1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 #ifndef _EXT4_EXTENTS 8 #define _EXT4_EXTENTS 9 10 #include "ext4.h" 11 12 /* 13 * With AGGRESSIVE_TEST defined, the capacity of index/leaf blocks 14 * becomes very small, so index split, in-depth growing and 15 * other hard changes happen much more often. 16 * This is for debug purposes only. 17 */ 18 #define AGGRESSIVE_TEST_ 19 20 /* 21 * With EXTENTS_STATS defined, the number of blocks and extents 22 * are collected in the truncate path. They'll be shown at 23 * umount time. 24 */ 25 #define EXTENTS_STATS__ 26 27 /* 28 * If CHECK_BINSEARCH is defined, then the results of the binary search 29 * will also be checked by linear search. 30 */ 31 #define CHECK_BINSEARCH__ 32 33 /* 34 * If EXT_STATS is defined then stats numbers are collected. 35 * These number will be displayed at umount time. 36 */ 37 #define EXT_STATS_ 38 39 40 /* 41 * ext4_inode has i_block array (60 bytes total). 42 * The first 12 bytes store ext4_extent_header; 43 * the remainder stores an array of ext4_extent. 44 * For non-inode extent blocks, ext4_extent_tail 45 * follows the array. 46 */ 47 48 /* 49 * This is the extent tail on-disk structure. 50 * All other extent structures are 12 bytes long. It turns out that 51 * block_size % 12 >= 4 for at least all powers of 2 greater than 512, which 52 * covers all valid ext4 block sizes. Therefore, this tail structure can be 53 * crammed into the end of the block without having to rebalance the tree. 54 */ 55 struct ext4_extent_tail { 56 __le32 et_checksum; /* crc32c(uuid+inum+extent_block) */ 57 }; 58 59 /* 60 * This is the extent on-disk structure. 61 * It's used at the bottom of the tree. 62 */ 63 struct ext4_extent { 64 __le32 ee_block; /* first logical block extent covers */ 65 __le16 ee_len; /* number of blocks covered by extent */ 66 __le16 ee_start_hi; /* high 16 bits of physical block */ 67 __le32 ee_start_lo; /* low 32 bits of physical block */ 68 }; 69 70 /* 71 * This is index on-disk structure. 72 * It's used at all the levels except the bottom. 73 */ 74 struct ext4_extent_idx { 75 __le32 ei_block; /* index covers logical blocks from 'block' */ 76 __le32 ei_leaf_lo; /* pointer to the physical block of the next * 77 * level. leaf or next index could be there */ 78 __le16 ei_leaf_hi; /* high 16 bits of physical block */ 79 __u16 ei_unused; 80 }; 81 82 /* 83 * Each block (leaves and indexes), even inode-stored has header. 84 */ 85 struct ext4_extent_header { 86 __le16 eh_magic; /* probably will support different formats */ 87 __le16 eh_entries; /* number of valid entries */ 88 __le16 eh_max; /* capacity of store in entries */ 89 __le16 eh_depth; /* has tree real underlying blocks? */ 90 __le32 eh_generation; /* generation of the tree */ 91 }; 92 93 #define EXT4_EXT_MAGIC cpu_to_le16(0xf30a) 94 95 #define EXT4_EXTENT_TAIL_OFFSET(hdr) \ 96 (sizeof(struct ext4_extent_header) + \ 97 (sizeof(struct ext4_extent) * le16_to_cpu((hdr)->eh_max))) 98 99 static inline struct ext4_extent_tail * 100 find_ext4_extent_tail(struct ext4_extent_header *eh) 101 { 102 return (struct ext4_extent_tail *)(((void *)eh) + 103 EXT4_EXTENT_TAIL_OFFSET(eh)); 104 } 105 106 /* 107 * Array of ext4_ext_path contains path to some extent. 108 * Creation/lookup routines use it for traversal/splitting/etc. 109 * Truncate uses it to simulate recursive walking. 110 */ 111 struct ext4_ext_path { 112 ext4_fsblk_t p_block; 113 __u16 p_depth; 114 __u16 p_maxdepth; 115 struct ext4_extent *p_ext; 116 struct ext4_extent_idx *p_idx; 117 struct ext4_extent_header *p_hdr; 118 struct buffer_head *p_bh; 119 }; 120 121 /* 122 * structure for external API 123 */ 124 125 /* 126 * EXT_INIT_MAX_LEN is the maximum number of blocks we can have in an 127 * initialized extent. This is 2^15 and not (2^16 - 1), since we use the 128 * MSB of ee_len field in the extent datastructure to signify if this 129 * particular extent is an initialized extent or an unwritten (i.e. 130 * preallocated). 131 * EXT_UNWRITTEN_MAX_LEN is the maximum number of blocks we can have in an 132 * unwritten extent. 133 * If ee_len is <= 0x8000, it is an initialized extent. Otherwise, it is an 134 * unwritten one. In other words, if MSB of ee_len is set, it is an 135 * unwritten extent with only one special scenario when ee_len = 0x8000. 136 * In this case we can not have an unwritten extent of zero length and 137 * thus we make it as a special case of initialized extent with 0x8000 length. 138 * This way we get better extent-to-group alignment for initialized extents. 139 * Hence, the maximum number of blocks we can have in an *initialized* 140 * extent is 2^15 (32768) and in an *unwritten* extent is 2^15-1 (32767). 141 */ 142 #define EXT_INIT_MAX_LEN (1UL << 15) 143 #define EXT_UNWRITTEN_MAX_LEN (EXT_INIT_MAX_LEN - 1) 144 145 146 #define EXT_FIRST_EXTENT(__hdr__) \ 147 ((struct ext4_extent *) (((char *) (__hdr__)) + \ 148 sizeof(struct ext4_extent_header))) 149 #define EXT_FIRST_INDEX(__hdr__) \ 150 ((struct ext4_extent_idx *) (((char *) (__hdr__)) + \ 151 sizeof(struct ext4_extent_header))) 152 #define EXT_HAS_FREE_INDEX(__path__) \ 153 (le16_to_cpu((__path__)->p_hdr->eh_entries) \ 154 < le16_to_cpu((__path__)->p_hdr->eh_max)) 155 #define EXT_LAST_EXTENT(__hdr__) \ 156 (EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) 157 #define EXT_LAST_INDEX(__hdr__) \ 158 (EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) 159 #define EXT_MAX_EXTENT(__hdr__) \ 160 (EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1) 161 #define EXT_MAX_INDEX(__hdr__) \ 162 (EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1) 163 164 static inline struct ext4_extent_header *ext_inode_hdr(struct inode *inode) 165 { 166 return (struct ext4_extent_header *) EXT4_I(inode)->i_data; 167 } 168 169 static inline struct ext4_extent_header *ext_block_hdr(struct buffer_head *bh) 170 { 171 return (struct ext4_extent_header *) bh->b_data; 172 } 173 174 static inline unsigned short ext_depth(struct inode *inode) 175 { 176 return le16_to_cpu(ext_inode_hdr(inode)->eh_depth); 177 } 178 179 static inline void ext4_ext_mark_unwritten(struct ext4_extent *ext) 180 { 181 /* We can not have an unwritten extent of zero length! */ 182 BUG_ON((le16_to_cpu(ext->ee_len) & ~EXT_INIT_MAX_LEN) == 0); 183 ext->ee_len |= cpu_to_le16(EXT_INIT_MAX_LEN); 184 } 185 186 static inline int ext4_ext_is_unwritten(struct ext4_extent *ext) 187 { 188 /* Extent with ee_len of 0x8000 is treated as an initialized extent */ 189 return (le16_to_cpu(ext->ee_len) > EXT_INIT_MAX_LEN); 190 } 191 192 static inline int ext4_ext_get_actual_len(struct ext4_extent *ext) 193 { 194 return (le16_to_cpu(ext->ee_len) <= EXT_INIT_MAX_LEN ? 195 le16_to_cpu(ext->ee_len) : 196 (le16_to_cpu(ext->ee_len) - EXT_INIT_MAX_LEN)); 197 } 198 199 static inline void ext4_ext_mark_initialized(struct ext4_extent *ext) 200 { 201 ext->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ext)); 202 } 203 204 /* 205 * ext4_ext_pblock: 206 * combine low and high parts of physical block number into ext4_fsblk_t 207 */ 208 static inline ext4_fsblk_t ext4_ext_pblock(struct ext4_extent *ex) 209 { 210 ext4_fsblk_t block; 211 212 block = le32_to_cpu(ex->ee_start_lo); 213 block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1; 214 return block; 215 } 216 217 /* 218 * ext4_idx_pblock: 219 * combine low and high parts of a leaf physical block number into ext4_fsblk_t 220 */ 221 static inline ext4_fsblk_t ext4_idx_pblock(struct ext4_extent_idx *ix) 222 { 223 ext4_fsblk_t block; 224 225 block = le32_to_cpu(ix->ei_leaf_lo); 226 block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1; 227 return block; 228 } 229 230 /* 231 * ext4_ext_store_pblock: 232 * stores a large physical block number into an extent struct, 233 * breaking it into parts 234 */ 235 static inline void ext4_ext_store_pblock(struct ext4_extent *ex, 236 ext4_fsblk_t pb) 237 { 238 ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); 239 ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 240 0xffff); 241 } 242 243 /* 244 * ext4_idx_store_pblock: 245 * stores a large physical block number into an index struct, 246 * breaking it into parts 247 */ 248 static inline void ext4_idx_store_pblock(struct ext4_extent_idx *ix, 249 ext4_fsblk_t pb) 250 { 251 ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); 252 ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 253 0xffff); 254 } 255 256 #define ext4_ext_dirty(handle, inode, path) \ 257 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) 258 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle, 259 struct inode *inode, struct ext4_ext_path *path); 260 261 #endif /* _EXT4_EXTENTS */ 262 263