c================| 3892 * |++++++ allocated ++++++| 3893 * ==> 0 complete clusters in above example 3894 * 3895 * The ext4_da_update_reserve_space will be called only if we 3896 * determine here that there were some "entire" clusters that span 3897 * this 'allocated' range. 3898 * In the non-bigalloc case, this function will just end up returning num_blks 3899 * without ever calling ext4_find_delalloc_range. 3900 */ 3901 static unsigned int 3902 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, 3903 unsigned int num_blks) 3904 { 3905 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3906 ext4_lblk_t alloc_cluster_start, alloc_cluster_end; 3907 ext4_lblk_t lblk_from, lblk_to, c_offset; 3908 unsigned int allocated_clusters = 0; 3909 3910 alloc_cluster_start = EXT4_B2C(sbi, lblk_start); 3911 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); 3912 3913 /* max possible clusters for this allocation */ 3914 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; 3915 3916 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); 3917 3918 /* Check towards left side */ 3919 c_offset = EXT4_LBLK_COFF(sbi, lblk_start); 3920 if (c_offset) { 3921 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start); 3922 lblk_to = lblk_from + c_offset - 1; 3923 3924 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3925 allocated_clusters--; 3926 } 3927 3928 /* Now check towards right. */ 3929 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks); 3930 if (allocated_clusters && c_offset) { 3931 lblk_from = lblk_start + num_blks; 3932 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; 3933 3934 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) 3935 allocated_clusters--; 3936 } 3937 3938 return allocated_clusters; 3939 } 3940 3941 static int 3942 convert_initialized_extent(handle_t *handle, struct inode *inode, 3943 struct ext4_map_blocks *map, 3944 struct ext4_ext_path **ppath, 3945 unsigned int allocated) 3946 { 3947 struct ext4_ext_path *path = *ppath; 3948 struct ext4_extent *ex; 3949 ext4_lblk_t ee_block; 3950 unsigned int ee_len; 3951 int depth; 3952 int err = 0; 3953 3954 /* 3955 * Make sure that the extent is no bigger than we support with 3956 * unwritten extent 3957 */ 3958 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3959 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3960 3961 depth = ext_depth(inode); 3962 ex = path[depth].p_ext; 3963 ee_block = le32_to_cpu(ex->ee_block); 3964 ee_len = ext4_ext_get_actual_len(ex); 3965 3966 ext_debug("%s: inode %lu, logical" 3967 "block %llu, max_blocks %u\n", __func__, inode->i_ino, 3968 (unsigned long long)ee_block, ee_len); 3969 3970 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3971 err = ext4_split_convert_extents(handle, inode, map, ppath, 3972 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3973 if (err < 0) 3974 return err; 3975 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3976 if (IS_ERR(path)) 3977 return PTR_ERR(path); 3978 depth = ext_depth(inode); 3979 ex = path[depth].p_ext; 3980 if (!ex) { 3981 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3982 (unsigned long) map->m_lblk); 3983 return -EFSCORRUPTED; 3984 } 3985 } 3986 3987 err = ext4_ext_get_access(handle, inode, path + depth); 3988 if (err) 3989 return err; 3990 /* first mark the extent as unwritten */ 3991 ext4_ext_mark_unwritten(ex); 3992 3993 /* note: ext4_ext_correct_indexes() isn't needed here because 3994 * borders are not changed 3995 */ 3996 ext4_ext_try_to_merge(handle, inode, path, ex); 3997 3998 /* Mark modified extent as dirty */ 3999 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 4000 if (err) 4001 return err; 4002 ext4_ext_show_leaf(inode, path); 4003 4004 ext4_update_inode_fsync_trans(handle, inode, 1); 4005 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len); 4006 if (err) 4007 return err; 4008 map->m_flags |= EXT4_MAP_UNWRITTEN; 4009 if (allocated > map->m_len) 4010 allocated = map->m_len; 4011 map->m_len = allocated; 4012 return allocated; 4013 } 4014 4015 static int 4016 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 4017 struct ext4_map_blocks *map, 4018 struct ext4_ext_path **ppath, int flags, 4019 unsigned int allocated, ext4_fsblk_t newblock) 4020 { 4021 struct ext4_ext_path *path = *ppath; 4022 int ret = 0; 4023 int err = 0; 4024 4025 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical " 4026 "block %llu, max_blocks %u, flags %x, allocated %u\n", 4027 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, 4028 flags, allocated); 4029 ext4_ext_show_leaf(inode, path); 4030 4031 /* 4032 * When writing into unwritten space, we should not fail to 4033 * allocate metadata blocks for the new extent block if needed. 4034 */ 4035 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 4036 4037 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 4038 allocated, newblock); 4039 4040 /* get_block() before submit the IO, split the extent */ 4041 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 4042 ret = ext4_split_convert_extents(handle, inode, map, ppath, 4043 flags | EXT4_GET_BLOCKS_CONVERT); 4044 if (ret <= 0) 4045 goto out; 4046 map->m_flags |= EXT4_MAP_UNWRITTEN; 4047 goto out; 4048 } 4049 /* IO end_io complete, convert the filled extent to written */ 4050 if (flags & EXT4_GET_BLOCKS_CONVERT) { 4051 if (flags & EXT4_GET_BLOCKS_ZERO) { 4052 if (allocated > map->m_len) 4053 allocated = map->m_len; 4054 err = ext4_issue_zeroout(inode, map->m_lblk, newblock, 4055 allocated); 4056 if (err < 0) 4057 goto out2; 4058 } 4059 ret = ext4_convert_unwritten_extents_endio(handle, inode, map, 4060 ppath); 4061 if (ret >= 0) { 4062 ext4_update_inode_fsync_trans(handle, inode, 1); 4063 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4064 path, map->m_len); 4065 } else 4066 err = ret; 4067 map->m_flags |= EXT4_MAP_MAPPED; 4068 map->m_pblk = newblock; 4069 if (allocated > map->m_len) 4070 allocated = map->m_len; 4071 map->m_len = allocated; 4072 goto out2; 4073 } 4074 /* buffered IO case */ 4075 /* 4076 * repeat fallocate creation request 4077 * we already have an unwritten extent 4078 */ 4079 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4080 map->m_flags |= EXT4_MAP_UNWRITTEN; 4081 goto map_out; 4082 } 4083 4084 /* buffered READ or buffered write_begin() lookup */ 4085 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4086 /* 4087 * We have blocks reserved already. We 4088 * return allocated blocks so that delalloc 4089 * won't do block reservation for us. But 4090 * the buffer head will be unmapped so that 4091 * a read from the block returns 0s. 4092 */ 4093 map->m_flags |= EXT4_MAP_UNWRITTEN; 4094 goto out1; 4095 } 4096 4097 /* buffered write, writepage time, convert*/ 4098 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags); 4099 if (ret >= 0) 4100 ext4_update_inode_fsync_trans(handle, inode, 1); 4101 out: 4102 if (ret <= 0) { 4103 err = ret; 4104 goto out2; 4105 } else 4106 allocated = ret; 4107 map->m_flags |= EXT4_MAP_NEW; 4108 /* 4109 * if we allocated more blocks than requested 4110 * we need to make sure we unmap the extra block 4111 * allocated. The actual needed block will get 4112 * unmapped later when we find the buffer_head marked 4113 * new. 4114 */ 4115 if (allocated > map->m_len) { 4116 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, 4117 newblock + map->m_len, 4118 allocated - map->m_len); 4119 allocated = map->m_len; 4120 } 4121 map->m_len = allocated; 4122 4123 /* 4124 * If we have done fallocate with the offset that is already 4125 * delayed allocated, we would have block reservation 4126 * and quota reservation done in the delayed write path. 4127 * But fallocate would have already updated quota and block 4128 * count for this offset. So cancel these reservation 4129 */ 4130 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4131 unsigned int reserved_clusters; 4132 reserved_clusters = get_reserved_cluster_alloc(inode, 4133 map->m_lblk, map->m_len); 4134 if (reserved_clusters) 4135 ext4_da_update_reserve_space(inode, 4136 reserved_clusters, 4137 0); 4138 } 4139 4140 map_out: 4141 map->m_flags |= EXT4_MAP_MAPPED; 4142 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { 4143 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, 4144 map->m_len); 4145 if (err < 0) 4146 goto out2; 4147 } 4148 out1: 4149 if (allocated > map->m_len) 4150 allocated = map->m_len; 4151 ext4_ext_show_leaf(inode, path); 4152 map->m_pblk = newblock; 4153 map->m_len = allocated; 4154 out2: 4155 return err ? err : allocated; 4156 } 4157 4158 /* 4159 * get_implied_cluster_alloc - check to see if the requested 4160 * allocation (in the map structure) overlaps with a cluster already 4161 * allocated in an extent. 4162 * @sb The filesystem superblock structure 4163 * @map The requested lblk->pblk mapping 4164 * @ex The extent structure which might contain an implied 4165 * cluster allocation 4166 * 4167 * This function is called by ext4_ext_map_blocks() after we failed to 4168 * find blocks that were already in the inode's extent tree. Hence, 4169 * we know that the beginning of the requested region cannot overlap 4170 * the extent from the inode's extent tree. There are three cases we 4171 * want to catch. The first is this case: 4172 * 4173 * |--- cluster # N--| 4174 * |--- extent ---| |---- requested region ---| 4175 * |==========| 4176 * 4177 * The second case that we need to test for is this one: 4178 * 4179 * |--------- cluster # N ----------------| 4180 * |--- requested region --| |------- extent ----| 4181 * |=======================| 4182 * 4183 * The third case is when the requested region lies between two extents 4184 * within the same cluster: 4185 * |------------- cluster # N-------------| 4186 * |----- ex -----| |---- ex_right ----| 4187 * |------ requested region ------| 4188 * |================| 4189 * 4190 * In each of the above cases, we need to set the map->m_pblk and 4191 * map->m_len so it corresponds to the return the extent labelled as 4192 * "|====|" from cluster #N, since it is already in use for data in 4193 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 4194 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 4195 * as a new "allocated" block region. Otherwise, we will return 0 and 4196 * ext4_ext_map_blocks() will then allocate one or more new clusters 4197 * by calling ext4_mb_new_blocks(). 4198 */ 4199 static int get_implied_cluster_alloc(struct super_block *sb, 4200 struct ext4_map_blocks *map, 4201 struct ext4_extent *ex, 4202 struct ext4_ext_path *path) 4203 { 4204 struct ext4_sb_info *sbi = EXT4_SB(sb); 4205 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4206 ext4_lblk_t ex_cluster_start, ex_cluster_end; 4207 ext4_lblk_t rr_cluster_start; 4208 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4209 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4210 unsigned short ee_len = ext4_ext_get_actual_len(ex); 4211 4212 /* The extent passed in that we are trying to match */ 4213 ex_cluster_start = EXT4_B2C(sbi, ee_block); 4214 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 4215 4216 /* The requested region passed into ext4_map_blocks() */ 4217 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 4218 4219 if ((rr_cluster_start == ex_cluster_end) || 4220 (rr_cluster_start == ex_cluster_start)) { 4221 if (rr_cluster_start == ex_cluster_end) 4222 ee_start += ee_len - 1; 4223 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 4224 map->m_len = min(map->m_len, 4225 (unsigned) sbi->s_cluster_ratio - c_offset); 4226 /* 4227 * Check for and handle this case: 4228 * 4229 * |--------- cluster # N-------------| 4230 * |------- extent ----| 4231 * |--- requested region ---| 4232 * |===========| 4233 */ 4234 4235 if (map->m_lblk < ee_block) 4236 map->m_len = min(map->m_len, ee_block - map->m_lblk); 4237 4238 /* 4239 * Check for the case where there is already another allocated 4240 * block to the right of 'ex' but before the end of the cluster. 4241 * 4242 * |------------- cluster # N-------------| 4243 * |----- ex -----| |---- ex_right ----| 4244 * |------ requested region ------| 4245 * |================| 4246 */ 4247 if (map->m_lblk > ee_block) { 4248 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4249 map->m_len = min(map->m_len, next - map->m_lblk); 4250 } 4251 4252 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4253 return 1; 4254 } 4255 4256 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4257 return 0; 4258 } 4259 4260 4261 /* 4262 * Block allocation/map/preallocation routine for extents based files 4263 * 4264 * 4265 * Need to be called with 4266 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4267 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4268 * 4269 * return > 0, number of of blocks already mapped/allocated 4270 * if create == 0 and these are pre-allocated blocks 4271 * buffer head is unmapped 4272 * otherwise blocks are mapped 4273 * 4274 * return = 0, if plain look up failed (blocks have not been allocated) 4275 * buffer head is unmapped 4276 * 4277 * return < 0, error case. 4278 */ 4279 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4280 struct ext4_map_blocks *map, int flags) 4281 { 4282 struct ext4_ext_path *path = NULL; 4283 struct ext4_extent newex, *ex, *ex2; 4284 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4285 ext4_fsblk_t newblock = 0; 4286 int free_on_err = 0, err = 0, depth, ret; 4287 unsigned int allocated = 0, offset = 0; 4288 unsigned int allocated_clusters = 0; 4289 struct ext4_allocation_request ar; 4290 ext4_lblk_t cluster_offset; 4291 bool map_from_cluster = false; 4292 4293 ext_debug("blocks %u/%u requested for inode %lu\n", 4294 map->m_lblk, map->m_len, inode->i_ino); 4295 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4296 4297 /* find extent for this block */ 4298 path = ext4_find_extent(inode, map->m_lblk, NULL, 0); 4299 if (IS_ERR(path)) { 4300 err = PTR_ERR(path); 4301 path = NULL; 4302 goto out2; 4303 } 4304 4305 depth = ext_depth(inode); 4306 4307 /* 4308 * consistent leaf must not be empty; 4309 * this situation is possible, though, _during_ tree modification; 4310 * this is why assert can't be put in ext4_find_extent() 4311 */ 4312 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4313 EXT4_ERROR_INODE(inode, "bad extent address " 4314 "lblock: %lu, depth: %d pblock %lld", 4315 (unsigned long) map->m_lblk, depth, 4316 path[depth].p_block); 4317 err = -EFSCORRUPTED; 4318 goto out2; 4319 } 4320 4321 ex = path[depth].p_ext; 4322 if (ex) { 4323 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4324 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4325 unsigned short ee_len; 4326 4327 4328 /* 4329 * unwritten extents are treated as holes, except that 4330 * we split out initialized portions during a write. 4331 */ 4332 ee_len = ext4_ext_get_actual_len(ex); 4333 4334 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4335 4336 /* if found extent covers block, simply return it */ 4337 if (in_range(map->m_lblk, ee_block, ee_len)) { 4338 newblock = map->m_lblk - ee_block + ee_start; 4339 /* number of remaining blocks in the extent */ 4340 allocated = ee_len - (map->m_lblk - ee_block); 4341 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, 4342 ee_block, ee_len, newblock); 4343 4344 /* 4345 * If the extent is initialized check whether the 4346 * caller wants to convert it to unwritten. 4347 */ 4348 if ((!ext4_ext_is_unwritten(ex)) && 4349 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4350 allocated = convert_initialized_extent( 4351 handle, inode, map, &path, 4352 allocated); 4353 goto out2; 4354 } else if (!ext4_ext_is_unwritten(ex)) 4355 goto out; 4356 4357 ret = ext4_ext_handle_unwritten_extents( 4358 handle, inode, map, &path, flags, 4359 allocated, newblock); 4360 if (ret < 0) 4361 err = ret; 4362 else 4363 allocated = ret; 4364 goto out2; 4365 } 4366 } 4367 4368 /* 4369 * requested block isn't allocated yet; 4370 * we couldn't try to create block if create flag is zero 4371 */ 4372 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4373 ext4_lblk_t hole_start, hole_len; 4374 4375 hole_start = map->m_lblk; 4376 hole_len = ext4_ext_determine_hole(inode, path, &hole_start); 4377 /* 4378 * put just found gap into cache to speed up 4379 * subsequent requests 4380 */ 4381 ext4_ext_put_gap_in_cache(inode, hole_start, hole_len); 4382 4383 /* Update hole_len to reflect hole size after map->m_lblk */ 4384 if (hole_start != map->m_lblk) 4385 hole_len -= map->m_lblk - hole_start; 4386 map->m_pblk = 0; 4387 map->m_len = min_t(unsigned int, map->m_len, hole_len); 4388 4389 goto out2; 4390 } 4391 4392 /* 4393 * Okay, we need to do block allocation. 4394 */ 4395 newex.ee_block = cpu_to_le32(map->m_lblk); 4396 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4397 4398 /* 4399 * If we are doing bigalloc, check to see if the extent returned 4400 * by ext4_find_extent() implies a cluster we can use. 4401 */ 4402 if (cluster_offset && ex && 4403 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4404 ar.len = allocated = map->m_len; 4405 newblock = map->m_pblk; 4406 map_from_cluster = true; 4407 goto got_allocated_blocks; 4408 } 4409 4410 /* find neighbour allocated blocks */ 4411 ar.lleft = map->m_lblk; 4412 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4413 if (err) 4414 goto out2; 4415 ar.lright = map->m_lblk; 4416 ex2 = NULL; 4417 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4418 if (err) 4419 goto out2; 4420 4421 /* Check if the extent after searching to the right implies a 4422 * cluster we can use. */ 4423 if ((sbi->s_cluster_ratio > 1) && ex2 && 4424 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { 4425 ar.len = allocated = map->m_len; 4426 newblock = map->m_pblk; 4427 map_from_cluster = true; 4428 goto got_allocated_blocks; 4429 } 4430 4431 /* 4432 * See if request is beyond maximum number of blocks we can have in 4433 * a single extent. For an initialized extent this limit is 4434 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4435 * EXT_UNWRITTEN_MAX_LEN. 4436 */ 4437 if (map->m_len > EXT_INIT_MAX_LEN && 4438 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4439 map->m_len = EXT_INIT_MAX_LEN; 4440 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4441 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4442 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4443 4444 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4445 newex.ee_len = cpu_to_le16(map->m_len); 4446 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4447 if (err) 4448 allocated = ext4_ext_get_actual_len(&newex); 4449 else 4450 allocated = map->m_len; 4451 4452 /* allocate new block */ 4453 ar.inode = inode; 4454 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4455 ar.logical = map->m_lblk; 4456 /* 4457 * We calculate the offset from the beginning of the cluster 4458 * for the logical block number, since when we allocate a 4459 * physical cluster, the physical block should start at the 4460 * same offset from the beginning of the cluster. This is 4461 * needed so that future calls to get_implied_cluster_alloc() 4462 * work correctly. 4463 */ 4464 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4465 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4466 ar.goal -= offset; 4467 ar.logical -= offset; 4468 if (S_ISREG(inode->i_mode)) 4469 ar.flags = EXT4_MB_HINT_DATA; 4470 else 4471 /* disable in-core preallocation for non-regular files */ 4472 ar.flags = 0; 4473 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4474 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4475 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4476 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 4477 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 4478 ar.flags |= EXT4_MB_USE_RESERVED; 4479 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4480 if (!newblock) 4481 goto out2; 4482 ext_debug("allocate new block: goal %llu, found %llu/%u\n", 4483 ar.goal, newblock, allocated); 4484 free_on_err = 1; 4485 allocated_clusters = ar.len; 4486 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4487 if (ar.len > allocated) 4488 ar.len = allocated; 4489 4490 got_allocated_blocks: 4491 /* try to insert new extent into found leaf and return */ 4492 ext4_ext_store_pblock(&newex, newblock + offset); 4493 newex.ee_len = cpu_to_le16(ar.len); 4494 /* Mark unwritten */ 4495 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){ 4496 ext4_ext_mark_unwritten(&newex); 4497 map->m_flags |= EXT4_MAP_UNWRITTEN; 4498 } 4499 4500 err = 0; 4501 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) 4502 err = check_eofblocks_fl(handle, inode, map->m_lblk, 4503 path, ar.len); 4504 if (!err) 4505 err = ext4_ext_insert_extent(handle, inode, &path, 4506 &newex, flags); 4507 4508 if (err && free_on_err) { 4509 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? 4510 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; 4511 /* free data blocks we just allocated */ 4512 /* not a good idea to call discard here directly, 4513 * but otherwise we'd need to call it every free() */ 4514 ext4_discard_preallocations(inode); 4515 ext4_free_blocks(handle, inode, NULL, newblock, 4516 EXT4_C2B(sbi, allocated_clusters), fb_flags); 4517 goto out2; 4518 } 4519 4520 /* previous routine could use block we allocated */ 4521 newblock = ext4_ext_pblock(&newex); 4522 allocated = ext4_ext_get_actual_len(&newex); 4523 if (allocated > map->m_len) 4524 allocated = map->m_len; 4525 map->m_flags |= EXT4_MAP_NEW; 4526 4527 /* 4528 * Update reserved blocks/metadata blocks after successful 4529 * block allocation which had been deferred till now. 4530 */ 4531 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4532 unsigned int reserved_clusters; 4533 /* 4534 * Check how many clusters we had reserved this allocated range 4535 */ 4536 reserved_clusters = get_reserved_cluster_alloc(inode, 4537 map->m_lblk, allocated); 4538 if (!map_from_cluster) { 4539 BUG_ON(allocated_clusters < reserved_clusters); 4540 if (reserved_clusters < allocated_clusters) { 4541 struct ext4_inode_info *ei = EXT4_I(inode); 4542 int reservation = allocated_clusters - 4543 reserved_clusters; 4544 /* 4545 * It seems we claimed few clusters outside of 4546 * the range of this allocation. We should give 4547 * it back to the reservation pool. This can 4548 * happen in the following case: 4549 * 4550 * * Suppose s_cluster_ratio is 4 (i.e., each 4551 * cluster has 4 blocks. Thus, the clusters 4552 * are [0-3],[4-7],[8-11]... 4553 * * First comes delayed allocation write for 4554 * logical blocks 10 & 11. Since there were no 4555 * previous delayed allocated blocks in the 4556 * range [8-11], we would reserve 1 cluster 4557 * for this write. 4558 * * Next comes write for logical blocks 3 to 8. 4559 * In this case, we will reserve 2 clusters 4560 * (for [0-3] and [4-7]; and not for [8-11] as 4561 * that range has a delayed allocated blocks. 4562 * Thus total reserved clusters now becomes 3. 4563 * * Now, during the delayed allocation writeout 4564 * time, we will first write blocks [3-8] and 4565 * allocate 3 clusters for writing these 4566 * blocks. Also, we would claim all these 4567 * three clusters above. 4568 * * Now when we come here to writeout the 4569 * blocks [10-11], we would expect to claim 4570 * the reservation of 1 cluster we had made 4571 * (and we would claim it since there are no 4572 * more delayed allocated blocks in the range 4573 * [8-11]. But our reserved cluster count had 4574 * already gone to 0. 4575 * 4576 * Thus, at the step 4 above when we determine 4577 * that there are still some unwritten delayed 4578 * allocated blocks outside of our current 4579 * block range, we should increment the 4580 * reserved clusters count so that when the 4581 * remaining blocks finally gets written, we 4582 * could claim them. 4583 */ 4584 dquot_reserve_block(inode, 4585 EXT4_C2B(sbi, reservation)); 4586 spin_lock(&ei->i_block_reservation_lock); 4587 ei->i_reserved_data_blocks += reservation; 4588 spin_unlock(&ei->i_block_reservation_lock); 4589 } 4590 /* 4591 * We will claim quota for all newly allocated blocks. 4592 * We're updating the reserved space *after* the 4593 * correction above so we do not accidentally free 4594 * all the metadata reservation because we might 4595 * actually need it later on. 4596 */ 4597 ext4_da_update_reserve_space(inode, allocated_clusters, 4598 1); 4599 } 4600 } 4601 4602 /* 4603 * Cache the extent and update transaction to commit on fdatasync only 4604 * when it is _not_ an unwritten extent. 4605 */ 4606 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4607 ext4_update_inode_fsync_trans(handle, inode, 1); 4608 else 4609 ext4_update_inode_fsync_trans(handle, inode, 0); 4610 out: 4611 if (allocated > map->m_len) 4612 allocated = map->m_len; 4613 ext4_ext_show_leaf(inode, path); 4614 map->m_flags |= EXT4_MAP_MAPPED; 4615 map->m_pblk = newblock; 4616 map->m_len = allocated; 4617 out2: 4618 ext4_ext_drop_refs(path); 4619 kfree(path); 4620 4621 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4622 err ? err : allocated); 4623 return err ? err : allocated; 4624 } 4625 4626 void ext4_ext_truncate(handle_t *handle, struct inode *inode) 4627 { 4628 struct super_block *sb = inode->i_sb; 4629 ext4_lblk_t last_block; 4630 int err = 0; 4631 4632 /* 4633 * TODO: optimization is possible here. 4634 * Probably we need not scan at all, 4635 * because page truncation is enough. 4636 */ 4637 4638 /* we have to know where to truncate from in crash case */ 4639 EXT4_I(inode)->i_disksize = inode->i_size; 4640 ext4_mark_inode_dirty(handle, inode); 4641 4642 last_block = (inode->i_size + sb->s_blocksize - 1) 4643 >> EXT4_BLOCK_SIZE_BITS(sb); 4644 retry: 4645 err = ext4_es_remove_extent(inode, last_block, 4646 EXT_MAX_BLOCKS - last_block); 4647 if (err == -ENOMEM) { 4648 cond_resched(); 4649 congestion_wait(BLK_RW_ASYNC, HZ/50); 4650 goto retry; 4651 } 4652 if (err) { 4653 ext4_std_error(inode->i_sb, err); 4654 return; 4655 } 4656 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4657 ext4_std_error(inode->i_sb, err); 4658 } 4659 4660 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4661 ext4_lblk_t len, loff_t new_size, 4662 int flags, int mode) 4663 { 4664 struct inode *inode = file_inode(file); 4665 handle_t *handle; 4666 int ret = 0; 4667 int ret2 = 0; 4668 int retries = 0; 4669 int depth = 0; 4670 struct ext4_map_blocks map; 4671 unsigned int credits; 4672 loff_t epos; 4673 4674 map.m_lblk = offset; 4675 map.m_len = len; 4676 /* 4677 * Don't normalize the request if it can fit in one extent so 4678 * that it doesn't get unnecessarily split into multiple 4679 * extents. 4680 */ 4681 if (len <= EXT_UNWRITTEN_MAX_LEN) 4682 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4683 4684 /* 4685 * credits to insert 1 extent into extent tree 4686 */ 4687 credits = ext4_chunk_trans_blocks(inode, len); 4688 /* 4689 * We can only call ext_depth() on extent based inodes 4690 */ 4691 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4692 depth = ext_depth(inode); 4693 else 4694 depth = -1; 4695 4696 retry: 4697 while (ret >= 0 && len) { 4698 /* 4699 * Recalculate credits when extent tree depth changes. 4700 */ 4701 if (depth >= 0 && depth != ext_depth(inode)) { 4702 credits = ext4_chunk_trans_blocks(inode, len); 4703 depth = ext_depth(inode); 4704 } 4705 4706 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4707 credits); 4708 if (IS_ERR(handle)) { 4709 ret = PTR_ERR(handle); 4710 break; 4711 } 4712 ret = ext4_map_blocks(handle, inode, &map, flags); 4713 if (ret <= 0) { 4714 ext4_debug("inode #%lu: block %u: len %u: " 4715 "ext4_ext_map_blocks returned %d", 4716 inode->i_ino, map.m_lblk, 4717 map.m_len, ret); 4718 ext4_mark_inode_dirty(handle, inode); 4719 ret2 = ext4_journal_stop(handle); 4720 break; 4721 } 4722 map.m_lblk += ret; 4723 map.m_len = len = len - ret; 4724 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4725 inode->i_ctime = ext4_current_time(inode); 4726 if (new_size) { 4727 if (epos > new_size) 4728 epos = new_size; 4729 if (ext4_update_inode_size(inode, epos) & 0x1) 4730 inode->i_mtime = inode->i_ctime; 4731 } else { 4732 if (epos > inode->i_size) 4733 ext4_set_inode_flag(inode, 4734 EXT4_INODE_EOFBLOCKS); 4735 } 4736 ext4_mark_inode_dirty(handle, inode); 4737 ret2 = ext4_journal_stop(handle); 4738 if (ret2) 4739 break; 4740 } 4741 if (ret == -ENOSPC && 4742 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4743 ret = 0; 4744 goto retry; 4745 } 4746 4747 return ret > 0 ? ret2 : ret; 4748 } 4749 4750 static long ext4_zero_range(struct file *file, loff_t offset, 4751 loff_t len, int mode) 4752 { 4753 struct inode *inode = file_inode(file); 4754 handle_t *handle = NULL; 4755 unsigned int max_blocks; 4756 loff_t new_size = 0; 4757 int ret = 0; 4758 int flags; 4759 int credits; 4760 int partial_begin, partial_end; 4761 loff_t start, end; 4762 ext4_lblk_t lblk; 4763 unsigned int blkbits = inode->i_blkbits; 4764 4765 trace_ext4_zero_range(inode, offset, len, mode); 4766 4767 if (!S_ISREG(inode->i_mode)) 4768 return -EINVAL; 4769 4770 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4771 if (ext4_should_journal_data(inode)) { 4772 ret = ext4_force_commit(inode->i_sb); 4773 if (ret) 4774 return ret; 4775 } 4776 4777 /* 4778 * Round up offset. This is not fallocate, we neet to zero out 4779 * blocks, so convert interior block aligned part of the range to 4780 * unwritten and possibly manually zero out unaligned parts of the 4781 * range. 4782 */ 4783 start = round_up(offset, 1 << blkbits); 4784 end = round_down((offset + len), 1 << blkbits); 4785 4786 if (start < offset || end > offset + len) 4787 return -EINVAL; 4788 partial_begin = offset & ((1 << blkbits) - 1); 4789 partial_end = (offset + len) & ((1 << blkbits) - 1); 4790 4791 lblk = start >> blkbits; 4792 max_blocks = (end >> blkbits); 4793 if (max_blocks < lblk) 4794 max_blocks = 0; 4795 else 4796 max_blocks -= lblk; 4797 4798 inode_lock(inode); 4799 4800 /* 4801 * Indirect files do not support unwritten extnets 4802 */ 4803 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4804 ret = -EOPNOTSUPP; 4805 goto out_mutex; 4806 } 4807 4808 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4809 offset + len > i_size_read(inode)) { 4810 new_size = offset + len; 4811 ret = inode_newsize_ok(inode, new_size); 4812 if (ret) 4813 goto out_mutex; 4814 } 4815 4816 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4817 if (mode & FALLOC_FL_KEEP_SIZE) 4818 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4819 4820 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4821 ext4_inode_block_unlocked_dio(inode); 4822 inode_dio_wait(inode); 4823 4824 /* Preallocate the range including the unaligned edges */ 4825 if (partial_begin || partial_end) { 4826 ret = ext4_alloc_file_blocks(file, 4827 round_down(offset, 1 << blkbits) >> blkbits, 4828 (round_up((offset + len), 1 << blkbits) - 4829 round_down(offset, 1 << blkbits)) >> blkbits, 4830 new_size, flags, mode); 4831 if (ret) 4832 goto out_dio; 4833 4834 } 4835 4836 /* Zero range excluding the unaligned edges */ 4837 if (max_blocks > 0) { 4838 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4839 EXT4_EX_NOCACHE); 4840 4841 /* 4842 * Prevent page faults from reinstantiating pages we have 4843 * released from page cache. 4844 */ 4845 down_write(&EXT4_I(inode)->i_mmap_sem); 4846 ret = ext4_update_disksize_before_punch(inode, offset, len); 4847 if (ret) { 4848 up_write(&EXT4_I(inode)->i_mmap_sem); 4849 goto out_dio; 4850 } 4851 /* Now release the pages and zero block aligned part of pages */ 4852 truncate_pagecache_range(inode, start, end - 1); 4853 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4854 4855 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4856 flags, mode); 4857 up_write(&EXT4_I(inode)->i_mmap_sem); 4858 if (ret) 4859 goto out_dio; 4860 } 4861 if (!partial_begin && !partial_end) 4862 goto out_dio; 4863 4864 /* 4865 * In worst case we have to writeout two nonadjacent unwritten 4866 * blocks and update the inode 4867 */ 4868 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4869 if (ext4_should_journal_data(inode)) 4870 credits += 2; 4871 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4872 if (IS_ERR(handle)) { 4873 ret = PTR_ERR(handle); 4874 ext4_std_error(inode->i_sb, ret); 4875 goto out_dio; 4876 } 4877 4878 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4879 if (new_size) { 4880 ext4_update_inode_size(inode, new_size); 4881 } else { 4882 /* 4883 * Mark that we allocate beyond EOF so the subsequent truncate 4884 * can proceed even if the new size is the same as i_size. 4885 */ 4886 if ((offset + len) > i_size_read(inode)) 4887 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4888 } 4889 ext4_mark_inode_dirty(handle, inode); 4890 4891 /* Zero out partial block at the edges of the range */ 4892 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4893 4894 if (file->f_flags & O_SYNC) 4895 ext4_handle_sync(handle); 4896 4897 ext4_journal_stop(handle); 4898 out_dio: 4899 ext4_inode_resume_unlocked_dio(inode); 4900 out_mutex: 4901 inode_unlock(inode); 4902 return ret; 4903 } 4904 4905 /* 4906 * preallocate space for a file. This implements ext4's fallocate file 4907 * operation, which gets called from sys_fallocate system call. 4908 * For block-mapped files, posix_fallocate should fall back to the method 4909 * of writing zeroes to the required new blocks (the same behavior which is 4910 * expected for file systems which do not support fallocate() system call). 4911 */ 4912 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4913 { 4914 struct inode *inode = file_inode(file); 4915 loff_t new_size = 0; 4916 unsigned int max_blocks; 4917 int ret = 0; 4918 int flags; 4919 ext4_lblk_t lblk; 4920 unsigned int blkbits = inode->i_blkbits; 4921 4922 /* 4923 * Encrypted inodes can't handle collapse range or insert 4924 * range since we would need to re-encrypt blocks with a 4925 * different IV or XTS tweak (which are based on the logical 4926 * block number). 4927 * 4928 * XXX It's not clear why zero range isn't working, but we'll 4929 * leave it disabled for encrypted inodes for now. This is a 4930 * bug we should fix.... 4931 */ 4932 if (ext4_encrypted_inode(inode) && 4933 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE | 4934 FALLOC_FL_ZERO_RANGE))) 4935 return -EOPNOTSUPP; 4936 4937 /* Return error if mode is not supported */ 4938 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4939 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 4940 FALLOC_FL_INSERT_RANGE)) 4941 return -EOPNOTSUPP; 4942 4943 if (mode & FALLOC_FL_PUNCH_HOLE) 4944 return ext4_punch_hole(inode, offset, len); 4945 4946 ret = ext4_convert_inline_data(inode); 4947 if (ret) 4948 return ret; 4949 4950 if (mode & FALLOC_FL_COLLAPSE_RANGE) 4951 return ext4_collapse_range(inode, offset, len); 4952 4953 if (mode & FALLOC_FL_INSERT_RANGE) 4954 return ext4_insert_range(inode, offset, len); 4955 4956 if (mode & FALLOC_FL_ZERO_RANGE) 4957 return ext4_zero_range(file, offset, len, mode); 4958 4959 trace_ext4_fallocate_enter(inode, offset, len, mode); 4960 lblk = offset >> blkbits; 4961 /* 4962 * We can't just convert len to max_blocks because 4963 * If blocksize = 4096 offset = 3072 and len = 2048 4964 */ 4965 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) 4966 - lblk; 4967 4968 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4969 if (mode & FALLOC_FL_KEEP_SIZE) 4970 flags |= EXT4_GET_BLOCKS_KEEP_SIZE; 4971 4972 inode_lock(inode); 4973 4974 /* 4975 * We only support preallocation for extent-based files only 4976 */ 4977 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4978 ret = -EOPNOTSUPP; 4979 goto out; 4980 } 4981 4982 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4983 offset + len > i_size_read(inode)) { 4984 new_size = offset + len; 4985 ret = inode_newsize_ok(inode, new_size); 4986 if (ret) 4987 goto out; 4988 } 4989 4990 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4991 ext4_inode_block_unlocked_dio(inode); 4992 inode_dio_wait(inode); 4993 4994 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4995 flags, mode); 4996 ext4_inode_resume_unlocked_dio(inode); 4997 if (ret) 4998 goto out; 4999 5000 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 5001 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 5002 EXT4_I(inode)->i_sync_tid); 5003 } 5004 out: 5005 inode_unlock(inode); 5006 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 5007 return ret; 5008 } 5009 5010 /* 5011 * This function convert a range of blocks to written extents 5012 * The caller of this function will pass the start offset and the size. 5013 * all unwritten extents within this range will be converted to 5014 * written extents. 5015 * 5016 * This function is called from the direct IO end io call back 5017 * function, to convert the fallocated extents after IO is completed. 5018 * Returns 0 on success. 5019 */ 5020 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 5021 loff_t offset, ssize_t len) 5022 { 5023 unsigned int max_blocks; 5024 int ret = 0; 5025 int ret2 = 0; 5026 struct ext4_map_blocks map; 5027 unsigned int credits, blkbits = inode->i_blkbits; 5028 5029 map.m_lblk = offset >> blkbits; 5030 /* 5031 * We can't just convert len to max_blocks because 5032 * If blocksize = 4096 offset = 3072 and len = 2048 5033 */ 5034 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - 5035 map.m_lblk); 5036 /* 5037 * This is somewhat ugly but the idea is clear: When transaction is 5038 * reserved, everything goes into it. Otherwise we rather start several 5039 * smaller transactions for conversion of each extent separately. 5040 */ 5041 if (handle) { 5042 handle = ext4_journal_start_reserved(handle, 5043 EXT4_HT_EXT_CONVERT); 5044 if (IS_ERR(handle)) 5045 return PTR_ERR(handle); 5046 credits = 0; 5047 } else { 5048 /* 5049 * credits to insert 1 extent into extent tree 5050 */ 5051 credits = ext4_chunk_trans_blocks(inode, max_blocks); 5052 } 5053 while (ret >= 0 && ret < max_blocks) { 5054 map.m_lblk += ret; 5055 map.m_len = (max_blocks -= ret); 5056 if (credits) { 5057 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 5058 credits); 5059 if (IS_ERR(handle)) { 5060 ret = PTR_ERR(handle); 5061 break; 5062 } 5063 } 5064 ret = ext4_map_blocks(handle, inode, &map, 5065 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 5066 if (ret <= 0) 5067 ext4_warning(inode->i_sb, 5068 "inode #%lu: block %u: len %u: " 5069 "ext4_ext_map_blocks returned %d", 5070 inode->i_ino, map.m_lblk, 5071 map.m_len, ret); 5072 ext4_mark_inode_dirty(handle, inode); 5073 if (credits) 5074 ret2 = ext4_journal_stop(handle); 5075 if (ret <= 0 || ret2) 5076 break; 5077 } 5078 if (!credits) 5079 ret2 = ext4_journal_stop(handle); 5080 return ret > 0 ? ret2 : ret; 5081 } 5082 5083 /* 5084 * If newes is not existing extent (newes->ec_pblk equals zero) find 5085 * delayed extent at start of newes and update newes accordingly and 5086 * return start of the next delayed extent. 5087 * 5088 * If newes is existing extent (newes->ec_pblk is not equal zero) 5089 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed 5090 * extent found. Leave newes unmodified. 5091 */ 5092 static int ext4_find_delayed_extent(struct inode *inode, 5093 struct extent_status *newes) 5094 { 5095 struct extent_status es; 5096 ext4_lblk_t block, next_del; 5097 5098 if (newes->es_pblk == 0) { 5099 ext4_es_find_delayed_extent_range(inode, newes->es_lblk, 5100 newes->es_lblk + newes->es_len - 1, &es); 5101 5102 /* 5103 * No extent in extent-tree contains block @newes->es_pblk, 5104 * then the block may stay in 1)a hole or 2)delayed-extent. 5105 */ 5106 if (es.es_len == 0) 5107 /* A hole found. */ 5108 return 0; 5109 5110 if (es.es_lblk > newes->es_lblk) { 5111 /* A hole found. */ 5112 newes->es_len = min(es.es_lblk - newes->es_lblk, 5113 newes->es_len); 5114 return 0; 5115 } 5116 5117 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; 5118 } 5119 5120 block = newes->es_lblk + newes->es_len; 5121 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es); 5122 if (es.es_len == 0) 5123 next_del = EXT_MAX_BLOCKS; 5124 else 5125 next_del = es.es_lblk; 5126 5127 return next_del; 5128 } 5129 /* fiemap flags we can handle specified here */ 5130 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) 5131 5132 static int ext4_xattr_fiemap(struct inode *inode, 5133 struct fiemap_extent_info *fieinfo) 5134 { 5135 __u64 physical = 0; 5136 __u64 length; 5137 __u32 flags = FIEMAP_EXTENT_LAST; 5138 int blockbits = inode->i_sb->s_blocksize_bits; 5139 int error = 0; 5140 5141 /* in-inode? */ 5142 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 5143 struct ext4_iloc iloc; 5144 int offset; /* offset of xattr in inode */ 5145 5146 error = ext4_get_inode_loc(inode, &iloc); 5147 if (error) 5148 return error; 5149 physical = (__u64)iloc.bh->b_blocknr << blockbits; 5150 offset = EXT4_GOOD_OLD_INODE_SIZE + 5151 EXT4_I(inode)->i_extra_isize; 5152 physical += offset; 5153 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 5154 flags |= FIEMAP_EXTENT_DATA_INLINE; 5155 brelse(iloc.bh); 5156 } else { /* external block */ 5157 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 5158 length = inode->i_sb->s_blocksize; 5159 } 5160 5161 if (physical) 5162 error = fiemap_fill_next_extent(fieinfo, 0, physical, 5163 length, flags); 5164 return (error < 0 ? error : 0); 5165 } 5166 5167 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5168 __u64 start, __u64 len) 5169 { 5170 ext4_lblk_t start_blk; 5171 int error = 0; 5172 5173 if (ext4_has_inline_data(inode)) { 5174 int has_inline = 1; 5175 5176 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline, 5177 start, len); 5178 5179 if (has_inline) 5180 return error; 5181 } 5182 5183 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 5184 error = ext4_ext_precache(inode); 5185 if (error) 5186 return error; 5187 } 5188 5189 /* fallback to generic here if not in extents fmt */ 5190 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5191 return generic_block_fiemap(inode, fieinfo, start, len, 5192 ext4_get_block); 5193 5194 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) 5195 return -EBADR; 5196 5197 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 5198 error = ext4_xattr_fiemap(inode, fieinfo); 5199 } else { 5200 ext4_lblk_t len_blks; 5201 __u64 last_blk; 5202 5203 start_blk = start >> inode->i_sb->s_blocksize_bits; 5204 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 5205 if (last_blk >= EXT_MAX_BLOCKS) 5206 last_blk = EXT_MAX_BLOCKS-1; 5207 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 5208 5209 /* 5210 * Walk the extent tree gathering extent information 5211 * and pushing extents back to the user. 5212 */ 5213 error = ext4_fill_fiemap_extents(inode, start_blk, 5214 len_blks, fieinfo); 5215 } 5216 return error; 5217 } 5218 5219 /* 5220 * ext4_access_path: 5221 * Function to access the path buffer for marking it dirty. 5222 * It also checks if there are sufficient credits left in the journal handle 5223 * to update path. 5224 */ 5225 static int 5226 ext4_access_path(handle_t *handle, struct inode *inode, 5227 struct ext4_ext_path *path) 5228 { 5229 int credits, err; 5230 5231 if (!ext4_handle_valid(handle)) 5232 return 0; 5233 5234 /* 5235 * Check if need to extend journal credits 5236 * 3 for leaf, sb, and inode plus 2 (bmap and group 5237 * descriptor) for each block group; assume two block 5238 * groups 5239 */ 5240 if (handle->h_buffer_credits < 7) { 5241 credits = ext4_writepage_trans_blocks(inode); 5242 err = ext4_ext_truncate_extend_restart(handle, inode, credits); 5243 /* EAGAIN is success */ 5244 if (err && err != -EAGAIN) 5245 return err; 5246 } 5247 5248 err = ext4_ext_get_access(handle, inode, path); 5249 return err; 5250 } 5251 5252 /* 5253 * ext4_ext_shift_path_extents: 5254 * Shift the extents of a path structure lying between path[depth].p_ext 5255 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells 5256 * if it is right shift or left shift operation. 5257 */ 5258 static int 5259 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5260 struct inode *inode, handle_t *handle, 5261 enum SHIFT_DIRECTION SHIFT) 5262 { 5263 int depth, err = 0; 5264 struct ext4_extent *ex_start, *ex_last; 5265 bool update = 0; 5266 depth = path->p_depth; 5267 5268 while (depth >= 0) { 5269 if (depth == path->p_depth) { 5270 ex_start = path[depth].p_ext; 5271 if (!ex_start) 5272 return -EFSCORRUPTED; 5273 5274 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5275 5276 err = ext4_access_path(handle, inode, path + depth); 5277 if (err) 5278 goto out; 5279 5280 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 5281 update = 1; 5282 5283 while (ex_start <= ex_last) { 5284 if (SHIFT == SHIFT_LEFT) { 5285 le32_add_cpu(&ex_start->ee_block, 5286 -shift); 5287 /* Try to merge to the left. */ 5288 if ((ex_start > 5289 EXT_FIRST_EXTENT(path[depth].p_hdr)) 5290 && 5291 ext4_ext_try_to_merge_right(inode, 5292 path, ex_start - 1)) 5293 ex_last--; 5294 else 5295 ex_start++; 5296 } else { 5297 le32_add_cpu(&ex_last->ee_block, shift); 5298 ext4_ext_try_to_merge_right(inode, path, 5299 ex_last); 5300 ex_last--; 5301 } 5302 } 5303 err = ext4_ext_dirty(handle, inode, path + depth); 5304 if (err) 5305 goto out; 5306 5307 if (--depth < 0 || !update) 5308 break; 5309 } 5310 5311 /* Update index too */ 5312 err = ext4_access_path(handle, inode, path + depth); 5313 if (err) 5314 goto out; 5315 5316 if (SHIFT == SHIFT_LEFT) 5317 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5318 else 5319 le32_add_cpu(&path[depth].p_idx->ei_block, shift); 5320 err = ext4_ext_dirty(handle, inode, path + depth); 5321 if (err) 5322 goto out; 5323 5324 /* we are done if current index is not a starting index */ 5325 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5326 break; 5327 5328 depth--; 5329 } 5330 5331 out: 5332 return err; 5333 } 5334 5335 /* 5336 * ext4_ext_shift_extents: 5337 * All the extents which lies in the range from @start to the last allocated 5338 * block for the @inode are shifted either towards left or right (depending 5339 * upon @SHIFT) by @shift blocks. 5340 * On success, 0 is returned, error otherwise. 5341 */ 5342 static int 5343 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5344 ext4_lblk_t start, ext4_lblk_t shift, 5345 enum SHIFT_DIRECTION SHIFT) 5346 { 5347 struct ext4_ext_path *path; 5348 int ret = 0, depth; 5349 struct ext4_extent *extent; 5350 ext4_lblk_t stop, *iterator, ex_start, ex_end; 5351 5352 /* Let path point to the last extent */ 5353 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0); 5354 if (IS_ERR(path)) 5355 return PTR_ERR(path); 5356 5357 depth = path->p_depth; 5358 extent = path[depth].p_ext; 5359 if (!extent) 5360 goto out; 5361 5362 stop = le32_to_cpu(extent->ee_block) + 5363 ext4_ext_get_actual_len(extent); 5364 5365 /* 5366 * In case of left shift, Don't start shifting extents until we make 5367 * sure the hole is big enough to accommodate the shift. 5368 */ 5369 if (SHIFT == SHIFT_LEFT) { 5370 path = ext4_find_extent(inode, start - 1, &path, 0); 5371 if (IS_ERR(path)) 5372 return PTR_ERR(path); 5373 depth = path->p_depth; 5374 extent = path[depth].p_ext; 5375 if (extent) { 5376 ex_start = le32_to_cpu(extent->ee_block); 5377 ex_end = le32_to_cpu(extent->ee_block) + 5378 ext4_ext_get_actual_len(extent); 5379 } else { 5380 ex_start = 0; 5381 ex_end = 0; 5382 } 5383 5384 if ((start == ex_start && shift > ex_start) || 5385 (shift > start - ex_end)) { 5386 ext4_ext_drop_refs(path); 5387 kfree(path); 5388 return -EINVAL; 5389 } 5390 } 5391 5392 /* 5393 * In case of left shift, iterator points to start and it is increased 5394 * till we reach stop. In case of right shift, iterator points to stop 5395 * and it is decreased till we reach start. 5396 */ 5397 if (SHIFT == SHIFT_LEFT) 5398 iterator = &start; 5399 else 5400 iterator = &stop; 5401 5402 /* Its safe to start updating extents */ 5403 while (start < stop) { 5404 path = ext4_find_extent(inode, *iterator, &path, 0); 5405 if (IS_ERR(path)) 5406 return PTR_ERR(path); 5407 depth = path->p_depth; 5408 extent = path[depth].p_ext; 5409 if (!extent) { 5410 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5411 (unsigned long) *iterator); 5412 return -EFSCORRUPTED; 5413 } 5414 if (SHIFT == SHIFT_LEFT && *iterator > 5415 le32_to_cpu(extent->ee_block)) { 5416 /* Hole, move to the next extent */ 5417 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5418 path[depth].p_ext++; 5419 } else { 5420 *iterator = ext4_ext_next_allocated_block(path); 5421 continue; 5422 } 5423 } 5424 5425 if (SHIFT == SHIFT_LEFT) { 5426 extent = EXT_LAST_EXTENT(path[depth].p_hdr); 5427 *iterator = le32_to_cpu(extent->ee_block) + 5428 ext4_ext_get_actual_len(extent); 5429 } else { 5430 extent = EXT_FIRST_EXTENT(path[depth].p_hdr); 5431 *iterator = le32_to_cpu(extent->ee_block) > 0 ? 5432 le32_to_cpu(extent->ee_block) - 1 : 0; 5433 /* Update path extent in case we need to stop */ 5434 while (le32_to_cpu(extent->ee_block) < start) 5435 extent++; 5436 path[depth].p_ext = extent; 5437 } 5438 ret = ext4_ext_shift_path_extents(path, shift, inode, 5439 handle, SHIFT); 5440 if (ret) 5441 break; 5442 } 5443 out: 5444 ext4_ext_drop_refs(path); 5445 kfree(path); 5446 return ret; 5447 } 5448 5449 /* 5450 * ext4_collapse_range: 5451 * This implements the fallocate's collapse range functionality for ext4 5452 * Returns: 0 and non-zero on error. 5453 */ 5454 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5455 { 5456 struct super_block *sb = inode->i_sb; 5457 ext4_lblk_t punch_start, punch_stop; 5458 handle_t *handle; 5459 unsigned int credits; 5460 loff_t new_size, ioffset; 5461 int ret; 5462 5463 /* 5464 * We need to test this early because xfstests assumes that a 5465 * collapse range of (0, 1) will return EOPNOTSUPP if the file 5466 * system does not support collapse range. 5467 */ 5468 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5469 return -EOPNOTSUPP; 5470 5471 /* Collapse range works only on fs block size aligned offsets. */ 5472 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5473 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5474 return -EINVAL; 5475 5476 if (!S_ISREG(inode->i_mode)) 5477 return -EINVAL; 5478 5479 trace_ext4_collapse_range(inode, offset, len); 5480 5481 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5482 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5483 5484 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5485 if (ext4_should_journal_data(inode)) { 5486 ret = ext4_force_commit(inode->i_sb); 5487 if (ret) 5488 return ret; 5489 } 5490 5491 inode_lock(inode); 5492 /* 5493 * There is no need to overlap collapse range with EOF, in which case 5494 * it is effectively a truncate operation 5495 */ 5496 if (offset + len >= i_size_read(inode)) { 5497 ret = -EINVAL; 5498 goto out_mutex; 5499 } 5500 5501 /* Currently just for extent based files */ 5502 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5503 ret = -EOPNOTSUPP; 5504 goto out_mutex; 5505 } 5506 5507 /* Wait for existing dio to complete */ 5508 ext4_inode_block_unlocked_dio(inode); 5509 inode_dio_wait(inode); 5510 5511 /* 5512 * Prevent page faults from reinstantiating pages we have released from 5513 * page cache. 5514 */ 5515 down_write(&EXT4_I(inode)->i_mmap_sem); 5516 /* 5517 * Need to round down offset to be aligned with page size boundary 5518 * for page size > block size. 5519 */ 5520 ioffset = round_down(offset, PAGE_SIZE); 5521 /* 5522 * Write tail of the last page before removed range since it will get 5523 * removed from the page cache below. 5524 */ 5525 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset); 5526 if (ret) 5527 goto out_mmap; 5528 /* 5529 * Write data that will be shifted to preserve them when discarding 5530 * page cache below. We are also protected from pages becoming dirty 5531 * by i_mmap_sem. 5532 */ 5533 ret = filemap_write_and_wait_range(inode->i_mapping, offset + len, 5534 LLONG_MAX); 5535 if (ret) 5536 goto out_mmap; 5537 truncate_pagecache(inode, ioffset); 5538 5539 credits = ext4_writepage_trans_blocks(inode); 5540 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5541 if (IS_ERR(handle)) { 5542 ret = PTR_ERR(handle); 5543 goto out_mmap; 5544 } 5545 5546 down_write(&EXT4_I(inode)->i_data_sem); 5547 ext4_discard_preallocations(inode); 5548 5549 ret = ext4_es_remove_extent(inode, punch_start, 5550 EXT_MAX_BLOCKS - punch_start); 5551 if (ret) { 5552 up_write(&EXT4_I(inode)->i_data_sem); 5553 goto out_stop; 5554 } 5555 5556 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5557 if (ret) { 5558 up_write(&EXT4_I(inode)->i_data_sem); 5559 goto out_stop; 5560 } 5561 ext4_discard_preallocations(inode); 5562 5563 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5564 punch_stop - punch_start, SHIFT_LEFT); 5565 if (ret) { 5566 up_write(&EXT4_I(inode)->i_data_sem); 5567 goto out_stop; 5568 } 5569 5570 new_size = i_size_read(inode) - len; 5571 i_size_write(inode, new_size); 5572 EXT4_I(inode)->i_disksize = new_size; 5573 5574 up_write(&EXT4_I(inode)->i_data_sem); 5575 if (IS_SYNC(inode)) 5576 ext4_handle_sync(handle); 5577 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 5578 ext4_mark_inode_dirty(handle, inode); 5579 5580 out_stop: 5581 ext4_journal_stop(handle); 5582 out_mmap: 5583 up_write(&EXT4_I(inode)->i_mmap_sem); 5584 ext4_inode_resume_unlocked_dio(inode); 5585 out_mutex: 5586 inode_unlock(inode); 5587 return ret; 5588 } 5589 5590 /* 5591 * ext4_insert_range: 5592 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate. 5593 * The data blocks starting from @offset to the EOF are shifted by @len 5594 * towards right to create a hole in the @inode. Inode size is increased 5595 * by len bytes. 5596 * Returns 0 on success, error otherwise. 5597 */ 5598 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len) 5599 { 5600 struct super_block *sb = inode->i_sb; 5601 handle_t *handle; 5602 struct ext4_ext_path *path; 5603 struct ext4_extent *extent; 5604 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0; 5605 unsigned int credits, ee_len; 5606 int ret = 0, depth, split_flag = 0; 5607 loff_t ioffset; 5608 5609 /* 5610 * We need to test this early because xfstests assumes that an 5611 * insert range of (0, 1) will return EOPNOTSUPP if the file 5612 * system does not support insert range. 5613 */ 5614 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5615 return -EOPNOTSUPP; 5616 5617 /* Insert range works only on fs block size aligned offsets. */ 5618 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) || 5619 len & (EXT4_CLUSTER_SIZE(sb) - 1)) 5620 return -EINVAL; 5621 5622 if (!S_ISREG(inode->i_mode)) 5623 return -EOPNOTSUPP; 5624 5625 trace_ext4_insert_range(inode, offset, len); 5626 5627 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5628 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb); 5629 5630 /* Call ext4_force_commit to flush all data in case of data=journal */ 5631 if (ext4_should_journal_data(inode)) { 5632 ret = ext4_force_commit(inode->i_sb); 5633 if (ret) 5634 return ret; 5635 } 5636 5637 inode_lock(inode); 5638 /* Currently just for extent based files */ 5639 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5640 ret = -EOPNOTSUPP; 5641 goto out_mutex; 5642 } 5643 5644 /* Check for wrap through zero */ 5645 if (inode->i_size + len > inode->i_sb->s_maxbytes) { 5646 ret = -EFBIG; 5647 goto out_mutex; 5648 } 5649 5650 /* Offset should be less than i_size */ 5651 if (offset >= i_size_read(inode)) { 5652 ret = -EINVAL; 5653 goto out_mutex; 5654 } 5655 5656 /* Wait for existing dio to complete */ 5657 ext4_inode_block_unlocked_dio(inode); 5658 inode_dio_wait(inode); 5659 5660 /* 5661 * Prevent page faults from reinstantiating pages we have released from 5662 * page cache. 5663 */ 5664 down_write(&EXT4_I(inode)->i_mmap_sem); 5665 /* 5666 * Need to round down to align start offset to page size boundary 5667 * for page size > block size. 5668 */ 5669 ioffset = round_down(offset, PAGE_SIZE); 5670 /* Write out all dirty pages */ 5671 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5672 LLONG_MAX); 5673 if (ret) 5674 goto out_mmap; 5675 truncate_pagecache(inode, ioffset); 5676 5677 credits = ext4_writepage_trans_blocks(inode); 5678 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5679 if (IS_ERR(handle)) { 5680 ret = PTR_ERR(handle); 5681 goto out_mmap; 5682 } 5683 5684 /* Expand file to avoid data loss if there is error while shifting */ 5685 inode->i_size += len; 5686 EXT4_I(inode)->i_disksize += len; 5687 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 5688 ret = ext4_mark_inode_dirty(handle, inode); 5689 if (ret) 5690 goto out_stop; 5691 5692 down_write(&EXT4_I(inode)->i_data_sem); 5693 ext4_discard_preallocations(inode); 5694 5695 path = ext4_find_extent(inode, offset_lblk, NULL, 0); 5696 if (IS_ERR(path)) { 5697 up_write(&EXT4_I(inode)->i_data_sem); 5698 goto out_stop; 5699 } 5700 5701 depth = ext_depth(inode); 5702 extent = path[depth].p_ext; 5703 if (extent) { 5704 ee_start_lblk = le32_to_cpu(extent->ee_block); 5705 ee_len = ext4_ext_get_actual_len(extent); 5706 5707 /* 5708 * If offset_lblk is not the starting block of extent, split 5709 * the extent @offset_lblk 5710 */ 5711 if ((offset_lblk > ee_start_lblk) && 5712 (offset_lblk < (ee_start_lblk + ee_len))) { 5713 if (ext4_ext_is_unwritten(extent)) 5714 split_flag = EXT4_EXT_MARK_UNWRIT1 | 5715 EXT4_EXT_MARK_UNWRIT2; 5716 ret = ext4_split_extent_at(handle, inode, &path, 5717 offset_lblk, split_flag, 5718 EXT4_EX_NOCACHE | 5719 EXT4_GET_BLOCKS_PRE_IO | 5720 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5721 } 5722 5723 ext4_ext_drop_refs(path); 5724 kfree(path); 5725 if (ret < 0) { 5726 up_write(&EXT4_I(inode)->i_data_sem); 5727 goto out_stop; 5728 } 5729 } 5730 5731 ret = ext4_es_remove_extent(inode, offset_lblk, 5732 EXT_MAX_BLOCKS - offset_lblk); 5733 if (ret) { 5734 up_write(&EXT4_I(inode)->i_data_sem); 5735 goto out_stop; 5736 } 5737 5738 /* 5739 * if offset_lblk lies in a hole which is at start of file, use 5740 * ee_start_lblk to shift extents 5741 */ 5742 ret = ext4_ext_shift_extents(inode, handle, 5743 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk, 5744 len_lblk, SHIFT_RIGHT); 5745 5746 up_write(&EXT4_I(inode)->i_data_sem); 5747 if (IS_SYNC(inode)) 5748 ext4_handle_sync(handle); 5749 5750 out_stop: 5751 ext4_journal_stop(handle); 5752 out_mmap: 5753 up_write(&EXT4_I(inode)->i_mmap_sem); 5754 ext4_inode_resume_unlocked_dio(inode); 5755 out_mutex: 5756 inode_unlock(inode); 5757 return ret; 5758 } 5759 5760 /** 5761 * ext4_swap_extents - Swap extents between two inodes 5762 * 5763 * @inode1: First inode 5764 * @inode2: Second inode 5765 * @lblk1: Start block for first inode 5766 * @lblk2: Start block for second inode 5767 * @count: Number of blocks to swap 5768 * @mark_unwritten: Mark second inode's extents as unwritten after swap 5769 * @erp: Pointer to save error value 5770 * 5771 * This helper routine does exactly what is promise "swap extents". All other 5772 * stuff such as page-cache locking consistency, bh mapping consistency or 5773 * extent's data copying must be performed by caller. 5774 * Locking: 5775 * i_mutex is held for both inodes 5776 * i_data_sem is locked for write for both inodes 5777 * Assumptions: 5778 * All pages from requested range are locked for both inodes 5779 */ 5780 int 5781 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5782 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5783 ext4_lblk_t count, int unwritten, int *erp) 5784 { 5785 struct ext4_ext_path *path1 = NULL; 5786 struct ext4_ext_path *path2 = NULL; 5787 int replaced_count = 0; 5788 5789 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5790 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5791 BUG_ON(!inode_is_locked(inode1)); 5792 BUG_ON(!inode_is_locked(inode2)); 5793 5794 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5795 if (unlikely(*erp)) 5796 return 0; 5797 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5798 if (unlikely(*erp)) 5799 return 0; 5800 5801 while (count) { 5802 struct ext4_extent *ex1, *ex2, tmp_ex; 5803 ext4_lblk_t e1_blk, e2_blk; 5804 int e1_len, e2_len, len; 5805 int split = 0; 5806 5807 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5808 if (IS_ERR(path1)) { 5809 *erp = PTR_ERR(path1); 5810 path1 = NULL; 5811 finish: 5812 count = 0; 5813 goto repeat; 5814 } 5815 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5816 if (IS_ERR(path2)) { 5817 *erp = PTR_ERR(path2); 5818 path2 = NULL; 5819 goto finish; 5820 } 5821 ex1 = path1[path1->p_depth].p_ext; 5822 ex2 = path2[path2->p_depth].p_ext; 5823 /* Do we have somthing to swap ? */ 5824 if (unlikely(!ex2 || !ex1)) 5825 goto finish; 5826 5827 e1_blk = le32_to_cpu(ex1->ee_block); 5828 e2_blk = le32_to_cpu(ex2->ee_block); 5829 e1_len = ext4_ext_get_actual_len(ex1); 5830 e2_len = ext4_ext_get_actual_len(ex2); 5831 5832 /* Hole handling */ 5833 if (!in_range(lblk1, e1_blk, e1_len) || 5834 !in_range(lblk2, e2_blk, e2_len)) { 5835 ext4_lblk_t next1, next2; 5836 5837 /* if hole after extent, then go to next extent */ 5838 next1 = ext4_ext_next_allocated_block(path1); 5839 next2 = ext4_ext_next_allocated_block(path2); 5840 /* If hole before extent, then shift to that extent */ 5841 if (e1_blk > lblk1) 5842 next1 = e1_blk; 5843 if (e2_blk > lblk2) 5844 next2 = e1_blk; 5845 /* Do we have something to swap */ 5846 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5847 goto finish; 5848 /* Move to the rightest boundary */ 5849 len = next1 - lblk1; 5850 if (len < next2 - lblk2) 5851 len = next2 - lblk2; 5852 if (len > count) 5853 len = count; 5854 lblk1 += len; 5855 lblk2 += len; 5856 count -= len; 5857 goto repeat; 5858 } 5859 5860 /* Prepare left boundary */ 5861 if (e1_blk < lblk1) { 5862 split = 1; 5863 *erp = ext4_force_split_extent_at(handle, inode1, 5864 &path1, lblk1, 0); 5865 if (unlikely(*erp)) 5866 goto finish; 5867 } 5868 if (e2_blk < lblk2) { 5869 split = 1; 5870 *erp = ext4_force_split_extent_at(handle, inode2, 5871 &path2, lblk2, 0); 5872 if (unlikely(*erp)) 5873 goto finish; 5874 } 5875 /* ext4_split_extent_at() may result in leaf extent split, 5876 * path must to be revalidated. */ 5877 if (split) 5878 goto repeat; 5879 5880 /* Prepare right boundary */ 5881 len = count; 5882 if (len > e1_blk + e1_len - lblk1) 5883 len = e1_blk + e1_len - lblk1; 5884 if (len > e2_blk + e2_len - lblk2) 5885 len = e2_blk + e2_len - lblk2; 5886 5887 if (len != e1_len) { 5888 split = 1; 5889 *erp = ext4_force_split_extent_at(handle, inode1, 5890 &path1, lblk1 + len, 0); 5891 if (unlikely(*erp)) 5892 goto finish; 5893 } 5894 if (len != e2_len) { 5895 split = 1; 5896 *erp = ext4_force_split_extent_at(handle, inode2, 5897 &path2, lblk2 + len, 0); 5898 if (*erp) 5899 goto finish; 5900 } 5901 /* ext4_split_extent_at() may result in leaf extent split, 5902 * path must to be revalidated. */ 5903 if (split) 5904 goto repeat; 5905 5906 BUG_ON(e2_len != e1_len); 5907 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5908 if (unlikely(*erp)) 5909 goto finish; 5910 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5911 if (unlikely(*erp)) 5912 goto finish; 5913 5914 /* Both extents are fully inside boundaries. Swap it now */ 5915 tmp_ex = *ex1; 5916 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5917 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5918 ex1->ee_len = cpu_to_le16(e2_len); 5919 ex2->ee_len = cpu_to_le16(e1_len); 5920 if (unwritten) 5921 ext4_ext_mark_unwritten(ex2); 5922 if (ext4_ext_is_unwritten(&tmp_ex)) 5923 ext4_ext_mark_unwritten(ex1); 5924 5925 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5926 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5927 *erp = ext4_ext_dirty(handle, inode2, path2 + 5928 path2->p_depth); 5929 if (unlikely(*erp)) 5930 goto finish; 5931 *erp = ext4_ext_dirty(handle, inode1, path1 + 5932 path1->p_depth); 5933 /* 5934 * Looks scarry ah..? second inode already points to new blocks, 5935 * and it was successfully dirtied. But luckily error may happen 5936 * only due to journal error, so full transaction will be 5937 * aborted anyway. 5938 */ 5939 if (unlikely(*erp)) 5940 goto finish; 5941 lblk1 += len; 5942 lblk2 += len; 5943 replaced_count += len; 5944 count -= len; 5945 5946 repeat: 5947 ext4_ext_drop_refs(path1); 5948 kfree(path1); 5949 ext4_ext_drop_refs(path2); 5950 kfree(path2); 5951 path1 = path2 = NULL; 5952 } 5953 return replaced_count; 5954 } 5955