xref: /openbmc/linux/fs/ext4/ext4_extents.h (revision 7f2e85840871f199057e65232ebde846192ed989)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 #ifndef _EXT4_EXTENTS
8 #define _EXT4_EXTENTS
9 
10 #include "ext4.h"
11 
12 /*
13  * With AGGRESSIVE_TEST defined, the capacity of index/leaf blocks
14  * becomes very small, so index split, in-depth growing and
15  * other hard changes happen much more often.
16  * This is for debug purposes only.
17  */
18 #define AGGRESSIVE_TEST_
19 
20 /*
21  * With EXTENTS_STATS defined, the number of blocks and extents
22  * are collected in the truncate path. They'll be shown at
23  * umount time.
24  */
25 #define EXTENTS_STATS__
26 
27 /*
28  * If CHECK_BINSEARCH is defined, then the results of the binary search
29  * will also be checked by linear search.
30  */
31 #define CHECK_BINSEARCH__
32 
33 /*
34  * If EXT_STATS is defined then stats numbers are collected.
35  * These number will be displayed at umount time.
36  */
37 #define EXT_STATS_
38 
39 
40 /*
41  * ext4_inode has i_block array (60 bytes total).
42  * The first 12 bytes store ext4_extent_header;
43  * the remainder stores an array of ext4_extent.
44  * For non-inode extent blocks, ext4_extent_tail
45  * follows the array.
46  */
47 
48 /*
49  * This is the extent tail on-disk structure.
50  * All other extent structures are 12 bytes long.  It turns out that
51  * block_size % 12 >= 4 for at least all powers of 2 greater than 512, which
52  * covers all valid ext4 block sizes.  Therefore, this tail structure can be
53  * crammed into the end of the block without having to rebalance the tree.
54  */
55 struct ext4_extent_tail {
56 	__le32	et_checksum;	/* crc32c(uuid+inum+extent_block) */
57 };
58 
59 /*
60  * This is the extent on-disk structure.
61  * It's used at the bottom of the tree.
62  */
63 struct ext4_extent {
64 	__le32	ee_block;	/* first logical block extent covers */
65 	__le16	ee_len;		/* number of blocks covered by extent */
66 	__le16	ee_start_hi;	/* high 16 bits of physical block */
67 	__le32	ee_start_lo;	/* low 32 bits of physical block */
68 };
69 
70 /*
71  * This is index on-disk structure.
72  * It's used at all the levels except the bottom.
73  */
74 struct ext4_extent_idx {
75 	__le32	ei_block;	/* index covers logical blocks from 'block' */
76 	__le32	ei_leaf_lo;	/* pointer to the physical block of the next *
77 				 * level. leaf or next index could be there */
78 	__le16	ei_leaf_hi;	/* high 16 bits of physical block */
79 	__u16	ei_unused;
80 };
81 
82 /*
83  * Each block (leaves and indexes), even inode-stored has header.
84  */
85 struct ext4_extent_header {
86 	__le16	eh_magic;	/* probably will support different formats */
87 	__le16	eh_entries;	/* number of valid entries */
88 	__le16	eh_max;		/* capacity of store in entries */
89 	__le16	eh_depth;	/* has tree real underlying blocks? */
90 	__le32	eh_generation;	/* generation of the tree */
91 };
92 
93 #define EXT4_EXT_MAGIC		cpu_to_le16(0xf30a)
94 
95 #define EXT4_EXTENT_TAIL_OFFSET(hdr) \
96 	(sizeof(struct ext4_extent_header) + \
97 	 (sizeof(struct ext4_extent) * le16_to_cpu((hdr)->eh_max)))
98 
99 static inline struct ext4_extent_tail *
100 find_ext4_extent_tail(struct ext4_extent_header *eh)
101 {
102 	return (struct ext4_extent_tail *)(((void *)eh) +
103 					   EXT4_EXTENT_TAIL_OFFSET(eh));
104 }
105 
106 /*
107  * Array of ext4_ext_path contains path to some extent.
108  * Creation/lookup routines use it for traversal/splitting/etc.
109  * Truncate uses it to simulate recursive walking.
110  */
111 struct ext4_ext_path {
112 	ext4_fsblk_t			p_block;
113 	__u16				p_depth;
114 	__u16				p_maxdepth;
115 	struct ext4_extent		*p_ext;
116 	struct ext4_extent_idx		*p_idx;
117 	struct ext4_extent_header	*p_hdr;
118 	struct buffer_head		*p_bh;
119 };
120 
121 /*
122  * structure for external API
123  */
124 
125 /*
126  * EXT_INIT_MAX_LEN is the maximum number of blocks we can have in an
127  * initialized extent. This is 2^15 and not (2^16 - 1), since we use the
128  * MSB of ee_len field in the extent datastructure to signify if this
129  * particular extent is an initialized extent or an unwritten (i.e.
130  * preallocated).
131  * EXT_UNWRITTEN_MAX_LEN is the maximum number of blocks we can have in an
132  * unwritten extent.
133  * If ee_len is <= 0x8000, it is an initialized extent. Otherwise, it is an
134  * unwritten one. In other words, if MSB of ee_len is set, it is an
135  * unwritten extent with only one special scenario when ee_len = 0x8000.
136  * In this case we can not have an unwritten extent of zero length and
137  * thus we make it as a special case of initialized extent with 0x8000 length.
138  * This way we get better extent-to-group alignment for initialized extents.
139  * Hence, the maximum number of blocks we can have in an *initialized*
140  * extent is 2^15 (32768) and in an *unwritten* extent is 2^15-1 (32767).
141  */
142 #define EXT_INIT_MAX_LEN	(1UL << 15)
143 #define EXT_UNWRITTEN_MAX_LEN	(EXT_INIT_MAX_LEN - 1)
144 
145 
146 #define EXT_FIRST_EXTENT(__hdr__) \
147 	((struct ext4_extent *) (((char *) (__hdr__)) +		\
148 				 sizeof(struct ext4_extent_header)))
149 #define EXT_FIRST_INDEX(__hdr__) \
150 	((struct ext4_extent_idx *) (((char *) (__hdr__)) +	\
151 				     sizeof(struct ext4_extent_header)))
152 #define EXT_HAS_FREE_INDEX(__path__) \
153 	(le16_to_cpu((__path__)->p_hdr->eh_entries) \
154 				     < le16_to_cpu((__path__)->p_hdr->eh_max))
155 #define EXT_LAST_EXTENT(__hdr__) \
156 	(EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1)
157 #define EXT_LAST_INDEX(__hdr__) \
158 	(EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1)
159 #define EXT_MAX_EXTENT(__hdr__) \
160 	(EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1)
161 #define EXT_MAX_INDEX(__hdr__) \
162 	(EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1)
163 
164 static inline struct ext4_extent_header *ext_inode_hdr(struct inode *inode)
165 {
166 	return (struct ext4_extent_header *) EXT4_I(inode)->i_data;
167 }
168 
169 static inline struct ext4_extent_header *ext_block_hdr(struct buffer_head *bh)
170 {
171 	return (struct ext4_extent_header *) bh->b_data;
172 }
173 
174 static inline unsigned short ext_depth(struct inode *inode)
175 {
176 	return le16_to_cpu(ext_inode_hdr(inode)->eh_depth);
177 }
178 
179 static inline void ext4_ext_mark_unwritten(struct ext4_extent *ext)
180 {
181 	/* We can not have an unwritten extent of zero length! */
182 	BUG_ON((le16_to_cpu(ext->ee_len) & ~EXT_INIT_MAX_LEN) == 0);
183 	ext->ee_len |= cpu_to_le16(EXT_INIT_MAX_LEN);
184 }
185 
186 static inline int ext4_ext_is_unwritten(struct ext4_extent *ext)
187 {
188 	/* Extent with ee_len of 0x8000 is treated as an initialized extent */
189 	return (le16_to_cpu(ext->ee_len) > EXT_INIT_MAX_LEN);
190 }
191 
192 static inline int ext4_ext_get_actual_len(struct ext4_extent *ext)
193 {
194 	return (le16_to_cpu(ext->ee_len) <= EXT_INIT_MAX_LEN ?
195 		le16_to_cpu(ext->ee_len) :
196 		(le16_to_cpu(ext->ee_len) - EXT_INIT_MAX_LEN));
197 }
198 
199 static inline void ext4_ext_mark_initialized(struct ext4_extent *ext)
200 {
201 	ext->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ext));
202 }
203 
204 /*
205  * ext4_ext_pblock:
206  * combine low and high parts of physical block number into ext4_fsblk_t
207  */
208 static inline ext4_fsblk_t ext4_ext_pblock(struct ext4_extent *ex)
209 {
210 	ext4_fsblk_t block;
211 
212 	block = le32_to_cpu(ex->ee_start_lo);
213 	block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
214 	return block;
215 }
216 
217 /*
218  * ext4_idx_pblock:
219  * combine low and high parts of a leaf physical block number into ext4_fsblk_t
220  */
221 static inline ext4_fsblk_t ext4_idx_pblock(struct ext4_extent_idx *ix)
222 {
223 	ext4_fsblk_t block;
224 
225 	block = le32_to_cpu(ix->ei_leaf_lo);
226 	block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
227 	return block;
228 }
229 
230 /*
231  * ext4_ext_store_pblock:
232  * stores a large physical block number into an extent struct,
233  * breaking it into parts
234  */
235 static inline void ext4_ext_store_pblock(struct ext4_extent *ex,
236 					 ext4_fsblk_t pb)
237 {
238 	ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
239 	ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) &
240 				      0xffff);
241 }
242 
243 /*
244  * ext4_idx_store_pblock:
245  * stores a large physical block number into an index struct,
246  * breaking it into parts
247  */
248 static inline void ext4_idx_store_pblock(struct ext4_extent_idx *ix,
249 					 ext4_fsblk_t pb)
250 {
251 	ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
252 	ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) &
253 				     0xffff);
254 }
255 
256 #define ext4_ext_dirty(handle, inode, path) \
257 		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
258 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
259 		     struct inode *inode, struct ext4_ext_path *path);
260 
261 #endif /* _EXT4_EXTENTS */
262 
263