1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 * 6 * Architecture independence: 7 * Copyright (c) 2005, Bull S.A. 8 * Written by Pierre Peiffer <pierre.peiffer@bull.net> 9 */ 10 11 /* 12 * Extents support for EXT4 13 * 14 * TODO: 15 * - ext4*_error() should be used in some situations 16 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate 17 * - smart tree reduction 18 */ 19 20 #include <linux/fs.h> 21 #include <linux/time.h> 22 #include <linux/jbd2.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/quotaops.h> 26 #include <linux/string.h> 27 #include <linux/slab.h> 28 #include <linux/uaccess.h> 29 #include <linux/fiemap.h> 30 #include <linux/backing-dev.h> 31 #include <linux/iomap.h> 32 #include "ext4_jbd2.h" 33 #include "ext4_extents.h" 34 #include "xattr.h" 35 36 #include <trace/events/ext4.h> 37 38 /* 39 * used by extent splitting. 40 */ 41 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \ 42 due to ENOSPC */ 43 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */ 44 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */ 45 46 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */ 47 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */ 48 49 static __le32 ext4_extent_block_csum(struct inode *inode, 50 struct ext4_extent_header *eh) 51 { 52 struct ext4_inode_info *ei = EXT4_I(inode); 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u32 csum; 55 56 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, 57 EXT4_EXTENT_TAIL_OFFSET(eh)); 58 return cpu_to_le32(csum); 59 } 60 61 static int ext4_extent_block_csum_verify(struct inode *inode, 62 struct ext4_extent_header *eh) 63 { 64 struct ext4_extent_tail *et; 65 66 if (!ext4_has_metadata_csum(inode->i_sb)) 67 return 1; 68 69 et = find_ext4_extent_tail(eh); 70 if (et->et_checksum != ext4_extent_block_csum(inode, eh)) 71 return 0; 72 return 1; 73 } 74 75 static void ext4_extent_block_csum_set(struct inode *inode, 76 struct ext4_extent_header *eh) 77 { 78 struct ext4_extent_tail *et; 79 80 if (!ext4_has_metadata_csum(inode->i_sb)) 81 return; 82 83 et = find_ext4_extent_tail(eh); 84 et->et_checksum = ext4_extent_block_csum(inode, eh); 85 } 86 87 static int ext4_split_extent_at(handle_t *handle, 88 struct inode *inode, 89 struct ext4_ext_path **ppath, 90 ext4_lblk_t split, 91 int split_flag, 92 int flags); 93 94 static int ext4_ext_trunc_restart_fn(struct inode *inode, int *dropped) 95 { 96 /* 97 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 98 * moment, get_block can be called only for blocks inside i_size since 99 * page cache has been already dropped and writes are blocked by 100 * i_mutex. So we can safely drop the i_data_sem here. 101 */ 102 BUG_ON(EXT4_JOURNAL(inode) == NULL); 103 ext4_discard_preallocations(inode, 0); 104 up_write(&EXT4_I(inode)->i_data_sem); 105 *dropped = 1; 106 return 0; 107 } 108 109 /* 110 * Make sure 'handle' has at least 'check_cred' credits. If not, restart 111 * transaction with 'restart_cred' credits. The function drops i_data_sem 112 * when restarting transaction and gets it after transaction is restarted. 113 * 114 * The function returns 0 on success, 1 if transaction had to be restarted, 115 * and < 0 in case of fatal error. 116 */ 117 int ext4_datasem_ensure_credits(handle_t *handle, struct inode *inode, 118 int check_cred, int restart_cred, 119 int revoke_cred) 120 { 121 int ret; 122 int dropped = 0; 123 124 ret = ext4_journal_ensure_credits_fn(handle, check_cred, restart_cred, 125 revoke_cred, ext4_ext_trunc_restart_fn(inode, &dropped)); 126 if (dropped) 127 down_write(&EXT4_I(inode)->i_data_sem); 128 return ret; 129 } 130 131 /* 132 * could return: 133 * - EROFS 134 * - ENOMEM 135 */ 136 static int ext4_ext_get_access(handle_t *handle, struct inode *inode, 137 struct ext4_ext_path *path) 138 { 139 if (path->p_bh) { 140 /* path points to block */ 141 BUFFER_TRACE(path->p_bh, "get_write_access"); 142 return ext4_journal_get_write_access(handle, path->p_bh); 143 } 144 /* path points to leaf/index in inode body */ 145 /* we use in-core data, no need to protect them */ 146 return 0; 147 } 148 149 /* 150 * could return: 151 * - EROFS 152 * - ENOMEM 153 * - EIO 154 */ 155 static int __ext4_ext_dirty(const char *where, unsigned int line, 156 handle_t *handle, struct inode *inode, 157 struct ext4_ext_path *path) 158 { 159 int err; 160 161 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); 162 if (path->p_bh) { 163 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); 164 /* path points to block */ 165 err = __ext4_handle_dirty_metadata(where, line, handle, 166 inode, path->p_bh); 167 } else { 168 /* path points to leaf/index in inode body */ 169 err = ext4_mark_inode_dirty(handle, inode); 170 } 171 return err; 172 } 173 174 #define ext4_ext_dirty(handle, inode, path) \ 175 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) 176 177 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, 178 struct ext4_ext_path *path, 179 ext4_lblk_t block) 180 { 181 if (path) { 182 int depth = path->p_depth; 183 struct ext4_extent *ex; 184 185 /* 186 * Try to predict block placement assuming that we are 187 * filling in a file which will eventually be 188 * non-sparse --- i.e., in the case of libbfd writing 189 * an ELF object sections out-of-order but in a way 190 * the eventually results in a contiguous object or 191 * executable file, or some database extending a table 192 * space file. However, this is actually somewhat 193 * non-ideal if we are writing a sparse file such as 194 * qemu or KVM writing a raw image file that is going 195 * to stay fairly sparse, since it will end up 196 * fragmenting the file system's free space. Maybe we 197 * should have some hueristics or some way to allow 198 * userspace to pass a hint to file system, 199 * especially if the latter case turns out to be 200 * common. 201 */ 202 ex = path[depth].p_ext; 203 if (ex) { 204 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); 205 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); 206 207 if (block > ext_block) 208 return ext_pblk + (block - ext_block); 209 else 210 return ext_pblk - (ext_block - block); 211 } 212 213 /* it looks like index is empty; 214 * try to find starting block from index itself */ 215 if (path[depth].p_bh) 216 return path[depth].p_bh->b_blocknr; 217 } 218 219 /* OK. use inode's group */ 220 return ext4_inode_to_goal_block(inode); 221 } 222 223 /* 224 * Allocation for a meta data block 225 */ 226 static ext4_fsblk_t 227 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, 228 struct ext4_ext_path *path, 229 struct ext4_extent *ex, int *err, unsigned int flags) 230 { 231 ext4_fsblk_t goal, newblock; 232 233 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); 234 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 235 NULL, err); 236 return newblock; 237 } 238 239 static inline int ext4_ext_space_block(struct inode *inode, int check) 240 { 241 int size; 242 243 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 244 / sizeof(struct ext4_extent); 245 #ifdef AGGRESSIVE_TEST 246 if (!check && size > 6) 247 size = 6; 248 #endif 249 return size; 250 } 251 252 static inline int ext4_ext_space_block_idx(struct inode *inode, int check) 253 { 254 int size; 255 256 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) 257 / sizeof(struct ext4_extent_idx); 258 #ifdef AGGRESSIVE_TEST 259 if (!check && size > 5) 260 size = 5; 261 #endif 262 return size; 263 } 264 265 static inline int ext4_ext_space_root(struct inode *inode, int check) 266 { 267 int size; 268 269 size = sizeof(EXT4_I(inode)->i_data); 270 size -= sizeof(struct ext4_extent_header); 271 size /= sizeof(struct ext4_extent); 272 #ifdef AGGRESSIVE_TEST 273 if (!check && size > 3) 274 size = 3; 275 #endif 276 return size; 277 } 278 279 static inline int ext4_ext_space_root_idx(struct inode *inode, int check) 280 { 281 int size; 282 283 size = sizeof(EXT4_I(inode)->i_data); 284 size -= sizeof(struct ext4_extent_header); 285 size /= sizeof(struct ext4_extent_idx); 286 #ifdef AGGRESSIVE_TEST 287 if (!check && size > 4) 288 size = 4; 289 #endif 290 return size; 291 } 292 293 static inline int 294 ext4_force_split_extent_at(handle_t *handle, struct inode *inode, 295 struct ext4_ext_path **ppath, ext4_lblk_t lblk, 296 int nofail) 297 { 298 struct ext4_ext_path *path = *ppath; 299 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext); 300 int flags = EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO; 301 302 if (nofail) 303 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL | EXT4_EX_NOFAIL; 304 305 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ? 306 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0, 307 flags); 308 } 309 310 static int 311 ext4_ext_max_entries(struct inode *inode, int depth) 312 { 313 int max; 314 315 if (depth == ext_depth(inode)) { 316 if (depth == 0) 317 max = ext4_ext_space_root(inode, 1); 318 else 319 max = ext4_ext_space_root_idx(inode, 1); 320 } else { 321 if (depth == 0) 322 max = ext4_ext_space_block(inode, 1); 323 else 324 max = ext4_ext_space_block_idx(inode, 1); 325 } 326 327 return max; 328 } 329 330 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) 331 { 332 ext4_fsblk_t block = ext4_ext_pblock(ext); 333 int len = ext4_ext_get_actual_len(ext); 334 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block); 335 336 /* 337 * We allow neither: 338 * - zero length 339 * - overflow/wrap-around 340 */ 341 if (lblock + len <= lblock) 342 return 0; 343 return ext4_inode_block_valid(inode, block, len); 344 } 345 346 static int ext4_valid_extent_idx(struct inode *inode, 347 struct ext4_extent_idx *ext_idx) 348 { 349 ext4_fsblk_t block = ext4_idx_pblock(ext_idx); 350 351 return ext4_inode_block_valid(inode, block, 1); 352 } 353 354 static int ext4_valid_extent_entries(struct inode *inode, 355 struct ext4_extent_header *eh, 356 ext4_fsblk_t *pblk, int depth) 357 { 358 unsigned short entries; 359 if (eh->eh_entries == 0) 360 return 1; 361 362 entries = le16_to_cpu(eh->eh_entries); 363 364 if (depth == 0) { 365 /* leaf entries */ 366 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); 367 ext4_lblk_t lblock = 0; 368 ext4_lblk_t prev = 0; 369 int len = 0; 370 while (entries) { 371 if (!ext4_valid_extent(inode, ext)) 372 return 0; 373 374 /* Check for overlapping extents */ 375 lblock = le32_to_cpu(ext->ee_block); 376 len = ext4_ext_get_actual_len(ext); 377 if ((lblock <= prev) && prev) { 378 *pblk = ext4_ext_pblock(ext); 379 return 0; 380 } 381 ext++; 382 entries--; 383 prev = lblock + len - 1; 384 } 385 } else { 386 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); 387 while (entries) { 388 if (!ext4_valid_extent_idx(inode, ext_idx)) 389 return 0; 390 ext_idx++; 391 entries--; 392 } 393 } 394 return 1; 395 } 396 397 static int __ext4_ext_check(const char *function, unsigned int line, 398 struct inode *inode, struct ext4_extent_header *eh, 399 int depth, ext4_fsblk_t pblk) 400 { 401 const char *error_msg; 402 int max = 0, err = -EFSCORRUPTED; 403 404 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { 405 error_msg = "invalid magic"; 406 goto corrupted; 407 } 408 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { 409 error_msg = "unexpected eh_depth"; 410 goto corrupted; 411 } 412 if (unlikely(eh->eh_max == 0)) { 413 error_msg = "invalid eh_max"; 414 goto corrupted; 415 } 416 max = ext4_ext_max_entries(inode, depth); 417 if (unlikely(le16_to_cpu(eh->eh_max) > max)) { 418 error_msg = "too large eh_max"; 419 goto corrupted; 420 } 421 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { 422 error_msg = "invalid eh_entries"; 423 goto corrupted; 424 } 425 if (!ext4_valid_extent_entries(inode, eh, &pblk, depth)) { 426 error_msg = "invalid extent entries"; 427 goto corrupted; 428 } 429 if (unlikely(depth > 32)) { 430 error_msg = "too large eh_depth"; 431 goto corrupted; 432 } 433 /* Verify checksum on non-root extent tree nodes */ 434 if (ext_depth(inode) != depth && 435 !ext4_extent_block_csum_verify(inode, eh)) { 436 error_msg = "extent tree corrupted"; 437 err = -EFSBADCRC; 438 goto corrupted; 439 } 440 return 0; 441 442 corrupted: 443 ext4_error_inode_err(inode, function, line, 0, -err, 444 "pblk %llu bad header/extent: %s - magic %x, " 445 "entries %u, max %u(%u), depth %u(%u)", 446 (unsigned long long) pblk, error_msg, 447 le16_to_cpu(eh->eh_magic), 448 le16_to_cpu(eh->eh_entries), 449 le16_to_cpu(eh->eh_max), 450 max, le16_to_cpu(eh->eh_depth), depth); 451 return err; 452 } 453 454 #define ext4_ext_check(inode, eh, depth, pblk) \ 455 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk)) 456 457 int ext4_ext_check_inode(struct inode *inode) 458 { 459 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0); 460 } 461 462 static void ext4_cache_extents(struct inode *inode, 463 struct ext4_extent_header *eh) 464 { 465 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh); 466 ext4_lblk_t prev = 0; 467 int i; 468 469 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) { 470 unsigned int status = EXTENT_STATUS_WRITTEN; 471 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block); 472 int len = ext4_ext_get_actual_len(ex); 473 474 if (prev && (prev != lblk)) 475 ext4_es_cache_extent(inode, prev, lblk - prev, ~0, 476 EXTENT_STATUS_HOLE); 477 478 if (ext4_ext_is_unwritten(ex)) 479 status = EXTENT_STATUS_UNWRITTEN; 480 ext4_es_cache_extent(inode, lblk, len, 481 ext4_ext_pblock(ex), status); 482 prev = lblk + len; 483 } 484 } 485 486 static struct buffer_head * 487 __read_extent_tree_block(const char *function, unsigned int line, 488 struct inode *inode, ext4_fsblk_t pblk, int depth, 489 int flags) 490 { 491 struct buffer_head *bh; 492 int err; 493 gfp_t gfp_flags = __GFP_MOVABLE | GFP_NOFS; 494 495 if (flags & EXT4_EX_NOFAIL) 496 gfp_flags |= __GFP_NOFAIL; 497 498 bh = sb_getblk_gfp(inode->i_sb, pblk, gfp_flags); 499 if (unlikely(!bh)) 500 return ERR_PTR(-ENOMEM); 501 502 if (!bh_uptodate_or_lock(bh)) { 503 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_); 504 err = ext4_read_bh(bh, 0, NULL); 505 if (err < 0) 506 goto errout; 507 } 508 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE)) 509 return bh; 510 err = __ext4_ext_check(function, line, inode, 511 ext_block_hdr(bh), depth, pblk); 512 if (err) 513 goto errout; 514 set_buffer_verified(bh); 515 /* 516 * If this is a leaf block, cache all of its entries 517 */ 518 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) { 519 struct ext4_extent_header *eh = ext_block_hdr(bh); 520 ext4_cache_extents(inode, eh); 521 } 522 return bh; 523 errout: 524 put_bh(bh); 525 return ERR_PTR(err); 526 527 } 528 529 #define read_extent_tree_block(inode, pblk, depth, flags) \ 530 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \ 531 (depth), (flags)) 532 533 /* 534 * This function is called to cache a file's extent information in the 535 * extent status tree 536 */ 537 int ext4_ext_precache(struct inode *inode) 538 { 539 struct ext4_inode_info *ei = EXT4_I(inode); 540 struct ext4_ext_path *path = NULL; 541 struct buffer_head *bh; 542 int i = 0, depth, ret = 0; 543 544 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 545 return 0; /* not an extent-mapped inode */ 546 547 down_read(&ei->i_data_sem); 548 depth = ext_depth(inode); 549 550 /* Don't cache anything if there are no external extent blocks */ 551 if (!depth) { 552 up_read(&ei->i_data_sem); 553 return ret; 554 } 555 556 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 557 GFP_NOFS); 558 if (path == NULL) { 559 up_read(&ei->i_data_sem); 560 return -ENOMEM; 561 } 562 563 path[0].p_hdr = ext_inode_hdr(inode); 564 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0); 565 if (ret) 566 goto out; 567 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr); 568 while (i >= 0) { 569 /* 570 * If this is a leaf block or we've reached the end of 571 * the index block, go up 572 */ 573 if ((i == depth) || 574 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) { 575 brelse(path[i].p_bh); 576 path[i].p_bh = NULL; 577 i--; 578 continue; 579 } 580 bh = read_extent_tree_block(inode, 581 ext4_idx_pblock(path[i].p_idx++), 582 depth - i - 1, 583 EXT4_EX_FORCE_CACHE); 584 if (IS_ERR(bh)) { 585 ret = PTR_ERR(bh); 586 break; 587 } 588 i++; 589 path[i].p_bh = bh; 590 path[i].p_hdr = ext_block_hdr(bh); 591 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr); 592 } 593 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED); 594 out: 595 up_read(&ei->i_data_sem); 596 ext4_ext_drop_refs(path); 597 kfree(path); 598 return ret; 599 } 600 601 #ifdef EXT_DEBUG 602 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) 603 { 604 int k, l = path->p_depth; 605 606 ext_debug(inode, "path:"); 607 for (k = 0; k <= l; k++, path++) { 608 if (path->p_idx) { 609 ext_debug(inode, " %d->%llu", 610 le32_to_cpu(path->p_idx->ei_block), 611 ext4_idx_pblock(path->p_idx)); 612 } else if (path->p_ext) { 613 ext_debug(inode, " %d:[%d]%d:%llu ", 614 le32_to_cpu(path->p_ext->ee_block), 615 ext4_ext_is_unwritten(path->p_ext), 616 ext4_ext_get_actual_len(path->p_ext), 617 ext4_ext_pblock(path->p_ext)); 618 } else 619 ext_debug(inode, " []"); 620 } 621 ext_debug(inode, "\n"); 622 } 623 624 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) 625 { 626 int depth = ext_depth(inode); 627 struct ext4_extent_header *eh; 628 struct ext4_extent *ex; 629 int i; 630 631 if (!path) 632 return; 633 634 eh = path[depth].p_hdr; 635 ex = EXT_FIRST_EXTENT(eh); 636 637 ext_debug(inode, "Displaying leaf extents\n"); 638 639 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { 640 ext_debug(inode, "%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), 641 ext4_ext_is_unwritten(ex), 642 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); 643 } 644 ext_debug(inode, "\n"); 645 } 646 647 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, 648 ext4_fsblk_t newblock, int level) 649 { 650 int depth = ext_depth(inode); 651 struct ext4_extent *ex; 652 653 if (depth != level) { 654 struct ext4_extent_idx *idx; 655 idx = path[level].p_idx; 656 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { 657 ext_debug(inode, "%d: move %d:%llu in new index %llu\n", 658 level, le32_to_cpu(idx->ei_block), 659 ext4_idx_pblock(idx), newblock); 660 idx++; 661 } 662 663 return; 664 } 665 666 ex = path[depth].p_ext; 667 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { 668 ext_debug(inode, "move %d:%llu:[%d]%d in new leaf %llu\n", 669 le32_to_cpu(ex->ee_block), 670 ext4_ext_pblock(ex), 671 ext4_ext_is_unwritten(ex), 672 ext4_ext_get_actual_len(ex), 673 newblock); 674 ex++; 675 } 676 } 677 678 #else 679 #define ext4_ext_show_path(inode, path) 680 #define ext4_ext_show_leaf(inode, path) 681 #define ext4_ext_show_move(inode, path, newblock, level) 682 #endif 683 684 void ext4_ext_drop_refs(struct ext4_ext_path *path) 685 { 686 int depth, i; 687 688 if (!path) 689 return; 690 depth = path->p_depth; 691 for (i = 0; i <= depth; i++, path++) { 692 brelse(path->p_bh); 693 path->p_bh = NULL; 694 } 695 } 696 697 /* 698 * ext4_ext_binsearch_idx: 699 * binary search for the closest index of the given block 700 * the header must be checked before calling this 701 */ 702 static void 703 ext4_ext_binsearch_idx(struct inode *inode, 704 struct ext4_ext_path *path, ext4_lblk_t block) 705 { 706 struct ext4_extent_header *eh = path->p_hdr; 707 struct ext4_extent_idx *r, *l, *m; 708 709 710 ext_debug(inode, "binsearch for %u(idx): ", block); 711 712 l = EXT_FIRST_INDEX(eh) + 1; 713 r = EXT_LAST_INDEX(eh); 714 while (l <= r) { 715 m = l + (r - l) / 2; 716 if (block < le32_to_cpu(m->ei_block)) 717 r = m - 1; 718 else 719 l = m + 1; 720 ext_debug(inode, "%p(%u):%p(%u):%p(%u) ", l, 721 le32_to_cpu(l->ei_block), m, le32_to_cpu(m->ei_block), 722 r, le32_to_cpu(r->ei_block)); 723 } 724 725 path->p_idx = l - 1; 726 ext_debug(inode, " -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), 727 ext4_idx_pblock(path->p_idx)); 728 729 #ifdef CHECK_BINSEARCH 730 { 731 struct ext4_extent_idx *chix, *ix; 732 int k; 733 734 chix = ix = EXT_FIRST_INDEX(eh); 735 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { 736 if (k != 0 && le32_to_cpu(ix->ei_block) <= 737 le32_to_cpu(ix[-1].ei_block)) { 738 printk(KERN_DEBUG "k=%d, ix=0x%p, " 739 "first=0x%p\n", k, 740 ix, EXT_FIRST_INDEX(eh)); 741 printk(KERN_DEBUG "%u <= %u\n", 742 le32_to_cpu(ix->ei_block), 743 le32_to_cpu(ix[-1].ei_block)); 744 } 745 BUG_ON(k && le32_to_cpu(ix->ei_block) 746 <= le32_to_cpu(ix[-1].ei_block)); 747 if (block < le32_to_cpu(ix->ei_block)) 748 break; 749 chix = ix; 750 } 751 BUG_ON(chix != path->p_idx); 752 } 753 #endif 754 755 } 756 757 /* 758 * ext4_ext_binsearch: 759 * binary search for closest extent of the given block 760 * the header must be checked before calling this 761 */ 762 static void 763 ext4_ext_binsearch(struct inode *inode, 764 struct ext4_ext_path *path, ext4_lblk_t block) 765 { 766 struct ext4_extent_header *eh = path->p_hdr; 767 struct ext4_extent *r, *l, *m; 768 769 if (eh->eh_entries == 0) { 770 /* 771 * this leaf is empty: 772 * we get such a leaf in split/add case 773 */ 774 return; 775 } 776 777 ext_debug(inode, "binsearch for %u: ", block); 778 779 l = EXT_FIRST_EXTENT(eh) + 1; 780 r = EXT_LAST_EXTENT(eh); 781 782 while (l <= r) { 783 m = l + (r - l) / 2; 784 if (block < le32_to_cpu(m->ee_block)) 785 r = m - 1; 786 else 787 l = m + 1; 788 ext_debug(inode, "%p(%u):%p(%u):%p(%u) ", l, 789 le32_to_cpu(l->ee_block), m, le32_to_cpu(m->ee_block), 790 r, le32_to_cpu(r->ee_block)); 791 } 792 793 path->p_ext = l - 1; 794 ext_debug(inode, " -> %d:%llu:[%d]%d ", 795 le32_to_cpu(path->p_ext->ee_block), 796 ext4_ext_pblock(path->p_ext), 797 ext4_ext_is_unwritten(path->p_ext), 798 ext4_ext_get_actual_len(path->p_ext)); 799 800 #ifdef CHECK_BINSEARCH 801 { 802 struct ext4_extent *chex, *ex; 803 int k; 804 805 chex = ex = EXT_FIRST_EXTENT(eh); 806 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { 807 BUG_ON(k && le32_to_cpu(ex->ee_block) 808 <= le32_to_cpu(ex[-1].ee_block)); 809 if (block < le32_to_cpu(ex->ee_block)) 810 break; 811 chex = ex; 812 } 813 BUG_ON(chex != path->p_ext); 814 } 815 #endif 816 817 } 818 819 void ext4_ext_tree_init(handle_t *handle, struct inode *inode) 820 { 821 struct ext4_extent_header *eh; 822 823 eh = ext_inode_hdr(inode); 824 eh->eh_depth = 0; 825 eh->eh_entries = 0; 826 eh->eh_magic = EXT4_EXT_MAGIC; 827 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); 828 ext4_mark_inode_dirty(handle, inode); 829 } 830 831 struct ext4_ext_path * 832 ext4_find_extent(struct inode *inode, ext4_lblk_t block, 833 struct ext4_ext_path **orig_path, int flags) 834 { 835 struct ext4_extent_header *eh; 836 struct buffer_head *bh; 837 struct ext4_ext_path *path = orig_path ? *orig_path : NULL; 838 short int depth, i, ppos = 0; 839 int ret; 840 gfp_t gfp_flags = GFP_NOFS; 841 842 if (flags & EXT4_EX_NOFAIL) 843 gfp_flags |= __GFP_NOFAIL; 844 845 eh = ext_inode_hdr(inode); 846 depth = ext_depth(inode); 847 if (depth < 0 || depth > EXT4_MAX_EXTENT_DEPTH) { 848 EXT4_ERROR_INODE(inode, "inode has invalid extent depth: %d", 849 depth); 850 ret = -EFSCORRUPTED; 851 goto err; 852 } 853 854 if (path) { 855 ext4_ext_drop_refs(path); 856 if (depth > path[0].p_maxdepth) { 857 kfree(path); 858 *orig_path = path = NULL; 859 } 860 } 861 if (!path) { 862 /* account possible depth increase */ 863 path = kcalloc(depth + 2, sizeof(struct ext4_ext_path), 864 gfp_flags); 865 if (unlikely(!path)) 866 return ERR_PTR(-ENOMEM); 867 path[0].p_maxdepth = depth + 1; 868 } 869 path[0].p_hdr = eh; 870 path[0].p_bh = NULL; 871 872 i = depth; 873 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) 874 ext4_cache_extents(inode, eh); 875 /* walk through the tree */ 876 while (i) { 877 ext_debug(inode, "depth %d: num %d, max %d\n", 878 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 879 880 ext4_ext_binsearch_idx(inode, path + ppos, block); 881 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 882 path[ppos].p_depth = i; 883 path[ppos].p_ext = NULL; 884 885 bh = read_extent_tree_block(inode, path[ppos].p_block, --i, 886 flags); 887 if (IS_ERR(bh)) { 888 ret = PTR_ERR(bh); 889 goto err; 890 } 891 892 eh = ext_block_hdr(bh); 893 ppos++; 894 path[ppos].p_bh = bh; 895 path[ppos].p_hdr = eh; 896 } 897 898 path[ppos].p_depth = i; 899 path[ppos].p_ext = NULL; 900 path[ppos].p_idx = NULL; 901 902 /* find extent */ 903 ext4_ext_binsearch(inode, path + ppos, block); 904 /* if not an empty leaf */ 905 if (path[ppos].p_ext) 906 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 907 908 ext4_ext_show_path(inode, path); 909 910 return path; 911 912 err: 913 ext4_ext_drop_refs(path); 914 kfree(path); 915 if (orig_path) 916 *orig_path = NULL; 917 return ERR_PTR(ret); 918 } 919 920 /* 921 * ext4_ext_insert_index: 922 * insert new index [@logical;@ptr] into the block at @curp; 923 * check where to insert: before @curp or after @curp 924 */ 925 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, 926 struct ext4_ext_path *curp, 927 int logical, ext4_fsblk_t ptr) 928 { 929 struct ext4_extent_idx *ix; 930 int len, err; 931 932 err = ext4_ext_get_access(handle, inode, curp); 933 if (err) 934 return err; 935 936 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { 937 EXT4_ERROR_INODE(inode, 938 "logical %d == ei_block %d!", 939 logical, le32_to_cpu(curp->p_idx->ei_block)); 940 return -EFSCORRUPTED; 941 } 942 943 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) 944 >= le16_to_cpu(curp->p_hdr->eh_max))) { 945 EXT4_ERROR_INODE(inode, 946 "eh_entries %d >= eh_max %d!", 947 le16_to_cpu(curp->p_hdr->eh_entries), 948 le16_to_cpu(curp->p_hdr->eh_max)); 949 return -EFSCORRUPTED; 950 } 951 952 if (logical > le32_to_cpu(curp->p_idx->ei_block)) { 953 /* insert after */ 954 ext_debug(inode, "insert new index %d after: %llu\n", 955 logical, ptr); 956 ix = curp->p_idx + 1; 957 } else { 958 /* insert before */ 959 ext_debug(inode, "insert new index %d before: %llu\n", 960 logical, ptr); 961 ix = curp->p_idx; 962 } 963 964 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; 965 BUG_ON(len < 0); 966 if (len > 0) { 967 ext_debug(inode, "insert new index %d: " 968 "move %d indices from 0x%p to 0x%p\n", 969 logical, len, ix, ix + 1); 970 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); 971 } 972 973 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { 974 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); 975 return -EFSCORRUPTED; 976 } 977 978 ix->ei_block = cpu_to_le32(logical); 979 ext4_idx_store_pblock(ix, ptr); 980 le16_add_cpu(&curp->p_hdr->eh_entries, 1); 981 982 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { 983 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); 984 return -EFSCORRUPTED; 985 } 986 987 err = ext4_ext_dirty(handle, inode, curp); 988 ext4_std_error(inode->i_sb, err); 989 990 return err; 991 } 992 993 /* 994 * ext4_ext_split: 995 * inserts new subtree into the path, using free index entry 996 * at depth @at: 997 * - allocates all needed blocks (new leaf and all intermediate index blocks) 998 * - makes decision where to split 999 * - moves remaining extents and index entries (right to the split point) 1000 * into the newly allocated blocks 1001 * - initializes subtree 1002 */ 1003 static int ext4_ext_split(handle_t *handle, struct inode *inode, 1004 unsigned int flags, 1005 struct ext4_ext_path *path, 1006 struct ext4_extent *newext, int at) 1007 { 1008 struct buffer_head *bh = NULL; 1009 int depth = ext_depth(inode); 1010 struct ext4_extent_header *neh; 1011 struct ext4_extent_idx *fidx; 1012 int i = at, k, m, a; 1013 ext4_fsblk_t newblock, oldblock; 1014 __le32 border; 1015 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ 1016 gfp_t gfp_flags = GFP_NOFS; 1017 int err = 0; 1018 size_t ext_size = 0; 1019 1020 if (flags & EXT4_EX_NOFAIL) 1021 gfp_flags |= __GFP_NOFAIL; 1022 1023 /* make decision: where to split? */ 1024 /* FIXME: now decision is simplest: at current extent */ 1025 1026 /* if current leaf will be split, then we should use 1027 * border from split point */ 1028 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { 1029 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); 1030 return -EFSCORRUPTED; 1031 } 1032 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { 1033 border = path[depth].p_ext[1].ee_block; 1034 ext_debug(inode, "leaf will be split." 1035 " next leaf starts at %d\n", 1036 le32_to_cpu(border)); 1037 } else { 1038 border = newext->ee_block; 1039 ext_debug(inode, "leaf will be added." 1040 " next leaf starts at %d\n", 1041 le32_to_cpu(border)); 1042 } 1043 1044 /* 1045 * If error occurs, then we break processing 1046 * and mark filesystem read-only. index won't 1047 * be inserted and tree will be in consistent 1048 * state. Next mount will repair buffers too. 1049 */ 1050 1051 /* 1052 * Get array to track all allocated blocks. 1053 * We need this to handle errors and free blocks 1054 * upon them. 1055 */ 1056 ablocks = kcalloc(depth, sizeof(ext4_fsblk_t), gfp_flags); 1057 if (!ablocks) 1058 return -ENOMEM; 1059 1060 /* allocate all needed blocks */ 1061 ext_debug(inode, "allocate %d blocks for indexes/leaf\n", depth - at); 1062 for (a = 0; a < depth - at; a++) { 1063 newblock = ext4_ext_new_meta_block(handle, inode, path, 1064 newext, &err, flags); 1065 if (newblock == 0) 1066 goto cleanup; 1067 ablocks[a] = newblock; 1068 } 1069 1070 /* initialize new leaf */ 1071 newblock = ablocks[--a]; 1072 if (unlikely(newblock == 0)) { 1073 EXT4_ERROR_INODE(inode, "newblock == 0!"); 1074 err = -EFSCORRUPTED; 1075 goto cleanup; 1076 } 1077 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1078 if (unlikely(!bh)) { 1079 err = -ENOMEM; 1080 goto cleanup; 1081 } 1082 lock_buffer(bh); 1083 1084 err = ext4_journal_get_create_access(handle, bh); 1085 if (err) 1086 goto cleanup; 1087 1088 neh = ext_block_hdr(bh); 1089 neh->eh_entries = 0; 1090 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1091 neh->eh_magic = EXT4_EXT_MAGIC; 1092 neh->eh_depth = 0; 1093 1094 /* move remainder of path[depth] to the new leaf */ 1095 if (unlikely(path[depth].p_hdr->eh_entries != 1096 path[depth].p_hdr->eh_max)) { 1097 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", 1098 path[depth].p_hdr->eh_entries, 1099 path[depth].p_hdr->eh_max); 1100 err = -EFSCORRUPTED; 1101 goto cleanup; 1102 } 1103 /* start copy from next extent */ 1104 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; 1105 ext4_ext_show_move(inode, path, newblock, depth); 1106 if (m) { 1107 struct ext4_extent *ex; 1108 ex = EXT_FIRST_EXTENT(neh); 1109 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); 1110 le16_add_cpu(&neh->eh_entries, m); 1111 } 1112 1113 /* zero out unused area in the extent block */ 1114 ext_size = sizeof(struct ext4_extent_header) + 1115 sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries); 1116 memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size); 1117 ext4_extent_block_csum_set(inode, neh); 1118 set_buffer_uptodate(bh); 1119 unlock_buffer(bh); 1120 1121 err = ext4_handle_dirty_metadata(handle, inode, bh); 1122 if (err) 1123 goto cleanup; 1124 brelse(bh); 1125 bh = NULL; 1126 1127 /* correct old leaf */ 1128 if (m) { 1129 err = ext4_ext_get_access(handle, inode, path + depth); 1130 if (err) 1131 goto cleanup; 1132 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); 1133 err = ext4_ext_dirty(handle, inode, path + depth); 1134 if (err) 1135 goto cleanup; 1136 1137 } 1138 1139 /* create intermediate indexes */ 1140 k = depth - at - 1; 1141 if (unlikely(k < 0)) { 1142 EXT4_ERROR_INODE(inode, "k %d < 0!", k); 1143 err = -EFSCORRUPTED; 1144 goto cleanup; 1145 } 1146 if (k) 1147 ext_debug(inode, "create %d intermediate indices\n", k); 1148 /* insert new index into current index block */ 1149 /* current depth stored in i var */ 1150 i = depth - 1; 1151 while (k--) { 1152 oldblock = newblock; 1153 newblock = ablocks[--a]; 1154 bh = sb_getblk(inode->i_sb, newblock); 1155 if (unlikely(!bh)) { 1156 err = -ENOMEM; 1157 goto cleanup; 1158 } 1159 lock_buffer(bh); 1160 1161 err = ext4_journal_get_create_access(handle, bh); 1162 if (err) 1163 goto cleanup; 1164 1165 neh = ext_block_hdr(bh); 1166 neh->eh_entries = cpu_to_le16(1); 1167 neh->eh_magic = EXT4_EXT_MAGIC; 1168 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1169 neh->eh_depth = cpu_to_le16(depth - i); 1170 fidx = EXT_FIRST_INDEX(neh); 1171 fidx->ei_block = border; 1172 ext4_idx_store_pblock(fidx, oldblock); 1173 1174 ext_debug(inode, "int.index at %d (block %llu): %u -> %llu\n", 1175 i, newblock, le32_to_cpu(border), oldblock); 1176 1177 /* move remainder of path[i] to the new index block */ 1178 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != 1179 EXT_LAST_INDEX(path[i].p_hdr))) { 1180 EXT4_ERROR_INODE(inode, 1181 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", 1182 le32_to_cpu(path[i].p_ext->ee_block)); 1183 err = -EFSCORRUPTED; 1184 goto cleanup; 1185 } 1186 /* start copy indexes */ 1187 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; 1188 ext_debug(inode, "cur 0x%p, last 0x%p\n", path[i].p_idx, 1189 EXT_MAX_INDEX(path[i].p_hdr)); 1190 ext4_ext_show_move(inode, path, newblock, i); 1191 if (m) { 1192 memmove(++fidx, path[i].p_idx, 1193 sizeof(struct ext4_extent_idx) * m); 1194 le16_add_cpu(&neh->eh_entries, m); 1195 } 1196 /* zero out unused area in the extent block */ 1197 ext_size = sizeof(struct ext4_extent_header) + 1198 (sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries)); 1199 memset(bh->b_data + ext_size, 0, 1200 inode->i_sb->s_blocksize - ext_size); 1201 ext4_extent_block_csum_set(inode, neh); 1202 set_buffer_uptodate(bh); 1203 unlock_buffer(bh); 1204 1205 err = ext4_handle_dirty_metadata(handle, inode, bh); 1206 if (err) 1207 goto cleanup; 1208 brelse(bh); 1209 bh = NULL; 1210 1211 /* correct old index */ 1212 if (m) { 1213 err = ext4_ext_get_access(handle, inode, path + i); 1214 if (err) 1215 goto cleanup; 1216 le16_add_cpu(&path[i].p_hdr->eh_entries, -m); 1217 err = ext4_ext_dirty(handle, inode, path + i); 1218 if (err) 1219 goto cleanup; 1220 } 1221 1222 i--; 1223 } 1224 1225 /* insert new index */ 1226 err = ext4_ext_insert_index(handle, inode, path + at, 1227 le32_to_cpu(border), newblock); 1228 1229 cleanup: 1230 if (bh) { 1231 if (buffer_locked(bh)) 1232 unlock_buffer(bh); 1233 brelse(bh); 1234 } 1235 1236 if (err) { 1237 /* free all allocated blocks in error case */ 1238 for (i = 0; i < depth; i++) { 1239 if (!ablocks[i]) 1240 continue; 1241 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, 1242 EXT4_FREE_BLOCKS_METADATA); 1243 } 1244 } 1245 kfree(ablocks); 1246 1247 return err; 1248 } 1249 1250 /* 1251 * ext4_ext_grow_indepth: 1252 * implements tree growing procedure: 1253 * - allocates new block 1254 * - moves top-level data (index block or leaf) into the new block 1255 * - initializes new top-level, creating index that points to the 1256 * just created block 1257 */ 1258 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, 1259 unsigned int flags) 1260 { 1261 struct ext4_extent_header *neh; 1262 struct buffer_head *bh; 1263 ext4_fsblk_t newblock, goal = 0; 1264 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 1265 int err = 0; 1266 size_t ext_size = 0; 1267 1268 /* Try to prepend new index to old one */ 1269 if (ext_depth(inode)) 1270 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode))); 1271 if (goal > le32_to_cpu(es->s_first_data_block)) { 1272 flags |= EXT4_MB_HINT_TRY_GOAL; 1273 goal--; 1274 } else 1275 goal = ext4_inode_to_goal_block(inode); 1276 newblock = ext4_new_meta_blocks(handle, inode, goal, flags, 1277 NULL, &err); 1278 if (newblock == 0) 1279 return err; 1280 1281 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS); 1282 if (unlikely(!bh)) 1283 return -ENOMEM; 1284 lock_buffer(bh); 1285 1286 err = ext4_journal_get_create_access(handle, bh); 1287 if (err) { 1288 unlock_buffer(bh); 1289 goto out; 1290 } 1291 1292 ext_size = sizeof(EXT4_I(inode)->i_data); 1293 /* move top-level index/leaf into new block */ 1294 memmove(bh->b_data, EXT4_I(inode)->i_data, ext_size); 1295 /* zero out unused area in the extent block */ 1296 memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size); 1297 1298 /* set size of new block */ 1299 neh = ext_block_hdr(bh); 1300 /* old root could have indexes or leaves 1301 * so calculate e_max right way */ 1302 if (ext_depth(inode)) 1303 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); 1304 else 1305 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); 1306 neh->eh_magic = EXT4_EXT_MAGIC; 1307 ext4_extent_block_csum_set(inode, neh); 1308 set_buffer_uptodate(bh); 1309 unlock_buffer(bh); 1310 1311 err = ext4_handle_dirty_metadata(handle, inode, bh); 1312 if (err) 1313 goto out; 1314 1315 /* Update top-level index: num,max,pointer */ 1316 neh = ext_inode_hdr(inode); 1317 neh->eh_entries = cpu_to_le16(1); 1318 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); 1319 if (neh->eh_depth == 0) { 1320 /* Root extent block becomes index block */ 1321 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); 1322 EXT_FIRST_INDEX(neh)->ei_block = 1323 EXT_FIRST_EXTENT(neh)->ee_block; 1324 } 1325 ext_debug(inode, "new root: num %d(%d), lblock %d, ptr %llu\n", 1326 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), 1327 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), 1328 ext4_idx_pblock(EXT_FIRST_INDEX(neh))); 1329 1330 le16_add_cpu(&neh->eh_depth, 1); 1331 err = ext4_mark_inode_dirty(handle, inode); 1332 out: 1333 brelse(bh); 1334 1335 return err; 1336 } 1337 1338 /* 1339 * ext4_ext_create_new_leaf: 1340 * finds empty index and adds new leaf. 1341 * if no free index is found, then it requests in-depth growing. 1342 */ 1343 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, 1344 unsigned int mb_flags, 1345 unsigned int gb_flags, 1346 struct ext4_ext_path **ppath, 1347 struct ext4_extent *newext) 1348 { 1349 struct ext4_ext_path *path = *ppath; 1350 struct ext4_ext_path *curp; 1351 int depth, i, err = 0; 1352 1353 repeat: 1354 i = depth = ext_depth(inode); 1355 1356 /* walk up to the tree and look for free index entry */ 1357 curp = path + depth; 1358 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { 1359 i--; 1360 curp--; 1361 } 1362 1363 /* we use already allocated block for index block, 1364 * so subsequent data blocks should be contiguous */ 1365 if (EXT_HAS_FREE_INDEX(curp)) { 1366 /* if we found index with free entry, then use that 1367 * entry: create all needed subtree and add new leaf */ 1368 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i); 1369 if (err) 1370 goto out; 1371 1372 /* refill path */ 1373 path = ext4_find_extent(inode, 1374 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1375 ppath, gb_flags); 1376 if (IS_ERR(path)) 1377 err = PTR_ERR(path); 1378 } else { 1379 /* tree is full, time to grow in depth */ 1380 err = ext4_ext_grow_indepth(handle, inode, mb_flags); 1381 if (err) 1382 goto out; 1383 1384 /* refill path */ 1385 path = ext4_find_extent(inode, 1386 (ext4_lblk_t)le32_to_cpu(newext->ee_block), 1387 ppath, gb_flags); 1388 if (IS_ERR(path)) { 1389 err = PTR_ERR(path); 1390 goto out; 1391 } 1392 1393 /* 1394 * only first (depth 0 -> 1) produces free space; 1395 * in all other cases we have to split the grown tree 1396 */ 1397 depth = ext_depth(inode); 1398 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { 1399 /* now we need to split */ 1400 goto repeat; 1401 } 1402 } 1403 1404 out: 1405 return err; 1406 } 1407 1408 /* 1409 * search the closest allocated block to the left for *logical 1410 * and returns it at @logical + it's physical address at @phys 1411 * if *logical is the smallest allocated block, the function 1412 * returns 0 at @phys 1413 * return value contains 0 (success) or error code 1414 */ 1415 static int ext4_ext_search_left(struct inode *inode, 1416 struct ext4_ext_path *path, 1417 ext4_lblk_t *logical, ext4_fsblk_t *phys) 1418 { 1419 struct ext4_extent_idx *ix; 1420 struct ext4_extent *ex; 1421 int depth, ee_len; 1422 1423 if (unlikely(path == NULL)) { 1424 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1425 return -EFSCORRUPTED; 1426 } 1427 depth = path->p_depth; 1428 *phys = 0; 1429 1430 if (depth == 0 && path->p_ext == NULL) 1431 return 0; 1432 1433 /* usually extent in the path covers blocks smaller 1434 * then *logical, but it can be that extent is the 1435 * first one in the file */ 1436 1437 ex = path[depth].p_ext; 1438 ee_len = ext4_ext_get_actual_len(ex); 1439 if (*logical < le32_to_cpu(ex->ee_block)) { 1440 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1441 EXT4_ERROR_INODE(inode, 1442 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", 1443 *logical, le32_to_cpu(ex->ee_block)); 1444 return -EFSCORRUPTED; 1445 } 1446 while (--depth >= 0) { 1447 ix = path[depth].p_idx; 1448 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1449 EXT4_ERROR_INODE(inode, 1450 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", 1451 ix != NULL ? le32_to_cpu(ix->ei_block) : 0, 1452 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? 1453 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, 1454 depth); 1455 return -EFSCORRUPTED; 1456 } 1457 } 1458 return 0; 1459 } 1460 1461 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1462 EXT4_ERROR_INODE(inode, 1463 "logical %d < ee_block %d + ee_len %d!", 1464 *logical, le32_to_cpu(ex->ee_block), ee_len); 1465 return -EFSCORRUPTED; 1466 } 1467 1468 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1; 1469 *phys = ext4_ext_pblock(ex) + ee_len - 1; 1470 return 0; 1471 } 1472 1473 /* 1474 * Search the closest allocated block to the right for *logical 1475 * and returns it at @logical + it's physical address at @phys. 1476 * If not exists, return 0 and @phys is set to 0. We will return 1477 * 1 which means we found an allocated block and ret_ex is valid. 1478 * Or return a (< 0) error code. 1479 */ 1480 static int ext4_ext_search_right(struct inode *inode, 1481 struct ext4_ext_path *path, 1482 ext4_lblk_t *logical, ext4_fsblk_t *phys, 1483 struct ext4_extent *ret_ex) 1484 { 1485 struct buffer_head *bh = NULL; 1486 struct ext4_extent_header *eh; 1487 struct ext4_extent_idx *ix; 1488 struct ext4_extent *ex; 1489 ext4_fsblk_t block; 1490 int depth; /* Note, NOT eh_depth; depth from top of tree */ 1491 int ee_len; 1492 1493 if (unlikely(path == NULL)) { 1494 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); 1495 return -EFSCORRUPTED; 1496 } 1497 depth = path->p_depth; 1498 *phys = 0; 1499 1500 if (depth == 0 && path->p_ext == NULL) 1501 return 0; 1502 1503 /* usually extent in the path covers blocks smaller 1504 * then *logical, but it can be that extent is the 1505 * first one in the file */ 1506 1507 ex = path[depth].p_ext; 1508 ee_len = ext4_ext_get_actual_len(ex); 1509 if (*logical < le32_to_cpu(ex->ee_block)) { 1510 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { 1511 EXT4_ERROR_INODE(inode, 1512 "first_extent(path[%d].p_hdr) != ex", 1513 depth); 1514 return -EFSCORRUPTED; 1515 } 1516 while (--depth >= 0) { 1517 ix = path[depth].p_idx; 1518 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { 1519 EXT4_ERROR_INODE(inode, 1520 "ix != EXT_FIRST_INDEX *logical %d!", 1521 *logical); 1522 return -EFSCORRUPTED; 1523 } 1524 } 1525 goto found_extent; 1526 } 1527 1528 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { 1529 EXT4_ERROR_INODE(inode, 1530 "logical %d < ee_block %d + ee_len %d!", 1531 *logical, le32_to_cpu(ex->ee_block), ee_len); 1532 return -EFSCORRUPTED; 1533 } 1534 1535 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { 1536 /* next allocated block in this leaf */ 1537 ex++; 1538 goto found_extent; 1539 } 1540 1541 /* go up and search for index to the right */ 1542 while (--depth >= 0) { 1543 ix = path[depth].p_idx; 1544 if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) 1545 goto got_index; 1546 } 1547 1548 /* we've gone up to the root and found no index to the right */ 1549 return 0; 1550 1551 got_index: 1552 /* we've found index to the right, let's 1553 * follow it and find the closest allocated 1554 * block to the right */ 1555 ix++; 1556 block = ext4_idx_pblock(ix); 1557 while (++depth < path->p_depth) { 1558 /* subtract from p_depth to get proper eh_depth */ 1559 bh = read_extent_tree_block(inode, block, 1560 path->p_depth - depth, 0); 1561 if (IS_ERR(bh)) 1562 return PTR_ERR(bh); 1563 eh = ext_block_hdr(bh); 1564 ix = EXT_FIRST_INDEX(eh); 1565 block = ext4_idx_pblock(ix); 1566 put_bh(bh); 1567 } 1568 1569 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0); 1570 if (IS_ERR(bh)) 1571 return PTR_ERR(bh); 1572 eh = ext_block_hdr(bh); 1573 ex = EXT_FIRST_EXTENT(eh); 1574 found_extent: 1575 *logical = le32_to_cpu(ex->ee_block); 1576 *phys = ext4_ext_pblock(ex); 1577 if (ret_ex) 1578 *ret_ex = *ex; 1579 if (bh) 1580 put_bh(bh); 1581 return 1; 1582 } 1583 1584 /* 1585 * ext4_ext_next_allocated_block: 1586 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. 1587 * NOTE: it considers block number from index entry as 1588 * allocated block. Thus, index entries have to be consistent 1589 * with leaves. 1590 */ 1591 ext4_lblk_t 1592 ext4_ext_next_allocated_block(struct ext4_ext_path *path) 1593 { 1594 int depth; 1595 1596 BUG_ON(path == NULL); 1597 depth = path->p_depth; 1598 1599 if (depth == 0 && path->p_ext == NULL) 1600 return EXT_MAX_BLOCKS; 1601 1602 while (depth >= 0) { 1603 struct ext4_ext_path *p = &path[depth]; 1604 1605 if (depth == path->p_depth) { 1606 /* leaf */ 1607 if (p->p_ext && p->p_ext != EXT_LAST_EXTENT(p->p_hdr)) 1608 return le32_to_cpu(p->p_ext[1].ee_block); 1609 } else { 1610 /* index */ 1611 if (p->p_idx != EXT_LAST_INDEX(p->p_hdr)) 1612 return le32_to_cpu(p->p_idx[1].ei_block); 1613 } 1614 depth--; 1615 } 1616 1617 return EXT_MAX_BLOCKS; 1618 } 1619 1620 /* 1621 * ext4_ext_next_leaf_block: 1622 * returns first allocated block from next leaf or EXT_MAX_BLOCKS 1623 */ 1624 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) 1625 { 1626 int depth; 1627 1628 BUG_ON(path == NULL); 1629 depth = path->p_depth; 1630 1631 /* zero-tree has no leaf blocks at all */ 1632 if (depth == 0) 1633 return EXT_MAX_BLOCKS; 1634 1635 /* go to index block */ 1636 depth--; 1637 1638 while (depth >= 0) { 1639 if (path[depth].p_idx != 1640 EXT_LAST_INDEX(path[depth].p_hdr)) 1641 return (ext4_lblk_t) 1642 le32_to_cpu(path[depth].p_idx[1].ei_block); 1643 depth--; 1644 } 1645 1646 return EXT_MAX_BLOCKS; 1647 } 1648 1649 /* 1650 * ext4_ext_correct_indexes: 1651 * if leaf gets modified and modified extent is first in the leaf, 1652 * then we have to correct all indexes above. 1653 * TODO: do we need to correct tree in all cases? 1654 */ 1655 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, 1656 struct ext4_ext_path *path) 1657 { 1658 struct ext4_extent_header *eh; 1659 int depth = ext_depth(inode); 1660 struct ext4_extent *ex; 1661 __le32 border; 1662 int k, err = 0; 1663 1664 eh = path[depth].p_hdr; 1665 ex = path[depth].p_ext; 1666 1667 if (unlikely(ex == NULL || eh == NULL)) { 1668 EXT4_ERROR_INODE(inode, 1669 "ex %p == NULL or eh %p == NULL", ex, eh); 1670 return -EFSCORRUPTED; 1671 } 1672 1673 if (depth == 0) { 1674 /* there is no tree at all */ 1675 return 0; 1676 } 1677 1678 if (ex != EXT_FIRST_EXTENT(eh)) { 1679 /* we correct tree if first leaf got modified only */ 1680 return 0; 1681 } 1682 1683 /* 1684 * TODO: we need correction if border is smaller than current one 1685 */ 1686 k = depth - 1; 1687 border = path[depth].p_ext->ee_block; 1688 err = ext4_ext_get_access(handle, inode, path + k); 1689 if (err) 1690 return err; 1691 path[k].p_idx->ei_block = border; 1692 err = ext4_ext_dirty(handle, inode, path + k); 1693 if (err) 1694 return err; 1695 1696 while (k--) { 1697 /* change all left-side indexes */ 1698 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) 1699 break; 1700 err = ext4_ext_get_access(handle, inode, path + k); 1701 if (err) 1702 break; 1703 path[k].p_idx->ei_block = border; 1704 err = ext4_ext_dirty(handle, inode, path + k); 1705 if (err) 1706 break; 1707 } 1708 1709 return err; 1710 } 1711 1712 static int ext4_can_extents_be_merged(struct inode *inode, 1713 struct ext4_extent *ex1, 1714 struct ext4_extent *ex2) 1715 { 1716 unsigned short ext1_ee_len, ext2_ee_len; 1717 1718 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2)) 1719 return 0; 1720 1721 ext1_ee_len = ext4_ext_get_actual_len(ex1); 1722 ext2_ee_len = ext4_ext_get_actual_len(ex2); 1723 1724 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != 1725 le32_to_cpu(ex2->ee_block)) 1726 return 0; 1727 1728 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN) 1729 return 0; 1730 1731 if (ext4_ext_is_unwritten(ex1) && 1732 ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN) 1733 return 0; 1734 #ifdef AGGRESSIVE_TEST 1735 if (ext1_ee_len >= 4) 1736 return 0; 1737 #endif 1738 1739 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) 1740 return 1; 1741 return 0; 1742 } 1743 1744 /* 1745 * This function tries to merge the "ex" extent to the next extent in the tree. 1746 * It always tries to merge towards right. If you want to merge towards 1747 * left, pass "ex - 1" as argument instead of "ex". 1748 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns 1749 * 1 if they got merged. 1750 */ 1751 static int ext4_ext_try_to_merge_right(struct inode *inode, 1752 struct ext4_ext_path *path, 1753 struct ext4_extent *ex) 1754 { 1755 struct ext4_extent_header *eh; 1756 unsigned int depth, len; 1757 int merge_done = 0, unwritten; 1758 1759 depth = ext_depth(inode); 1760 BUG_ON(path[depth].p_hdr == NULL); 1761 eh = path[depth].p_hdr; 1762 1763 while (ex < EXT_LAST_EXTENT(eh)) { 1764 if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) 1765 break; 1766 /* merge with next extent! */ 1767 unwritten = ext4_ext_is_unwritten(ex); 1768 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1769 + ext4_ext_get_actual_len(ex + 1)); 1770 if (unwritten) 1771 ext4_ext_mark_unwritten(ex); 1772 1773 if (ex + 1 < EXT_LAST_EXTENT(eh)) { 1774 len = (EXT_LAST_EXTENT(eh) - ex - 1) 1775 * sizeof(struct ext4_extent); 1776 memmove(ex + 1, ex + 2, len); 1777 } 1778 le16_add_cpu(&eh->eh_entries, -1); 1779 merge_done = 1; 1780 WARN_ON(eh->eh_entries == 0); 1781 if (!eh->eh_entries) 1782 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); 1783 } 1784 1785 return merge_done; 1786 } 1787 1788 /* 1789 * This function does a very simple check to see if we can collapse 1790 * an extent tree with a single extent tree leaf block into the inode. 1791 */ 1792 static void ext4_ext_try_to_merge_up(handle_t *handle, 1793 struct inode *inode, 1794 struct ext4_ext_path *path) 1795 { 1796 size_t s; 1797 unsigned max_root = ext4_ext_space_root(inode, 0); 1798 ext4_fsblk_t blk; 1799 1800 if ((path[0].p_depth != 1) || 1801 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || 1802 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) 1803 return; 1804 1805 /* 1806 * We need to modify the block allocation bitmap and the block 1807 * group descriptor to release the extent tree block. If we 1808 * can't get the journal credits, give up. 1809 */ 1810 if (ext4_journal_extend(handle, 2, 1811 ext4_free_metadata_revoke_credits(inode->i_sb, 1))) 1812 return; 1813 1814 /* 1815 * Copy the extent data up to the inode 1816 */ 1817 blk = ext4_idx_pblock(path[0].p_idx); 1818 s = le16_to_cpu(path[1].p_hdr->eh_entries) * 1819 sizeof(struct ext4_extent_idx); 1820 s += sizeof(struct ext4_extent_header); 1821 1822 path[1].p_maxdepth = path[0].p_maxdepth; 1823 memcpy(path[0].p_hdr, path[1].p_hdr, s); 1824 path[0].p_depth = 0; 1825 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + 1826 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); 1827 path[0].p_hdr->eh_max = cpu_to_le16(max_root); 1828 1829 brelse(path[1].p_bh); 1830 ext4_free_blocks(handle, inode, NULL, blk, 1, 1831 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 1832 } 1833 1834 /* 1835 * This function tries to merge the @ex extent to neighbours in the tree, then 1836 * tries to collapse the extent tree into the inode. 1837 */ 1838 static void ext4_ext_try_to_merge(handle_t *handle, 1839 struct inode *inode, 1840 struct ext4_ext_path *path, 1841 struct ext4_extent *ex) 1842 { 1843 struct ext4_extent_header *eh; 1844 unsigned int depth; 1845 int merge_done = 0; 1846 1847 depth = ext_depth(inode); 1848 BUG_ON(path[depth].p_hdr == NULL); 1849 eh = path[depth].p_hdr; 1850 1851 if (ex > EXT_FIRST_EXTENT(eh)) 1852 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); 1853 1854 if (!merge_done) 1855 (void) ext4_ext_try_to_merge_right(inode, path, ex); 1856 1857 ext4_ext_try_to_merge_up(handle, inode, path); 1858 } 1859 1860 /* 1861 * check if a portion of the "newext" extent overlaps with an 1862 * existing extent. 1863 * 1864 * If there is an overlap discovered, it updates the length of the newext 1865 * such that there will be no overlap, and then returns 1. 1866 * If there is no overlap found, it returns 0. 1867 */ 1868 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, 1869 struct inode *inode, 1870 struct ext4_extent *newext, 1871 struct ext4_ext_path *path) 1872 { 1873 ext4_lblk_t b1, b2; 1874 unsigned int depth, len1; 1875 unsigned int ret = 0; 1876 1877 b1 = le32_to_cpu(newext->ee_block); 1878 len1 = ext4_ext_get_actual_len(newext); 1879 depth = ext_depth(inode); 1880 if (!path[depth].p_ext) 1881 goto out; 1882 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block)); 1883 1884 /* 1885 * get the next allocated block if the extent in the path 1886 * is before the requested block(s) 1887 */ 1888 if (b2 < b1) { 1889 b2 = ext4_ext_next_allocated_block(path); 1890 if (b2 == EXT_MAX_BLOCKS) 1891 goto out; 1892 b2 = EXT4_LBLK_CMASK(sbi, b2); 1893 } 1894 1895 /* check for wrap through zero on extent logical start block*/ 1896 if (b1 + len1 < b1) { 1897 len1 = EXT_MAX_BLOCKS - b1; 1898 newext->ee_len = cpu_to_le16(len1); 1899 ret = 1; 1900 } 1901 1902 /* check for overlap */ 1903 if (b1 + len1 > b2) { 1904 newext->ee_len = cpu_to_le16(b2 - b1); 1905 ret = 1; 1906 } 1907 out: 1908 return ret; 1909 } 1910 1911 /* 1912 * ext4_ext_insert_extent: 1913 * tries to merge requested extent into the existing extent or 1914 * inserts requested extent as new one into the tree, 1915 * creating new leaf in the no-space case. 1916 */ 1917 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, 1918 struct ext4_ext_path **ppath, 1919 struct ext4_extent *newext, int gb_flags) 1920 { 1921 struct ext4_ext_path *path = *ppath; 1922 struct ext4_extent_header *eh; 1923 struct ext4_extent *ex, *fex; 1924 struct ext4_extent *nearex; /* nearest extent */ 1925 struct ext4_ext_path *npath = NULL; 1926 int depth, len, err; 1927 ext4_lblk_t next; 1928 int mb_flags = 0, unwritten; 1929 1930 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1931 mb_flags |= EXT4_MB_DELALLOC_RESERVED; 1932 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { 1933 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); 1934 return -EFSCORRUPTED; 1935 } 1936 depth = ext_depth(inode); 1937 ex = path[depth].p_ext; 1938 eh = path[depth].p_hdr; 1939 if (unlikely(path[depth].p_hdr == NULL)) { 1940 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 1941 return -EFSCORRUPTED; 1942 } 1943 1944 /* try to insert block into found extent and return */ 1945 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) { 1946 1947 /* 1948 * Try to see whether we should rather test the extent on 1949 * right from ex, or from the left of ex. This is because 1950 * ext4_find_extent() can return either extent on the 1951 * left, or on the right from the searched position. This 1952 * will make merging more effective. 1953 */ 1954 if (ex < EXT_LAST_EXTENT(eh) && 1955 (le32_to_cpu(ex->ee_block) + 1956 ext4_ext_get_actual_len(ex) < 1957 le32_to_cpu(newext->ee_block))) { 1958 ex += 1; 1959 goto prepend; 1960 } else if ((ex > EXT_FIRST_EXTENT(eh)) && 1961 (le32_to_cpu(newext->ee_block) + 1962 ext4_ext_get_actual_len(newext) < 1963 le32_to_cpu(ex->ee_block))) 1964 ex -= 1; 1965 1966 /* Try to append newex to the ex */ 1967 if (ext4_can_extents_be_merged(inode, ex, newext)) { 1968 ext_debug(inode, "append [%d]%d block to %u:[%d]%d" 1969 "(from %llu)\n", 1970 ext4_ext_is_unwritten(newext), 1971 ext4_ext_get_actual_len(newext), 1972 le32_to_cpu(ex->ee_block), 1973 ext4_ext_is_unwritten(ex), 1974 ext4_ext_get_actual_len(ex), 1975 ext4_ext_pblock(ex)); 1976 err = ext4_ext_get_access(handle, inode, 1977 path + depth); 1978 if (err) 1979 return err; 1980 unwritten = ext4_ext_is_unwritten(ex); 1981 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 1982 + ext4_ext_get_actual_len(newext)); 1983 if (unwritten) 1984 ext4_ext_mark_unwritten(ex); 1985 eh = path[depth].p_hdr; 1986 nearex = ex; 1987 goto merge; 1988 } 1989 1990 prepend: 1991 /* Try to prepend newex to the ex */ 1992 if (ext4_can_extents_be_merged(inode, newext, ex)) { 1993 ext_debug(inode, "prepend %u[%d]%d block to %u:[%d]%d" 1994 "(from %llu)\n", 1995 le32_to_cpu(newext->ee_block), 1996 ext4_ext_is_unwritten(newext), 1997 ext4_ext_get_actual_len(newext), 1998 le32_to_cpu(ex->ee_block), 1999 ext4_ext_is_unwritten(ex), 2000 ext4_ext_get_actual_len(ex), 2001 ext4_ext_pblock(ex)); 2002 err = ext4_ext_get_access(handle, inode, 2003 path + depth); 2004 if (err) 2005 return err; 2006 2007 unwritten = ext4_ext_is_unwritten(ex); 2008 ex->ee_block = newext->ee_block; 2009 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext)); 2010 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) 2011 + ext4_ext_get_actual_len(newext)); 2012 if (unwritten) 2013 ext4_ext_mark_unwritten(ex); 2014 eh = path[depth].p_hdr; 2015 nearex = ex; 2016 goto merge; 2017 } 2018 } 2019 2020 depth = ext_depth(inode); 2021 eh = path[depth].p_hdr; 2022 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) 2023 goto has_space; 2024 2025 /* probably next leaf has space for us? */ 2026 fex = EXT_LAST_EXTENT(eh); 2027 next = EXT_MAX_BLOCKS; 2028 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) 2029 next = ext4_ext_next_leaf_block(path); 2030 if (next != EXT_MAX_BLOCKS) { 2031 ext_debug(inode, "next leaf block - %u\n", next); 2032 BUG_ON(npath != NULL); 2033 npath = ext4_find_extent(inode, next, NULL, gb_flags); 2034 if (IS_ERR(npath)) 2035 return PTR_ERR(npath); 2036 BUG_ON(npath->p_depth != path->p_depth); 2037 eh = npath[depth].p_hdr; 2038 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { 2039 ext_debug(inode, "next leaf isn't full(%d)\n", 2040 le16_to_cpu(eh->eh_entries)); 2041 path = npath; 2042 goto has_space; 2043 } 2044 ext_debug(inode, "next leaf has no free space(%d,%d)\n", 2045 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); 2046 } 2047 2048 /* 2049 * There is no free space in the found leaf. 2050 * We're gonna add a new leaf in the tree. 2051 */ 2052 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 2053 mb_flags |= EXT4_MB_USE_RESERVED; 2054 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags, 2055 ppath, newext); 2056 if (err) 2057 goto cleanup; 2058 depth = ext_depth(inode); 2059 eh = path[depth].p_hdr; 2060 2061 has_space: 2062 nearex = path[depth].p_ext; 2063 2064 err = ext4_ext_get_access(handle, inode, path + depth); 2065 if (err) 2066 goto cleanup; 2067 2068 if (!nearex) { 2069 /* there is no extent in this leaf, create first one */ 2070 ext_debug(inode, "first extent in the leaf: %u:%llu:[%d]%d\n", 2071 le32_to_cpu(newext->ee_block), 2072 ext4_ext_pblock(newext), 2073 ext4_ext_is_unwritten(newext), 2074 ext4_ext_get_actual_len(newext)); 2075 nearex = EXT_FIRST_EXTENT(eh); 2076 } else { 2077 if (le32_to_cpu(newext->ee_block) 2078 > le32_to_cpu(nearex->ee_block)) { 2079 /* Insert after */ 2080 ext_debug(inode, "insert %u:%llu:[%d]%d before: " 2081 "nearest %p\n", 2082 le32_to_cpu(newext->ee_block), 2083 ext4_ext_pblock(newext), 2084 ext4_ext_is_unwritten(newext), 2085 ext4_ext_get_actual_len(newext), 2086 nearex); 2087 nearex++; 2088 } else { 2089 /* Insert before */ 2090 BUG_ON(newext->ee_block == nearex->ee_block); 2091 ext_debug(inode, "insert %u:%llu:[%d]%d after: " 2092 "nearest %p\n", 2093 le32_to_cpu(newext->ee_block), 2094 ext4_ext_pblock(newext), 2095 ext4_ext_is_unwritten(newext), 2096 ext4_ext_get_actual_len(newext), 2097 nearex); 2098 } 2099 len = EXT_LAST_EXTENT(eh) - nearex + 1; 2100 if (len > 0) { 2101 ext_debug(inode, "insert %u:%llu:[%d]%d: " 2102 "move %d extents from 0x%p to 0x%p\n", 2103 le32_to_cpu(newext->ee_block), 2104 ext4_ext_pblock(newext), 2105 ext4_ext_is_unwritten(newext), 2106 ext4_ext_get_actual_len(newext), 2107 len, nearex, nearex + 1); 2108 memmove(nearex + 1, nearex, 2109 len * sizeof(struct ext4_extent)); 2110 } 2111 } 2112 2113 le16_add_cpu(&eh->eh_entries, 1); 2114 path[depth].p_ext = nearex; 2115 nearex->ee_block = newext->ee_block; 2116 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); 2117 nearex->ee_len = newext->ee_len; 2118 2119 merge: 2120 /* try to merge extents */ 2121 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) 2122 ext4_ext_try_to_merge(handle, inode, path, nearex); 2123 2124 2125 /* time to correct all indexes above */ 2126 err = ext4_ext_correct_indexes(handle, inode, path); 2127 if (err) 2128 goto cleanup; 2129 2130 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 2131 2132 cleanup: 2133 ext4_ext_drop_refs(npath); 2134 kfree(npath); 2135 return err; 2136 } 2137 2138 static int ext4_fill_es_cache_info(struct inode *inode, 2139 ext4_lblk_t block, ext4_lblk_t num, 2140 struct fiemap_extent_info *fieinfo) 2141 { 2142 ext4_lblk_t next, end = block + num - 1; 2143 struct extent_status es; 2144 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; 2145 unsigned int flags; 2146 int err; 2147 2148 while (block <= end) { 2149 next = 0; 2150 flags = 0; 2151 if (!ext4_es_lookup_extent(inode, block, &next, &es)) 2152 break; 2153 if (ext4_es_is_unwritten(&es)) 2154 flags |= FIEMAP_EXTENT_UNWRITTEN; 2155 if (ext4_es_is_delayed(&es)) 2156 flags |= (FIEMAP_EXTENT_DELALLOC | 2157 FIEMAP_EXTENT_UNKNOWN); 2158 if (ext4_es_is_hole(&es)) 2159 flags |= EXT4_FIEMAP_EXTENT_HOLE; 2160 if (next == 0) 2161 flags |= FIEMAP_EXTENT_LAST; 2162 if (flags & (FIEMAP_EXTENT_DELALLOC| 2163 EXT4_FIEMAP_EXTENT_HOLE)) 2164 es.es_pblk = 0; 2165 else 2166 es.es_pblk = ext4_es_pblock(&es); 2167 err = fiemap_fill_next_extent(fieinfo, 2168 (__u64)es.es_lblk << blksize_bits, 2169 (__u64)es.es_pblk << blksize_bits, 2170 (__u64)es.es_len << blksize_bits, 2171 flags); 2172 if (next == 0) 2173 break; 2174 block = next; 2175 if (err < 0) 2176 return err; 2177 if (err == 1) 2178 return 0; 2179 } 2180 return 0; 2181 } 2182 2183 2184 /* 2185 * ext4_ext_determine_hole - determine hole around given block 2186 * @inode: inode we lookup in 2187 * @path: path in extent tree to @lblk 2188 * @lblk: pointer to logical block around which we want to determine hole 2189 * 2190 * Determine hole length (and start if easily possible) around given logical 2191 * block. We don't try too hard to find the beginning of the hole but @path 2192 * actually points to extent before @lblk, we provide it. 2193 * 2194 * The function returns the length of a hole starting at @lblk. We update @lblk 2195 * to the beginning of the hole if we managed to find it. 2196 */ 2197 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode, 2198 struct ext4_ext_path *path, 2199 ext4_lblk_t *lblk) 2200 { 2201 int depth = ext_depth(inode); 2202 struct ext4_extent *ex; 2203 ext4_lblk_t len; 2204 2205 ex = path[depth].p_ext; 2206 if (ex == NULL) { 2207 /* there is no extent yet, so gap is [0;-] */ 2208 *lblk = 0; 2209 len = EXT_MAX_BLOCKS; 2210 } else if (*lblk < le32_to_cpu(ex->ee_block)) { 2211 len = le32_to_cpu(ex->ee_block) - *lblk; 2212 } else if (*lblk >= le32_to_cpu(ex->ee_block) 2213 + ext4_ext_get_actual_len(ex)) { 2214 ext4_lblk_t next; 2215 2216 *lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); 2217 next = ext4_ext_next_allocated_block(path); 2218 BUG_ON(next == *lblk); 2219 len = next - *lblk; 2220 } else { 2221 BUG(); 2222 } 2223 return len; 2224 } 2225 2226 /* 2227 * ext4_ext_put_gap_in_cache: 2228 * calculate boundaries of the gap that the requested block fits into 2229 * and cache this gap 2230 */ 2231 static void 2232 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start, 2233 ext4_lblk_t hole_len) 2234 { 2235 struct extent_status es; 2236 2237 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, hole_start, 2238 hole_start + hole_len - 1, &es); 2239 if (es.es_len) { 2240 /* There's delayed extent containing lblock? */ 2241 if (es.es_lblk <= hole_start) 2242 return; 2243 hole_len = min(es.es_lblk - hole_start, hole_len); 2244 } 2245 ext_debug(inode, " -> %u:%u\n", hole_start, hole_len); 2246 ext4_es_insert_extent(inode, hole_start, hole_len, ~0, 2247 EXTENT_STATUS_HOLE); 2248 } 2249 2250 /* 2251 * ext4_ext_rm_idx: 2252 * removes index from the index block. 2253 */ 2254 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, 2255 struct ext4_ext_path *path, int depth) 2256 { 2257 int err; 2258 ext4_fsblk_t leaf; 2259 2260 /* free index block */ 2261 depth--; 2262 path = path + depth; 2263 leaf = ext4_idx_pblock(path->p_idx); 2264 if (unlikely(path->p_hdr->eh_entries == 0)) { 2265 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); 2266 return -EFSCORRUPTED; 2267 } 2268 err = ext4_ext_get_access(handle, inode, path); 2269 if (err) 2270 return err; 2271 2272 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { 2273 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; 2274 len *= sizeof(struct ext4_extent_idx); 2275 memmove(path->p_idx, path->p_idx + 1, len); 2276 } 2277 2278 le16_add_cpu(&path->p_hdr->eh_entries, -1); 2279 err = ext4_ext_dirty(handle, inode, path); 2280 if (err) 2281 return err; 2282 ext_debug(inode, "index is empty, remove it, free block %llu\n", leaf); 2283 trace_ext4_ext_rm_idx(inode, leaf); 2284 2285 ext4_free_blocks(handle, inode, NULL, leaf, 1, 2286 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); 2287 2288 while (--depth >= 0) { 2289 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) 2290 break; 2291 path--; 2292 err = ext4_ext_get_access(handle, inode, path); 2293 if (err) 2294 break; 2295 path->p_idx->ei_block = (path+1)->p_idx->ei_block; 2296 err = ext4_ext_dirty(handle, inode, path); 2297 if (err) 2298 break; 2299 } 2300 return err; 2301 } 2302 2303 /* 2304 * ext4_ext_calc_credits_for_single_extent: 2305 * This routine returns max. credits that needed to insert an extent 2306 * to the extent tree. 2307 * When pass the actual path, the caller should calculate credits 2308 * under i_data_sem. 2309 */ 2310 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, 2311 struct ext4_ext_path *path) 2312 { 2313 if (path) { 2314 int depth = ext_depth(inode); 2315 int ret = 0; 2316 2317 /* probably there is space in leaf? */ 2318 if (le16_to_cpu(path[depth].p_hdr->eh_entries) 2319 < le16_to_cpu(path[depth].p_hdr->eh_max)) { 2320 2321 /* 2322 * There are some space in the leaf tree, no 2323 * need to account for leaf block credit 2324 * 2325 * bitmaps and block group descriptor blocks 2326 * and other metadata blocks still need to be 2327 * accounted. 2328 */ 2329 /* 1 bitmap, 1 block group descriptor */ 2330 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); 2331 return ret; 2332 } 2333 } 2334 2335 return ext4_chunk_trans_blocks(inode, nrblocks); 2336 } 2337 2338 /* 2339 * How many index/leaf blocks need to change/allocate to add @extents extents? 2340 * 2341 * If we add a single extent, then in the worse case, each tree level 2342 * index/leaf need to be changed in case of the tree split. 2343 * 2344 * If more extents are inserted, they could cause the whole tree split more 2345 * than once, but this is really rare. 2346 */ 2347 int ext4_ext_index_trans_blocks(struct inode *inode, int extents) 2348 { 2349 int index; 2350 int depth; 2351 2352 /* If we are converting the inline data, only one is needed here. */ 2353 if (ext4_has_inline_data(inode)) 2354 return 1; 2355 2356 depth = ext_depth(inode); 2357 2358 if (extents <= 1) 2359 index = depth * 2; 2360 else 2361 index = depth * 3; 2362 2363 return index; 2364 } 2365 2366 static inline int get_default_free_blocks_flags(struct inode *inode) 2367 { 2368 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) || 2369 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE)) 2370 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; 2371 else if (ext4_should_journal_data(inode)) 2372 return EXT4_FREE_BLOCKS_FORGET; 2373 return 0; 2374 } 2375 2376 /* 2377 * ext4_rereserve_cluster - increment the reserved cluster count when 2378 * freeing a cluster with a pending reservation 2379 * 2380 * @inode - file containing the cluster 2381 * @lblk - logical block in cluster to be reserved 2382 * 2383 * Increments the reserved cluster count and adjusts quota in a bigalloc 2384 * file system when freeing a partial cluster containing at least one 2385 * delayed and unwritten block. A partial cluster meeting that 2386 * requirement will have a pending reservation. If so, the 2387 * RERESERVE_CLUSTER flag is used when calling ext4_free_blocks() to 2388 * defer reserved and allocated space accounting to a subsequent call 2389 * to this function. 2390 */ 2391 static void ext4_rereserve_cluster(struct inode *inode, ext4_lblk_t lblk) 2392 { 2393 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2394 struct ext4_inode_info *ei = EXT4_I(inode); 2395 2396 dquot_reclaim_block(inode, EXT4_C2B(sbi, 1)); 2397 2398 spin_lock(&ei->i_block_reservation_lock); 2399 ei->i_reserved_data_blocks++; 2400 percpu_counter_add(&sbi->s_dirtyclusters_counter, 1); 2401 spin_unlock(&ei->i_block_reservation_lock); 2402 2403 percpu_counter_add(&sbi->s_freeclusters_counter, 1); 2404 ext4_remove_pending(inode, lblk); 2405 } 2406 2407 static int ext4_remove_blocks(handle_t *handle, struct inode *inode, 2408 struct ext4_extent *ex, 2409 struct partial_cluster *partial, 2410 ext4_lblk_t from, ext4_lblk_t to) 2411 { 2412 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2413 unsigned short ee_len = ext4_ext_get_actual_len(ex); 2414 ext4_fsblk_t last_pblk, pblk; 2415 ext4_lblk_t num; 2416 int flags; 2417 2418 /* only extent tail removal is allowed */ 2419 if (from < le32_to_cpu(ex->ee_block) || 2420 to != le32_to_cpu(ex->ee_block) + ee_len - 1) { 2421 ext4_error(sbi->s_sb, 2422 "strange request: removal(2) %u-%u from %u:%u", 2423 from, to, le32_to_cpu(ex->ee_block), ee_len); 2424 return 0; 2425 } 2426 2427 #ifdef EXTENTS_STATS 2428 spin_lock(&sbi->s_ext_stats_lock); 2429 sbi->s_ext_blocks += ee_len; 2430 sbi->s_ext_extents++; 2431 if (ee_len < sbi->s_ext_min) 2432 sbi->s_ext_min = ee_len; 2433 if (ee_len > sbi->s_ext_max) 2434 sbi->s_ext_max = ee_len; 2435 if (ext_depth(inode) > sbi->s_depth_max) 2436 sbi->s_depth_max = ext_depth(inode); 2437 spin_unlock(&sbi->s_ext_stats_lock); 2438 #endif 2439 2440 trace_ext4_remove_blocks(inode, ex, from, to, partial); 2441 2442 /* 2443 * if we have a partial cluster, and it's different from the 2444 * cluster of the last block in the extent, we free it 2445 */ 2446 last_pblk = ext4_ext_pblock(ex) + ee_len - 1; 2447 2448 if (partial->state != initial && 2449 partial->pclu != EXT4_B2C(sbi, last_pblk)) { 2450 if (partial->state == tofree) { 2451 flags = get_default_free_blocks_flags(inode); 2452 if (ext4_is_pending(inode, partial->lblk)) 2453 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2454 ext4_free_blocks(handle, inode, NULL, 2455 EXT4_C2B(sbi, partial->pclu), 2456 sbi->s_cluster_ratio, flags); 2457 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2458 ext4_rereserve_cluster(inode, partial->lblk); 2459 } 2460 partial->state = initial; 2461 } 2462 2463 num = le32_to_cpu(ex->ee_block) + ee_len - from; 2464 pblk = ext4_ext_pblock(ex) + ee_len - num; 2465 2466 /* 2467 * We free the partial cluster at the end of the extent (if any), 2468 * unless the cluster is used by another extent (partial_cluster 2469 * state is nofree). If a partial cluster exists here, it must be 2470 * shared with the last block in the extent. 2471 */ 2472 flags = get_default_free_blocks_flags(inode); 2473 2474 /* partial, left end cluster aligned, right end unaligned */ 2475 if ((EXT4_LBLK_COFF(sbi, to) != sbi->s_cluster_ratio - 1) && 2476 (EXT4_LBLK_CMASK(sbi, to) >= from) && 2477 (partial->state != nofree)) { 2478 if (ext4_is_pending(inode, to)) 2479 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2480 ext4_free_blocks(handle, inode, NULL, 2481 EXT4_PBLK_CMASK(sbi, last_pblk), 2482 sbi->s_cluster_ratio, flags); 2483 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2484 ext4_rereserve_cluster(inode, to); 2485 partial->state = initial; 2486 flags = get_default_free_blocks_flags(inode); 2487 } 2488 2489 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; 2490 2491 /* 2492 * For bigalloc file systems, we never free a partial cluster 2493 * at the beginning of the extent. Instead, we check to see if we 2494 * need to free it on a subsequent call to ext4_remove_blocks, 2495 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. 2496 */ 2497 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; 2498 ext4_free_blocks(handle, inode, NULL, pblk, num, flags); 2499 2500 /* reset the partial cluster if we've freed past it */ 2501 if (partial->state != initial && partial->pclu != EXT4_B2C(sbi, pblk)) 2502 partial->state = initial; 2503 2504 /* 2505 * If we've freed the entire extent but the beginning is not left 2506 * cluster aligned and is not marked as ineligible for freeing we 2507 * record the partial cluster at the beginning of the extent. It 2508 * wasn't freed by the preceding ext4_free_blocks() call, and we 2509 * need to look farther to the left to determine if it's to be freed 2510 * (not shared with another extent). Else, reset the partial 2511 * cluster - we're either done freeing or the beginning of the 2512 * extent is left cluster aligned. 2513 */ 2514 if (EXT4_LBLK_COFF(sbi, from) && num == ee_len) { 2515 if (partial->state == initial) { 2516 partial->pclu = EXT4_B2C(sbi, pblk); 2517 partial->lblk = from; 2518 partial->state = tofree; 2519 } 2520 } else { 2521 partial->state = initial; 2522 } 2523 2524 return 0; 2525 } 2526 2527 /* 2528 * ext4_ext_rm_leaf() Removes the extents associated with the 2529 * blocks appearing between "start" and "end". Both "start" 2530 * and "end" must appear in the same extent or EIO is returned. 2531 * 2532 * @handle: The journal handle 2533 * @inode: The files inode 2534 * @path: The path to the leaf 2535 * @partial_cluster: The cluster which we'll have to free if all extents 2536 * has been released from it. However, if this value is 2537 * negative, it's a cluster just to the right of the 2538 * punched region and it must not be freed. 2539 * @start: The first block to remove 2540 * @end: The last block to remove 2541 */ 2542 static int 2543 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, 2544 struct ext4_ext_path *path, 2545 struct partial_cluster *partial, 2546 ext4_lblk_t start, ext4_lblk_t end) 2547 { 2548 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2549 int err = 0, correct_index = 0; 2550 int depth = ext_depth(inode), credits, revoke_credits; 2551 struct ext4_extent_header *eh; 2552 ext4_lblk_t a, b; 2553 unsigned num; 2554 ext4_lblk_t ex_ee_block; 2555 unsigned short ex_ee_len; 2556 unsigned unwritten = 0; 2557 struct ext4_extent *ex; 2558 ext4_fsblk_t pblk; 2559 2560 /* the header must be checked already in ext4_ext_remove_space() */ 2561 ext_debug(inode, "truncate since %u in leaf to %u\n", start, end); 2562 if (!path[depth].p_hdr) 2563 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); 2564 eh = path[depth].p_hdr; 2565 if (unlikely(path[depth].p_hdr == NULL)) { 2566 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); 2567 return -EFSCORRUPTED; 2568 } 2569 /* find where to start removing */ 2570 ex = path[depth].p_ext; 2571 if (!ex) 2572 ex = EXT_LAST_EXTENT(eh); 2573 2574 ex_ee_block = le32_to_cpu(ex->ee_block); 2575 ex_ee_len = ext4_ext_get_actual_len(ex); 2576 2577 trace_ext4_ext_rm_leaf(inode, start, ex, partial); 2578 2579 while (ex >= EXT_FIRST_EXTENT(eh) && 2580 ex_ee_block + ex_ee_len > start) { 2581 2582 if (ext4_ext_is_unwritten(ex)) 2583 unwritten = 1; 2584 else 2585 unwritten = 0; 2586 2587 ext_debug(inode, "remove ext %u:[%d]%d\n", ex_ee_block, 2588 unwritten, ex_ee_len); 2589 path[depth].p_ext = ex; 2590 2591 a = ex_ee_block > start ? ex_ee_block : start; 2592 b = ex_ee_block+ex_ee_len - 1 < end ? 2593 ex_ee_block+ex_ee_len - 1 : end; 2594 2595 ext_debug(inode, " border %u:%u\n", a, b); 2596 2597 /* If this extent is beyond the end of the hole, skip it */ 2598 if (end < ex_ee_block) { 2599 /* 2600 * We're going to skip this extent and move to another, 2601 * so note that its first cluster is in use to avoid 2602 * freeing it when removing blocks. Eventually, the 2603 * right edge of the truncated/punched region will 2604 * be just to the left. 2605 */ 2606 if (sbi->s_cluster_ratio > 1) { 2607 pblk = ext4_ext_pblock(ex); 2608 partial->pclu = EXT4_B2C(sbi, pblk); 2609 partial->state = nofree; 2610 } 2611 ex--; 2612 ex_ee_block = le32_to_cpu(ex->ee_block); 2613 ex_ee_len = ext4_ext_get_actual_len(ex); 2614 continue; 2615 } else if (b != ex_ee_block + ex_ee_len - 1) { 2616 EXT4_ERROR_INODE(inode, 2617 "can not handle truncate %u:%u " 2618 "on extent %u:%u", 2619 start, end, ex_ee_block, 2620 ex_ee_block + ex_ee_len - 1); 2621 err = -EFSCORRUPTED; 2622 goto out; 2623 } else if (a != ex_ee_block) { 2624 /* remove tail of the extent */ 2625 num = a - ex_ee_block; 2626 } else { 2627 /* remove whole extent: excellent! */ 2628 num = 0; 2629 } 2630 /* 2631 * 3 for leaf, sb, and inode plus 2 (bmap and group 2632 * descriptor) for each block group; assume two block 2633 * groups plus ex_ee_len/blocks_per_block_group for 2634 * the worst case 2635 */ 2636 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); 2637 if (ex == EXT_FIRST_EXTENT(eh)) { 2638 correct_index = 1; 2639 credits += (ext_depth(inode)) + 1; 2640 } 2641 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 2642 /* 2643 * We may end up freeing some index blocks and data from the 2644 * punched range. Note that partial clusters are accounted for 2645 * by ext4_free_data_revoke_credits(). 2646 */ 2647 revoke_credits = 2648 ext4_free_metadata_revoke_credits(inode->i_sb, 2649 ext_depth(inode)) + 2650 ext4_free_data_revoke_credits(inode, b - a + 1); 2651 2652 err = ext4_datasem_ensure_credits(handle, inode, credits, 2653 credits, revoke_credits); 2654 if (err) { 2655 if (err > 0) 2656 err = -EAGAIN; 2657 goto out; 2658 } 2659 2660 err = ext4_ext_get_access(handle, inode, path + depth); 2661 if (err) 2662 goto out; 2663 2664 err = ext4_remove_blocks(handle, inode, ex, partial, a, b); 2665 if (err) 2666 goto out; 2667 2668 if (num == 0) 2669 /* this extent is removed; mark slot entirely unused */ 2670 ext4_ext_store_pblock(ex, 0); 2671 2672 ex->ee_len = cpu_to_le16(num); 2673 /* 2674 * Do not mark unwritten if all the blocks in the 2675 * extent have been removed. 2676 */ 2677 if (unwritten && num) 2678 ext4_ext_mark_unwritten(ex); 2679 /* 2680 * If the extent was completely released, 2681 * we need to remove it from the leaf 2682 */ 2683 if (num == 0) { 2684 if (end != EXT_MAX_BLOCKS - 1) { 2685 /* 2686 * For hole punching, we need to scoot all the 2687 * extents up when an extent is removed so that 2688 * we dont have blank extents in the middle 2689 */ 2690 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * 2691 sizeof(struct ext4_extent)); 2692 2693 /* Now get rid of the one at the end */ 2694 memset(EXT_LAST_EXTENT(eh), 0, 2695 sizeof(struct ext4_extent)); 2696 } 2697 le16_add_cpu(&eh->eh_entries, -1); 2698 } 2699 2700 err = ext4_ext_dirty(handle, inode, path + depth); 2701 if (err) 2702 goto out; 2703 2704 ext_debug(inode, "new extent: %u:%u:%llu\n", ex_ee_block, num, 2705 ext4_ext_pblock(ex)); 2706 ex--; 2707 ex_ee_block = le32_to_cpu(ex->ee_block); 2708 ex_ee_len = ext4_ext_get_actual_len(ex); 2709 } 2710 2711 if (correct_index && eh->eh_entries) 2712 err = ext4_ext_correct_indexes(handle, inode, path); 2713 2714 /* 2715 * If there's a partial cluster and at least one extent remains in 2716 * the leaf, free the partial cluster if it isn't shared with the 2717 * current extent. If it is shared with the current extent 2718 * we reset the partial cluster because we've reached the start of the 2719 * truncated/punched region and we're done removing blocks. 2720 */ 2721 if (partial->state == tofree && ex >= EXT_FIRST_EXTENT(eh)) { 2722 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; 2723 if (partial->pclu != EXT4_B2C(sbi, pblk)) { 2724 int flags = get_default_free_blocks_flags(inode); 2725 2726 if (ext4_is_pending(inode, partial->lblk)) 2727 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2728 ext4_free_blocks(handle, inode, NULL, 2729 EXT4_C2B(sbi, partial->pclu), 2730 sbi->s_cluster_ratio, flags); 2731 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 2732 ext4_rereserve_cluster(inode, partial->lblk); 2733 } 2734 partial->state = initial; 2735 } 2736 2737 /* if this leaf is free, then we should 2738 * remove it from index block above */ 2739 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) 2740 err = ext4_ext_rm_idx(handle, inode, path, depth); 2741 2742 out: 2743 return err; 2744 } 2745 2746 /* 2747 * ext4_ext_more_to_rm: 2748 * returns 1 if current index has to be freed (even partial) 2749 */ 2750 static int 2751 ext4_ext_more_to_rm(struct ext4_ext_path *path) 2752 { 2753 BUG_ON(path->p_idx == NULL); 2754 2755 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) 2756 return 0; 2757 2758 /* 2759 * if truncate on deeper level happened, it wasn't partial, 2760 * so we have to consider current index for truncation 2761 */ 2762 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) 2763 return 0; 2764 return 1; 2765 } 2766 2767 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, 2768 ext4_lblk_t end) 2769 { 2770 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2771 int depth = ext_depth(inode); 2772 struct ext4_ext_path *path = NULL; 2773 struct partial_cluster partial; 2774 handle_t *handle; 2775 int i = 0, err = 0; 2776 2777 partial.pclu = 0; 2778 partial.lblk = 0; 2779 partial.state = initial; 2780 2781 ext_debug(inode, "truncate since %u to %u\n", start, end); 2782 2783 /* probably first extent we're gonna free will be last in block */ 2784 handle = ext4_journal_start_with_revoke(inode, EXT4_HT_TRUNCATE, 2785 depth + 1, 2786 ext4_free_metadata_revoke_credits(inode->i_sb, depth)); 2787 if (IS_ERR(handle)) 2788 return PTR_ERR(handle); 2789 2790 again: 2791 trace_ext4_ext_remove_space(inode, start, end, depth); 2792 2793 /* 2794 * Check if we are removing extents inside the extent tree. If that 2795 * is the case, we are going to punch a hole inside the extent tree 2796 * so we have to check whether we need to split the extent covering 2797 * the last block to remove so we can easily remove the part of it 2798 * in ext4_ext_rm_leaf(). 2799 */ 2800 if (end < EXT_MAX_BLOCKS - 1) { 2801 struct ext4_extent *ex; 2802 ext4_lblk_t ee_block, ex_end, lblk; 2803 ext4_fsblk_t pblk; 2804 2805 /* find extent for or closest extent to this block */ 2806 path = ext4_find_extent(inode, end, NULL, 2807 EXT4_EX_NOCACHE | EXT4_EX_NOFAIL); 2808 if (IS_ERR(path)) { 2809 ext4_journal_stop(handle); 2810 return PTR_ERR(path); 2811 } 2812 depth = ext_depth(inode); 2813 /* Leaf not may not exist only if inode has no blocks at all */ 2814 ex = path[depth].p_ext; 2815 if (!ex) { 2816 if (depth) { 2817 EXT4_ERROR_INODE(inode, 2818 "path[%d].p_hdr == NULL", 2819 depth); 2820 err = -EFSCORRUPTED; 2821 } 2822 goto out; 2823 } 2824 2825 ee_block = le32_to_cpu(ex->ee_block); 2826 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1; 2827 2828 /* 2829 * See if the last block is inside the extent, if so split 2830 * the extent at 'end' block so we can easily remove the 2831 * tail of the first part of the split extent in 2832 * ext4_ext_rm_leaf(). 2833 */ 2834 if (end >= ee_block && end < ex_end) { 2835 2836 /* 2837 * If we're going to split the extent, note that 2838 * the cluster containing the block after 'end' is 2839 * in use to avoid freeing it when removing blocks. 2840 */ 2841 if (sbi->s_cluster_ratio > 1) { 2842 pblk = ext4_ext_pblock(ex) + end - ee_block + 1; 2843 partial.pclu = EXT4_B2C(sbi, pblk); 2844 partial.state = nofree; 2845 } 2846 2847 /* 2848 * Split the extent in two so that 'end' is the last 2849 * block in the first new extent. Also we should not 2850 * fail removing space due to ENOSPC so try to use 2851 * reserved block if that happens. 2852 */ 2853 err = ext4_force_split_extent_at(handle, inode, &path, 2854 end + 1, 1); 2855 if (err < 0) 2856 goto out; 2857 2858 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end && 2859 partial.state == initial) { 2860 /* 2861 * If we're punching, there's an extent to the right. 2862 * If the partial cluster hasn't been set, set it to 2863 * that extent's first cluster and its state to nofree 2864 * so it won't be freed should it contain blocks to be 2865 * removed. If it's already set (tofree/nofree), we're 2866 * retrying and keep the original partial cluster info 2867 * so a cluster marked tofree as a result of earlier 2868 * extent removal is not lost. 2869 */ 2870 lblk = ex_end + 1; 2871 err = ext4_ext_search_right(inode, path, &lblk, &pblk, 2872 NULL); 2873 if (err < 0) 2874 goto out; 2875 if (pblk) { 2876 partial.pclu = EXT4_B2C(sbi, pblk); 2877 partial.state = nofree; 2878 } 2879 } 2880 } 2881 /* 2882 * We start scanning from right side, freeing all the blocks 2883 * after i_size and walking into the tree depth-wise. 2884 */ 2885 depth = ext_depth(inode); 2886 if (path) { 2887 int k = i = depth; 2888 while (--k > 0) 2889 path[k].p_block = 2890 le16_to_cpu(path[k].p_hdr->eh_entries)+1; 2891 } else { 2892 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path), 2893 GFP_NOFS | __GFP_NOFAIL); 2894 if (path == NULL) { 2895 ext4_journal_stop(handle); 2896 return -ENOMEM; 2897 } 2898 path[0].p_maxdepth = path[0].p_depth = depth; 2899 path[0].p_hdr = ext_inode_hdr(inode); 2900 i = 0; 2901 2902 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) { 2903 err = -EFSCORRUPTED; 2904 goto out; 2905 } 2906 } 2907 err = 0; 2908 2909 while (i >= 0 && err == 0) { 2910 if (i == depth) { 2911 /* this is leaf block */ 2912 err = ext4_ext_rm_leaf(handle, inode, path, 2913 &partial, start, end); 2914 /* root level has p_bh == NULL, brelse() eats this */ 2915 brelse(path[i].p_bh); 2916 path[i].p_bh = NULL; 2917 i--; 2918 continue; 2919 } 2920 2921 /* this is index block */ 2922 if (!path[i].p_hdr) { 2923 ext_debug(inode, "initialize header\n"); 2924 path[i].p_hdr = ext_block_hdr(path[i].p_bh); 2925 } 2926 2927 if (!path[i].p_idx) { 2928 /* this level hasn't been touched yet */ 2929 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); 2930 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; 2931 ext_debug(inode, "init index ptr: hdr 0x%p, num %d\n", 2932 path[i].p_hdr, 2933 le16_to_cpu(path[i].p_hdr->eh_entries)); 2934 } else { 2935 /* we were already here, see at next index */ 2936 path[i].p_idx--; 2937 } 2938 2939 ext_debug(inode, "level %d - index, first 0x%p, cur 0x%p\n", 2940 i, EXT_FIRST_INDEX(path[i].p_hdr), 2941 path[i].p_idx); 2942 if (ext4_ext_more_to_rm(path + i)) { 2943 struct buffer_head *bh; 2944 /* go to the next level */ 2945 ext_debug(inode, "move to level %d (block %llu)\n", 2946 i + 1, ext4_idx_pblock(path[i].p_idx)); 2947 memset(path + i + 1, 0, sizeof(*path)); 2948 bh = read_extent_tree_block(inode, 2949 ext4_idx_pblock(path[i].p_idx), depth - i - 1, 2950 EXT4_EX_NOCACHE); 2951 if (IS_ERR(bh)) { 2952 /* should we reset i_size? */ 2953 err = PTR_ERR(bh); 2954 break; 2955 } 2956 /* Yield here to deal with large extent trees. 2957 * Should be a no-op if we did IO above. */ 2958 cond_resched(); 2959 if (WARN_ON(i + 1 > depth)) { 2960 err = -EFSCORRUPTED; 2961 break; 2962 } 2963 path[i + 1].p_bh = bh; 2964 2965 /* save actual number of indexes since this 2966 * number is changed at the next iteration */ 2967 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); 2968 i++; 2969 } else { 2970 /* we finished processing this index, go up */ 2971 if (path[i].p_hdr->eh_entries == 0 && i > 0) { 2972 /* index is empty, remove it; 2973 * handle must be already prepared by the 2974 * truncatei_leaf() */ 2975 err = ext4_ext_rm_idx(handle, inode, path, i); 2976 } 2977 /* root level has p_bh == NULL, brelse() eats this */ 2978 brelse(path[i].p_bh); 2979 path[i].p_bh = NULL; 2980 i--; 2981 ext_debug(inode, "return to level %d\n", i); 2982 } 2983 } 2984 2985 trace_ext4_ext_remove_space_done(inode, start, end, depth, &partial, 2986 path->p_hdr->eh_entries); 2987 2988 /* 2989 * if there's a partial cluster and we have removed the first extent 2990 * in the file, then we also free the partial cluster, if any 2991 */ 2992 if (partial.state == tofree && err == 0) { 2993 int flags = get_default_free_blocks_flags(inode); 2994 2995 if (ext4_is_pending(inode, partial.lblk)) 2996 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; 2997 ext4_free_blocks(handle, inode, NULL, 2998 EXT4_C2B(sbi, partial.pclu), 2999 sbi->s_cluster_ratio, flags); 3000 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) 3001 ext4_rereserve_cluster(inode, partial.lblk); 3002 partial.state = initial; 3003 } 3004 3005 /* TODO: flexible tree reduction should be here */ 3006 if (path->p_hdr->eh_entries == 0) { 3007 /* 3008 * truncate to zero freed all the tree, 3009 * so we need to correct eh_depth 3010 */ 3011 err = ext4_ext_get_access(handle, inode, path); 3012 if (err == 0) { 3013 ext_inode_hdr(inode)->eh_depth = 0; 3014 ext_inode_hdr(inode)->eh_max = 3015 cpu_to_le16(ext4_ext_space_root(inode, 0)); 3016 err = ext4_ext_dirty(handle, inode, path); 3017 } 3018 } 3019 out: 3020 ext4_ext_drop_refs(path); 3021 kfree(path); 3022 path = NULL; 3023 if (err == -EAGAIN) 3024 goto again; 3025 ext4_journal_stop(handle); 3026 3027 return err; 3028 } 3029 3030 /* 3031 * called at mount time 3032 */ 3033 void ext4_ext_init(struct super_block *sb) 3034 { 3035 /* 3036 * possible initialization would be here 3037 */ 3038 3039 if (ext4_has_feature_extents(sb)) { 3040 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) 3041 printk(KERN_INFO "EXT4-fs: file extents enabled" 3042 #ifdef AGGRESSIVE_TEST 3043 ", aggressive tests" 3044 #endif 3045 #ifdef CHECK_BINSEARCH 3046 ", check binsearch" 3047 #endif 3048 #ifdef EXTENTS_STATS 3049 ", stats" 3050 #endif 3051 "\n"); 3052 #endif 3053 #ifdef EXTENTS_STATS 3054 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); 3055 EXT4_SB(sb)->s_ext_min = 1 << 30; 3056 EXT4_SB(sb)->s_ext_max = 0; 3057 #endif 3058 } 3059 } 3060 3061 /* 3062 * called at umount time 3063 */ 3064 void ext4_ext_release(struct super_block *sb) 3065 { 3066 if (!ext4_has_feature_extents(sb)) 3067 return; 3068 3069 #ifdef EXTENTS_STATS 3070 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { 3071 struct ext4_sb_info *sbi = EXT4_SB(sb); 3072 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", 3073 sbi->s_ext_blocks, sbi->s_ext_extents, 3074 sbi->s_ext_blocks / sbi->s_ext_extents); 3075 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", 3076 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); 3077 } 3078 #endif 3079 } 3080 3081 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex) 3082 { 3083 ext4_lblk_t ee_block; 3084 ext4_fsblk_t ee_pblock; 3085 unsigned int ee_len; 3086 3087 ee_block = le32_to_cpu(ex->ee_block); 3088 ee_len = ext4_ext_get_actual_len(ex); 3089 ee_pblock = ext4_ext_pblock(ex); 3090 3091 if (ee_len == 0) 3092 return 0; 3093 3094 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock, 3095 EXTENT_STATUS_WRITTEN); 3096 } 3097 3098 /* FIXME!! we need to try to merge to left or right after zero-out */ 3099 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) 3100 { 3101 ext4_fsblk_t ee_pblock; 3102 unsigned int ee_len; 3103 3104 ee_len = ext4_ext_get_actual_len(ex); 3105 ee_pblock = ext4_ext_pblock(ex); 3106 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock, 3107 ee_len); 3108 } 3109 3110 /* 3111 * ext4_split_extent_at() splits an extent at given block. 3112 * 3113 * @handle: the journal handle 3114 * @inode: the file inode 3115 * @path: the path to the extent 3116 * @split: the logical block where the extent is splitted. 3117 * @split_flags: indicates if the extent could be zeroout if split fails, and 3118 * the states(init or unwritten) of new extents. 3119 * @flags: flags used to insert new extent to extent tree. 3120 * 3121 * 3122 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states 3123 * of which are determined by split_flag. 3124 * 3125 * There are two cases: 3126 * a> the extent are splitted into two extent. 3127 * b> split is not needed, and just mark the extent. 3128 * 3129 * return 0 on success. 3130 */ 3131 static int ext4_split_extent_at(handle_t *handle, 3132 struct inode *inode, 3133 struct ext4_ext_path **ppath, 3134 ext4_lblk_t split, 3135 int split_flag, 3136 int flags) 3137 { 3138 struct ext4_ext_path *path = *ppath; 3139 ext4_fsblk_t newblock; 3140 ext4_lblk_t ee_block; 3141 struct ext4_extent *ex, newex, orig_ex, zero_ex; 3142 struct ext4_extent *ex2 = NULL; 3143 unsigned int ee_len, depth; 3144 int err = 0; 3145 3146 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == 3147 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); 3148 3149 ext_debug(inode, "logical block %llu\n", (unsigned long long)split); 3150 3151 ext4_ext_show_leaf(inode, path); 3152 3153 depth = ext_depth(inode); 3154 ex = path[depth].p_ext; 3155 ee_block = le32_to_cpu(ex->ee_block); 3156 ee_len = ext4_ext_get_actual_len(ex); 3157 newblock = split - ee_block + ext4_ext_pblock(ex); 3158 3159 BUG_ON(split < ee_block || split >= (ee_block + ee_len)); 3160 BUG_ON(!ext4_ext_is_unwritten(ex) && 3161 split_flag & (EXT4_EXT_MAY_ZEROOUT | 3162 EXT4_EXT_MARK_UNWRIT1 | 3163 EXT4_EXT_MARK_UNWRIT2)); 3164 3165 err = ext4_ext_get_access(handle, inode, path + depth); 3166 if (err) 3167 goto out; 3168 3169 if (split == ee_block) { 3170 /* 3171 * case b: block @split is the block that the extent begins with 3172 * then we just change the state of the extent, and splitting 3173 * is not needed. 3174 */ 3175 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3176 ext4_ext_mark_unwritten(ex); 3177 else 3178 ext4_ext_mark_initialized(ex); 3179 3180 if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) 3181 ext4_ext_try_to_merge(handle, inode, path, ex); 3182 3183 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3184 goto out; 3185 } 3186 3187 /* case a */ 3188 memcpy(&orig_ex, ex, sizeof(orig_ex)); 3189 ex->ee_len = cpu_to_le16(split - ee_block); 3190 if (split_flag & EXT4_EXT_MARK_UNWRIT1) 3191 ext4_ext_mark_unwritten(ex); 3192 3193 /* 3194 * path may lead to new leaf, not to original leaf any more 3195 * after ext4_ext_insert_extent() returns, 3196 */ 3197 err = ext4_ext_dirty(handle, inode, path + depth); 3198 if (err) 3199 goto fix_extent_len; 3200 3201 ex2 = &newex; 3202 ex2->ee_block = cpu_to_le32(split); 3203 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block)); 3204 ext4_ext_store_pblock(ex2, newblock); 3205 if (split_flag & EXT4_EXT_MARK_UNWRIT2) 3206 ext4_ext_mark_unwritten(ex2); 3207 3208 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags); 3209 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { 3210 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { 3211 if (split_flag & EXT4_EXT_DATA_VALID1) { 3212 err = ext4_ext_zeroout(inode, ex2); 3213 zero_ex.ee_block = ex2->ee_block; 3214 zero_ex.ee_len = cpu_to_le16( 3215 ext4_ext_get_actual_len(ex2)); 3216 ext4_ext_store_pblock(&zero_ex, 3217 ext4_ext_pblock(ex2)); 3218 } else { 3219 err = ext4_ext_zeroout(inode, ex); 3220 zero_ex.ee_block = ex->ee_block; 3221 zero_ex.ee_len = cpu_to_le16( 3222 ext4_ext_get_actual_len(ex)); 3223 ext4_ext_store_pblock(&zero_ex, 3224 ext4_ext_pblock(ex)); 3225 } 3226 } else { 3227 err = ext4_ext_zeroout(inode, &orig_ex); 3228 zero_ex.ee_block = orig_ex.ee_block; 3229 zero_ex.ee_len = cpu_to_le16( 3230 ext4_ext_get_actual_len(&orig_ex)); 3231 ext4_ext_store_pblock(&zero_ex, 3232 ext4_ext_pblock(&orig_ex)); 3233 } 3234 3235 if (err) 3236 goto fix_extent_len; 3237 /* update the extent length and mark as initialized */ 3238 ex->ee_len = cpu_to_le16(ee_len); 3239 ext4_ext_try_to_merge(handle, inode, path, ex); 3240 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3241 if (err) 3242 goto fix_extent_len; 3243 3244 /* update extent status tree */ 3245 err = ext4_zeroout_es(inode, &zero_ex); 3246 3247 goto out; 3248 } else if (err) 3249 goto fix_extent_len; 3250 3251 out: 3252 ext4_ext_show_leaf(inode, path); 3253 return err; 3254 3255 fix_extent_len: 3256 ex->ee_len = orig_ex.ee_len; 3257 /* 3258 * Ignore ext4_ext_dirty return value since we are already in error path 3259 * and err is a non-zero error code. 3260 */ 3261 ext4_ext_dirty(handle, inode, path + path->p_depth); 3262 return err; 3263 } 3264 3265 /* 3266 * ext4_split_extents() splits an extent and mark extent which is covered 3267 * by @map as split_flags indicates 3268 * 3269 * It may result in splitting the extent into multiple extents (up to three) 3270 * There are three possibilities: 3271 * a> There is no split required 3272 * b> Splits in two extents: Split is happening at either end of the extent 3273 * c> Splits in three extents: Somone is splitting in middle of the extent 3274 * 3275 */ 3276 static int ext4_split_extent(handle_t *handle, 3277 struct inode *inode, 3278 struct ext4_ext_path **ppath, 3279 struct ext4_map_blocks *map, 3280 int split_flag, 3281 int flags) 3282 { 3283 struct ext4_ext_path *path = *ppath; 3284 ext4_lblk_t ee_block; 3285 struct ext4_extent *ex; 3286 unsigned int ee_len, depth; 3287 int err = 0; 3288 int unwritten; 3289 int split_flag1, flags1; 3290 int allocated = map->m_len; 3291 3292 depth = ext_depth(inode); 3293 ex = path[depth].p_ext; 3294 ee_block = le32_to_cpu(ex->ee_block); 3295 ee_len = ext4_ext_get_actual_len(ex); 3296 unwritten = ext4_ext_is_unwritten(ex); 3297 3298 if (map->m_lblk + map->m_len < ee_block + ee_len) { 3299 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; 3300 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; 3301 if (unwritten) 3302 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 | 3303 EXT4_EXT_MARK_UNWRIT2; 3304 if (split_flag & EXT4_EXT_DATA_VALID2) 3305 split_flag1 |= EXT4_EXT_DATA_VALID1; 3306 err = ext4_split_extent_at(handle, inode, ppath, 3307 map->m_lblk + map->m_len, split_flag1, flags1); 3308 if (err) 3309 goto out; 3310 } else { 3311 allocated = ee_len - (map->m_lblk - ee_block); 3312 } 3313 /* 3314 * Update path is required because previous ext4_split_extent_at() may 3315 * result in split of original leaf or extent zeroout. 3316 */ 3317 path = ext4_find_extent(inode, map->m_lblk, ppath, flags); 3318 if (IS_ERR(path)) 3319 return PTR_ERR(path); 3320 depth = ext_depth(inode); 3321 ex = path[depth].p_ext; 3322 if (!ex) { 3323 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3324 (unsigned long) map->m_lblk); 3325 return -EFSCORRUPTED; 3326 } 3327 unwritten = ext4_ext_is_unwritten(ex); 3328 split_flag1 = 0; 3329 3330 if (map->m_lblk >= ee_block) { 3331 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2; 3332 if (unwritten) { 3333 split_flag1 |= EXT4_EXT_MARK_UNWRIT1; 3334 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT | 3335 EXT4_EXT_MARK_UNWRIT2); 3336 } 3337 err = ext4_split_extent_at(handle, inode, ppath, 3338 map->m_lblk, split_flag1, flags); 3339 if (err) 3340 goto out; 3341 } 3342 3343 ext4_ext_show_leaf(inode, path); 3344 out: 3345 return err ? err : allocated; 3346 } 3347 3348 /* 3349 * This function is called by ext4_ext_map_blocks() if someone tries to write 3350 * to an unwritten extent. It may result in splitting the unwritten 3351 * extent into multiple extents (up to three - one initialized and two 3352 * unwritten). 3353 * There are three possibilities: 3354 * a> There is no split required: Entire extent should be initialized 3355 * b> Splits in two extents: Write is happening at either end of the extent 3356 * c> Splits in three extents: Somone is writing in middle of the extent 3357 * 3358 * Pre-conditions: 3359 * - The extent pointed to by 'path' is unwritten. 3360 * - The extent pointed to by 'path' contains a superset 3361 * of the logical span [map->m_lblk, map->m_lblk + map->m_len). 3362 * 3363 * Post-conditions on success: 3364 * - the returned value is the number of blocks beyond map->l_lblk 3365 * that are allocated and initialized. 3366 * It is guaranteed to be >= map->m_len. 3367 */ 3368 static int ext4_ext_convert_to_initialized(handle_t *handle, 3369 struct inode *inode, 3370 struct ext4_map_blocks *map, 3371 struct ext4_ext_path **ppath, 3372 int flags) 3373 { 3374 struct ext4_ext_path *path = *ppath; 3375 struct ext4_sb_info *sbi; 3376 struct ext4_extent_header *eh; 3377 struct ext4_map_blocks split_map; 3378 struct ext4_extent zero_ex1, zero_ex2; 3379 struct ext4_extent *ex, *abut_ex; 3380 ext4_lblk_t ee_block, eof_block; 3381 unsigned int ee_len, depth, map_len = map->m_len; 3382 int allocated = 0, max_zeroout = 0; 3383 int err = 0; 3384 int split_flag = EXT4_EXT_DATA_VALID2; 3385 3386 ext_debug(inode, "logical block %llu, max_blocks %u\n", 3387 (unsigned long long)map->m_lblk, map_len); 3388 3389 sbi = EXT4_SB(inode->i_sb); 3390 eof_block = (EXT4_I(inode)->i_disksize + inode->i_sb->s_blocksize - 1) 3391 >> inode->i_sb->s_blocksize_bits; 3392 if (eof_block < map->m_lblk + map_len) 3393 eof_block = map->m_lblk + map_len; 3394 3395 depth = ext_depth(inode); 3396 eh = path[depth].p_hdr; 3397 ex = path[depth].p_ext; 3398 ee_block = le32_to_cpu(ex->ee_block); 3399 ee_len = ext4_ext_get_actual_len(ex); 3400 zero_ex1.ee_len = 0; 3401 zero_ex2.ee_len = 0; 3402 3403 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); 3404 3405 /* Pre-conditions */ 3406 BUG_ON(!ext4_ext_is_unwritten(ex)); 3407 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); 3408 3409 /* 3410 * Attempt to transfer newly initialized blocks from the currently 3411 * unwritten extent to its neighbor. This is much cheaper 3412 * than an insertion followed by a merge as those involve costly 3413 * memmove() calls. Transferring to the left is the common case in 3414 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE) 3415 * followed by append writes. 3416 * 3417 * Limitations of the current logic: 3418 * - L1: we do not deal with writes covering the whole extent. 3419 * This would require removing the extent if the transfer 3420 * is possible. 3421 * - L2: we only attempt to merge with an extent stored in the 3422 * same extent tree node. 3423 */ 3424 if ((map->m_lblk == ee_block) && 3425 /* See if we can merge left */ 3426 (map_len < ee_len) && /*L1*/ 3427 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/ 3428 ext4_lblk_t prev_lblk; 3429 ext4_fsblk_t prev_pblk, ee_pblk; 3430 unsigned int prev_len; 3431 3432 abut_ex = ex - 1; 3433 prev_lblk = le32_to_cpu(abut_ex->ee_block); 3434 prev_len = ext4_ext_get_actual_len(abut_ex); 3435 prev_pblk = ext4_ext_pblock(abut_ex); 3436 ee_pblk = ext4_ext_pblock(ex); 3437 3438 /* 3439 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3440 * upon those conditions: 3441 * - C1: abut_ex is initialized, 3442 * - C2: abut_ex is logically abutting ex, 3443 * - C3: abut_ex is physically abutting ex, 3444 * - C4: abut_ex can receive the additional blocks without 3445 * overflowing the (initialized) length limit. 3446 */ 3447 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3448 ((prev_lblk + prev_len) == ee_block) && /*C2*/ 3449 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/ 3450 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3451 err = ext4_ext_get_access(handle, inode, path + depth); 3452 if (err) 3453 goto out; 3454 3455 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3456 map, ex, abut_ex); 3457 3458 /* Shift the start of ex by 'map_len' blocks */ 3459 ex->ee_block = cpu_to_le32(ee_block + map_len); 3460 ext4_ext_store_pblock(ex, ee_pblk + map_len); 3461 ex->ee_len = cpu_to_le16(ee_len - map_len); 3462 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3463 3464 /* Extend abut_ex by 'map_len' blocks */ 3465 abut_ex->ee_len = cpu_to_le16(prev_len + map_len); 3466 3467 /* Result: number of initialized blocks past m_lblk */ 3468 allocated = map_len; 3469 } 3470 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) && 3471 (map_len < ee_len) && /*L1*/ 3472 ex < EXT_LAST_EXTENT(eh)) { /*L2*/ 3473 /* See if we can merge right */ 3474 ext4_lblk_t next_lblk; 3475 ext4_fsblk_t next_pblk, ee_pblk; 3476 unsigned int next_len; 3477 3478 abut_ex = ex + 1; 3479 next_lblk = le32_to_cpu(abut_ex->ee_block); 3480 next_len = ext4_ext_get_actual_len(abut_ex); 3481 next_pblk = ext4_ext_pblock(abut_ex); 3482 ee_pblk = ext4_ext_pblock(ex); 3483 3484 /* 3485 * A transfer of blocks from 'ex' to 'abut_ex' is allowed 3486 * upon those conditions: 3487 * - C1: abut_ex is initialized, 3488 * - C2: abut_ex is logically abutting ex, 3489 * - C3: abut_ex is physically abutting ex, 3490 * - C4: abut_ex can receive the additional blocks without 3491 * overflowing the (initialized) length limit. 3492 */ 3493 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/ 3494 ((map->m_lblk + map_len) == next_lblk) && /*C2*/ 3495 ((ee_pblk + ee_len) == next_pblk) && /*C3*/ 3496 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/ 3497 err = ext4_ext_get_access(handle, inode, path + depth); 3498 if (err) 3499 goto out; 3500 3501 trace_ext4_ext_convert_to_initialized_fastpath(inode, 3502 map, ex, abut_ex); 3503 3504 /* Shift the start of abut_ex by 'map_len' blocks */ 3505 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len); 3506 ext4_ext_store_pblock(abut_ex, next_pblk - map_len); 3507 ex->ee_len = cpu_to_le16(ee_len - map_len); 3508 ext4_ext_mark_unwritten(ex); /* Restore the flag */ 3509 3510 /* Extend abut_ex by 'map_len' blocks */ 3511 abut_ex->ee_len = cpu_to_le16(next_len + map_len); 3512 3513 /* Result: number of initialized blocks past m_lblk */ 3514 allocated = map_len; 3515 } 3516 } 3517 if (allocated) { 3518 /* Mark the block containing both extents as dirty */ 3519 err = ext4_ext_dirty(handle, inode, path + depth); 3520 3521 /* Update path to point to the right extent */ 3522 path[depth].p_ext = abut_ex; 3523 goto out; 3524 } else 3525 allocated = ee_len - (map->m_lblk - ee_block); 3526 3527 WARN_ON(map->m_lblk < ee_block); 3528 /* 3529 * It is safe to convert extent to initialized via explicit 3530 * zeroout only if extent is fully inside i_size or new_size. 3531 */ 3532 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; 3533 3534 if (EXT4_EXT_MAY_ZEROOUT & split_flag) 3535 max_zeroout = sbi->s_extent_max_zeroout_kb >> 3536 (inode->i_sb->s_blocksize_bits - 10); 3537 3538 /* 3539 * five cases: 3540 * 1. split the extent into three extents. 3541 * 2. split the extent into two extents, zeroout the head of the first 3542 * extent. 3543 * 3. split the extent into two extents, zeroout the tail of the second 3544 * extent. 3545 * 4. split the extent into two extents with out zeroout. 3546 * 5. no splitting needed, just possibly zeroout the head and / or the 3547 * tail of the extent. 3548 */ 3549 split_map.m_lblk = map->m_lblk; 3550 split_map.m_len = map->m_len; 3551 3552 if (max_zeroout && (allocated > split_map.m_len)) { 3553 if (allocated <= max_zeroout) { 3554 /* case 3 or 5 */ 3555 zero_ex1.ee_block = 3556 cpu_to_le32(split_map.m_lblk + 3557 split_map.m_len); 3558 zero_ex1.ee_len = 3559 cpu_to_le16(allocated - split_map.m_len); 3560 ext4_ext_store_pblock(&zero_ex1, 3561 ext4_ext_pblock(ex) + split_map.m_lblk + 3562 split_map.m_len - ee_block); 3563 err = ext4_ext_zeroout(inode, &zero_ex1); 3564 if (err) 3565 goto out; 3566 split_map.m_len = allocated; 3567 } 3568 if (split_map.m_lblk - ee_block + split_map.m_len < 3569 max_zeroout) { 3570 /* case 2 or 5 */ 3571 if (split_map.m_lblk != ee_block) { 3572 zero_ex2.ee_block = ex->ee_block; 3573 zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk - 3574 ee_block); 3575 ext4_ext_store_pblock(&zero_ex2, 3576 ext4_ext_pblock(ex)); 3577 err = ext4_ext_zeroout(inode, &zero_ex2); 3578 if (err) 3579 goto out; 3580 } 3581 3582 split_map.m_len += split_map.m_lblk - ee_block; 3583 split_map.m_lblk = ee_block; 3584 allocated = map->m_len; 3585 } 3586 } 3587 3588 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag, 3589 flags); 3590 if (err > 0) 3591 err = 0; 3592 out: 3593 /* If we have gotten a failure, don't zero out status tree */ 3594 if (!err) { 3595 err = ext4_zeroout_es(inode, &zero_ex1); 3596 if (!err) 3597 err = ext4_zeroout_es(inode, &zero_ex2); 3598 } 3599 return err ? err : allocated; 3600 } 3601 3602 /* 3603 * This function is called by ext4_ext_map_blocks() from 3604 * ext4_get_blocks_dio_write() when DIO to write 3605 * to an unwritten extent. 3606 * 3607 * Writing to an unwritten extent may result in splitting the unwritten 3608 * extent into multiple initialized/unwritten extents (up to three) 3609 * There are three possibilities: 3610 * a> There is no split required: Entire extent should be unwritten 3611 * b> Splits in two extents: Write is happening at either end of the extent 3612 * c> Splits in three extents: Somone is writing in middle of the extent 3613 * 3614 * This works the same way in the case of initialized -> unwritten conversion. 3615 * 3616 * One of more index blocks maybe needed if the extent tree grow after 3617 * the unwritten extent split. To prevent ENOSPC occur at the IO 3618 * complete, we need to split the unwritten extent before DIO submit 3619 * the IO. The unwritten extent called at this time will be split 3620 * into three unwritten extent(at most). After IO complete, the part 3621 * being filled will be convert to initialized by the end_io callback function 3622 * via ext4_convert_unwritten_extents(). 3623 * 3624 * Returns the size of unwritten extent to be written on success. 3625 */ 3626 static int ext4_split_convert_extents(handle_t *handle, 3627 struct inode *inode, 3628 struct ext4_map_blocks *map, 3629 struct ext4_ext_path **ppath, 3630 int flags) 3631 { 3632 struct ext4_ext_path *path = *ppath; 3633 ext4_lblk_t eof_block; 3634 ext4_lblk_t ee_block; 3635 struct ext4_extent *ex; 3636 unsigned int ee_len; 3637 int split_flag = 0, depth; 3638 3639 ext_debug(inode, "logical block %llu, max_blocks %u\n", 3640 (unsigned long long)map->m_lblk, map->m_len); 3641 3642 eof_block = (EXT4_I(inode)->i_disksize + inode->i_sb->s_blocksize - 1) 3643 >> inode->i_sb->s_blocksize_bits; 3644 if (eof_block < map->m_lblk + map->m_len) 3645 eof_block = map->m_lblk + map->m_len; 3646 /* 3647 * It is safe to convert extent to initialized via explicit 3648 * zeroout only if extent is fully inside i_size or new_size. 3649 */ 3650 depth = ext_depth(inode); 3651 ex = path[depth].p_ext; 3652 ee_block = le32_to_cpu(ex->ee_block); 3653 ee_len = ext4_ext_get_actual_len(ex); 3654 3655 /* Convert to unwritten */ 3656 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) { 3657 split_flag |= EXT4_EXT_DATA_VALID1; 3658 /* Convert to initialized */ 3659 } else if (flags & EXT4_GET_BLOCKS_CONVERT) { 3660 split_flag |= ee_block + ee_len <= eof_block ? 3661 EXT4_EXT_MAY_ZEROOUT : 0; 3662 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2); 3663 } 3664 flags |= EXT4_GET_BLOCKS_PRE_IO; 3665 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags); 3666 } 3667 3668 static int ext4_convert_unwritten_extents_endio(handle_t *handle, 3669 struct inode *inode, 3670 struct ext4_map_blocks *map, 3671 struct ext4_ext_path **ppath) 3672 { 3673 struct ext4_ext_path *path = *ppath; 3674 struct ext4_extent *ex; 3675 ext4_lblk_t ee_block; 3676 unsigned int ee_len; 3677 int depth; 3678 int err = 0; 3679 3680 depth = ext_depth(inode); 3681 ex = path[depth].p_ext; 3682 ee_block = le32_to_cpu(ex->ee_block); 3683 ee_len = ext4_ext_get_actual_len(ex); 3684 3685 ext_debug(inode, "logical block %llu, max_blocks %u\n", 3686 (unsigned long long)ee_block, ee_len); 3687 3688 /* If extent is larger than requested it is a clear sign that we still 3689 * have some extent state machine issues left. So extent_split is still 3690 * required. 3691 * TODO: Once all related issues will be fixed this situation should be 3692 * illegal. 3693 */ 3694 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3695 #ifdef CONFIG_EXT4_DEBUG 3696 ext4_warning(inode->i_sb, "Inode (%ld) finished: extent logical block %llu," 3697 " len %u; IO logical block %llu, len %u", 3698 inode->i_ino, (unsigned long long)ee_block, ee_len, 3699 (unsigned long long)map->m_lblk, map->m_len); 3700 #endif 3701 err = ext4_split_convert_extents(handle, inode, map, ppath, 3702 EXT4_GET_BLOCKS_CONVERT); 3703 if (err < 0) 3704 return err; 3705 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3706 if (IS_ERR(path)) 3707 return PTR_ERR(path); 3708 depth = ext_depth(inode); 3709 ex = path[depth].p_ext; 3710 } 3711 3712 err = ext4_ext_get_access(handle, inode, path + depth); 3713 if (err) 3714 goto out; 3715 /* first mark the extent as initialized */ 3716 ext4_ext_mark_initialized(ex); 3717 3718 /* note: ext4_ext_correct_indexes() isn't needed here because 3719 * borders are not changed 3720 */ 3721 ext4_ext_try_to_merge(handle, inode, path, ex); 3722 3723 /* Mark modified extent as dirty */ 3724 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3725 out: 3726 ext4_ext_show_leaf(inode, path); 3727 return err; 3728 } 3729 3730 static int 3731 convert_initialized_extent(handle_t *handle, struct inode *inode, 3732 struct ext4_map_blocks *map, 3733 struct ext4_ext_path **ppath, 3734 unsigned int *allocated) 3735 { 3736 struct ext4_ext_path *path = *ppath; 3737 struct ext4_extent *ex; 3738 ext4_lblk_t ee_block; 3739 unsigned int ee_len; 3740 int depth; 3741 int err = 0; 3742 3743 /* 3744 * Make sure that the extent is no bigger than we support with 3745 * unwritten extent 3746 */ 3747 if (map->m_len > EXT_UNWRITTEN_MAX_LEN) 3748 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2; 3749 3750 depth = ext_depth(inode); 3751 ex = path[depth].p_ext; 3752 ee_block = le32_to_cpu(ex->ee_block); 3753 ee_len = ext4_ext_get_actual_len(ex); 3754 3755 ext_debug(inode, "logical block %llu, max_blocks %u\n", 3756 (unsigned long long)ee_block, ee_len); 3757 3758 if (ee_block != map->m_lblk || ee_len > map->m_len) { 3759 err = ext4_split_convert_extents(handle, inode, map, ppath, 3760 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN); 3761 if (err < 0) 3762 return err; 3763 path = ext4_find_extent(inode, map->m_lblk, ppath, 0); 3764 if (IS_ERR(path)) 3765 return PTR_ERR(path); 3766 depth = ext_depth(inode); 3767 ex = path[depth].p_ext; 3768 if (!ex) { 3769 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 3770 (unsigned long) map->m_lblk); 3771 return -EFSCORRUPTED; 3772 } 3773 } 3774 3775 err = ext4_ext_get_access(handle, inode, path + depth); 3776 if (err) 3777 return err; 3778 /* first mark the extent as unwritten */ 3779 ext4_ext_mark_unwritten(ex); 3780 3781 /* note: ext4_ext_correct_indexes() isn't needed here because 3782 * borders are not changed 3783 */ 3784 ext4_ext_try_to_merge(handle, inode, path, ex); 3785 3786 /* Mark modified extent as dirty */ 3787 err = ext4_ext_dirty(handle, inode, path + path->p_depth); 3788 if (err) 3789 return err; 3790 ext4_ext_show_leaf(inode, path); 3791 3792 ext4_update_inode_fsync_trans(handle, inode, 1); 3793 3794 map->m_flags |= EXT4_MAP_UNWRITTEN; 3795 if (*allocated > map->m_len) 3796 *allocated = map->m_len; 3797 map->m_len = *allocated; 3798 return 0; 3799 } 3800 3801 static int 3802 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode, 3803 struct ext4_map_blocks *map, 3804 struct ext4_ext_path **ppath, int flags, 3805 unsigned int allocated, ext4_fsblk_t newblock) 3806 { 3807 struct ext4_ext_path __maybe_unused *path = *ppath; 3808 int ret = 0; 3809 int err = 0; 3810 3811 ext_debug(inode, "logical block %llu, max_blocks %u, flags 0x%x, allocated %u\n", 3812 (unsigned long long)map->m_lblk, map->m_len, flags, 3813 allocated); 3814 ext4_ext_show_leaf(inode, path); 3815 3816 /* 3817 * When writing into unwritten space, we should not fail to 3818 * allocate metadata blocks for the new extent block if needed. 3819 */ 3820 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL; 3821 3822 trace_ext4_ext_handle_unwritten_extents(inode, map, flags, 3823 allocated, newblock); 3824 3825 /* get_block() before submitting IO, split the extent */ 3826 if (flags & EXT4_GET_BLOCKS_PRE_IO) { 3827 ret = ext4_split_convert_extents(handle, inode, map, ppath, 3828 flags | EXT4_GET_BLOCKS_CONVERT); 3829 if (ret < 0) { 3830 err = ret; 3831 goto out2; 3832 } 3833 /* 3834 * shouldn't get a 0 return when splitting an extent unless 3835 * m_len is 0 (bug) or extent has been corrupted 3836 */ 3837 if (unlikely(ret == 0)) { 3838 EXT4_ERROR_INODE(inode, 3839 "unexpected ret == 0, m_len = %u", 3840 map->m_len); 3841 err = -EFSCORRUPTED; 3842 goto out2; 3843 } 3844 map->m_flags |= EXT4_MAP_UNWRITTEN; 3845 goto out; 3846 } 3847 /* IO end_io complete, convert the filled extent to written */ 3848 if (flags & EXT4_GET_BLOCKS_CONVERT) { 3849 err = ext4_convert_unwritten_extents_endio(handle, inode, map, 3850 ppath); 3851 if (err < 0) 3852 goto out2; 3853 ext4_update_inode_fsync_trans(handle, inode, 1); 3854 goto map_out; 3855 } 3856 /* buffered IO cases */ 3857 /* 3858 * repeat fallocate creation request 3859 * we already have an unwritten extent 3860 */ 3861 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 3862 map->m_flags |= EXT4_MAP_UNWRITTEN; 3863 goto map_out; 3864 } 3865 3866 /* buffered READ or buffered write_begin() lookup */ 3867 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 3868 /* 3869 * We have blocks reserved already. We 3870 * return allocated blocks so that delalloc 3871 * won't do block reservation for us. But 3872 * the buffer head will be unmapped so that 3873 * a read from the block returns 0s. 3874 */ 3875 map->m_flags |= EXT4_MAP_UNWRITTEN; 3876 goto out1; 3877 } 3878 3879 /* 3880 * Default case when (flags & EXT4_GET_BLOCKS_CREATE) == 1. 3881 * For buffered writes, at writepage time, etc. Convert a 3882 * discovered unwritten extent to written. 3883 */ 3884 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags); 3885 if (ret < 0) { 3886 err = ret; 3887 goto out2; 3888 } 3889 ext4_update_inode_fsync_trans(handle, inode, 1); 3890 /* 3891 * shouldn't get a 0 return when converting an unwritten extent 3892 * unless m_len is 0 (bug) or extent has been corrupted 3893 */ 3894 if (unlikely(ret == 0)) { 3895 EXT4_ERROR_INODE(inode, "unexpected ret == 0, m_len = %u", 3896 map->m_len); 3897 err = -EFSCORRUPTED; 3898 goto out2; 3899 } 3900 3901 out: 3902 allocated = ret; 3903 map->m_flags |= EXT4_MAP_NEW; 3904 map_out: 3905 map->m_flags |= EXT4_MAP_MAPPED; 3906 out1: 3907 map->m_pblk = newblock; 3908 if (allocated > map->m_len) 3909 allocated = map->m_len; 3910 map->m_len = allocated; 3911 ext4_ext_show_leaf(inode, path); 3912 out2: 3913 return err ? err : allocated; 3914 } 3915 3916 /* 3917 * get_implied_cluster_alloc - check to see if the requested 3918 * allocation (in the map structure) overlaps with a cluster already 3919 * allocated in an extent. 3920 * @sb The filesystem superblock structure 3921 * @map The requested lblk->pblk mapping 3922 * @ex The extent structure which might contain an implied 3923 * cluster allocation 3924 * 3925 * This function is called by ext4_ext_map_blocks() after we failed to 3926 * find blocks that were already in the inode's extent tree. Hence, 3927 * we know that the beginning of the requested region cannot overlap 3928 * the extent from the inode's extent tree. There are three cases we 3929 * want to catch. The first is this case: 3930 * 3931 * |--- cluster # N--| 3932 * |--- extent ---| |---- requested region ---| 3933 * |==========| 3934 * 3935 * The second case that we need to test for is this one: 3936 * 3937 * |--------- cluster # N ----------------| 3938 * |--- requested region --| |------- extent ----| 3939 * |=======================| 3940 * 3941 * The third case is when the requested region lies between two extents 3942 * within the same cluster: 3943 * |------------- cluster # N-------------| 3944 * |----- ex -----| |---- ex_right ----| 3945 * |------ requested region ------| 3946 * |================| 3947 * 3948 * In each of the above cases, we need to set the map->m_pblk and 3949 * map->m_len so it corresponds to the return the extent labelled as 3950 * "|====|" from cluster #N, since it is already in use for data in 3951 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to 3952 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated 3953 * as a new "allocated" block region. Otherwise, we will return 0 and 3954 * ext4_ext_map_blocks() will then allocate one or more new clusters 3955 * by calling ext4_mb_new_blocks(). 3956 */ 3957 static int get_implied_cluster_alloc(struct super_block *sb, 3958 struct ext4_map_blocks *map, 3959 struct ext4_extent *ex, 3960 struct ext4_ext_path *path) 3961 { 3962 struct ext4_sb_info *sbi = EXT4_SB(sb); 3963 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 3964 ext4_lblk_t ex_cluster_start, ex_cluster_end; 3965 ext4_lblk_t rr_cluster_start; 3966 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 3967 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 3968 unsigned short ee_len = ext4_ext_get_actual_len(ex); 3969 3970 /* The extent passed in that we are trying to match */ 3971 ex_cluster_start = EXT4_B2C(sbi, ee_block); 3972 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); 3973 3974 /* The requested region passed into ext4_map_blocks() */ 3975 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); 3976 3977 if ((rr_cluster_start == ex_cluster_end) || 3978 (rr_cluster_start == ex_cluster_start)) { 3979 if (rr_cluster_start == ex_cluster_end) 3980 ee_start += ee_len - 1; 3981 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset; 3982 map->m_len = min(map->m_len, 3983 (unsigned) sbi->s_cluster_ratio - c_offset); 3984 /* 3985 * Check for and handle this case: 3986 * 3987 * |--------- cluster # N-------------| 3988 * |------- extent ----| 3989 * |--- requested region ---| 3990 * |===========| 3991 */ 3992 3993 if (map->m_lblk < ee_block) 3994 map->m_len = min(map->m_len, ee_block - map->m_lblk); 3995 3996 /* 3997 * Check for the case where there is already another allocated 3998 * block to the right of 'ex' but before the end of the cluster. 3999 * 4000 * |------------- cluster # N-------------| 4001 * |----- ex -----| |---- ex_right ----| 4002 * |------ requested region ------| 4003 * |================| 4004 */ 4005 if (map->m_lblk > ee_block) { 4006 ext4_lblk_t next = ext4_ext_next_allocated_block(path); 4007 map->m_len = min(map->m_len, next - map->m_lblk); 4008 } 4009 4010 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); 4011 return 1; 4012 } 4013 4014 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); 4015 return 0; 4016 } 4017 4018 4019 /* 4020 * Block allocation/map/preallocation routine for extents based files 4021 * 4022 * 4023 * Need to be called with 4024 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 4025 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 4026 * 4027 * return > 0, number of blocks already mapped/allocated 4028 * if create == 0 and these are pre-allocated blocks 4029 * buffer head is unmapped 4030 * otherwise blocks are mapped 4031 * 4032 * return = 0, if plain look up failed (blocks have not been allocated) 4033 * buffer head is unmapped 4034 * 4035 * return < 0, error case. 4036 */ 4037 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, 4038 struct ext4_map_blocks *map, int flags) 4039 { 4040 struct ext4_ext_path *path = NULL; 4041 struct ext4_extent newex, *ex, ex2; 4042 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4043 ext4_fsblk_t newblock = 0, pblk; 4044 int err = 0, depth, ret; 4045 unsigned int allocated = 0, offset = 0; 4046 unsigned int allocated_clusters = 0; 4047 struct ext4_allocation_request ar; 4048 ext4_lblk_t cluster_offset; 4049 4050 ext_debug(inode, "blocks %u/%u requested\n", map->m_lblk, map->m_len); 4051 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 4052 4053 /* find extent for this block */ 4054 path = ext4_find_extent(inode, map->m_lblk, NULL, 0); 4055 if (IS_ERR(path)) { 4056 err = PTR_ERR(path); 4057 path = NULL; 4058 goto out; 4059 } 4060 4061 depth = ext_depth(inode); 4062 4063 /* 4064 * consistent leaf must not be empty; 4065 * this situation is possible, though, _during_ tree modification; 4066 * this is why assert can't be put in ext4_find_extent() 4067 */ 4068 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 4069 EXT4_ERROR_INODE(inode, "bad extent address " 4070 "lblock: %lu, depth: %d pblock %lld", 4071 (unsigned long) map->m_lblk, depth, 4072 path[depth].p_block); 4073 err = -EFSCORRUPTED; 4074 goto out; 4075 } 4076 4077 ex = path[depth].p_ext; 4078 if (ex) { 4079 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); 4080 ext4_fsblk_t ee_start = ext4_ext_pblock(ex); 4081 unsigned short ee_len; 4082 4083 4084 /* 4085 * unwritten extents are treated as holes, except that 4086 * we split out initialized portions during a write. 4087 */ 4088 ee_len = ext4_ext_get_actual_len(ex); 4089 4090 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); 4091 4092 /* if found extent covers block, simply return it */ 4093 if (in_range(map->m_lblk, ee_block, ee_len)) { 4094 newblock = map->m_lblk - ee_block + ee_start; 4095 /* number of remaining blocks in the extent */ 4096 allocated = ee_len - (map->m_lblk - ee_block); 4097 ext_debug(inode, "%u fit into %u:%d -> %llu\n", 4098 map->m_lblk, ee_block, ee_len, newblock); 4099 4100 /* 4101 * If the extent is initialized check whether the 4102 * caller wants to convert it to unwritten. 4103 */ 4104 if ((!ext4_ext_is_unwritten(ex)) && 4105 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) { 4106 err = convert_initialized_extent(handle, 4107 inode, map, &path, &allocated); 4108 goto out; 4109 } else if (!ext4_ext_is_unwritten(ex)) { 4110 map->m_flags |= EXT4_MAP_MAPPED; 4111 map->m_pblk = newblock; 4112 if (allocated > map->m_len) 4113 allocated = map->m_len; 4114 map->m_len = allocated; 4115 ext4_ext_show_leaf(inode, path); 4116 goto out; 4117 } 4118 4119 ret = ext4_ext_handle_unwritten_extents( 4120 handle, inode, map, &path, flags, 4121 allocated, newblock); 4122 if (ret < 0) 4123 err = ret; 4124 else 4125 allocated = ret; 4126 goto out; 4127 } 4128 } 4129 4130 /* 4131 * requested block isn't allocated yet; 4132 * we couldn't try to create block if create flag is zero 4133 */ 4134 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 4135 ext4_lblk_t hole_start, hole_len; 4136 4137 hole_start = map->m_lblk; 4138 hole_len = ext4_ext_determine_hole(inode, path, &hole_start); 4139 /* 4140 * put just found gap into cache to speed up 4141 * subsequent requests 4142 */ 4143 ext4_ext_put_gap_in_cache(inode, hole_start, hole_len); 4144 4145 /* Update hole_len to reflect hole size after map->m_lblk */ 4146 if (hole_start != map->m_lblk) 4147 hole_len -= map->m_lblk - hole_start; 4148 map->m_pblk = 0; 4149 map->m_len = min_t(unsigned int, map->m_len, hole_len); 4150 4151 goto out; 4152 } 4153 4154 /* 4155 * Okay, we need to do block allocation. 4156 */ 4157 newex.ee_block = cpu_to_le32(map->m_lblk); 4158 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4159 4160 /* 4161 * If we are doing bigalloc, check to see if the extent returned 4162 * by ext4_find_extent() implies a cluster we can use. 4163 */ 4164 if (cluster_offset && ex && 4165 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { 4166 ar.len = allocated = map->m_len; 4167 newblock = map->m_pblk; 4168 goto got_allocated_blocks; 4169 } 4170 4171 /* find neighbour allocated blocks */ 4172 ar.lleft = map->m_lblk; 4173 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); 4174 if (err) 4175 goto out; 4176 ar.lright = map->m_lblk; 4177 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); 4178 if (err < 0) 4179 goto out; 4180 4181 /* Check if the extent after searching to the right implies a 4182 * cluster we can use. */ 4183 if ((sbi->s_cluster_ratio > 1) && err && 4184 get_implied_cluster_alloc(inode->i_sb, map, &ex2, path)) { 4185 ar.len = allocated = map->m_len; 4186 newblock = map->m_pblk; 4187 goto got_allocated_blocks; 4188 } 4189 4190 /* 4191 * See if request is beyond maximum number of blocks we can have in 4192 * a single extent. For an initialized extent this limit is 4193 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is 4194 * EXT_UNWRITTEN_MAX_LEN. 4195 */ 4196 if (map->m_len > EXT_INIT_MAX_LEN && 4197 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4198 map->m_len = EXT_INIT_MAX_LEN; 4199 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN && 4200 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT)) 4201 map->m_len = EXT_UNWRITTEN_MAX_LEN; 4202 4203 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ 4204 newex.ee_len = cpu_to_le16(map->m_len); 4205 err = ext4_ext_check_overlap(sbi, inode, &newex, path); 4206 if (err) 4207 allocated = ext4_ext_get_actual_len(&newex); 4208 else 4209 allocated = map->m_len; 4210 4211 /* allocate new block */ 4212 ar.inode = inode; 4213 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); 4214 ar.logical = map->m_lblk; 4215 /* 4216 * We calculate the offset from the beginning of the cluster 4217 * for the logical block number, since when we allocate a 4218 * physical cluster, the physical block should start at the 4219 * same offset from the beginning of the cluster. This is 4220 * needed so that future calls to get_implied_cluster_alloc() 4221 * work correctly. 4222 */ 4223 offset = EXT4_LBLK_COFF(sbi, map->m_lblk); 4224 ar.len = EXT4_NUM_B2C(sbi, offset+allocated); 4225 ar.goal -= offset; 4226 ar.logical -= offset; 4227 if (S_ISREG(inode->i_mode)) 4228 ar.flags = EXT4_MB_HINT_DATA; 4229 else 4230 /* disable in-core preallocation for non-regular files */ 4231 ar.flags = 0; 4232 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) 4233 ar.flags |= EXT4_MB_HINT_NOPREALLOC; 4234 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4235 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 4236 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 4237 ar.flags |= EXT4_MB_USE_RESERVED; 4238 newblock = ext4_mb_new_blocks(handle, &ar, &err); 4239 if (!newblock) 4240 goto out; 4241 allocated_clusters = ar.len; 4242 ar.len = EXT4_C2B(sbi, ar.len) - offset; 4243 ext_debug(inode, "allocate new block: goal %llu, found %llu/%u, requested %u\n", 4244 ar.goal, newblock, ar.len, allocated); 4245 if (ar.len > allocated) 4246 ar.len = allocated; 4247 4248 got_allocated_blocks: 4249 /* try to insert new extent into found leaf and return */ 4250 pblk = newblock + offset; 4251 ext4_ext_store_pblock(&newex, pblk); 4252 newex.ee_len = cpu_to_le16(ar.len); 4253 /* Mark unwritten */ 4254 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) { 4255 ext4_ext_mark_unwritten(&newex); 4256 map->m_flags |= EXT4_MAP_UNWRITTEN; 4257 } 4258 4259 err = ext4_ext_insert_extent(handle, inode, &path, &newex, flags); 4260 if (err) { 4261 if (allocated_clusters) { 4262 int fb_flags = 0; 4263 4264 /* 4265 * free data blocks we just allocated. 4266 * not a good idea to call discard here directly, 4267 * but otherwise we'd need to call it every free(). 4268 */ 4269 ext4_discard_preallocations(inode, 0); 4270 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 4271 fb_flags = EXT4_FREE_BLOCKS_NO_QUOT_UPDATE; 4272 ext4_free_blocks(handle, inode, NULL, newblock, 4273 EXT4_C2B(sbi, allocated_clusters), 4274 fb_flags); 4275 } 4276 goto out; 4277 } 4278 4279 /* 4280 * Reduce the reserved cluster count to reflect successful deferred 4281 * allocation of delayed allocated clusters or direct allocation of 4282 * clusters discovered to be delayed allocated. Once allocated, a 4283 * cluster is not included in the reserved count. 4284 */ 4285 if (test_opt(inode->i_sb, DELALLOC) && allocated_clusters) { 4286 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 4287 /* 4288 * When allocating delayed allocated clusters, simply 4289 * reduce the reserved cluster count and claim quota 4290 */ 4291 ext4_da_update_reserve_space(inode, allocated_clusters, 4292 1); 4293 } else { 4294 ext4_lblk_t lblk, len; 4295 unsigned int n; 4296 4297 /* 4298 * When allocating non-delayed allocated clusters 4299 * (from fallocate, filemap, DIO, or clusters 4300 * allocated when delalloc has been disabled by 4301 * ext4_nonda_switch), reduce the reserved cluster 4302 * count by the number of allocated clusters that 4303 * have previously been delayed allocated. Quota 4304 * has been claimed by ext4_mb_new_blocks() above, 4305 * so release the quota reservations made for any 4306 * previously delayed allocated clusters. 4307 */ 4308 lblk = EXT4_LBLK_CMASK(sbi, map->m_lblk); 4309 len = allocated_clusters << sbi->s_cluster_bits; 4310 n = ext4_es_delayed_clu(inode, lblk, len); 4311 if (n > 0) 4312 ext4_da_update_reserve_space(inode, (int) n, 0); 4313 } 4314 } 4315 4316 /* 4317 * Cache the extent and update transaction to commit on fdatasync only 4318 * when it is _not_ an unwritten extent. 4319 */ 4320 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0) 4321 ext4_update_inode_fsync_trans(handle, inode, 1); 4322 else 4323 ext4_update_inode_fsync_trans(handle, inode, 0); 4324 4325 map->m_flags |= (EXT4_MAP_NEW | EXT4_MAP_MAPPED); 4326 map->m_pblk = pblk; 4327 map->m_len = ar.len; 4328 allocated = map->m_len; 4329 ext4_ext_show_leaf(inode, path); 4330 out: 4331 ext4_ext_drop_refs(path); 4332 kfree(path); 4333 4334 trace_ext4_ext_map_blocks_exit(inode, flags, map, 4335 err ? err : allocated); 4336 return err ? err : allocated; 4337 } 4338 4339 int ext4_ext_truncate(handle_t *handle, struct inode *inode) 4340 { 4341 struct super_block *sb = inode->i_sb; 4342 ext4_lblk_t last_block; 4343 int err = 0; 4344 4345 /* 4346 * TODO: optimization is possible here. 4347 * Probably we need not scan at all, 4348 * because page truncation is enough. 4349 */ 4350 4351 /* we have to know where to truncate from in crash case */ 4352 EXT4_I(inode)->i_disksize = inode->i_size; 4353 err = ext4_mark_inode_dirty(handle, inode); 4354 if (err) 4355 return err; 4356 4357 last_block = (inode->i_size + sb->s_blocksize - 1) 4358 >> EXT4_BLOCK_SIZE_BITS(sb); 4359 retry: 4360 err = ext4_es_remove_extent(inode, last_block, 4361 EXT_MAX_BLOCKS - last_block); 4362 if (err == -ENOMEM) { 4363 cond_resched(); 4364 congestion_wait(BLK_RW_ASYNC, HZ/50); 4365 goto retry; 4366 } 4367 if (err) 4368 return err; 4369 retry_remove_space: 4370 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); 4371 if (err == -ENOMEM) { 4372 cond_resched(); 4373 congestion_wait(BLK_RW_ASYNC, HZ/50); 4374 goto retry_remove_space; 4375 } 4376 return err; 4377 } 4378 4379 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset, 4380 ext4_lblk_t len, loff_t new_size, 4381 int flags) 4382 { 4383 struct inode *inode = file_inode(file); 4384 handle_t *handle; 4385 int ret = 0; 4386 int ret2 = 0, ret3 = 0; 4387 int retries = 0; 4388 int depth = 0; 4389 struct ext4_map_blocks map; 4390 unsigned int credits; 4391 loff_t epos; 4392 4393 BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)); 4394 map.m_lblk = offset; 4395 map.m_len = len; 4396 /* 4397 * Don't normalize the request if it can fit in one extent so 4398 * that it doesn't get unnecessarily split into multiple 4399 * extents. 4400 */ 4401 if (len <= EXT_UNWRITTEN_MAX_LEN) 4402 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; 4403 4404 /* 4405 * credits to insert 1 extent into extent tree 4406 */ 4407 credits = ext4_chunk_trans_blocks(inode, len); 4408 depth = ext_depth(inode); 4409 4410 retry: 4411 while (ret >= 0 && len) { 4412 /* 4413 * Recalculate credits when extent tree depth changes. 4414 */ 4415 if (depth != ext_depth(inode)) { 4416 credits = ext4_chunk_trans_blocks(inode, len); 4417 depth = ext_depth(inode); 4418 } 4419 4420 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4421 credits); 4422 if (IS_ERR(handle)) { 4423 ret = PTR_ERR(handle); 4424 break; 4425 } 4426 ret = ext4_map_blocks(handle, inode, &map, flags); 4427 if (ret <= 0) { 4428 ext4_debug("inode #%lu: block %u: len %u: " 4429 "ext4_ext_map_blocks returned %d", 4430 inode->i_ino, map.m_lblk, 4431 map.m_len, ret); 4432 ext4_mark_inode_dirty(handle, inode); 4433 ret2 = ext4_journal_stop(handle); 4434 break; 4435 } 4436 map.m_lblk += ret; 4437 map.m_len = len = len - ret; 4438 epos = (loff_t)map.m_lblk << inode->i_blkbits; 4439 inode->i_ctime = current_time(inode); 4440 if (new_size) { 4441 if (epos > new_size) 4442 epos = new_size; 4443 if (ext4_update_inode_size(inode, epos) & 0x1) 4444 inode->i_mtime = inode->i_ctime; 4445 } 4446 ret2 = ext4_mark_inode_dirty(handle, inode); 4447 ext4_update_inode_fsync_trans(handle, inode, 1); 4448 ret3 = ext4_journal_stop(handle); 4449 ret2 = ret3 ? ret3 : ret2; 4450 if (unlikely(ret2)) 4451 break; 4452 } 4453 if (ret == -ENOSPC && 4454 ext4_should_retry_alloc(inode->i_sb, &retries)) { 4455 ret = 0; 4456 goto retry; 4457 } 4458 4459 return ret > 0 ? ret2 : ret; 4460 } 4461 4462 static int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len); 4463 4464 static int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len); 4465 4466 static long ext4_zero_range(struct file *file, loff_t offset, 4467 loff_t len, int mode) 4468 { 4469 struct inode *inode = file_inode(file); 4470 handle_t *handle = NULL; 4471 unsigned int max_blocks; 4472 loff_t new_size = 0; 4473 int ret = 0; 4474 int flags; 4475 int credits; 4476 int partial_begin, partial_end; 4477 loff_t start, end; 4478 ext4_lblk_t lblk; 4479 unsigned int blkbits = inode->i_blkbits; 4480 4481 trace_ext4_zero_range(inode, offset, len, mode); 4482 4483 /* Call ext4_force_commit to flush all data in case of data=journal. */ 4484 if (ext4_should_journal_data(inode)) { 4485 ret = ext4_force_commit(inode->i_sb); 4486 if (ret) 4487 return ret; 4488 } 4489 4490 /* 4491 * Round up offset. This is not fallocate, we need to zero out 4492 * blocks, so convert interior block aligned part of the range to 4493 * unwritten and possibly manually zero out unaligned parts of the 4494 * range. 4495 */ 4496 start = round_up(offset, 1 << blkbits); 4497 end = round_down((offset + len), 1 << blkbits); 4498 4499 if (start < offset || end > offset + len) 4500 return -EINVAL; 4501 partial_begin = offset & ((1 << blkbits) - 1); 4502 partial_end = (offset + len) & ((1 << blkbits) - 1); 4503 4504 lblk = start >> blkbits; 4505 max_blocks = (end >> blkbits); 4506 if (max_blocks < lblk) 4507 max_blocks = 0; 4508 else 4509 max_blocks -= lblk; 4510 4511 inode_lock(inode); 4512 4513 /* 4514 * Indirect files do not support unwritten extents 4515 */ 4516 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4517 ret = -EOPNOTSUPP; 4518 goto out_mutex; 4519 } 4520 4521 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4522 (offset + len > inode->i_size || 4523 offset + len > EXT4_I(inode)->i_disksize)) { 4524 new_size = offset + len; 4525 ret = inode_newsize_ok(inode, new_size); 4526 if (ret) 4527 goto out_mutex; 4528 } 4529 4530 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4531 4532 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4533 inode_dio_wait(inode); 4534 4535 /* Preallocate the range including the unaligned edges */ 4536 if (partial_begin || partial_end) { 4537 ret = ext4_alloc_file_blocks(file, 4538 round_down(offset, 1 << blkbits) >> blkbits, 4539 (round_up((offset + len), 1 << blkbits) - 4540 round_down(offset, 1 << blkbits)) >> blkbits, 4541 new_size, flags); 4542 if (ret) 4543 goto out_mutex; 4544 4545 } 4546 4547 /* Zero range excluding the unaligned edges */ 4548 if (max_blocks > 0) { 4549 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN | 4550 EXT4_EX_NOCACHE); 4551 4552 /* 4553 * Prevent page faults from reinstantiating pages we have 4554 * released from page cache. 4555 */ 4556 down_write(&EXT4_I(inode)->i_mmap_sem); 4557 4558 ret = ext4_break_layouts(inode); 4559 if (ret) { 4560 up_write(&EXT4_I(inode)->i_mmap_sem); 4561 goto out_mutex; 4562 } 4563 4564 ret = ext4_update_disksize_before_punch(inode, offset, len); 4565 if (ret) { 4566 up_write(&EXT4_I(inode)->i_mmap_sem); 4567 goto out_mutex; 4568 } 4569 /* Now release the pages and zero block aligned part of pages */ 4570 truncate_pagecache_range(inode, start, end - 1); 4571 inode->i_mtime = inode->i_ctime = current_time(inode); 4572 4573 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, 4574 flags); 4575 up_write(&EXT4_I(inode)->i_mmap_sem); 4576 if (ret) 4577 goto out_mutex; 4578 } 4579 if (!partial_begin && !partial_end) 4580 goto out_mutex; 4581 4582 /* 4583 * In worst case we have to writeout two nonadjacent unwritten 4584 * blocks and update the inode 4585 */ 4586 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1; 4587 if (ext4_should_journal_data(inode)) 4588 credits += 2; 4589 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 4590 if (IS_ERR(handle)) { 4591 ret = PTR_ERR(handle); 4592 ext4_std_error(inode->i_sb, ret); 4593 goto out_mutex; 4594 } 4595 4596 inode->i_mtime = inode->i_ctime = current_time(inode); 4597 if (new_size) 4598 ext4_update_inode_size(inode, new_size); 4599 ret = ext4_mark_inode_dirty(handle, inode); 4600 if (unlikely(ret)) 4601 goto out_handle; 4602 ext4_fc_track_range(handle, inode, offset >> inode->i_sb->s_blocksize_bits, 4603 (offset + len - 1) >> inode->i_sb->s_blocksize_bits); 4604 /* Zero out partial block at the edges of the range */ 4605 ret = ext4_zero_partial_blocks(handle, inode, offset, len); 4606 if (ret >= 0) 4607 ext4_update_inode_fsync_trans(handle, inode, 1); 4608 4609 if (file->f_flags & O_SYNC) 4610 ext4_handle_sync(handle); 4611 4612 out_handle: 4613 ext4_journal_stop(handle); 4614 out_mutex: 4615 inode_unlock(inode); 4616 return ret; 4617 } 4618 4619 /* 4620 * preallocate space for a file. This implements ext4's fallocate file 4621 * operation, which gets called from sys_fallocate system call. 4622 * For block-mapped files, posix_fallocate should fall back to the method 4623 * of writing zeroes to the required new blocks (the same behavior which is 4624 * expected for file systems which do not support fallocate() system call). 4625 */ 4626 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 4627 { 4628 struct inode *inode = file_inode(file); 4629 loff_t new_size = 0; 4630 unsigned int max_blocks; 4631 int ret = 0; 4632 int flags; 4633 ext4_lblk_t lblk; 4634 unsigned int blkbits = inode->i_blkbits; 4635 4636 /* 4637 * Encrypted inodes can't handle collapse range or insert 4638 * range since we would need to re-encrypt blocks with a 4639 * different IV or XTS tweak (which are based on the logical 4640 * block number). 4641 */ 4642 if (IS_ENCRYPTED(inode) && 4643 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 4644 return -EOPNOTSUPP; 4645 4646 /* Return error if mode is not supported */ 4647 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 4648 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 4649 FALLOC_FL_INSERT_RANGE)) 4650 return -EOPNOTSUPP; 4651 4652 ext4_fc_start_update(inode); 4653 4654 if (mode & FALLOC_FL_PUNCH_HOLE) { 4655 ret = ext4_punch_hole(inode, offset, len); 4656 goto exit; 4657 } 4658 4659 ret = ext4_convert_inline_data(inode); 4660 if (ret) 4661 goto exit; 4662 4663 if (mode & FALLOC_FL_COLLAPSE_RANGE) { 4664 ret = ext4_collapse_range(inode, offset, len); 4665 goto exit; 4666 } 4667 4668 if (mode & FALLOC_FL_INSERT_RANGE) { 4669 ret = ext4_insert_range(inode, offset, len); 4670 goto exit; 4671 } 4672 4673 if (mode & FALLOC_FL_ZERO_RANGE) { 4674 ret = ext4_zero_range(file, offset, len, mode); 4675 goto exit; 4676 } 4677 trace_ext4_fallocate_enter(inode, offset, len, mode); 4678 lblk = offset >> blkbits; 4679 4680 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 4681 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT; 4682 4683 inode_lock(inode); 4684 4685 /* 4686 * We only support preallocation for extent-based files only 4687 */ 4688 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4689 ret = -EOPNOTSUPP; 4690 goto out; 4691 } 4692 4693 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4694 (offset + len > inode->i_size || 4695 offset + len > EXT4_I(inode)->i_disksize)) { 4696 new_size = offset + len; 4697 ret = inode_newsize_ok(inode, new_size); 4698 if (ret) 4699 goto out; 4700 } 4701 4702 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4703 inode_dio_wait(inode); 4704 4705 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags); 4706 if (ret) 4707 goto out; 4708 4709 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) { 4710 ret = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 4711 EXT4_I(inode)->i_sync_tid); 4712 } 4713 out: 4714 inode_unlock(inode); 4715 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); 4716 exit: 4717 ext4_fc_stop_update(inode); 4718 return ret; 4719 } 4720 4721 /* 4722 * This function convert a range of blocks to written extents 4723 * The caller of this function will pass the start offset and the size. 4724 * all unwritten extents within this range will be converted to 4725 * written extents. 4726 * 4727 * This function is called from the direct IO end io call back 4728 * function, to convert the fallocated extents after IO is completed. 4729 * Returns 0 on success. 4730 */ 4731 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, 4732 loff_t offset, ssize_t len) 4733 { 4734 unsigned int max_blocks; 4735 int ret = 0, ret2 = 0, ret3 = 0; 4736 struct ext4_map_blocks map; 4737 unsigned int blkbits = inode->i_blkbits; 4738 unsigned int credits = 0; 4739 4740 map.m_lblk = offset >> blkbits; 4741 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits); 4742 4743 if (!handle) { 4744 /* 4745 * credits to insert 1 extent into extent tree 4746 */ 4747 credits = ext4_chunk_trans_blocks(inode, max_blocks); 4748 } 4749 while (ret >= 0 && ret < max_blocks) { 4750 map.m_lblk += ret; 4751 map.m_len = (max_blocks -= ret); 4752 if (credits) { 4753 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 4754 credits); 4755 if (IS_ERR(handle)) { 4756 ret = PTR_ERR(handle); 4757 break; 4758 } 4759 } 4760 ret = ext4_map_blocks(handle, inode, &map, 4761 EXT4_GET_BLOCKS_IO_CONVERT_EXT); 4762 if (ret <= 0) 4763 ext4_warning(inode->i_sb, 4764 "inode #%lu: block %u: len %u: " 4765 "ext4_ext_map_blocks returned %d", 4766 inode->i_ino, map.m_lblk, 4767 map.m_len, ret); 4768 ret2 = ext4_mark_inode_dirty(handle, inode); 4769 if (credits) { 4770 ret3 = ext4_journal_stop(handle); 4771 if (unlikely(ret3)) 4772 ret2 = ret3; 4773 } 4774 4775 if (ret <= 0 || ret2) 4776 break; 4777 } 4778 return ret > 0 ? ret2 : ret; 4779 } 4780 4781 int ext4_convert_unwritten_io_end_vec(handle_t *handle, ext4_io_end_t *io_end) 4782 { 4783 int ret = 0, err = 0; 4784 struct ext4_io_end_vec *io_end_vec; 4785 4786 /* 4787 * This is somewhat ugly but the idea is clear: When transaction is 4788 * reserved, everything goes into it. Otherwise we rather start several 4789 * smaller transactions for conversion of each extent separately. 4790 */ 4791 if (handle) { 4792 handle = ext4_journal_start_reserved(handle, 4793 EXT4_HT_EXT_CONVERT); 4794 if (IS_ERR(handle)) 4795 return PTR_ERR(handle); 4796 } 4797 4798 list_for_each_entry(io_end_vec, &io_end->list_vec, list) { 4799 ret = ext4_convert_unwritten_extents(handle, io_end->inode, 4800 io_end_vec->offset, 4801 io_end_vec->size); 4802 if (ret) 4803 break; 4804 } 4805 4806 if (handle) 4807 err = ext4_journal_stop(handle); 4808 4809 return ret < 0 ? ret : err; 4810 } 4811 4812 static int ext4_iomap_xattr_fiemap(struct inode *inode, struct iomap *iomap) 4813 { 4814 __u64 physical = 0; 4815 __u64 length = 0; 4816 int blockbits = inode->i_sb->s_blocksize_bits; 4817 int error = 0; 4818 u16 iomap_type; 4819 4820 /* in-inode? */ 4821 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4822 struct ext4_iloc iloc; 4823 int offset; /* offset of xattr in inode */ 4824 4825 error = ext4_get_inode_loc(inode, &iloc); 4826 if (error) 4827 return error; 4828 physical = (__u64)iloc.bh->b_blocknr << blockbits; 4829 offset = EXT4_GOOD_OLD_INODE_SIZE + 4830 EXT4_I(inode)->i_extra_isize; 4831 physical += offset; 4832 length = EXT4_SB(inode->i_sb)->s_inode_size - offset; 4833 brelse(iloc.bh); 4834 iomap_type = IOMAP_INLINE; 4835 } else if (EXT4_I(inode)->i_file_acl) { /* external block */ 4836 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits; 4837 length = inode->i_sb->s_blocksize; 4838 iomap_type = IOMAP_MAPPED; 4839 } else { 4840 /* no in-inode or external block for xattr, so return -ENOENT */ 4841 error = -ENOENT; 4842 goto out; 4843 } 4844 4845 iomap->addr = physical; 4846 iomap->offset = 0; 4847 iomap->length = length; 4848 iomap->type = iomap_type; 4849 iomap->flags = 0; 4850 out: 4851 return error; 4852 } 4853 4854 static int ext4_iomap_xattr_begin(struct inode *inode, loff_t offset, 4855 loff_t length, unsigned flags, 4856 struct iomap *iomap, struct iomap *srcmap) 4857 { 4858 int error; 4859 4860 error = ext4_iomap_xattr_fiemap(inode, iomap); 4861 if (error == 0 && (offset >= iomap->length)) 4862 error = -ENOENT; 4863 return error; 4864 } 4865 4866 static const struct iomap_ops ext4_iomap_xattr_ops = { 4867 .iomap_begin = ext4_iomap_xattr_begin, 4868 }; 4869 4870 static int ext4_fiemap_check_ranges(struct inode *inode, u64 start, u64 *len) 4871 { 4872 u64 maxbytes; 4873 4874 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4875 maxbytes = inode->i_sb->s_maxbytes; 4876 else 4877 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 4878 4879 if (*len == 0) 4880 return -EINVAL; 4881 if (start > maxbytes) 4882 return -EFBIG; 4883 4884 /* 4885 * Shrink request scope to what the fs can actually handle. 4886 */ 4887 if (*len > maxbytes || (maxbytes - *len) < start) 4888 *len = maxbytes - start; 4889 return 0; 4890 } 4891 4892 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4893 u64 start, u64 len) 4894 { 4895 int error = 0; 4896 4897 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 4898 error = ext4_ext_precache(inode); 4899 if (error) 4900 return error; 4901 fieinfo->fi_flags &= ~FIEMAP_FLAG_CACHE; 4902 } 4903 4904 /* 4905 * For bitmap files the maximum size limit could be smaller than 4906 * s_maxbytes, so check len here manually instead of just relying on the 4907 * generic check. 4908 */ 4909 error = ext4_fiemap_check_ranges(inode, start, &len); 4910 if (error) 4911 return error; 4912 4913 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 4914 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR; 4915 return iomap_fiemap(inode, fieinfo, start, len, 4916 &ext4_iomap_xattr_ops); 4917 } 4918 4919 return iomap_fiemap(inode, fieinfo, start, len, &ext4_iomap_report_ops); 4920 } 4921 4922 int ext4_get_es_cache(struct inode *inode, struct fiemap_extent_info *fieinfo, 4923 __u64 start, __u64 len) 4924 { 4925 ext4_lblk_t start_blk, len_blks; 4926 __u64 last_blk; 4927 int error = 0; 4928 4929 if (ext4_has_inline_data(inode)) { 4930 int has_inline; 4931 4932 down_read(&EXT4_I(inode)->xattr_sem); 4933 has_inline = ext4_has_inline_data(inode); 4934 up_read(&EXT4_I(inode)->xattr_sem); 4935 if (has_inline) 4936 return 0; 4937 } 4938 4939 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 4940 error = ext4_ext_precache(inode); 4941 if (error) 4942 return error; 4943 fieinfo->fi_flags &= ~FIEMAP_FLAG_CACHE; 4944 } 4945 4946 error = fiemap_prep(inode, fieinfo, start, &len, 0); 4947 if (error) 4948 return error; 4949 4950 error = ext4_fiemap_check_ranges(inode, start, &len); 4951 if (error) 4952 return error; 4953 4954 start_blk = start >> inode->i_sb->s_blocksize_bits; 4955 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; 4956 if (last_blk >= EXT_MAX_BLOCKS) 4957 last_blk = EXT_MAX_BLOCKS-1; 4958 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; 4959 4960 /* 4961 * Walk the extent tree gathering extent information 4962 * and pushing extents back to the user. 4963 */ 4964 return ext4_fill_es_cache_info(inode, start_blk, len_blks, fieinfo); 4965 } 4966 4967 /* 4968 * ext4_access_path: 4969 * Function to access the path buffer for marking it dirty. 4970 * It also checks if there are sufficient credits left in the journal handle 4971 * to update path. 4972 */ 4973 static int 4974 ext4_access_path(handle_t *handle, struct inode *inode, 4975 struct ext4_ext_path *path) 4976 { 4977 int credits, err; 4978 4979 if (!ext4_handle_valid(handle)) 4980 return 0; 4981 4982 /* 4983 * Check if need to extend journal credits 4984 * 3 for leaf, sb, and inode plus 2 (bmap and group 4985 * descriptor) for each block group; assume two block 4986 * groups 4987 */ 4988 credits = ext4_writepage_trans_blocks(inode); 4989 err = ext4_datasem_ensure_credits(handle, inode, 7, credits, 0); 4990 if (err < 0) 4991 return err; 4992 4993 err = ext4_ext_get_access(handle, inode, path); 4994 return err; 4995 } 4996 4997 /* 4998 * ext4_ext_shift_path_extents: 4999 * Shift the extents of a path structure lying between path[depth].p_ext 5000 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells 5001 * if it is right shift or left shift operation. 5002 */ 5003 static int 5004 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift, 5005 struct inode *inode, handle_t *handle, 5006 enum SHIFT_DIRECTION SHIFT) 5007 { 5008 int depth, err = 0; 5009 struct ext4_extent *ex_start, *ex_last; 5010 bool update = false; 5011 depth = path->p_depth; 5012 5013 while (depth >= 0) { 5014 if (depth == path->p_depth) { 5015 ex_start = path[depth].p_ext; 5016 if (!ex_start) 5017 return -EFSCORRUPTED; 5018 5019 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr); 5020 5021 err = ext4_access_path(handle, inode, path + depth); 5022 if (err) 5023 goto out; 5024 5025 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr)) 5026 update = true; 5027 5028 while (ex_start <= ex_last) { 5029 if (SHIFT == SHIFT_LEFT) { 5030 le32_add_cpu(&ex_start->ee_block, 5031 -shift); 5032 /* Try to merge to the left. */ 5033 if ((ex_start > 5034 EXT_FIRST_EXTENT(path[depth].p_hdr)) 5035 && 5036 ext4_ext_try_to_merge_right(inode, 5037 path, ex_start - 1)) 5038 ex_last--; 5039 else 5040 ex_start++; 5041 } else { 5042 le32_add_cpu(&ex_last->ee_block, shift); 5043 ext4_ext_try_to_merge_right(inode, path, 5044 ex_last); 5045 ex_last--; 5046 } 5047 } 5048 err = ext4_ext_dirty(handle, inode, path + depth); 5049 if (err) 5050 goto out; 5051 5052 if (--depth < 0 || !update) 5053 break; 5054 } 5055 5056 /* Update index too */ 5057 err = ext4_access_path(handle, inode, path + depth); 5058 if (err) 5059 goto out; 5060 5061 if (SHIFT == SHIFT_LEFT) 5062 le32_add_cpu(&path[depth].p_idx->ei_block, -shift); 5063 else 5064 le32_add_cpu(&path[depth].p_idx->ei_block, shift); 5065 err = ext4_ext_dirty(handle, inode, path + depth); 5066 if (err) 5067 goto out; 5068 5069 /* we are done if current index is not a starting index */ 5070 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr)) 5071 break; 5072 5073 depth--; 5074 } 5075 5076 out: 5077 return err; 5078 } 5079 5080 /* 5081 * ext4_ext_shift_extents: 5082 * All the extents which lies in the range from @start to the last allocated 5083 * block for the @inode are shifted either towards left or right (depending 5084 * upon @SHIFT) by @shift blocks. 5085 * On success, 0 is returned, error otherwise. 5086 */ 5087 static int 5088 ext4_ext_shift_extents(struct inode *inode, handle_t *handle, 5089 ext4_lblk_t start, ext4_lblk_t shift, 5090 enum SHIFT_DIRECTION SHIFT) 5091 { 5092 struct ext4_ext_path *path; 5093 int ret = 0, depth; 5094 struct ext4_extent *extent; 5095 ext4_lblk_t stop, *iterator, ex_start, ex_end; 5096 5097 /* Let path point to the last extent */ 5098 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 5099 EXT4_EX_NOCACHE); 5100 if (IS_ERR(path)) 5101 return PTR_ERR(path); 5102 5103 depth = path->p_depth; 5104 extent = path[depth].p_ext; 5105 if (!extent) 5106 goto out; 5107 5108 stop = le32_to_cpu(extent->ee_block); 5109 5110 /* 5111 * For left shifts, make sure the hole on the left is big enough to 5112 * accommodate the shift. For right shifts, make sure the last extent 5113 * won't be shifted beyond EXT_MAX_BLOCKS. 5114 */ 5115 if (SHIFT == SHIFT_LEFT) { 5116 path = ext4_find_extent(inode, start - 1, &path, 5117 EXT4_EX_NOCACHE); 5118 if (IS_ERR(path)) 5119 return PTR_ERR(path); 5120 depth = path->p_depth; 5121 extent = path[depth].p_ext; 5122 if (extent) { 5123 ex_start = le32_to_cpu(extent->ee_block); 5124 ex_end = le32_to_cpu(extent->ee_block) + 5125 ext4_ext_get_actual_len(extent); 5126 } else { 5127 ex_start = 0; 5128 ex_end = 0; 5129 } 5130 5131 if ((start == ex_start && shift > ex_start) || 5132 (shift > start - ex_end)) { 5133 ret = -EINVAL; 5134 goto out; 5135 } 5136 } else { 5137 if (shift > EXT_MAX_BLOCKS - 5138 (stop + ext4_ext_get_actual_len(extent))) { 5139 ret = -EINVAL; 5140 goto out; 5141 } 5142 } 5143 5144 /* 5145 * In case of left shift, iterator points to start and it is increased 5146 * till we reach stop. In case of right shift, iterator points to stop 5147 * and it is decreased till we reach start. 5148 */ 5149 if (SHIFT == SHIFT_LEFT) 5150 iterator = &start; 5151 else 5152 iterator = &stop; 5153 5154 /* 5155 * Its safe to start updating extents. Start and stop are unsigned, so 5156 * in case of right shift if extent with 0 block is reached, iterator 5157 * becomes NULL to indicate the end of the loop. 5158 */ 5159 while (iterator && start <= stop) { 5160 path = ext4_find_extent(inode, *iterator, &path, 5161 EXT4_EX_NOCACHE); 5162 if (IS_ERR(path)) 5163 return PTR_ERR(path); 5164 depth = path->p_depth; 5165 extent = path[depth].p_ext; 5166 if (!extent) { 5167 EXT4_ERROR_INODE(inode, "unexpected hole at %lu", 5168 (unsigned long) *iterator); 5169 return -EFSCORRUPTED; 5170 } 5171 if (SHIFT == SHIFT_LEFT && *iterator > 5172 le32_to_cpu(extent->ee_block)) { 5173 /* Hole, move to the next extent */ 5174 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) { 5175 path[depth].p_ext++; 5176 } else { 5177 *iterator = ext4_ext_next_allocated_block(path); 5178 continue; 5179 } 5180 } 5181 5182 if (SHIFT == SHIFT_LEFT) { 5183 extent = EXT_LAST_EXTENT(path[depth].p_hdr); 5184 *iterator = le32_to_cpu(extent->ee_block) + 5185 ext4_ext_get_actual_len(extent); 5186 } else { 5187 extent = EXT_FIRST_EXTENT(path[depth].p_hdr); 5188 if (le32_to_cpu(extent->ee_block) > 0) 5189 *iterator = le32_to_cpu(extent->ee_block) - 1; 5190 else 5191 /* Beginning is reached, end of the loop */ 5192 iterator = NULL; 5193 /* Update path extent in case we need to stop */ 5194 while (le32_to_cpu(extent->ee_block) < start) 5195 extent++; 5196 path[depth].p_ext = extent; 5197 } 5198 ret = ext4_ext_shift_path_extents(path, shift, inode, 5199 handle, SHIFT); 5200 if (ret) 5201 break; 5202 } 5203 out: 5204 ext4_ext_drop_refs(path); 5205 kfree(path); 5206 return ret; 5207 } 5208 5209 /* 5210 * ext4_collapse_range: 5211 * This implements the fallocate's collapse range functionality for ext4 5212 * Returns: 0 and non-zero on error. 5213 */ 5214 static int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len) 5215 { 5216 struct super_block *sb = inode->i_sb; 5217 ext4_lblk_t punch_start, punch_stop; 5218 handle_t *handle; 5219 unsigned int credits; 5220 loff_t new_size, ioffset; 5221 int ret; 5222 5223 /* 5224 * We need to test this early because xfstests assumes that a 5225 * collapse range of (0, 1) will return EOPNOTSUPP if the file 5226 * system does not support collapse range. 5227 */ 5228 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5229 return -EOPNOTSUPP; 5230 5231 /* Collapse range works only on fs cluster size aligned regions. */ 5232 if (!IS_ALIGNED(offset | len, EXT4_CLUSTER_SIZE(sb))) 5233 return -EINVAL; 5234 5235 trace_ext4_collapse_range(inode, offset, len); 5236 5237 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5238 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb); 5239 5240 /* Call ext4_force_commit to flush all data in case of data=journal. */ 5241 if (ext4_should_journal_data(inode)) { 5242 ret = ext4_force_commit(inode->i_sb); 5243 if (ret) 5244 return ret; 5245 } 5246 5247 inode_lock(inode); 5248 /* 5249 * There is no need to overlap collapse range with EOF, in which case 5250 * it is effectively a truncate operation 5251 */ 5252 if (offset + len >= inode->i_size) { 5253 ret = -EINVAL; 5254 goto out_mutex; 5255 } 5256 5257 /* Currently just for extent based files */ 5258 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5259 ret = -EOPNOTSUPP; 5260 goto out_mutex; 5261 } 5262 5263 /* Wait for existing dio to complete */ 5264 inode_dio_wait(inode); 5265 5266 /* 5267 * Prevent page faults from reinstantiating pages we have released from 5268 * page cache. 5269 */ 5270 down_write(&EXT4_I(inode)->i_mmap_sem); 5271 5272 ret = ext4_break_layouts(inode); 5273 if (ret) 5274 goto out_mmap; 5275 5276 /* 5277 * Need to round down offset to be aligned with page size boundary 5278 * for page size > block size. 5279 */ 5280 ioffset = round_down(offset, PAGE_SIZE); 5281 /* 5282 * Write tail of the last page before removed range since it will get 5283 * removed from the page cache below. 5284 */ 5285 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset); 5286 if (ret) 5287 goto out_mmap; 5288 /* 5289 * Write data that will be shifted to preserve them when discarding 5290 * page cache below. We are also protected from pages becoming dirty 5291 * by i_mmap_sem. 5292 */ 5293 ret = filemap_write_and_wait_range(inode->i_mapping, offset + len, 5294 LLONG_MAX); 5295 if (ret) 5296 goto out_mmap; 5297 truncate_pagecache(inode, ioffset); 5298 5299 credits = ext4_writepage_trans_blocks(inode); 5300 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5301 if (IS_ERR(handle)) { 5302 ret = PTR_ERR(handle); 5303 goto out_mmap; 5304 } 5305 ext4_fc_start_ineligible(sb, EXT4_FC_REASON_FALLOC_RANGE); 5306 5307 down_write(&EXT4_I(inode)->i_data_sem); 5308 ext4_discard_preallocations(inode, 0); 5309 5310 ret = ext4_es_remove_extent(inode, punch_start, 5311 EXT_MAX_BLOCKS - punch_start); 5312 if (ret) { 5313 up_write(&EXT4_I(inode)->i_data_sem); 5314 goto out_stop; 5315 } 5316 5317 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1); 5318 if (ret) { 5319 up_write(&EXT4_I(inode)->i_data_sem); 5320 goto out_stop; 5321 } 5322 ext4_discard_preallocations(inode, 0); 5323 5324 ret = ext4_ext_shift_extents(inode, handle, punch_stop, 5325 punch_stop - punch_start, SHIFT_LEFT); 5326 if (ret) { 5327 up_write(&EXT4_I(inode)->i_data_sem); 5328 goto out_stop; 5329 } 5330 5331 new_size = inode->i_size - len; 5332 i_size_write(inode, new_size); 5333 EXT4_I(inode)->i_disksize = new_size; 5334 5335 up_write(&EXT4_I(inode)->i_data_sem); 5336 if (IS_SYNC(inode)) 5337 ext4_handle_sync(handle); 5338 inode->i_mtime = inode->i_ctime = current_time(inode); 5339 ret = ext4_mark_inode_dirty(handle, inode); 5340 ext4_update_inode_fsync_trans(handle, inode, 1); 5341 5342 out_stop: 5343 ext4_journal_stop(handle); 5344 ext4_fc_stop_ineligible(sb); 5345 out_mmap: 5346 up_write(&EXT4_I(inode)->i_mmap_sem); 5347 out_mutex: 5348 inode_unlock(inode); 5349 return ret; 5350 } 5351 5352 /* 5353 * ext4_insert_range: 5354 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate. 5355 * The data blocks starting from @offset to the EOF are shifted by @len 5356 * towards right to create a hole in the @inode. Inode size is increased 5357 * by len bytes. 5358 * Returns 0 on success, error otherwise. 5359 */ 5360 static int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len) 5361 { 5362 struct super_block *sb = inode->i_sb; 5363 handle_t *handle; 5364 struct ext4_ext_path *path; 5365 struct ext4_extent *extent; 5366 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0; 5367 unsigned int credits, ee_len; 5368 int ret = 0, depth, split_flag = 0; 5369 loff_t ioffset; 5370 5371 /* 5372 * We need to test this early because xfstests assumes that an 5373 * insert range of (0, 1) will return EOPNOTSUPP if the file 5374 * system does not support insert range. 5375 */ 5376 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5377 return -EOPNOTSUPP; 5378 5379 /* Insert range works only on fs cluster size aligned regions. */ 5380 if (!IS_ALIGNED(offset | len, EXT4_CLUSTER_SIZE(sb))) 5381 return -EINVAL; 5382 5383 trace_ext4_insert_range(inode, offset, len); 5384 5385 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb); 5386 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb); 5387 5388 /* Call ext4_force_commit to flush all data in case of data=journal */ 5389 if (ext4_should_journal_data(inode)) { 5390 ret = ext4_force_commit(inode->i_sb); 5391 if (ret) 5392 return ret; 5393 } 5394 5395 inode_lock(inode); 5396 /* Currently just for extent based files */ 5397 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5398 ret = -EOPNOTSUPP; 5399 goto out_mutex; 5400 } 5401 5402 /* Check whether the maximum file size would be exceeded */ 5403 if (len > inode->i_sb->s_maxbytes - inode->i_size) { 5404 ret = -EFBIG; 5405 goto out_mutex; 5406 } 5407 5408 /* Offset must be less than i_size */ 5409 if (offset >= inode->i_size) { 5410 ret = -EINVAL; 5411 goto out_mutex; 5412 } 5413 5414 /* Wait for existing dio to complete */ 5415 inode_dio_wait(inode); 5416 5417 /* 5418 * Prevent page faults from reinstantiating pages we have released from 5419 * page cache. 5420 */ 5421 down_write(&EXT4_I(inode)->i_mmap_sem); 5422 5423 ret = ext4_break_layouts(inode); 5424 if (ret) 5425 goto out_mmap; 5426 5427 /* 5428 * Need to round down to align start offset to page size boundary 5429 * for page size > block size. 5430 */ 5431 ioffset = round_down(offset, PAGE_SIZE); 5432 /* Write out all dirty pages */ 5433 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 5434 LLONG_MAX); 5435 if (ret) 5436 goto out_mmap; 5437 truncate_pagecache(inode, ioffset); 5438 5439 credits = ext4_writepage_trans_blocks(inode); 5440 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 5441 if (IS_ERR(handle)) { 5442 ret = PTR_ERR(handle); 5443 goto out_mmap; 5444 } 5445 ext4_fc_start_ineligible(sb, EXT4_FC_REASON_FALLOC_RANGE); 5446 5447 /* Expand file to avoid data loss if there is error while shifting */ 5448 inode->i_size += len; 5449 EXT4_I(inode)->i_disksize += len; 5450 inode->i_mtime = inode->i_ctime = current_time(inode); 5451 ret = ext4_mark_inode_dirty(handle, inode); 5452 if (ret) 5453 goto out_stop; 5454 5455 down_write(&EXT4_I(inode)->i_data_sem); 5456 ext4_discard_preallocations(inode, 0); 5457 5458 path = ext4_find_extent(inode, offset_lblk, NULL, 0); 5459 if (IS_ERR(path)) { 5460 up_write(&EXT4_I(inode)->i_data_sem); 5461 goto out_stop; 5462 } 5463 5464 depth = ext_depth(inode); 5465 extent = path[depth].p_ext; 5466 if (extent) { 5467 ee_start_lblk = le32_to_cpu(extent->ee_block); 5468 ee_len = ext4_ext_get_actual_len(extent); 5469 5470 /* 5471 * If offset_lblk is not the starting block of extent, split 5472 * the extent @offset_lblk 5473 */ 5474 if ((offset_lblk > ee_start_lblk) && 5475 (offset_lblk < (ee_start_lblk + ee_len))) { 5476 if (ext4_ext_is_unwritten(extent)) 5477 split_flag = EXT4_EXT_MARK_UNWRIT1 | 5478 EXT4_EXT_MARK_UNWRIT2; 5479 ret = ext4_split_extent_at(handle, inode, &path, 5480 offset_lblk, split_flag, 5481 EXT4_EX_NOCACHE | 5482 EXT4_GET_BLOCKS_PRE_IO | 5483 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5484 } 5485 5486 ext4_ext_drop_refs(path); 5487 kfree(path); 5488 if (ret < 0) { 5489 up_write(&EXT4_I(inode)->i_data_sem); 5490 goto out_stop; 5491 } 5492 } else { 5493 ext4_ext_drop_refs(path); 5494 kfree(path); 5495 } 5496 5497 ret = ext4_es_remove_extent(inode, offset_lblk, 5498 EXT_MAX_BLOCKS - offset_lblk); 5499 if (ret) { 5500 up_write(&EXT4_I(inode)->i_data_sem); 5501 goto out_stop; 5502 } 5503 5504 /* 5505 * if offset_lblk lies in a hole which is at start of file, use 5506 * ee_start_lblk to shift extents 5507 */ 5508 ret = ext4_ext_shift_extents(inode, handle, 5509 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk, 5510 len_lblk, SHIFT_RIGHT); 5511 5512 up_write(&EXT4_I(inode)->i_data_sem); 5513 if (IS_SYNC(inode)) 5514 ext4_handle_sync(handle); 5515 if (ret >= 0) 5516 ext4_update_inode_fsync_trans(handle, inode, 1); 5517 5518 out_stop: 5519 ext4_journal_stop(handle); 5520 ext4_fc_stop_ineligible(sb); 5521 out_mmap: 5522 up_write(&EXT4_I(inode)->i_mmap_sem); 5523 out_mutex: 5524 inode_unlock(inode); 5525 return ret; 5526 } 5527 5528 /** 5529 * ext4_swap_extents() - Swap extents between two inodes 5530 * @handle: handle for this transaction 5531 * @inode1: First inode 5532 * @inode2: Second inode 5533 * @lblk1: Start block for first inode 5534 * @lblk2: Start block for second inode 5535 * @count: Number of blocks to swap 5536 * @unwritten: Mark second inode's extents as unwritten after swap 5537 * @erp: Pointer to save error value 5538 * 5539 * This helper routine does exactly what is promise "swap extents". All other 5540 * stuff such as page-cache locking consistency, bh mapping consistency or 5541 * extent's data copying must be performed by caller. 5542 * Locking: 5543 * i_mutex is held for both inodes 5544 * i_data_sem is locked for write for both inodes 5545 * Assumptions: 5546 * All pages from requested range are locked for both inodes 5547 */ 5548 int 5549 ext4_swap_extents(handle_t *handle, struct inode *inode1, 5550 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, 5551 ext4_lblk_t count, int unwritten, int *erp) 5552 { 5553 struct ext4_ext_path *path1 = NULL; 5554 struct ext4_ext_path *path2 = NULL; 5555 int replaced_count = 0; 5556 5557 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem)); 5558 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem)); 5559 BUG_ON(!inode_is_locked(inode1)); 5560 BUG_ON(!inode_is_locked(inode2)); 5561 5562 *erp = ext4_es_remove_extent(inode1, lblk1, count); 5563 if (unlikely(*erp)) 5564 return 0; 5565 *erp = ext4_es_remove_extent(inode2, lblk2, count); 5566 if (unlikely(*erp)) 5567 return 0; 5568 5569 while (count) { 5570 struct ext4_extent *ex1, *ex2, tmp_ex; 5571 ext4_lblk_t e1_blk, e2_blk; 5572 int e1_len, e2_len, len; 5573 int split = 0; 5574 5575 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE); 5576 if (IS_ERR(path1)) { 5577 *erp = PTR_ERR(path1); 5578 path1 = NULL; 5579 finish: 5580 count = 0; 5581 goto repeat; 5582 } 5583 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE); 5584 if (IS_ERR(path2)) { 5585 *erp = PTR_ERR(path2); 5586 path2 = NULL; 5587 goto finish; 5588 } 5589 ex1 = path1[path1->p_depth].p_ext; 5590 ex2 = path2[path2->p_depth].p_ext; 5591 /* Do we have something to swap ? */ 5592 if (unlikely(!ex2 || !ex1)) 5593 goto finish; 5594 5595 e1_blk = le32_to_cpu(ex1->ee_block); 5596 e2_blk = le32_to_cpu(ex2->ee_block); 5597 e1_len = ext4_ext_get_actual_len(ex1); 5598 e2_len = ext4_ext_get_actual_len(ex2); 5599 5600 /* Hole handling */ 5601 if (!in_range(lblk1, e1_blk, e1_len) || 5602 !in_range(lblk2, e2_blk, e2_len)) { 5603 ext4_lblk_t next1, next2; 5604 5605 /* if hole after extent, then go to next extent */ 5606 next1 = ext4_ext_next_allocated_block(path1); 5607 next2 = ext4_ext_next_allocated_block(path2); 5608 /* If hole before extent, then shift to that extent */ 5609 if (e1_blk > lblk1) 5610 next1 = e1_blk; 5611 if (e2_blk > lblk2) 5612 next2 = e2_blk; 5613 /* Do we have something to swap */ 5614 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS) 5615 goto finish; 5616 /* Move to the rightest boundary */ 5617 len = next1 - lblk1; 5618 if (len < next2 - lblk2) 5619 len = next2 - lblk2; 5620 if (len > count) 5621 len = count; 5622 lblk1 += len; 5623 lblk2 += len; 5624 count -= len; 5625 goto repeat; 5626 } 5627 5628 /* Prepare left boundary */ 5629 if (e1_blk < lblk1) { 5630 split = 1; 5631 *erp = ext4_force_split_extent_at(handle, inode1, 5632 &path1, lblk1, 0); 5633 if (unlikely(*erp)) 5634 goto finish; 5635 } 5636 if (e2_blk < lblk2) { 5637 split = 1; 5638 *erp = ext4_force_split_extent_at(handle, inode2, 5639 &path2, lblk2, 0); 5640 if (unlikely(*erp)) 5641 goto finish; 5642 } 5643 /* ext4_split_extent_at() may result in leaf extent split, 5644 * path must to be revalidated. */ 5645 if (split) 5646 goto repeat; 5647 5648 /* Prepare right boundary */ 5649 len = count; 5650 if (len > e1_blk + e1_len - lblk1) 5651 len = e1_blk + e1_len - lblk1; 5652 if (len > e2_blk + e2_len - lblk2) 5653 len = e2_blk + e2_len - lblk2; 5654 5655 if (len != e1_len) { 5656 split = 1; 5657 *erp = ext4_force_split_extent_at(handle, inode1, 5658 &path1, lblk1 + len, 0); 5659 if (unlikely(*erp)) 5660 goto finish; 5661 } 5662 if (len != e2_len) { 5663 split = 1; 5664 *erp = ext4_force_split_extent_at(handle, inode2, 5665 &path2, lblk2 + len, 0); 5666 if (*erp) 5667 goto finish; 5668 } 5669 /* ext4_split_extent_at() may result in leaf extent split, 5670 * path must to be revalidated. */ 5671 if (split) 5672 goto repeat; 5673 5674 BUG_ON(e2_len != e1_len); 5675 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth); 5676 if (unlikely(*erp)) 5677 goto finish; 5678 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth); 5679 if (unlikely(*erp)) 5680 goto finish; 5681 5682 /* Both extents are fully inside boundaries. Swap it now */ 5683 tmp_ex = *ex1; 5684 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2)); 5685 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex)); 5686 ex1->ee_len = cpu_to_le16(e2_len); 5687 ex2->ee_len = cpu_to_le16(e1_len); 5688 if (unwritten) 5689 ext4_ext_mark_unwritten(ex2); 5690 if (ext4_ext_is_unwritten(&tmp_ex)) 5691 ext4_ext_mark_unwritten(ex1); 5692 5693 ext4_ext_try_to_merge(handle, inode2, path2, ex2); 5694 ext4_ext_try_to_merge(handle, inode1, path1, ex1); 5695 *erp = ext4_ext_dirty(handle, inode2, path2 + 5696 path2->p_depth); 5697 if (unlikely(*erp)) 5698 goto finish; 5699 *erp = ext4_ext_dirty(handle, inode1, path1 + 5700 path1->p_depth); 5701 /* 5702 * Looks scarry ah..? second inode already points to new blocks, 5703 * and it was successfully dirtied. But luckily error may happen 5704 * only due to journal error, so full transaction will be 5705 * aborted anyway. 5706 */ 5707 if (unlikely(*erp)) 5708 goto finish; 5709 lblk1 += len; 5710 lblk2 += len; 5711 replaced_count += len; 5712 count -= len; 5713 5714 repeat: 5715 ext4_ext_drop_refs(path1); 5716 kfree(path1); 5717 ext4_ext_drop_refs(path2); 5718 kfree(path2); 5719 path1 = path2 = NULL; 5720 } 5721 return replaced_count; 5722 } 5723 5724 /* 5725 * ext4_clu_mapped - determine whether any block in a logical cluster has 5726 * been mapped to a physical cluster 5727 * 5728 * @inode - file containing the logical cluster 5729 * @lclu - logical cluster of interest 5730 * 5731 * Returns 1 if any block in the logical cluster is mapped, signifying 5732 * that a physical cluster has been allocated for it. Otherwise, 5733 * returns 0. Can also return negative error codes. Derived from 5734 * ext4_ext_map_blocks(). 5735 */ 5736 int ext4_clu_mapped(struct inode *inode, ext4_lblk_t lclu) 5737 { 5738 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5739 struct ext4_ext_path *path; 5740 int depth, mapped = 0, err = 0; 5741 struct ext4_extent *extent; 5742 ext4_lblk_t first_lblk, first_lclu, last_lclu; 5743 5744 /* search for the extent closest to the first block in the cluster */ 5745 path = ext4_find_extent(inode, EXT4_C2B(sbi, lclu), NULL, 0); 5746 if (IS_ERR(path)) { 5747 err = PTR_ERR(path); 5748 path = NULL; 5749 goto out; 5750 } 5751 5752 depth = ext_depth(inode); 5753 5754 /* 5755 * A consistent leaf must not be empty. This situation is possible, 5756 * though, _during_ tree modification, and it's why an assert can't 5757 * be put in ext4_find_extent(). 5758 */ 5759 if (unlikely(path[depth].p_ext == NULL && depth != 0)) { 5760 EXT4_ERROR_INODE(inode, 5761 "bad extent address - lblock: %lu, depth: %d, pblock: %lld", 5762 (unsigned long) EXT4_C2B(sbi, lclu), 5763 depth, path[depth].p_block); 5764 err = -EFSCORRUPTED; 5765 goto out; 5766 } 5767 5768 extent = path[depth].p_ext; 5769 5770 /* can't be mapped if the extent tree is empty */ 5771 if (extent == NULL) 5772 goto out; 5773 5774 first_lblk = le32_to_cpu(extent->ee_block); 5775 first_lclu = EXT4_B2C(sbi, first_lblk); 5776 5777 /* 5778 * Three possible outcomes at this point - found extent spanning 5779 * the target cluster, to the left of the target cluster, or to the 5780 * right of the target cluster. The first two cases are handled here. 5781 * The last case indicates the target cluster is not mapped. 5782 */ 5783 if (lclu >= first_lclu) { 5784 last_lclu = EXT4_B2C(sbi, first_lblk + 5785 ext4_ext_get_actual_len(extent) - 1); 5786 if (lclu <= last_lclu) { 5787 mapped = 1; 5788 } else { 5789 first_lblk = ext4_ext_next_allocated_block(path); 5790 first_lclu = EXT4_B2C(sbi, first_lblk); 5791 if (lclu == first_lclu) 5792 mapped = 1; 5793 } 5794 } 5795 5796 out: 5797 ext4_ext_drop_refs(path); 5798 kfree(path); 5799 5800 return err ? err : mapped; 5801 } 5802 5803 /* 5804 * Updates physical block address and unwritten status of extent 5805 * starting at lblk start and of len. If such an extent doesn't exist, 5806 * this function splits the extent tree appropriately to create an 5807 * extent like this. This function is called in the fast commit 5808 * replay path. Returns 0 on success and error on failure. 5809 */ 5810 int ext4_ext_replay_update_ex(struct inode *inode, ext4_lblk_t start, 5811 int len, int unwritten, ext4_fsblk_t pblk) 5812 { 5813 struct ext4_ext_path *path = NULL, *ppath; 5814 struct ext4_extent *ex; 5815 int ret; 5816 5817 path = ext4_find_extent(inode, start, NULL, 0); 5818 if (!path) 5819 return -EINVAL; 5820 ex = path[path->p_depth].p_ext; 5821 if (!ex) { 5822 ret = -EFSCORRUPTED; 5823 goto out; 5824 } 5825 5826 if (le32_to_cpu(ex->ee_block) != start || 5827 ext4_ext_get_actual_len(ex) != len) { 5828 /* We need to split this extent to match our extent first */ 5829 ppath = path; 5830 down_write(&EXT4_I(inode)->i_data_sem); 5831 ret = ext4_force_split_extent_at(NULL, inode, &ppath, start, 1); 5832 up_write(&EXT4_I(inode)->i_data_sem); 5833 if (ret) 5834 goto out; 5835 kfree(path); 5836 path = ext4_find_extent(inode, start, NULL, 0); 5837 if (IS_ERR(path)) 5838 return -1; 5839 ppath = path; 5840 ex = path[path->p_depth].p_ext; 5841 WARN_ON(le32_to_cpu(ex->ee_block) != start); 5842 if (ext4_ext_get_actual_len(ex) != len) { 5843 down_write(&EXT4_I(inode)->i_data_sem); 5844 ret = ext4_force_split_extent_at(NULL, inode, &ppath, 5845 start + len, 1); 5846 up_write(&EXT4_I(inode)->i_data_sem); 5847 if (ret) 5848 goto out; 5849 kfree(path); 5850 path = ext4_find_extent(inode, start, NULL, 0); 5851 if (IS_ERR(path)) 5852 return -EINVAL; 5853 ex = path[path->p_depth].p_ext; 5854 } 5855 } 5856 if (unwritten) 5857 ext4_ext_mark_unwritten(ex); 5858 else 5859 ext4_ext_mark_initialized(ex); 5860 ext4_ext_store_pblock(ex, pblk); 5861 down_write(&EXT4_I(inode)->i_data_sem); 5862 ret = ext4_ext_dirty(NULL, inode, &path[path->p_depth]); 5863 up_write(&EXT4_I(inode)->i_data_sem); 5864 out: 5865 ext4_ext_drop_refs(path); 5866 kfree(path); 5867 ext4_mark_inode_dirty(NULL, inode); 5868 return ret; 5869 } 5870 5871 /* Try to shrink the extent tree */ 5872 void ext4_ext_replay_shrink_inode(struct inode *inode, ext4_lblk_t end) 5873 { 5874 struct ext4_ext_path *path = NULL; 5875 struct ext4_extent *ex; 5876 ext4_lblk_t old_cur, cur = 0; 5877 5878 while (cur < end) { 5879 path = ext4_find_extent(inode, cur, NULL, 0); 5880 if (IS_ERR(path)) 5881 return; 5882 ex = path[path->p_depth].p_ext; 5883 if (!ex) { 5884 ext4_ext_drop_refs(path); 5885 kfree(path); 5886 ext4_mark_inode_dirty(NULL, inode); 5887 return; 5888 } 5889 old_cur = cur; 5890 cur = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); 5891 if (cur <= old_cur) 5892 cur = old_cur + 1; 5893 ext4_ext_try_to_merge(NULL, inode, path, ex); 5894 down_write(&EXT4_I(inode)->i_data_sem); 5895 ext4_ext_dirty(NULL, inode, &path[path->p_depth]); 5896 up_write(&EXT4_I(inode)->i_data_sem); 5897 ext4_mark_inode_dirty(NULL, inode); 5898 ext4_ext_drop_refs(path); 5899 kfree(path); 5900 } 5901 } 5902 5903 /* Check if *cur is a hole and if it is, skip it */ 5904 static void skip_hole(struct inode *inode, ext4_lblk_t *cur) 5905 { 5906 int ret; 5907 struct ext4_map_blocks map; 5908 5909 map.m_lblk = *cur; 5910 map.m_len = ((inode->i_size) >> inode->i_sb->s_blocksize_bits) - *cur; 5911 5912 ret = ext4_map_blocks(NULL, inode, &map, 0); 5913 if (ret != 0) 5914 return; 5915 *cur = *cur + map.m_len; 5916 } 5917 5918 /* Count number of blocks used by this inode and update i_blocks */ 5919 int ext4_ext_replay_set_iblocks(struct inode *inode) 5920 { 5921 struct ext4_ext_path *path = NULL, *path2 = NULL; 5922 struct ext4_extent *ex; 5923 ext4_lblk_t cur = 0, end; 5924 int numblks = 0, i, ret = 0; 5925 ext4_fsblk_t cmp1, cmp2; 5926 struct ext4_map_blocks map; 5927 5928 /* Determin the size of the file first */ 5929 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 5930 EXT4_EX_NOCACHE); 5931 if (IS_ERR(path)) 5932 return PTR_ERR(path); 5933 ex = path[path->p_depth].p_ext; 5934 if (!ex) { 5935 ext4_ext_drop_refs(path); 5936 kfree(path); 5937 goto out; 5938 } 5939 end = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); 5940 ext4_ext_drop_refs(path); 5941 kfree(path); 5942 5943 /* Count the number of data blocks */ 5944 cur = 0; 5945 while (cur < end) { 5946 map.m_lblk = cur; 5947 map.m_len = end - cur; 5948 ret = ext4_map_blocks(NULL, inode, &map, 0); 5949 if (ret < 0) 5950 break; 5951 if (ret > 0) 5952 numblks += ret; 5953 cur = cur + map.m_len; 5954 } 5955 5956 /* 5957 * Count the number of extent tree blocks. We do it by looking up 5958 * two successive extents and determining the difference between 5959 * their paths. When path is different for 2 successive extents 5960 * we compare the blocks in the path at each level and increment 5961 * iblocks by total number of differences found. 5962 */ 5963 cur = 0; 5964 skip_hole(inode, &cur); 5965 path = ext4_find_extent(inode, cur, NULL, 0); 5966 if (IS_ERR(path)) 5967 goto out; 5968 numblks += path->p_depth; 5969 ext4_ext_drop_refs(path); 5970 kfree(path); 5971 while (cur < end) { 5972 path = ext4_find_extent(inode, cur, NULL, 0); 5973 if (IS_ERR(path)) 5974 break; 5975 ex = path[path->p_depth].p_ext; 5976 if (!ex) { 5977 ext4_ext_drop_refs(path); 5978 kfree(path); 5979 return 0; 5980 } 5981 cur = max(cur + 1, le32_to_cpu(ex->ee_block) + 5982 ext4_ext_get_actual_len(ex)); 5983 skip_hole(inode, &cur); 5984 5985 path2 = ext4_find_extent(inode, cur, NULL, 0); 5986 if (IS_ERR(path2)) { 5987 ext4_ext_drop_refs(path); 5988 kfree(path); 5989 break; 5990 } 5991 ex = path2[path2->p_depth].p_ext; 5992 for (i = 0; i <= max(path->p_depth, path2->p_depth); i++) { 5993 cmp1 = cmp2 = 0; 5994 if (i <= path->p_depth) 5995 cmp1 = path[i].p_bh ? 5996 path[i].p_bh->b_blocknr : 0; 5997 if (i <= path2->p_depth) 5998 cmp2 = path2[i].p_bh ? 5999 path2[i].p_bh->b_blocknr : 0; 6000 if (cmp1 != cmp2 && cmp2 != 0) 6001 numblks++; 6002 } 6003 ext4_ext_drop_refs(path); 6004 ext4_ext_drop_refs(path2); 6005 kfree(path); 6006 kfree(path2); 6007 } 6008 6009 out: 6010 inode->i_blocks = numblks << (inode->i_sb->s_blocksize_bits - 9); 6011 ext4_mark_inode_dirty(NULL, inode); 6012 return 0; 6013 } 6014 6015 int ext4_ext_clear_bb(struct inode *inode) 6016 { 6017 struct ext4_ext_path *path = NULL; 6018 struct ext4_extent *ex; 6019 ext4_lblk_t cur = 0, end; 6020 int j, ret = 0; 6021 struct ext4_map_blocks map; 6022 6023 /* Determin the size of the file first */ 6024 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 6025 EXT4_EX_NOCACHE); 6026 if (IS_ERR(path)) 6027 return PTR_ERR(path); 6028 ex = path[path->p_depth].p_ext; 6029 if (!ex) { 6030 ext4_ext_drop_refs(path); 6031 kfree(path); 6032 return 0; 6033 } 6034 end = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex); 6035 ext4_ext_drop_refs(path); 6036 kfree(path); 6037 6038 cur = 0; 6039 while (cur < end) { 6040 map.m_lblk = cur; 6041 map.m_len = end - cur; 6042 ret = ext4_map_blocks(NULL, inode, &map, 0); 6043 if (ret < 0) 6044 break; 6045 if (ret > 0) { 6046 path = ext4_find_extent(inode, map.m_lblk, NULL, 0); 6047 if (!IS_ERR_OR_NULL(path)) { 6048 for (j = 0; j < path->p_depth; j++) { 6049 6050 ext4_mb_mark_bb(inode->i_sb, 6051 path[j].p_block, 1, 0); 6052 } 6053 ext4_ext_drop_refs(path); 6054 kfree(path); 6055 } 6056 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); 6057 } 6058 cur = cur + map.m_len; 6059 } 6060 6061 return 0; 6062 } 6063